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The numerical solution of the Schridinger equation for an electron in a dense assembly of atoms
(i.e. a solid or liquid metal or semiconductor) has made great progress in the past ten years. This is not
merely a consequence of greater computing power: we now have a much better grasp of the mathemati-
cal theory of such solutions.

By 1960 a number of practical methods had been devised for the computation of the electronic
structure of ordered crystals, but these lacked intuitive interpretation. The first advance was to rewrite
the OPW method in terms of pseudopotentials, thus making sense of the free-electron theory of metals.
This development has proved particularly valuable in semiquantitative and empirical investigations of
Fermi surfaces, transport properties, lattice dynamics, cohesion, etc., but we have had to wait until
recently for a rigorous analysis of the criteria for convergence of the various types of model potential or
pseudopotential that have been postulated.

The next step was to show that the KKR (Green function) method could also be expressed as a
pseudopotential, and then to demonstrate that this was also a form of APW expansion. The relative
computational power of these two methods can thus be analyzed, and questions answered concerning
the fulfillment of the empty lattice test, the apparent lack of uniqueness of the expansions, the ad-
vantages of “folding” matrix elements from distant points of the reciprocal lattice, and the introduction
of contributions from the interstitial potential.

At this stage, the connections between the band structure problem and the t-matrix theory of scat-
tering were uncovered, and d-bands were seen to arise as resonances of the muffin-tin wells. The KKR
matrix could now be rewritten as a mixture of pseudopotential and tight-binding elements, in harmony
with the empirical model Hamiltonian representations of hybridised s-p and d-bands. This method not
only permits more rapid computations, but shows clearly how the width and position of such bands
should depend on the atomic potential.

Some problems still remain. For example, present techniques do not seem adequate for first-princi-
ples calculations on molecular crystals, where the anisotropy of the interstitial potential (i.e. easy chan-
nels along bonds, but high hills between layers or chains) is probably the dominant feature.

As for disordered systems — we know little for certain and nothing quantitatively. The linear chain
model has been fully studied but is quite irrelevant to the three-dimensional case. The present theoreti-
cal confusion is exemplified by the equiconcentration substitutional alloy in the tight-binding limit:
some formulae give only one band, others allow two. Again, the very possibility of producing band gaps
by diffraction of free electrons in a topologically disordered system (e.g. amorphous Ge) has not been
demonstrated mathematically with any rigor.

Key words: APW; band structure; density of states; disordered systems; KKR; pseudopotential;
t-matrix; molecular crystals.

1. Algebra vs. Arithmetic

Any scientific problem or puzzle can seem interest-
ing and significant if one gets sufficiently involved in it:
the difficulty sometimes is to persuade other people of
this importance. How should we defend our interest in

*An invited paper presented at the 3d Materials Research Symposium, Electronic Den-
sity of States, November 3-6, 1969, Gaithersburg, Md.

the Electronic Density of States to an unprejudiced
tribunal?

Not, surely, in terms of immediate use, but of long
term understanding. Electrons being the glue of all
“materials”, their states within condensed matter are
of fundamental importance. No quantitative estimate
of any property of a metal, semiconductor, insulator,
glass, liquid, mineral, etc., can begin without informa-
tion about these states. In fact, we want all the wave
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functions of all the electrons outside of the closed
shells — a tall order, which cannot be fulfilled by direct
experiment. The next best thing is the energy spec-
trum, or “density of states,” although as we shall learn
in the course of this symposium, that cannot always be
deduced unambiguously from observed phenomena.

Progress in this field therefore depends on sound
theoretical analysis of the hypothetical possibilities, as
well as careful experimental investigation of the facts.
The calculation of electronic band structure is thus the
central mathematical problem of solid state physics.
Every “exciting” topic or mysterious phenomenon —su-
perconductivity, the Kondo effect, ferromagnetism,
Fermi surfaces, the Gunn effect, Josephson tunnelling,
etc.,—eventually depends for its computable parame-
ters on this mundane task.

It is sometimes argued, by the deeply unimaginative
follower of scientifc fashion, that this problem has been
solved long ago, and can safely be left to the brute
strength of more and more powerful computers. This is
quite wrong; these elephants must be goaded and
guided by experienced mahouts, whose skill is to see
in advance the type of answer that is to be obtained,
and then to deploy the minimum of force to lever away
the obstacles. A ream of computer print-out is useless
unless it agrees so perfectly with experiment that we
need never look back and see why and how it went
wrong. Our task is to devise techniques for the theoreti-
cal mastery of ever more complex systems, which
requires at every stage that we know exactly what we
are doing, analytically as well as numerically.

This is well illustrated by the recent history of our
subject. Let me express this in personal terms. A little
more than ten years ago, in gathering material for a
monograph [1] of which one chapter covered this topic,
I found that many techniques of band structure compu-
tation had been proposed and tried out, but that there
were very few cases where the results had been con-
firmed experimentally, or where they gave any insight
into the actual electronic structure of the materials. It
was simply not obvious, for example, that almost all the
calculated band structures for metals could have been
derived from the free electron system by perturbation
effects at the zone boundaries, because nobody had
programmed his computer to print out the data in that
form. We knew from the success of the free electron
model that this could not be very far from the truth,
but we had not the imagination to rewrite the algebra so
as to see how this must arise within whatever method
of calculation we might happen to use.

In the past decade, of course, computational
techniques have improved enormously in accuracy and
power, so that a whole body of expertise is now availa-

ble for application in any particular case [2]. Given the
exact one-electron potential of a crystalline solid, we
can compute the band structure to almost any desired
degree of accuracy. But the trouble is that we do not al-
ways have this potential, complete with all the electron-
electron terms, spin-orbit interaction, core polarization,
exchange and correlation effects and so on, so that our
first-principles computations just miss the answers we
are seeking. Without an appeal to the basic algebraic
principles and governing features of the model, we then
flounder around, trying to adjust the parameters by trial
and error. Somebody else, using a different “method”
may get a different answer: is this due to deep discrep-
ancies in the fundamental assumptions, or to errors of
approximation, or just numerical mistakes?

2. Pseudism

Now recall how our minds have been liberated by the
pseudopotential concept. There is no need to explain
this to the present audience. Let us suppose that we
had tried to express the Bloch function of wave vector
k by a sum of simple plane waves

lljk_—'zgagei(k+g)~r’ (1)

where g runs through the reciprocal lattice: we should
have to solve the infinite set of linear equations

{lk+glz—é”}ag+ng(g—g')ag:O 2)

where 7' (g—g’) is a Fourier component of the periodic
potential in the lattice and & is the energy of the state
we are after. By rewriting the equations in terms of
orthogonalized plane waves we can show that the whole
problem is equivalent to solving a very similar set of
equations

{k+gl>=&}Bt = _T,B,~0, (3)

in which the pseudopotential components I'y, are much
smaller than the original set 7 (g— g’). Thus, the whole
problem is equivalent to the perturbation of free elec-
tron waves by a weak pseudopotential and can be
solved by elementary computation. For a perfect
Bravais lattice the value of 7' (g—g’) or of I'yy is a func-
tion only of the potential associated with a single atom
or ion—in the language of x-ray diffraction, it is just the'
“atomic form factor” in the formula for diffraction by
an assembly of such objects at the appropriate Bragg
angle. The band structures of most ordinary metals,
and many semiconductors, can be read at a glance. Not
only does this provide us with an admirable
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parametrization of Fermi surfaces, optical spectra,
etc., in perfect crystals, but can be extended to include
almost all the properties of thermally excited, impure

~or disordered materials — electron-phonon interactions,

electrical conductivity of solid and liquid metals, lattice
dynamics, phase stability of alloys, etc. In moments of
enthusiasm [3.,4,5] we may perhaps be forgiven for pre-
tending that all the problems of the theory of metals are
cured by a strong dose of “pseudism”. It is a wonderful
model for zeroth order calculations, and the ideal do-it-
yourself kit for the enthusiastic amateur. It had the ef-
fect of turning band structure theory from a rule of
thumb technology into an elegant science.
Nevertheless, the pseudopotential method is not the

~ ultimate solution to the band structure problem. In the

first place, the program of replacing the true atomic
potential by a localized pseudopotential, independent
of energy and momentum, cannot be fulfilled exactly.
If, like Herman and his colleagues [ 6] one is trying to
make very accurate first principles calculations,
nothing is gained by rewriting the OPW equations in
this form. Indeed, there is a danger that the apparent
simplicity and rapid convergence of the pseudopoten-
tial equations may seduce us into further approxima-
tions which hide important effects; once having lost
touch with the exact equations, we slide easily into a

“sloppy mess where qualitative and quantitative, first

principles and parametrized, features are inextricably
confused.

FIGURE 1. The true wave function {(r) in the true potential 0(r) is

replaced by the pseudo wave function ¢(r) in the pseudopoten-
tial w(r).

This type of confusion is compounded by the non-
uniqueness of pseudopotentials. The original algebraic

. proof of this arbitrariness came as something of a sur-

prise, but it is really quite obvious. We are asked, in ef-
fect to construct a weak potential that will reproduce
the effect of a strong potential on an electron wave of
given energy impinging on the atom. The boundary con-
dition on the pseudo wave function—that it should
match the true wave function on the outside—is very

weak, and amounts to little more than fixing the value
of a few integrals over the pseudopotential. We know,
for example, that the s-wave scattering phase shift of
the true potential will be reproduced at low energies if
we choose the spatial average of the pseudopotential
correctly—and so on. Almost any function containing
a few adjustable parameters can be made to fit these
conditions. Of course the problem of finding a fixed
local pseudopotential that will imitate the effects of the
true potential over a wide range of energy is much more
difficult, and has not been solved, but that is not what
we are asked to do.

This arbitrariness was exploited to the full by Heine
and Abarenkov [7] who chose the most elementary
pseudopotential functions so as to simplify the rest of
the algebra. It was natural to reproduce the core poten-
tial of a metallic ion with a square well of depth A, (#),
which could be continued outwards as a simple
Coulomb potential; or as a screened Coulomb potential,
according as one is thinking of an isolated free atom or
of a “pseudo atom” in a condensed phase (fig. 2). In
fact, the value of A;(¢) for a given angular momentum
can then be estimated from the optical term values,
in the tradition of the quantum defect method of Kuhn
and Van Vleck.

Such a “model potential” is obviously good physics,
and can be more or less justified mathematically. It
copes very elegantly with one of the most difficult
aspects of the whole theory—the self-consistency
problem for the valence electrons—about which, for
reasons of brevity, | shall say very little here. According
to Shaw [8], the screening corrections can be calcu-
lated accurately, although it pays to eliminate the
discontinuity at the surface of the square well by treat-
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FIGURE 2a. Heine-Abarenkov pseudopotential; before screening.

Vp: (r)
\
%\ln/'— I

-R, —Ry; 0

FIGURE 2b. After screening (from [5]).
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ing the radius of this internal flat region as another ad-
justable parameter, depending also on energy and mo-
mentum (fig. 3).
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FIGURE 3. Shaw pseudopotential.

Notice, however, the dangers of overelaboration. An
arbitrarily defined model potential in real space is valu-
able only in proportion to its algebraic or geometrical
simplicity, and will not bear much “improvement” in
the name of numerical precision or in order to get
better agreement with experiment. In the event the
electronic structure depends on the “form factor” —the
Fourier transform of the pseudopotential — which might
then just as well be derived directly from the true
potential by some more powerful method, or which we
could also represent by some simple empirical function
[9].

From a formal point of view, the arbitrariness of the
pseudopotential is certainly quite worrying. How can
the electronic band structure depend uniquely on the
periodic lattice potential if this arbitrary function can
be interposed in the calculation? Well now, suppose we
had tried to solve the equations (2) for the Bloch func-
tions expanded in simple plane waves. Since these are
an infinite set we should have had to proceed by suc-
cessive approximations, just as if we are trying to sum
a series term by term. But these equations really have
many solutions of much lower energy than the one we
are looking for, corresponding to all the narrow tight-
bound bands and an expansion in powers of 7 (g—g’)
simply does not converge for energies in the valence
band. We are trying to sum the Born series for scatter-
ing by one of the atomic potentials, ignoring the fact
that it has numerous deep bound states. The pseu-
dopotential trick removes all the effects of these bound
states, and gives us a convergent series. It is rather like
wanting to evaluate 1/(14x) when x is about 10: a power
series in x will not converge, but we can easily con-
struct a new series in some new variable y = (x—a),
say, which can be made to converge in the region of in-
terest. The actual terms in the series will depend on the
value of a, which may be any arbitrary number larger

than about 5—but the final answer will be independent
of this choice. Thus the final value of the energy as a
function of wave vector comes out the same, whatever
form of pseudopotential we introduce into the equa-
tions.

This suggests a possible criterion for a “best’ pseu-
dopotential: choose the form of 'y, that causes the se-
ries expansion for the Bloch functions to converge most
rapidly. There is a rather elaborate mathematical
theory of the Born series, due to Weinberg, which can
be applied to this problem [10] and which does dis-
criminate in principle between various formulae. These *
investigations are not, perhaps, of very great practical
value to the horny-handed programmer of computers,
but they are healthy in establishing the basic mathe-
matical foundations of the whole technique.

3. The Problem of Bound Bands

The most serious limitation of the pseudopotential
concept is that it applies only to the so-called “simple”
metals —those without d-states in the valence band.
There is, of course, a long tradition of representing
such states by the tight binding method, as a linear
combination of atomic orbitals. The coefficients a; in
such combinations then have to satisfy a set of linear
equations of the form

(/é(/‘—g)alﬁ‘ S Vl,l/(k)al/:(), (4)

where the index L stands for different angular momen-
tum and magnetic quantum numbers; for example, the
five values of the component of angular momentum in
a band of d-states. The original bound state at & is
broadened into a band by the various overlap integrals
7’11 (Kk), which can in principle be evaluated, although
in practice this is so complicated and inaccurate that
one treats them as adjustable parameters.

It used to be thought that all the states in metals
could be described in this way, by bringing in enough
different atomic orbitals. The picture of states over-
lapping and broadening to make nice valence and con-
duction bands illustrates one of the nursery rhymes of
our subject (fig. 4). Unfortunately, this is quite mislead-
ing. What happens is that as the atomic potentials
overlap, and the barriers fall between atomic cells,
most of these atomic bound-state orbitals disappear.
The ordinary s and p valence levels of the atoms vanish
into a nearly free-electron band which can only be
described if one includes ‘propagating wave functions
from above the spectrum of bound states of the
separate ions or atoms.
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FIGURE 4. Conventional picture of energy bands from overlap of

atomic orbitals.

We thus arrive at an impasse: we can describe ordi-
nary s—p bands in pseudopotential language, and
d-bands in tight binding language, but there seems no
common tongue, even when these bands overlap and
hybridize as in the transition metals.

This difficulty never seems to have worried the ac-
tive calculators of band structures: they used two
techniques that gave good numerical results in all
cases—the augmented plane wave method and the
Green function method. One of the main developments
in band structure theory in the past 5 years has been to
show the mathematical connections between these use-
ful techniques and the concepts of pseudopotential and
tight-binding.

The idea of an augmented plane wave is quite simple.
At some given energy &, one solves the Schridinger
equation inside a spherical potential well, of radius
R, say. The solution is a linear combination of products
or radial functions and spherical harmonics of different
values of angular momentum. Now determine these
coefhicients so that this solution matches on to a plane
wave of wave vector k outside the sphere. This function
is still not an exact solution of the Schriodinger equa-
tion, and has a discontinuity of slope at Ry; but we can
build up our Bloch function by combining a set of
these with wave vectors k, k+g. etc. just as in (1)
and then using the variational principle for the energy.
The coeflicients satisfy a set of equations exactly like
the pseudopotential equations (3) so that we can find

s-p band
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Bound band ;
FIGURE 5. (a) Conventional LCAO description of formation of metallic conduction band; (b) Description in terms of muffin-tin

potentials.
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FIGURE 6. An augmented plane wave.

the energy & as a function of k by finding the roots of
the determinant in the usual way.

The actual formula for I'yy*”"V is rather elaborate, so
I will not write it down; it depends upon k, and also
upon & through the first derivatives of the radial solu-
tions of the Schrodinger equation at Rg. At first sight
one might have thought that this could be interpreted
as an elaborate energy- and momentum-dependent form
factor, derivable from a pseudopotential; but this is not
the case. The difficulty is that I''”" does not vanish in
the elementary case of an empty lattice— whereas we
should certainly expect a pseudopotential to be zero
when we remove the true potential to which it is sup-
posed to be equivalent. The connection with the tight
binding formalism appears even more obscure, even
though one can compute perfectly good d-bands by this
method.

In desperation, we turn to the KKR method of Korrin-
ga and of Kohn and Rostoker. This is called the Green
function method because it was originally derived in
that somewhat abstract language, but it really depends
upon a self-consistency argument; as the Bloch wave
proceeds through the crystal lattice, and encounters
the various atomic spheres, it suffers scattering or dif-
fraction—but this diffraction must be exactly what is
needed to reproduce the wave and keep it on the move
without loss. Again, I will spare you from the algebra,
and merely report that, as in the APW method, one
uses the radial solutions of the Schridinger equation in

47N

FIGURE 7. Scattered waves recombining as plane waves in KKR
method.

each atomic sphere and plane waves outside. The
result is yet another set of linear equations— this time
for the coefficients of the mixture of solutions of various
angular momentum in the sphere:

k{cot mi(k)—i}tbr+ 2. Bru(k, k)b =0. (5)

In this formula, the energy & is 2, and n,(k) is the
phase shift that would have been produced by the
atomic sphere in scattering a plane wave of this energy.
The “‘structure constants” B, (K.x) depend on the
energy and momentum of the state being studied, but
otherwise can be laboriously computed from the geo-
metrical structure of the lattice.

This does not look very much like either of our previ-
ous formulae. Indeed, from the pseudopotential point
of view it looks quite wrong, for when we apply the
empty lattice test we make 7, tend to zero, which
causes cot 1 to blow up. In fact these equations need
to be turned upside down if we are to understand them
physically [11]. The algebra is again a bit heavy, and
depends essentially on some of the analytic properties
of the structure constants, each of which is in fact a
sum over reciprocal lattice vectors of products of spher-
ical harmonics and Bessel functions etc. The result is
a set of algebraic equations of the form of (3), with the
following expression for the “matrix elements of the
pseudopotential’’:

J(lk—g|Rs)ji(|k—g'|Ry) p

Megi=—="73, (2/+1) tan n; HBIE + (003 6) )
where (xR.)
cotm’=cotm—%f?:)—' (7)
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In this formula, j; and m; are spherical Bessel functions,
and P, (cosfyy) is the ordinary Legendre polynomial for
the angle between vectors k—gand k—g

This formula is highly instructive, for a number of
reasons.

(i) Consider an empty lattice, for which n,;=0.
Then n'; will also vanish, and with it tan 0.
Thus I'yy is a genuine pseudopotential, which
goes to zero with the true potential.

(ii) When 7, is small, the difference between, say
tan m'; and sin m; exp (im;) is negligible. Ignor-
ing the ratios of spherical Bessel functions, Iy,
looks just like a scattering amplitude for the ef-
fect of our given potential on a single plane
wave. This is good physics: the crystal is made
up of an assembly of objects, each of which scat-
ters the Bloch wave into itself.

(iii) A strong potential, with many deep bound
states may, nevertheless, have quite small phase
shifts, so may behave like a weak pseudopoten-
tial. Thus, the principle of subtracting away the
divergences due to the bound states amounts to

simply representing each phase shift as the
smallest possible angle, modulo (7). This is a
well-known property of phase shifts.

(iv) As shown by Lloyd [12], this form of matrix
element can be derived from a simple model
potential. We merely put a delta function singu-
larity of potential over the surface of the sphere
of radius Ry, of strength to match the phase shift
1 outside, for each value of L.

(v) The connection with the APW formula was
discovered by Morgan [13]. Suppose we write
[P (0) for the values of the APW matrix ele-
ments in an empty lattice. Then

[4PW = ['KKR 4 [aPw (), (8)

The APW matrix elements have these extra parts to
them, which do not really contribute to the band struc-
ture, and which do not vanish for any value of /, even
for empty space. One can even derive 'V from a
model potential [12], but this is much more com-
. plicated in form than the one for I'Nf® and does not
vanish in empty space.
=

|| |

Rs

FIGURE 8. Pseudopotential for I'KE,

These properties of this new form of pseudopotential
suggest that it should be much easier than the APW
method to use in practice for simple metals, where we
need only introduce small phase shifts for a few values
of angular momenta. We may also use the computa-
tional device of “folding”

values of g—g’, as if we were treating the diffraction

the determinant for large
from distant zone boundaries as a small perturbation
[14]. This form is also said to be the best for conver-
gence of the Born series in the Weinberg sense [ 10],
whatever that may imply. But the whole question of the
relative computational efficiency of these methods and
their minor variants is quite complicated; all I would
say here is that the effort of comparing them is made
much more fruitful when we understand the basic
algebraic connections.

One further mystery needs clarification. Let us recall
that the basic algebraic equations (3) are for the pur-
pose of discovering the coefficients B, in some expan-
sion of the wave function in the appropriate plane
waves. Thus, if we had been using I''”" in these equa-
tions, we should have been writing

h=3 B, p""(k+g)

where ¢4 (k+g) is augmented plane wave having
the form exp {i(k+g) - r} outside of the atomic sphere.
Now it turns out [ 13] that the KKR equations also sup-
pose that the wave function has been expanded in aug-
mented plane waves —but since the matrix elements (8)
are different in these equations the coefficients 8, will
be different. In other words, the Bloch function s,
which is supposed to be a unique solution to our band
structure problem, has two entirely different represen-
tations in terms of the same set of basic functions.

This is permissible, because in fact we are only com-
bining APW’s to satisfy the Schriodinger equation
outside the spheres; the part within each sphere is au-
tomatically determined by its adjustment to the boun-
dary condition [15]. It is well known that a periodic
function defined over only part of the unit cell can be
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FIGURE 9. Function defined as Bloch wave in interstitial region may
have arbitrary form in muffin-tin well.
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represented by many Fourier expansions, depending on
what properties it is allowed to have in the excluded re-
gion. The APW and KKR expansions both represent i
correctly — yet they are not made up of exactly the same
combinations of simple plane waves in the interstitial
regions. This point is perhaps worth emphasizing
because in either case we have a very explicit represen-
tation of the wave function of the Bloch state, in a form
that is quite convenient for calculations of electron-
electron interactions, self-consistency of potentials,
and optical, photoemission, and positron-
annihilation matrix elements, etc.

It has sometimes been held against the APW & KKR
methods that they can only be used for a “muffin-tin
potential” —i.e. for a periodic lattice of spherically
symmetric wells with “empty space” in between. But
this is not an absolute restriction. Suppose there really
is a significant nonconstant potential 77; in the intersti-
tial region. Then we can take this into account by ad-
ding to ['yy the corresponding Fourier component
7'i(g—g') of this potential—made explicit by being
given a constant value across the mouths of the mufhin-
tin wells [16]. Thus, the level which I call the “muffin-
tin zero” [17] cuts across the equipotential surfaces,
producing muffin-tin wells with bound states, which are
eliminated by a pseudopotential device, and ranges of
weak potential hills through which the valence elec-
trons easily tunnel, and which can be represented
adequately by their Fourier transforms. If we go
further, and suppose that this interstitial potential had
been produced by the superposition of screened Cou-
lomb potentials, or charge clouds, carried by the in-
dividual atoms, then we can imagine 77; analysed into
these spherically symmetrical constituents arranged in
a lattice, and reassign these to the corresponding muf-
fin-tin wells, whose deep potentials have by now been
replaced by a model potential or pseudopotential. In
other words, we arrive back precisely at the sort of
analysis implied by figure 2 or figure 3: the effect of the
atoms on the electrons is equivalent to diffraction by an

X-ray,

FIGURE 10. Lattice potential (a) dissected into an interstitial

potential and muffin-tin wells.

FIGURE 11. Owerlapping potentials (a), summed to make lattice
potential (b), dissected into an interstitial potential and muffin-
tin wells (c), redefined as pseudopotentials and overlapping ex-
ternal parts (d), and recombined as pseudo-atom potentials (e).

assembly of screened model potentials, whose outer
fields may, within reason, be superposed without hin-
drance. Thus we could use [I'%% 4+ 77; as the form factor
in any calculation where model potentials are em-
ployed, e.g. resistivity of liquid metals, lattice dy-
namics, etc.

This final demonstration of the equivalence of all
three methods of band structure—OPW, APW and
KKR —in the case of simple metals and semiconductors
is very satisfactory, but I am now worried about one
general point. Suppose we have a very anisotropic lat-
tice—for example, the chain structure of Te, or the
layer structure of graphite. The separation of the poten-
tial into muffin-tin wells and an interstitial potential
must be done at a level below the lowest barriers
between the atoms—for example, at the level of the
potential half way between neighbors along a chain. But
this may leave very high hills in the interstitial potential
between the chains or layers —and the unwillingness of
the electron to tunnel through such hills may not be
well expressed by an expansion in plane waves in this
region. Perhaps this is not a serious point after all; but
[ mention it to show that we are now gaining confidence
to attack the electronic structure of more complex
molecular crystals, a field which has up to now been
dominated by an army of theoretical chemists wielding
innumerable linear combinations of atomic orbitals —a
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FIGURE 12.  Potentials in a crystal of long chain molecules: electrons
occupy the valleys containing muffin-tin wells, separated by
high potential hills.

weapon whose fundamental efficacy 1 now take leave
to doubt.

4. Resonance Bands

What about d-bands, which can be computed numer-
ically by the APW and KKR method, but whose empiri-

. cal description has usually been handled by the tight
binding formula? The answer to this question is per-
haps one of the most elegant results of the recent
theory. Let us proceed from, say (5), the original KKR
equations, which are not unlike the tight-binding equa-
tions (4), in that the index L, labelling the unknown

. coefficients, refers to various spherical harmonics, or

components of angular momentum. We might ask, for
example, what would happen to the phase shift n; (k) if
the energy happened to coincide exactly with a bound
state &, of the atomic potential. To answer this ques-
tion in general, we should need to study the theory of
scattering in the unphysical regions where & lies below
the muffin-tin zero, making k pure imaginary; but it
turns out that a factor like &, —& then appears in
cot mi(k) just as we might expect. Now look at our
formula (6) for the KKR pseudopotential in the recip-
rocal lattice representation: if cot m'; were to vanish,
at any energy, then tan m'; would become infinite, and
everything would go wrong. Thus, if n’; should ever go
through 7/2 the band structure would be seriously
affected.

Now this is a familiar situation in the general theory
of scattering by atoms, molecules or nuclei: the phase
shift m; goes through 7/2 in the positive energy region
whenever there is a “resonance” of angular momen-
tum. Thus, if the atomic or ionic potential has such a
resonance, this will give rise to significant band effects
in this neighborhood. There is a standard theory of such
phenomena, which tells us that we may write

tan n; ~ —K—- 9)
&—&,

for the phase shift of a resonance of width W centered

on the energy &,. It is easy to show, using (6), that this

has the effect of introducing a band of states of about

this width, at about this energy, in the nearly-free-

electron spectrum [11].

This argument can be carried further. Starting from
the KKR formulae and making systematic transforma-
tions and approximations, Heine [ 18] showed how one
could separate out a particular resonance term, and
keep this in the angular momentum representation,
with indices m,m’ for the different components of [,
while reproducing a typical pseudopotential expression
in the reciprocal lattice representation g,g’. The matrix
of these equations can thus be written in the form

&—k? Foe
Mo  &—(k+g) yen
g—g[ me’
’Ytlg Vm’m g_gl o

(10)
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FIGURE 13. Resonance band crossing nearly free band.

Without the submatrices ygn etc., this would factorize
into a nearly-free-electron, pseudopotential matrix,
such as we might expect to find in a simple metal with
an s-p band, together with an ordinary tight binding
matrix, corresponding to the overlapping and mixing of
the 5 degenerate d-levels of the free atom. The coeffi-
cients yym etc. then describe the hybridization of these
two systems of states, which must necessarily occur
when these bands cross one another.

As it happens (but not accidentally!) an empirical
“model Hamiltonian” of just this form had already been
proposed for transition and noble metals [19] before it
was deduced directly from the KKR equations. We can
now, therefore, justify this type of expression in princi-
ple, and even calculate the various coefficients directly
from the atomic potential. In fact there are now several
different versions of these equations, of varying compu-
tability, convergence and analytical simplicity [20] but
all essentially equivalent of Heine’s formula [5,18].

This reinterpretation of the tight-binding formalism,
and its unification with the other band structure
methods is very pleasing, but to my mind there is a
greater gain. Let us ask how resonances actually arise?
For an ordinary one-electron potential, we need to think
of the effects of the centrifugal barrier term [([4+1)/r* in
the radial Schridinger equation, which becomes impor-
tant for /=2. A bound d-state is really constrained to
avoid the nucleus by this ““potential”. Now lower the or-
dinary potential at the outer edges of the atom: the ef-
fect may be to leave a potential dip within the core,
where a “virtual”, long-lived level could still exist, even
though, eventually, it would have to decay as the elec-
tron tunnelled out into free space. Thus, the original
bound d-state has become a d-resonance; if the poten-
tial barrier is sufficiently thick, the resonance will be
sharp; it is not surprising that the language of over-
lapping bound states applies to the bands produced in
such cases.

From this picture we can learn a lot about the gross
features of the density of states of the metal. We see,
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FIGURE 14. How a bound state of the atom becomes a resonance
level of the muffin-tin well (See [17]).

for example, that although the little peaks and dips of
the d-band can be derived from general tight-binding
theory, especially when aided by group theory, the
width of this complex of bands will depend chiefly on
the width of the resonance, which is governed in turn
by the potential barrier produced by the centrifugal
force in the outer part of each muffin-tin well. Again,
the actual position of this band will be determined
mainly by the energy of the original d-state from which
it derives—and this is fixed on a scale relative to, say,
some deep state of the core. On this scale, however, the
position of the ordinary conduction band does not de-
pend on any atomic orbitals, but is determined mainly
by the muffin-tin zero, which can only be calculated
correctly by taking very careful account of screening,
correlation energy, overlaps of potential, ezc. We thus
discover the reason for a well-known difficulty in band
structure calculations —that the width of the d-band,
and its position relative to the Fermi level is very sensi-
tive to the model, and cannot apparently be calculated
with the precision we would like.

ey

4 _—— e = | = — — — -

/ d band
/

Eurz

]

FIGURE 15. How the position of the d-band within the conduction
band depends on the muffin-tin zero (See [17]).
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5. Some Thoughts in Disorder

Now that we understand the electronic structure of
crystalline solids so very well, we are tempted to attack
disordered materials —liquids, alloys, amorphous and
glassy substances. This campaign has been actively
waged now for about a decade, but I am not sure that it
has yielded many great prizes. The major difficulty, of
course, is that we must abandon Bloch’s theorem,
which reduces the complexity of the problem in the per-
fect lattice by a divisor of the order of 10%%. Without
crystal momentum as a good quantum number, we
flounder about in a mixture of approximate algebra and
incomplete intuition, hoping to find some clearcut con-
cepts that will guide the interpretation of complicated
experiments on messy materials.

It is true that the spectrum of the disordered linear
array is now well understood [ 21] —and turns out to be
much more spiky than one would have guessed from
simple statistical considerations. Some of these fea-
tures may persist in three-dimensional systems, but un-
fortunately the mathematical methods used in the one-
dimensional case seem ill-adapted to generalization. In
particular, real solid systems have two properties that
cannot be simulated at all by a linear chain. In three
dimensions, a localized defect or impurity can be
avoided by a detour, so that it does not present an ab-
solute barrier to an incident particle or excitation. In
three dimensions, also we may have “structural dis-
order”, which is no longer topologically equivalent to
any regular lattice, whereas in a linear chain the mere
succession of atoms prescribes an ordering, however
wildly we vary the properties of the individual potential
wells.

Let me give two examples of simple cases where our
present theory is inadequate. It is obvious enough that
a disordered transition metal — e.g. liquid iron —should
have a d-band arising from the d-resonance, just as in
any crystalline phase of about the same atomic volume
[22]. The mathematical theory of such a band is still
rather uncertain [23], but there is no doubt about the
physics. Suppose, however, that we make an alloy—
e.g. of Ag and Au—whose constituent atoms have their
resonance at different energies; how far apart would
these energies need to be to give us two distinct d-
bands, and how would this depend on the relative con-
centrations and relative ordering of the constituents?
The model can be made extremely elementary —equal
numbers of A and B type atoms, with a single bound s-
state on each, substituted at random on a regular lattice
with a constant overlap integral V between nearest
neighbors. Some highly respected statistical theories
which rely upon defining an average propagator in

such a medium, seem to insist that the bands will be
drawn out into a continuous broad spectrum as the two
levels move apart; others would allow a split to occur
when the spacing is rather larger than the width of
either band [24]. I feel sure, myself, that the latter pre-
diction is correct, but we have still a great deal to do be-
fore we can calculate the width of each band the shape
of the tails into the gap, and the nature of any levels in
these regions. How far, for example, do these bands de-
pend upon the possibilities of “percolation”, from one
atom to another of the same type, through large
distances —a property that depends peculiarly on the
dimensionality of the lattice and the relative concentra-
tions of the components?

Another contradiction between mathematical theo-
ries and physical intuition occurs in the case of
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FIGURE 16. Does a mixed crystal have one bound band or two?
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FIGURE 17. Regions of localized and non-localized states for an

“equiconcentration alloy™.
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FIGURE 18. A percolation chain in an equiconcentration alloy.
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amorphous semiconductors. Let it be granted, for the
sake of argument, that amorphous Ge and Si are
“tetrahedral glasses”; each atom has four neighbors,
arranged more or less in the regular tetrahedral orienta-
tion, just as in the regular diamond lattice, but the con-
nectivity of the structure has been altered in a random
way, so that there is no long-range order. From the
point of view of a chemist, this system is a single
covalently bonded molecule: the saturation of all the
bonds implies that some energy of excitation is
required to create a carrier, so we should expect the
material to be a semiconductor. The substantial gap in
the optical spectrum of amorphous Ge supports this
reasonable interpretation. But suppose we were to treat
this by the conventional pseudopotential procedure, as-
signing a model potential to each atom and then calcu-
lating the diffraction effect on a free electron gas. In the
absence of long-range order, there would be no strong
Bragg reflections from well-defined lattice planes, and
thus no proper band gaps at the zone boundaries, etc.;
from the point of view of solid-state theory, this materi-
al ought to be a metal. This antinomy needs to be
resolved if we are to understand the theory of disor-
dered systems—or even the theory of the chemical
bond. There is some evidence—as yet merely qualita-
tive [27] —that the diffraction approach can be made
to give a band gap if one takes into account the higher-
order particle correlations. Thus, a glass differs from a
liquid in that three neighboring atoms may have a
strong tendency to be oriented so as to make a good
bond angle; this is a form of short-range order, implying
a strong constraint on the three-and four-body statisti-
cal distributions of atoms. At the same time, the rela-
tionship between the localized molecular orbitals of the
chemical bonds and the delocalized “Bloch states’ of
the crystal or amorphous solid needs to be clarified
[28]. But these are only two of the numerous unsolved
problems in this field.

The above account of the band structure problem is
obviously very sketchy and incomplete —especially in
the total neglect of all electron-electron effects. We
shall obviously learn much more about it as this con-
ference proceeds. But I think it is good to look back and
see what progress has been achieved —and even better

to look forward to whole Alps of ignorance still to be
surmounted. ‘
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