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A new form of the regularization of self energy term is derived in the QED based on the self 
field formalism. In this new form of regularization final result is finite and renormalized. 

INTRODUCTION 

The electrodynamics is the interaction of charged particles with the radiation fields. In 
the classical approach to the problem the interaction of the charged particles with the 
radiation fields is considered nonperturbatively. In standard formulation of the 
quantumelectrodynamics there are seperately quantized electron and photon fields and their 
interaction can be added as a second step and perturbatively. In order to understand the 
theory better other approachs are proposed. The self field approach is one ofthem.(l) 

The self field approach is similiar to the classical electrodynamics. In this approach 
the electron is interacting with the external field and its self field non-perturbatively. In order 
to formulate the problem the interacting electron is quantized by the first quantization and 
the photon field is quantized by its source (electron). 

In the self field electrodynamics, we consider the interaction of the electron with 
external field (classical or quantum) and its self radiation field and formulate the radiation 
reaction. Then, there appears an important question. Does the free particle have radiation 
reaction? The physical answer have to be no. But we know from the classical 
electrodynamics that Lorentz-Dirac equation does not satisfy this condition and this is one of 
the reason for the existence of runaway solutions. In a physical theory the radiation reaction 
must go to zero when external field goes to zero. 

In standart quantumelectrodynamics all the radiative processes are. formulated in 
terms offree quantized electron and photon fields or Green's functions. In this formulation it 
is not easy to answer the question mentioned above. In the self field quantumelectrodynamics 
we can choose our physical quantities such that they go to zero when the external field 
becomes zero. 
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This approach is very similiar to the scattering theory. In quantum mechanics we 
have the scattering solutions. These solutions include the infinite plane wave solution. In 
order to obtain the physical quantities such as the scattering amplitude , we substract the 
plane wave or free particle solution from the scattering solution. 

The main radiative processes are the self energy of the electron, anomalous magnetic 
moment and spontaneous decay in the free space or in the cavity for different external 
fields. (2,3,4,5) The contribution of the vacuum polarization term to the Lamb shift of the bound 
state electron have been investigated.(6,7) This is the most divergent term in the standart 
formulation of the QED. This new calculation gives the standart result by using a new 
regularization mechanism. In the first order iteration self-field QED gives exactly the same 
result as the standart QED calculation.(8) In the formulation of the self energy problem we 
have also formally divergent integrals. The source of these terms is the sum allover the 
intermediate quantum states and it includes intermediate bound states and continuous 
scattering states. The contributions of the bound states to this sum goes to zero when 
external field vanishes. But the contributions of the scattering states do not satisfy this 
criteria, because they include infinite plane wave or free particle solutions. In the next 
section we develope a new method how to regularize these integrals and obtain a finite 
result for the self energy of the electron. 

SELF ENERGY TERM 

Self energy is apart of the general energy shift AE n of a quantum level n of system 
due to the radiative self energy effects. It is given by 

2 

M;,E = e2 ffd3XlPn(x) Y,,'Vs(x)fd3ylPs(Y) y"'Vn(Y)X 
s 

(1) 

Where 'l/1n is a fixed level and we sum on the over all levels 1p s' discrete and continuous. 
We summarize first the spin algebra and the angular integrations. The relativistic 

Coulomb functions are written as 

(2) 

where In and gn are the "large" the "small" components respectively. The product of two 
currents is 

lPnY,,'VslPsY"'Vn = 'V\(r)'Vs(r)'V\(r')'Vn(r')-

'V\(r)a'Vs(r) ''V''(r')a'Vn(r') 

After the angular integrations we obtain 
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ô x t X å E ê F ï ú ã t ä p E ê F H =W;n(r)w.:,;w2S(r)l [ w;S(r'XW':;)* w1n(r')+ w;S(r'Xw.:,; )W2n (r')]-

[W;n(r )K::;'W2S(r) + W;n(r F h ú D WD t ä p E ê F z D =x ï X ë E ê D u h ú I F G =w1n(r')+ ï X ë E ê D u h ú ú =)w2n(r')] } 

(4) 

where 

w/m = f dr[ knks kn + mn += Yz ks + ms += Yz rm,,-Yz y;mKm,-Yz 
:'s' Iknllksl 2kn += 1 2ks += 1 Ik.+YzI-Yz / Ik,+YzI-Yz 

+ knks kn - mn += Yz ks - ms += Yz r m.+Yz y;mKm,+Yz 1 
Iknllksl 2kn += 1 2ks += 1 Ik.+YzI-71 / Ik,+YzI-Yz 

(5) 

~ ’ ú ã K =

We can extend the sum over the intermediate 1P s states also to the negative energy 

solutions in order to introduce the energy dependent radial Green's functions G(r,r';z) of 
the relativistic Coulomb problem, because the negative-energy solutions are equivalent to 
positive-energy solutions with 
-e. Then M!.E becomes 

AE:E = -4a1:f dZ.fdrfdr'fkdkJ/(kr)J/(kr')p[( F ú â = 2 .]XR 
s 2m z-En -k +18 

whereR is 

R = x ï X g ê F d ä ä E ê I ê D X ò F t ä å E ê D F ä ï ú ã f O =+ ï X g ê F d O O E ê I ê D X ò F ï O g ê D F f ï K Wú ê =+ 

w;n(r)G12(r,r';z F t O å E ê D F ï ú ã t G ú I WI ë D =+ w;n(r)G21 (r,r';z)w1n(r')w.::,W':; -

ï X g ê F d O O E ê I ê D X ò F t ä å E ê D F h ú I =. K*:;, - w;Jr)G21 (r,r'; z)w2n(r')K:;, . h G ú D WD ë D = -

ï X g ê F d N O E ê I ê D X ò F ï f g ê D F h ú D WD ë h D ú D =- ï X g ê F d ä ä E ê I ê D X ò F ï O g ê D F h ú D WD ë =. h D ú D WD ë z =

(6) 

Where G(r,r';z) are the matrix elements of the Green's function of the relativistic Coulomb 
problem and the contour of z- integration is shown in Figure 1. The Green's function 
G(r,r';z) has the poles corresponding to the bound states, plus the cuts beginning at ±m 
corresponding to positive and negative continuous spectra. The other cuts come from the 
photon Green's function. 
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Figure 1. Contour of the z- integration. 

The Green's function G(r,r';z) can be constructed in terms of the solutions of the radial 
problem. It is in the following form: 

(7) 

Where w(1)(r<;z) and w(2)h;z) are the regular solutions of the radial problem at the origin 
and at the infinity respectively.(6) They are given by Wichmann and Kroll in terms of 
confluent hypergeometric functions as 

w("(r(;z) = [2,,(z' -1)"]'[ 1:-+/ 1 [[ K- i!&, -1)" F ú ê =-iv,2r + I,-Zi(z' -1)\) 
±(r J á î F ú ê =-iv,2r + 1,-2i(Z2 -1}\()] 

w;2)(r);z) = [21)(Z2 _1)V,] v x á ú ä z =[(K_iZo/ 2 v,)X(Y -iv,2y + 1,-2i(z2 _1)V, r») 
2 "z-1 /(z-l) 

::!: (y -iv)X(y -iv,2y + 1,-2i(z2 _1)V, I)) ] 

(8) 

where K(z) is 

( ),v,[ /( ),v,]f(-r- iv)f(2r +1) li1l" l K(z)=-2z2 -1 K-iZa z2-1 (.) ( ) eXd-(2r+ 1)J fr-1Vf-2r 'L2 
(9) 

and the regular solutions of the confluent hypergeometric equation at the origin and the 
infinity are given by 

(10) 
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and 

(11) 

respectively. After the k-integration Eq (6) becomes 

(12) 

Then by deforming the contour of energy integration we can separate j ú ’ b = into low 
energy and high energy parts: 

""EJ"dz f .f [ in ] Lill;E(lowenergy)=-4a. LJ -.JdrJdr' --wJ/(wr()J/(wr») R 
s o2nl 2 

(13) 

(14) 

In order to do rand r' integrations we represent G(r,r';z) as a double Mellin-Barnes type 
complex integral. Mellin- Barnes type integral representation of the regular solutions are 

(15) 

and 

C'J+iOO ds r(a + s)ro- y - s) s 

x(a,Y;z)= c,_i",2nir(-s) r(a)ro-y) Z 
(16) 

where Ct is choosen such that the poles of r( -I) and the poles of r(a + t) and r{y + t} 
are seperated. Similiarly Cs is choosen such that the poles of 

r(a + s) and poles ofr( - s) and r( 1- r - s) are seperated. For the Coulomb problem 
these conditions are satisfied except the free particle limit. When Za goes to zero these two 
sets of poles are not seperated. We discuss this limit in the Appendix A. 

Radial Green's function of the photon is 

(17) 

Mellin-Barnes type integral representations of i[ is 

(18) 

This representation gIves the Taylor expanSlon of if . Mellin-Barnes type integral 
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· fh(2). representatIon 0 I IS 

i á E f H v I ä ú x ò Ñ I =C,+i" ds 1+Y.+2s 
h?l(OOI) ... -e 2 -2- f -2 .r(-s)r(-I->{-s)(iOOl) 

3t wI) C,-i" 3tl 

Th· .. th . . fh(2) 
IS representatIon gtves e asymptOtIC expansion 0 I . 

Finally, we represent the bound state solutions as 

where 

and nCr) is given by 

with 

(19) 

(20) 

(21) 

(22) 

(23) 

Then we can represent the M!E as a four dimensional complex integral and energy 
integral: 

AE!E(high energy) = 4a.f2dz.}: { 
3tl s 

(24) 

where ú ~ ? = TIM 00' ,b and c are defined by 
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Tmnaa , = [( K - iZ; fa,V-iV -a( 2m-ira ,V+l-iV ] 

X[(K - á ú ~ =fa',V_iV -a (2n-ira ',V+l-iY ] 

Regularization of Raa': 

(25) 

(26) 

(27) 

(28) 

In the electron Green's function when Za goes to zero G{r,r';z) becomes the free 

particle Green's function, But when we used G{r,r';z) in the calculation of self energy we 
must be carefull. Because the self energy of the free particle is included in the definition of 
the particle itself. In order to get rid of this problem, we must substract the free particle 
contribution from G. This is a new kind of renormalization. 

We also have this ambiguity when we examined the Mellin-Barnes type integral 
representation of the Green's function. In Raa' we have SI' S2' VI and v2 integrals. In VI and 
v2 integrals, the contours are well defined. As it has been pointed out in the above in SI and 
s 2 integrals, the contours are not well defined. They are well defined when Z a ;o! O. But 
they are not well defined when Z a = 0, because two sets of the poles are not seperated and 
in this limit they coincide . That means the free particle limit of the transition amplitudes or 
the matrix elements of Green's function of the relativistic Coulomb problem are not well 
defined. If we use the direct product of the contours of SI and s 2 integrals we get formally 
divergent series. 

Generally, when there is a double complex integral we cannot define the integration 
contour as a direct product of two separate contours of the one dimensional complex 
integrals. (9) In order to understand the physical meaning of this formal divergence and in 
order to regularize these integrals we examine the poles of the in the complex SI and s 2 

planes. 
In the Appendix A we discuss the regularization of the scattering solutions. We know 

from the scattering theory that the scattering solutions of the Coulomb problem always 
include plane wave or free particle solutions. Scattering probabilities or cross sections are 
physically measurable quantities. In order to calculate the physically measurable quantities we 
change the boundary conditions of the scattering solutions. The scattering amplitutes or cross 
sections are defined by substracting the plane waves from the scattering solutions. Then the 
final results are finite. 

Here we also have the same problem. We are using the transition amplitudes and 
they also include the plane wave solutions. In order to use the transition amplitudes in the 
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calculation of physical measurable self -energy we regularize them in the same way. That is 
equivalent to find an integration contour such that it seperates the two sets of poles or zeros 
in the SI and S2 planes. 

The poles ofthe Raa ,(SI,S2) in the complex Sl and s2planes are shown in Fig. 2 and 

3. When Z a = 0 the poles of r (r - i v + s,) and r( - 2y - S2) are coincide. In order to 
separate the poles we regularize the integrals as follows: 

and 

ny -iv)r(a +SI) 

na) 

hm - + --------''------
. {ny -iv)na +SI) ny -iE)na +SI -iE +iv) ny +iE)r(a +SI +iE +iV)} .-0 na) r(a+iv-iE) r(a+iv+iE) 

ny -iv)r(a' + S2) 

na')n-y -iv) 

(29) 

hm - +----------
. {ny -iv)na'+s2) ny -iE)na'+s2 -iE +iv) ny +iE)na'+s2 +iE +iv)} 

.-0 r(a')n-y -iv) r(a'+iv-iE)n-y -iE) r(a'+iv+iE)n-y -iE) 

(30) 

Then we choose the contours such that the poles of r( - SI) and the poles of r( a + SI) and 

the zeros of (n2y + I + SI )) -I are seperated. In the same way the poles of r( - 2 y - sJ and 

r( - S2) and the poles of r(y - i v + S2) are seperated. 

We substitute R,.eg into AE;E and calculate the complex integrals. We calculate the 

integral of Raa.'as a sum of the residues at the poles SI = -a - PI and S2 = -a' - P2 where PI 

and P2 range over 0,1,2, ... . In the simiJiar way we calculate VI and v2 integrals also as 
residue integrals. They can be written as the sum over the residues at VI = -/ - Yz - ql and 
V2 = q2 and v2 = -/- Yz + q2 where ql and q2 range over 0,1,2,.... By using these 
expressions we do z-integration. Thus the self energy contribution to the Lamb shift becomes 
a finite expression. All of the series in this expression are convergent. In order to compare 
this result with the experiment we need numerical sum of these series. 

APPENDIX A 

We discuss the relation between scattering solutions and scattering amplitudes of the 
Dirac Coulomb problem. In order to obtain a relation between them we examine the regular 
solutions of the Dirac-Coulomb problem. For the Dirac-Coulomb problem we have a 
regular solution around the origin and the asymptotic forms of this solution are function of 
sine or cosine. Here we use the regular solutions at the infinity. The asymptotic form of this 
solutions give exponantial waves. 
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Regular solutions at the infinity were developed by Wichmann and Kroll. They are 

(if) = k E á ú É á é ê =
rg .J;:tl) (A-I) 

X [(K - á ú ~ =)x(r - iv,2r + 1;-2ipr) + (r - iv)x(r + 1- iv,2r + 1;-2iPr)] 

where X (a,e; x) is the regular solution of the confluent hypergeometric differential 
equation at the infinity, and it is the linear combination of the regular and irregular solutions 
of the confluent hypergeometric differential equation at the origin: Asymptotic form of the 
regular solution at the infinity gives spherical waves which includes the free particle solutions 
or unscattered plane waves. The difference between the scattering solutions and the free 
particle solution is the scattering amplitude and it goes to zero when Za goes to zero. 

X (a,e; x) function can be represented as Mellin-Barnes type integral: 

C'f+i" ds r(y -iv +s)r(-2y -s) 
X(y-iv,2y+l;-2ipr)= -.r(-s) . z' 

C,_i .. 21ti r(y -lv)r(-2y) 
(A-2) 

C$+iao d 
E f ú ê E J ë F j E ó =,v;s)z' 

C,-I" 21ti 

where Cs is the integration contour which can be choosen such that the set of the poles 
r( - 2r - s) and r( - s) and the poles of r( y - iv + s) are seperated. However, Mellin-

Barnes type integral representation of x(r - i v,2 r + 1;-2ipr ) is not well defined when iv 

goes to zero. In this limit some of the poles of r(y - iv + s) and r( - 2r - s) coincide and 
the seperation of two sets of poles is not clear. In order to solve this ambiguity we regularize 
the M(r, v; s) in the following way: 

M(r, v;s) = lim[M(r, v;s) - M(r,e;s) + M(r,-e;s)] 
&-->0 

(A-3) 

0000000 

• poles ofr(-2 - s) 

o poles of r(y-iv+s) 

Figure 2. Poles of M(y , v,s) 
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000 0 • poles of r(-2y-s) 

o poles of r(y-iv+s) 

• poles of r(y-ie+s) 

o poles of r(y+ie+s) 

Figure 3. Poles of Mreg(Y,v ,s). 

The new set of poles are in Fig.3. Where we have choosen the integration contour such that 
one of the regularizing terms gives contribution to the integral. We close the integration 
contour from left hand side. Then the asymptotic form of this solution becomes 

-y +iv n -Y - iv ) -y +i, n -Y - iE ) 
Xr'l!(Y -iv,2y +1;-2ipr)S!!(-2ipr) -(-2ipr) 

n-2y) n-2y) 
(A-4) 

The asymptotic solution of the Dirac Coulomb problem is 

(rf) = N(iq eipr [e T+iargr(-r-iv)+iOvlr(_ r -iv)I-lr(- r)l] (A-5) 
rg Fz+i)r(-2r) 

where 
0v = v ln2pr (A-6) 

This solution represents a spherical wave and and when v goes to zero it becomes zero. The 
second term corresponds to the spherical wave expansion of eik ·r . By this regularization we 
obtain a transformation from the scattering solution to the scattering amplitudes. 
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