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Abstract
The years 1985 through 1995 saw the birth and development of
the language Self, starting from its design by the authors at
Xerox PARC, through first implementations by Ungar and his
graduate students at Stanford University, and then with a larger
team formed when the authors joined Sun Microsystems Labo-
ratories in 1991. Self was designed to help programmers become
more productive and creative by giving them a simple, pure, and
powerful language, an implementation that combined ease of
use with high performance, a user interface that off-loaded cog-
nitive burden, and a programming environment that captured the
malleability of a physical world of live objects. Accomplishing
these goals required innovation in several areas: a simple yet
powerful prototype-based object model for mainstream pro-
gramming, many compilation techniques including customiza-
tion, splitting, type prediction, polymorphic inline caches,
adaptive optimization, and dynamic deoptimization, the applica-
tion of cartoon animation to enhance the legibility of a dynamic
graphical interface, an object-centered programming environ-
ment, and a user-interface construction framework that embod-
ied a uniform use-mention distinction. Over the years, the
project has published many papers and released four major ver-
sions of Self.

Although the Self project ended in 1995, its implementation,
animation, user interface toolkit architecture, and even its proto-
type object model impact computer science today (2006). Java
virtual machines for desktop and laptop computers have adopted
Self’s implementation techniques, many user interfaces incorpo-
rate cartoon animation, several popular systems have adopted
similar interface frameworks, and the prototype object model
can be found in some of today’s languages, including JavaS-
cript. Nevertheless, the vision we tried to capture in the unified
whole has yet to be achieved. 

Categories and Subject Descriptors: K.2 [History of Comput-
ing] Software – programming language design, programming
environments, virtual machines; D.3.2 [Programming Lan-
guages] Object-Oriented Languages; D.3.3 [Programming
Languages] Language Constructs and Features – data types and
structures, polymorphism, inheritance; D.1.5 [Object-oriented
Programming]; D.1.7 [Visual Programming]; D.2.6 [Pro-
gramming Environments] Graphical environments, Integrated
environments, Interactive environments; D2.2 [Design Tools
and Techniques] User Interfaces, Evolutionary prototyping;
D2.3 [Coding Tools and Techniques] Object-oriented pro-
gramming; I.3.6 [Computing Methodologies] Computer
Graphics – Interaction techniques

General Terms. Performance, Human Factors, Languages

Keywords: dynamic language; object-oriented language; Self;
Morphic; dynamic optimization; virtual machine; adaptive opti-
mization; cartoon animation; programming environment;
exploratory programming; history of programming languages;
prototype-based programming language

1. Introduction
In 1986, Randall Smith and David Ungar at Xerox PARC began
to design a pure object-oriented, dynamic programming lan-
guage based on prototypes called Self [US87, SU95]. Inspired
by Smith’s Alternate Reality Kit [Smi87] and their years of
working with Smalltalk [GR83], they wanted to improve upon
Smalltalk by increasing both expressive power and simplicity,
while obtaining a more concrete feel. A Self implementation
team was formed, first by the addition of Ungar’s graduate stu-
dents at Stanford, and then by the addition of research staff
when the group moved to Sun Labs in 1991. By 1995, Self had
been through four major system releases. 

Self’s simplicity and uniformity, particularly in its use of mes-
sage passing for all computation, meant that a new approach to
virtual machine design would be required for reasonable perfor-
mance. The Self group made several advances in VM technol-
ogy that could be applied to many if not most object-oriented
languages. The group also created an innovative programming
environment that could host multiple distributed users, and pio-
neered novel graphical user interface techniques, many of which
are only now seeing commercial adoption.

Although the present paper has just two authors, the Self project
was a group effort. The other members’ dedication, hard work
and brilliance made Self what it is. Those people are: Ole Age-
sen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölzle,
Elgin Lee, John Maloney, and Mario Wolczko. In addition, our
experience was deeply enriched by Ole Lehrmann Madsen, who
spent a year with us as a visiting professor. We also appreciate
the efforts of Jecel Assumpcao who, over the years, has main-
tained a web site and discussion list for Self. We are indebted to
the institutions that supported and hosted the Self project: Sun
Microsystems, Stanford University, and Xerox PARC. While at
Stanford, the Self project was generously supported by the
National Science Foundation Presidential Young Investigator
Grant #CCR-8657631, and by IBM, Texas Instruments, NCR,
Tandem Computers, and Apple Computer.

Work on the project officially ceased in June 1995, although the
language can still be downloaded and used by anyone with the
requisite computing environment. But the ideas in Self can
readily be found elsewhere: ironically, the implementation tech-
niques developed for Self thrive today in almost every desktop
virtual machine for JavaTM, a language much more conservative
in design. We feel deeply rewarded that some researchers have
understood and even cherished the Self vision, and we dedicate
this paper to them.

This paper has four general parts: history, a description of Self
and its evolution, a summary of its impact, and a retrospective.
We begin with our personal and professional histories before we
met in 1986, and summarize the state of object-oriented lan-
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guages at that time with special emphasis on Smalltalk, as it was
an enormous influence. We also discuss the context at Xerox
PARC during the period leading up to the design of Self, and
describe Smith’s Alternate Reality Kit, which served as inspira-
tion for some of Self’s key ideas. This is followed by a descrip-
tion of Self that emphasizes our thoughts at the time. Moving
our viewpoint into the present, we assess the impact of the sys-
tem and reflect upon what we might have done differently.
Finally, we sum up our thoughts on Self and examine what has
become of each of the participants (as of 2006).

2. Before Self
Nothing comes from nothing; to understand Self’s roots, it helps
to look at what PARC and Smith and Ungar were doing earlier.

2.1. Smith Before Self

Perhaps because his father was a liberal-minded minister, or per-
haps because he was also the son of a teacher, Smith has always
been fascinated by questions at the boundaries of human knowl-
edge, such as “What is going on to make the universe like this?”
Thus it was perhaps natural for him to enter the University of
California at Davis as a physics major. But along the way, he
discovered computers: he so looked forward to his first pro-
gramming course that on the opening day he gave his instructor
a completed program and begged him to enable student accounts
so that this excited student could submit his deck of cards
(which calculated the friction in yo-yo strings). Computing felt
more open and creative than physics: unlike the physical uni-
verse, which is a particular way, the computer is a blank canvas
upon which programmers write their own laws of physics. There
really was no major in computing in those days; the computer
was perceived as a big, expensive tool, and Smith happily stuck
with his physics curriculum, getting his PhD at UCSD in 1981.
He then returned to his undergraduate alma mater as a lecturer in
the UC Davis Physics Department.

One of the mysteries of physics is that a few simple laws can
explain a wide range of phenomena. Smith enjoyed teaching,
and was always impressed that he could derive six months of
basic physics lectures from F=ma. Much progress in physics
seems to be about finding theories with increasing explanatory
power that at the same time simplify the underlying model. The
notion that simplicity equated to explanatory power would later
manifest itself in his work designing Self.

The draw of computing inevitably won him over, and Smith
stopped chasing tenure in Physics, taking his young family to
Silicon Valley in 1983 so he could work at Atari Research Labs,
then directed by Alan Kay. During that year a rather spectacular
financial implosion took out much of Atari. Smith was one of
only a few remaining research staff members when the company
was sold in 1984 to interests who felt no need for research. Atari
Labs were closed and Smith joined the Smalltalk group at Xerox
PARC. 

2.2. Ungar Before Self

When Ungar was about six and struggling to tighten a horse’s
saddle girth, his father would say “Think about the physics of
it.” What stuck was the significance of how one chose how to
think about a problem. Sometime in his early teens, Ungar was
inspired by the simultaneously paradoxical and logical power of
Special Relativity. Still later, experience with APL in high
school and college kindled his enthusiasm for dynamic lan-
guages. Then, as an undergraduate at Washington University, St.
Louis, he designed a simple programming language. 

In 1980, Ungar went to Berkeley to pursue a Ph.D in VLSI
design. Eventually, he got a research assistantship working on
VLSI design tools for Prof. John Ousterhout, and was also tak-
ing a class on the same topic. At that time, the only way for a
Berkeley student to use Smalltalk was to make the hour-plus
drive down to Xerox PARC. Dan Halbert, also in the VLSI
class, was making that trip regularly (in Butler Lampson’s car)
to use Smalltalk for his doctoral research on programming by
demonstration. Halbert gave a talk in the VLSI class on how
well Smalltalk would support VLSI design by facilitating
mixed-mode simulation. In a mixed-mode system, some blocks
would be simulated at a high level, others at a low level, and
Smalltalk’s dynamic type system and message-passing seman-
tics would make it easy to mix and match. This chain of events
kindled Ungar’s interest in Smalltalk.

Dan Halbert took Ungar down to PARC several times in late
1980 and demonstrated Smalltalk. After seeing Smalltalk’s reac-
tive graphical environment and powerful, dynamic language,
Ungar was hooked. He yearned to solve real problems in Small-
talk without the long drive. He obtained an experimental Small-
talk interpreter, written at HP, but it ran too slowly on Berkeley’s
VAX 11/780. This frustration would completely change the
focus of Ungar’s dissertation work, redirecting him from VLSI
to virtual machines (see section 2.4.4). In the summer of 1985,
Ungar left Berkeley and began teaching at Stanford as an assis-
tant professor. He completed his dissertation that academic year,
and received his PhD in the spring of 1986.

2.3. Object-Oriented (and Other) Programming Languages 
Before Self

The design of Self was strongly influenced by what we knew of
existing languages and systems. Here are a few languages that
were in Ungar’s mind as a result of his lectures at Stanford.

Simula was the first object-oriented language per se. In its first
published description, Dahl and Nygaard stated that its most
important new concept was quasi-parallel processing [DN66].
Its designers were trying to use computers to simulate systems
with discrete events. A key insight was the realization that the
same description could be used both for modeling and for simu-
lation. They extended Algol 60 by adding “processes” (what
would now be called coroutines) and an ordered set feature. A
Simula process grouped related data and code together, and this
grouping came to be thought of as object-oriented programming.
Multiple instances of a process could be created, and “elements”
were references to processes. Simula’s designers felt it was
important to keep the number of constructs small by unifying
related concepts. Although Simula’s influence on Self was pro-
found, it was indirect: Simula famously inspired Alan Kay, who
in the 1970s led the Smalltalk group at the Learning Research
Laboratory in Xerox PARC. 

Parnas [Parn72] explained key principles of object-oriented pro-
gramming without ever using the work “object.” He convinc-
ingly showed that invariants could be better isolated by
grouping related code and data together, than by a pure subrou-
tine-based factoring.

Hoare argued convincingly for simplicity in language design
[Hoar73]. This paper was one of Ungar’s favorites and influ-
enced him to keep the Self language small. It is interesting in
view of Self’s lack of widespread adoption that this aesthetic
can also be found in APL, LISP, and Smalltalk, but not in the
very popular object-oriented programming languages C++ and
Java.
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C++ [Strou86] was created by Bjarne Stroustroup, who had
studied with the Simula group in Scandinavia but had then
joined the Unix group at Bell Laboratories. Stroustroup wanted
to bring the benefits of object-orientation and data abstraction to
a community accustomed to programming in C, a language fre-
quently considered a high-level assembler. Consequently, C++
was designed as a superset of C, adding (among other things)
classes, inheritance, and methods. (C++ nomenclature uses
“derived class” for subclass and “virtual function” for method.)
To avoid incompatibility with C at the source or linker levels,
and to avoid adding overhead to programs that did not use the
new features, C++ initially omitted garbage collection, generic
types, exceptions, multiple inheritance, support for concurrency,
and an integrated programming environment (some of these fea-
tures made it into later versions of the language). As we
designed and built Self in 1987, C++’s complicated and non-
interpretive nature prevented us from being influenced by its
language design. However, its efficiency and support for some
object orientation led Ungar and the students to adopt it later as
an implementation language and performance benchmark for
Self; we built the Self virtual machine in C++, and aimed to
have applications written in Self match the performance of those
written in (optimized) C++.

APL [Iver79] was an interactive time-shared system that let its
users write programs very quickly. Although not object-ori-
ented, it exerted a strong influence on both Smalltalk and Self.
Ingalls has reported its influence on Smalltalk [Inga81], and
APL profoundly affected Ungar’s experience of computing. In
1969, Ungar had entered the Albert Einstein Senior High School
in Kensington, Maryland, one of only three in the country with
an experimental IBM/1130 time-sharing system. Every Friday
afternoon, students were allowed to program it in APL, and this
was Ungar’s first programming experience. Though Ungar
didn’t know it at the time, APL differed from most of its con-
temporaries: it was dynamically typed in that any variable could
hold a scalar, vector, or matrix of numbers or characters. APL’s
built-in (and user-defined) functions were polymorphic over this
range of types. It even had operators: higher-order functions that
were parameterized by functions. The APL user experienced a
live workspace of data and program and could try things out and
get immediate feedback. Ungar sorely missed this combination
of dynamic typing, polymorphism, and interpretive feel when he
went on to learn such mainstream languages as FORTRAN and
PL/I.

Ungar’s affection for APL led to a college experience that had a
profound impact. As a freshman at Washington University, St.
Louis, in 1972, Ungar was given an assignment to write an
assembler and emulator for a simple, zero-address computer.
The input was to consist of instructions such as:

push 1
push 2

add 

The output was to be the state of the simulated machine after
running the given assembly program. His classmates went
upstairs and, in the keypunch room (which Ungar recalls as
always baking in the St. Louis heat) began punching what even-
tually became thick card decks containing PL/I programs to be
run on the school’s IBM System/360. His classmates built lex-
ers, parsers, assemblers, and emulators in programs about 1000
lines long; many of his classmates could not complete their
work in the time allowed. 

Meanwhile, Ungar’s fascination with APL had led to an
arrangement permitting him to use the Scientific Time Sharing
Corporation’s APL system gratis after hours. He realized that

with a few syntactic transformations (such as inserting a colon
after every label), the assembler program to be executed became
a valid APL program. Reveling in APL’s expressiveness, he
wrote each transformation as a single, concise line of code. Then
he wrote one-line APL functions for each opcode to be simu-
lated, such as:

∇ADD X 
PUSH POP + X
∇ 

Finally came the line of APL that told the system to run the
transformed input program as an APL program. The whole pro-
gram only took 23 lines of APL! This seemed too easy, but
Ungar was unwilling to put in the hours of painstaking work in
the keypunch sweatbox, so he turned in his page of APL and
hoped he would not flunk. When the professor rewarded this
unorthodox approach with an A, Ungar learned a lesson about
the power of dynamic languages that stayed with him forever.

In retrospect, any student could have done something similar in
PL/I by using JCL (IBM System/360 Job Control Language) to
transform the program to PL/I and then running it through the
compiler. But none did, perhaps because PL/I’s non-interpretive
nature blinkered its users. Ungar always missed the productivity
of APL and was drawn to Smalltalk not only for its conceptual
elegance, but also because it was the only other language he
knew that let him build working programs as quickly as in the
good old days of APL. The design of Self was also influenced
by APL; after all, APL had no such thing as classes: arrays were
created either ab initio or by copying other arrays, just as objects
are in Self.

2.4. Smalltalk

Smalltalk [Inga81] was the most immediate linguistic influence
on Self. Smalltalk’s synthesis of language design, implementa-
tion technology, user interface innovation and programming
environment produced a highly productive system for explor-
atory programming. Unlike some programming systems, Small-
talk had a principled design. Ingalls enumerated the principles in
[Inga81], and many of them had made a strong impression on
Ungar at UC Berkeley. We embraced these values as we worked
on Self. Table 2 on page 39 enumerates these principles and
compares their realizations in Smalltalk, the Alternate Reality
Kit (described in section 2.6), and Self.

2.4.1. Smalltalk Language

It is truly humbling to read in HOPL II about Alan Kay’s
approach to the invention of Smalltalk [Kay93]. Starting from
notions of computation that were miles away from objects, Kay
tells of years of work that produced a pure object-oriented envi-
ronment including an interactive, reactive user interface and
programming environment. Smalltalk introduced the concept
(and reality) of a world of interacting objects, and we sometimes
feel that Self merely distilled Smalltalk to its essentials
(although we hope that Self made contributions of its own).

Smalltalk-76 introduced the concept of a purely dynamically
typed object-oriented language. A Smalltalk computation con-
sists solely of objects sending messages to other objects. To use
an object, one sends a message containing the name of the
desired operation and zero or more arguments, which are also
objects. The object finds a method whose name matches the
message, runs the method’s code, and returns an object as a
result. Thus, the process that the reader may know as “method
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invocation” in Java is called “message sending” in Smalltalk.
The “class” is central to this story: every object is an “instance”
of some class and must have been created by that class. A win-
dow on the screen is an instance of class Window, 17 is an
instance of class Integer, and so on. Classes are themselves
objects, and classes are special in that they hold the methods
with which possessed by each of its instances (the instance vari-
ables). Also, a class typically specifies a superclass, and objects
created from the class also possess any variables and methods
defined in the superclass, the super-superclass, etc. Thus, all
objects belonging to a given class possess the same set of vari-
ables and methods. Variables are dynamically typed, in that any
variable can refer to any object, but that object had better
respond to all the messages sent to it, or there will be a runtime
error. Methods are selected at run time based on the class of the
receiver.

In addition to the two pseudo-variables “self,” denoting the cur-
rent receiver, and “super,” denoting the current receiver but
bypassing method lookup in its class, there are six kinds of gen-
uine variables: global variables, pool variables which pertain to
every instance of a class in a set of classes, class variables which
pertain to every instance of and to a given class, instance vari-
ables which pertain to a single instance, temporary variables of a
method, and arguments. An instance variable can be accessed
only by a method invocation on its holder, while temporaries
and arguments pertain only to the current method invocation.
(Arguments differ from the other kinds of variables in being
read-only.)

By the time we had started working with Smalltalk, it had
evolved from Smalltalk-76 to Smalltalk-80. This new version
cleaned up several aspects of the language but also introduced a
complicating generalization that would later motivate us to
eliminate classes entirely. In Smalltalk-72, classes were not
objects, but, according to Dan Ingalls, as the Smalltalk group
“experienced the liveliness” of that system, they realized it
would be better to make classes be objects. So, in Smalltalk-76,
all classes were objects and each class was an instance of class
Class, including class Class itself. That meant each class had the
same behavior, because class Class held the common behavior
for all classes. In Smalltalk-80, each class was free to have its
own behavior, a design decision that brought a certain utility and
also seemed in keeping with the first-class representation of
classes as objects. However, it also meant that a class had to be
an instance of some unique class to hold that behavior. The class
of the class was called the metaclass. Of course, if the metaclass
were to have its own behavior, it would require a meta-meta-
class to hold it, and thus Smalltalk-80 presented the programmer
with a somewhat complex and potentially infinite world of
objects that resulted from elaborating the “instance of” dimen-
sion in the language. Smalltalk-80 makes this meta-regress finite
by using a loop structure at the top of the meta-hierarchy, but
many users had a lot of trouble understanding this. Although
this could be seen as a poor design decision in going from
Smalltalk-76 to Smalltalk-80, it might be argued that this is a
problem one is forced to confront whenever classes are fully
promoted to object status. Either way, this conceptually infinite
meta-regress and the bafflement it caused new Smalltalk-80 pro-
grammers gave us a strong push to eliminate classes when we
designed Self. As we look back at Smalltalk-80 in 2006, it
seems to us that, given the desire for a live and uniform system,
the instance-class separation sprouted into a tangle of conceptu-
ally infinite metaclasses that would seem inevitable if an entity
cannot contain its own description.

2.4.2. Smalltalk Programming Environment

In addition to learning the Smalltalk language, the user also had
to master a programming environment that came with its own
organizational concepts. The Smalltalk programming environ-
ment was astounding for its time—it introduced overlapping
windows and pop-up menus, for example—and exerted a strong
influence on the Self project.

The programming environment used by Smalltalk programmers
centers on the browser, inspector, and debugger. There are a few
other tools (e.g., a method-by-method change management
tool), but these three deliver much of what the programmer
needs, and even these three share common sub-components.
Hence, even in the Smalltalk programming environment, there
was a sense of simplicity. Ironically, even though simple, the
environment delivered features we miss when using some mod-
ern IDEs for languages such as Java. For example, one Java IDE
in common use contains several times the number of menu items
available in the Smalltalk tools, yet there is no way to browse a
complete class hierarchy.

The “learnability” aspect of the Smalltalk programming envi-
ronment was a key concern of the Smalltalk group when Smith
joined it in 1984. The PARC Smalltalk group had descended
from the Learning Research Group, which focused on the educa-
tional value of programming systems. Many in the group were
aware that the Smalltalk-80 system was somewhat more diffi-
cult to pick up than they had hoped in the earlier days, and saw
that the programming environment, being what the user sees,
must have been largely responsible. Alan Kay had envisioned
the Dynabook as a medium in which children could explore and
create, and had conceived of Smalltalk as the language of the
Dynabook. Hence one sensed a kind of subtext floating in the
halls like a plaintive, small voice: “What about the children?”
Although Smalltalk had started off as part of this vision, that
vision had somehow become supplanted by another: creating the
ultimate programmer’s toolkit.

The browser, the central tool for the Smalltalk programmer, was
the result of years of enhancement and redesign. It is fair to say
it does an excellent job of enabling users to write their Smalltalk
code, and it has served as a model for many of today’s IDEs
(though some bear a closer resemblance than others). The
browsers feature small titled panes for selecting classes from
within a category and methods within a class, plus a larger, cen-
tral text pane for editing code. However, by the time it was
released in Smalltalk-80, the browser had come to present a sys-
tem view significantly removed from the underlying execution
story of objects with references to one another, sending mes-
sages to each other. The standard Smalltalk-80 browser presents
the user with notions such as categories (groups of classes), and
protocols (bundles of methods), neither of which has a direct,
first-class role in the Smalltalk runtime semantics of the pro-
gram. For example, before a programmer can try creating even
the simplest class, she must not only give the class a name,
which may seem logical, but also decide on a System Category
for the class, even though that category has nothing to do with
the class’s behavior. Furthermore, the standard Smalltalk-80
browser features a prominent and important “instance/class”
switch that selects either methods in the selected class or meth-
ods in the selected class’s class (the metaclass). Recall that a
class, since it is an object, is itself an instance of some class,
which would hold methods for how the class behaves, such as
instantiation, access to variables shared amongst all instances,
and the like. But what about the class’s class’s class? And the
class’s class’s class’s class, and so on? One finds no extra switch
positions for presenting those methods. Furthermore, if the pur-
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pose of the browser is to show the methods in any class, why is
the switch even needed?

At a deeper level, it was obvious to us that the use of tools, as
great as they were, tended to pull one away from the sense of
object. That is, the inspector on a Smalltalk hash table was
clearly not itself the hash table. This was a natural outgrowth of
the now famous Model View Controller (MVC) paradigm,
invented by the PARC Smalltalk group as the framework for
user interfaces. Under the MVC scheme, the view and controller
were explicitly separate objects that let the user see and interact
with the model. This was an elegant framework, but we ques-
tioned it. If the metaphor was direct manipulation of objects,
then we thought s that the UI and programming environment
should give a sense that what one saw on looking at a hashtable
actually was the hashtable. In section 2.6 on the Alternate Real-
ity Kit and in sections 4.3 and 5.3 on user interface designs for
Self, we discuss our approaches to providing a greater sense of
direct object experience.

2.4.3. Smalltalk User Interface

To set the stage for the Smalltalk user interface, we first describe
the state of user interface work when we met Smalltalk. Over-
lapping windows were first used in Smalltalk, and the early
Smalltalk screens would look familiar even today. In those days
at PARC and Stanford it was not uncommon to argue over a
tiled-windows versus messy-desktop paradigm, though the latter
ultimately came to dominate. HCI classes would discuss direct
manipulation as though it were a somewhat novel concept, and
everyday computer users were not clear whether the mouse-
pointer window paradigm had real staying power, as it seemed
to pander to the novice. In fact, the acronym Window Icon
Mouse Pointer (WIMP) was often used derisively by those who
preferred the glass teletype. Smith recalls that in some of his
user studies it would take subjects roughly 30 minutes to get
used to the mouse.

At the time Smalltalk was being designed, each application had
its user interface hard-wired so that its implementation was inac-
cessible to the user; the interface could neither be dissected nor
modified. Smalltalk was a breed apart: its user interface was
itself just another Smalltalk program that ran in the same virtual
machine as the programmer’s own applications. Thus, by point-
ing the mouse at window W and hitting “control-C” to invoke
the Smalltalk debugger, one could find oneself browsing the
stack of an interrupted thread that handled UI tasks related to
window W. One could then use this debugger to modify the code
and resume execution to see the effects of the changes. Most of
us hoped that something like that would eventually take over the
world of desktop computing, but today that dream seems all but
dead. There is no way to get into your word processor and mod-
ify it as it runs, though in those days, that would have been rou-
tine for the curious Smalltalk user.

At PARC in the early 1980s, researchers could sense how user
interface innovations created down the hall were sweeping
through the entire world. Silicon Valley researchers just
assumed that the computer desktop UI was still fertile ground
for innovation, feeling that the basic notions of direct manipula-
tion would probably stick, so that invention would most fruit-
fully occur within that broad paradigm. We were smitten with
direct manipulation and wanted to push it to an extreme. In par-
ticular, we were fascinated by the notion that the computer pre-
sents the user with a synthetic world of objects. It felt to us that
the screens we saw in those days hosted flat, 2D, static pictures
of objects. We wanted to feel that those were real objects, not
pictures of them. This desire for “really direct manipulation”

consciously motivated much of our work and would show up
first in the Alternate Reality Kit, as described in section 2.6, and
ultimately in Self.

2.4.4. Implementation Technology for Smalltalk and Other 
Interpreted Languages

Although much work had been done to optimize LISP systems
that ran on stock hardware, Ungar was not very aware of that
work when the Self system was built. The contexts are so differ-
ent and the problems differ enough that it is hard to say what
would have been changed had he known more about LISP
implementations. Ungar was familiar with the LISP machine
[SS79], but as it was a special-purpose CISC machine for LISP,
he felt it would not be relevant to efficient implementation of
Self on a RISC.

In contrast, it is quite likely that Ungar, although not consciously
aware of it at the time, was inspired by APL when he came up
with the technique of customization for Self (section 4.1.1). As
mentioned above, any variable in APL can hold a scalar, a vec-
tor or a matrix at any time, and the APL operations (such as
addition) perform computation that is determined upon each
invocation. For example, the APL expression A + B executed
three times in a loop could: add two scalars on its first evalua-
tion, add a scalar to each element of a matrix on its second eval-
uation, and add two matrices element-by-element on its third.
Although the computation done for a given operation could
vary, the designers of the APL\3000 system [John79] observed
that it was often the same as before. They exploited this con-
stancy by using the runtime information to compile specialized
code for expressions that would be reused if possible, thus sav-
ing execution time. If the data changed and invalidated code, it
was thrown away and regenerated. Ungar had read about this
technique years before implementing Self, and it probably
inspired the idea that the system could use different compiled
versions of the same source code, as long as the tricks remained
invisible to the user.

When Smalltalk was developed in the early to mid 1970s, com-
mercially available personal computers lacked the horsepower
to run it. Smalltalk relied on microcode interpreters running on
expensive, custom-built research machines. Developed in house
at Xerox PARC, these machines (called Altos [Tha86], later sup-
planted by Dolphins, and then Dorados) were the precursors of
1990s personal computers. The Dorado was the gold standard: it
was fast for its time (70ns cycle time), but had to be housed in a
separate air-conditioned room; a long cable supplied video to
the user’s office. These expensive and exotic machines allowed
the PARC researchers to live in a world of relatively abundant
cycles, personal computers, and bitmapped displays years
before the rest of us.

Even with this exotic hardware, Smalltalk’s implementers at
PARC had to resort to compromises that increased performance
at the cost of flexibility. For example: arithmetic, identity com-
parison, and some control structures were compiled to dedicated
bytecodes whose semantics were hard-wired into the virtual
machine. Thus, the source-level definitions of these messages
were ignored. A programmer, seeing the definitions, might think
that these operations were malleable, edit the definition and
accept it, yet nothing would change. For example, Smith once
changed the definition of the if-then-else message to accept
“maybe” as the result of comparisons involving infinity. He was
surprised when, though the system displayed his new definition,
it kept behaving in accordance with the old one. And Mario
Wolczko, who taught Smalltalk before joining the Self group,
once had a student create a subclass of Boolean, only to discover
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that it did not work. The Self system was built later and enjoyed
the luxury of more powerful hardware. Thus, it could exploit
dynamic compilation to get performance without sacrificing this
type of generality (section 5.1).

In 1981, Ungar built his own Smalltalk system, Berkeley Small-
talk (BS). Its first incarnation followed the “blue book” [GR83],
which used 16-bit object pointers, an object table, and reference
counting.1 This kind of object pointer is known as an indirect
pointer, because instead of pointing directly to the referenced
object, it points to an object table entry that in turn points to the
referenced object. This indirection doubles the number of mem-
ory accesses required to follow the pointer and therefore slows
the system. L. Peter Deutsch, an expert on dynamic language
implementations who had worked on the Dorado Smalltalk vir-
tual machine [Deu83] at Xerox PARC, began a series of weekly
tutoring sessions on Smalltalk virtual machines with Ungar.
Deutsch had just returned from a visit to MIT, where he was
probably inspired by David Moon to suggest that Ungar build a
system that handled new objects differently from old ones. After
obtaining promising results from trace-driven simulations,
Ungar rewrote Berkeley Smalltalk to use a simple, two-genera-
tion collection algorithm that he called Generation Scavenging
[Ung84]. Ungar realized that, in addition to directly increasing
performance by reducing the time spent on reclamation, this col-
lector would indirectly increase performance by making it possi-
ble to eliminate the object table. This optimization was possible
because Generation Scavenging moved all the new objects in
the same pass that found all pointers to new objects and could
thus use forwarding pointers. In addition, since most objects
were reclaimed when new, old objects were allocated so rarely
that it was reasonable to stop the mutator for an old-space recla-
mation and compaction and thus again use forwarding pointers.
The resulting system was the first Smalltalk virtual machine
with 32-bit pointers and the first with generational garbage col-
lection. Ungar told Deutsch about his excitement at removing
the overhead of pointer indirection involved with the object
table. Deutsch didn’t share the excitement; he estimated the
speedup would be less than 1.7. Ungar disagreed, and talked
Deutsch into betting a dinner on it. So, when the new algorithm
was running, Ungar tuned and tuned till it was 1.73 times faster
than the previous tuned version of Berkeley Smalltalk: Deutsch
treated Ungar to a very fine dinner in a Berkeley restaurant. As
of this writing (2006), almost all desktop- and server-based
object-oriented virtual machines use direct pointers, thanks per-
haps in part to Deutsch’s willingness to make a bet and graduate
student Ungar’s desire to prove himself to Deutsch and claim a
free meal.

At Berkeley, Deutsch and Ungar continued their discussions.
When the Sun-1 came out, Deutsch decided to build a system
based on dynamic compilation to native code and inline caching
that would let him run Smalltalk at home [DS84]. Deutsch and
Schiffman’s PS (“Peter’s Smalltalk”) system was in many ways
the precursor of all dynamically compiling object-oriented vir-
tual machines today. After Ungar spent a few months trying to
optimize his interpreter and receiving only diminishing returns,
he realized that only a compilation-based virtual machine (such
as PS) could yield good performance. It was this experience that
led Ungar to rely on compilation techniques for the Self system.

Meanwhile, during the 1980-1981 academic year, Berkeley pro-
fessor David Patterson was finishing up his Berkeley RISC
project, demonstrating that a simple instruction-set architecture
with register windows could run C programs very effectively.
By eliminating the time spent to save and restore registers on
most subroutine calls, the RISC architecture could execute the
calls very quickly. Ungar and others at Berkeley saw a match
between RISC’s strengths and the demands of a Smalltalk
implementation. Patterson saw this too, and in collaboration
with Prof. David Hodges started the Smalltalk on a RISC
(SOAR) [PKB86, Ung87] project. Based on a simple RISC
machine, SOAR added some features to support Smalltalk and
relied on a simple ahead-of-time compiler [BSUH87] to attain
70ns-Dorado-level performance on a (simulated) 330ns micro-
processor. The rack-sized Dorado ran at a clock speed of 14
MHz, while the (simulated) chip-sized SOAR microprocessor
ran Smalltalk just as fast with a mere 3 MHz clock. (Today, in
2006, commercial microprocessors run at clock speeds about a
thousand times faster than SOAR’s, and have no trouble at all
with interpreted Smalltalk.) This system was another proof that
compilation could hold the key to dynamic object-oriented per-
formance.

For his doctoral research, Ungar helped design the instruction
set, wrote the runtime system (in SOAR assembler) and ran
benchmarks. Then he removed one architectural feature at a
time and substituted a software solution so as to isolate the con-
tribution of each feature. One of the most important lessons
Ungar learned from the project was that almost all the system’s
“clever” ideas had negligible benefit. In fact, the vast bulk of
speed improvements accrued from only a few ideas, such as
compilation and register windows. In his dissertation, he called
the temptation to add ineffective complexity “The Architect’s
Trap.” A few years later, in 1988 and 1989, Ungar had to relearn
this lesson in the evolution of the Self language, as described in
section 4.2.

In 1988, after PS had been completed and Ungar had graduated,
the Smalltalk group at Xerox PARC spun off a startup company
called ParcPlace Systems to commercialize Smalltalk. For their
ObjectWorks product, they built a Smalltalk virtual machine
called HPS. Extending the ideas in PS, HPS used Deutsch’s
dynamic translation technique and a clever multiple-representa-
tion scheme for activation records. Unlike PS, it was written in
C, not assembler, and employed a hybrid system for automatic
storage reclamation. The latter, on which Ungar consulted, com-
prised a generation scavenger for new objects and an incremen-
tal, interruptible mark-sweep collector for the old objects. An
object table permitted incremental compaction of the old
objects. When it was built, around 1988, it was probably the
fastest Smalltalk virtual machine, and its success with dynamic
translation served as an inspiration.

2.5. Xerox PARC in the 1980s

By the early 1980s Xerox PARC had established itself as the
inventor of much of the modern desktop computer. At a time
when most of us in the outside world were just becoming com-
fortable with time-shared screen editors running on character-
mapped displays that showed 25 lines of 80 fixed-width charac-
ters, each PARC engineer had his own personal networked com-
puter with keyboard, mouse, and a bit-mapped display showing
multiple windows with menus and icons. They authored WYSI-
WYG documents, sent them to laser printers, e-mailed them to
each other, and stored them on file servers. All this has now, of
course, become commonplace.

1. The “blue book” (our affectionate name for the first book on Small-
talk) was the authoritative guide (since it was the only one) and con-
tained the code (in Smalltalk) for a reference implementation. Ungar
recalls that Dave Robson used to call this Smalltalk-in-Smalltalk as
“the slowest Smalltalk virtual machine in the world.”
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But another part of the vision held by many at PARC was slower
to materialize in the outside world, and in many ways never did.
That dream depicted users as masters of their own computers,
able to modify applications in arbitrary ways and even to evolve
them into entirely new software. This vision of “everyman as
programmer” was part of Alan Kay’s story that motivated the
work of the PARC Smalltalk group [Kay93]. This group looked
to the idea of dynamic, object-oriented programming as the
underlying mechanism that would make the elements of the
computer most sensibly manifest. Kay’s group had a tradition of
attending to the user interface (the Smalltalk group had intro-
duced the idea of overlapping windows) and of focusing on edu-
cation. Kay and his group felt that students should be creators in
a powerful and flexible medium and that a dynamic object-ori-
ented language was the key enabler. Kay’s group had developed
several versions of the Smalltalk language: Smalltalk-72, Small-
talk-76, and finally Smalltalk-80.

Alan Kay left PARC in 1982 but his group carried on under the
leadership of Adele Goldberg. It had hosted a few researchers
who created more visual programming environments such as
Pygmalion [FG93], Rehearsal World [Smi93], and ThingLab
[BD81]. These environments were written in Smalltalk but were
themselves essentially visual programming languages, with
somewhat different semantics from Smalltalk itself. For exam-
ple, ThingLab took the user’s graphically specified constraints
to generate code that maintained those constraints. Perhaps
because it was a graphical environment, or perhaps because of
SketchPad’s inspiration [Suth63], ThingLab’s designer, Alan
Borning, presented users with a set of “prototype” objects to
copy and modify in their work. The copying of a prototype
became recognized as being a little deeper than it might seem at
first glance; it offered an alternative to instantiating a class that
felt much more concrete. This distinction may not seem very
compelling in a compile-first/run-later environment such as Java
or C, but in Smalltalk, where one is always immersed in a sea of
running objects even while writing new code, the advantages of
working with concrete instances was more apparent. Perhaps
from similar intuitions, others had been exploring the idea of
adding “exemplars” to Smalltalk [LTP86], instances that accom-
pany the class hierarchy and serve as tangible representatives of
the classes. 

When Smith joined PARC in 1984, he would add to this list of
visual programming systems written in Smalltalk by creating the
Alternate Reality Kit, or ARK. Like ThingLab and SketchPad,
ARK would be a construction environment based on prototypes.

2.6. ARK, The Alternate Reality Kit

Smith had always loved teaching physics. When he was lectur-
ing in the UC Davis Physics Department, he felt the students
became somewhat disconnected from the material when he cov-
ered topics such as relativity and quantum mechanics, because
few if any demonstrations were available to provide a tangible
connection to relevant physical experience. When he left aca-
demia for Silicon Valley research life at Atari Corporate
Research in 1983, Smith started to investigate how a simulation
environment might provide a tangible experience for learning
relativity by letting students see what the world would be like if
the speed of light were, say, 5 mph. He hoped that someday stu-
dents playing in such a simulated world would obtain such an
automatic and intuitive understanding of relativity that they
would laugh off mental puzzlers such as the twin paradox as a
trivial misunderstanding. When he joined PARC, Smith began to
think about generalizing on his previous work. Smith began to
realize that changing the speed of light to 5 mph was just an
instance of a more powerful idea: a simulation can provide a

way for students to experience how the world is not, as well as
how it is. In the real world, we are stuck with the laws of physics
we have been given. In a simulation, we can see what role a law
plays by watching what happens when we change it. Smith set
to work to create an environment making it possible to create
such simulations; because of this emphasis on changing the
nature of reality, Smith called the system the Alternate Reality
Kit. Smalltalk’s ability to change a program as it ran was the key
to granting the ARK user the power to change physical law in an
active universe. 

The Alternate Reality Kit, implemented in Smalltalk-80,
emerged as an open-feeling kit of parts, featuring lots of motion
and subtly animated icons (see Figure 1). A user could grab
objects, throw them around, and modify them in arbitrary ways
through messages sent by buttons. For its time, the system had
unusual, “realistically” rendered objects. The lighting model
implied a third dimension, and most objects were intentionally
drawn without an outline to remind the viewer of real-world
objects, which also do not generally have outlines. A drop
shadow for objects lifted “out of the plane” also provided a
sense of a third dimension. Having only one-bit-deep displays
meant all this had to be achieved with stipple patterns, requiring
careful rendering and a little more screen real estate than might
otherwise be required. This look would later be carried into the
Self user interface. Today, drop shadows and pseudo-3D user
interface elements with highlights and beveled edges are com-
monplace, and we are seeing more animation as well. ARK may
have been the first system to include many of these ideas.
 

ARK also foreshadowed Self’s elimination of the class concept
by sweeping Smalltalk’s classes under the rug. For example, it
featured a “message menu” that the user could “pop up” directly
on any display object and contained a list of every Smalltalk
message to which the display object could respond. Selecting
from the menu created a button that was attached to the object
that could be pressed to send the message, then discarded if not
needed, dropped onto other objects for use there, set aside, or
simply left in place for future use. If the message required
parameters, the button had retractable plugs that could be drawn
out and dropped on the parameter objects. If the message
returned a result, that object was made into a display object and
popped up onto the screen. To create the menu of available mes-
sages, the underlying Smalltalk system started with the class of
the display object and simply scanned up the class hierarchy,
collecting the methods from each class as it went. As a result,
the presence of a class was effectively hidden from the ARK
user, even though classes were of course being used under the
covers.

Furthermore, in ARK, any object could be modified and new
kinds of state and behavior introduced within the simulation
while everything was running. Unlike Smalltalk, ARK enabled
the user to add an instance variable directly to an object, simul-
taneously specifying the name of the variable and its value.
Because ARK was a Smalltalk program, making a new kind of
object was implemented at the Smalltalk level as three steps: 1]
make a new subclass specifying the new instance variable, 2]
instantiate that class to make a new object O, and 3] replace the
on-screen instance with O. In other words, the role of the Small-
talk class was again being hidden. The class was implementing
something that in ARK felt not only more tangible but more to
the point: working directly with instances.

Thus, even though ARK users worked directly with instances,
they had full access to sending Smalltalk messages and making
new kinds of objects. The notion of making a new kind of object
simply by modifying an existing instance foreshadowed the pro-
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totype-based approach that was to be the basis of the Self object
model. In ARK, it seemed unnecessary to even think about a
class, and Self would have none. 

A final aspect of ARK influenced the later design of Self (sec-
tion 3). When a new instance variable was created for an object
in ARK, it seemed natural to have the system automatically cre-
ate “setter” and “getter” methods that would then show up in the
message menu used for creating buttons. Thus the message
menu presented a story based on the object’s behavior, hiding
the underlying state. It was clear that with setter and getter
methods, the full semantics of an object was available through
message passing alone: any notion of state was hidden at a
deeper implementation level.

A downside to automatically exposing instance variables
through getters and setters is that it broadens the public interface
to an object, and so might make it more difficult to change an
object since other parts of a system might come to rely on the
existence of these methods. Note that automatic getters and set-
ters do not really violate the design principle of encapsulation,
as the sender of a set or get message has no idea what kind of
internal state (if any) is employed.

ARK also brought together some of the personalities who would
later create Self. It was a demonstration of Smith’s ARK in late
1985 or early 1986 that made Ungar realize that he wanted to
collaborate with Smith: Smith showed Ungar an ARK graphical
simulation of load-balancing in which processes could migrate
from CPU to CPU. Ungar suggested attaching a CPU to one
process so that when the process migrated, it would take the
(simulated) CPU with it. When Smith was able to do this by just
sticking a CPU widget to a process, Ungar realized that there
was something special here; ARK was the kind of system that
appeared simple but let its users easily do the unanticipated.
Ungar was so taken with ARK that he later used a video of it for
the final exam in his Stanford graduate course on programming
language design. When Bay-Wei Chang took this exam, he was
inspired to join the Self project. The spirit that shone through
ARK illuminated the path for Self.

3. Self is Born at PARC 
In 1985, as Smith was working on the Alternate Reality Kit,
Ungar joined the faculty at Stanford. Stanford was just “down
the hill” from PARC, and the Smalltalk group decided to bring
Ungar in to collaborate with the group a few days per week. In
1981 the Smalltalk group had released Smalltalk-80 [GR83], the
latest and perhaps most complete and commercially viable in the
string of Smalltalk releases. The group considered it their natu-
ral charter to invent Smalltalk-next, and a follow-on to Small-
talk-80 was perhaps overdue. To tackle this design problem, the
Smalltalk group decided to break into teams, each of which
would propose a next language. Smith and Ungar paired up to
create their own proposal for a language that would eventually
become Self.

At the time we felt that Smalltalk was striving to realize a Pla-
tonic ideal, an apotheosis, of object-oriented programming.
Smalltalk seemed to be heading toward a model in which com-
putation proceeds by sending messages (containing objects as
arguments) to objects and receiving objects in return. That’s all.
There is nothing about bits. Once in a while, one of these mes-
sages might turn on a pixel on a display. But, really, the notion
of computation rests on a higher plane than bits in memory and
is more abstract. Ungar likened this model of computation to
Rutherford’s experiments to learn about the atomic nucleus.
Rutherford could not look inside an atom; he had to shoot sub-
atomic particles at atoms and record how they bounced off. The
pattern led him to deduce the existence of the nucleus. Similarly,
we felt that there should be no way to look inside of an object;
an object should be known only by its behavior, and that behav-
ior could be measured only by the measurements on the behav-
ior of objects returned in response to messages.

3.1. The Basic Ideas

When we started to design Self, we were partly inspired by
ARK: we wanted the programming environment’s graphical dis-
play of an object to be the object for the programmer. We

Figure 1. The Alternate Reality
Kit (ARK), an interactive simu-
lation environment that was also
a visual programming system.
Some ideas in ARK influenced
the design of Self. The screen
shows several buttons, some
attached to objects. New objects
could be made by a copy-and-
modify process, and any new
state in the new object was
accessed through new buttons.
This foreshadowed Self’s use of
prototypes and the way Self
entirely encapsulates state
behind a message-passing mech-
anism. ARK also had a feel of
being a live world of moving,
active objects that was unusual
for its time and influenced the
programming environment, as
well as in some sense the deeper
semantics and overall goals, of
Self.
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noticed that whenever we drew an object on the whiteboard, our
pictures were different from Smalltalk’s; our objects always
looked like small tables (see Figure 2) with no classes in sight.

As mentioned above, we employed a minimalist strategy in
designing Self, striving to distill the essence of object and mes-
sage. A computation in Self consists solely of objects which in
turn consists of slots. A slot has a name and a value. A slot name
is always a string, but a slot value can be any Self object. A slot
can be asterisked to show that it designates a parent.
 

Figure 3 illustrates a Self object representing a two-dimensional
point with x and y slots, a parent slot called myParent, and two
special assignment slots, x: and y:, that are used to assign to
the x and y slots. The object’s parent has a single slot called
print (containing a method object to print the point).

We found the resulting instance-oriented feel of the environment
appealing because it lent more clarity and concreteness to a pro-
gram design, with no loss of generality from Smalltalk-80.
Additionally, Self’s design eliminated metaclasses, which were
one of the hardest parts of Smalltalk for novices to understand,

and avoided Smalltalk’s long-standing schism between instance
attributes and class attributes.2 (The latter are also called “static
methods and variables” in Java and C++.)

Recall that the novice Smalltalk-80 programmer had to learn
about the scoping rules for each of Smalltalk’s six classes of
variables (see Figure 4). Smith recalls thinking this was some-
how an odd story for an object-oriented language, in which get-
ting and setting state could be done with message passing to
objects. Sometime soon after joining the Smalltalk group at
PARC (possibly in 1982 or 1983), Smith mentioned this vari-
able-vs.-message dichotomy to Dave Robson, a senior member
of the Smalltalk group and co-author of the Smalltalk “blue
book” [GR83]. Smith recalls Robson replying in a somewhat
resigned tone, “Yeah, once you’re inside an object, it’s pretty
much like Pascal.” 

Ungar independently stumbled on the same question during a
lunch in which Deutsch offhandedly suggested that these six
types of variable accesses could be unified. We started to think
of trying to use message sending as the only way to access stor-
ing and retrieval of state, and came up with a design that could
merge all variable accesses with message passing (see Figure 5).
We presented the design in an informal talk to the Smalltalk
group in 1986, and in 1987 wrote the paper “Self: The Power of
Simplicity” [US87].

We implemented inheritance with a variation on what Henry
Lieberman called a “delegation” model [Lieb86]: when sending
a message, if no slot name was matched within the receiving
object, its parent’s slots were searched for an object with a
matching slot, then slots in the parent’s parent, and so on. Thus
our point object could respond to the messages x, y, x:, y:,
and myParent, plus the message rho, because it inherited the
rho slot from its parent. In Self, any object could potentially be
a parent for any number of children and could be a child of any
object. This uniform ability of any object to participate in any
role of inheritance contributes to the consistency and malleabil-
ity of Self and, we hope, to the programmer’s comfort, confi-
dence, and satisfaction.

To accomplish this unification, we decided to represent compu-
tation by allowing a Self object optionally to include code in
addition to slots. An object with code is called a method, since it
does what methods in other languages do. For example, the
object in the rho slot above includes code and thus serves as a
method. However, in Self, any object can be seen as a method;
we regard a “data” object (such as 17) as containing code that
merely returns itself. This viewpoint unifies computation with
data access: when an object is found in a slot as a result of a
message send it gets run; a datum returns itself, while a method
invokes its code. Thus, when the rho message is sent to our
point object, the code in the object in the rho slot is found and
that object’s method runs. This unification reinforces the inter-
pretation that it is the experience of the client that matters, not
the inner details of the object used to create that experience.

Self’s unification of variable access and message passing relied
on the fact that a method would run whenever it was referenced.

sqrt(x2+y2)

Figure 2. When we pictured a simple point object, we imagined
it differently from in Smalltalk. In particular, the state and
behavior of the object itself drew our attention, but the class did
not. Since we wanted the language and environment level to
mimic a hypothetical physical embodiment, we left classes out
of Self. A Self object contains slots, such as rho and x in the fig-
ure, and a slot may function either as a holder of state (such as
x) or as a holder of behavior (such as rho). (For simplicity of
illustration, assume that the computed object is returned by the
message send.) 

rho sqrt(x2+y2)

x 3

y 5

class Point

x 3

y 5

rho

Point

Our picture Smalltalk’s picture

myParent*

x

y

print ...

...

x:

y:

←

Figure 3. A Self point has x and y slots, with x: and y: slots con-
taining the assignment primitive for changing x and y. The slot
myParent carries a “parent” marker (shown as an asterisk).
Parent slots are an inheritance link, indicating how message
lookup continues beyond the object’s slots. For example, this
point object will respond to a print message because it inherits
a print slot from the parent.

←

2. Later, to support a programming environment, mirrors were added to
Self. A mirror on an object contains information about that object,
and may seem somewhat like a class that contains information about
its instances. However, as discussed in section 4.4, an object may
exist with no mirrors, unlike instances, classes, and metaclasses. Fur-
thermore, had we been willing to guarantee that every object would
transitively inherit from a root, we could have put reflective func-
tionality in that root with no need for mirrors. 
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Figure 4. Smalltalk uses dictionary objects to hold the variables accessible from different scopes, though instance variables
such as x and y for a point are directly available within the object. Class variables and global variables such as Point and
List are held in such special dictionary objects with string objects (in quotes) as keys. Methods are also held in a special
dictionary. All these dictionaries must exist in this way, as the entire language semantics relies on their existence. Not shown
here are “Pool” variables, temporaries and arguments within a method context, or temporaries within a block closure object.
In Figure 5 we show how Self achieves this scoping using objects and inheritance.

class Point

a point

System Dictionary

“rho”methodDictionary

classVariables

“aClassVariable”

“Point”

“List”

a Dictionary

a Dictionary

sqrt(x2 + y2)

a Method

class Point

x 3

y 5

Figure 5. Self’s object design gets many different scopes of variables for free. In Self, shared variables can be realized as
slots in an ancestor object. Here, aSharedVariable is shared by all points, and the global variables point and nil are shared
by all objects. This contrasts with Smalltalk, which needs a different linguistic mechanism for class variables and globals.

a point

globals

shared point traits

sqrt(x2 + y2)

a Method

parent*

x 3

y 5

parent*

rho

aSharedVariable . . .

nil

point
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Consequently, there was no way (until the later development of
reflection in Self; see section 4.4) to refer to a method. Many
languages exploit references to functions, but Ungar felt that
such a facility weakened the object orientation of a language. He
felt that since a function always behaves in the same way, unlike
an object which can “choose” how to respond to a message,
functions-as-first-class entities would be too concrete. In other
words, a function called by a function always runs the same
code, whereas a method called by a method runs code that is
chosen by the receiver. Smith understood Ungar’s reservations
about functions but was bothered by the complexity of introduc-
ing new fundamental language-level constructs (such as a new
kind of slot with special rules for holding methods, or new kind
of reference for pointing to a method without firing it).

The reader may wonder how one could ever get a method into a
slot in the first place. In the first implementation of Self, the pro-
grammer just used a textual syntax to create objects with slots
containing data and code. Later, we had to have some way for a
program to make new objects and manipulate old ones. The
invention of mirrors (section 4.4) added more elegant primitive
operations to manipulate slots.

In contrast to many other object-oriented languages including
C++ and Java, a number is an object in Self, just as in Smalltalk,
and arithmetic is performed by sending messages, which can
have arguments in addition to the receiver. For example, 3 + 4
sends the message + to the object 3, with 4 as argument. This
realization of numbers and arithmetic makes it easy for a pro-
grammer to add a new numeric data type that can inherit and
reuse all the existing numeric code. However, this model of
arithmetic can also bring a huge performance penalty, so imple-
mentation tricks became especially critical. Self’s juxtaposition
of a simple and uniform language (objects for numbers and mes-
sages for arithmetic in this case) with a sophisticated implemen-
tation let the programmer to live in a more consistent and
malleable computational universe.

3.2. Syntax

In settling on a syntax for Self, we automatically borrowed from
Smalltalk, as the two languages already had so much in common
already. But Self’s use of message sending to replace Small-
talk’s variable access mechanisms would force some differ-
ences. Where Smalltalk referenced the class Point by having a
global variable by that name, Self would reference the prototyp-
ical point with a slot named “point” and one would have to send
a message, presumably to “self,” to get a reference. So the Self
programmer would write

self point.

which was verbose, but seemed acceptable. It raised the uncom-
fortable issue of what the token “self” meant. Could an object
send “self” to itself to get a reference to itself? Smith recalls pro-
posing that every object have a slot called “self” that pointed to
itself. But Ungar pointed out that Smith’s proposal only put off
the problem one level, as even with the slot named “self,” one
would have to send the message “self” to something to get that
reference! Smith counterproposed that perhaps there could be an
implied infinity of self’s in front of every expression, just as in
spoken language, one can say “X” or one can say “I say: ‘X’,” or
even “I say ‘I say “X”’,” and so on. In spoken language we don’t
bother with this addition of “I say...” as it goes without saying.
One could imagine an infinite number of them in front of any
spoken utterance, and that they are just dropped to make spoken
language tractable. However, Smith could never formalize this
into a working scheme. So, as in Smalltalk, “self” would be a
built-in token, providing the self-reference reference ex nihilo.

But that wasn’t the end of it. In a method to double a point,3 the
Smalltalk programmer would assign to the two instance vari-
ables

x ← x * 2.

y ← y * 2.

whereas the Self programmer would perhaps write:
self x: (self x * 2).

self y: (self y * 2).4

This was getting a bit verbose. One day at PARC, in one of the
early syntax discussions, Ungar suggested to Smith that the term
“self” be elided. Smith remembers this because he was embar-
rassed that he had to ask Ungar for the definition of the word
“elide.” Ungar explained that it meant the programmer could
simply leave out “self.” Under the new proposal, our example
became:

x: (x * 2).

y: (y * 2).5

At first hesitant, Smith came to like this as dropping the “self”
was like dropping the utterance “I say” in natural language. Fur-
thermore, eliding “self” neatly solved the infinite recursion
problem of an object’s having to send “self” to self to create a
self-reference. In retrospect we feel that was a brilliant solution
to a deep problem; at that time, it just seemed weirdly cool.

At this point, readers familiar with C++ will be wondering what
the fuss was all about. It is true that C++ unifies the syntax for
calling a member function of the receiver with that of calling a
global function. Moreover, it unifies the syntax for reading a
variable in the receiver with that of reading a global variable,
and it unifies the syntax for assigning to a variable in the
receiver with that of assigning to a global variable. In summary,
C++ has six separate operations that mean six separate things
but are boiled down to three syntactic forms: aFunc-

tion(arg1, arg2-----..), aVariable, and aVariable
=. What we had in Self after eliding “self” was just a single syn-
tax and unified semantics for all six.

3.3. More Semantics

Ungar realized that, having removed variables, he and Smith
had stumbled into enshrining message sending as the conceptual
foundation of computation. Rather than each expression starting
with a variable to serve as some reference, in Self the “program-
ming atom” became a message send. Ungar in particular felt that
the syntax could shift people’s thinking about programs so that
they would—unconsciously—tend to write better encapsulated
and more reusable code. Smith was less interested in syntax, as
he felt that whatever reasonable syntax was provided, the under-
lying semantics would shine through. So, any syntactic realiza-
tion of the Self computational model would suffice for shifting
people’s thinking. Smith therefore felt that since we could
choose any reasonable syntax, we should stick with the familiar
and thus choose Smalltalk, as it was gaining popularity at the
time. Looking back from 2006, Self might have become more
popular had we devised a C-style syntax instead.

At this point we still had no good way to deal with temporary
variables and arguments, whose scope was limited to a method
context. (A method context in Smalltalk or Self is essentially a
stack frame, a.k.a. an activation record.) Smith came up with the

3. One has to wonder how the language would have turned out without
Cartesian point objects as fodder for our examples.

4. Parentheses added for clarity.
5. Parentheses added for clarity.
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idea that rather than retaining Smalltalk’s temporaries and
method arguments as variables, they too should be slots in an
object whose parent was the message receiver. This formulation
implied that slot name lookup would start in the local method
context and then pass on to the message receiver, and so on up
the inheritance hierarchy. Consequently, lookup would not
really start at “self,” but rather at something like Smalltalk’s
“thisContext,” a pseudo-variable that serves as a reference to the
local method activation. Smith explained this to Ungar in
Smith’s office at Xerox PARC and sensed that though Ungar felt
this was a wild idea, he also felt it was somehow right. (Figure 6
illustrates this point.) 

Although this tap dance removed the last vestige of variables
from the execution story, it left a complexity that bothers us to
this day. In Self, everything is a message send that starts looking
for matching slots in the current method context, then continues
up through the receiver (self) and on up from there (see
Figure 6). But any method found in the lookup process creates a
new method context inheriting from self, not from the current
context. It’s as though the virtual machine has to keep track of
two special objects to do its job: the current context to start the
lookup, and “self,” to be the inheritance parent of new activa-
tions. Smith wondered how bad it would be to install new acti-
vations as children of the current activation, so “self” would no
longer be such a special object, but Ungar convinced him that
the resulting interactions between activations would amount to
dynamic scoping and would be likely to create accidental over-
rides, with confusing and destructive side effects.

Block closures within a method can be represented as objects as
well, as also illustrated in Figure 6. When invoked, a block clo-
sure is lexically able to refer to temporaries and arguments in its

enclosing method, but is itself an object that can be passed
around without evaluation if desired. In Self or Smalltalk, a
block closure can be sent the value message to run its code.
The value method in a block context differs from other meth-
ods: when such a method runs its parent slot is set, not to the
current receiver, but rather to the enclosing context in which the
block originates.

Although the Self model enabled inheritance and slot lookup to
explain what many other languages didn’t even bother to
explain with the language’s fundamental semantics, the appear-
ance of special cases (such as the value method in a block) both-
ered us. We had several discussions at the whiteboards at PARC,
trying to figure out a unifying scheme, but none was satisfac-
tory. 

As we strove for more and more simplicity and purity, we came
up against other limits we simply could not wrestle into a pris-
tine framework. We wanted every expression in Self to be com-
posed of message sends. In particular, we wanted every
expression to start off by sending one or more messages to the
current context and on up through self. Literals, though, fail to
conform: a literal is an object (usually one of just a few kinds,
such as numbers and strings) that is created in place in the code
just where it is mentioned. For example, the Self expression

x sqrt

sends the message x to self, then sends sqrt to the result. For
a few weeks during our design phase we puzzled over how to
support the expression

3 sqrt

within a pure message-sending framework. Most languages
would treat the 3 as a “literal” (something that is not the result of

x

y

parent*

self*

temp1

methodContext

<method code>

<block code>

temp2

Figure 6. Lexical scoping of method activations and
block closures via inheritance. We were pleased that the
lexical scoping rules of methods and block closures could
be explained through inheritance. But doing so made us
realize there is a fundamental distinction between self
(which is essentially a parent of the current method acti-
vation) and the point at which method lookup starts
(which is the activation itself, so that temporaries and
arguments in that activation are accessed). In this exam-
ple, the method code can mention temp1 as well as x and
y, as message sends start with the current activation and
follow up the inheritance chain. But new method sends to
self will have their self parent slot set to the point object.

As detailed in the text, when a block closure is invoked,
the closure’s activation is cloned, and the implicit parent
is set to the enclosing method activation. This link is bro-
ken when the enclosing method activation returns.

Thus in the case illustrated here, the code in the block can
access temp2, temp1, self, x, y, parent, and any other
slots further up the inheritance chain.

value
*

a point
object

a method
activation

a block closure
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computation but rather “literally” interpreted directly in place).
As an example, in Smalltalk this code fragment would be com-
piled so as to place the object 3 directly in the expression, fol-
lowed by the send of sqrt to that object. We wondered if Self
could treat the textual token 3 not as a literal, but rather as a
message send to self. That way, 3 would be on the same foot-
ing as other widely referenced objects, such as list, the proto-
typical list. The idea was that somewhere in the stratosphere of
the inheritance hierarchy would be an object with a slot whose
name would be “3” and that would contain a reference to the
actual object 3. Send “3” to an object, and the result of the
lookup mechanism would be a reference to the object that, in the
receiver’s context, meant 3. This result would normally be the
regular 3, but it might, for example, be a 1 in the context of
some object that could only understand mod 2 arithmetic. In the
end we gave up on this, as it seemed to hold too much potential
for mischief and obfuscation. For instance, 2 + 2 could evaluate
to 5! It seemed to both of us like more expressive freedom than
was really needed, and supporting those objects with such a con-
ceptually infinite number of slots seemed a heavy burden to
place on the virtual machine. We decided to give up on pushing
uniformity this far.

Our design for the unification of assignment with message send-
ing also troubled us a bit. An object containing a slot named “x”
that is to be assignable must also contain a slot named “x:” con-
taining a special object known as the assignment primitive. This
slot is called an assignment slot, and it uses the name of the slot
(very odd) to find a correspondingly named data slot in the same
object (also odd). This treatment leads to all sorts of special
rules; for instance, it is illegal to have an object contain an
assignment slot without a corresponding data slot, so conse-
quently the code that removes slots is riddled with extra checks.
Also, we were troubled that it took a pair of slots to implement a
single container. Other prototype-based languages addressed
this issue by making a slot-pair an entity in the language and
casting an assignable slot as such a slot pair. Another alternative
might have been to make the assignment object have a slot iden-
tifying its target, so that in principle any slot could have served
as an assignment slot for any other.

Both authors strove for simplicity, but each had his own focus.
Smith’s pure vision grounded in the uniformity of the physical
world led him to advocate such interesting features as parent
slots for methods and message-passing for local variable access.
In contrast, Ungar couldn’t wait to actually use the language,
and so he was thinking about the interaction between language
features and possible implementation techniques. For example,
unlike Lieberman’s prototypes [Lieb86, SLU88], a Self object
does not add an instance variable on first assignment, but rather
must already contain a data- and assignment-slot pair if the
assignment is to be local. Otherwise, it delegates the assignment
(which is just a one-argument message send) to its parent(s) (if
any). Ungar also was thinking about customization (section 4.1)
at that point; to make instance variable access and assignment
efficient when a sibling might implement them as methods,
Ungar realized that one could compile multiple versions of the
same inherited method for each “clone-family.” The require-
ment that an assignable slot be accompanied by a corresponding
assignment slot created a clear distinction at object creation time
between a constant slot and a mutable slot that was intended
from the start to aid the implementer. Ungar knew that an effi-
cient implementation would have to put information shared
across all clones of the same prototype in a separate structure,
which was eventually called a map [CUL89]. (See section 4.1
for details.)

When Ungar came up to PARC as a consultant, he had to sign in
by writing his name on an adhesive name tag and wearing it
while on the premises, yet no one ever paid any attention to it.
So Ungar took to writing more and more absurd names on his
tag, such as “nil,” “super,” and even “name tag.” One day, he
came into the common area outside Smith’s office at PARC, and
upon seeing Smith immediately exclaimed, “I have a name for
the language! Self!” He had moments earlier signed his name
tag “self” when inspiration had struck. Smith commented that
all those selfs missing from the syntax could maybe be inherited
from the title of the language. The name appealed to us immedi-
ately, and from that day forward we had no doubt that the lan-
guage would be called “Self.”

4. Self Takes Hold at Stanford and Evolves
In June 1986, Ungar (at Stanford) asked Sun for some equip-
ment: an upgrade to 4Mb of main memory for 14 machines
($28K), a Sun 3/160S-4 workstation with 4MB for ($15K)—this
was a diskless machine—a 400MB disc drive ($14K), a tape
drive ($3K), and an Ethernet transceiver ($500). When we
started the effort to build a Self system, hardware was primitive
and expensive!

Ungar recalls spending his first year at Stanford (1985-1986)
casting about for a research topic. His first PhD student, Joseph
Pallas, was working on a multiprocessor implementation of Ber-
keley Smalltalk [Pal90] for the Digital Equipment Corporation
Systems Research Laboratory Firefly [TSS88], an early coher-
ent-memory multiprocessor. As far as we know, this system was
the first multiprocessor implementation of Smalltalk. 

In Ungar’s June 1986 summary of his first year’s research at
Stanford, Self was not mentioned at all. But nine months later,
he had found his topic: in a March 1987 funding proposal,
Ungar wrote: “Self promises to be both simpler and more
expressive than conventional object-oriented languages.” He
also wrote about “developing programming environments that
harness the power of fast and simple computers to help a person
create software,” of “transforming computing power into prob-
lem-solving power,” of “shortening the debug, edit, and test
cycle,” and how “dynamic typing eases the task of writing and
changing programs.” He explained the potential advantages of
Self: its unification of variable access and message passing, that
any Self object could include code and function as a closure, its
better program-structuring mechanisms, including prototypes.
Finally, he noted that obtaining performance for Self would pose
a challenge.

In 1988, Smith went to England for a year, and Ungar’s consult-
ing assignment at PARC changed from designing languages to
implementing automatic storage reclamation for what was to
become the HPS Smalltalk system. This was the end of Self at
PARC.

Ungar had decided that Self’s replacement of variable access by
message passing made it so impractical that devising an efficient
implementation of Self would make a good research topic. He
was also eager to see if the language design would hold up for
nontrivial programs. Ungar’s May 1988 report, “SELF: Turning
Hardware Power into Programming Power,” proposed a com-
plete, efficient Self virtual machine, a Self programming envi-
ronment with a graphical interface based upon artificial reality,
and a high-bandwidth, low-fatigue total immersion workstation.
(We never got around to the last one.) He discussed the benefits
of the language and the special implementation challenges it
posed. To tackle the implementation issues, we proposed custom
compilation and inlining of primitive operations and messages
sent to constants. (These were the first optimizations we tried.)
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We proposed to investigate dynamic inheritance and to explore
mirror-based reflection, the latter as a means to inspect a method
as well as objects intended only to provide methods for inherit-
ance by other objects. Ungar christened the latter sort of object a
“traits” object. Years later, others would formulate a framework
for combining bundles of methods in a class-based framework,
reusing the word “traits” with a slightly different meaning
[SDNB03].6

The report went on to outline proposed work on a graphical pro-
gramming environment designed to present objects as physical
hunks of matter—objects, not windows. Ungar proposed to use
well-defined lighting for reality and substance, and to manage
screen updates so as to avoid distraction. (This seems to fore-
shadow our work in cartoon animation.) He also proposed to
implement a graphical debugger for Self.

In January 1989, Ungar asked Sun for more equipment: SPARC
machines, a server, a workstation for his home, and three disk-
less machines, each with 24Mb of memory. He also asked for a
fast 68030 machine. As the Stanford Self project progressed in
1989 and 1990, it was able to start work on the programming
environment and user interface, later known as UI1 or Seity. The
goal (far from realized) was eventually to replace most uses of C
and C++ (and, of course, Smalltalk) for general-purpose pro-
gramming. We wanted to harness the ever-increasing raw com-
putational power of contemporary workstations to help
programmers become more productive.

4.1. Implementation Innovations

Faced with designing an interpreter or compiler to implement a
language, one often takes a mathematical, mechanistic view and
focuses on getting correct programs to execute correctly.
Inspired by Smith’s Alternate Reality Kit [Smi87], Ungar took a
different tack: he concentrated on getting the user to buy into the
reality of the language. Even though Self objects had no physi-
cal existence and no machine was capable of executing Self
methods, the implementation’s job was to present a convincing
illusion that these things did exist. That is why, despite all the
convoluted optimizations we finally implemented, the program-
mer could still debug at the source level, seeing all variables
while single- stepping through methods, and could always
change any method, even an inlined one, with no interference
from the implementation.

To structure complexity and provide the freest environment pos-
sible, we layered the design so that the Self language proper
included only the information needed to execute the program,
leaving the declarative information to the environment. In other
words, in Smalltalk and Java, classes served as both structural
templates (i.e., concrete types) and were visible to the program-
mer, but in Self the structural templates (embodied by maps)
were hidden inside the virtual machine and thus invisible to the
programmer. Abstract types were regarded as programmer-visi-
ble declarative information, and Self left those to the environ-
ment. For example, one language-level notion of abstract type,
the clone family, was used in the work of Agesen et al. [Age96]
in their Self type-inference work. There is no clone family
object in the Self language, but such objects could be created
and used by the programming environment. This design kept the
language small, simplified the pedagogy, and allowed users to
extend the domain of discourse.

The Stanford Self team believed that performance would be crit-
ical for acceptance, yet our design philosophy placed a large

burden on the compiler. Deutsch and Schiffman’s PS system had
simply translated Smalltalk’s bytecodes to machine code, with
only peephole optimization [DS84]. But unlike Smalltalk, the
Self bytecodes contained no information about what is a vari-
able access or assignment vs. a message send, and there are no
special bytecodes for simple arithmetic, nor special bytecodes
for commonly used control structures. Simple translation would
not suffice. Obtaining performance without sacrificing the pro-
gramming experience would be our challenge.

The problem in this area was a magnification of one faced by a
Smalltalk implementation: a style of programming in which
methods are short, typically one to five lines of code, resulting
in frequent message sends. Frequent sends hurt performance
because each method invocation in Smalltalk (and Self) is
dynamically dispatched. In other words, every few operations a
Smalltalk program called a subroutine that depended on the
runtime type of the value of the first argument (a.k.a. the
receiver). In Self, the situation was even worse, because every
variable access or assignment also required a message send.
Other, more static languages, such as C++ (and later Java),
incorporated static type-checking, and this added information
facilitated use of dispatch tables (a.k.a. vtables) to optimize vir-
tual calls. This technique was not suited for Self or Smalltalk
because without static types every dispatch table needs an entry
for every method name. This requirement would result in pro-
hibitive time and space requirements to update and maintain dis-
patch tables. Thus, to make Self work well, we would not only
have to implement prototypes effectively, but would also have to
find new techniques to eliminate the overhead of virtual func-
tion calls by inline expansion of methods whose bodies could
not be known before the program runs.

4.1.1. The First Self Virtual Machine, a.k.a. Self-89

Back when the language had been designed, Ungar had deviated
from Lieberman’s prototype model for implementation consid-
erations. In Lieberman’s system, an object initially inherited all
of its attributes and gained private attributes whenever an
assignment occurred. From the beginning, Ungar tried to keep
an object’s layout constant to reduce run-time overhead. He
therefore incorporated the distinction between variable and con-
stant slots into Self. Assignment could only change a variable
slot, not create a new slot. Furthermore, to represent an object,
space would be required for only its variable slots and one
pointer to shared information about its constant slots and its lay-
out. This shared information was called a map (Figure 7). Dur-
ing 1986-87, graduate students Elgin Lee and Craig Chambers
joined the project. Lee wrote the first memory system and
implemented maps to achieve space usage that was competitive
with Smalltalk [Lee88]. Later, Chambers reimplemented the
memory system [CUL89]. We achieved our goal: the per-object
space overhead of Self was only two words.
 

In 1988, Chambers wrote the first Self compiler [CU89,
CUL89]. This compiler represented Self programs using expres-
sion trees and introduced three techniques: customization, type
prediction, and message splitting. Each of these ideas was
inspired by our desire to run no more slowly than Smalltalk.
Wherever we thought that Self’s object model would hinder its
performance, we tried to devise a technique to recoup the loss, at
least in the common cases. To maintain the interactive feel of an
interpreter, we also introduced dependency lists (described
below).

Customization. A Smalltalk object belongs to a specific class,
and its instance variables occur at fixed offsets specified by the
class. Even an inherited instance variable has the same offset as

6. According to an email exchange with Black and Schärli, Self’s traits
played into their thinking but were not the primary inspiration.
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it would in an instance of the class from which it is inherited. As
a result, the Smalltalk bytecodes for instance variable access and
assignment can refer to instance variables by their offsets, and
these bytecodes can be executed quite efficiently. In Self, there
is no language-level inheritance of instance variables, and so the
same inherited method might contain an access to an instance
variable occurring at different offsets in objects cloned from dif-
ferent prototypes. (All objects cloned from the same prototype
have the same offsets, and are said to comprise a clone family.)
In some invocations of the inherited method, the bytecode might
even result in a method invocation. To compile accesses as effi-
cient, fixed-offset load operations, Ungar had realized—back at
PARC—that the virtual machine could compile multiple copies
of the same inherited method, one per clone family. This trick
would not compromise the semantics of the language because it
could be done completely transparently. This technique, known
as customization, was implemented in Chambers’ first Self com-
piler (see Figure 8).

Type Prediction. In Smalltalk and Self, even the simplest arith-
metic operations and control structures were written as mes-
sages. In the case of control structures, blocks are used to denote
code whose execution is to be deferred. Thus, even frequently
occurring operations that need not take much time must be
expressed in terms of general and relatively time-consuming
operations. For example, the code a = b ifTrue: [...]
sends a message called “=” to a, then creates a block, and finally
sends “ifTrue:” to the result of “=” with a block argument. The
Smalltalk system uses special bytecodes for arithmetic and sim-
ple control structures to reduce this overhead. For Self, we kept
the bytecode set uniform, but built heuristics into the compiler
to expect that, for instance, the receiver of “=” would probably
be a (small) integer and that the receiver for “ifTrue:” would

likely be a Boolean. This information allowed the compiler to
generate code to test for the common case and optimize it as
described below, without loss of generality. For example, in Self
but not Smalltalk, the programmer can redefine what is meant
by integer addition. This idea was called “type prediction.”

Message Splitting. As mentioned above, Smalltalk imple-
mented if-then constructs such as ifTrue: with specialized
bytecodes, including branch bytecodes. Since in Smalltalk (and
Self) the “true” and “false” objects belong to different classes
(clone-families in Self), the branch bytecodes conceptually test
the class of the receiver to decide whether to branch or not. To
achieve similar performance in compiled Self code without spe-
cial bytecodes, we had allowed the compiler to predict that the
receiver of such a message was likely to have the same map as
either the “true” or the “false” object, but could be anything. The
Self compiler was built around inlining as its basic optimization,
so to optimize ifTrue: for the common case without losing the
ability for the user to change the definition of ifTrue:, the
compiler had to insert a type-case (a sequence of tests that try to
match the type (represented in Self by the map) of the receiver
against a number of alternatives) and then inline different ver-
sions of the called method in each arm of the type-case con-
struct. In the “true” arm, it could inline the evaluation of the
“then” block, in the “false” arm, it could inline “nil,” and in the
uncommon case, it could not inline at all but just compile a mes-
sage-send. In other words, one message-send of “ifTrue:” was
split into three sends of “ifTrue:” to three different types of
receiver (true, false, and unknown). We dubbed this technique
“message splitting.” 

Dependency Lists. For this compiler Chambers also created
Self’s dependency system, a network of linked lists that allowed
the virtual machine to quickly invalidate inline caches and com-

Figure 7. An example of the representations for two Cartesian points and their parent, also known as their “traits” object. With-
out maps, each slot would require at least two words: one for its name and another for its contents. This means that each point
would occupy at least 10 words. With maps, each point object needs to store only the contents of its assignable slots, plus one
more word to point to the map. All constant slots and all format information are factored out into the map. Maps reduce the 10
words per point to 3 words. (A Self object also has an additional word per object containing a hash code and other miscellany.)
Since the Cartesian point traits object has no assignable slots, all of its data are kept in its map. 
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piled methods when the programmer made changes to objects
[Cham92]. In addition to these techniques, the compiler also
supported source-level debugging so that the system could be as
easy to understand as an interpreter.

When this compiler was completed in 1988, the Self virtual
machine comprised 33,000 lines of C++ and 1,000 lines of
assembly code. It ran on both a Motorola 68020-based Sun-3
workstation and a SPARC-based Sun-4 workstation. The latter
was a RISC microprocessor with a 60ns cycle time, and an aver-
age of 1.6 cycles per instruction. We had written about 9,000
lines of Self code, including data structures, a simple parser, and
the beginnings of a graphical user interface. The largest bench-
mark we used at that time was the Richards operating system
simulation [Deu88], and the compiler produced Self code that
ran about three times faster than Smalltalk, but about four times
slower than optimized C++ [CU89]. There was an issue with
compilation speed: on a Sun 4-260 workstation, the compiler
took seven seconds to compile the 900-line Stanford integer
benchmarks, and three seconds to compile the 400-line Richards
benchmark. This was deemed too slow for interactive use; we
wanted compile times to be imperceptible.

Ungar recalls that Chambers articulated an important lesson
about types: the information a human needs to understand a pro-
gram, or to reason about its correctness, is not necessarily the
same information a compiler needs to make a program run effi-
ciently. Thereafter, we spoke of abstract types as those that help
the programmer to understand a program and of concrete types
as those that help an implementation work well. In many lan-
guages, the same type declaration (e.g., 32-bit integer) specifies
both semantics and implementation. As we implemented Self,
we came to believe that this common conflation inevitably com-
promised a language’s effectiveness.7 Accordingly, we hoped to

show that type declarations for the sake of performance were a
bad idea, and we made the point that Self’s performance—with-
out explicit declarations—had already pulled even with
Johnson’s Typed Smalltalk system [John88, CU89]. 

4.1.2. The Second-Generation Self Virtual Machine, a.k.a. 
Self-90

We weren’t satisfied with the performance of our first Self com-
piler and in 1989 proceeded to improve the Self system. In early
1989, Chambers rewrote the memory system and then imple-
mented a far more ambitious compiler [CU90]. This compiler
was based on a control flow graph and included many optimiza-
tion techniques that had been invented for static languages, such
as more extensive inlining, interprocedural flow-sensitive type
analysis, common subexpression elimination, code motion, glo-
bal register allocation, instruction scheduling, and a new tech-
nique called extended splitting. 

Extended Splitting. Recall that the first Self compiler had been
based on expression trees. As a consequence, the only message
sends that it could split were those whose receivers were the
results of the immediately preceding sends. With the addition of
flow-sensitive type analysis, the new compiler could split a mes-
sage based on the type of a value previously stored in a local
variable. We observed that it was common for the same local to
be the receiver for several message sends, although the sends
might not be contiguous, so Chambers extended the new com-
piler to split paths rather than individual sends. This technique
was called “extended splitting” and the ultimate goal was to split
off entire loops, so that, for example, an iterative calculation

Figure 8. Customization: At left are three objects
implementing Cartesian and polar points. Below
left is an expression tree for uncustomized code
for the x method. Since rho may be either a vari-
able or method, to use the same code for both
kinds of points, nothing more can be compiled
but message sends for rho and theta. But if the
system can compile a specialized version of x for
polar points, it can replace these with load
instructions, as in the code below right. Custom-
ization speeds sends to self at the expense of
space and complexity. In Smalltalk and other
contemporary object-oriented languages, a meth-
od like x could include instance variable load
operations at its source level. Ungar devised cus-
tomization to regain the speed lost by expressing
an instance variable access as a send to self.

7. The creators of the Emerald system had the same insight [BHJ86]
and had probably discussed it with Ungar during a visit to the Uni-
versity of Washington.
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involving (small) integers could be completely inlined with only
overflow tests required. Many of the benchmarks we were using
then consisted of iterative integer calculations because we were
trying to dethrone performance champion C, and those sorts of
programs catered to C’s strengths.

The new compiler yielded decidedly mixed results. The perfor-
mance of the generated code was reasonable: the Richards
benchmark shrank to three-fourths of its previous size and
slowed by just a bit, small benchmarks sped up by 25% - 30%,
and tiny benchmarks doubled in speed. The problem was that
compiler ran an order of magnitude slower. For example, it took
a majestic 35 seconds to compile the Richards benchmark, a
wait completely unsuitable for an interactive system. Perhaps
we had fallen prey to the second-system syndrome [Broo]. In
day-to-day use, we stuck with the original compiler.

This second-generation system did introduce other improve-
ments, including faster primitive failure, faster cloning, faster
indirect message passing (for messages whose selectors are not
static), blocks that would not crash the system when entered
after the enclosing scope had returned, and a dynamic graphical
view of the virtual machine (the “spy”), written by Urs Hölzle,
who had joined the Self project in the 1987-1988 academic year. 

4.1.3. The Third-Generation Self Virtual Machine, a.k.a. 
Self-91

By mid-1990, Hölzle had made many small but significant
improvements to the Self virtual machine: he had improved the
performance of its garbage collector by implementing a card-
marking store barrier; he had redone the system for managing
compiled machine code by breaking it up into separate areas for
code, dependencies, and debugging information; he had added
an LRU (least-recently used) machine-code cache replacement
discipline; he had started on a profiler; and he had improved the
method lookup cache. The Self virtual machine comprised
approximately 50K lines of C++.

Hölzle had devised a new technique that would turn out to be
crucial: polymorphic inline caches (PICs) [HCU91]. Self was
already using inline caching [DS84], a technique that optimized
virtual calls by backpatching the call instruction. Deutsch and
Schiffman had noticed that most virtual calls dispatched to the
same function as before, so rather than spending time on a
lookup each time, if the call went to the same method as before,
the method could just verify the receiver’s map in the prologue
and continue. This technique worked, but we discovered that
some fairly frequent calls didn’t follow this pattern. Instead,
they would dispatch to a small number of alternatives. To opti-
mize this case, when a method prologue detected an incorrect
receiver type, Hölzle’s new system to create a new code stub
containing a type-case and redirect the call instruction to this
stub. This type-case stub, called a polymorphic inline cache
(PIC), would be extended with new cases as required. This opti-
mization sped up the Richards benchmark, which relied heavily
on one call that followed this pattern, by 37%. We realized that,
after a program had run for a while, the PICs could be viewed as
a call-site-specific type database. If a call site was bound to the
lookup routine, it had never been executed; if it was bound to a
method, it had been executed with only one type; and if it was
bound to a PIC, that PIC contained the types that had been used
at that site. Hölzle modified Chambers’ compiler to exploit the
information recorded in the PICs after a prior run and sped up
Richards by an additional 11%.

In 1990, Chambers worked to improve the compilation speed
without sacrificing run-time performance [CU91]. We had
learned that much published compiler literature neglected the

compilation speed issue that was so critical to the interactive
feel we wanted for Self. Striving for the best of both worlds,
Chambers devised a more efficient implementation of splitting
and enhanced the compiler to defer the compilation of uncom-
mon cases. The latter idea was suggested to us by then-student
John Maloney at an OOPSLA conference (Maloney would later
join the Self project). Deferred compilation avoided spending
time on the cases that were expected to be rare, such as integer
overflow and out-of-bounds array accesses. The compiler still
generated a test for the condition, but instead of compiling the
rarely executed code, would compile a trap to make the system
go back and transparently recompile a version with the code
included for the uncommon case. The new version would be
carefully crafted to use the same stack frame as the old, and exe-
cution would resume in the new version. The whole process was
(naturally, given our proclivities) transparent to the user.

In addition to hastening compilation, this optimization sped up
execution because the generated methods were smaller and
could use registers more effectively. However, in subsequent
years, it turned out to be a source of complexity and bugs. As of
this writing (2006), Ungar, who has only his spare time available
to maintain Self, has disabled deferred compilation. Back in
1990, though, we were excited: the system compiled the Rich-
ards benchmark 7 times faster than previously, the compiled
code was about three-fourths the size, and it ran 1.5 times faster.
This brought Richards performance to one third that of opti-
mized C++. We released this system as Self 1.1 in January 1991.

With all the improvements, compilation speed on our Sun 4-260
was still too slow; compiling Richards took 5.5 seconds. In addi-
tion, this third compiler suffered from brittle performance;
because it used heuristics to throttle its inlining, it was sensitive
to the program’s exact form, and small changes to a program
could result in large changes to its performance, as method sizes
crossed inlining thresholds. However, after three compilers, it
was time for Chambers to stop programming and start his doc-
toral dissertation. He did so and graduated in 1992.

It was then Hölzle’s turn to take on the challenge of combining
interactivity with performance. Building on Chambers’ compil-
ers and his own work with polymorphic inline caches, he started
to experiment with “progressive compilation” and would even-
tually achieve the best of both worlds (section 5.1).

4.2. Language Elaborations

In 1988 and 1989, the students and Ungar writing Self code at
Stanford ran into situations that seemed to need better support
for multiple inheritance and encapsulation than were covered by
the language outlines as sketched out at Xerox PARC. Self’s
simple object model was a good base for exploring these topics
since there were few interactions with other language features.
Smith was following other research interests at this point, and so
Chambers, Ungar, Chang, and Hölzle set about enhancing the
language with some clever ideas: prioritized multiple inherit-
ance, the sender-path tiebreaker rule, and parents-as-shared-
parts privacy [CUCH91]. 

Prioritized Multiple Inheritance. Back in the late 1980s, multi-
ple inheritance was a popular research area, especially rules for
dealing with collisions arising from inheriting two attributes
with the same name [Card88]. Class-based languages suffered
from the need to deal with structural collisions arising from
inheriting different instance variables with the same name, as
well as behavioral collisions arising from inheriting different
methods with the same name, and we thought that this area
would be easier in classless Self. There were two popular search
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strategies for multiple inheritance: unordered for safety, and
ordered for expressiveness. In the unordered case, all parents
were equal and any clashes were errors. In the ordered case, par-
ents were searched in order, and the first match won. Seeking
the best of both worlds, the Stanford students and Ungar devised
a priority scheme: each parent was assigned an integer priority
by the programmer, and the lookup algorithm searched parents
in numeric order. Equal-numbered parents were searched simul-
taneously, and multiple matches in equal-numbered parents gen-
erated an “ambiguous message” run-time error.

Sender-path Tiebreaker. Having devised and implemented a
powerful multiple inheritance scheme, we set about using multi-
ple inheritance wherever we could. As a result, we struggled
with many “ambiguous message” errors in our code. Since most
of these errors seemed unjustified, we came up with a new rule
that we thought would automatically resolve many of the con-
flicts. This rule stemmed from our belief that parent objects in
Self were best considered to be shared parts of their children.
When combined with the typical case of a method residing in an
ancestor of its receiver, we believed that a matching slot found
on the same inheritance path as the object holding the calling
method ought to have precedence. This was called the “sender-
path tiebreaker rule” (see Figure 9).

Shared-part Privacy. Smalltalk provides encapsulation for vari-
ables but not methods; in Smalltalk, instance variables are pri-
vate to the enclosing object, but all methods are public. Since we
believed that a Self variable should be thought of as just a partic-

ular implementation of two methods, the original design for Self
omitted encapsulation for all variables (as well as methods).
Influenced by Smalltalk and, to a lesser extent, by C++, the Self
group (then at Stanford) sought to fix this by adding privacy to
the language. At this time we had yet to build a graphical user
interface, and so we started with a discussion of syntax in
Ungar’s office that lasted for hours. Eventually, Chambers face-
tiously proposed an underscore prefix (“_”) for private slots and
a circumflex prefix (“^”) for public slots. When Ungar agreed,
Chambers tried to unpropose them but failed, and so those pre-
fixes became Self’s privacy syntax. After agreeing on syntax,
we then had to devise a semantics for privacy. Consider a slot a
containing a method that sends the message b. If b is private,
how should we decide whether to allow the attempted access to
b found in slot a’s code? Reasoning that in Self, parents are
shared parts of their children, we decided that slot b should be
accessible to a given message from code in a if both the object
holding the a slot and the object holding the b slot were either
the same as or ancestors of the receiver of the message. This
concept was called “shared-part privacy” (see Figure 10).

Chambers deftly made these changes to the virtual machine. He
did it so easily that back then, Ungar felt that there was no lan-
guage feature too intricate for Chambers to put into the system
in a day or so. Of course, having invented a powerful new pri-
vacy scheme, we set about writing programs that put it to work
whenever possible.

sender
path

object with
matching slot
on sender path

receiver of b

object with
matching slot
not on path

a

bb

Method in slot a sends message b, but
there are two inherited b slots. Which
one should be used?

Figure 9. Sender path tiebreaker rule. For a while, multiple inheritance conflicts were resolved according to
the inheritance path of the sending method. In this situation there is a “tie” with two inherited ‘b’ slots. The
‘b’ slot on the left is selected because it is on the path to the slot whose code sent the ‘b’ message.

receiver of b

a

bb

This rule would select
the slot on the path to
the a slot.

sending
method holder

receiver

object with
private slot

sending
method holder

receiver

object with
private slot

Figure 10. Privacy based on parents-as-shared-parts. Inherited method a sends message b to self, labeled as the receiv-
er. In each case b is a private slot. Since both the sending method holder and the private slot holder are parents of the
receiver on the left, that access would be allowed. On the right, the access would be denied.

aa aab b
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In a July 1989 report, “SELF: Turning Hardware Power into
Programming Power,” the multiple inheritance with send-path
tiebreaking idea appeared. Ungar was enthusiastic about this
idea at the time: “SELF’s multiple inheritance innovations have
improved the level of factoring and reuse of code in our SELF
programs.” The first version of the privacy (a.k.a. encapsula-
tion) idea also appeared as a proposal. By the end of March
1990, we had added our new privacy semantics, had changed
“super” to “resend” to accommodate “directed resends,” and had
changed the associativity rules for binary messages to require
parentheses.

Something unexpected occurred after we started using our mul-
tiple inheritance and privacy schemes. Over the following year,
we spent many months chasing down compiler bugs, only to
discover that Chambers’ compiler was correct and it was our
understanding of the effects of the rules that was flawed. For
example, a “resend” could invoke a method far away from the
call site, running up a completely different branch of the inherit-
ance graph from what the programmer had anticipated. In addi-
tion, the interactions with dynamic inheritance turned out to be
mind-boggling. Eventually, Ungar realized that he had goofed.
Prioritized multiple inheritance, the sender-path tiebreaker rule,
and shared-part privacy were removed from Self by June 1992.
We found that we could once again understand our programs.
Self’s syntax still permitted programmer to specify whether a
slot was public, private, or unspecified, but there was no effect
on the program’s execution. This structured comment on a slot’s
visibility proved to be useful documentation.

In the process of revisiting Self’s semantics for multiple inherit-
ance, Chambers suggested that we adopt an “unordered up to
join” conflict resolution rule (see Figure 11). Although it might
have worked well, we never tried this idea; once bitten twice
shy. 

To this day, many object-oriented language designers shy away
from multiple inheritance as a tar pit, and others are still trying
to slay this dragon by finding the “right” concepts. Our final
design for Self implemented simple, unordered multiple inherit-
ance and has proven quite workable. Although many language
designers (including Ungar) have used examples to motivate the
addition of facilities, at least for prioritized multiple inheritance,
the sender path tiebreaker rule, and shared-part privacy, it would
have been better to let the example be more difficult to express
and keep the language simpler. Ironically, in his dissertation,

Ungar had written about this danger for CPU designers, chris-
tening it “The Architect’s Trap” (section 2.4). On the one hand,
some lessons seem to require repetition. On the other hand,
maybe we just gave up too soon.

4.3. UI1: Manifesting Objects on the Screen

In the spring of 1988, Bay-Wei Chang, then a graduate student
at Stanford, took Ungar’s programming languages class. He
became interested in Self and was impressed when, during the
final exam for the class, a video tape on the Alternate Reality
Kit was shown. This was, in Chang’s own words, “a cruel trick
to play, as after the video I sat with my mouth agape for precious
minutes.” In the fall of 1988 Chang undertook an independent
project working on version 1 of the Self UI, and officially joined
the Self project in early 1989. Inspired by the Alternate Reality
Kit, Ungar encouraged Chang to craft a user experience that
would be more like the consistent illusion of a Disneyland ride
than the formal system of a programming language. We wanted
to construct the illusion that objects were real (see Figure 12). In
May 1989, with the incorporation of Interviews/X and Pixrect
primitives into Self, Chang was able to write a mock-up of a
direct-manipulation Self user interface. By the end of 1989, this
environment was further improved with fast arrowheads, better
object labeling, and optimizations that included our own low-
level routines to copy data and draw lines. As a result perfor-
mance improved from 10 to 30 frames/sec. on a monochrome
SPARCstation-1.

The original version of UI1 (written by Chang at Stanford in
1988-1989) had run on machines with monochrome frame buff-
ers. By 1990, we had eight-bit frame buffers, although (as Ungar
recalls) we had grayscale monitors and there was no hardware
acceleration. Ungar realized that, by reducing our palette of col-
ors (actually, grays), we could use colormap tricks to get
smooth, double-buffered animation on the screen. We achieved
30 frames/sec. on a color SPARCstation with a graphics acceler-
ator. By the end of one year (May 1990) this version of UI1 was
working (see Figure 13).
 

As of 2006, colormaps have disappeared from most computers,
so the reader may not know this term. A “colormap” is simply
an array of colors. An image composed of pixels that use a col-
ormap doesn’t store the color information directly in the pixel,
but rather stores the colormap array index for that color in the
pixel. The key advantage of the colormap for animation effects
arises from the simple reality that a window on the screen typi-
cally has about a million pixels, whereas a colormap has only
256 entries. Thus, a computer can run through this very short
color map, changing the colors stored in various indices, to
obtain a nearly instantaneous visual effect on millions of pixels.
Consider a colormap with the color white stored at both index 0
and index 128. A screen image with pixel data that is all 0
except for a region with 128 appears to the user as entirely
white. But when a program stores the color black at colormap
index 128, a black region suddenly appears on the white back-
ground. 

Suppose that a 256-color colormap is split into four identical
parts, so that every entry from 0 through 63 is replicated three
more times through the colormap indices. This limits the range
of available colors to 64, but it frees up two “bit planes” for
drawing: setting bit 7 in a pixel’s value (effectively adding 128
to the data for that pixel) has no visual effect. Nor does setting
bit 6. Suppose the colormap is suddenly modified so that all
indices with bit 7 set to 1 are black. Black regions will instanta-
neously appear on the screen wherever pixels have values with

receiver

object with
matching slot

object with
matching slot

matching slot
object without

Figure 11. Unordered up to join: Under Chambers’ proposed
scheme, there would be no conflict in this case, since the first
match precedes a join looking up the parent links. Under our
old sender-path tiebreaker, there still could be a conflict if the
sending method were held by any but the leftmost object.
There is also a conflict under the current rules for Self.

x

x

self x
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that bit set. Suppose then that the color map is restored except
that now bit 6 is set to black. The first set of black regions disap-
pears but a new set of black regions appear. Clearing bit 7 in the
image data, drawing with bit 7, then changing the colormap
appropriately makes yet another change appear on the screen.
Alternately clearing and drawing with first bit 7, then bit 6, ani-
mated images can be made to appear over the background. The
two bit planes are being used to achieve an animation drawn
with one color. Because one plane remains visible while another,
invisible plane is used for drawing, this scheme is an instance of
what is termed a “double buffering” animation technique.

In UI1, Chang and Ungar carried this technique further by divid-
ing up the frame buffer into two sets of one-bit planes and two
sets of three-bit planes. The one-bit planes double-buffered the
arrows, and the three-bit planes double-buffered the boxes. (The
boxes needed three bits so they could have highlight and shadow
colors.) The arrows were separated from the boxes to make it
easier to depict the arrows as being in front of the boxes. At any
given time, the colormap would be set so that one arrow and one
box plane was visible. UI1 would then compute the next frame
of arrows and boxes into the invisible planes, then switch the
colormaps. Later at Sun, when we added dissolves8, we would
put each key frame into a separate plane and update the color-

x

y nil

x

y nil

Figure 12. Visions of a Self user interface taken from a May 1988 grant proposal. Above, two possibilities for objects; below,
two possibilities for a syntax tree. From the proposal: “We are interested in pursuing a style of interaction that can exploit what
the user already knows about physical objects in the real world. For this reason, we call this paradigm artificial reality. For
example, instead of windows that overlay without any depth or substance, we will represent objects as material objects, with
depth, lighting, mass, and perhaps even gravity.” 
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map for each frame. This trickery enabled UI1 to display 20 to
30 frames/sec. smooth-looking animation on the hardware of
1991.

At this time, we were writing Self code with a text editor, and
feeding the files to a read-eval-print loop. We even built a text-
based source-level debugger with commands resembling those
of the Gnu debugger, gdb. But we knew that eventually we
wanted to live in a world of live objects—after all, we were
inspired by Smalltalk! However, it was not until UI2
(section 5.3) and the Self transporter (section 5.5) that we could
make the change, and even then at least one of the team mem-
bers, Ole Agesen, still sticks to text editing. At this writing, we
asked Agesen to recall why he kept using the older approach: he
responded that he was in a rush to complete his thesis, partly in
fear that the project would be canceled, so he didn’t want to take
the time to learn how to transition, nor take the risk of relying on
as yet unproven technologies for his thesis work.

For UI1, we pushed hard on being object-centered; there would
be nothing on the screen (except for pop-up menus) that was not
an object. No browsers, no inspectors, just objects. It was the
Self language that made this a reasonable approach. For exam-
ple, to understand a Smalltalk program, one must understand the
behavior as manifested by the inheritance hierarchy, as well as
the state of all the variables in the current scope. The Smalltalk
browser could show the inheritance story, but the variable values
were held in several objects scattered at conceptually remote
places in the system, and viewing them required other tools,
such as the “inspector,” unrelated to the Smalltalk inheritance
hierarchy. But Self’s use of message passing for variable access
meant that the inheritance hierarchy of actual objects was all the
programmer needed to see both behavior and state. And, as pre-
viously mentioned, to use the Smalltalk-80 browser, one had to
learn the role of categories, method protocols, and the instance/
class switch as well. But for a Self environment, Chang and
Ungar needed only to build a good representation of a Self
object, and that would serve most of the programmer’s needs.

Unlike Smalltalk, in which one could have multiple inspectors
on the same object, Self’s UI1 allowed only one representation
of the object on the screen. We were trying to preserve the illu-

8. A “dissolve” is a transition in which one frame smoothly changes
into the next. Each pixel slowly changes from its value in the first
frame to its value in the new frame.

Figure 13. The original Self programming environment, the first version of UI1, was designed to be object-centered. Each box
represented a Self object, and a pseudo-3D style attempted to convey a sense of physical reality. (Picture copied from [CU90a].)
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sion that the picture on the screen was the object. An object was
rendered using a pseudo-3D representation and had a context-
dependent pop-up menu. Clicking on a slot would sprout an
arrow to its contents. If the referenced object was not already on
the screen it would be summoned. If it was already there, the
arrow would just point to it. UI1’s object-centrism was success-
ful in helping us ignore the artifice behind the objects. About ten
years later, we finally decided to compromise this principle
because it was so handy to have a collection of slots from dis-
parate objects. For example, one might want to look at all imple-
menters of “display.” We called such things slices, and included
them in our later environment, UI2.

4.4. Reflecting with Mirrors

By unifying state and behavior and eliminating classes, the
design of Self encapsulated the structure of an object. No other
object could tell what slots some object possessed, or whether a
slot stored or computed a result. This behavior is well-suited for
running programs, but not for writing programs, which requires
working with how an object is implemented. To build a pro-
gramming environment, we needed some programmatic way to
“look inside” of an object so that its slots could be displayed.

Ungar’s first thought was to follow Smalltalk’s practice and add
special messages to an object to reveal this information. This
would also have fit with Smith’s idea of emulating physical real-
ity, in which every object is fully self-contained. This architec-
ture proved to be unworkable, since one could not even utter the
name of a method object without running it. Ungar reasoned that
Self needed a kind of ten-foot pole that would look at a method
without setting it off. He used the word “mirror” for the ten-foot
pole, both to connote smoke-and-mirrors magic and also to pun
on the optical meaning of “reflection.”

The mirror behaves like a dictionary whose keys are the names
of the object’s slots and whose contents are objects representing
the slots. To display an object, the environment first asks the vir-
tual machine for a mirror on the object. Following an object’s
slot through a mirror yields another mirror that reflects the
object contained in the slot. In this fashion, once a mirror has
been obtained, all of the information encapsulated in the mir-
ror’s reflectee can be obtained from the mirror. A method is
always examined via its mirror, and is thus prevented from fir-
ing. By May 1990, we had read-only reflection (a.k.a. introspec-
tion) via mirrors.

Once we started thinking about mirrors, other advantages of this
architecture became apparent. For example, since only one oper-
ation in the system creates a mirror, and since, to the virtual
machine, a mirror looks slightly different than an ordinary
object, introspection can be disabled by shutting off the mirror
creation operation and ensuring there are no existing mirrors.
Much later (ca. 2004), we exploited the mirror architecture to
implement remote reflection for the Klein project, by imple-
menting an object that behaved like a mirror but described a
remote object [USA05].

Also, mirrors were a natural place to support the kinds of
changes to objects that a programmer would effect with a pro-
gramming environment. To minimize the extra complexity in
the virtual machine, Ungar borrowed a page from functional
programming. With the sole exception of the side-effecting
define operation, all of the primitive-level reflective mutation
operations created altered copies instead of modifying existing
objects. For example, when the user changed a method on the
screen, the programming environment would have to alter the
contents of a constant slot, and this was a reflective operation.
However there was no reflective operation that altered a con-

stant slot in place; instead there was a functional operation that
produced a new object with an altered slot. After obtaining this
new object, the environment would invoke define, which
would redirect all references from the original object to (a copy
of) the new one. This design ensured that only the define oper-
ation9 needed to invalidate any compiled code, since none of the
others altered existing objects. The “copy of” was part of the
define operation’s semantics to optimize this operation when the
old and new objects were the same physical size in memory. (In
that case, the system could just overwrite the old object with the
contents of the new.)

At the time, mirrors seemed merely a good design but not signif-
icant enough to publish. This system was working by the end of
June 1991, and was used by UI1 to allow the user to change the
objects on the screen. The VM was even able to update code that
had been inlined, thanks to trapping returns and lazily recompi-
lation. This was a milestone: the graphical programming envi-
ronment was finally usable for real programming. Years later,
Gilad Bracha, who was working at Sun and knew of the Self
project work, thought it would be important to generalize and
explain this design, and he and Ungar published a paper about
the architectural benefits of mirrors [BU04]. 

After the project moved to Sun (in 1991) and Smith rejoined us,
he pointed out that the benefits of mirrors came at the cost of
uniformity. In thinking about models for systems, Smith always
turned to the physical world, which does not support a distinc-
tion between direct and reflective operations. There is no differ-
ence between a physical object used directly or reflectively: it is
the same physical object either way. Furthermore, Smith noted
that there are many different types of reflective operations, and
any attempt to distinguish between reflective and non-reflective
operations was therefore certain to get it wrong in some cases or
from some points of view. In fact, we sometimes do find it
unclear whether a method should take a mirror as argument or
the object itself.

Smalltalk, in contrast, placed many reflective operations in the
root of the inheritance hierarchy, to provide reflection for every
object. Something similar might have been done for Self, to
avoid the dichotomy that was bothering Smith. However, by this
point we were reveling in Self’s support for lightweight objects
that needed no place in the inheritance hierarchy, and it would
have been impossible to reflect upon such objects without mir-
rors. Ungar still feels that reflective operations are of a different
breed, while Smith still wishes they could be unified with ordi-
nary operations.

Another approach to unifying invocation and access would have
been to add a bit to a slot to record whether the slot was a
method or data slot. Then, a special operation could have
extracted a method from a method slot and put it into a data slot.
This approach would have had its own problems: what would it
mean to put 17 into a method slot? In our opinion, we never
fully resolved whether a method should fire because it is a
method or because it is in a special kind of slot. We also con-
tinue to wrestle with writing code in which it is unclear whether
we should pass around objects or mirrors on them. There was
also the efficiency loss in creating an extra object to do reflec-
tion. The performance penalty went unnoticed when we were
using mirrors for a programming environment, but became
problematic in the Klein system [USA05], which mirrors to con-
vert a hundred thousand objects to a different representation. In
this application the efficiency loss was so critical that a switch

9. This operation was inspired by, but not quite the same as, Smalltalk’s
“become:” operation.
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was added to the virtual machine to support a model in which a
method could be stored and retrieved from a variable slot.
Although Ungar feels that the preponderance of evidence
weighs on the mirror and methods-firing-by-themselves side of
the debate, Smith acknowledges clear advantages for mirrors but
still harbors doubts, and this issue is not completely resolved.

Recall that, when we first saw Self objects on the screen at Stan-
ford in 1988-1989, we realized that some objects had too many
slots to view all at once: we needed some way to subdivide
them, much like Smalltalk’s method categories. To support this
non-semantic grouping, annotations were added to the lan-
guage. Via reflection, the system could annotate any object or
any slot with a reference to an object. The virtual machine sup-
ported the annotation facility but ignored the annotation con-
tents. It optimized the space required when all objects cloned
from the same prototype contained the same annotations by
actually storing the annotations in the maps. The programming
environment (written in Self) used the annotations to organize
an object’s slots in (potentially nested) categories.

5. Self Moves to Sun and Becomes a Complete 
Environment
As Ungar and his students worked on mirrors in California,
Smith was in Cambridge, England at Rank-Xerox EuroPARC
where he had been working on a multi-user version of the Alter-
nate Reality Kit. But his interest in Self and prototype-based
languages persisted, and while in Cambridge he was able to
work with Alan Borning and Tim O’Shea, who had connections
with the PARC Smalltalk group. With these two plus Thomas
Green and Moira Minoughan, also working at EuroPARC, he
explored a few other language ideas [GBO99].

On his return to Xerox PARC at the end of 1989, Smith was
amazed to find Self running so well, though a little concerned
that it had acquired complexities such as multiple inheritance,
mirrors, and annotations (which he felt were too much like
Smalltalk’s method protocols, having no runtime semantics). He
decided to join Ungar and carry Self forward into a larger imple-
mentation effort. Smith had been thinking about subjectivity in
programming languages, but further language work was becom-
ing a harder sell to PARC management. The authors decided to
take the Self ideas to other research labs. (We later returned to
subjectivity in [SU96].) By of the end of June 1990, the Self
team had given talks on the developing Self system at U.C. Ber-
keley, PLDI’90, and IBM Hawthorne Laboratories. In the fall of
1990, we considered moving to the Apple Advanced Technol-
ogy Group, but—encouraged by Emil Sarpa, Bill Joy, and
Wayne Rosing—decided to join Sun Microsystems’ research
labs. Self already ran on the SPARC processor and thus there
was a chance to get a leg up in adoption. The labs were just
being formed, and the Self project would be one of Sun Labs’
first groups. In January 1991, the Self project joined Sun Micro-
systems Laboratories. Ungar’s students (Craig Chambers, Bay-
Wei Chang, Urs Hölzle, and Ole Agesen, the last graduate stu-

dent to join the project) became consultants and over the years
more researchers were hired to work on the project: John Mal-
oney, Lars Bak, and Mario Wolczko.

5.1. More Implementation Work

As 1991 ended, the virtual machine encompassed 75,000 lines
of code; in 1992, our first Apple laptop computers arrived and
we started work on our first Macintosh port. By the end of 1992,
Lars Bak had obtained a 5x speedup on the Sun computers for
Self’s browsing primitives (implementers, etc.) by rewriting the
low-level heap-scanning code. He had also trimmed Self’s
memory footprint by 18%. The Macintosh port went slowly at
first; it was not until January 1996 that Self ran (with an inter-
preter) on a PowerPC Macintosh. 

Recall from section 4.1 that the third Self compiler ran the
benchmarks pretty well but still compiled too slowly, and suf-
fered from brittle performance. Hölzle took up the challenge. He
had built polymorphic inline caches (PICs) [HCU91], and then
proposed a new direction: laziness. He suggested that we build
two compilers: a fast-and-dumb compiler that would also
include instrumentation (such as counters in PICs), and a slow-
and-smart compiler that would reoptimize time-consuming
methods based on the instrumentation results (see Figure 14).
The first time a method was run, the system used a fast-but-
unsophisticated compiler that inserted an invocation counter in
the method’s prologue. As the method ran, its count increased
and its call sites became populated with inline caches. Periodi-
cally, another thread zeroed out the counters. If a method was
called frequently, its counter would overflow and the virtual
machine would recompile and optimize it. However, because the
method with the overflowing counter might have been called
from a loop, the system would walk up the stack to find the root
method for recompilation. After selecting the root, that method
would be compiled with a slow-but-clever optimizing compiler
that would exploit the information in the inline caches to inline
callees. Finally, the set of stack frames for the recompiled meth-
ods would be replaced by a stack frame for the optimized meth-
ods (called “on-stack replacement”), and execution would
resume in the middle of the optimized method.10

By the time Hölzle was through, his system, Self-93, ran well
indeed, with almost no pauses for compilation [Höl94, HU94,
HU94a, HU95, HU96]: in a 50-minute interactive graphical ses-
sion, using a new metric that lumped together successive pauses,
we found that, on a 28.5 MIPs, 40 MHz SPARCstation-2, two-
thirds of the lumped pauses were less than 100ms, and 97%
were less than a second [HU94a]. This system reduced the time
to start the graphical user interface from 92 to 26 seconds. Not
only were pauses reduced, but benchmarks sped up. This system
ran a suite of six large and three medium-sized programs 1.5
times faster than the third-generation Self system.

10.In later years, when Ungar had to maintain and port the virtual
machine single-handed, he would disable on-stack replacement to
simplify the system and eliminate hard-to-reproduce bugs.

source 
methods

if executed often

if needed for debugging
[Hölzle et al. 1992]

is first invoked

Figure 14. Compilation in the Self-93 system.
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[Deutsch and Schiffman 1984]
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As Hölzle was performing this feat of legerdemain, Ungar was
worried about preserving the system’s transparency. He wanted
the system to feel like a fast interpreter, and that meant that if the
user changed a method, any subsequent call to the changed
method had to reflect the change. However, if the method had
been inlined and if execution were suspended in the caller, when
execution resumed the calling code would proceed to run the
obsolete, inlined version of the callee. To remedy this problem,
Ungar suggested on-stack replacement in reverse: replacing the
one, optimized stack frame for many methods with multiple
stack frames for unoptimized methods (see Figure 15). Hölzle
brought this idea to life [HCU92], and Self’s sophisticated opti-
mizations became invisible to the programmer. We had finally
realized our vision for the virtual machine: high performance for
Self, a pure and dynamic language, combined with high respon-
siveness and full source-level debugging. However, Self’s vir-
tual machine required many more lines of C++ code
(approximately 100,000), more complexity, and more memory
than contemporary (but slower) Smalltalk virtual machines.

In August 1993, Mario Wolczko left the University of Manches-
ter where he had been working on a Smalltalk multiprocessor,
and joined our project and performed some space engineering,
cleaned up the representation of debugging information, refac-
tored the implementation of maps, and fixed a large number of
bugs. He also implemented a feedback-mediated control system
that managed old-space collection and heap expansion. The pol-
icy was implemented in Self, with only the bare bones mecha-
nism in the virtual machine. This work was ahead of its time,
and we are unaware of its match in current systems.

Ole Agesen was the last PhD student in the Self project, gradu-
ating in 1996. He worked on many portions of the Self system,
including an interface to the dynamic linker for calling library
routines, and for his dissertation built a system that could infer
the types of variables in Self programs, despite Self’s lack of
type declarations. Agesen’s work showed how to prune unused
methods and data slots from a Self application [APS93, AU94,
Age95, AH95, Age96].

5.2. Cartoon Animation for UI1

With the Alternate Reality Kit, Smith wanted to deliver a feeling
of being in a separate world by having lots of independent things
happening in a physically realistic and often subtle way. He tried
for realistic graphics, including shadows and avoiding outlines,
but never even thought about cartoon animation techniques, in
which fidelity to physics is less important than emphasizing cer-
tain motions through physically implausible accelerations and
deformations. In building the UI1, however, the Stanford group
believed that a physical feel would be a help to the programmer,

and after seeing ARK, were convinced that animation should
feature heavily in any Self user interface.

When he moved Sun in 1991, Ungar had been watching a lot of
Road-Runner and Popeye cartoons with his five-year-old son,
Leo. It occurred to Ungar that the animation techniques he saw
in the cartoons could be applied to dynamic user interfaces.
Since he also had a VCR with an exceptionally agile jog-shuttle
feature, he was able to review many scenes one frame at a time.
Smith and neuroscientist Chuck Clanton (who was then consult-
ing at Sun) were also fascinated by animation. 

Coincidentally, in 1990 Steven Spielberg and Warner Brothers
put Tiny Toon Adventures on the air, a show that strove to recre-
ate the style and quality of the classic Warner Brothers cartoons
in the late 1930s through early 1950s. In our first year at Sun,
Smith and Ungar would stop work every day at 4:30 to watch
these cartoons and then dissect them. The cartoons inspired us to
read Thomas and Johnson’s book Disney Animation: The Illu-
sion of Life [TJ84] and Road-Runner, director Chuck Jones’
autobiography [Jone89]. We would stare in fascination at each
frame of the Road-Runner zooming across the screen. We were
struck by the clarity with which Jones could show a scrawny
bird and an emaciated coyote crossing the entire width of a
movie screen in only a handful of frames by using motion blur
and slowly dissipating clouds of dust. This combination of
speed and legibility stood in stark contrast to the leisurely pace
of many animated computer interfaces of the time in which each
small change of position was painstakingly redrawn. Even some
of the best interface research at the time used uniform, unblurred
motion [RMC91]. We starting thinking about the role motion
blur could play in graphical computer interfaces. Smith asked
the key question: “If you could update the screen a thousand or a
million times a second, would you still need motion blur?”
These explorations led us to an understanding of how to bridge
the gap between cartoons and interfaces, and how to make
changes more legible without slowing things down.

There is an interesting difference between Smith’s use of anima-
tion in the Alternate Reality Kit and cartoon animation. In any
animation, the incoming light creates patterns on the viewer’s
retina that trickle up the nervous system and reach the higher
levels of cognition after considerable processing. In ARK,
Smith’s goal was to create a sense of realism by replicating the
retinal patterns caused by real-world objects. In contrast, car-
toon animation is more concerned with getting the viewer’s
higher cognitive levels to perceive objects and motion. In
depicting a bouncing billiard ball, a cartoonist might use a
“squash and stretch” around the moment of impact, thereby
making the bounce clearly legible to viewers. A literal moment
by moment capture of the human retina watching an actual bil-
liard ball bounce would reveal a blur that only somewhat resem-
bles cartoon-style stretch. Although both kinds of animation

Figure 15. Transforming an optimized stack frame into unoptimized form.
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have the same goal, cartooning trades the literal replication of
sensory inputs for better legibility at higher levels of cognition.

Recall that colormap trickery enabled UI1 to display 20 to 30
frame-per-second smooth-looking animation on 1991 hardware
(section 4.3). Once the basic techniques were implemented, we
set about using cartoon animation everywhere we could to
improve UI1’s feel and legibility. (A popular phrase at the time
was: “moving the cognitive burden from the user to the com-
puter.”) In those days, windows, menus, and dialog boxes would
just appear in a single frame and vanish just as abruptly. (As of
2006, they still do in many window systems.) But, we believed
that every abrupt change startled the user, and forced him or her
to involuntarily shift his or her gaze. So, we strove to avoid
bombarding the user with abruptly changing pixels. Just as the
Road Runner would enter the frame from some edge, every new
Self object appearing on the screen would drop in from the top,
slowing down as it did, and wiggling for an instant as it stopped.
Every pop-up menu would smoothly zoom out, then the text
would fade in. We became excited about the user experience that
was emerging. Ungar came in every day over one Christmas
break (probably 1991) to get good-looking motion blur into the
system. 

Figure 16, taken from [CU93], illustrates motion blur. Chang
realized that objects should move in arcs, not straight lines, and
also suggested that an object wiggle when hit by a sprouted
arrow (see Figures 17 through 19). Ungar played with the algo-
rithm and its parameters until he got the wiggle to look just
right. It would have been much more difficult to break this new
ground with any other system: he needed both Self’s instant
turnaround time to try ideas freely, and also its dynamic optimi-
zations so that the animation code would run fast enough.

Table 1 summarizes UI1’s cartoon animation techniques. By
June 1992, we had implemented all of our cartoon animation,
including motion blur, menu animation, and contrast-enhancing
highlighting of menu selection. Chang had also started video
taping users to evaluate UI1, taping eight subjects before com-
pleting his dissertation. His work on cartoon animation and its
effect on users’ productivity became a part of his dissertation
and was presented in several conferences [CU93, CUS95,
Chan95]. Although Ungar also wanted to measure the effect of
animation on the number of smiles on users’ faces, we never
did. Now, in 2006, many of these techniques can be seen in com-
mercial systems and web sites.

5.3. UI2 and the Morphic Framework

When Smith rejoined the group on the move to Sun, he was
thinking of ways to push the UI1 framework in additional direc-
tions. He felt the analogy to physical objects was not taken far
enough in most user interfaces. For programming purposes, he
felt that the analogy meant that every object should be able to be
taken apart, even as it is running. This physicality was after all
the goal of the language-level objects, and with a tight corre-
spondence between on-screen object and language-level object,
the deconstruction of live on-screen objects seemed to complete
the paradigm. 

In working with physical objects, one is free to take them apart
and rearrange parts even while the universe continues to run:
there is no need to jump to a special set of tools in a different
universe. Physical objects do not support a use/mention distinc-
tion: the hammer in use is the same as the hammer examined for
improvement, repair, or other modifications. So Smith wanted
to be able to pick up a scroll bar from a running word processor
and reattach it to some other application.

Figure 16. When objects are moved suddenly from one position to another, it can seem as if there are two instances of it on
the screen at the same time. The eye sees something like the middle frame of the “no-motion-blur” figure, even though such a
frame doesn’t actually ever appear on the screen. Motion blur reduces this effect and gives a visual indication of the object’s
travel, so that it is easy to see which object moved where. 
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The UI1 interface contained only representations of objects:
there was no special support for building conventional GUIs
with elements such as scroll bars, text fields, buttons and sliders.
Mainly for this reason, Smith started an effort within the group
to build UI2, a new framework that would retain the basic object
representation idea and animation techniques of UI1, but add the
ability to create general GUIs [MS95, SMU95]. In keeping with
the language concepts of malleability and concreteness, within
UI2 it would be possible to take objects apart directly: thus a
direct copy-deconstruct-reconstruct method would be an impor-
tant part of building new GUIs based on recognizable GUI wid-
gets. 

John Maloney, hired at this time, began creating much of the
UI2 framework, which came to be called the Morphic frame-
work. The Morphic framework enhanced the sense of direct

manipulation by employing two principles we called structural
reification and live editing. 

Structural Reification. We decided to call the fundamental kind
of display object in UI2 a “morph,” a Greek root meaning essen-
tially “physical form.” Self provides a hierarchy of morphs. The
root of the hierarchy is embodied in the prototypical morph, a
kind of golden-colored rectangle. Other object systems might
choose to make the root of the graphical hierarchy an abstract
class with no instances, but prototype systems usually provide
generic examples of abstractions. This is an important part of
the structural reification principle: there are no invisible display
objects. The root morph and its descendants are guaranteed to be
fully functional graphical entities. Any morph inherits methods
for displaying and responding to input events that enable it to be
directly manipulated.

Figure 17. On a click, a menu button
transforms itself from a button into the
full menu. After a selection has been
made, it shrinks back down to a button.
(In this and other figures, only a few
frames of the actual animation are
shown. These figures taken from
[CU93].)

Figure 18. Arrows grow from their tail
to hit their target. The target reacts to the
contact with a small wiggling jolt (here
suggested by a few lines). Arrows also
shrink back down into their tail.

Figure 19. Objects grow from a point to
the full-size object; any connecting
arrow grows smoothly along with the
object. Currently, text does not grow
along with the object, instead fading in
smoothly on the fully grown object.
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In keeping with the principle of structural reification, any morph
can have “submorphs” attached to it. A submorph acts as if it
were glued to the surface of its hosting morph. Composite
graphical structure typical of direct-manipulation interfaces
arises through the morph-submorph hierarchy. Many systems
implement composition using special “group” objects, which are
normally invisible. But because we wanted things to feel very
solid and direct, we chose to follow a simple metaphor of stick-
ing morphs together as if with glue.

A final part of structural reification arose from our approach to
laying out submorphs. Graphical user interfaces often require
subparts to be lined up in a column or row: Self’s graphical ele-
ments are organized in space by “layout” morphs that force their
submorphs to line up as rows or columns. John Maloney was
able to create efficient “row and column morphs” as children of
the generic morph that were first-class, tangible elements in the
interface. A row morph holding four buttons aligned in a row is
at the bottom of the ideal gas simulation frame in Figure 22.
Row or column morphs embody their layout policy as visible
parts of the submorph hierarchy, so the user need only access the
submorphs in a structure to inspect or change the layout in some
way. The user who did not care about the layout mechanism paid
a price for this uniformity, and was confronted with it anyway
while diving into the visual on-screen structures.

Live Editing.  Live editing simply means that at any time the
user can change any object by manipulating it directly. Any
interactive system that allows arbitrary runtime changes to its
objects has some support for live editing, but we wanted to push
that to apply to the user interface objects directly. The key to live
editing is UI2’s “meta menu,” a menu that pops up when the
user holds down the third mouse button while pointing to a
morph. The meta menu contains items such as “resize,” dis-
miss,” and “change color” that let the user edit the object
directly. Other menu elements enable the user to “embed” the
morph into the submorph structure of a morph behind it, and
give access to the submorph hierarchy at any point on the
screen.

Lars Bak did a lot of work to create the central tool for program-
ming within UI2, the object “outliner,” analogous to the Small-
talk object inspector. (We were in part inspired by “MORE,” an
outlining program we had recently started using.) The outliner
shows all of the slots in an object and provides a full set of edit-
ing facilities. With an outliner you can add or remove slots,
rename them, or edit their contents. Code for a method in a slot
can be edited. Access to the outliner through the meta menu
makes it possible to investigate the language-level object behind
any graphical object on the screen. The outliner supports the
live-editing principle by letting the user manipulate and edit

Table 1: Summary of UI1 Cartoon Animation Techniques (from [CU93])

Technique Principle Examples from Cartoons Examples from the Self Interface

Solidity solid
drawing

• Parts of Snow White’s dwarves 
may squash and stretch, but they 
always maintain their connected-
ness and weight

• Objects move solidly
• Objects enter screen by traveling from off screen 

or growing from a point
• Menus transform smoothly from a button to an 

open menu
• Arrows grow and shrink smoothly
• Transfer of momentum as objects respond to 

being hit by an arrow

motion
blur

• Road Runner is a blue and red 
streak

• Stippled region connects old and new locations 
of a moving object

dissolves • n/a • Objects dissolve through one another when 
changing layering

Exaggeration anticipation • Coyote rears back onto back leg 
before chasing after Road Runner

• Objects preface forward movement with small, 
quick contrary movement

follow
through

• Road Runner vibrates for an 
instant after a quick stop

• Objects come to a stop and vibrate into place
• Objects wiggle when hit by an arrow

Reinforcement slow in and
slow out

• Coyote springs up from ground, 
with fastest movement at center of 
the arc

• Objects move with slow in and slow out
• Objects and arrows grow and shrink with slow in 

and slow out
• Objects dissolve through other object with slow 

in and slow out
• Text fades in onto an object with slow in and 

slow out

arcs • Objects travel along gentle curves when they are 
moving non-interactively

follow
through

• Objects do not come to a sudden standstill, but 
vibrate at end of motion
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slots, even while an object is “in use.” Figure 20 shows an out-
liner being fetched onto the screen for an ideal gas simulation.

Recall that popping up the meta menu is the prototypical
morph’s response to clicking the third mouse button. All morphs
inherited this behavior, even elements of the interface like out-
liners and pop-up menus themselves. But our Self pop-up menus
were impossible to click on: one found them under the mouse
only when a mouse button was already down. Releasing the but-
ton in preparation for the third button click caused a frustrating
disappearance of the pop-up. Consequently, we provided a “pin
down” button that, when selected, caused the menu to become a
normal, more permanent display object. The mechanism was not
new, but providing it in Self enabled the menu to be interactively
pulled apart or otherwise modified by the user or programmer. It
is interesting to compare this instance of the use-mention prob-
lem and solution with the analogous use-mention issue that
faced us at the language level: that of accessing a method object
in a slot without running the method. There, the solution was to
introduce a special mentioner object, the mirror (see section
4.4).

Live editing is partly a result of having an interactive system,
but it is enhanced by user interface features that reinforce the
feel that the programmer is working directly with concrete
objects. The example running through the rest of this section
will clarify how this principle and the structural reification prin-
ciple help give the programmer a feeling of working in a uni-
form world of accessible, tangible objects.

Suppose the programmer (or motivated user) wishes to improve
an ideal gas simulation by extending the functionality and add-
ing user interface controls. The simulation starts simply as a box
containing “atoms” that bounce around inside. Using the third
mouse button, the user invokes the meta menu to select “out-
liner” to get the Self-level representation of the object
(Figure 20). The outliner makes possible arbitrary language-
level changes to the ideal gas simulation.
 

Now the user can start to create some controls right away. The
outliner has slots labeled “start” and “stop” that can be con-
verted into user interface buttons by selecting from the middle-
mouse-button pop-up menu on the slot. Pressing these buttons
starts and stops the bouncing atoms in the simulation. In just a
few gestures the user has gone through the outliner to create
interface elements while the simulation continues to run. 

The uniformity of having “morphs all the way down” further
reinforces the feel of working with concrete objects. For exam-
ple, the user might wish to replace a textual label with an icon.
The user begins by pointing to the label and invoking the meta
menu. The menu item labeled “submorphs” lets the user select
which morph in the collection under the mouse to denote (see
Figure 21). The user the can remove the label directly from the
button’s surface. In a similar way, the user can select one of the
atoms in the gas tank and duplicate it; the new atom can serve as
the icon replacing the textual label. Structural reification is at
play here, making display objects accessible for direct and
immediate modification.

As mentioned above, all the elements of the interface such as
pop-up menus and dialog boxes are available for reuse. Say the
user wants the gas tank in the simulation to be “resizable” by the
simulation user. The user can create a resize button for the gas
tank simply by “pinning down” the meta menu and removing
the resize button from it. This button could then be embedded
into the row of controls along with the other buttons (see
Figure 22).

During this whole process, the simulation can be left running:
there is no need to enter an “edit” mode or even to stop the
atoms from bouncing around. The live editing principle makes
the system feel responsive, and is reminiscent of the physical
world’s concrete presence. 

5.4. From UI2 to Kansas

Smith was fascinated by shared spaces (we might now call them
“shared virtual realities”) and had explored with a shared ver-
sion of his Alternate Reality Kit during his year at Rank-Xerox
EuroPARC (1988-1989) [GSO91, SOSL97, Setal93, Setal90,
Smi91]. After he and Ungar joined Sun and the UI2 framework
was underway, Smith decided to make UI2 into a shared world
in which the team could work together simultaneously. The
transformation took only a day or two of diligent work, thanks
in part to the fact that the system was built on top of the X win-
dowing system, and of course in part to the fact that Self was
intended to be a flexible system allowing deep, system-wide
changes. The idea was to transform a single Self world with a
single display into a single Self world with potentially many dis-
plays that could be anywhere on the network. Thus, whenever a
morph displayed itself, rather than merely use the local X dis-
play window, the code would iterate over a list of several display
windows, some of them remote. Moreover, the entire list of win-
dows was queried for events to be dispatched to appropriate
objects in the central Self world. 

In addition, each remote window had an associated offset so
that, although several users could be in the space at once, they
could be shifted to individual locations. Because the resulting

Figure 20. In UI2 the user pops up the meta menu on the ideal
gas simulation (a). Selecting “outliner” displays the Self-level
representation, which can be carried and placed as needed (b).
(The italic items at the bottom of the outliner are slot categories
that may be expanded to view the slots. Unlike slots, categories
have no language level semantics and are essentially a user
interface convenience.)

(a)

(b)
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effect was to put many people in a single, vast flat space, we
named the system “Kansas.”
 

When Kansas was running, an error in the display code could
cause all the windows to hang: the other threads of the underly-
ing Self virtual machine would continue to run, though the dis-
play thread was suspended. We decided the right thing to do
here was to open up a new shared space, “Oz,” that would be
created by the same virtual machine that created Kansas, but
would be a new (mainly empty) world containing only a debug-
ger on the suspended thread. The users, finding themselves sud-
denly “sucked up” into the new overlaying world of Oz, could

collaboratively debug and fix the problem in Kansas, then, as a
final act in Oz, resume the suspended thread so that normal Kan-
sas life might resume. Much of the work for this was done by
Mario Wolczko; Smith, Wolczko, and Ungar wrote a description
for a special issue of the Communications of the ACM on debug-
ging [SWU97]. 

UI1 was beautiful; its use of cartoon animation techniques gave
a smooth and legible appearance. However, it gave no help to
the user who wanted to either dissect or create a graphical
object. We wanted to remedy this shortcoming in Morphic, and
replicating UI1’s beauty took a back seat to architectural innova-

1

Figure 21. The user wishes to
remove the label from a button.
The user starts by pointing to
the label, selects “submorphs”
from the meta menu, and
selects the label from the result-
ing menu list. A menu of
options is presented, from
which the user selects “yank it
out”. The button, which wraps
tightly around its submorphs,
shrinks down to a minimum
size when it has no submorphs.

2

3

4

5
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Figure 22. The environment itself is available for reuse. Here the user has created the menu
of operations for the gas tank, which is now a submorph of the surrounding frame. The user
has “pinned down” this menu by pressing the button at the top of the menu, and can then take
the menu apart into constituent buttons: here the user chooses the resize button for incorpo-
ration into the simulation.

1

2

3

Figure 23. The Kansas shared space version of UI2. Here three users are shown, two of whose screens largely over-
lap so they can see each other and work on a common set of objects; the third user to the right is by himself. Video
images from desktop cameras are sent over the network to appear on special objects near the top of each user’s screen
boundary. Users can be aware that other users are nearby thanks to audio from each user that diminishes in volume
with distance, and to the miniature “radar view” tools that give an overview of the nearby extended space (a radar
view can be seen in the upper left corner of the rightmost user’s screen). The radar view can be used to navigate
through the larger space as well.
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tion. With the exception of slow-in and slow-out, cartoon anima-
tion techniques such as smooth dissolves, motion blur,
anticipation, follow-through, and “squash and stretch” were
never incorporated into the Morphic framework.

After the Self project ended in 1995, Smith became interested in
distance learning. By 1998, he had added desktop video and
desktop audio to the system, as depicted in Figure 23. In 1998
and 1999, Smith used this audio- and video-link-enabled Kansas
in a series of experiments comparing small co-present study
groups with small study groups in Kansas who communicated
using the audio and video links. In these studies, groups of five
to seven students in the same course would not attend lectures at
all, but rather gather (either in the same room or in Kansas) to
discuss a video tape of the classroom lectures. The experiments
were carried out at California State University at Chico, approx-
imately 200 miles north of the Sun Labs campus. A special Kan-
sas world of Self objects was installed in a network at Chico,
and the Sun researchers could “drop in” remotely, and even
reprogram the system while a study session was in progress. The
results of these experiments were that there were no significant
difference between student grades, although there were some
behavioral differences [SSP99, Setal99].

The audio- and video-link technologies were specific to Sun
workstations; since we wanted Self to run on a wider set of plat-
forms, they were never part of the mainstream Self system. But
users of Self today can share their screens to work together. In
normal use, Self programmers seem to prefer having their own
private world of Self objects, which discourages routine use of
the Kansas features, though they are still often useful for remote
demos and collaborative debugging or development sessions.
(In fact, Ungar has been recently using it to work with a collabo-
rator 3,000 miles away.) 

5.5. The Transporter

Inspired by Smalltalk and then ARK, we wanted to submerge
the Self programmer in a world of live objects as opposed to
some text editor. In fact, from the start of Self in 1986, we hoped
that Self’s prototypes would feel even more alive than Small-
talk’s classes. Once we had a decent virtual machine and UI1,
we could experiment with this idea: we could create objects,
interactively add slots and methods, try them out, and instantly
change them. 

Although the idea of programming in a sea of live objects was
inspired by Smalltalk, Self was not Smalltalk, and the differ-
ences caused problems. In Smalltalk, the programmer creates
classes, instantiates them, changes methods, and inspects
objects. A Smalltalk method is always part of a class, a class is a
special kind of object, and every class (by convention) resides in
the same spot: the System Dictionary. So, a Smalltalk program
can usually be considered a collection of class definitions,
including any methods. Since a Smalltalk object is created by
instantiation, all initialization had to be done programmatically,
and initialization is not much of a special problem. But in Self,
there are no “class” objects. There is no one System Dictionary.
Any object may serve as a namespace, and any object may hold
methods. Objects are typically created by copying prototypes,
and initialization code is frowned upon, as the prototype is
already supposed to be initialized, functional, and prototypical.
In fact, the prototype ideal (as Smith used to say) is to always
have everything initialized so that every prototype can be func-
tional as is. But this view means that the state of objects is an
integral part of a “program.” Consider the following example:
Suppose Alice, using her own object heap, writes a program that
she wishes to give to Bob. Bob will typically be using his own

object heap, and so needs to incorporate Alice’s additions and
changes. In Smalltalk, the additions and changes that were typi-
cally a part of a program were restricted, but in Self, the problem
amounted to recreating arbitrary changes to objects. 

Up to around 1992, whenever we wanted to “get serious” so as
to share our work with the group, we wrote Self programs in a
text editor, then read them in and debugged them. As we
debugged, we had to either change the file and reread it, or
change both the file and the running environment. This was
painful. We needed a system that would turn arbitrary sets of
objects and slots into a text file that could then be read in to
another world of objects. To meet this need, Ungar started his
last major effort in the Self project, the transporter [Ung95].

Ungar realized that Self “programs” involved adding slots to or
modifying slots in existing objects and thus the transporter
would have to operate at the level of individual slots. Slot a
might be part of one “program” and slot b another, even though
both were in the same object. Since extra information was
needed that was not part of the execution model, that informa-
tion was added to the system around 1994 by extending Self’s
existing annotations. Each slot was annotated with the name of
the source file to which it would be written. At first, Ungar tried
to write a system that would infer other data, such as the proper
initialization for a slot when it was subsequently read in. After
many unsuccessful attempts, it became clear that inference
would not work, and more information would be needed in the
annotations. For example, each slot had to be annotated with ini-
tialization instructions: should it be initialized to whatever it
originally contained or to the results of some expression? At the
end, Ungar came to a fundamental realization: what was later
dubbed “orthogonal persistence” [AM95] was, at least in this
context, a flawed concept. Simply making a set of slots persis-
tent is easy. But installing those slots into another arbitrary
world of objects so that they function as they did in their original
home is difficult, and probably even impossible in the general
case. The task at least requires more information than what is
needed for the slots merely to function in a live image. The pro-
grammer has to provide information that will enable the slots to
function as the programmer intends (see Figure 24). To keep the
burden of specifying the extra information for the transporter as
light as possible, Ungar integrated it into the programming envi-
ronment in such a way that it would be easy for a programmer to
“push a button” and save a program as a source file that could
then be read in to another user’s heap of objects.

In June of 1994 the transporter was finished and the program-
ming environment was augmented with affordances for the extra
information. The Self team had moved its 40K lines of Self
code, comprising data and control structures, the user interface,
and the programming environment, to the Self transporter; in
other words, we were all (but Agesen) doing our Self program-
ming inside the graphical programming environment. The Self
team made a leap from programming in text editors to program-
ming in a live world, and then transporting the results to text
files for sharing with others. 

5.6. Significant Events While at Sun

The first Self release, 1.0, had occurred at the end of September
1990 and went to over 100 sites. The next release, 1.1, came at
the end of June 1991 and went to over 150 sites. It featured a
choice of compilers, and support for lightweight processes.
Released in August 1992, Self 2.0 featured the sender-path tie-
breaker and shared-part privacy rules. It also introduced full
source-level debugging of optimized code, adaptive optimiza-
tion to shorten compile pauses, lightweight threads within Self,
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support for dynamically linking foreign functions, support for
changing programs within Self, and the ability to run the experi-
mental Self graphical browser under OpenWindows. Self
Release 2.0 ran on Sun-3s and Sun-4s, but no longer had an opti-
mizing compiler for the Motorola 68000-based Sun-3 (and
therefore ran slower on the Sun-3 than previous releases). Self
3.0, featuring Hölzle’s adaptive optimization and the simplified
multiple inheritance and privacy rules, was released January 1,
1994. In 1995, we felt we had achieved a fully self-contained
system: we had an elegant language with a clever implementa-
tion unified with a novel user interface construction / program-
ming world. Having made the final determination of which
features to implement for the release by voting with hard candy
(see Figure 25), we released Self 4.0 into the larger world as a
beta in February 1995, and in final form July 1995. (See appen-
dix 11 for the actual release announcements.)

During this 1991-1995 period at Sun, we felt that Self was gain-
ing a following, especially within the academic community.
Craig Chambers and Ungar gave a tutorial at the 1992 OOPSLA
conference describing the various Self implementation tech-
niques that sold out. At the 1993 OOPSLA conference, a demo
of the Morphic framework and Self programming environment
proved so popular that we had to schedule a second, then a third
showing due to overflowing crowds. That same year, we pre-
sented the project to Sun CEO Scott McNealy, who enthused
about Self being “a spreadsheet for objects” but cautioned us
about “fighting a two-front war.”11

At one of the OOPSLA conferences in the late 1980’s, Ungar
had met Ole Lehrmann Madsen. Madsen, a former student of
Kristen Nygaard, was one of the designers of the Beta language
[MMN93], a professor at Århus University and the advisor of
Ole Agesen, Lars Bak, and Erik Ernst. Ungar recalls Madsen
proudly explaining how Beta supported virtual classes, and
Ungar pointing out that the same idiom just fell out of Self’s
semantics with no special support required. This may have been

the moment that kindled Madsen’s interest in Self. He later sent
us Agesen, Bak, and (intern) Ernst, and also spent a sabbatical
year with the project in 1994-1995. During his stay, he built a
structured editor for Self, and we all enjoyed many rewarding
discussions about the various approaches to object-oriented pro-
gramming. In 1995, Madsen invited the authors to present a
paper at the ECOOP conference, giving an overview of the sys-
tem, emphasizing the common motivational design threads run-
ning through Self’s language semantics, virtual machine, and
user interface [SU95]. 

We felt that Self might make a good medium for teaching and
learning about object-oriented programming, and in 1994-1995
we sponsored work with Brown University and the University
of Manchester to develop courses based on Self. In addition to
the paper publications, we felt that a videotape might be a good
way to present the Self story and in October of 1996 released
Self: the Video, a 21-minute tape describing the language seman-
tics and shows the user interface, including its shared space
aspect [StV96].

Also in 1996, Self alumnus Ole Agesen, who was working at
Sun Laboratories, built a system called Pep that ran Java atop
the Self virtual machine. It seemed, for a time, to be the world’s
fastest Java system, demonstrating the potential of Self’s imple-
mentation techniques for Java programs with a high frequency
of message sends [Age97].

When the Self project had joined Sun back in January of 1991,
we told the company that we expected to build a fully functional
programming environment in three to five years, with six to
eight people. Our manager, Jim Mitchell, had us draw up a
detailed project schedule. Three years later, we had delivered a
fully functional programming environment, user interface,
graphical construction kit, and virtual machine. Then, in Sep-
tember 1994, the project was cancelled, possibly in part as a
consequence of the company’s decision to go with Java. Self
was officially wrapped up by July 1995.

Ungar remained at Sun through the summer of 2006 and, aided
by Michael Abd-El-Malek and Adam Spitz, kept the Self system
alive, including ports to first the PowerPC and then the Intel x86

11. McNealy never explained what he meant about the two fronts. We
suspect he was thinking about asking users to learn both a new lan-
guage and a new user interface.

Figure 24. Annotations for transporting slots.The ovoid outlines have been added to show the module
and initialization information for two slots (named fileTable and infinity) in a Self object. 
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Macintoshes. It remains his vehicle of choice for condensing
ideas into artifacts. As of this writing, Self 4.3 is available from
http://research.sun.com/self.

6. Impact of the Self Project

6.1. The Language

We have always been enthusiastic about the cognitive benefits
of unifying state and behavior and of working with prototypes
instead of classes. At the 2006 OOPSLA conference, the origi-
nal Self paper [US87] received an award for being among the
three most influential papers published in the conference’s first
11 years (from 1985 through 1996). But, for most of the twenty
years since Self’s design, it was discouraging to see the lack of
adoption of our ideas. However, with help from our reviewers
(Kathleen Fisher in particular) and from Google (which owes
some of its success to Hölzle, a Self alumnus), we delightedly
discovered that some researchers and engineers working on por-
table digital assistants (PDAs), programming language research,
scripting languages, programming language theory, and auto-
matic program refactoring had been inspired by the linguistic
aspects of Self.

Before continuing, we must express our gratitude for all who
have put up informative web sites about prototype-based lan-
guages, including Ranier Blome [Blom] and Group F [GroF].

6.1.1. Programming Language Research

After he graduated and left the Self project in 1991, Craig
Chambers took a faculty position at the University of Washing-
ton, Seattle, where he created Cecil, a purely object-oriented
language intended to support rapid construction of high-quality,
extensible software [Cham92a, Cham]. Cecil combined multi-

methods with a classless object model and optional static type
checking. As in Self, Cecil’s instance variables were accessed
solely through messages, allowing instance variables to be
replaced or overridden by methods and vice versa. Cecil’s predi-
cate objects mechanism allowed an object to be classified auto-
matically based on its run-time (mutable) state. Cecil’s static
type system relied on types that specify the operations that an
object must support, while its dynamic dispatch system was
based on runtime inheritance links. For example, any object
copied from a “Set” prototype would inherit implementations of
“Set” operations such as union and intersection. But there might
also be a “Set” type, which promises that any object known at
compile time to be that type will implement union and intersec-
tion. In private conversations, Chambers has reported to Ungar
that his students often struggled with the distinction: when to
say “Set (type)” vs. “Set (prototype).” In Ungar’s opinion, this
illustration of the too-often-overlooked tension between a type
system’s expressiveness and its comprehensibility is an impor-
tant result.

The designer of Omega [Blas91] wanted to have an object
model similar to Self’s but did not want to lose the benefits of
static type checking. This language managed to unite the two, a
surprising feat at the time. 

The Self language even influenced a researcher who was deeply
embedded in another object-oriented culture, the Scandinavian
Beta language. Beta is a lineal descendant of Simula, the very
first object-oriented language, that features simple, unified
semantics based on a generalization of classes and methods
called patterns. Like classes, patterns function as templates and
must be instantiated before use. Beta allows a designer to model
a physical system and then just execute the model, a Beta pro-
gram [MMM90, MMN93]. In Ungar’s opinion, it is one of the
cleanest and most unfairly overlooked object-oriented program-

Figure 25. The Self group decides which features to implement in Self 4.0 by voting with candy (late 1994). Each member
distributed a pound of candy among various containers according to which features he desired most. We weighed the results
and ate the winners (and the losers, too). Left to right: Randall Smith, Robert Duvall (student intern), Bay-Wei Chang, Lars
Bak, John Maloney (seated), Ole Lehrmann Madsen (visiting professor), Urs Hölzle, Mario Wolczko, and David Ungar. Not
shown: Craig Chambers (who had graduated) and Ole Agesen.
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ming languages. Erik Ernst, then a graduate student in the Beta
group, spent part of a year interning with the Self project at Sun
Labs. After his return to Denmark, he invented gbeta, a superset
of Beta that, while still very much in the Beta spirit, added fea-
tures inspired by Self such as object metamorphosis and
dynamic inheritance that straddle the gap between compile- and
run-time [Ernst]:

In gbeta, object metamorphosis coexists with strict,
static type-checking: It is possible to take an existing
object and modify its structure until it is an instance of
a given class, which is possibly only known or even
constructed at run-time. Still, the static analysis
ensures that message-not-understood errors can never
occur at run-time...Like BETA, gbeta supports inherit-
ance hierarchies not only for classes but also for meth-
ods. This can be used together with dynamic
inheritance to build dynamic control structures...
[Erns99].

The authors designed but never built US, a language that incor-
porated subjectivity into Self’s computational model [SU94,
SU96]. An US message-send consisted of several implicit
receivers and dispatched on the Cartesian product, using rules
similar to Self’s existing multiple-inheritance resolution ones.
The extra implicit receivers could be used to represent versions,
preferences, or human agents on whose behalf an operation was
being performed. Ungar and Smith posited that subjectivity was
to object-oriented programming as object-oriented program-
ming was to procedural programming. In procedural program-
ming, the same function call always runs the same code; in
object-oriented programming there is one object’s worth of con-
text (the receiver) and this object determines which code will
run in response to a given message. In the US style of subjectiv-
ity, there are many objects’ worth of context that determine what
happens. Later on, others would coin the term “subject-oriented
programming” to describe systems that were somewhat similar
[HKKH96].

Slate combined prototypes with multiple dispatch [RS, SA05].
It strove to support a more dynamic object system than Cecil,
and thus could support subjectivity as in US without compro-
mising Self’s dynamism. Slate put different ideas together in
search of expressive power.

In contrast, Self inspired Antero Taivalsaari to simplify things
even further. His Kevo language eschewed Self-style inherit-
ance. Instead of sharing common state and behavior via special
parent links, each Kevo object (at the linguistic level) contained
all the state and behavior it could possibly exhibit [Tai93a,
Tai92, Tai93]. Kevo’s simplification of the runtime semantics of
inheritance (i.e., no inheritance!) cast the dual problem of pro-
gramming-time inheritance into sharp relief: Suppose a pro-
grammer needs to add a “union” method to every Set object. In
Self, one can add it to a common parent. In Kevo, there were
special operations to affect every object cloned from the same
prototype. But these seemed to be too sensitive to the past; the
operations relied on the cloning history, rather than whether an
object was supposed to be a Set. For us, the Kevo language clar-
ified the difference between the essential behavior needed to
compute with an object and the cognitive structures needed to
program (i.e., reflect upon) an object.

Getting back to something closer to Self, Jecel Assumpcao Jr.’s
Self/R (a.k.a. Merlin) combined a Self-style language with a
facility for low-level reflection in an effort to push the high-
level language down into the operating system [Assu].

Moostrap was another language that adopted a Self-style object
model as part of research into minimal languages based on
reflection. Its name stood for Mini Object-Oriented System
Towards Reflective Architectures for Programming [MC93,
Mule95]. 

Lisaac combined operating system research with programming
language research [SC02]. The authors designed a language
resembling Self with prototypes and dynamic inheritance and
added some ideas from Eiffel. This language used static compi-
lation and implemented an operating system; that is, it ran on
bare metal. Dynamic inheritance was used in the video drivers
and the file system.

SelfSync exploited the malleability of Self’s object model to
provide an interactive, bidirectional connection between an
graphical diagram editor and a world of live, running, objects
[PMH05]. It can be thought of as a visual programming lan-
guage perched atop the Self system:

SelfSync is a Round-Trip Engineering (RTE) environ-
ment built on top of the object-oriented prototype-
based language Self that integrates a graphical draw-
ing editor for EER12 diagrams. SelfSync realizes co-
evolution between ‘entities’ in an EER diagram and
Self ‘implementation objects.’ This is achieved by
adding an extra EER ‘view’ to the default view on
implementation objects in the model-view-controller
[sic] architecture of Self’s user interface. Both views
are connected and synchronized onto the level of
attributes and operations. [D’Hont]

Moving even further from the language design center of Self’s
creators, Self—though having no static type system whatso-
ever—inspired work on type systems for object-oriented lan-
guages. According to Stanford University professor John
Mitchell: “The paper [FHM94] develops a calculus of objects
and a type system for it. The paper uses a delegation-based
approach and refers to your work on Self. This paper first
appeared at the 1993 IEEE Symposium on Logic in Computer
Science, and came before many other papers on type systems
and object calculi. Abadi and Cardelli and many others also got
involved in the topic at various times.” 

6.1.2. Distributed Programming Research

When Self was designed in 1986, computers were far less inter-
connected than they are today, and consequently the challenges
of getting separate computers to work together have become far
more important than they were in the ‘80s. When researchers
tried to combine class-based objects and distributed program-
ming, they discovered a problem: if two Point objects are to
reside on separate computers, on which one should the Point
class reside? On the one hand, since an object relies on its class
to supply its behavior and interpretation, an object separated
from its class is going to run very slowly. On the other hand, if
the class data are replicated, then great effort must be expended
to reconcile the conceptual chasm between a single, malleable
class, and the reality of widespread replication of the class’s
contents. Along with the classless distributed system Emerald
[BHJ86], Self’s classless object model helped inspire research-
ers to consider such a model for a distributed system.

The closest such model to Self is probably dSelf [TK02], which
adopted Self’s syntax and object model, but let clones to reside
on different machines and allowed an object to delegate to (i.e.,
be a child of) a parent object on a different machine.

12.EER: extended entity-relationship.
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AmbientTalk was a classless distributed programming lan-
guage designed for ad-hoc networks [DB04, Deid] that does not
appear to have been directly influenced by Self.

Obliq, based on a prototype object model and dynamic typing,
exploited the key concept of lexical scoping to provide secure,
distributed, mobile computation [Card95].

6.1.3. Prototype Object Models for User Interface Lan-
guages and Toolkits

Self’s legacy from ARK included the desire to bridge the gap
between programming-level and graphical-level objects. In par-
ticular, prototypes seemed to be more concrete and easier to pic-
ture than classes. Perhaps that is why there have been some
notable efforts to use a prototype-based object model for GUI
languages and toolkits, including Amulet, which placed a proto-
type-based object model atop C++ to make it easier to build
graphical interfaces [MMM97]:

Amulet includes many features specifically designed
to make the creation of highly interactive, graphical,
direct manipulation user interfaces significantly eas-
ier, including a prototype-instance object model, con-
straints, high-level input handling including automatic
undo, built-in support for animation and gesture-rec-
ognition, and a full set of widgets. [Myer97] 

Amulet was a follow-on to Garnet, which also used a proto-
type-instance object system [MGD90]. Although the authors do
not tell us, this system may have been influenced by Self in that
there is no distinction between instances and classes, data and
methods are stored in “slots,” and slots that are not overridden
by a particular instance inherit their values.

6.1.4. Other Impacts of the Self Language

In the late 1980s, a team at Apple Computer created one of the
first commercial PDAs, the Apple Newton. Although the first
products were marred by unreliable handwriting recognition—
yes, the Newton aimed to recognize words the way one natu-
rally wrote them—soon the Newton became an amazing device.
It featured a simple intuitive interface with functionality that
could be easily extended. What made it easy to build new New-
ton applications was its programming language, NewtonScript,
a pure, object-oriented, dynamically typed language based on
prototypes [Smi95] whose designer, Walter Smith, has cited Self
as “one of the primary influences” [Smi94]. Like Self, Newton-
Script created objects by cloning and had prioritized, object-
based multiple inheritance. Unlike Self, slots were added to an
object when assigned to, and each object had exactly two par-
ents. Although the Newton was supplanted by the much smaller
and lighter (but less flexible) Palm Pilot, it seems likely that the
Newton was a key inspiration, so that Self was at least an indi-
rect inspiration in the rise of PDAs.

Scripting Languages. Back when we designed Self, computers
seemed to offer limitless power to those who could program
them; we wanted to make this power available to the largest
number of people, and thus we strove to lower programming’s
cognitive barrier. Since then, computers have become ever faster
and more widely used, trends that have created a niche for
scripting languages. These notations were designed to be easy to
learn and easy to use to customize systems such as web pages
and browsers, but were not intended for large tasks in which per-
formance was critical. In retrospect, it is not too surprising that
many scripting languages were devised with object models like
Self’s. The most popular of these by far seems to be JavaScript
[FS02], which from the start was built into a popular Web

browser and has since become a standard for adding behavior to
a Web page. JavaScript was based on a prototype model with
object-based inheritance. Unlike Self, slots were added to an
object upon assignment, reflective operations were not sepa-
rated, and many more facilities were built into the language.

In addition to JavaScript, other prototype-based scripting lan-
guages have sprung up:

• OScheme is a small embeddable Scheme-like interpreter
“that provides a prototype-based object model à la Self”
[Bair].

• Io is a small, prototype-based programming language
[Dek06]. More like Actors [Lieb86] than Self, its clones
start out empty and gain slots upon assignment.

• Glyphic Script was a small, portable, and practical develop-
ment environment and language that used both classes and
prototypes [SL93, SLST94]. An object could be created by
either instantiating a class or cloning an instance. 

• After GlypicScript, Lentczner developed Wheat, a proto-
type-based programming system for creating of internet pro-
grams [Len05]: “Wheat strives to make programming
dynamic web sites easy. It makes writing programs that span
machines on the internet easy. It makes collaborative pro-
gramming easy.” Wheat uses a tree object system instead of
a heap, and each object has a URL. Its programming envi-
ronment is a collaborative web site. Wheat’s design imagina-
tively melds object-oriented programming with distributed
web-based objects.

Refactoring. Self’s simplicity can be a boon to automatic pro-
gram manipulation tools. This simplicity may have encouraged
Ivan Moore, a University of Manchester student working for
Trevor Hopkins, to create Guru, a system that may well have
been the first to automatically reorganize inheritance hierarchies
to refactor programs while preserving their behavior [Moor,
Moo95, Moo96, Moo96a, MC96]. Subsequent refactoring tools
included the Refactoring Browser [RBJ97] for Smalltalk.
Although a refactoring tool for Self would be even easier than
for Smalltalk or Java, by the time refactoring tools became pop-
ular, the Self project was over.

6.1.5. Summary: Impact of Self Language

Self is still used by the authors, and Ungar has based his recent
research on metacircular virtual machines on it. In addition, it is
also in use by curious students from around the world and by a
few other dedicated souls. Jecel Assumpcao in Brazil maintains
an e-mail discussion list and a web site (there is one at Sun as
well) from which the latest release can be downloaded. Volun-
teers have ported it to various platforms, and several language
variants of Self have been designed. Still, the language cannot
be said to be in widespread use; as of 2006 we estimate perhaps
a dozen users on this planet.

Several pragmatic issues interfered with Self’s adoption in the
early 1990s: the system was perceived as being too memory-
hungry for its time, and too few people could afford the mem-
ory. Perhaps the worst problem was the challenge of delivering a
small application instead of a large snapshot. The Self group
was working on this when the project was cancelled in 1994:
Ole Agesen’s work on type inferencing [AU94] showed promise
in this area. Wolczko produced a standalone diff viewer that was
half the speed of C, started in 1 second, and was correct (as
opposed to the C version, which, according to Wolczko, was
not). Finally, Self did not run on the most popular personal oper-
ating system of the time, Windows, and the complexity of the
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virtual machine made a port seem like a daunting task for an
outsider.

Self demonstrated that an object-oriented programming lan-
guage need not rely on classes, that large programs could be
built in such a fashion, and that it was possible to achieve high
performance. These results helped free researchers to consider
prototype-based linguistic structures [Blas94, DMC92,
SLST94]. Of course, the languages in this section vary in their
treatment of semantic issues like privacy, copying, and the role
of inheritance. Yet all these languages have a model in which an
object is in an important sense self-contained.

6.2. Implementation Techniques

The optimization techniques introduced by the Self virtual
machine have served as a starting point for just about every
desktop- and server-based object-oriented virtual machine
today; for a nice survey, see [AFGH04]. The authors note that
“the industry has invested heavily in adaptive optimization tech-
nology” and state that the Self implementation’s “technical
highlights include polymorphic inline caches, on-stack-replace-
ment, dynamic deoptimization, selective compilation with mul-
tiple compilers, type prediction and splitting, and profile-
directed inlining integrated with adaptive recompilation.” Many
subsequent virtual machines rely on these techniques. The sur-
vey’s authors also mention Self’s invocation count mechanism
for triggering recompilation, and mention that the HotSpot
Server VM, the initial IBM mixed-mode interpreter system, and
the Intel Microprocessor Research Labs VM all used similar
techniques. They point out that Self’s technique of deferring
compilation of uncommon code has been adopted by the
HotSpot server VM and the Jikes RVM, and that Self’s dynamic
deoptimization technique that automatically reverts to deopti-
mized code for debugging “has been adopted by today’s leading
production Java virtual machines.”

In a slightly more exuberant tone, Doederlein comments about
the effect of (among other ideas) Self-style optimizations on
Java performance: “The advents of Java2 (JDK1.2.0+), Sun
HotSpot and IBM JDK, raised Java to previously undreamed-of
performance, and has caught many hackers by surprise...Profile-
based and Speculative JITs like HotSpot and IBM JDK are often
seen as the Holy Grail of Java performance. [Höl94] (Hölzle’s
dissertation on the Self VM) is the root of dynamic optimiza-
tion” [Doe03]. (Italicized text added by present authors.)

The most direct influence of Self’s VM technology was on
Sun’s HotSpot JVM, which is Sun’s Java desktop and server vir-
tual machine and is used by other computer manufacturers
including Apple Computer and Hewlett-Packard. It is an ironic
story: In the fall of 1994, when the Self project was cancelled,
two of Self’s people, Urs Hölzle and Lars Bak, left Sun to join a
startup, Animorphic Systems. (Hölzle took a faculty position at
UCSB and consulted at the startup; Bak was there full time.)
The startup built Strongtalk, an impressive Smalltalk system that
eventually included a virtual machine based on the Self virtual
machine code base (with many improvements) and featuring an
optional type system already designed by Animorphic’s Gilad
Bracha and David Griswold [BG93]. Meanwhile, another Self
alumnus, Ole Agesen at Sun Labs East, rewrote portions of
Sun’s original JVM to support exact garbage collection.13 On
the West Coast this project was nurtured by Mario Wolczko,
another Self alumnus, who had written the clever feedback-
mediated code to manage the Self garbage collector (see
section 5.1). For a while, the Exact VM, as it was called, was
Sun’s official JVM for Solaris. As Java became popular, Ani-
morphic also retargeted its Smalltalk virtual machine to run

Java. Around this time, Bak and Hölzle’s startup was acquired
by Sun for its Java implementation and their Strongtalk system
was left to languish. After the acquisition, Ungar (who had
stayed at Sun all this time) loaned himself to the newly acquired
group where he contributed the portability framework and the
SPARC interpreter for Java. This virtual machine became
HotSpot; HotSpot improved on Self by using an interpreter
instead of a simple compiler for initial code execution, but
retained the key techniques of adaptive optimization and
dynamic deoptimization. HotSpot eventually became Sun’s pri-
mary virtual machine, supplanting the Exact VM. So the Self
virtual machine essentially left the company, mutated some-
what, got reacquired, and now runs Java. 

A bit later, there was talk within Sun of pushing on the debug-
ging framework for Java. Smith, Wolczko, and others had the
thought that surely the underlying code that allowed runtime
method redefinition in the face of all those optimizations was
laying there dormant in Sun’s HotSpot VM. (Recall that the
HotSpot VM was originally created by modifying the Self VM.)
Wolczko put Mikhail Dmitriev, then a Sun Laboratories intern
(and later an employee) to work implementing method redefini-
tion. With a working prototype in hand, Smith and Wolczko
convinced the Sun Lab’s management to start the HotSwap
project to allow fix-and-continue debugging changes. This facil-
ity is now part of the standard Sun Java VM, where it is used
extensively for interactive profiling. According to Wolczko, this
feature remains one key advantage of the NetBeans environment
over its competition in 2006.

Other Java virtual machines have been inspired by the adaptive
optimization and on-stack replacement in Self, including IBM’s
Jalapeno (a.k.a. Jikes RVM) [BCFG99], [FQ03]. The JOEQ
JVM has also been inspired by some techniques from Self,
including what we called “deferred compilation of uncommon
cases” [Wha01]. Adaptive optimization has even been combined
with off-line profile information for Java [Krin03]. Although we
have not been able to find any published literature confirming
this, many believe that implementations of the .NET Common
Language Runtime exploit some of these techniques.

Dynamic optimization and deoptimization also found applica-
tions removed from language implementation: Dynamo
exploited adaptive optimization to automatically improve the
performance of a native instruction stream [BDB00], and Trans-
meta used dynamic code translation and optimization to host
x86 ISA programs on a lower-power microprocessor with a dif-
ferent architecture. Their code-morphing software may have
been partially inspired by HotSpot [DGBJ03]. In addition to the
Transmeta system, Apple computer’s Rosetta technology uses
similar techniques to run PowerPC programs on Intel x86-based
Macintosh computers [RRS99]. Moreover, as Ungar types these
very letters, he is running a PowerPC word processor,
FrameMaker, on an Intel-based MacBook Pro by using Sheep-
Shaver, a PowerPC emulator that exploits dynamic optimization
[Beau06].

6.3. Cartoon Animation in the User Interface

Eleven years after their key paper on cartoon animation for user
interfaces [CU93], Chang and Ungar won the second annual

13.Sun’s original “classic” JVM was not especially efficient, and relied
on a garbage collection scheme that could not collect all garbage; it
could be fooled into retaining vast amounts of space that were actu-
ally free. Such a scheme is called “conservative garbage collection”
and was developed as a compromise for C-like systems that lack full
runtime type information. This compromise was never essential for
Java.
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“Most Influential Paper” award for this work from the 2004
ACM Symposium on User Interface Software and Technology.
Some of the influenced work includes the following:

• When researchers started working on immersive, 3D user
interfaces, they built rapid prototyping environments. One
such was Alice [CPGB94], whose creators found that the
“same kind of ‘slow in/slow out’ animation techniques dem-
onstrated in the Self programming system... (were)
extremely useful in providing smooth state transitions of all
kinds (position, color, opacity).”

• InterViews was a user interface toolkit for X-11 in C++. As
part of the Prosodic Interfaces project, Thomas and Calder
[TC95] took the notion of cartoon animation of graphical
objects further, imbuing InterViews objects with elasticity
and inertia. They stressed that such techniques meshed natu-
rally with the goal of direct manipulation. In a subsequent
paper [TC01], they went further and actually measured the
effects of their animation techniques, showing them to be
“effective and enjoyable for users.” Thomas and Demczuk
used some of the same techniques to improve indirect
manipulation, showing that animation could help users do
alignment operations but that color and other effects were
even better. Thomas has even applied cartoon animation
techniques to a 3D collaborative virtual environment.

• Amulet [MMM97] incorporated an animation constraint
solver that automatically animated the effects of changes to
variables that denoted such things as positions and visibili-
ties.

• Microsoft has studied the benefits of motion blur on the leg-
ibility of fast-moving cursors [BCR03]. They settled on tem-
poral over-sampling. (We had seen this used in cartoons as
well; Smith had christened it “stutter motion blur” as
opposed to “streak motion blur.”)

Nowadays, although many aspects of cartoon animation can be
found on commercial desktops—just click on the yellow button
on your Macintosh OS X window to see squash and stretch—
other aspects such as anticipation and followthrough remain to
be exploited. OS X, though, does seem to have embraced the
idea of smooth transitions, and some Microsoft systems also
incorporate menus and text that fades in and out.

6.4. User Interface Frameworks

The principles of the Morphic UI have also been carried on into
other interface frameworks, including one for Ruby [Ling04].
After Self ended, Maloney carried the Morphic GUI system into
the Squeak version of Smalltalk [Mal01]. He followed the lay-
out-as-morph approach with the AlignmentMorph class and its
dozens of subclasses. Squeak’s current (2006) version of Mor-
phic has diverged from Smith’s original architecture in that each
morph includes a particular layout policy that is not a morph.
However, because the policy is associated with a visible object
rather than an often invisible AlignmentMorph, the newer
design might be considered closer to Morphic principles. The
AlignmentMorph class and its subclasses are used in the latest
version of Squeak, and informal discussions with Squeak users
give us a sense that the proper way to treat the GUI visual struc-
turing problem is still debated.

7. Looking Back
Now that the world has seen Self and we have received the ben-
efit of hindsight, we can comment on lessons learned and inter-
esting issues. 

7.1. Language

Minimalism. Ungar confesses, with some feelings of guilt, that
the pure vision of Self suffered at his own hands, as he yielded
to temptation and tried adding a few extra features here and
there. But how could the temptation to feature creep seduce
members of the Self team, who so vocally extol the principles of
uniformity and simplicity? Looking back, we think it arose from
the siren song of the well-stated example. Ungar had to learn the
hard way that smaller was better and that examples could be
deceptive. Early in the evolution of Self he made three such mis-
takes: prioritized multiple inheritance, the sender-path tie-
breaker rule, and method-holder-based privacy semantics.14

Each was motivated by a compelling example [CUCH91]. We
prioritized multiple parent slots to support a mix-in style of pro-
gramming. The sender-path tiebreaker rule allowed two disjoint
objects to be used as parents, for example a rectangle parent and
a tree-node parent for a VLSI cell object. The method-holder-
based privacy semantics allowed objects with the same parents
to be part of the same encapsulation domain, thereby supporting
binary operations in a way that Smalltalk could not [CUCH91].

But each feature also caused no end of confusion. The prioritiza-
tion of multiple parents implied that Self’s “resend” (call-next-
method) lookup had to be prepared to back up along parent links
to follow lower-priority paths. The resultant semantics took five
pages to write down, but we persevered. As mentioned in
section 4.2, after a year’s experience with the features, we found
that each of the members of the Self group had wasted no small
amount of time chasing “compiler bugs” that were merely their
unforeseen consequences. It became clear that the language had
strayed from its original path. Ironically, Ungar, who had once
coined the term “architect’s trap” for something similar in com-
puter architecture, fell right into what might be called “the lan-
guage designer’s trap.” He is waiting for the next one. At least in
computer architecture and language design, when features,
rules, or elaborations are motivated by particular examples, it is
a good bet that their addition will be a mistake. 

Prototypes and Classes. Prototypes are often presented as an
alternative to class-based language designs, so the subject of

14.In all fairness, recall that Smith was across the Atlantic at the time
and so, on the one hand, had nothing to do with these mistakes. On
the other hand, Ungar chides him that if he had not wandered off,
maybe such mistakes could have been avoided.
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Figure 26. As more features are embedded in the language, the
programmer gets to do more things immediately. But complex-
ity grows with each feature: how the fundamental language ele-
ments interact with one another must be defined, so complexity
growth can be combinatorial. Such complexity makes the basic
language harder to learn, and can make it harder to use by forc-
ing the programmer to make a choice among implementation
options that may have to be revisited later.
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prototypes vs. classes can serve as point of (usually good
natured) debate.

In a class-based system, any change (such as a new instance
variable) to a class affects new instances of a subclass. In Self, a
change to a prototype (such as a new slot) affects nothing other
than the prototype itself (and its subsequent direct copies).15 So
we implemented a “copy-down” mechanism in the environment
to share implementation information. It allowed the programmer
to add and remove slots to and from an entire hierarchy of proto-
types in a single operation. Functionality provided at the lan-
guage level in class-based systems rose to the programming
environment level in Self. In general, the simple object model in
Self meant that some functionality omitted from the language
went into the environment. Because the environment is built out
of Self objects, the copy-down policy can be changed by the
programmer. But such flexibility incurred a cost: there were two
interfaces for adding slots to objects, the simple language level
and the copying-down Self-object level. This loss of uniformity
could be confusing when writing a program that needs to add
slots to objects. Although we managed fine in Self, if Ungar
were to design a new language, he might be tempted to include
inheritance of structure in the language, although it would still
be based on prototypes. Smith remains unconvinced.

A brief examination of the emulation of classes in Self illumi-
nates both the nature of a prototype-based object model and the
tradeoff between implementing concepts in the language and in
the environment. To make a Self shared parent look more like a
class, one could create a “new” method in the shared parent.
This method could make a copy of some internal reference to a
prototype, and so would appear to be an instantiation device.

Figure 27 suggests how to make a Smalltalk class out of Self
objects. Mario Wolczko built a more complete implementation
of this, and showed [WAU96, Wol96] that it worked quite well:
he could read in Smalltalk source code and execute it as a Self
program. There are certain restrictions on the Smalltalk source
but, thanks to Self’s implementation technology, once the code
adaptively optimizes, the Self version of Smalltalk code gener-
ally ran faster than the Smalltalk version! General meta-object
issues in prototype-based languages were tackled by the Moos-
trap system [Mule95]. 

The world of Self objects and how they inherit from one another
results in a roughly hierarchal organization, with objects in the
middle of the hierarchy tending to act as repositories of shared
behavior. Such behavior repositories came to be called “traits”
objects.16 The use of traits is perhaps only one of many ways of
organizing the system, and may in fact have been a carryover
from the Self group’s Smalltalk experience. Interestingly, it is
likely that our old habits may not have done Self justice (as
observed in [DMC92]). Some alternative organizational
schemes might have avoided a problem with the traits: a traits
object cannot respond to many of the messages it defines in its
own slots! For example, the point traits object lacked x and y
slots and so could not respond to printString, since its
printString slot contained a method that in turn sent x and y
messages. We probably would have done better to put more
effort into exploring other organizations. When investigating a
new language, one’s old habits can lead one astray.

Another problem plaguing many prototype-based systems is that
of the corrupted prototype. Imagine copying the prototypical

15.Self prototypes are not really special objects, but are distinguished
only by the fact that, by convention, they are copied. Any copy of the
prototype would serve as a prototype equally well. Some other proto-
type-based systems took a different approach.

16.Do not confuse these traits objects with the construction written
about in the past few years [SDNB03]. These had nothing to do with
and predated by many years the more recent use of the word “traits”
in object-oriented language design.
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Figure 27. This figure suggests how Self objects might be composed to form Smalltalk-like class structures (demonstrated
more completely by Wolczko [Wol96]). He shows that, with some caveats, Smalltalk code can be read into a Self system,
parsed into Self objects, then executed with significant performance benefits, thanks to Self’s dynamically optimizing virtual
machine.

instantiation 
method

classVar1
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9-38



list, asking it to print, then finding it not empty as expected, but
already containing 18 objects left there by some previous pro-
gram! Self’s syntax makes the previous program’s mistake
somewhat easy: the difference between

list copy add: someObject.

and
list add: someObject.

is that the latter puts some object in the system’s prototypical
list. 

Addressing this problem led to some spirited debate within the
Self group. Should the programmer have the right to assume
anything about the prototypical list? It is, after all, just another
object. To the VM, yes, but to the programmer, it is quite a dis-
tinguished object. Our solution, though disturbing at some level,
was to introduce a copyRemoveAll method for our collections.
Use of this method guaranteed an empty list, yet it was clearly
only a partial solution. What if some program, now long gone,
accidentally uttered the expression:

Date currentYear: 1850

This would create trouble for any program that subsequently
assumed the current year was properly initialized in copies of
the Date object (unless it was running inside a time machine). 

As we have said many times by now, when designing Self we
sought to unify assignment and computation. This desire for
access/assignment symmetry could be interpreted as arising
from the sensory-motor level of experience. Lakoff and Johnson
put it very well [LJ87], although we had not read their work at
the time we designed Self: from the time we are children, expe-
rience and manipulation are inextricably intertwined; we best
experience an object when we can touch it, pick it up, turn it
over, push its buttons, even taste it. We believe that the notion of
a container is a fundamental intuition that humans share and that
by unifying assignment and computation in the same way as
access and computation, Self allows abstraction over container-
hood. Since all containers are inspected or filled by sending
messages, any object can pretend to be a container while
employing a different implementation.

Retrospective Thoughts on the Influence of Smalltalk. In writ-
ing this paper and looking over the principles of Smalltalk enu-
merated by Ingalls [Inga81], we realize that in most cases we
tried to take them even further than Smalltalk did. Table 2
shows, for each of Ingalls’ principles, the progression from
Smalltalk through ARK to Self.
 

Table 2: Ingalls’ Principles of Programming System Design

Principle Smalltalk ARK Self

Personal
Mastery

If a system is to serve the creative 
spirit, it must be entirely compre-
hensible to a single individual.

A primary goal of ARK was to 
make possible personal construc-
tion of alternate realities, increas-
ing comprehension by tangibly 
manifesting objects in the UI.

Concepts such as classes were 
removed to get a simpler lan-
guage.

Good 
Design

A system should be built with a 
minimum set of unchangeable 
parts; those parts should be as gen-
eral as possible; and all parts of 
the system should be held in a uni-
form framework.

ARK contains the world of Small-
talk objects, any of which could 
appear as a simulated tangible 
object with mass and velocity 
(e.g., it was possible to grab the 
number 17 and throw it into orbit 
around a simulated planet).

Even the few operations that
were hard-wired in Smalltalk,
such as integer addition, iden-
tity comparison, and basic con-
trol structures such as
“ifTrue:” are user-definable in
Self.

Objects A computer language should sup-
port the concept of “object” and 
provide a uniform means for refer-
ring to the objects in its universe.

In ARK, the uniform means for 
referring to the objects mentioned 
in this principle included object 
references used in Smalltalk, but 
ARK added something with its 
ability to represent any object 
inside an alternate reality. In other 
words, uniformity of object access 
was passed up into the UI as well.

 A Self object is self-sufficient; no 
class is needed to specify an 
object’s structure or behavior.

Storage
Manage-
ment

To be truly object-oriented, a com-
puter system must provide auto-
matic storage management.

Generational, nondisruptive gar-
bage collection for young objects 
and feedback-mediated mark-
sweep for old objects.
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Messages Computing should be viewed as 
an intrinsic capability of objects 
that can be uniformly invoked by 
sending messages.

ARK, as Self would later, replaced 
the notion of variable access with 
message sends. Hence it might be 
seen as taking this principle even 
further.

Smalltalk includes both message 
passing and variable access/
assignment in its expressions. Self 
expressions includes only message 
passing; “variables” are realized 
by pairs of accessor/assignment 
methods.

Uniform
Metaphor

A language should be designed 
around a powerful metaphor that 
can be uniformly applied in all 
areas.

ARK took the metaphor of object 
and message inherited from the 
underlying Smalltalk level and 
pushed it up into the UI, in that 
every object could be manipulated 
as a tangible object on the screen 
with physical attributes such as 
mass and velocity, suitable for a 
simulated world. 

Self includes no separate scoping 
rules, and reuses objects and 
inheritance instead of Smalltalk’s 
special-purpose system and 
method dictionaries.

Modularity No component in a complex sys-
tem should depend on the internal 
details of any other component.

Self followed Smalltalk in restrict-
ing base-level access to other 
objects to only message-passing. 
However, Smalltalk includes mes-
sages, inherited by every class, 
that allow one object to inspect the 
internals of another (e.g., 
“instanceVarableAt:”). Self 
improves on Smalltalk’s modular-
ity by separating this facility into a 
separate reflection protocol, 
implemented by mirror objects. 
This facility can be disabled by 
turning off the one virtual machine 
primitive that creates mirror 
objects. 

Classifica-
tion

A language must provide a means 
for classifying similar objects, and 
for adding new classes of objects 
on equal footing with the system’s 
kernel classes.

ARK did not pay much attention 
to classification issues. New kinds 
of objects could be made by add-
ing new state to some existing 
instance, but they were anony-
mous, so the user did not even 
have a name to go on. 
The Smalltalk categories used in 
the browser were also used in the 
Alternate Reality Kit’s “ware-
house” icon, which strove to make 
an instance of any class selected 
from the warehouse’s pop-up hier-
archical menu. 

Self has no classes. We did not 
find them essential, opting to sup-
ply such structure at higher levels 
in the system.

Polymor-
phism

A program should specify only the 
behavior of objects, not their rep-
resentation.

In Self, even the code “within” an 
object is isolated from the object’s 
representation.

Factoring Each independent component in a 
system should appear in only one 
place.

Self’s prototype model, which did 
not build inheritance of structure 
into the language, simplifies the 
specification of multiple inherit-
ance.

Table 2: Ingalls’ Principles of Programming System Design (Continued)

Principle Smalltalk ARK Self
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7.2. Implementation techniques

The efficacy of the Self VM in obtaining good performance for
a dynamic, purely object-oriented language came at a high price
in complexity and maintainability. One issue that has arisen
since the original optimization work has been the difficulty of
finding intermittent bugs in a system that adaptively optimizes
and replaces stack frames behind the user’s back. Since 1995,
the Self virtual machine has been maintained primarily by
Ungar in his spare time, so the priorities have shifted from prob-
ing the limits of performance to reducing maintenance time.
Consequently, when we run Self today, we disable on-stack
replacement.

Looking back, it’s clear that the optimizations devised for Self
were both the hardest part of the project, spanning many years
and several researchers, and also—despite their complexity—its
most widely adopted part of the project. This experience argues
for stubborn persistence on the part of researchers and a large
dose of patience on the part of research sponsors.

7.3. UI2 and Morphic

On the whole we were satisfied with much of UI2. While the
principles of live editing and structural reification helped create
the sense of working within a world of tangible yet malleable
objects, we could imagine going further. Several things inter-
fered with full realization of those goals.

Multiple views.  The very existence of the outliner as a separate
view of a morph object weakened the sense of directness we
were after. After all, when one wanted to add a slot to an object,
one had to work on a different display object, the object’s out-
liner. We never had the courage or time to go after some of the
wild ideas that would have made possible the unification of any
morph with its outliner. Ironically, Self’s first interface, UI1,
probably did better in this respect because it limited itself to pre-
senting only outliners.

Text and object. There is a fundamental clash between the use
of text and the use of direct manipulation. A word inherently
denotes something, an object does not necessarily denote any-
thing. That is, when you see the word “cow,” an image comes to
mind, an image totally different from the word “cow” itself. It is
in fact difficult to avoid the image: that is the way that words are
supposed to work. Words stand for things, but a physical object
does not necessarily stand for anything. Textual notation and
object manipulation are fundamentally from two different reali-
ties.

Text is used quite a bit in Self, and its denotational character
weakens the sense of direct encounter with objects. For exam-
ple, many tools in the user interface employed a “printString” to
denote an object. The programmer working with one of these
tools might encounter the text “list (3, 7, 9).” The programmer
might know that this denoted an object which could be viewed
“directly” with an outliner. But why bother? The textual string
often says all one needs to know. The programmer moves on,
satisfied perhaps, yet not particularly feeling as if they encoun-
tered the list itself. The mind-set in a denotational world is dif-
ferent from that in a direct object world, and use of text created a
different kind of experience. Issues of use and mention in direct
manipulation interfaces were discussed further [SUC92].

8. Conclusion
Shall machines serve humanity, or shall humanity serve
machines? People create artifacts that then turn around and
reshape their creators. These artifacts include thought systems
that can have profound effects, such as quantum mechanics, cal-
culus, and the scientific method. In our own field thought sys-
tems with somewhat less profound effects might include
FORTRAN and Excel. Some thought systems are themselves
meta-thought systems; that is, they are ways of thinking fol-
lowed when building other thought systems. Since they guide
the construction of other thought systems, their impact can be
especially great, and one must be especially careful when
designing such meta-thought systems.

We viewed Self as a meta-thought system that represented our
best effort to create a system for computer programming. The
story of its creation reveals our own ways of thinking and how
other meta-thought systems shaped us [US87, SU95]. We kept
the language simple, built a complicated virtual machine that
would run programs efficiently even if they were well-factored,
and built a user interface that harnessed people’s experience in
dealing with the real word to off load conscious tasks to precog-
nitive mental facilities. We did all of this in the hope that the
experience of building software with the Self system would help
people to unleash their own creative powers.

However, we found ourselves trying to do this in a commercial
environment. Free markets tend to favor giving customers what
they want, and few customers could then (or even now) under-
stand that they might want the sort of experience we were creat-
ing. 

Years later, the Self project remains the authors’ proudest pro-
fessional accomplishment. We feel that Self brought new ideas
to language, implementation, programming environment, and

Virtual 
Machine

A virtual machine specification 
establishes a framework for the 
application of technology.

Reactive
Principle

Every component accessible to the 
user should be able to present 
itself in a meaningful way for 
observation and manipulation.

One of the main goals of ARK 
was to make objects feel more 
real, more directly present. This 
can be seen as an attempt to (as in 
the original articulation of this 
principle) “show the object in a 
more meaningful way for observa-
tion and manipulation.”

The Morphic User Interface 
improved upon the Smalltalk-80 
UI. In Smalltalk, scroll bars and 
menus could not be graphically 
selected, only used. In Self’s Mor-
phic they can. (Of course, Self has 
the luxury of a more powerful 
platform.)

Table 2: Ingalls’ Principles of Programming System Design (Continued)

Principle Smalltalk ARK Self
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graphical interface design. The original paper [US87] has been
cited over 500 times, and (as previously mentioned) received an
award at the OOSPLA 2006 conference for among the three
most influential conference papers published during OOPSLA’s
first 11 years (1985 through 1996). Self shows how related prin-
ciples can be combined to create a pure, productive, and fun
experience for programmers and users.

So, what happened? Why isn’t your word processor written in
Self? While we have discussed the struggle of ideas that gave
birth to Self, we have not addressed the complex of forces that
lead to adoption (or not) of new technology. The implementation
techniques were readily adopted, whereas semantic notions such
as using prototypes, and many of the user interface ideas behind
Morphic, were not so widely adopted. We believe that, despite
the pragmatic reasons mentioned in section 6.1.5, this discrep-
ancy can better be explained by the relative invisibility of the
virtual machine. If there are dynamic compilation techniques
going on underneath their program, most users are unlikely to
know or care. But the user interface framework and the language
semantics demand that our users think a certain way, and we
failed to convince the world that our way to think might be bet-
ter. Did our fault lie in trying to enable a creative spirit that we
mistakenly thought lay nascent within everybody? Or are there
economic implications to the use of dynamic languages that
make them unrealistic? Many of us in the programming lan-
guage research community secretly wonder if language research
has become irrelevant to most of the world’s programmers,
despite the obvious truth that in many ways, computers remain
painful, opaque black boxes that at times seem intent on spread-
ing new kinds of digital pestilence. 

Almost two decades after the conception of Self, the imbalance
of power between man and machine seems little better. We are
still waiting for computers to begin to live up to their full prom-
ise of being a truly malleable and creative medium. We earnestly
hope that Self may inspire those who still seek to simplify pro-
gramming and to bring it into coherence with the way most peo-
ple think about the real world.

9. Epilogue: Where Are They Now?
After the Self project, the people involved followed disparate
paths. Smith, Ungar, and Wolczko stayed at Sun Laboratories.
Randy Smith used Morphic’s shared space aspects to start a
project studying distance learning. He also worked on realtime
collaboration support for Java, then researched user interfaces
techniques for information visualization. Randy now works on
trying to make it easier to understand and use sensor networks.
He continues to use Self for an occasional quick prototype,
especially when a live shared-space demo would be useful.

David Ungar has used Self in much of his research. With help
from Michael Abd-El Malek, the complex Self virtual machine
was ported to the Macintosh computer system. David also
worked on Sun’s HotSpot Java virtual machine, and until
recently was researching Klein, a meta-circular VM architecture
in Self for Self [USA05].

After a brief flirtation with binary translation, Mario Wolczko
worked on Sun’s ExactVM (a.k.a. Solaris Production Release of
Java 1.2 JVM), then managed the group that developed the
research prototype for Sun’s KVM, a Java VM for small
devices. Since then he has been working on architecture support
for Java, automatic storage reclamation, and objects, as well as
performance monitoring hardware for various SPARC micro-
processors at Sun Microsystems Laboratories.

Elgin Lee went to ParcPlace Systems, and now does legal con-
sulting.

Lars Bak left Sun to build a high performance virtual machine
for Smalltalk at the startup Animorphic Systems. The technol-
ogy was adapted to Java, and the Java HotSpot system was born.
Sun acquired the startup and Bak ended up leading the HotSpot
project until it successfully shipped in 1997. Next, Bak designed
a lean and mean Java virtual machine for mobile phones, com-
mercialized by Sun as CLDC HI. Bak left Sun again to pursue
even smaller virtual machines. The startup OOVM was founded
to create an always running Smalltalk platform for small embed-
ded devices. The platform had powerful reflective features
despite a memory footprint of 128KB. OOVM was acquired by
Esmertec AG.

After the Self project, Ole Agesen implemented a Java-to-Self
translator that, for a time, seemed to be the world’s fastest Java
system. Then he spearheaded a project at Sun incorporating
exact garbage collection into Sun’s original JVM; after that, he
went to VMware, working on efficient software implementa-
tions of x86 CPUs. Many of the implementation techniques suc-
cessful in dynamic languages can be reused for x86: it is really
just a different kind of bytecode (x86) that is translated. More
specifically, Ole has been on the team that designed and imple-
mented the SMP version of VMware; more recently, he has
worked on supporting 64-bit ISAs (x86-64).

Since graduating from Stanford, Craig Chambers has been a
professor at the University of Washington, where he worked on
language designs including Cecil, MultiJava, ArchJava, and
EML, and on optimizing compiler techniques primarily target-
ing object-oriented languages. The language designs were
inspired by Self’s high level of simplicity and uniformity, while
also incorporating features such as multiple dispatching and
polymorphic, modular static type checking. The optimizing
compiler research directly followed the Self optimizing dynamic
compiler research, in some cases exploring alternative tech-
niques such as link-time whole-program compilation as in the
Vortex compiler, and in other cases applying (staged) dynamic
compilation to languages such as C, as in the DyC project.

After Self, Bay-Wei Chang was at PARC for four years working
on document editing, annotating, and reading interfaces for web,
desktop, and mobile devices. For the past six years, Chang has
been at the research group at Google working on bits of every-
thing, including web characterization, mobile interfaces, e-mail
interfaces, web search interfaces and tools, and advertising
tools.

After Self, Urs Hölzle was at UCSB from 1994-99 as Assistant/
Associate Professor. During that time, he also worked part-time
with Lars Bak, first at Animorphic and then at Sun’s Java orga-
nization on what became Sun’s HotSpot JVM. Since 1999 Höl-
zle has been at Google in various roles (none involving dynamic
compilation to date!), first as search engine mechanic and later
as VP Engineering for search quality, hardware platforms, and
as VP of Operations.

From the Self group, John Maloney went to work for Alan Kay
for about six years, first at Apple’s Advanced Technology Group
and then at Walt Disney Imagineering R&D. (Alan Kay moved
the entire group from Apple to Disney.) While there, John
helped implement the Squeak Virtual Machine, notable because
the VM itself was written (and debugged) in Smalltalk, then
automatically translated into C code for faster execution. This
technique resulted in an extremely portable, stable, and plat-
form-independent virtual machine. Once they had the VM, John
re-implemented Morphic in Smalltalk with very few design
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changes from the Self version. The Morphic design has stood
the test of time and has enabled a rich set of applications in
Squeak, including the EToys programming system for children.
In October 2002, John moved to the Lifelong Kindergarten
Group at the MIT Media Lab, where he became the lead pro-
grammer for Scratch, a media-rich programming system for
kids. Scratch is built on top of Squeak and Morphic. Is it cur-
rently in beta testing at sites around the world and will become
publicly available in the summer of 2006.
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11. Appendix: Self Release Announcements

11.1. Self 2.0

What: Self 2.0 Release
From: hoelzle@Xenon.Stanford.EDU (Urs Hoelzle)
Date: 10 Aug 92 21:08:25 GMT

Announcing Self Release 2.0

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University is pleased to announce Release 2.0 of the
experimental object-oriented exploratory programming lan-
guage Self.

Release 2.0 introduces full source-level debugging of optimized
code, adaptive optimization to shorten compile pauses, light-
weight threads within Self, support for dynamically linking for-
eign functions, changing programs within Self, and the ability to
run the experimental Self graphical browser under OpenWin-
dows.

Designed for expressive power and malleability, Self combines
a pure, prototype-based object model with uniform access to
state and behavior. Unlike other languages, Self allows objects
to inherit state and to change their patterns of inheritance
dynamically. Self’s customizing compiler can generate very
efficient code compared to other dynamically-typed object-ori-
ented languages.

Self Release 2.0 runs on Sun-3’s and Sun-4’s, but no longer has
an optimizing compiler for the Sun-3 (and therefore runs slower
on the Sun-3 than previous releases).

This release is available free of charge and can be obtained via
anonymous ftp from self.stanford.edu. Unlike previous releases,
Release 2.0 includes all source code and is legally unencum-
bered (see the LICENSE file for legal information.) Also avail-
able for ftp are a number of papers published about Self.

Finally, there is a mail group for those interested in random ram-
blings about Self, self-interest@self.stanford.edu. Send mail to
self-request@self.stanford.edu to be added to it (please do not
send such requests to the mailing list itself!).

The Self Group at Sun Microsystems Laboratories, Inc. and
Stanford University

11.2. Self 3.0

From: hoelzle@Xenon.Stanford.EDU (Urs Hoelzle)
Subject: Announcing Self 3.0
Date: 28 Dec 93 22:19:34 GMT

ANNOUNCING Self 3.0

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University is pleased to announce Release 3.0 of the
experimental object-oriented programming language Self. This
release provides simple installation, and starts up with an inter-
active, animated tutorial. 

Designed for expressive power and malleability, Self combines
a pure, prototype-based object model with uniform access to
state and behavior. Unlike other languages, Self allows objects
to inherit state and to change their patterns of inheritance
dynamically. Self’s customizing compiler can generate very
efficient code compared to other dynamically-typed object-ori-
ented languages.

The latest release is more mature than the earlier releases: more
Self code has been written, debugging is easier, multiprocessing
is more robust, and more has been added to the experimental
graphical user interface which can now be used to develop code.
There is now a mechanism (still under development) for saving
objects in modules, and a source-level profiler.

The Self system is the result of an ongoing research project and
therefore is an experimental system. We believe, however, that
the system is stable enough to be used by a larger community,
giving people outside of the project a chance to explore Self.

2 This Release

This release is available free of charge and can be obtained via
anonymous ftp from Self.stanford.edu. Also available for ftp are
a number of published papers about Self. There is a mail group
for those interested in random ramblings about Self, Self-inter-
est@Self.stanford.edu. Send mail to self-request@self.stan-
ford.edu to be added to it (please do not send such requests to
the mailing list itself!). 

2.1 Implementation Status

Self currently runs on SPARC-based Sun workstations running
SunOS 4.1.x or Solaris 2.3. The Sun-3 implementation is no
longer provided.

2.2 Major Changes 

Below is a list of changes and enhancements that have been
made since the last release (2.0.1). Only the major changes are
included.

• The graphical browser has been extended to include editing
capabilities. All programming tasks may now be performed
through the graphical user interface (the “ui”). Type-ins
allow for expression evaluation, menus support slot editing,
and methods can be entered and edited. If you are familiar
with a previous version of the Self system, Section 14.1 of
the manual entitled “How to Use Self 3.0” contains a quick
introduction to the graphical user interface. The impatient
might want to read that first.

• A mechanism - the transporter - has been added to allow
arbitrary object graphs to be saved into files as Self source.
The system has been completely modularized to use the
transporter; every item of source now resides in a trans-
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porter-generated module. Transport-generated files have the
suffix .sm to distinguish them from “handwritten” files
(.Self), though this may change as we move away from
handwritten source. The transporter is usable but rough, we
are still working on it. 

• Every slot or object may now have an annotation describing
the purpose of the slot. In the current system, annotations are
strings used to categorize slots. We no longer categorize
slots using explicit category parent objects. Extra syntax is
provided to annotate objects and slots.

• A new profiler has been added, which can properly account
for the time spent in different processes and the run-time
system, and which presents a source-level profile including
type information (i.e., methods inherited by different objects
are not amalgamated in the profile, nor are calls to the same
method from different sites). It also presents a consistent
source-level view, abstracting from the various compiler
optimizations (such as inlining) which may confuse the pro-
grammer. 

• Privacy is not enforced, although the privacy syntax is still
accepted. The previous scheme was at once too restrictive
(in that there was no notion of “friend” objects) and too lax
(too many object had access to a private slot). We hope to
include a better scheme in the next release.

• The “new” compiler has been supplanted by the SIC (“sim-
ple inlining compiler”), and the standard configuration of the
system is to compile first with a fast non-optimizing com-
piler and to recompile later with the SIC. Pauses due to com-
pilation or recompilation are much smaller, and applications
usually run faster. 

• Characters are now single-byte strings. There is no separate
character traits. 

• Prioritized inheritance has been removed; the programmer
must now manually resolve conflicts. We found the priority
mechanism of limited use, and had the potential for obscure
errors.

2.4 Bug Reports 

Bug reports can be sent to self-bugs@self.stanford.edu. Please
include an exact description of the problem and a short Self pro-
gram reproducing the bug. 

2.5 Documentation 

This release comes with two manuals: 
How to Use Self 3.0 (SelfUserMan.ps) 
The Self Programmer’s Reference Manual (progRef.ps) 

Happy Holidays!

-- The Self Group

11.3. Self 4.0

Below is a redacted form of the Self 4.0 release announcement
made on July 10, 1995. The text we do include has not been
edited.

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University has made available Release 4.0 of the
experimental object-oriented programming language Self.

This release of Self 4.0 provides simple installation, and starts
up with an interactive, animated tutorial (a small piece of which
is shown below).

Self 4.0 is, in some sense, the culmination of the Self project,
which no longer officially exists at Sun. It allows novices to start
by running applications, smoothly progress to building user
interfaces by directly manipulating buttons, frames and the like,
progress further to altering scripts, and finally to ascend to the
heights of complete collaborative application development, all
without ever stumbling over high cognitive hurdles.

Its user interface framework features automatic continuous lay-
out, support for ubiquitous animation, direct-manipulation-
based construction, the ability to dissect any widget you can see,
and large, shared, two-dimensional spaces.

Its programming environment is based on an outliner metaphor,
and features rapid turnaround of programming changes. It
includes a plethora of tools for searching the system. Its debug-
ger supports in-place editing. A structure editor supports some
static type checking and helps visualize complex expressions.
Finally, the programming environment features the new trans-
porter, which eases the task of saving programs as source files.

Self 4.0 includes two applications: an experimental web
browser, and an experimental Smalltalk system.

Major Changes in Self 4.0. 

Below is a list of changes and enhancements that have been
made since the last release (4.0). Only the major changes are
included.

• This release contains an entirely new user interface and pro-
gramming environment which enables the programmer to
create and modify objects entirely within the environment,
then save the objects into files. You no longer have to edit
source files using an external editor. The environment
includes a graphical debugger, and tools for navigation
through the system.
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• Any Self window can be shared with other users on the net:
users each have their own cursor, and can act independently
to grab and manipulate objects simultaneously. A Self win-
dow is actually a framed view onto a vast two-dimensional
plane: users can move their frames across this surface, bring-
ing them together to work on the same set of objects, or
moving apart to work independently.

• A new version of the transporter, a facility for saving objects
structure into files, has been used to modularize the system.
The programming environment presents an interface to the
module system which allows for straightforward categoriza-
tion of objects and slots into modules, and the mostly-auto-
matic saving of modules into files. Handwritten source files
have almost completely disappeared.

• The environment has been constructed using a new, flexible
and extensible user interface construction kit, based on
“morphs.” Morphs are general-purpose user interface com-
ponents. An extensive collection of ready-built morphs is
provided in the system, together with facilities to inspect,
modify, and save them to files. We believe the morph-based
substrate provides an unprecedented degree of directness
and flexibility in user interface construction.

• An experimental Web browser has been written in Self and
is included in the release. This browser supports collabora-
tive net-surfing, and the buttons and pictures from Web
pages can easily be removed and embedded into applica-
tions.

• A Smalltalk system is included in Self 4.0. This system is
based on the GNU system classes, a translator that reads
Smalltalk files and translates them to Self, and a Smalltalk
user interface. The geometric mean of four medium-sized
benchmarks we have tried suggests that this system runs
Smalltalk programs 1.7 times faster than commercially
available Smalltalk on a SPARCstation.

• Significant engineering has been done on the Virtual
Machine to reduce the memory footprint and enhance mem-
ory management. For example, a 4.0 system containing a
comparable collection of objects to that in the 3.0 release
requires 40% less heap space. A SELF-level interface to the
memory system is now available that enables SELF code to
be notified when heap space is running low, and to expand
the heap.

• The privacy syntax has been removed; in the previous
release it was accepted but privacy was not enforced. The
concept of privacy still exists, and is visible in the user inter-
face, but is supported entirely through the annotation sys-
tem.

SELF currently runs on SPARC-based Sun workstations using
Solaris 2.3 or later, or SunOS 4.1.x. The compiler is an
improved version of the one used in 3.0.

System requirements. To run SELF you will need a SPARC-
based Sun computer or clone running SunOS 4.1.X or Solaris
2.3 or 2.4.

To use the programming environment you will need to run X
Windows version 11 or OpenWindows on an 8-bit or deeper
color display. The X server need not reside on the same host as
SELF.

The SELF system as distributed, with on-line tutorial, Web
browser and Smalltalk emulator, requires a machine with 48Mb
of RAM or more to run well.

The user interface makes substantial demands of the X server. A
graphics accelerator (such as a GX card) improves the respon-
siveness of the user interface significantly, and therefore we rec-
ommend that you use one if possible.

We hope that you enjoy using Self as much as we do.

-- The Self Group July 10, 1995

11.4. Self 4.3 (The latest release as of 2006)

The Power of Simplicity
Release 4.3

Adam Spitz, Alex Ausch, and David Ungar
Sun Microsystems Laboratories

June 30, 2006
Late-breaking news. Self now runs under Intel-based Macin-
toshes (as well as PowerPC-based and SPARC™-based sys-
tems), though it does not yet run on Windows or Linux.
Additionally, the original Self user interface (UI1) has been res-
urrected, although its cartoon-animation techniques have not yet
been incorporated into the default Self user interface (UI2). See
the included release notes for a full list of changes.

Downloading. If you want to run Self 4.3, download and unpack
one of the following:

• Self 4.3 for Mac OS X in compressed disk image format, or

• Self 4.3 for SPARC™ workstations from Sun Microsystems
running the Solaris™ operating system in tar/gzip format

See the release notes for directions on how to run Self. (We’re
hoping that the procedure is fairly self-explanatory, though. If
it’s not, please contact us!)

If you also want to work on the Self virtual machine (most users
will not want to do this), you will need to download one of the
above packages, and you will also need one of the following:

• Virtual machine and Self sources in compressed disk image
format, or

• Virtual machine and Self sources in tar/gzip format
What Self is. Self is a prototype-based dynamic object-oriented
programming language, environment, and virtual machine cen-
tered around the principles of simplicity, uniformity, concrete-
ness, and liveness. It was developed by the Self Group at Sun
Microsystems Laboratories, Inc. and Stanford University.

Although Self is no longer an official project at Sun Microsys-
tems Laboratories, we have seen many of Self’s innovations
adopted. The Morphic GUI framework has been incorporated
into Squeak, and the virtual machine ideas provided the initial
inspiration for the Java™ HotSpot™ performance engine. How-
ever, the language and especially the programming environment
still provide a unique experience.

We have decided to do a new release because we have ported the
virtual machine to the x86 architecture, so that it can run on the
new Intel-based Macintosh computers (Mac Mini, MacBook,
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iMac). The system is far from polished, but we have used Self
on Mac OS X to do many hours of work on G4 Powerbooks and
on the new Intel-based Macs.

Although our code is completely independent of theirs, we
would be remiss if we did not mention Gordon Cichon and
Harald Gliebe, who have also done an x86 port of Self. Their
port runs on both Linux and Windows (which ours does not, yet
- we would be thrilled if some kind soul were to port this latest
version of Self to either of those platforms).

We hope that you will enjoy the chance to experience a different
form of object-oriented programming.

Support. If you want to discuss Self with other interested peo-
ple, there is a mailing list at self-interest@egroups.com. We
would like to thank Jecel Assumpcao Jr. for investing the time
and effort to deeply understand the Self system, and furthermore
for his help in explaining Self to many folks on the Self mailing
list. Jecel also hosts the Self Swiki.

For information on the programming environment (essentially
unchanged for Self 4.3), please refer to the Web page on Self
4.0.

Supplemental Information. 

• An HTML version of the Self tutorial, `Prototype-Based
Application Construction Using Self 4.0’, courtesy of Steve
Dekorte. Thanks, Steve!

• In addition, see the Self bibliography for a listing of Self
papers with on-line abstract

Acknowledgments. 
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