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I. Introduction 

This paper presents an overview of the Cedar 
programming environment, focusing primarily on its overall 
structure: the major components of Cedar and the way they 
are organized. Cedar supports the development of programs 
written in a single programming language, also called Cedar. 
We will emphasize the extent to which the Cedar language, 
with runtime support, has influenced the organization, 
comprehensibility, and stability of Cedar. 

Produced in the Computer Science Laboratory (CSL) 
at the Xerox Palo Alto Research Center, Cedar is a research 
environment supporting the development and use of 
experimental programs, emphasizing office information and 
personal information management applications. Although 
it was clear that some unsolved problems would be 
addressed, the intent was to combine well-understood 
methods and technologies to exploit a new generation of 
high-performance personal computers, including the Xerox 
1132 (Dorado) and Xerox 1108 (Dandelion). 

The primary design objective of Cedar was to improve 
the productivity of experienced programmers in the 
production of experimental programs. An early require- 
ments document describes the specific capabilities needed 
to achieve this objective [12]. Several of the more important 
requirements concerning the system's structure included: 

• Concurrency. Although Cedar is a single-user system, 
it must nonetheless support the execution of 
concurrent applications. For instance, compilation, 
text editing, status displays, and background file 
updates should be able to proceed simultaneously. 

• Industrial strength. The system must include a large 
virtual address space, efficient and powerful facilities 
for the automatic management of storage, and a rich 
set of program development tools (editors, compilers, 
symbolic debuggers, version management control). 
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These facilities must be achieved without major 
performance penalties. 

• Integration. A prerequisite for the concurrent 
operation of independent applications is coexistence: 
the applications must be able to share the lowest-level 
resources such as memory, files, and the display screen 
without disturbing each other. But the structure of 
Cedar should also foster the sharing of higher-level 
components where possible, including cooperation 
among applications. (For instance, events to be 
remembered by an automated appointments calendar 
might be entered from event announcements received 
by electronic mail.) Finally, we wanted our user 
interface experiments to converge to a collection of 
widely-applicable user interface paradigms, presenting 
an integrated and consistent user view. A more 
detailed discussion of Cedar's integration mechanisms 
from a program developer's viewpoint appears in a 
companion paper in this proceedings [13]. 

This paper has two major parts. Section 2 provides a 
comprehensive (although not exhaustive) overview of the 
Cedar system, including the Cedar language and the 
system's components. Based on this description, Section 3 
discusses the overall structure of the system: its underlying 
philosophy, the design decisions that helped create it, and 
its points of similarity and difference from several other 
popular programming environments. Finally, we present 
some examples of how the structure of Cedar facilitates 
program development. 

2. Cedar Overview 

The organization of Cedar has benefited from the 
lessons of several rounds of implementation. Figure 1 
summarizes its overall structure, as a set of major divisions 
each comprising a set of layered components. Each 
component is built upon abstractions supplied by 
components at lower layers in the structure. The figure was 
designed to express the orderings and dependencies among 
the components; block areas imply neither the relative 
importance nor the relative sizes of the components they 
represent. 

The four major Cedar divisions are: the Cedar 
Machine-hardware, microcode, and primitives needed to 
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execute the language; the Nucleus-  the 
operating system kernel; Life Support- the basic 
facilities needed for program development; and 
Applications-packages and tools written by and 
for the Cedar user community. Underlying the 
entire system are the facilities of the Cedar 
language. This section begins with a description 
of the important features of the Cedar language. 
It then follows the organization of Figure 1 (from 
bottom to top) to present an overview of the 
four Cedar divisions, emphasizing the lower 
three. 

2.1 The Cedar Language 

The Cedar language, a descendant of Mesa 
[14, 23, 27], is a strongly-typed systems 
implementation language in the Pascal family. 
Mesa includes facilities for modularization and 
separate compilation (with full type-checking 
across module boundaries), lightweight processes 
and monitors, exception handling, and first-class 
procedure variables. Cedar extensions retain full 
type-checking while providing automatic storage 
management and facilities for delaying the 
binding of type information until runtime. In 
addition, Cedar provides immutable strings, as 
well as Lisp-like lists and atoms. We begin with 
a reminder of some important characteristics that 
Cedar shares with Mesa, and then we discuss 
the facilities unique to Cedar. 

Cedar features inherited from Mesa 
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A Cedar program consists of a set of 
separately-compiled modules. There are two 
kinds of modules: interface and program 
modules. Interface modules describe a set of 
types, procedures, and variables that together 
specify a related set of functions or a data 
abstraction. Interface modules are compiled into 
symbol tables that are used to enforce inter-module type 
checking, both at compile time and when modules are 
bound together to form a program. Program modules 
contain actual data declarations and executable statements. 
A program module that supplies the code for a public 
procedure or variable P exports an instance of P; this module 
is said to implement P. Other program modules that access 
P must import an interface describing P; these modules are 
clients of that interface. 

The configuration is another concept inherited from 
Mesa; it is a separate specification of how a set of modules 
should be combined to form a program. The import list of 
each component in a configuration must be satisfied by the 
interfaces exported from other included components, or by 
a list of interfaces imported by the configuration itself. A 
configuration can be constructed to export (make available 
outside the configuration) all or only some of the interfaces 
that are exported by its components. 
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Figure 1. The Structure of Cedar. 

Cedar Extensions 

The extensions that distinguish the Cedar language 
from Mesa provide automatic deallocation of dynamic 
storage (supported by reference counting and a garbage 
collector), delayed type binding via generic pointers, and a 
runtime type mechanism. 

Automatic storage deallocation. Cedar's storage management 
extensions provide safe storage. These changes eliminate 
the following two kinds of problems with Mesa's explicitly 
allocated and deallocated pointers to dynamic storage: 

• First, the programmer must deallocate a dynamic 
object at precisely the right time to avoid dangling 
references, in which an (invalid) pointer to an object 
remains after the object has been deallocated, and 
storage leaks, in which an object becomes inaccessible 
without being deallocated for re-use. 

• Second, invalid pointers can result from failure to 
initialize a pointer, incorrect pointer arithmetic, or 
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explicit violations of the type system through improper 
use of type coercions (LOOPHOLES). Using an invalid 
pointer to modify memory can destroy program or 
system data structures in ways that are difficult to 
track down. 

Automatic storage deaUocation solves the first problem, thus 
making the construction of experimental programs 
significantly more convenient. 

The  safe subset of the Cedar language, which includes 
the extensions described here and a carefully-selected subset 
of the original Mesa language, addresses the second 
problem. It has been formally demonstrated that even 
erroneous programs written in the safe subset maintain a 
set of invariants that ensure the integrity of the memory 
allocation structures, other system data, and all code [29]. 
The  unsafe features that remain outside the safe subset must 
occasionally be used, most often in the lower levels of the 
system. The additional syntax required to use them provides 
ample warning that the programmer is responsible for 
maintaining the invariants. 

References, a new class of pointer data types analogous 
to Pascal's or Mesa's POINTER types, provide the means for 
safe program access to collectible storage. A reference 
variable, called a REF, holds the address of a collectible 
object of a specified data type. The system automatically 
initializes REFs to NIL. The operator NEW allocates a new 
collectible object of a specified type, with optional 
initialization, and returns a reference to the new objec t. 
References may be freely replicated and discarded, by 
assignment or by procedure parameter binding; the system 
releases a region of collectible storage only when no valid 
references to it remain. For example, the declarations 

Node: TYPE = RECORD [leftSon, rightSon: REF Node, 
contents: CHAR]; 

root: REF Node; 

declare a new variable root to hold nodes of a binary tree 
of characters, while the statement 

root ~- NEW[Node 4- [NIL, NIL, 'A]]; 

allocates a new collectible object of type Node, initializes 
its value to the leaf "A", and stores a reference to the new 
object in root. 

Because unsafe constructs are sometimes needed to 
write low-level system code, the Cedar language has not 
eliminated them. However, their use is only permitted 
within clearly marked procedures or blocks. Unsafe 
language constructs include the unsafe type escape 
mechanism LOOPHOLE, the original Mesa POINTERs, and 
address arithmetic. Furthermore, assignments to 
REF-containing variant records are not permitted to change 
the tag (choice of variant) of the record. Because the system 
deallocates procedure activation records when the procedure 
returns (i.e., there are no retained frames), nested 
PROCEDURE values cannot be assigned to collectible storage 
or to a module's global storage. When necessary, the 
compiler also generates code to check for other conditions 
that could cause illegal memory references, including 
out-of-range assignments to numeric variables and array 
index bounds violations. 

The Cedar compiler verifies the programmer's 

adherence to the safe subset restrictions. Additional Cedar 
syntax controls the level of safety checking. Program blocks 
are specified by the programmer to be one of CHECKED, 
TRUSTED, and UNCHECKED. Within CHECKED blocks (the 
system default) only constructs in the safe subset are 
permitted; as a result, code in a CHECKED block can never 
be the direct cause of a memory smash. Use of unsafe 
features is allowed in TRUSTED and UNCHECKED blocks. 
By labelling a block TRUSTED, a programmer asserts that 
all uses of unsafe features within that block maintain the 
invariants; UNCHECKED blocks carry no such assertions. 
Further, a programmer specifies that a Cedar procedure is 
either SAFE or an UNSAFE; the body of a SAFE procedure 
must be either CHECKED or TRUSTED. CHECKED program 
blocks may call only SAFE procedures. 

Delayed type binding. Compile-time type specification, 
otherwise known as strong typing, can catch many common 
programming errors during compilation and also allows the 
compiler to produce efficient code. However, delaying type 
binding until runtime can provide important program 
flexibility, particularly during program development. For 
example, programming tools such as debuggers must be 
able to manipulate objects of any type. The original Mesa 
language offers very limited capabilities for delaying type 
binding: the choice among predeclared alternatives of a 
variant record may be made at runtime, and the lengths of 
sequences and descriptor-based strings and arrays may be 
specified at runtime. Additional type flexibility in Mesa 
can only be achieved through use of the unsafe type escape 
mechanism LOOPHOLE. Cedar extensions for delayed type 
binding include a generic reference type (REF ANY) and a 
runtime type system. 

A variable of type REF ANY can take on, through 
assignment or parameter passing, a value of type REF T for 
any type T. However, the actual type of the referenced 
object must be verified at runtime before the object can be 
examined or modified. Two runtime functions and some 
new syntax allow the use of REF ANY variables while 
retaining full compile-time type checking. 

The boolean form ISTYPE[X, T] is defined to return 
TRUE if and only if the actual type of the object x is equal 
to the type T. 

The type transfer form NARROW[x, T] has type T; it is 
defined to return x if and only if ISTYPE[x, T] = TRUE; 
otherwise it raises a runtime type error. The type T can be 
omitted if it is unambiguously determined by context. 

A special form of SELECT statement (similar to Pascal's 
case statement) has been defined to ease the use of REF 
ANY variables. The statement 

WITH v SELECT FROM 
vl: T1 => {(stmtlistt>}; 
v2:T2 = > {(stmtlist2>}; 

vn: Tn => {(stmtlistn>}; 
ENDCASE => { (stmtlistn÷ t> } ; -- assumes only that v has 

type REF A N Y  

is interpreted as if each arm were written as 

IF [STYPE[v, Td THEN {vi: Ti = NARROW[v]; (stratlisti>}. 

(Note: the braces "{}" are equivalent to BEGIN - END 
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brackets, and the ~'=" in vi's declaration makes its value 
immutable within that arm.) Because the object referenced 
by v is known to have a specific type in each arm, the arm's 
statements are permitted to examine or modify its fields. 

In addition to generic reference variables, Cedar also 
has generic procedure types. Procedures can be declared 
to take values of  type ANY as parameters, and/or return 
values of type ANY as results. Generic procedure values 
must be narrowed analogously to generic reference types 
before use. 

Generic reference types allow procedures to manipulate 
objects of prearranged varying types, but do not permit 
procedures to examine or modify objects of completely 
unspecified types-an  important capability for debuggers 
and other monitoring tools. To fulfill this need, Cedar 
provides a runtime type system to manipulate the runtime 
representations of types; a type tag is stored with each 
collectible object. In the current implementation, these 
functions are too slow to be a substitute for full 
polymorphism. 

Miscellaneous extensions. Finally, several other flexible data 
types based on REFS have been introduced into Cedar. 
Notable among them are variable-length immutable text 
strings (known as ROPEs), variable-length linked lists, and 
ATOMS. 

Cedar's list-processing facilities are similar to those in 
Lisp, except that (as with all other Cedar variables) the type 
of every list variable or expression is a compile-time constant 
(but may be REF ANY). For example, to declare a list of 
32-bit integers and set its value to the first six primes, one 
could write 

Iprimes: LIST OF INT; 

lprimes ~- LIST[l, 2, 3, 5, 7, 11]. 

Several operations are defined on lists. For any list 1 whose 
elements have type T, the value of l.first is an object of 
type T (basically Lisp CAR), and the value of l.rest is an 
object of type LIST OF T (basically Lisp CDR). The function 
CONS[e, 1] constructs a new list lnew with lnew.first = e 
and lnew.rest --- 1. 

Cedar's ATOMS are uniquely-addressed values much 
like Lisp atoms. They can be located by their client-assigned 
names, decorated with property lists, and compared for 
equality using a simple pointer test. 

2.2 The Cedar Machine 

All Cedar programming is done using the Cedar 
language; there are no assembly language routines. The 
machine hardware, microcode, and low-level runtime 
support combine to form a virtual machine well-suited to 
the efficient execution of Cedar programs. 

Hardware. The Cedar programming environment runs on 
the family of Xerox Scientific Workstations, which includes 
the Dorado and the Dandelion [18]. The Dorado [19] is a 
high-performance personal workstation with 16-bit words, a 
cached virtual memory with a large virtual address space 
(24 bits, word-addressed), and up to 32 megabytes of 
physical storage (typically two to eight megabytes). The 
writeable microstore allows customized instruction sets for 
different languages and environments. Input/output devices 
include a large (1024 x 808 pixels) high-resolution 

bitmapped black-and-white display, a keyboard, a mouse 
pointing device, and an Ethernet interface. A color display 
can be added. 

Cedar workstations operate in the Xerox Research 
Internet environment that includes database and file servers, 
shared printers, name authentication servers, and distributed 
electronic mail services [2, 7, 5, 26]. 

Microcode. The Cedar microcode implements an extension 
of the Mesa machine architecture [18], which was designed 
to execute AlgoHike languages efficiently. Two factors 
combine to produce exceptionally compact representations 
of programs: a stack machine architecture, which allows 
zero-address instructions, and variable length byte-coded 
instructions, whose encodings are based upon an analysis of 
static instruction frequencies in existing compiled Mesa 
programs [36]. A compact program representation not only 
saves storage space, but it also contributes to faster 
execution, largely due to increased locality and hence fewer 
cache misses and page faults. The architecture also supports 
arbitrary control transfer disciplines (such as coroutines): 
activation records are allocated from a heap rather than a 
stack. In addition, the architecture allows for concurrent 
execution of up to one thousand processes. The microcode 
provides linkages to compiled fault and exception handlers; 
extensions for Cedar in support of safe storage include 
reference-counted store instructions and additional 
exception handlers that intercept invalid storage references. 

Runtirae Support. Low-level routines and data structure 
definitions provide a Cedar language interface to the 
microcoded processor architecture, supporting procedure 
linkage, process switching, and runtime error handling. 
Although this component is not written in the safe language, 
its interfaces are asserted to be safe. 

2.3 The Nucleus 

The Cedar Nucleus contains the basic operating system 
facilities needed for memory management, process 
management, file system management, and communications 
with the user and the outside world. 

Device drivers. Cedar has borrowed from the Xerox Pilot 
system the notion of abstract device interfaces [30]. 
Corresponding implementations on each processor for each 
specific device type extend the virtual machine defined by 
the microcode to include the peripherals as well. For 
example, Cedar provides an interface abstractly defining the 
behavior of disk drives. The Disk component can be 
programmed in terms of this interface, without detailed 
knowledge of the peculiarities of each type of drive that the 
underlying implementations must support. 

Disk. The Disk component provides a uniform interface to 
the attached disk drives. It provides low-level facilities for 
investigating the state and configuration of each drive, and 
for performing page-level input/output operations between 
specified disk addresses and virtual memory locations. 
Clients of  the Disk component must ensure that virtual 
memory buffers have physical memory allocated to them. 

Virtual Memory. The Cedar virtual memory (VM) differs 
in philosophy from its most recent ancestor, Pilot [30]. Pilot 
was designed for processors that had relatively small physical 
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memories and disk capacities. This required a 
space-efficient but complex implementation based on 
mapping regions of virtual memory to named disk files. 
Cedar, intended for larger machines, has been able to 
abandon this approach in favor of a simpler, more 
time-efficient scheme. Cedar represents virtual memory as 
a single backing file, employing a resident page map. VM 
permits higher-level clients to ensure temporarily that a 
region of virtual memory has physical memory allocated to 
it, so that components at levels lower than VM can deal 
with memory through virtual addresses without incurring 
page faults. 

File input/output must be accomplished by explicit 
operations, rather than as VM mapping actions. The 
performance improvements, both for code swapping and 
for file access, have been significant. Perhaps more 
importantly, this design permits the virtual memory 
implementation to occupy a position quite low in the Cedar 
level structure; only the Cedar machine implementation and 
the VM implementation itself need to deal with physical 
memory addresses. Thus the majority of the Cedar system 
can operate in the virtual memory environment. 

Safe Storage. The safe storage extensions to the Cedar 
language are supported by the runtime type system 
mentioned in {}2.1, a storage allocator (implementing the 
NEW operator), and a combination of garbage collection 
techniques. The allocator stores a runtime type tag in each 
new object; these tags index runtime data structures that 
the garbage collectors use to locate embedded references. 
The garbage collection algorithms were derived from earlier 
designs by Deutsch and Bobrow [111. A full description of 
the revised algorithms appears in Rovner's recent paper [32]. 

An incremental garbage collector runs at frequent 
intervals, triggered by specified elapsed-time or memory 
utilization criteria. It operates as a background process. 
The incremental collector is able to reclaim most of the 
storage objects that are no longer referenced, using 
information obtained from reference counts and 
examination of current activation records. An optimization 
called the conservative scan reduces the execution time of 
the incremental garbage collector, but it can cause a few 
collectible objects to be retained. 

The incremental collector cannot detect cyclic data 
structures, such as those generated by two-way linked lists 
or certain queue implementations. Programs can explicitly 
break cycles when they determine that such data structures 
are no longer needed. In addition, a conventional, 
preemptive trace-and-sweep garbage collection algorithm has 
been included to reclaim such structures. The 
trace-and-sweep collector reclaims virtually all unreferenced 
storage (it also use~ the conservative scan), but monopolizes 
the machine for twenty seconds to several minutes during 
the process. Servers or other programs that need to remain 
available for long periods of time without danger of storage 
leakage can invoke it directly. Users may also invoke the 
trace-and-sweep collector manually. 

A package that creates objects of a given type can also 
specify finalization code to be executed when an object of 
that type becomes inaccessible outside the package. The 
finalization code is free to examine the object and perform 
any final operations such as removing the object from a 

cache, releasing a virtual memory buffer associated with the 
object, or breaking the circularity of a data structure to 
permit additional reclamations by the incremental collector. 

File. The local file system underlying Cedar is 
straightforward. It manages the configuration of one or 
more physical disk volumes and their subdivision into 
logical volumes. Within logical volumes, it manages the 
page-level allocation, deletion, reading, and writing of disk 
files. The file structuring methods borrow heavily from 
earlier Xerox systems [22, 30]. In particular, redundant 
information stored with each file page permits recovery if 
portions of files or directories are damaged. Only primitive 
locking facilities are provided, based on many-reader, 
one-writer write locks. 

The File component does not include a directory 
implementation, leaving that up to higher levels in the 
hierarchy. Instead, the file-creation procedures return 
unique identifiers that clients can use to locate the files 
later. Different clients may choose their own directory 
organizations for their files, but most choose to use the 
standard directory implementation. 

FS. The Cedar workstation file management and directory 
package supports the appearance of a uniform file naming 
space, spanning the user's local disk and the set of shared 
file servers available through the attached communications 
network. File names can represent two kinds of files: local 
files, where the only copy of the file resides on the 
workstation's disk; and attached files, where the file name 
is a symbolic path name to a remote file. Read-only copies 
of remote files are retrieved and cached as needed on the 
local disk. FS provides these facilities by maintaining two 
logical directories describing the contents of the local disk: 
the local file name directory and the remote file cache 
directory. 

The local file name directory provides a local, 
hierarchical name space for files. Arbitrary nested directory 
structures can be expressed as subdirectories of the single 
root directory. Entries in the local name directory may be 
either local files or attached files. Thus, a local name space 
that describes a complete system or set of  related tools can 
be created out of local and remote files. 

The remote file cache directory organizes the set of 
remote files for which local copies exist. Files may be 
referenced via local file name directory attachments or by 
using a full symbolic path name. Because files are only 
copied to the cache when they are needed, often only a 
small subset of the files indicated by attachments will 
actually be cached. Disk space is managed automatically 
by flushing least-recently-used remote file copies from the 
cache when additional space is needed. Cache entries refer 
to specific versions of remote files, by name and creation 
time. 

Our current file servers have limitations that prevent 
reading and writing of remote files from being treated 
entirely symmetrically. FS will not accept a request to open 
a remotely-named file for writing. Therefore the file must 
first be written locally, entering its name in the local 
directory. A special FS copy routine may then be invoked 
to create a new remote copy and replace the local directory 
reference with an attachment to the remote file. 
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!0. The IO interface defines generic procedures for t~reating 
and using streams of characters or words, including useful 
input scanning and output formatting routines. The Cedar 
IO package contains over a dozen specific implementations 
of streams supporting several sources and destinations, 
among them disk files, the keyboard and display, the 
Ethernet, and pipes (objects that provide the buffering and 
synchronization needed to connect an output stream from 
one process directly to the input stream of another [31]). 

It is easy to define specialized streams for specific 
applications. Programs that read and write streams can be 
coded without explicit knowledge of the source or 
destination medium. 

Communications. Network communications require 
substantial software support beyond the low-level device 
drivers. Cedar includes a complete implementation of the 
experimental "Pup" internetwork protocols described by 
Boggs et al in [5]. Lower levels of the Pup package provide 
a basic datagram (packet-level) service. Higher levels 
implement asynchronous terminal emulation, a file transfer 
protocol, a remote procedure call facility, and a range of 
information utilities, such as time and name lookup services. 

Of the higher-level protocols, the most important for 
new Cedar applications is the communications suppo?t for 
remote procedure calls (RPC). Ordinary calls to procedures 
through specified interfaces execute on remote machines, 
returning any results to the caller as usual. The 
implementation is based on stub routines that field the 
client's calls locally. A stub routine composes procedure 
parameters into data packets, handles the reliable 
communication of requests to the remote site, then removes 
any result values from incoming packets for return to the 
caller. Corresponding stub routines at the remote site 
reconstruct the parameters, complete the linkage to the 
actual procedure implementations, and compose the results 
into packets. The Cedar RPC package, described by Birrell 
and Nelson in [3], performs two functions: it automatically 
constructs both sets of stub routines from the interface 
definitions, and it provides the underlying algorithms that 
complete the calls reliably, efficiently, and securely (using 
optional DES encryption techniques). Cedar RPC builds 
its protocols directly on the datagram-level of the Pup 
package. 

To date, we have produced three major Cedar systems 
that use RPC for all their communications: a 
transaction-based file server, an experimental telephone 
service, and a "Compute Server". All three are described 
further in §2.5. Furthermore, implementations of RPC for 
other languages and programming environments are 
beginning to extend the range of services that Cedar 
applications can provide or use. 

Terminal Most Cedar applications are content with the 
higher-level display-management and user input facilities 
supplied by Viewers and TIP (§2.4). However, more radical 
applications may need to use the display screen or input 
devices in a conflicting way - t o  try out a new window 
package, for example. The Terminal interface provides a 
clean abstraction to the display, keyboard, and mouse. 
There may be several instances of Terminal, each with its 
own full-screen bitmap and optional color frame display 

memory. Operations are available to switch the use of the 
physical hardware (and thus the entire contents of the 
screen) among the Terminal instances. The standard Cedar 
screen is obtained through the use of just one Terminal 
instance; another is employed to drive a much simpler user 
interface while the system is being loaded. 

Running programs. At the "top" of the Nucleus are two 
final components. The Loader provides the capability to 
load additional components into a running Cedar 
environment. (The Nucleus is loaded and initialized using 
booting methods outside the scope of this paper.) The 
Checkpoint~Rollback component permits the user to save 
the present Cedar environment (that is, the contents of 
virtual memory) in a checkpoint file, as well as to restore 
("roll back") a machine to the state represented by such a 
file. It takes several minutes longer to initialize a Cedar 
system "'from scratch" than to roll back to a configuration 
into which the user has loaded a selected set of development 
tools and commonly-used applications. The Rollback has 
become the conventional way to restart Cedar. 

2.4 Life Support 

The Life Support division provides standard user 
interaction facilities such as a screen manager, a text editor, 
command and expression interpreters, and program 
development and management tools. Many of the Life 
Support components are quite large, providing functions 
directly to Cedar users or applications programmers; in this 
sense they resemble user applications or packages more than 
operating system components. They are given a division of 
their own because their functions are vital to providing a 
complete working environment for users, and because the 
standard Cedar initialization procedure automatically 
includes them. Components above the Life Support level 
are selected and included in the system by individual users. 

From this level on, it is relatively easy to experiment 
with alternative components, either by replacing existing 
components with variants, or simply by including the 
alternatives in private configurations and ignoring the 
system-provided components. A more complete discussion 
of these techniques appears in Sections 3.1 and 3.4. 

Useful Packages. During the implementation of Cedar, 
many generally useful packages have been produced. 
Examples include packages for sorting arbitrary values, for 
maintaining symbol tables, and for managing queues of 
user-invoked commands. These packages can be thought 
of as extensions of the basic "Cedar machine." As their 
numbers increase, they will make programming in Cedar 
increasingly convenient. 

Inscript and TIP Tables, The user communicates with Cedar 
by typing, by moving the mouse, and by clicking mouse 
buttons. The lnscript package buffers time-stamped 
versions of these input events. If an application has special 
high-performance user input requirements, such as the need 
to react in real time to the trajectory of the mouse-driven 
cursor, it can use the lnscript package directly and 
independently to extract the input events from the buffered 
stream. This works better than direct sampling of the 
hardware by individual applications, because the lnscript 
package collects and time-stamps the events using clocked 
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interrupts; it is therefore less likely that events will be 
missed or that confusion about the timing of events will 
occur. Each client of Inscript must determine which of the 
input events are intended for it and what their semantics 
are, ignoring those intended for other clients. 

Although the Inscript package can be used directly, 
most applications are satisfied to allow user actions to be 
interpreted by the Terminal Input Processor, or TIP. TIP 
interprets lnscript input events based on easy-to-write 
specifications called TIP tables. For each event or each 
event sequence (such as clicking a mouse button twice in 
succession or depressing a key for a long time), a TIP table 
entry specifies a procedure to carry out the semantics of  the 
event. Standard rules determine the choice of which TIP 
table to invoke for each event, as well as which screen 
region to include as a parameter to the procedure. 

A high-priority process called the notifier interprets 
input events according to the current set of TIP tables. A 
typical TIP procedure creates a new process to carry out 
the desired action~ then returns immediately so that the 
notifier can react to the next event. In this way, the user 
can initiate or control many concurrent applications; 
furthermore, programs can be written in a way that does 
not preempt the user's ability to choose from moment to 
moment which application to talk to. 

Default TIP tables define standard behavior for the 
basic Cedar user interfaces. Specialized TIP tables support 
the special input needs of advanced applications (such as 
drawing programs). User-specified TIP tables give the user 
some ability to custom-tailor any existing application. 

Abstract Machine. An original goal for Cedar was to 
combine a compiled, strongly-typed language with the 
interpretive symbolic power of lnterlisp or Smalltalk. The 
Abstract Machine is a step in this direction. Its facilities 
are all ultimately based on the symbol tables and program 
graphs that the compiler, binder, and program loaders 
produce. Its primary use at present is in support of ordinary 
Cedar applications that serve as interactive interpreters, 
debugging tools, performance monitoring, and other tools 
for presenting program data in a form sensible to users. 

The Abstract Machine (AM) implementation is based 
on the following concepts: 

• Runtime types. The unique type tags that label 
allocated objects are also used by all the abstract 
machine interfaces as runtime type values. 

• Program control. The AMEvents interface provides a 
set of low-level operations for setting breakpoints and 
for tracing program flow. 

• Type information. The AMTypes interface provides 
procedural access to the names and structure of data 
types, including a complete set of operations for 
analyzing the internal structure of composite types. 

• Value manipulation. Other AMTypes procedures 
permit examination and modification of runtime 
values. The association between the referents of REF 
variables and their type tags can be made safely and 
automatically by the system; for other values, the 
associations are "based on TRUSTED program 
assertions. These operations support interpretive 
programs that can operate on arbitrary data structures; 

they are always significantly more expensive than the 
corresponding compiled Cedar statements operating 
directly on the same objects. 

• Program and process structure information. The 
AMModel interface provides similar facilities for 
investigating program structure: the makeup of 
procedures in terms of their embedded blocks, of 
program modules in terms of their procedures, and of 
configurations in terms of their program modules and 
subconfigurations. A description of the loaded 
configurations and their associated global information 
within a running Cedar system is also available 
through AMModel. Using the AMProcess interface, 
one can enumerate the active processes, suspend or 
resume the operation of selected processes, and locate 
the top activation record for a given process. 

• Multiple virtual memory access. AM uses the 
WorldVM interface for all references to runtime values 
and to runtime program and process structures. 
WorldVM supports symbolic access to the local 
address space, to a worldswap environment (a 
restartable memory image saved on disk) or to a 
remote environment (accessed using network 
communications). The arms-length methods are 
infrequently used, but they are invaluable when the 
local methods fail (see §2.4). 

Imager. Cedar applications rely on the power and flexibility 
of high-resolution bitmapped display terminals. In earlier 
Xerox systems, system support for interactive graphics was 
limited to low-level bitmap operations, such as the RasterOp 
(BitBlt) function described by Newman and Sproull in [28]. 
While it is possible in Cedar to manipulate bitmaps directly, 
most applications instead use the Imager package, which 
provides support for the presentation of such graphical 
images as multiple-font text, lines, curves, closed outlines, 
and sampled images. These images can be scaled, rotated, 
translated, and clipped to arbitrary rectangular boundaries 
by providing the package with simple specifications. 
Programs can render images in a device-independent fashion 
on color or black and white display devices, or on a variety 
of laser printers. 

Viewers. Most applications are intended to be used in a 
cooperative fashion, sharing the display real estate with 
concurrent applications; they do this using viewers. Viewers 
are Cedar's display windows: rectangular regions whose 
positions and overall sizes are managed by the Viewers 
package, but whose contents are the business of the 
applications that create them. The Viewers package 
redisplays the contents of each viewer, based on 
client-supplied specifications, whenever its contents, size, or 
location changes. Viewers can also be "closed"; they then 
appear at the bottom of the screen as icons (small evocative 
pictures). It uses TIP tables to provide the connections 
between the user's input actions and the application-specific 
functions, serializing these actions when the user types faster 
than the actions can be performed. 

In actuality, there is a hierarchy of viewers. Within 
the top-level viewers we have been discussing here, one 
may nest subviewers-perhaps to provide a subwindow 
whose contents must be scrolled separately, a subwindow 
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whose contents is provided by some other application, or 
an area which must otherwise be managed differently from 
other information displayed in the viewer. Subviewers may 
be quite small. For example, the menu buttons that appear 
in each top-level viewer are represented as small subviewers. 

Top-level Cedar viewers never overlap, but instead 
occupy two adjacent columns, each sharing the available 
height with other viewers assigned to the same column. (If 
an auxiliary color display is available, a third column of 
viewers can appear on it.) Viewers can either allow their 
height to vary to share the available space equitably, or can 
insist on some fixed or minimum size that they must occupy. 
The user can override the assigned widths of the columns 
and the heights of individual viewers. This tiled design was 
implemented as an experiment whose objectives were to 
minimize user window scaling and positioning commands 
and to achieve high-performance screen updating; the 
underlying graphics facilities would also support the more 
common overlapping-window model. 

The Viewers package also serves as a point of 
integration for Cedar applications. Viewer instances are 
assigned to viewer classes. A viewer's class determines its 
display and user interface behavior. Programmers can create 
viewers as members of standard system classes, or can define 
their own viewer classes. A viewer can also be associated 
with a custom TIP table, and with other attachments that 
customize its operation. 

Tioga. Tioga is the tree-structured text editor used to create 
Cedar programs and formatted documents. Nodes, 
corresponding approximately to paragraphs, and their text 
content can be decorated with user-specified style and font 
information controlling their displayed and/or printed 
appearance. Tioga is a galley editor; it does not provide 
automatic support for page makeup. 

Tioga displays its files in text viewers, making extensive 
use of TIP tables to simplify the specification of the user 
interface. Tioga implements a simple postfix language in 
which its operations are expressed. This language specifies 
the meanings of the interactive editing operations, command 
abbreviations, and other prerecorded sequences of editing 
actions. 

Apart from its value for editing documents, Tioga is an 
important Cedar resource, since it can be used in any text 
viewer. This means that applications like command 
language interpreters and specialized display tools can 
employ Tioga's well-understood user interface and 
text-manipulation features. It also means that text and 
attributes can be freely copied among viewers. For example, 
one can record the results of a command in a file, or invoke 
a command by copying it from a "recipe-book" document, 
using only the mouse-driven text-editing operations of 
Tioga. 

Although Tioga does not understand Cedar syntax, we 
find that using Tioga as a program editor has several 
important benefits. First, viewing programs as formatted 
documents with common stylistic conventions makes them 
easier to read and share. Furthermore, Tioga's flexible 
search commands, combined with a small number of 
connections to the Cedar Abstract Machine, allow it to 
approach the usefulness of many special-purpose program 

development tools found in other current programming 
environments: 

• Simple pattern-matching allows Tioga's abbreviation 
expansion command to construct easily-filled-in 
templates for language constructs and procedure call 
parameters. Tioga's node structure and its level 
hierarchy allow the suppression of detail for a larger 
contextual view and the manipulation of entire 
constructs as units. These capabilities provide many 
of the advantages of modern syntax-directed editors 
[17, 37, 10]. 

• Tioga also performs the use-to-definition portion of 
the Masterscope functions in lnterlisp [39]. A selection 
of the form interface.item may be used to request a 
new viewer displaying the file that defines 
(implements) the item, scrolled to the item's definition. 
(If an implementation of interface has been loaded, 
AMModel functions are used to locate the 
implementation's file name; otherwise, Tioga makes a 
guess based on program naming conventions.) 
Unfortunately, mapping from an item's definition to 
its uses is beyond Tioga's capabilities; it would require 
the capabilities of Cedar system modelling, a 
partially-implemented extension to the DF Package 
(see §3.1). 

• The Blit debugger [8] constructs menus of 
currently-visible procedure, variable, and field names 
to ease user input. Tioga's client interface permits the 
Cedar debugger to show a breakpoint or error location 
as a highlighted region in a source file viewer; the 
user can thus see legal procedure and variable names 
in context. By using the ability to copy text freely 
among viewers, the user can copy desired names to 
the debugger area. 

Teitelman's Tour through Cedar [38] includes many 
examples of the various uses of Tioga and Viewers. Those 
interested in an expanded treatment of the lmager, Viewers, 
and Tioga are referred to [1]. 

Compiler, Binder, and Loader. The Cedar compiler verifies 
the correct use of data types both within modules and across 
module boundaries. In addition to machine code for each 
module, the compiler produces symbol tables and statement 
maps for use by the Abstract Machine. The binder, also a 
separate batch application, produces larger configurations 
of modules from individually-compiled modules and 
previously-bound configurations. It extends the compiler's 
strong type checking by ensuring that the names and time 
stamps of exported interfaces match those specified by the 
components that import them: Some of the binder's 
capabilities reappear in the Cedar loader program, which 
loads modules and bound configurations into a running 
system, resolving the remaining imported references. 

Command Tool. Cedar Life Support includes a conventional 
command interpreter in the form of a text viewer into which 
the user types commands and the system responds with 
results. The command syntax, an amalgam derived both 
from UNIX [6] and from earlier Xerox systems, includes 
provisions for redirecting command output to another 
destination (usually a file or a pipe to a process executing 
a concurrent command), and for accepting command input 
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from another source (also usually a file or a pipe). [UNIX 
is a registered trademark of AT&T Bell Laboratories.] 

The Command Tool provides a small number of  
built-in commands, primarily for running programs and for 
examining and manipulating local and remote file 
directories through the services of  FS (list, delete, copy, and 
the like). As applications are started, they may register 
additional commands with the Command Tool, supplying 
procedures that extend the set of  available operations. 
Commands are usually executed sequentially, or in a 
tightly-coupled fashion using pipes, but it is also possible 
to invoke a command such that it runs concurrently, using 
a separate viewer for its input and output activities. The 
user may also create more than one Command Tool, then 
issue commands in each that may run concurrently. 

Source-Level Debugging. The Abstract Machine and the 
Tioga editor form the basis for several standard tools that 
collectively provide interactive source-level debugging: an 
interpreter for expressions in the Cedar language, which can 
be called from a program or driven directly by the user (for 
instance, in response to a breakpoint); a tool for exhibiting 
the state of  all the running processes; commands for setting 
and clearing breakpoints in the compiled code; and so on. 
In addition, specialized diagnostic routines can be built for 
specific purposes, calling on the facilities of  the Abstract 
Machine. Debugging can be performed in any address 
space that the WorldVM interface can reach (local, 
worldswap, or remote Cedar systems). The non-local access 
methods can be used to debug a memory environment that 
has been too severely damaged to respond to debugging 
commands, or to debug Nucleus components. 

Version Management. The DF Package plays an important 
role in managing the thousands of  files comprising the 
Cedar system, as well as managing personal files. A DF 
file describes a package or program by listing the file names 
of  its components, fully qualified with their network 
locations and create dates. The DF Package operates on 
DF files to retrieve (establish attachments in the local file 
name directory) the files listed in a DF file from their 
remote file servers; to store changed versions of  the files on 
remote file servers and update the DF file to refer to the 
new files; and to verify that a DF file specifies all of  the 
files (with correct versions) that are needed to construct the 
package. In addition to the list of  files comprising a package, 
a DF file may specify files to be imported from other DF 
files. These files, while not part of  the package, are required 
by it; the DF Package will retrieve them as well. Thus a 
DF file can specify all of  the files needed to compile, bind, 
and test a package it describes. DF files are also suitable 
for describing versions of  any item consisting of  a collection 
o f  files, such as the sections and figures o f  a paper. 

The concepts underlying DF files have been extended 
to serve as a full description of  a running program. These 
system models can form the basis for recompilation, runtime 
module replacement, and answers to queries about a 
program's structure (similar to Lisp's Masterscope) [33, 21]. 
A variant of  the DF Package has also been adapted for use 
in the Xerox Development Environment (XDE) [35]. 

2.5 Applications 

By now it should be clear that any distinction between 
"the system" and "the applications" is a matter o f  
convenience, as is the assignment of  components to 
particular levels, Components that are originally developed 
as applications are often evaluated, modified, and 
incorporated into lower levels, usually into the Life Support 
division. Others are more clearly user programs providing 
explicit functions supporting specialized needs. Space 
would not permit the complete enumeration of  the Cedar 
applications produced to date, even if we knew what they 
were. Here we catalog a set of  applications that are 
representative of  the range of  activities Cedar can support. 

Cedar includes a number of  database-related 
applications. Alpine is a transaction-based network file 
service, written in Cedar, and running on a dedicated 
Dorado [7] .  Cypress is an entity-relationship database 
package that runs in a user's workstation but stores its 
database on Alpine servers [9] .  Walnut is an electronic 
mail system that operates in conjunction with the Grapevine 
message transport mechanism [2], using Cypress and Alpine 
to manage each user's messages. Whiteboards turns a viewer 
into an electronic "blackboard", where subviewers of  various 
kinds (text, iconic viewers, graphic viewers) can be arranged 
by the user. 

Cedar applications in the area of  computer graphics 
include a program for producing full-page color illustrations 
(Griffin), a system for manipulating three-dimensional 
synthesized graphical objects (SolidViews), programs for 
processing scanned images, and programs for driving 
experimental printers [1]. 

In the communications area, the Etherphone system 
includes a server and individual workstation programs 
supporting an experimental telephone and voice recording 
system that uses Ethernet communications to transmit voice 
[34]. The Compute Server is a framework, built upon RPC, 
that coordinates the assignment and execution of  computing 
tasks to processors with available compute cycles [16]. 

An assortment of  other Cedar-based applications exist. 
Hardware designers have produced a suite of  VLSI design, 
simulation, and analysis tools in Cedar. The Spy (a 
descendant of  the Mesa Spy [25]) is a tool that monitors 
CPU usage, memory allocation, or page fault performance. 
Celtics is an interactive execution-trace tool. 

The sources for the current version of  Cedar (Cedar 
6.0) occupy more than 17 million bytes of  disk storage. 
There are over 1500 program source files, more than 400,000 
lines of  source code, approximately 150 DF files, and over 
100 separate configurations. This enumeration includes Life 
Support and the most common applications. Although 
Cedar continues to grow, the tools for managing its size and 
complexity seem to be keeping up. 

3. Di scuss ion  

Cedar, as an operating system and as a programming 
environment, is the direct descendant o f  earlier Xerox 
systems. The progression began with a simple system for 
the Alto, using the BCPL language and basing its structure 
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on the notion of an open architecture [22]. When the Mesa 
language was developed for the Alto, its implementors also 
produced a faithful rendering of the Alto/BCPL system 
components, without extending its concepts. The next major 
development was the Mesa-based Pilot operating system 
[30] and its associated Tajo programming environment [35, 
40], designed for use with a second generation of 
workstations that included memory mapping and larger 
physical memories. 

Early versions of Cedar were built on a Pilot base, 
adopting a number of important ideas from more 
traditionally interactive language systems, notably Interlisp 
and Smalltalk, in order to achieve some of the Cedar 
objectives. Later revisions have benefited not only from 
observations of shortcomings in the earlier attempts, but 
also from approaches found in the Xerox Development 
Environment (XDE). XDE is a product, marketed by the 
Xerox Office Systems Division, that has been developed as 
an extension to the Pilot/Tajo system. 

Cedar has also borrowed from more conventional 
current operating systems, among them UNIX. But there 
are also some significant differences, leading to markedly 
different methods for achieving some desirable properties. 
In fact, neither Cedar nor any of the systems with which 
we can most usefully compare it (Interlisp-D, Smalltalk-80, 
UNIX) achieve all these properties equally well. 

In the overview we described the major components of 
Cedar, choosing an order that progressed from the low-level 
"virtual machine" capabilities to the more important user 
applications. Here we concentrate on the overall structure 
of the system: what it is, why it is that way, and what 
facilities have been provided in the language and in the 
environment to support the development of programs. We 
will address this issue through a discussion of the following 
topics: 

• Structuring Methods: The approach that was used to 
structure the components of Cedar-language 
attributes, memory management components, and 
structuring philosophies that were used to achieve the 
system objectives. 

• Structural Choices: A discussion of the careful design 
decisions that led to the ordering of components 
within Cedar. 

• Comparisons." Areas of similarity and difference 
between the architectures of Cedar and selected other 
programming environments, identifying valuable 
features that should be considered for inclusion in 
future Cedar systems. 

• Program Development Methods: A brief discussion of 
the effects of Cedar's structure upon program 
development. 

3.1 Structuring Methods 

The influence of  ,41to/BCPL: an open system approach 

Much of the design philosophy of Cedar can be traced 
back to the BCPL-based system designed in the mid-1970's 
for the Alto personal computer. The designers of the 
Alto/BCPL system called it an open system, contrasting it 
with conventional multi-user operating systems, which they 

termed closed [221. 
A closed system, as defined in the Alto/BCPL report, 

has hardware memory protection, generally in the form of 
hardware support for separate address spaces for the 
operating system routines and for each user application. 
The operating system provides user programs with special' 
methods for invoking a fixed set of operations. The routines 
used to provide these operations, unless they are also 
explicitly exported as system operations, are not available 
directly to client programs. 

The Cedar open operating system is essentially a 
collection of program modules (containing sets of related 
procedures) sharing the machine's single address space. The 
important aspects of this open approach are: 

• Operating system routines can be called as ordinary 
Cedar procedures. There is no sharp boundary 
between client programs and system routines. 

• The components of Cedar are carefully arranged into 
layers. Higher-level layers are built on the capabilities 
of lower-level ones. 

• The components in one layer may only call procedures 
located in the same or lower layers. This restriction 
is unfortunately enforced only by convention, 
although violations often result in system errors. (In 
the Alto system, it was possible to free the memory 
occupied by unneeded higher-level layers for other 
uses; inadvertent upward calls had disastrous results. 
In Cedar, disabling failures can occur due to the order 
in which components are loaded or initialized.) 

• This structure differs from the virtual machine concept, 
in which each level of a system is:implemented entirely 
in terms of the abstractions provided by the next-lower 
one. The difference is that, in open systems such as 
Cedar, the lower-level modules remain directly 
available to clients at all higher levels. An application 
can generally choose to use components at any level 
or to replace them with custom-built components 
(which can still use the standard lower-level 
components). 

The influence of  Mesa: strong typing and interfaces 

Alto/13CPL was a useful open system, but it had many 
shortcomings. BCPL is a typeless language that provides 
many opportunities for errors that the type systems of Mesa 
(and thus Cedar) would prevent. Mesa's strong type 
checking has demonstrably improved the reliability and the 
ease of development of programs produced for Xerox 
processors [141. 

Mesa's interfaces are very useful in describing and 
delimiting the capabilities supplied by a particular system 
component. Further, configurations provide a concrete way 
to describe components within the language and to identify 
the interfaces that each component implements. With 
configurations, one can also use private copies of standard 
system components, possibly binding them to different 
versions of the interfaces they import, without fear of the 
name conflicts or undetected binding errors that made this 
kind of thing risky in the Alto/BCPL world. As we will 
see in §3.4, tools such as Tioga and Viewers can even be 
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used to develop their successors, by judicious use of  the 
configuration language. 

Mesa's interfaces and configurations do not provide a 
complete descriptive tool for the structure of Cedar. Export 
lists identify the public and private interfaces of  a 
component, but there is no provision for enforcing the 
restriction against upward calls. The prototype system 
modelling language of Lampson and Schmidt [21] is a more 
powerful specification tool for defining system structure 
than is the existing configuration language, but it would 
also need to be extended in order to make the layered 
structure and its corresponding constraints explicit. This is 
a topic for additional research. 

Mesa processes, protected by monitors [20], may 
preempt each other at any time, permitting rapid service 
for high-priority processes and for time-slice scheduling 
algorithms. These lightweight preemptive processes account 
in large measure for the success of the multi-tasking 
capabilities of both XDE and Cedar. 

The influence of Smalltalk and lnterlisp: safe storage 

Cedar's primary contribution to the evolution of this 
family of open systems is safe storage. None of its 
predecessors are immune to the catastrophic damage or 
eventually-fatal storage leaks that result from improper 
pointer management-  the kinds of unrecoverable mishaps 
that traditional "'closed" systems were designed to protect 
against. Where traditional systems confine such damage to 
the process or job that causes it, Cedar's aim is to prevent 
the damage entirely, through its combination of 
compile-time and runtime tes ts-a  technique that is known 
to work well in lnterlisp and Smailtalk implementations. 
Admittedly, storage leaks, while infrequent, can still occur 
in the safe subs~*, of Cedar between invocations of the 
trace-and-sweep garbage collector (due to the inability of  
the incremental garbage collector to reclaim cyclic 
structures), and occasionally because of the conservative 
scan optimization. 

Many applications have now been developed using only 
Cedar's safe subset. These programs required far  less 
diligence and attention to the details of memory 
management than their earlier counterparts did. 
Furthermore, algorithms that make heavy use of storage 
allocation tend to be significantly shorter and easier to read. 

In addition to the direct protection benefits of safe 
storage, we have been pleased by some additional 
flexibilities that automatic storage management permits. In 
systems without garbage collection one must deal with the 
ownership of objects, especially parameters to procedures. 
For example, a routine that prints text ROPEs might be 
supplied either with a fixed value, whose storage should not 
be released since it will be used repeatedly, or with a 
constructed value, whose lifetime need not extend beyond 
the completion of the printing routine. The client must 
either surround the call with allocation-management 
statements, or must somehow charge the printing routine 
with the responsibility for managing the disposition of the 
parameter's storage; either method is clumsy. 

Cedar ROPEs are arbitrary-length but immutable text 
strings whose convenient operations and efficiency have led 
to their widespread use at all levels of the system. ROPEs 

could not have been implemented without automatic storage 
management. 

One way for a high-level client procedure to thwart the 
policy forbidding direct upward calls is to supply a 
procedure value as the parameter to a lower-level service 
procedure. If  the supplied procedure is to be called during 
the execution of the service procedure (perhaps defining an 
action to be performed for every element produced by a 
generic enumeration procedure), it is known as a call-back 
procedure. Often it is useful to nest the call-back procedure 
definition within the client procedure, so that it may 
examine or alter the state of the original client. If the 
service procedure stores away the supplied procedure for 
later invocation when specified conditions arise, the supplied 
procedure is known as a registered procedure (these cannot 
be nested, since the client may return before they are 
invoked). Since the client supplies the procedure, there is 
a reasonable guarantee that the higher-level component 
exists and is initialized. Good examples of registered 
procedures are the routines that extend the set of operations 
available to the Command Tool. 

It is not immediately obvious, but automatically- 
managed storage increases the value and safety of call-back 
and registered procedures, because it provides additional 
flexibility in the kinds of values that can be exchanged 
through these procedures. In systems without safe storage, 
concern over the lifetime of explicitly-managed storage 
objects has led to restrictions on the use of procedure 
variables in system calls. In closed systems, difficulties in 
establishing the proper memory environment generally 
prohibit the use of either registration or call-back 
procedures. 

in Cedar, the storage management operations are 
atomic with respect to all but the highest-priority processes 
(which are not permitted to invoke these operations). Thus, 
the powerful preemptive-process capabilities of Mesa have 
been preserved in Cedar without threatening the safety 
guarantees. 

3.2 Structural Choices 

Every major revision of Cedar has included careful 
attention to the layered structure of its components. Each 
time, new attempts were made to produce a clean, sensible 
organization satisfying a number of potentially-conflicting 
objectives: 

• The components located lowest in the structure should 
have the fewest dependencies on other components, 
so that there need not be violations of  the policies 
prohibiting calls to higher levels. 

• For the same reason, there should be no "loops" 
(mutual dependencies) among components. 

• The components located lowest in the structure should 
provide the most important and widely-used system 
functions. 

• Subject to the above objectives, components should 
occupy positions as high in the structure as possible. 
This makes them easier to develop and maintain, and 
allows them to use more of the system's capabilities. 

Ideally, then, the components with the fewest dependencies 
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must also be the most widely-needed ones in order to avoid 
conflicts in meeting these goals, in recent versions of Cedar 
(beginning with Cedar 5.0), these objectives appear to have 
been met particularly well. The main reason for this is that 
Cedar 5.0 included a rewrite of the virtual memory, disk, 
file, and directory packages that eliminated many of the 
undesirable dependencies. Cedar 5.0 and its successors also 
make heavier use of registered procedures, which permit 
upward calls to higher-level components when necessary. 
Non-critical parts of programs can then reside at a higher 
level. 

Additionally, Cedar programmers have been 
encouraged first to construct packages with well-defined 
Cedar interfaces describing their functionality, then if 
appropriate to produce user interface programs 
(viewer-based tools, Command Tool commands, often both) 
that call on the packages. While a package may have to be 
located fairly low in the structure, its user interfaces (which 
must depend on large numbers of other system resources) 
can be moved much higher. A good example is the Abstract 
Machine (located in Life Support) and the myriad 
debugging applications that depend on it. 

Components that do not have access to t h e  basic 
memory management facilities-in Cedar, VM and Safe 
Storage-are at a significant disadvantage. They must be 
very carefully written, and they are often very difficult to 
understand or change. These components should therefore 
be located as low in the structure as possible. From Cedar 
5.0 onward, the only program above the Cedar Machine 
that does not use virtual memory is the VM implementation 
itself. Even device drivers and the Disk package, which are 
located below VM, can use virtual memory locations, based 
on methods described in §2.2. VM is so low in the structure 
that it cannot even find the disk file used to back up 
memory: when the File Package initializes, it calls VM to 
inform it of  the backing file location. The simple design of 
VM makes this possible, since file directories or even file 
concepts are not required to get VM to work. 

Safe Storage resides just above VM, having been moved 
much lower in the structure than was possible in the earlier 
Pilot-based versions of Cedar. Because of this, nearly all of 
the system components are written in the safe subset of the 
Cedar language, resulting in increased reliability and 
convenience. The location of Safe Storage also enables 
most programs to use the Cedar data types that depend on 
collectible storage, including ROPE, ATOM, LIST, and 
STREAM. 

In earlier Cedar systems, parts of the IO package had 
to be located above the Abstract Machine, because some of 
its advanced features, such as printing a REF ANY. needed 
AMTypes functions. This was unfortunate, since the simpler 
features of IO were widely used. In Cedar 5.0, IO was 
moved to its present position in the Nucleus, by arranging 
for the Abstract Machine implementation to supply the 
procedures needed for the advanced features as registered 
procedures. Components between IO and the Abstract 
Machine must merely avoid the advanced features, at least 
until the Abstract Machine has been initialized. 

The placement of other components in the Nucleus 
and Life Support divisions follow similar reasoning based 
on the structure objectives stated above. Facilities such as 
Tioga appear within Life Support at a level that might seem 

surprisingly low, until one realizes their central importance 
in the implementation of most Cedar user interfaces. 

At the higher levels, the applications are not as tightly 
interrelated, and the precise layering is not as important. 
The main problem at these levels is finding an acceptable 
initialization order for interrelated programs, or in 
connecting them in such a way that the initialization order 
does not matter. 

There are problems in moving programs to lower 
positions. One of these is that the debugging and error 
handling tools depend upon much of the system (including 
at least the Abstract Machine, FS, File, Safe Storage, Imager, 
Viewers and Tioga). Local debugging for these packages is 
delicate, so the worldswap debugger or a remote debugger 
rtmning on another machine must often be used when 
working in this region. 

3.3 Comparisons 

To put Cedar in perspective, we will compare its 
structure with those of a small number of programming 
environments that were not in Cedar's direct evolutionary 
chain, looking at both the similarities and the differences in 
their designs. Some of the differences are inherent, while 
others provide insights that could lead to future 
developments in Cedar. We will look at the two systems 
from which Cedar has borrowed most heavily: lnterlisp-D 
and Smalltalk-80. We also include a discussion of UNIX, 
a traditional system whose ideas have influenced Cedar 
significantly. 

There are a number of  important programming 
environment features that we are not considering in this 
paper: programs as data, fast turnaround for program 
changes during system development, and the specifics of 
the user interface. We concentrate instead on structural 
aspects. 

lnterlisp- D 

Interlisp is a dialect of Lisp, initially an application 
program running in the Tenex operating system [4]. Since 
Interlisp provides a single global name space, and since 
virtually all of the system except the lowest-level primitives 
and the access to operating system facilities are written in 
Interlisp, the design is inherently an open one. However, 
the input/output facilities and wholesale memory 
management facilities were limited to whatever the Tenex 
system provided. 

More recently, Interlisp has been transported to Xerox 
personal workstations, including the Dorado and Dandelion. 
It has been enhanced with a powerful display and window 
management package (based on earlier prototype work using 
Tenex Interlisp with Altos as terminals), reappearing as 
lnterlisp-D [17]. Interlisp-D should be classed as an open 
system, in the sense that all of the components comprising 
the system are available to client programs. 

All Lisp dialects rely centrally on automatic 
management of their list structures; the clear success of Lisp 
garbage-collection methods led us to add them to Cedar. 
When programs use only the basic functional primitives of 
Lisp, they are inherently safe. To handle concurrent 
processing, lnterlisp-D includes a simple non-preemptive 
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process scheduler with no semaphore or monitoring 
facilities. Errors in process synchronization cannot interfere 
with proper memory management, but one must exercise 
care to avoid races and deadlocks. 

A running Lisp system has no identifiable component 
structure or explicit layering, but rather contains a vast 
collection of individual procedures. Of course, the user 
documentation does present the system in an orderly 
fashion, clustering groups of related procedures according 
to their purpose. 

Smalltalk-80 

Smalltalk systems, from Smalltalk-72 through the 
present Smalltalk-80, have also evolved towards a greater 
degree of openness. As with Interlisp, the parts of the 
systems written in Smalltalk are universally available, since 
Smalltalk operates in a global name space. And like 
lnterlisp, the amount of the system written in Smalltalk has 
increased as the implementation became more efficient. 
Now virtually any aspect of Smalltalk is available to 
programmers except a very small kernel. 

Smalltalk systems have always required automatic 
memory management, dealing with allocated objects more 
complex than those of [nterlisp. Objects are represented as 
variable-sized records containing embedded object 
references. These implementations provided a partial 
existence-proof for the kind of memory management Cedar 
needed. The overall safety of Smalltalk-80 is thus similar 
to that of Cedar and lnterlisp-D. The process-management 
facilities are quite similar to those in lnterlisp-D. 

The object-oriented approach exemplified by 
Smalltalk-80 was also a goal of Cedar, a goal so far only 
partly met. The present Mesa and Cedar languages now 
include some simple syntactic constructs that allow the 
programmer to invoke a set of  procedures associated with 
a particular data type using an object-oriented notation. 
Many Cedar facilities use this syntax, but the construction 
and management of such objects are the responsibility of 
each programmer. Moreover, neither the Cedar language 
nor the system provides any support for the important 
Smalltalk-80 notion of class inheritance: specific object 
classes specified as extensions to the specifications of more 
general ones. Class inheritance is an orthogonal structuring 
approach to the explicit layering of Cedar components; it 
deals with the relationships between implementations of 
related object types rather than the relationships between 
callers and callees. Classes and class inheritance are 
important concepts that might benefit strongly-typed 
languages like Cedar. 

Although the Smalltalk-80 implementation does not 
exhibit an explicit layering of components, it does have 
effective means for clustering the operations belonging to 
each component-as  collections of operations implemented 
by a particular class. In fact, the Smalltalk-80 system 
supports further organization of operations within a class, 
encouraging the programmer to group these operations into 
more specifically-defined categories. This is also an idea 
that could be used to advantage in Cedar. 

UNIX 

We have chosen UNIX as an example of  what we have 
called a closed operating system, which relies on hardware 
memory protection to partition the code and data used by 
the system for its operation from those of the user processes, 
and similarly to protect user processes from each other. The 
closed approach has disadvantages which led to the 
development of open systems like Cedar, but it also has 
important advantages. 

Disadvantages: 

• The clear boundary between the application and the 
system is apparent in the application programs, usually 
appearing explicitly as a system call of some kind. 
Subcomponents of the system facilities are often not 
directly available to applications. 

• Applications that run as parts of  an integrated system 
often benefit from the ability to share memory. In 
particular, the management of  the shared screen-view 
within systems like Cedar are heavily dependent on 
shared memory. System performance and 
programming convenience suffer when applications 
are forced to take a more arms-length approach to 
information-sharing. 

• Changing the operating system to provide new or 
different functions is not as straightforward as it is in 
Cedar. (However, we should point out that since 
UNIX sources are generally available and compre- 
hensible, it is possible to customize a UNIX system.) 

Advantages: 

• A user process cannot readily interfere with the 
operation of the system or another process, whatever 
the inherent safety of the programs running in the 
process. 

• User applications can be terminated and their memory 
and other resources entirely reclaimed as easily as they 
can be loaded and started. 

• Multiple address spaces make it easier to support more 
than one programming language or environment on 
the same machine; detailed memory-management 
decisions (which are the primary difficulties in getting 
languages to coexis0 are left to the individual 
processes in their individual address spaces. 

• Debuggers can run in protected processes, using 
system-provided facilities for accessing the target 
memory and other runtime state, which can be 
completely frozen during the debugging activity. 
Cedar's local debugging can break down due to 
process deadlock or failure in the safety mechanisms; 
one must then resort to remote debugging or 
worldswap debugging, both fairly clumsy methods 
(although perhaps less clumsy than the methods 
available for debugging the UNIX kernel when 
troubles arise there). 

We believe that the advantages of  closed systems are 
important. Combining the advantages of both approaches 
to programming environment design, beginning with either 
base, is an important topic for future research. 
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3.4 Program Development Methods 

One of the goals of Cedar was to provide for fast 
turnaround from small program changes, in general, this 
would have required methods for directly replacing an 
object module with a new version, reestablishing the 
bindings to its imported components and to its clients. This 
capability does not yet exist within Cedar. 

Instead, Cedar programmers have employed two main 
techniques for developing new versions of program modules 
or configurations. The simplest method is replacement: 
producing a new instance of the system using the new 
module version instead of the old one. It is usually more 
convenient, when possible, to augment the system, adding 
new instances of a module so that multiple versions exist 
concurrently. In the latter instance, it might be necessary 
to hide the new module within a configuration that does 
not export all of the module's interfaces, to avoid name 
conflicts or improper binding. 

A Cedar system is constructed by making a boot file 
from the Cedar language components of the Nucleus and 
Cedar Machine levels. When this file is booted, it reads a 
boot configuration file that contains a list of programs that 
will comprise the Life Support division. There is a default 
configuration file, but the user may supply a substitute. 
Similarly, each user supplies a file (the user profile) that 
specifies which Applications level programs to load once 
the Life Support components have been initialized. During 
normal system operation, the user can load additional 
programs, usually by issuing requests to the Command Tool. 

When replacement is necessary, the level of the module 
determines how hard it is to replace. If it is part of the 
Cedar Machine or in the Nucleus, a new boot file must be 
constructed and the workstation rebooted (five minutes to 
build and boot on a Dorado). If the module is in Life 
Support, the boot configuration file must be altered to 
include the new version (two minutes to boot). If the 
software is at the Applications level, one need only perform 
a Rollback operation to produce a version of the system 
that does not contain the module before running the new 
version (one minute). 

It is possible to augment the system with a new module 
version whenever neither version will interfere with the 
other's proper operation. If the new module exports a new 
version of any existing interfaces, it must be hidden in 
(bound into) configuration that does not export them. One 
loads the new version of the module or the hiding 
configuration, reloads any higher-level modules that depend 
on it, then tests the addition. Since old versions are not 
being removed, an occasional Rollback operation must be 
performed to produce a ~clean" version of the system. Most 
programs are developed this way. 

An instructive example of augmentation involved a 
recent revision of the lmager: the new one supports 
improved device independent graphics, but it is 
incompatible with the old one. During testing, its 
developers wanted to use tools based on the released 
versions of Viewers and Tioga to debug the new version. 
They constructed a configuration that contained new 
versions of the lmager, Viewers, Tioga, and TIP, but which 
exported none of their interfaces to the system at large. 
They had to include a few additional programs (including 

lnscript) that were not sufficiently reentrant to be shared 
with the existing tools. When the test configuration was 
started from the CommandTool, it obtained a new "virtual 
terminal" from the Terminal Package. They could switch 
the real terminal between the virtual terminals by typing 
special function keys, providing access to both the old world 
and the new one. They were able to use the standard 
system viewers and debuggers to examine and debug the 
new packages from the normal display, switching the virtual 
terminal to the new world in order to interact with it and 
view the effects. 

These methods do not eliminate the need for a more 
general module replacement facility, but they have proven 
remarkably effective. 

4. Summary 

in this paper, we have described the major parts of the 
Cedar programming environment. We have shown how 
strong typing and explicitly-specified interfaces help support 
the layered architecture of Cedar. We have stressed the 
system layering, which is designed to reduce compilation 
dependencies and to make important system components 
available to the largest possible number of  clients. 

Throughout, we have emphasized the contribution of 
safe storage (incremental garbage collection, runtime type 
discrimination, generic references, and runtime symbolic 
access) to the cleanliness of Cedar's structure, as well as to 
its convenience and reliability. 

Experience with Cedar's predecessors, with earlier 
versions of Cedar, and with other open systems have 
contributed to its architecture, as have important features 
derived other environments, including Smalltalk-80, 
Interlisp-D, and UNIX. In Cedar, we have attempted to 
integrate these traditions into one programming 
environment. 
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