.
Vg
p

~

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

s ' h , \\
AI Memo No. 519 Jine 22, 1979
EMACS
_ < ~The Extensible, Customizable, Self-Documenting Display Editor
by
Richard M. Stallman
Abstract:

EMACS is a display editor which is implemented in an interpreted higher level
language. This allows users to make extensions that fit the editor better to their
own diverse applications, to experiment with alternative command languages, and
to share extensions which are generally useful. The programming system used for
the implementation has several features which serve directly to make extensions
simpler and easier to write, and to facilitate sharing them. The user extensions,
and the results—of their experiments, have been used to improve the basic
EMACS system, which has thereby become itself more sophisticated and powerful
than a nonextensible editor can easily be made. This paper will advocate
organizing editors in the EMACS fashion, by first summarizing the EMACS -
system as it presents itself to the user, and how extensibility helped it to be
written, and second discussing the programming system features which make
EMACS easy to extend.

Keywords: Display, Editor, Extensible, Interactive, Self-documenting

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’s research

- is provided in part by the Advanced Rescarch Projects Agency of the

Department of Defense under Office of Naval Research contract N0GO14-75-C- -
0643,



EMACS June 22, 1979 ' 2 MIT Al Lab

Preparation: Real-Time Display Editors

A growing number of interactive computer systems are now moving on from
printing terminal oriented line-replacement editors to display editors which show
the text being edited at all times and allow the user to move the cursor and
make changes at the cursor with single-character commands. Display editor users
have much less need for paper listings, and can compose code quickly on-line
without writing it on paper first. Display editors are also easier to learn than
printing terminal editors. This is because editing on a printing terminal requires
a mental skill like that of blindfolded chess; the user must keep a mental image
of the text he is editing, which he cannot easily see, and calculate how each of
his editing command "moves" changes it. A display editor makes this
unnecessary by allowing the user to see the "board" (though there is still room
for the expert user to plan ahead mentally).

A pood display editor cannot be just a printing terminal editor modified to
update the display after each line or unit of user input. This fails to take full
advantage of the display. For example, a printing terminal editor usually has an
insert command which takes many characters and inserts them all at once. To
update the display only after the entire insert command is not maximally helpful,
since the display terminal makes it possible to show each character inserted in its
proper place in the text as soon as it is typed by the user. Giving the user
feedback more frequently makes editing easier. The lesson is that a display
editor should have (primarily!) short, simple commands that are visible in the
display as soon as they are typed. We call this "real-time" editing.

The simplest real-time editors are the local editing modes of so-called intelligent
terminals: arrow keys are provided to move the terminal’s cursor to any point,
and text can be inserted where the cursor is just by typing it. There will also be
keys that can erase various portions of the screen. The EMACS user can
position the cursor to the place to be changed moving vertically or horizontally,
by searching for a string, or by moving across words, sentences, paragraphs,
expressions, pages, etc. Then the user can type text to be inserted or use
nonprinting character commands to delete or alter text. Text (printing
characters and Carriage Returns) is inserted just by typing it; other commands
are nonprinting characters, or begin with nonprinting characters. Only many-
character commands echo; simple commands are acknowledged by displaying
their effects. This helps the user feel the editor as an extension of his own
fingers, and feel that he is touching the text directly rather than through an
intermediary. .

However, while real-time editing is an important factor in the popularity of
EMACS, it is not original with EMACS. The way in which EMACS advances
beyond other real-time display editors is that it contains an interactive program
development system which made it easier to write in the first place, and enables



EMACS June 22, 1979 3 MIT Al Lab

any user to add to and modify the editor as he pleases.

‘Why Exfensibility?

The display editor is the best sort of editor known, but no one display editor is
ideal for all purposes. Each programming language, each format of text being
edited, offers scope for special editing commands that are particularly useful for -
the syntax of that language or that format of text. Nor is the ideal display
editor for one user the same as the ideal for another user. Each user has his

own preferred style, which determines which commands and sequences he will

want to use. Only by being extensible can an editor offer a user even the
possibility of approaching his ideal. This is what EMACS does. EMACS users
frequently customize their environments to their personal taste, and also
frequently write new commands of general usefulness and share them with other
users.

The simplest kind of customization, rearrangement of the commands, is by itself
very useful. One person on first learning about EMACS considered it a great
deficiency (relative to another display editor) that commands for moving up,
down and sideways were on characters that could not be typed with one hand
(these characters were chosen, instead, to be mnemonic). Such a problem is of
no intellectual interest, but that docs not reduce its practical importance to a
person who wants to operate in that way, nor does it make the difficulty any less
insurmountable in the absence of extensibility.

Another sort of customization is making old commands behave a little
differently. For example, some users prefer to have a command to move to the
beginning of the next line rather than a command to move vertically down.

There is no sharp boundary between this sort of customization and significant

extension. Users who have unusual programming languages have written
command sets just for editing them. A command can be written for almost any
sequence of actions which is frequently performed. One can also reorganize the
entire system of commands. Some users like a two-dimensional command
organization wherein one character selects the syntactic unit and another selects
the operation to be performed on it. Implementing this is not difficult.

But user extensions do not help only the users who write then. They have also
played an important role in the development of the core system as provided,
before extensions, to users. The most straightforward way in which they
contribute is that some important parts of the core system are actually wel]-
publicized user extensions. EMACS contains a library system designed to help
users make their extensions available to oihets. User customization helps in
another subtler wuy, by making the whole user community into a breeding and



EMACS June 22, 1979 4 v MIT Al Lab

testing ground for new ideas. Users think of small changes, try them, and give
them to other users. If an idea becomes popular, it can be incorporated into the
core system. This testing ground enables development to proceed more quickly
by allowing more people to contribute their effort. The extra input from users
also helps development stay responsive to them.

In short, if an editor designer has the hubris to assume he can design an editor
which is right for everyone and all applications, and wishes to do all the work
himself, he should omit extensibility.

The Organization of the EMACS System

It has been a long time since programmers first realized that they wanted the
power of a programming language while editing. Editors such as TECO
attempted to provide this power Ly including programming constructs such as
conditionals, iteration, and arithmetic in the editing language. This was a natural
idea, because it allows the editing operations in a program to be requested with
the same syntax that would be used during ordinary interactive editing.

However, this technique always leads to a language which, as a programming
language, is ugly, hard to read, and grossly inefficient—bad by every criterion
used to judge programming languages. TECO is a good example of this. A good
interactive editing language is composed primarily of single-character commands
which act immediately when typed, with a few commands that escape to longer
sequences for less frequently used commands. If the editor is to be customizable,
the user must be able to redefine each character. This in a programming
language would be intolerable! :

EMACS rejects that approach and consists of two separate languages, an editing
language, optimized for interactive use, with which editing is normally done, and
a programming language, oriented toward writing the definitions of the
commands of the editing language. These two languages are completely distinct
so that each one can serve its own purpose better.

The interpreter underlying EMACS is specifically slanted toward editing, with
primitive operations for a texi-buffer data type (insertion, deletion, searching,
etc). However, it also provides a full range of the usual features of higher level
languages, including some error handling and symbolic variable features that are
new and interesting. The interesting semantic aspects will be discussed below. i

In designing the underlying interpreter it is most important to start with ope
which is a good programming language generally, since it is easier to add the
special features for the editing application than it is 1o make a bad programming
language good. This has been learned by harsh experience: EMACS did it the



EMACS June 22, 1979 5 ~MIT Al Lad

hard way, and its successors are now doing it the easy way.

Aside from the interpreter and the editing commands written in it, EMACS
includes a display processor whose responsibility is to maintain on the screen a
window into the selected text buffer, a command dispatcher which reads the
user’s editing commands and invokes their definitions (also maintaining state,
such as numeric arguments, from one command to the next), and a library
system which allows interpreted functions to be grouped, together with their
names and documentation, into library files that can be quickly loaded and
shared between users.

How EMACS Extensibility Benefits the Naive Non-Programmer User

Some extensible systems are presented 1o the user as collections of building-
blocks, requiring every user to build his own user interface before he can use the
system at all. This is fine for the sophisticated user but bad for the novice.
However, this approach is not a necessary concomitant of extensibility. EMACS
uses the ease of development which comes with extensibility to provide a richer
and more usable initial core to the naive user than most other editors do, and
with less effort on the part of the implementors. To make this concrete, here
are some of the features, available to all users without further extension, that
extensibility made it easier to provide.

The most basic EMACS editing commands are similar to the commands of other
display editors. They do things like moving forward and backward by characiers,
up and down by lines, to the beginning or end of line, and deleting characters
forward and backward. Another command, that is not usually thought of as one,

is "self-insert". This is the usual definition of all graphic characters, so that text .

can be inserted at the cursor just by typing it (existing text following the cursor
is shoved over to the right, not destroyed). More powerful operations which
other editors are also capable of include killing and moving stretches of text,
scrolling by screenfuls or by lines,-searching for strings, and global replacements.

Beyond this point the power of EMACS’s extensibility begins to be felt. EMACS
can be programmed to understand the syntax of the language being edited and
provide operations particular to it. A set of "major modes” are defined, one for

each language which is understood. Each major mode has the ability to redefine -

any of the commands, and reset any variables, so as to customize EMACS for
that language. Files can contain special text strings that tell EMACS which
major mode to use in editing them. For example, -%~Text-%- anywhere in the
first nonblank line of a file says that the file should be edited in Text mode.

For editing English texi, commands have bees writien to move the cursor by
words, sentencos and paragraphs, and to delete them; to fill and justify



EMACS June 22, 1979 6 MIT Al Lab

paragraphs; and to move blocks of text to the left or to the right. Other
commands convert single words or whole regions to upper or lower case. There
are also commands which manipulate the command strings for text justifier
programs: some insert or delete underlining commands, and others insert, delete
or move font-change commands.

Many commands are controlled by the values of variables which can be used to
further adapt themn to particular styles of formatting. For example, the word
moving and deletion commands have a syntax table that says which characters
are parts of words. There are two commands to edit this table, one convenient
for programs to use and one interactive one for the user to use. The paragraph
commands can be told which strings, appearing at the beginning of a line,
constitute the beginning of a paragraph. All of these variables can be set by the
user, or by a specification in the file being edited. But normally they are set
automatically by the major mode (that is, by telling EMACS what language the
file is written in) and do not require attention from the user.

Redefining Ordinary Characters

A very powerful extension facility is the ability to make ordinary graphic and
formatting characters, which normally when typed just insert themselves into the
text being edited, instead run an arbitrary function. The function usually will
inseit the character as usual and then do additional processing which is in some
way meaningfully associated with the insertion of that character.

The single most useful command for editing text is the "auto-fill space", which
was the first editing command ever written using the interpreter. It is a
program, intended to be used as the definition of the space character, which
inserts a space and then breaks the line into two if it has become too long. With
this redefinition of the space character, the user can ignore the right margin and
never needs to type the Returm—key. Of course, this feature is not always
desirable. It is turned on or off by redefining the Space commniind. If the auto-
fill space did not exist, any user could write it and also the comnmand to turn it
on and off.

What one user did write was an abbreviation facility, which allows the user to
type an abbreviation which will automatically expand o another string. For
exainple, if "cd" were defined as an abbreviation for "command”, you could type
"i/ceed" and would see "i/o-command" appear in the buffer. "Cd™ would turn’
inte "Command”. This facility works by redefining all punctuation characters
(the list of which can be altered by the user) to run a program which thinks
about expanding the preceding string. (When this mode is enabled together with
auto fill, space both fills and expands.) Abbreviations can be dcfined so as to be
in effect only for a certain major mode. Desides the function which implements



MIT Al Lab

~

EMACS June 22, 1979

expansion, the abbreviation library contains commands to add and wundo
abbreviation definitions, list them all, save them in a file and reload them,
unexpand an abbreviation if the user didn't really want it to expand, and many
others. All these commands are packaged in one sharable library file which any
EMACS user can load at any time. The user-author was able to implement this
with no modifications to the standard installed EMACS system.

Editing Programs

Interpreter power is even more useful for editing programs than for editing
English text, because programming languages have iore simple -syntactic
regularities that are easy to exploit. Clearly there can be commands to move
over expressions, niove to the beginning or end of a function definition, insert
and align comments, etc. But the most important operation, and the first one to
be implemented for any new language, is automatic indentation.

Automatic indentation or "pretty printing” has been in use among Lisp
programmers since the earliest times, and has even been used for PL/I on
Multics (probably because of the proximity of the Muitics developers to a
community of Lisp users). Traditionally, this is done with a program that reads
in a source file, reformats it completely, and writes it out again. Every line is
reindented by the pretty-printer in its own favorite style; it probably also moves
code from one line to another at its own whim. Every vestige of the previous
formatting is lost. Such pretty-printers are very slow, because tiiey have the last
word on all formatting, and must therefore have extrumely clever aesthetic
heuristics if they are to be useful. Bat none is so goed that it avoids generating
formats that look ugly to some users. -

In EMACS, indentation is conventionally performed by the Tab character as a
command. Tab's meaning is redefined by each major mode (there is one for
each programming language) to be an indenter suitable for that language.
Linefeed is also an indenting command; it is defined to insert a line-separator
and then do Tab on the new line. The user can type in correcily indented code
simply by using Linefeed instead of the Return key. Linefeed can also be used
to break an existiug line. When he makes corrections to code, he can reindent
lines as necessary using Tab.

The advantages of moving indeatation into the ediivr ase twofold. First, the
programmer can sce the code properly indented while he is typing it in. With a
conventional pietty-printer, he would huve the choice of typing it in unindented
before the fivst pretty-printing, or of generating the initial indentation himself.
Second, hecause thwe nser rather than the inden. command has the final say, it is
not pecessary for (he auionatc indenter fo e o paragent or aesthetic perfection.
The wuser cun make ihe indentation facility his habitual {irst recourse, and



EMACS June 22, 1979 & MIT Al Lab

manually fix any lines for which he does not consider it optitnal. When the user
fixes manually a line at one level of nesting, following lines at the same level or
deeper levels will be indented (if Tab is invoked on them) with respect to the
indentation as set by the user.

The reason why an explicit convention—that indentation is done by Tab—is
needed is that each programming language needs its own indentation function.
When the user enters the major mode for PL/I files by invoking the function
PL1 Mode, this function obeys the convention by installing -the indentation
function for PL/I on the character Tab. The other half of the same convention
is that any function which needs to indent one or more lines does so using the
current definition of Tab. It is important that conventions of this sort be
established and made public. For example, the function PL1 Mode was written
as an extension by a user, who had to know of the conveition.

When the programming language being edited is Lisp, with its ultimate simplicity
of syntax, understanding it becomes even easier. Commands to move up and
down in the list structure, and to move over and delete expressions, make it
possible to edit code just by thinking of its nesting. The most difficult thing
about writing correct Lisp code—the balancing of parentheses—is made easy by
an alternate definition for the ™" character which moves the cursor to the
matching "(" momentarily and then back again. The expression motion
commands also help, and asking the editor to reindent the function is a good way
to see how it balances. This way, EMACS offers most of the benefits that
usually come from editors which operate directly on list structure, but in
conjunction with the Lenefits of display editing; and the implementor need not
write, nor need the user learn to use, a totally separate editor for his Lisp
programs. '

Editing Large Programs

Large programs (such as EMACS) are composed of many functions divided
among many files. It is often hard to remember which file a given function is in.
An EMACS extension called the TAGS package knows how to keep track of
this. ,

To use TAGS, a scparate program is run, given a list of files, to preduce a file
called a tag table which contains a list of all the functions in all of the files,
sorted by file, each with its location in its file. The language of each file is also
supplied so that it can be parsed properly. Once this is done, the tag table is
loaded into EMACS. A special command provided by the TAGS package can
find any function quickly by finding it in the tag table, determining which file it
is in, selecting that file, going to the recorded location of that function’s
definition, and then searching the vicinity for the definition. First small intervals



EMACS June 22, 1979 9 MIT Al Lab

and then larger intervals are searched, so that the function has to be found if it
is still in the file; but if things have not changed too much since the tag table
was made, it will be found much more quickly than by searching from the top of
the file. '

Editing Other Things

The RMAIL extension package is for editing computer mail. RMAIL loads the.
whole file of incoming mail but displays only one message at a time. Commands
are provided for moving from one message to another and deleting a message.
Sending a reply automatically initializes it with recipients and a subject extracted
from the message being replied to. The reply is edited with the sane commands
used for all other editing.

DIRED enables a user to edit his file directory. He is shown a listing of his
directory, in which he can move from one file to another with the usual cursor-
motion commands, but other commands are provided to move, examine, compare
and delete files. Commands are also available to find files which appear to be
deletable (for example, old versions of prograins, and temporary files) and mark
them, tentatively, to be delcted later. DIRED has been imaplemented mostly by
users.

The Display Processor

The idisplay processor is the part of EMACS which maintaine on the display
screen an up-to date immage of the iext inside the editor. Since the size of the
screen is finite, cnly a portion or "window" can be shown. The display processor
prefers to continue to start its display at the same point in the file, so as to
minimize the amount of changes necessary to the screen. However, the editor’s
own curser in the file must appear on the screen so that the terminal’s cursor
can show where it is. This sometimes forces a new window position to be
computed. The user can also command changes in the window position, moving
the text up or down on the screen or causing the text where the cursor is to
move to a spectiic line.

Unfortunately, io obtain reasonahle performance, the EMACS display processor
has to be coden: i assambly fanguage.  Lhis i unfortunate becaus: extensions to
the display processor could be very valuable. In the descendants of EMACS, the
display processer is writien in the same high-level lunguage as the editing
commands, aud cuan b2 extended.  However, the EMACS display precessor
embodics 2n wiesnz] principle which makes for much faster responsiveness to the
user: display up<dating has lower priority tha cogliation.



EMACS June 22, 1979 10 MIT Al Lab

Most display editors change the display after each user command. This is the
simplest strategy to implement, since each command knows precisely how it has
changed the text. But it is very inefficient, not just of the computer’s time, but
of the user’s time, because it makes the user wait for the completion of display
updates that have already been made obsolete by the user’s further commands,
already buffered by the operating system.

To understand the problem, imagine that the terminal being used does not have
the ability to insert or delete lines on the screen. If a Carriage Return is typed
and a new line created, all the lines below that point need to be displayed again.
If, while that is still going on, the user types an additional Carriage Return to
create another new line, the rest of that display update is obsolete; there is no
use displaying the rest of the lines in their second positions, only to display them
again in their third positions. While this particular sequence of events poses no
problem on terminals which can insert and delete lines, other sequences of events
continue to do so. The EMACS display processor is able to avoid this waste.

The EMACS display processor is best understood as being a separate, lower
priority process that runs in parallel with the editing process (this is not how it is
implemented). The editing process reads keyboard input and makes changes in
the editing buffer. The display process is always trying to change the screen to
match the editing buffer; it keeps a record of what is on the screen, and in each
cycle of operation finds one discrepancy between the editing buffer and the
screen record and corrects it.  After each cycle, the display process can be pre-
empted by the editing process, which has higher priority. The display process
can be thought of as chasing, with a speed limited by the terminal baud rate, a
target which the editing process can move arbitrarily. Actually, since process-
switching takes place at only at a few well defined -places, it is easy to simulate
multiprocessing by polling for input when it is safe to suspend display.

One consequence of EMACS’s input-before-output philosophy is that EMACS
uses less computer resources on a heavily loaded system. When not enough
computer power is available, EMACS gets behind in processing the user’s input.
When the first command is completed, more input is available, so no effort is put
into display updating yet. By saving computer time this way, EMACS eventually
catches up with the user and does its display updating all at once.

The Library System and the Command Dispatcher

Sharing of user extensions is made possible by the library system. An EMACS
library is a collection of function names, definitions and documentation that can
be loaded into an EMACS in mid-session. Libraries are read-only and position-
independent, so that they can be loaded just by incorporating them into the
virtual memory of the EMACS. This allows all EMACS’s using a library to



EMACS June 22, 1979 11 MIT Al Lad

share the physical memory. Each library contains its own symbol table which
connects function names with definitions, and also with their documentation
strings. Libraries are generated from source files in which each function
definition is accompanied by its documentation; this encourages all functions to
be documented.

For the sake of uniformity, the standard EMACS functions also reside in a
library, which is always the first one loaded. When a function name is looked
up, all the loaded libraries are searched, most recently loaded first. Therefore,
any library can override or replace the definition of a standard EMACS function
with 4 new dcfinition, which will be used everywhere in place of the old. This,
together with the fact that EMACS is constructed with explicit function calls to
named subroutines at many points, makes it easy for the user to change pdrts of '
the system in a modular fashion without replacing it all.

Subroutines are normally called by their full names. The user can also call any
command by name, and many commands are primarily intended to be used in
that way. However, the most common editing operations need to be more easily
accessible.  This is the purpose of the command dispatcher, which reads one
character and looks it up in a vector of definitions to find the function to be
called (the definition-object, not the name). Functions residing in the command
vector can be invoked either by the character command or by name. Since users
often wish to connect command characters to functions which were not
necessarily inteaded to be invoked other thun by name, the calling conventions
are designed so that alimost any function definition will behave reasonably if
called by the command dispatcher. If a function tries to read a string argument
from its caller, then when called by the command dispatcher it will automaticaily
read the argument from the terminal instead (escaping to an interpreted function
which, in standard EMACS, is defined to provide editing of the argument).

Some libraries contain functions that are intended to be called with single-
character commands. Such functions can be placed in their slots in the command
dispatch vector when the library -is loaded, it the library has a function named
Setup.  Such a [unction, if it exists, is called automatically when the library is
loaded. However, because EMACS is intended to be customized, no library can
reasonably make the assumption that a function belongs on a particular character
without allowiny the user who loads the library to override that assumption. For
examplc, a libvary might wish io redefine Control-S on the assumption that it
invokes the seirch funciion, but a user might prefer to keep his scarch on
Control-T instead, and he might prefer that same library to alter the definition
of Control-T when loaded by him. The author of the library cannot anticipate -
the details of such idiosyncrasies, but he can provide for them all by using a
convention: i the Setup function of the library (TAGS, say), he checks for a
variable calted TAGS Sctup Hook, aud i it exists, its vaie is called as a
function insteid of the usual setting up.



EMACS June 22, 1979 12 MIT Al Lab

One of the functions invokable from the command dispatcher is one which reads
in the name of a function and calls it. This is how the user invokes functions
which are not assigned to any command character.

Documentation Features

An editor which makes itself as easy to change and add to as EMACS must
provide better than the usual in the way of integrated on-line documentation, or
"help” features, and EMACS does. The EMACS help features can use the
command dispatch vector and the loaded libraries as their data base, thus
automatically reflecting the state of customization in effect when they are
invoked.

The most obvious form of help feature is to be able to ask what a command
does. Many systems provide such features. EMACS provides commands to
describe the action of either a character command or a function specified by
name.

A more important help feature is the ability to ask what is available. A mere
list of all commands would usually be no use because it would be too long. The
EMACS command Apropos performs a substring retrieval on all the function
names in all the loaded libraries. For example, Apropos of "Paragraph" would
tell about all the commands for manipulating paragraphs and how to invoke
them. For each function containing the substring, one line is printed which
contains the function name and a brief statement of what it does. The function
definition is then obtained and the command dispatch vector searched to see if
any character commands will invoke the function. If any are found, the user is
told what they are.

Another important help feature is7a record of the last 60 characters of keyboard
input. This is useful when the user types something by mistake and sees
surprising things happen to his buffer.

All of the help features are centered on a single character, called the Help
character, which can be typed at any time to ask for assistance. It offers help
which depends on what you are doing at the momnent. For example, if Help is
typed while the arguments to the View File command are being read in, it will

print a description of the View File command, including the sort of arguments
it needs. It does this by examining the function call stack, finding the name of
cach function on the stack, looking for one which appears to be what the user
invoked (as opposed to subroutines used by it, which are seen first), and
retrieving its documentation. If Help is typed when a command is expected, it
offers the options described above for asking about commands.



EMACS June 22, 1979 13 MIT Al Lab

When a system is customized by an individual it is a frequent problem to find
that.the documentation has not been updated. The organization of the EMACS
help features automatically takes care of this. Because all of the help commands
use as their data base the same tables used by execution, they all reflect the
actual state of affairs, including any customizations performed by the user. If
the wuser writes functions of his own, he is responsible for writing the

‘documentation, but the format of source files for EMACS libraries encourages

this. If he simply moves commands from one character to another, everything is
automatic,

The Programming Language in EMACS

The programming language in which EMACS is written has several unusual
features which are specifically important for convenience in writing editing
commands and making them reliable. Actually, they are not specific to editing .
so much as to complex extensible interactive systems, which most programming
languages are not designed for. They aid by making it easier to decompose the
system into small, modular picces so that a desired extension can be accomplished
by replacing only a few of them. The MacLisp language and system have often
influenced and been influenced by developments in EMACS programming
constructs, Lisp being one of the few other languages to address the same issues.

The syntax and detailed definitions of these constructs are far from ideal, for
historical reasons, so they will not be mentioned.

Free Variables

Most programming languages provide for names of variables to be known only at
compile time. Compilation makes all references to the variable refer to the same
location in memory, and from then on the name is superfluous (assuming the
programuner 1s superhumanly perfect). A static scoping rule is imposed so that
all possible lepal references to a variable are guaranteed to be known during the
one compilation.

While EMACS functions have use for such variables, they also require another
kind: one which serves as a global switch which the user can szt to control the
behavior of one or more functions, which refer to the variable "freely" (as if it
were defined in an enclosing block). For example, the commands for
manipulating comments expect the variable Comment Start to have a value
which is a siring to be used to mark the start of a comment. The names of such
variables must be remembered at run time so thai the user can set them. A
function called Alter Options exists which allows the user to edit a list of the



EMACS June 22, 1979 14 MIT Al Lab

names and values of variables. When the user says he is finished, the values are
set the way he edited them. This relics on the fact that all variables can be
found in a single symbol table. In addition, EMACS provides for giving variables
documentation strings as well.

Some variables come with EMACS when it is started. Others are created by
libraries of extensions to hold their own data structures. Yet others are looked
for by extensions; they are to be set by the user, as part of his customization, to
be seen by those libraries in case he should decide to load them.

Even when a variable is intended to be set by one command and used by
another, or by a later invocation of the same command (like OWN variables in
ALGOL), and ncver seen by the user, it is still important that the name be kept
~at run time, because the user may wish to modify the command, or to define a
new one which should, logically, use the same variable. For example, the variable
Auto Save Mode is sct by the functions that select a file and looked at by
others to decide whether and how to save changes automatically on disk. The
user should never deal with it explicitly himself. But if he would like to
implement a different kind of auto-saving (as some users have) he needs to be
able to make his functions refer to that variable. Otherwise, he’d have to replace
the file selection commands as well. Even if he were satisfied with the usual
ones, he would have to make copies of them to compile with his new auto-save
commands. Then he would not have the benefit of bug fixes and new features in
the standard file-selection commands.

The standard practice of keeping variable names only at compile time may be
satisfactory when a program is to be compiled completely before any of it is run,
but it is unsuitable for a system which can be extended while it is running.

Dynamic Binding

This use of variables creates a need for another language feature found normally
only in APL and Lisp: dynamic binding. What this means is that a function
can make a new, local binding for an existing variable, which will hide the old,
outer binding until the function returns. In the meantime, if the function calls
other functions which refer to the variable frecly, they will see only the new,
inner binding.

How is dynamic binding useful? Suppose a function wants to offer the user sorae
_text to be edited for a special purpose, and it is known that, while editing that
text, it would be convenient for the "*" character to be considered part of a
word. This function can dynamically bind the syntax table which controls word
parsing to a new value which marks "*" as alphabetic, and then cull the editor
command/display loop. This loop does not itsclf refer to that syntax table, but



EMACS June 22, 1979 15 MIT Al Lab

.

if the user invokes any of the word commands (or anything else, perhaps written
by him) which parses words and looks in the conventional place for the syntax
table, then "*" will be considered part of a word.

Dynamic binding is also important—even more important—for the elements of
the command dispatch vector (or, alternatively, for the vector as a whole). It is
extremely common to offer the user text to edit and provide him with a few
special purpose commands for doing so. For example, when a user is editing a
reply to a message, he is given temporarily a special command to insert a copy of
the message he is replying to. This is done by dynamic binding.

Some theorists believe that dynamic binding is "dangerous" and likely to lead to
incorrect programs. They advocate explicit passing as parameters -of all
information that is going 1o be nceded by a subroutine (dynamic binding is a sort
of implicit parameter passing). There are some cases in which an explicit
parameter might be better, such as for the command dispatch vector. However,
the word syntax table example can be used to see how an insistence on only
explicit parameter passing is not workable in an extensible system. Consider the
consequences: it would be necessary for the editor command/display loop to
have the word syntax table as an explicit parameter, even though it otherwise has
no need to know that such a syntax table exists (IT doesn’t parse words). -
What's worse, in order for the command dispatcher to pass the syntax table on
to the commands that really use it, it must pass it as an explicit parameter to
every connnand (it can’t tell which ones are intercsted). So every cominand must
explicitly expect to receive a word syntax table as a parameter—along with five
dozen other sucit variables to which the same arguments apply. But further,
suppose the user defines functions which refer to a new free variable which is
also the user’s own invention, and then goes on to define a function which wants
to present text (o be edited with this new variable temporarily altered in value.
That is, he creates a new variable and wants to do to it exactly what was done
above to the word syntax table. According to the explicit parameter passing
discipline, he would have to make the command/display loop take this variable as
an explicit parameter, and maké all calls to that loop provide the parameter.
What should have been a local extension of the system now requires a global
rewrife.

Dynamic  binding makes it possible to change the value of a variable
"temporarily", and be sure that the old value will be restored if control passes
out of the scope of the binding. A natural extension of this is the ability to
change anything temporarily, not just the value of a variable. This uses a
construct called "wnwind-protect”, which allows the programmer to provide an’
arbitrary computation to be performed when control passes out of the unwind-
protect it any fashiorn. Dxplicit exit from the unwind-protect may or may not
also periorm that computation, at the propramaers ophon.



EMACS June 22, 1979 16 MIT Al Lab

Variables Local to a File

Suppose you want a file to be formatted with comments starting at column 50.
Clearly your task will be easier if the variable Comment Column, which is used
(by convention) to decide where to align comments, is always set to 50 whenever
you are editing that file. EMACS provides this feature, but since it also provides
the feature of visiting several files at once, it must take special care to keep each
file’s variables straight. Suppose one file wants Comment Column to be 50 while
another is formatted with 40?

This is solved by allowing each file to have its own local values for any set of
variables. Specially formatted text at the end of the file specifies them:

/* Local Modes: */
/* Comment Column:50 */
/* End: */ ‘

(Here, "/* " and " */" arc arbitrary strings that could be replaced uniformly by
any two others, or by nothing. Their purpose is to disguise the local modes for
the compiler that will eventually process the text. These particular strings would
be used if the file were a PL/I program).

When a file is brought into EMACS, this local modes list is parsed and the
variables and values remembered in a local symbol table. While the file is not
selected, its local symbol table contains the local values of the variables. While a
file is selected, its local symbol table contains the global values, and the real
symbol table contains the file’s local values instead.

Variables That "Project"”

Usually a global variable is checked explicitly each time it matters. Sometimes,
in the interest of efficiency or modularity, it is better not to check the value
each time but rather to have other data structures change automatically when
the value of the variable changes. For example, changing the value of Auto
Fill Mode to turn auto-filling on or off automatically redefines the Space
character’s command definition. It happens automnatically becausz the variable
Auto Fill TMode has been provided with a function to be run whenever the
value is set. The function is interpreied, but the mechanism that decides to call
it'is part of the interpreter itself. '

Another thing that Auto Fill Mode’s function does is signal that the place on
the screen which says whether auto-filling is in effect may need to be rewritten.
This makes it unnecessary to keep testing the variable’s value to see whether it is
necessary to update the screen.



EMACS June 22, 1979 17 MIT Al Lab

Errors and Control Structure

A system for programming editor commands needs more sophisticated facilities
for handling errors and other exceptional conditions than most programming
systems provide. Let us consider what an error is, and what ought to happen
when there is an error. '

First of all, what exactly is an error? Sometimes the user asks to do something
that cannot be done (a user error). Sometimes a program asks to do something
which cannot be done (a program error). Sometimes a user error is detected
only because it results in a program error, but it might also be caught by an
explicit check which does not result (unless it wishes to) in a program error.

There are several responses to a user error that might be desirable. One is that
the command simply does nothing. For some commands, this is comfortable for
the user. Another is to ring the bell on the terminal. This is desirable when it
is likely that the user is a little confused about the situation, but will probably
understand as soon as he sees that all is not as he expected—for example, trying
to delete a character backwards when at the beginning of the buffer. Pending
keyboard input is usually thrown away when the bell is rung, but this can be
explicitly inhibited. If it is necessary to give the user more information, the best
way is to cause a program error with an explicitly supplied error message. A
primitive exists just for this. Of course, these responses are possible only if the
user error is detected explicitly. If a type of user error is deemed to deserve one
of these responscs, a conditional is installed. More obscure errors that only resuit
in progrum errors can be left alone, according to how much effort the
programmer wisies to invest. ‘

Program errors are handled in a uniform manner, which is normally to print an
error message and abort the program, returning control to the command
dispatcher. However, it is necessary for this to be alterable by programming.
When the user can write his own command loop, he must have a way to say that
it should get control back after an error. This done with an "errset", a construct
which is placed around an expression and catches any errors that occur within
the execution of the expression. When an error happens, control returns (as by a
nonlocal goto) to the innermost errset. The command loop example could have
an errsct arouind the entire loop, itself contained in another loop. Any error
would return from the errset, thus looping around and re-entering the errset and
the inner loop. This way, there is no place where an error can escape from the -
command loop, The value returned by an errset is either O if there was no errar,
or the error tnesiupe string. This allows the command loop to print the error
message witcii tue erisct refurns.



EMACS June 22, 1979 ) 18 . MIT Al Lab

Another use for errset is in case errors happen while an asynchronous action is
~ being performed. For example, an automatic save of the file being edited is

- asynchronous; it is not expected at any precise moment by the user. If an error
occurs during auto-saving, the usual handling of an error (which involves
discarding any keyboard input typed ahead) would be undesirable. So the auto-
save function employs an errset to regain control after the error, print its own
flavor of message, and return to the user’s editing. Another similar application is
in inner parts of the system which call a function supplied by the user, and do
not want an error in the user’s function to cause them to lose control.

Returning to the user-written command loop example, there probably needs to be .
-a command which exits from the loop. How can it be done? There are two
loops doing their best to keep control from getting out. It could be done with
ad-hoc flags and conditionals, but this would be unnccessarily complicated. A
better way is to use the "catch" construct, which provides a named context to
which control can be explicitly returned. A catch, like an errset, surrounds an
expression, and control can pass to the end of the catch from within the
evaluation of the expression. Unlike an errset, a catch has a name, and it
receives control not because of an error but because of an explicit request to
"throw" to that name. If the expression does no throw, then when it is finished
its value becomes the value of the catch. A throw takes an argument which is
the value to return from the catch. A catch placed around the loops and errset
of the user-written command interpreter would allow any commands to exit from
the loop easily.

Unlike non-local gotos in algebraic languages, whose labels obey static scope
rules, the name of a catch is dynamically scoped; that is, any function called
within the catch can throw to that catch. This is vital because, using the same
example, it would be a great disadvantage to have to include the code for the
individual commands in the same function as the command loop. This would
require a gross conditional and make the function very large, and also limit
extensibility, Much better is for the command loop to read the command and
usc it to create the name of a function, which is then called. This technique
allows the user to extend the command interpreter by defining his own functions
with suitable names. For example, the mail-file reading subsystem RMAIL has
its own command reading loop; if it reads the command N, it calls the function
named # RMAIL N. The exit command is Q, which simply calls the function
named # RMAIL Q. It is necessary for this function to be able to throw to the
right tag to get out of RMAIL. A similar consideration applies to the normal
command dispatcher, since its commands must all be distinct functions found in
the dispatch vector. It would not do to have the command dispatcher know
specially about the command to exit, because then the user would not be able to
redefine this command, or move it to a different character, in the usual way.
The effect of an errset is also dynamic in this sense, of course.



EMACS June 22, 12,/9 19 . mir Al Lab

"One more error handling {eature is the uscr-supplied function which is called

when an error occurs not within an errset.  This, together with primitives that
allow all the data in the subroutine call and variable binding stacks to be
accessed by programs, takes the details of error handling out of the kernel and
into the domain of extensibility. Standard EMACS supplies an interactive
backtrace function as the error handler, but a user-written extension provides
interactive single-stepping and breakpoints for debugging.

Historical Perspective

EMACS is now a mature program, no longer new though still improving
(variables that project were added this year), and in use at a dozen places.
EMACS drew many ideas from earlier systems at MIT, and a couple of new
systems patterned after EMACS are now coming into use on other makes of
computers. However, it is in EMACS that the genre first came to full flower,
and since I wus closely involved with the later and earlier systems as well, I feel
entitled to offer EMACS as a canonical example.

The display processor was first implemented in 1974 {(inspired by the editor E of
the Stanford Artificial Intelligence Lab), with a hard-wired command set, but a
few months later after it was debugged the ability to redefine commands was
added. The interpreter used to hold the display processor was, of course, TECO,
that being alre.dy provided with appropriate text-manipulating, contral, and /0
primitives—cverything an editor needs aside from a display processor.  Several
people at MiT bepan writing editars using this syster, whila ¥ continued to add
to the interpreter the features necessary for reasonable sysiem programming. in
1976, several iccus had become ripe, and 1 began EMACS, at the same time
implementing nuny of the interpreter features connected with  long-named
ariables und  the library system, 1o make EMACS possible.  Since then,

“development has proceeded steadily, with new code mostly being interpreted, new

constructs only being added to the interpreter to speed up particular operations
or 1o allow access 1o previously internal data siructures.

EMACS was developed on the Digital Equipment Corporation PDP-10 computer
using MIT’s own incompatible Timesharing System. Iy 1977, outside interest in
EMACS was sufficient to motivate Mike McMahon of SRI International to adapt
it to Digital’s Tops-20 operating system.

Several post-EMACS editor implementations have copied from EMACS both the
specific connnasid set and user interface and the fundamental principle of being
based on a progrinmable interpreter.  The main  motivation for these
implementations vus (o transfer the ideas of EMACS to other computer systems.
Two of thiese puojects, now entenng use, are Mohios EMACS, now becoming an
experimental il i ywell product, and ZWEL the editor for the MIT Artificial



EMACS June 22, 1979 20 MIT Al Lab

Intelligence Lab Lisp machine.

Because EMACS supplied the implementors with a clear idea of what was to be
implemented, their focus was on making the foundations clean. The essential
improvement was the substitution of an excellent programming language, Lisp,
for the makeshift extended TECO used in EMACS. Lisp provides the necessary
language features in a framework much cleaner than TECO. Also, it is more
efficient. A Lisp interpreter is intrinsically more efficient than a string-scanning
interpreter such as TECO’s, and Lisp compilers are also available. This efficiency
is important not just for saving a few microseconds, but because it reduces the
amount of the system which must be written in assecmbler language in order to
obtain reasonable performance. This opens more of the system to wuser
extensions.  Another improvement has been in the data structure used to
represent the editing buffer: Multics EMACS developed the technique of using a
doubly-linked list of lines, each being a string. This technique is used in ZWEI
as well.

Implications for the Process of System Design

It is generally accepted that when a program is to be written, specifications
should be designed in advance. If this is not done, the result will be inferior.
Some people know better than this, but none dare to speak up.

The writing of EMACS was as far from along these lines as can be imagined. It
is best thought of as a continuous deformation of TECO into something which,
for users, has no resemblance to TECO.

And indeed, there are ways in which EMACS shows the results of not having
been completely thought out in advance, if only in being based on TECO rather
than Lisp. (Nevertheless, EMACS has shown itself to be reliable and suitable for
widespread use). If EMACS had been specified in advance, it would resemble
the post-EMACS editors described above. However, the post-EMACS editors
were specified in advance by EMACS itself, and could not have been written if
not preceded by EMACS (this is not to say that they have copied slavishly; they
have continued the process of gradual development). And EMACS could never
have been arrived at except in the way it actually was. The chain of necessary
steps leading to EMACS, starting with the dispiay processor, was simply too long
for anyone to have imagined the final result before the first step had been taken.

If we had insisted on moving only toward destinations visible ai the beginning,
we would never have got here from there!

This is true of all the details of the individual commands as well as of the
structurc of the system. Euach command in EMACS behaves as it does as a
resalt of experimentation by many different users customizing their editers in



EMACS June 22, 1979 21 MIT Al Lab

different ways, in the years when the display processor existed but EMACS had
not yet been begun. This experimentation was possible only because a
programmable display editor existed. It would not have been possible to design
the EMACS standard command set without it.

Nor can one maintain the position that it was right to create EMACS this way
because it was research, but ordinary system development is a different matter.
This is because the difference between the two is also a matter of hindsight.
EMACS was not the result of an intentional "editor research project" (nor would
such a project have arrived at EMACS, because research projects aim only at
goals which are visible at the start). The display processor and command
dispatcher were seen only as an improvement to TECQ; no one could have
known, when any step was taken, how much farther the path would lead. One
cannot even identify a "first” step, because the development, until the writing of
EMACS per se, blends smoothly back into the development of TECO.

But why isn’t such program of exploration doomed to be sidetracked by a blind
alley, which nobody will realize due to the lack of a planned goal? It is the
extensibility, and a flexibility of mind, which solves this problem: many alleys
will be tried at once, and blind alleys can be backed out of with minimal real
loss.

Blue Sky

The proprammable editor is an outstanding opportunity to learn to programi A
beginner can see the effect of his simple program on the text he is cditing; this
feedback is fast and in an easily understood form. Educators have found display
programming to be very suited for children experimenting withs programming, for
just this reason (see LOGO). Programming editor commands has the additional
advantage that a program need not be very large to be tangibly useful in editing.
A first project can be very simple. One can thus slide very smoothly from
simply using the editor to edit into learning to program with it. When large
numbers of nontechnical workers are using a programmable editor, they will be
tempted constantly to begin programming in the course of what will be their
day-to-diy lives. This should contribute greatly to compuier literacy, especially
because many of the people thus exposed will be secretaries taught by society
that they uare incapable of doing mathematics, and unable to imagine for a
moment that they can learn to program. But that won’t stop them from learning
it if they don’t know that it is programming that they are learning! According
to Bernard Greenberg, this is already happening witk Multics EMACS.



EMACS June 22, 1979 22 miT Al Lab

|
Appendix: Display Processing
The way EMACS records what remains on the screen, and compares it with
what is now in the text being edited, is determined by the representation used
for that text. The post-EMACS editors use better text representations that make
for easier display updating algorithms.

The representation used in -‘EMACS is a straightforward linear string of
characters. A movable gap which can grow and shrink makes it unnecessary for
insertion and deletion within a small region of the file to move half of the file up
and down. The gap was essential in making it practical to insert characters one
at a time, instead of en masse in an “insert" command, but aside from that it is
made invisible at all but the lowest levels of software, so essentially the
representation is just a linear string. It is the task of the display processor’s
auxiliary data to make sense out of the amorphous mass of text.

The lowest level of avoiding wasteful output is a checksum of the characters
displayed on each line of the screen. If a screen line is about to be rewritten,
the new and old checksums are compared. If they match, the rewriting is
skipped. Once in every 2**36 times this will leave old incorrect text on the
screen.

Higher levels of display optimization work by preserving information which is a
byproduct of writing the display—namely, where in the text string the beginning
of each screen line comes—and combining it with information which localizes the
regions of the text string in which alteration has taken place. This allows'it to
restrict display update processing to a horizontal band of screen which contains
all the necessary changes (often just one line). While processing the other lines
on the screen would do no actual output, because of the checksums, even the
time to compute the checksums is noticeable to the user as a delay. The same
information can be used to decide when some lines on the screen should be
moved up or down. When lines are inserted in the middle of the screen, it is
much better to copy the following lines downward (if the terminal can do this)
than to rewrite them all in their new positions.

The record of where in the text string changes have taken place is maintained by
requiring every command to return values saying what part of the string it has
changed. It can identify a subinterval of the string which contains all the
changes made, it can say that no change was made (though the cursor may have-
been moved), or it can say nothing, which requires the display processor to make
no asswmptions.

A better way, developed by Bernard Greenberg in Multics EMACS and used in
ZWEI, is to represent the buffer as a doubly-linked list containing pointers to
strings, one for each line. Newline characters are not actually present, but



EMACS June 22, 1974 23 MIT Al Lab

implicitly appear after each line except the last. This requires the lowest level
insert, delete and search subroutines to be more complicated (for example,
inserting a string cannot treat Newline characters like other characters), but this
is just a finite amount of complexity; and it greatly simplifies efficient display
computations. The state of the screen can be remembered in an array of
pointers to the string that was displayed on each screen line. When the display is
updated, one can compare the strings in the buffer with the strings in the
display, both to see whether they are the same objects (the pointers are equal;
EQ, in Lisp), and to see whether their contents are the same. Logically, it ought
not to matter whether the pointers are the same, since the contents of the buffer
depends only on the contents of the strings and is not affected by replacing one
string by another with the same contents. However, comparing the pointers is
very useful for heuristics about moving blocks of lines from one part of the
screen to another. In fact, it often finds and moves blocks of text which are not
completely unchanged, but almost unchanged. If some of the lines in the block
are completely unchanged, they do not need to be redisplayed. Even if this is
not the case, it is clearer to the user what his text is doing if they move.

An additional efficiency factor is the global clock, a counter incremented
whenever anything is changed. Each line has not only a string bat the counter
from when that string’s contents were last changed. In addition to saving a
pointer to the last line displayed on a line of the screen, the line’s clock value at
that time is saved. Then the clock valves can be compared instead of the lines’
contents.

This new schemie relaxes the requirements on commands to say what they have
changed, also.  They say only whether any text might have chunged. Reducing
the need for the programmer 1o worry about how display will be done is very
desirable. Another advantage is that it becomes feasible to have pointers to
characters in the text, which relocate when insertions or deletions are done, so
that they continue to point to the same place in the text.

Appendix: Libraries

An EMACS sharable library contains, first of all, a symbol table which can be
binary searched for the name of an object to find the object named. The
symbol table points at both the names and the named objects using offsets from
the beginning of the file, so that the file can be valid at any locution in memory.
The names and named objects are all examples of the EMACS string data type,
in the internal EMACS format, so that the library does not need to be translated -
or parsed in anv way when it is loaded.

The symbal table poinis 1o the documeniation of functions ia the library as well
as their dafinitions. The documentation for the funcdon Visit File is an



EMACS June 22, 1979 24 MIT Al Lab

object entered in the symbol table with the name ~oc~ Visit File. There is
also a string named ~Directory~ which contains a list of the names of all the
- objects in the file which the library wishes to advertise. .This is used for
documentation purposes, not for looking up names, and it does not contain names
- of auxiliary objects such as ~Doc~ Visit File or ~Directory~.

From a named object in a library, the name can be found, because it is
immediately before the object in memory. Since one can tell which library an
object is in by comparing its address with the memory occupied by the library,
this makes it possible to find the name of any object which has one. The ability
to do this is important, because when the user asks what the character Control-K
does, it is desirable to be able to tell him that it runs the function Ki |l Line.

Appendix: Why Isn’t Any Editor That Is a Computer Program an
Extensible Editor?

It is a truism that any computer program can be modified into anything at all.
Thus, any editor program which can be accessed to be modified is extensible in a
theoretical sense.

However, this does not mean that the user can conveniently extend it in practice.
The usual editor is compiled and then run. If a user wishes to modify it, he
must make his own copy of the entire editor, change some of it, compile it and
run that. In addition to the disadvantages of a less interactive mode of program
development, he has the problem that he must decide before starting to edit
which version he wants to use. If two users make independent extensions, it is
impossible to use both sets of extensions together without merging the two
programs, which is real programming work, and compiling yet another version. - If
maintenance is done on the standard version of the editor, the extended versions
require maintenance even if the changes do not interact with the extensions. In
practice, these problems are enough to discourage just about everybody from
trying.

EMACS Availability

EMACS is available for distribution io sites running the Digital Equipment
Corporation Tops-20 ("Twenex") operating system. Ii is distributed on a basis of .
communal sharing, which means that all improvements must be given back to me
to be incorporated and distributed. Those who are interested should contact me.
Further information about how EMACS works is available in the same way.



EMACS June 22, 1979 25 MIT Al Lab

Notes — EMACS-related Editors

Multics EMACS

SINE

Multics EMACS was begun in early 1978 by Bernard S. Greenberg of
Honeywell’s Cambridge Information Systems Lab, the maintainer of
Multics MacLisp. It has been responsible for convincing the Multics
community of the desirability of character-at-a-time interaction with
programs. When first implemented, it could be used only by its author,
because he alone had the necessary privileges to patch the Multics
operating system so that a program could read one character from the
keyboard instead of waiting for a complete line. After seeing the new
editor in operation, the other Honeywell people soon improved Multics to
make that unnecessary. Multics EMACS pioneered the use of a doubly

linked list of lines to represent the text being edited. It is now just

entering widespread use. See
Bernard S. Greenberg, Real-Time Editing on Multics. Multics
Technical Bulletin 373, Honeywell Information Systems, Inc. April
1978, Honeywell Cambridge Information Systems Lab.

SINE ("SINE Is Not EMACS") is based on compiling Lisp code to run in
a non-Lisp editor environment, in which, unfortunately, no interpreter is
present. However, the user can load his own compiled files into a
running editor. This design was chosen because of the smallness of the
machine, an Interdata at the MIT Architecture Machine Group, running
their own Multics-based virtual memory operating system. SINE was
written by Owen T. Anderson. See

Owen T. Anderson, The Design and Implementation of a Display-

Oriented Editor Writing System, Undergraduate Thesis, MIT Physics

department, January 1979.

TECMAC

TECO

TECMAC was the first editor implemented in TECO to work with the
display processor. It developed many of the ideas used in the EMACS
user interface. It was retired because, written when TECO was less
extended, it was unable to attain either readability or efficiency.
TECMAC was maintained from 1974 to 1976 by John L. Kulp and
Richard L. Bryan.

PDP-10 TECO was originally written by Richard Greenblatt, Stew
Nelson and Jack Holloway at the MIT Artifical Intelligence Lab, based
on PDP-1 TECO which wus written by Murphy in 1962. This was
transporied to Digital, which for a time distizbuced it as a product.
Version: of TECO, and editors similar in concept to TECO, exist on a



EMACS June 22, 1979 26 MIT Al Lad

great many systems. Those unfamiliar with TECO can get an idea of
what a typical TECO is like from the manual
Digital Equipment Corporation, Decsystem-10 TECO Programmer’s
Reference Manual, DEC-10-ETEE-D (revised from time to time).
It should be noted that the TECO used as the interpreter in EMACS
contains considerable extensions, including most of the features of higher-
level languages in general that are conspicuously absent from the typical
TECO. But the basic bad taste is the same. ;

TMACS |

ZWEI

TMACS was an editor implemented in TECO which began to develop
the idea of the sharable library with commands that could be assigned to
keys by the user. When I implemented these features I assumed I was
copying them from TMACS. Later I found that I had simply assumed
that TMACS did them in the obviously right way—which it did not.
TMACS was the project of Dave Moon, Charles B. Frankston, Earl A.
Killian, and Eugene C. Ciccarelli. Interestingly, it had no standard
command set. The implementors were unable to agree on one, which is
what led them to work on making customization easier.

ZWEI ("ZWEI Was EINE Initially") is the editor for the Lisp machine.
EINE ("EINE Is Not EMACS"), the former editor for the Lisp machine,
was also based on EMACS; it was operational for late 1977 and 1978,
and was redone to make it cleaner. Both EINE and ZWEI are primarily
the work of Daniel Weinreb; see
Daniel L. Weinreb, A Real-Time Display-Oriented Editor for the LISP
Machine, Undergraduate Thesis, MIT EECS Department, January
1979.

Notes — Other Interesting Edifors

Augment

Augment (formerly known as NLS) is a display editor whose interesting
feature is its ability to structure files into trees. Making the tree
structure useful required the concept of the viewspec, which specifies that
only certain levels in the tree structure will be visthle. This is the sort of
feature which cannot be added by a user to EMACS, because it involves |
modification of the display processor; but it could be ac¢ded by a user to
Multics EMACS or ZWEIL Augment popularized the graphical input
device known as the "mouse", which is a small box with wheels or balls
on the bottom and buttons on the top, which the user moves on the table
with his hand. This device has been copied widely because of its
simplicity and low cost. Augment was designed at SRI International but



EMACS June 22, 1979 27 ) MIT Al Lab

Bravo

TRIX

is now supplied by Tymshare. Sce
Douglas C. Engelbart and William K. English, A Research Center for
Augmenting Human Intellect, AFIPS Conference Proceedings, Vol. 33,
‘Fall Joint Computer Conference, San Francisco, December 1968, pp.
395-410.

Patricia B. Seybold, TYMSHARE’S AUGMENT -- Heralding a New
Era, The Seybold Report on Word Processing, Vol. 1, No. 9, October
1978, 16 pp. (ISSN: 0160-9572), Seybold Publications, Inc., Box 644,
Media, Pa 19063, o

Bravo comes from the Xerox Palo Alto Research Center. Its orientation
is toward text formatting, and it can display multiple fonts, underlining,

etc. It makes heavy use of a graphical pointing device, the "mouse” (see

Augment). It is not programmable and provides little help for editing
programis as opposed to text. For more information, see your local
industrial espionage agent.

The editor used at the Stanford Artificial Intelligence Lab, E interfaces
with a "line editor" (used to edit within a line, on a display terminal)
which can also be employed to edit the input to any other program.
Unfortunately, this ruined any chance of making it customizahle, though
it is possible that a different implementation of a line editor, done with
this in ind, would be possible. E allows macros to be written using the
same language used for editing. These are as powerful as a Turing
machine, and as easy to program with. E has other interesting features
as well.  See the on-line documentation file E.ALS{UP,DOC] of the
Stanford Artificial Intelligence Laboratory.

TRIX is a language designed at Lawrence Livermore Lab specifically for

~ writing editors; it is the only other example of such a system known to

me. It has been used to write commands that are specific to particular
languages, and to write text formatters. Many of the same ideas
developed in the EMACS community were developed independently for
TRIX. Its only, and fatal, flaw is that it was designed for printing
terminals. See
Cecil, Moll and Rinde, TRIX AC: A Set of General Purpose Text
Editing Commands, Lawrence Livermore Lab UCID 36040, March -
1977.



EMACS June 22, 1979 28 MIT Al Lab

TVEDIT
TVEDIT is a distant relative of E (above) which is used at Stanford on
the' Tops-20 and Tenex operating systems. These systems do not provide
a line editor, so TVEDIT has its own facilities for changes within lines.
However, it is not programmable. TVEDIT is a good example of a
generally reasonable but nonprogrammable display editor. See
Pentti Kanerva, TVGUID: A User's Guide to TEC/DATAMEDIA
TV-Edit, Stanford University, Institute for Mathematical Studies in the
Social Sciences, 1973. (Online document)

Notes — Other Related Systems

The Lisp Machine
The MIT Artificial Intelligence Laboratory has built a machine
specifically for the purpose of running large Lisp programs more cheaply
- than ever before. One of its goals is to make the entire software system
interactively extensible by writing it in Lisp and allowing the user to
redefine the functions composing the innards of the system. Part of the
system 1s an EMACS-like editor (ZWEI; see above) written entirely in
- Lisp, which shares"in this extensibility. See
Daniel Weinreb and Dave Moon, The Lisp Machine Manual, MIT
Artificial Intelligence Laboratory.

LOGO
: LOGO is a language used for teaching children how to think clearly.
Unlike conventional computer-aided instruction, which automates a
method of teaching which offers little to motivate the student, LOGO
invites students to write programs to produce interesting pictures and
learn while doing something fun. See
Seymour Papert, Teaching Children to be Mathematicians vs.
Teaching About Mathematics, MIT Artificial Intelligence Laboratory
Memo 249, 1971.

MacLisp
The MacLisp language is very suitable for writing extensible interactive
programs, and has been used for the implementation of Multics EMACS.
Sae
Dave Moon, MacLisp Reference Manual, MIT Laboratory for‘
Computer Science, 1974. ~



