

ftm^^^TV '< in ii«. ii �' I in«. ... 1.J-... -uLmi. in » i,.»,.,^..».,,.. .;i.....v..

.

. f'ihf, i 'f* m illiiflii»'^i}t'f �Üir-i i ^^Mm^Ut^^ .jtUiLvLi.;**SMXtaf& [TiAtinTiiS^-gtiWWhli'fiHTTi^tfiMflnr-in iitil:-;- -rti'dr lt^Mftk*^WttW^liiiiil"rAl1itlftii,nVii- urnii!-! Eilili i- »x I* .«!.�,���A A

i^m !fwpiiww^pp!pww!n*f»s*,*w?!w*ws^^
^.^��J I'*��>.

:
Stanford Artificial Intelligence Laboratory
Memo AIM-260

Computer Science Department
Report No. 5TAN-CS-75-499

June 1975

PYGMALION:
A Creative Programming Environment

by

David Canfield Smith

ABSTRACT

PYGMALION is a two-dimensional, visual programming system implemented on an
interactive computer with graphics display. Communication between human being antl
computer is by means of visual entities called "icons'1, subsuming the notions of Variable",
'^ieteieiice^ "clata structure^, function and picture . The heart of the system is an interactive
•Remembering* editor for icons, which executes and (optionally) saves operations for later re-
e\eciition. The display screen is viewed as a document to be edited. Programming consists of
creating a sequence of display frames, the last of which contains the desired information.
Display frames are modified by editing operations. ^PYGMALION employs a powerful
paradigm that can be incorporated in virtually any othbr programming language:

Every operation has both visual (aestheiic)x semantics and internal
(mechanical) semantics.

In fact, every operation in PYGMALION has three responsibilities:

(a) for accomplishing a given internal machine task - the machine
"semantics" of the operation;

I:

This research tuas supported by the Advanced Research Projects Agency of the Department of
rufiuw undn Contract DAHC 15-73-C-041') and the National Institute of Mental Health. The
views and conclusions contained in this document are those of the author(s) and should not he
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University. ARPA, NIMH, or the V. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22161.

^

'J •---'��"'�"j'MhliiihtiiratmMini'-"^""^-"' �����-• ---'- ' ^

Wm^mm^^^^^m^-m! P *.i!|^WTOieiSW>^WMi^W'!i!liHim4pili..i.i^i y^iuiiifii/tttww^^w-.MaifliMfliijf-'jij'w^ PO-.W, iu.1..j.ijiBWHH^jft^[|.iiWi|iW»,ii,v r, .�-r-.

i i

(b) in display mode, for generating a representative visual action;

(c) in remember mode, for adding onto a code list the operation(s) necessary
to reproduce itself.

Thus the system includes an incremental "iconic compiler". Since each operation has visual
semantics, the display becomes a visual meuphor for computing. The programmer need deal
with operations only on the display level; the corresponding machine semantics u ' managed
automatically. The mechanical aspects of programming languages has been and is
continuing to be well studied. The focus in this paper is on developing and interacting with
an articulate visual presentation.

PYGMALION is a computational extension of the brain's short term memory. It is designed
to relieve the load on the short term memory by providing alternative storage for mental
images during thought. The display screen is seen as a "dynamic blackboard", on which ideas
can be projected and animated. Instead of abstract symbols, the programer uses explicit
display images. Considerable flexibility is provided for designing icons; the programmer may
give them any shape that can be generated by a routine. This helps to reduce the
translation distance between representations used in the mind in thinking about a problem
and representations used in programming the problem.

The main innovations of PYGMALION are:

(1) a dynamic representation for programs - an emphasis on doing rather
than telling;

(2) an iconic representation for parameters and data structures requiring less
translation from mental representations;

(3) a "remembering" editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns into the
abstract.

The responsive, visual characteristics of PYGMALION permit it to play an active role in
human problem solving. The principal application has been in assisting the design and
simulation of algorithms.

This dissertation was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

. .

-jaj^-v. «�-—:-��-��-.��^��.•^�.^^~^..^~-~ ^.^^^ ^ ^ ^^^_^ ^ÄMA^^^^^^^^m*l^m***mltmt^

m mm ~mm- mmm IflllM

Pietace in

Preface

The following is a map of this document.

Chapters 1,2 -- A psychological model of creative thought, forming the basis for
the PYGMALION design principles.

Chapter 3 -- Other projects which adhere to some of the same principles.

Chapters 4,5 -- The PYGMALION programming environment in detail.

Chapter 6 - Examples of PYGMALION programs and data structures.

Chapter 7 - Conclusions and suggestions for the future.

:

This paper places equal emphasis on presenting a psychological model of thought
and usine the mode! in a computer environment. Readers interested in aspects of creative
thought which can be assisted by a computer should read chapters 1 and 2. Readers
interested in how the PYGMALION system attempts to stimulate creative thought should
look at chapter 6 (mostly pictures) to get the flavor, then read chapters 4 and 5. The works
of others which deal with the same aspects are described in chapter 3. Chapter 7 suggests
areas for future exploration. Thorough readers will read the chapters .in order. Chapter 6
and 4-A through 4-D are a minimal set for readers in a hurry.

There are three parts to this report.

Part I examines a psychological model which contends that visual imagery is a
powerful metaphor for thought. Mental images are derived from sense perceptions, but
hev may be abstracted and fragmented. Visual images are superior to linguistic

descriptions in the quantity of information they can contain and in the quality of their
oortrayal of objects and concepts. Aspects of creativity are also discussed. Creative
thinking involves the conjunction of two normally distinct thought contexts using images
from both.

This part develops the criteria for articulate communication between a human being
and a computer. A programming language can be more than just a passive medium for
communication. The technology now exists to design systems which actively augment the
user's ability to think and learn.

.. ����������-..., .�,..�.;.. - .:.. . ..->.����•-�'•��' ����•
...:,.•,-•.»•;-.. � v ,. ,.-�_,.�/:-.-.,,.,...„ .M .:-:�:,, ,:�'.. ...•�;...�... �.��^�.'«•�����--' ^-«i.. l.ü»W«..

F^? m^mm wm^m^^m ^^mmmmmm m ••"•., m .-

IV
Preface

The goal is to develop a system whose representational and
processing facilities correspond to and assist mental processes that
occur during creative thought.

Part 11 derives a programming environment called PYGMALION from the i.xiel
01 thought in Part 1. PYGMALION is a two-dimensional, visual programming system
implemented on an interactive computer with graphics display. Communication between
human being and computer is by means of visual entities called "icons', subsuming the
notions of "variable", "reference", "data structure", "function" and "picture". The heart of
the system is an interactive "remembering" editor for icons, which executes and (optionally)
saves operations for later re-execution, The display screen is viewed as a document to be
edited Programming consists of creating a sequence of display frames, the last of which
contains the desired information. Display frames are modified by editing operations.
PYGMALION employs a powerful paradigm that can be incorporated in virtually any
other programming language;

Every operation has both visual (aesthetic) semantics and internal
(mechanical) semantics.

In fact, every operation in PYGMALION has three responsibilities:

(a) for accomplishing a given internal machine task - the machine "semantics"
of the operation;

(b) in display mode, for generating a representative visual action;

(c) in remember mode, for adding onto a code list the operation(s) necessary to
reproduce itself.

Thus the system includes an incremental "iconic compiler". Since each operation has visual
semantics the display becomes a visual metaphor for computing. The programmer need
deal with operations only on the display level; the corresponding machine semantics are
managed automancally. The mechanical aspects of programming languages has been and is
continuing to be well studied. The focus in this paper is on developing and interacting
with an articulate visual presentation.

PYGMALION is a computational extension of the brain's short term memory. It is
designed to relieve the load on the short term memory by providing alternative storage for
mental images during thought. The display screen is seen as a "dynamic blackboard , on
which ideas can be projected pnd animated. Instead of abstract symbols, the programer
uses explicit display images. Considerable flexibility is provided for designing icons; the
programmer may give them any shape that can be generated by a routine. This helps to
reduce the translation distance between representations used in the mind in thinking about
a problem and representations used in programming the problem. !

. . . , „-> -. ,;��• ��.'� ���

�•— �
;---' ^�-.�.�..-.�^�...... - ..>^,^^^.-..:..^.^i^^..1„,..^,..,.^.!.v;.^,i,^;-.i.,^^--'.-—.'»•- �^.....-^^^1.'.

—* ", - ��'�� 11 ��" ! m^rm^m^^^mrmmm^mmr. tvmmnaimm

-

Preface

The mam innovations of PYGMALION are:

(l)a dynamic representation for programs - an emphasis on doing rather than
telling;

(2) an iconic representation for parameters and data structures requiring less
translation from mental representations;

(?) a "remembering" editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns into
abstract.

the

Th>' responsive, visual characteristics of PYGMALION permit it to play an active role in
human problem solving. The principal application has been in assisting the design and
simulation of algorithms. Part II describes the implementation in detail and presents
numerous examples.

Part III summarizes (he results, with suggestions for the future. The responsive,
visual characteristics of PYGMALION permit it to play an active role in human problem
solving The principal application has been in assisting the design and simulation of
algoi ithms,

The appendices include a listing of the initial implementation, notes and
bibliography In this paper, material that would normally be placed in footnotes has been
assimilated directly into the text (possibly in parentheses) or dropped entirely. The notes
designated by superscripts eg " contain only specific article and page information and are
found at the end of the paper. They do not contain any supplementary text. Superscripts
having a number higher than one hundred M l975 are dates.

I wish to express my sincere thanks to my advisers, Drs, Alan C. Kay of the Xerox
Palo Alto Research Center and Kenneth M. Colby of Stanford University. Dr. Kay has
inspired the most stimulating project of my career by demonstrating the power of an
individual with a personal computer. In seven years of association with Dr. Colby, he has
never been less than enlightening, motivating, and, in general, amazing. His encouragement
and guidance have been invaluable. I also wish to thank Drs. Terry Winograd and Cordell
Green for helpful suggestions in the preparation of this manuscript; Horace Enea for
interesting and informative conversations too numerous to mention; Dr. John McCarthy,
Lester Earnest and everyone at the Stanford Artificial Intelligence Laboratory for making
the lab a good place to work; my wife Janet for all the midnight hours spent helping me
with this thesis and with life; and finally the Greeks for the wonderful myth of Pygmalion,
giving shape to the dreams of creative people everywhere.

i
I
I
 . iiitiü-��n*!

mm—nmm.,..m-mm..... �������mmm i'i'}*- iiMiiii:,iuujiMiij.»piiwppwiw»u«�iiwjl'^.wwu»,"i.MP^iiij-wi'!ip. vm-nj.« ttmmfmm"* �*�'-•»

'. i Table of Contents

Table of Contents

Preface

Introduction 1

Part I - Aspects of Creative Thinking 5

Chapter 1 - Some Characteristics of Thought 6

A. Words and Symbolic Thought 7
B. Conscious Thought and Short Term Memory 9
C. Analogical versus Fregean . 12
D. Mental Images H
E. The Problem of an "Articulate" Representation 18
F. The "Innocent Eye" and Other Myths 21
G. The Role of Mental Images in Thought 23
H. Examples of Purely Iconic Reasoning 24
I, Concrete and Active Media in Education 27

Chapter 2 - On Creativity 30

A. The Nature of Creativity 3i
B. The Great "Whale Ears" Scandal --

The Use of Schemata in Thought 35
C. The Role of Emotions in Creativity 39
D. Galileo and the Accidental Nature of Discovery 40

Chapter 5 - The Relevance of Computers 44

A. Dynamic Programming 4b
a. The Unimate Robot '
b. "TV" Editor
c. HP-65 Pocket Calculator
d. "RAID"
e. High-level Debuggers

ü Ät'*Mkdiw.tii u. r ! i ����'rnr I Tn-fur ����,'i if VTo i itrilttYiliTailitfl-'i!!' mi^i h

BflPWWTOIMil.ilWJ 1 JiW«|iMllM""MiWi|(ll!WJfHpBWI^ I M! i MHAiWM..,;»«*^^*)^�!^^^^ ��V'.^fl^fl MI.MJIPI.PPMM-KIIMPIM -��

I
I Tablp of Contents Vll

-

f. Interpreters vs. Compilers
g. Programming by Example

B. Graphical Descriptions of Algorithms . 50
a. "Sketchpad"
b. Graphical Procedures
c. "AMBIT"
d. Animated Graphical Descriptions

C. The Computer as an Artistic Resource 53
D. The Computer as a Creative Resource 50
E. Radia Perlman and Her Magical Button Box 63

Part II - PYGMALION 67

Chapter 4 - Principles of Iconic Programming gs

A. Introduction ^g
B. The PYGMALION Philosophy . �......[70
C. Iconology ^i
D. Text Editors as Programming Languages 75
E. The PYGMALION Machine 76

a. Hardware
b. Software
c. Icon "world"
d. BOUNDARY and CONTAINER Attributes
e. Iconic Structures
f. Icon "menu"
g. Icon "mouse"
h. Icon "mouse value"
i. Icon "remembered"
j. Icon "Smalltalk"
k. The Design Space
I, Modes of Execution

F. Characteristics of Programming in PYGMALION 89
G. PYGMALION versus Automatic Programming 90

Chapter 5 ��The Internal Structure of PYGMALION 92

A. Smalltalk M
a. Classes and Subclasses

B. Icons as Pictures 95
a. Operations CREATE, COPY, CHANGE,

DELETE, REFRESH. SHOW
b. SHAPE Attribute and Operation
c. Operations DRAW, TEXT

C. Icons as Variables JQJ
a. NAME Attribute and Operation
b. VALUE Attribute and Operation

D. Icons as Data Structures J04

\
����,��������- �-- ...

 »-'•'�-"rn 1 T iMiillni

IppSpiSIBippi!«BB^iap)i,H»|ii«JUMiraK,.-^^ ,ilij-.i<l»,^w^,yiSi. i.liMi'iU. ',w.-i l'". t Wi,,., »li.IJ. J.VW«'*"^^B!HM|

Vlll Table of Contents

E. Icons as Functions 106
a. BODY Attribute and Operation
b. Defining Iconic Functions
c. Remember mode
d. Calling Iconic Functions

Iconic Contexts
Local Variables
Global Variables
Software Interrupts

e. OPCODES
f. Operations IF, REPEAT, EVAL

F. Icons as Processes 118
a. RUN, DISPLAYED and HAS / ttributes
b. Abstract Designation of Icons

Chapter 6 - Examples of Purely Iconic Programming 122

A. LISP70 Memory Organization 122
\ Factorial 125
C Circuit Simulator 139
D. Smalltalk Evaluator 146

Part III - The Once and Future PYC 153

Chapter 7 - Conclusions and Suggestions for the Future 154

A. Areas of Success 154
B. Efficiency and Other Problems 155

a. Efficiency
b. Internal Representation

C. For the Future 157
a. Graphic Vocabulary
b. Dynamic Operations

D. Epilogue 161

Appendix - Listing of the Smalltalk Code for PYGMALION 162

Notes 181

Bibliography 184

,

i. Viihtr^iir1- — ' -—""^I-I i. iiMiiti -- n iMrülfliini -- -������. -- MmMUM tmti^^m

1 ' '��" I m^^mi^mvmmmmmmmmmm v-nmrn

I
I Introduction

Introduction

In Greek mythology, Pygmalion was a king of Cyprus who fell in love
with a statue of Aphrodite Ovid, in the Metamorphoses, invents a
more sophisticated version; Pygmalion, a sculptor, makes an Ivory statue
representing his ideal of womanhood, then falls in love with his own
creation; Venus brings it to life in answer to his prayer.1

Artists down through the centur.es have felt Pygmalion's lure; to play the role of
cieator. But outside the mythological world of gods and goddesses the struggle has been
frustrating Artists have consistently reported a feeling of excitement during the process of
creation, followed by depression when the work is finished. Their best efforts always
remained lifeless and, in the end, unsatisfying. Michelangelo is said to have struck with his
mallet the knee of perhaps the most beautiful statue ever created, the Pieta, when it would
not speak to him. The historian E.H.Gombrich discusses "the belief In the power of art to
create rather than to portray" in his eloquent book Art and Illusion:

Without the underlying promise of this myth, the secret hopes and
fears that accompany the act of creation, there might be no art as we
know it. One of the most original young painters of England, Lucicn
Freud, wrote very recently: "The moment of complete happiness never
occurs in the creation of a work of art. The promise of it is felt in the
act of creation, but disappears toward the completion of the work For
it is then that the painter realises that it is only a picture he is painting
Until then he had almost dared to hope that the picture might spring to
life."

"Only a picture," says Lucien Freud. It Is a motif we find in the
whole history of Western art; Vasan tells of Donatello at work on his
Zuccone, looking at it suddenly and threatening the stone with a
dreadful curse, "Speak, speak -- favella, favella. ehe ti venga il
cacasangue'" And the greatest wizard of them all, Leonardo da Vinci,
extolled the power of the artist to create. In that hymn of praise to
painting, the "Paragone," he calls the painter "the Lord of all manner of
people and of all things." "If the painter wishes to see beauties to fall in
love with, it is in his power to bring them forth, and if he wants to see
monstrous things that frighten or are foolish or laughable or Indeed to
be pitied, he is their Lord and God."

I

.,.„�. ^ ..^.^ ,., -..^ .. .^——- .^
- — - - ��

r ^m^m^^*wmm*^m^mm imfntmi'ni i i "" "•�,l i" ,i i ma . jiiiiii^iiiipiji i

Introduction

•••..

Leonn rdo Dn Vinci: Left: Crolrj^uf- head*, c.MWj fii^M; L«rfo. C./509 fGombrich2/

Indeed the power of art to rouse the passions is to him a token of
its magic And yet Leonardo, if anyone, knew that the artist's desire to
create^to bring forth a second reality, finds its inexorable limits in the
restrictions of his medium. 1 feel we catch an echo of the
disillusionment with having created only a picture that we found in
Lucien Freud when we read in Leonardo's notes; "Painters often fall
into despair ... when they see that their paintings lack the roundness �d
the liveliness which we find in objects seen in the mirror ... but it is
impossible for a painting to look as rounded as a mirror image ... except
if you look at both with one eye omy."

Perhaps the pd^age betrays the ultimate reason for Leonardo's
deep dissatisfaction with his art, his reluctance to reach the fatal
moment of completion, all the artist's knowledge and imagination are of
no avail, it is only a picture that he has been painting, and it will look
flat. Small wonder that contemporaries describe him in his later years

 - ""—^-^—^.—^^^-^�.^J. u^^i^.
������- -

F mmm —<><ü-' �'.———~—-—- -"'"—

I
I
I
I
I
I
I
I

Introduction

i

as most impatient of the brush and engrossed in mathematics
Mathematics was to help him to be the true maker. Today we read of
Leonardo's project to build a "flying machine;' but if we look into
Leonardo's notes we will not find such an expression. What he wants to
make is a bird that will fly, and once more there is an exultant tone in
the master's famous prophecy that the bird would fly. It did not The
claim to be a creator, a maker of things, passed from the painter to the
engineer - leaving to the artist only the small consolation of being a
maker of dreams3

Leonardo Da Vinci: Aincreu, c.Uflfl f Wallace*/

Today with the advent of inexpensive computers, for the first time the average man
is presented with a powerful medium through which his ideas con attain a life of their own
A computer program is a creation: unusual, appropriate, in a very real sense a work of art.
perhaps more so than computer "scientists" like to admit. Many programmers have felt a
Tense of creative excitement watching their programs execute on a computer without
needing their intervention, particularly if they can watch the programs progress with their
own eyes. C-urpnse, stimulation, satisfaction and savoring are the rewards of creativity.

There is much to be learned from associating artistic concepts with computers. The
potential use of computers in creative activity is the source of much of their attraction and
mystique. "The computer is the world s best toy," Papert has said in discussing his project
to use the computer to enhance education5 Arnheim advances a more serious reason:
"There [is] much evidence that truly productive thinking, in whatever area of cognition,
takes place in the realm of Imagery. There has been a longstanding isolation and neglect of
the arts in society and education."6 Pye is succinct in his agreement: "If anyone thinks it
important to a civilization that a common ground between art and science shall be found.

;il...i«.v,-ii-;iii/ , J.i.^ii,Urfi — ����-�� -��- I '-�
,-'-' --I^- •��- •-����- - - - MriMHMMtM

_-•"—-. " —�

Introduction

then he had better look for it in front of his nose; for it is ten to one that he will see there
something which has been designed."7 And Koestle, contends that there is ru difference
between scientific and artistic creativity, or even between scientific and comic creativity
Regardless of what scale of values you choose to apply, you will move across a continuum

without sharp breaks; there are no frontiers where the realm of science ends and that of art
begins"« This report investigates ways to exploit the creative potential of those usincr
computers. "«"g

Durer: Drawing, c.1527 /Comhrich9/

��

„„.^«^ ������- ~- ———-»M-^ MMB MMMMMMi l*MMi .^mMMM

IWLI I.MH IM ULI ,:f.r_m.-.w.wj;n.im<-9 J»»t.««.JimB 11.,.,...—^-JIM.-.-.-^.'.�..«:-�����——-v .,,.,,,, r._,-J„,.T„.-r,. ^^ _,. .. .^j,,,.,,,, j,. ,M .,^„j,.„,«�,.„,„„�,,,».1~.,-T^-, ~ ^^W 1

1

PARTI

Aspects of Creative Thinking

I
I
I

IJ«W"I1II.W."IT?W^IWPHW .j.............. „„,.,.,*„„ ui.ajiiaiHiiiiB.il iiu i tm'WMKm.ummir.m'mnm,' mi»!!« K'llWJ^" �
II^''W"^IW"W".'«BPI PlP.lil^iUi -'" •****

Chapter I

Chapter 1

Some Characteristics of Thought

Summary

(1) Visual imagery is a productive metaphor lor thought. Visual images are
concrete and easily manipulated, and they provide a powerful
representational capability The images are multi-dimensional and are
analogous to the pertinent features of the subjects they represent.

(2) Words are "Fregean" and lack the repn'sentational power of images.

This part of the report is divided into three chapters. The first chapter presents a
model of some types of thought processes in the brain. The second chapter focuses more
particularly on the nature of creative thinking, thought processes that are both original and
productive The third chapter surveys several approaches to using machines which
augment these processes. The model of thinking has been largely adopted from the theories
of :lie psychologist Rudolf Arnheim, particularly from his superb book Visual Thinking,
augmented with other results from current psychological research. Only those aspects of the
model which provide guidance for the design of a computer interface have been
emphasized The goal of PYGMALION is to develop a computer system whose
representational and processing facilities correspond to and assist mental processes that
occur during creative thought. Part I serves as the raw material for the system.

. . i >,M|I ^-^<-—- ^.^..w..„..'i .,...�.,...iV,'IMlife'i>tf»lh.M«,^"--J-'-JJ-1 ^��'~*^- —�.-�� liMV in iiMi ��Mi.a'- ' •�������" - "~^'-'- "-^ ,, ,,. ,- - '����- - � '•I' llfii'ii- I'Ml *1m*i

""�——- ��iii ui vmm*mK^mmmm^*mimm^*>m iwipilipuiniiimuiiminiMi

I
I
i

I A Words and Symbolic Thought

Section A -- Words and Symbolic Thought

The ditference between words and pictures is the difference between
telling and showing

-- William Bowman1

Often we have to get away from speech in order to think clearly.
-• Woodworth2

A traditional theory of psychology is that the mind manipulates words in the process
of thinking As late as 1921 Edward Sapir in his book Language wrote, "Thought may be
a natural domain apart from the artificial one of speech, but speech would seem to be the
only road we know of that leads to it."3 In other words, language is the only discernible
medium available for thought indeed, the capacity for symbolic reasoning has come to be
a determining factor in measuring "intelligence". Undeniably words and symbols are
imp ^taiit to thought, but their precise role in the mind ha«: never been well defined or
understood. "[Psychologists] know a good deal about what thinking does but little about
what it is. A principal question remains. What are the mental shapes of thought?"
[Arnheim4] (This question, and this entire thesis, deals with the highest levels of cognitive
activity. Obviously at the neuro-chemical level of individual brain cells, it makes little sense
to talk about "shapes of thought". We are investigating and attempting to aid high level
mental processes which are distinguishing characteristics of intelligent human beings.)

Suppose we remove words from their meanings and limit them to their actual
shapes, i.e. examine language as language. The perceptual dimensions of language -- its
sounds and written appearance -- are unstructured. Little information can be communicated
to someone who does not know a language just by presenting him with spoken or written
words. (Though some languages, such as hieroglyphic languages, do use pictures of objects
as words) Language has meaning only insofar as individual words and phrases are
understood to have meaning, i.e. only if we understand to what the words refer, both
externally in the world and internally within ourselves. "Our ability to apply names and
descriptions to objects in the world has to be mediated by analogical representations. For
instance, one can define a word such as 'plank' in terms of other words, such as 'straight',
'parallel', 'wooden', etc., but eventually one has to say of some words, to a person who claims
not to understand them, 'You'll just have to learn how things of that sort ^."'[Sloman5]
Words are "signs", i.e. they stand for a content without representing its structure, (This
terminology is defined in section G.) The mind must have something structural to
manipulate

Hayes1973 has presented evidence that images are used even in such non-pictorial
domains as arithmetic and algebra. Most mathematicians visualize their formulae and
manipulate them as structure. Martin6 agrees that the ability to visualize a problem is a
useful skill in solving it, and that to mathematicians, notation is a form of graphical
visualization. In 1945 Jacques Hadamard conducted a systematic survey of the creative
methods of American mathematicians. He concluded; "My mental pictures are exclusively
visual About the mathematicians born or resident in America, whom I asked, phenomena
are mostly analogous to those which I have noticed in my own case. Practically all of them

1 >' l'1 ��'

.HilMi.i'r..;-:-:
IMl|i;MJni-Ui.t<W«PfWWm ���• ! ��� ��P^PWIP «ii iiiiii,.iinRifn!Min>JM«^iiii.i.ii«ii:iiwI.,iP;iiiiML.ii i ii.m

Words and Symbolic Thought i-A

"

avoid not only the use of mental words but also, just as I do, the mental use of algebraic
or any other precise signs ... The mental pictures of the mathematicians whose answers I
have received are most frequently visual, but they may also be of another kind -- for
instance, kinetic."7 Einstein, replying to the survey, felt compelled to emphasize in a
personal letter to Hadamard;

The words or the language, as they are written or spoken, do not seem
to play any role in my mechanism of thought. The physical entities
which seem to serve as elements in thought are certain signs and more
or less clear images which can be 'voluntarily' reproduced and
combined... Taken from a psychological viewpoint, this combinatory
play seems to be the essential feature in productive thought -- before
there is any connection with logical construction in words or other kinds
of si^ns which can be communicated to others. The above-mentioned
elements are, in any case, of visual and some of muscular type.
Conventional words or other signs have to be sought for laboriously
only in a secondary stage, when the mentioned associative play is
sufficiently established and can be reproduced at will8

Arnheim finds in art parallels between visual perception and cognitive processes:
"Artistic activity is a form of reasoning, in which perceiving and thinking are indivisibly
intertwined The person who paints, writes, composes, dances ... thinks with his senses.
This union of perception and thought [is] not merely a specialty of the arts ... The
remarkable mechanisms by which the senses understand the environment are all but
identical with the operations described by the psychology of thinking. Inversely, there [is]
much evidence that truly productive thinking, in whatever area of cognition, takes place in
the realm of imagery."9

Images are derived from sense perceptions. They may be visual, auditory,
kinesthetic, olfactory, and may even use taste. This thesis concentrates on visual images
because (a) they have powerful representational capabilities; (b) operations on visual images
are versatile, yet simple; and (c) computer technology is at a stage where visual processing
can be effectively augmented. Arnheim summarizes the relative potential of words and
images in productive thought:

Concepts are perceptual images and ... thought operations are the
handling of these images ... Images come at any level of abstractness.
However, even the most abstract among them must meet one condition.
They must be structurally similar (isomorphic) to the pertinent features of
the situations for which the thinking shall be valid.*0 [emphasis mine]

[While] language can supply information by what Kant calls
analytical judgments. ... purely verbal thinking is the prototype of
thoughtless thinking, the automatic recourse to connections retrieved
from storage. It is useful but sterile. What makes language so valuable
for thinking, then, cannot be thinking in words. It must be the help
that words lend to thinking while it operates in a more appropriate
medium, such as visual imagery.

-�����... ...-.�-,..,.—....:.. - - -�"- --"—-- �.�^.-~..J^—:>-. J

BWUfflMWl!!1"-.!-.!«,- nii. ijii.) ii'iyjijl».)!«! fT..�!��*-��«' -'..I,"'-J"'.-.,I IHIPI Irfll'lHL»*!' 1l,*J,«l-HII.I", I^UWIM IfHI.IlV LIMI>III-M ^j^-^JtVP.,!..,,. ^ i J.-inv- »�^�1^V!W^,P•_«��•

l-A Words and Symbolic Thought

i

i

The visual medium is so enormously superior because it offers
structural equivalents to all characteristics of objects, events, relations.
The variety of available visual shapes is as great as that of possible
speech sounds, but what matters is that they can be organized according
to readily definable patterns, of which the geometrical shapes are the
most tangible illustration. The principal virtue of the visual medium is
that of representing shapes in two-dimensional and three-dimensional
space, as compared with the one-dimensional sequence of verbal
language. This polydimensional space not only yields good thought
models of physical objects or events, it also represents isomorphically the
dimensions needed for theoretical reasoning."

Arnheim's notion of "isomorphic" here is not to be confused with the mathematical concept
of "isomorphism". Rather it means that there is an element in the representation for each
feature of the concept represented that the mind considers to be relevant. For complex
concepts this requires considerable representational flexibility. Perceptual images,
particularly visual images, provide more descriptive power than do words.

Section B -- Conscious Thought and Short Term Memory

Experiments in psychology indicate that the brain possesses at least two kinds of
memory, "long term" and "short term". (There are apparently finer divisions of each, but
this is the gross organization.) The "long term" memory (LTM) contains all the Information
that a person is able to recall, either voluntarily or involuntarily. We will make no
assumptions in this paper as to how information is stored in the long term memory. The
"short term" or "working" memory (STM) contains the objects currently being dealt with in
conscious thought. Much psychological research is being done on the nature of such
objects. Representative experiments are described later in this chapter which support
Arnheim's theory that visual imagery is an exceptionally productive medium.

In my view, words normally play two roles in thinking:

(1) Words suppress detail, keeping the brain's limited-capacity short term
memory from overflowing.

(2) Words provide access paths to more complex structures in the long term
memory, which are then retrieved and manipulated directly in thought.
Thus words are indices, pointers to concepts.

Psychologists are in substantial agreement that the information capacity of the short term
memory is limited. Miller, in a classic paper1967, proposed the "magic" number 7 �- 2 as the
size of the STM. The STM can hold between 5 and 9 "chunks" of information (the
number now appears to be as small as 4 or 5 [Chase and Simon1973]), but the size of each
chunk can vary More total information can be stored when an organization is imposed on

I
SBHB

ffftßf^ggmpmtm»^ »iS«w^^fwa^-^�-T-^-- -'- ��������--.i::.>.-^»T.y .�MW'K.^AJaflf'j^'^'i 'u wvj9*if^>^m%-..^mH^ >-^..f.i.f^(if:iv.^.»,w.*1-mf-p;.»j,i..i.M-^;-T-^M-T" ' -r--«iTSP^ �~r>*,*~*'?'. "-���•>��^•FT^.-^rwillfllrP^y-J.-1»'^' ""^': ^

10 Conscious Thought and Short Term Memory I-B

individual pieces of infoimation than when the individual pieces are stored directly.
Moran1973 reports an experiment in which subjects were asked to remember a sequence of
directions of the form: north, east, south, east, south, west The experiment was designed
so that only the short term memory was involved. The subjects were able to remember
quite long sequences (two-to-three times the usual capacity of the STM) by visualizing a line
drawing of the directions:

North, eatt, touth, east, iouth, went.

An interesting corollary of Moran's experiments is that the STM seems to have
spatial as well as quantitative limits. With one sequence, subjects complained that the path
"keeps dragging out" to the east12, causing space bounds to be exceeded.

Visual organization is an extremely efficient chunking method. A closed curve that
can be remembered topologically contains an infinite amount of information about
individual points. One thing experimenters usually do with data is plot it on a graph or in
a table, to organize it visually. Concepts become clear only when the overall structure of
individual pieces of information can be grasped.

, �..rr.....^^-..'.^„^v.^w.-Lq.,. A-,.^,.k. ...:. ^.-...;..;,,...^..,^^-.,..-^i:.Vi,.^..^.rIl i ii.ifc'i'iiilfctiMi|-ifCM(: i i\i in-'-- ����-�����"�:^..^..^*.>...,....u... �..w... ./-.„--�iV.n. :,._.„^i»,.,-;,....i.-...,.;,^....,,.;M^,»-.,v..»..Jii-ti^.ki.tkaJ>^ILit«k»

"H" "W" ipP|IW"W|i«HB»l ��n IILHII ,i i i, muiiii piirw . .1,,.. i i. ii I»II,«],I. fWMP» illWUMMI W» <

12 Conscious Thought and Short Term Memory 1-B

short term memory long term memory

By patterning itself after th.s model, PYGMALION hopes to stimulate and assist such
thinking processes in people.

Section C -- Analogical versus Fregean

To put the preceedmg sections into deferent terms. Sloman distinguishes two kinds
of .vstems "analogical" and "Fregean" (after G.Frege, the inventor of predicate calculus),
AnaCcal systems are ana^ou/in structure to the things they describe; Fregean systems
bear no uh resemblance. Natural language, for example, is Fregean for most tasks,
whereas architectural d.agrams are analogous (at some level) to the bu.ldmgs they descr.be.

In an analogical system ... the structure of the representation gives
mformation about the structure of what is represented. As two-
dimensional pictures of three-dimensional scenes illustrate the
correspondence need not be simple... The interpretation of an analogical
representation may involve very complex procedures, including the
eeneration of large numbers of locally possible interpretations of parts of
the representation and then searching for a globally poss.be
combination... By contrast, in a Fregean system there is basically only
one type of "expressive" relation between parts of a conf.gurat.on,
namely the relation between "function-s.gns" and "argument-s.gns
The structure of such a configuration need not correspond to the
structure of what it represents or denotes. At most, it corresponds to the
structure of the procedure by which the object is identified, such as the
structure of the route through a complex "data structure".

i

Fregean representat.ons have the advantage that concepts which are difficult to
represent (such as universal and non-ostensive concepts) can still be manipulated, since the
eme'sen ation is always the same. However, as discussed in the last section this is not a

now fu a medium for conscious thought as is visual imagery. Concepts which cannot be
Represented visually are more difficult to "think about" than visual concepts smce the
trn formations are more abstract. Occasionally the words themseWes become .mages for

L^:-. ..-: � ������.:-^L-^^~^- ������������������--.. Oi - '.^.i.tAI-ii. .^.. ..--JV.^.t.JU..^i>^^V>Ü^t^-^A&.;i«*.llKJ» �WjAi..^-^^i.n-^.lJ.-..-J^-_ a__. ��;��-��� ��� — �_ . �������.• -..r.^.::^. ,...-......':.^,^.^.it,l.^:,LJ,-,J-..;^ ., ^.^.j-i. ^��^.-^fc.-.\1,^^

»•�—————— mmmwmim i < i �� WBptpWW-111 ' ' " .'iJuuii.»~,i.llJi . HMJWJ.I i.ililii.. ini4)i»>,ll IHII^WI^�»—^

l-C Analogical versus Fregean 13

I
1

non-vmial concepts like "trnie". "space", "infinity", "love", ' |ustice Infinity is not an eight-
Irttn concept; it has many dimensions, each of which can be retrieved and dealt with on
demand The collection is represented in the image INFINITY, or perhaps «, Even the
mrhematician G Polya, who claims he thinks with words, does not use words as
equivalents of ideas, since he uses one word or one or two letters to symbolize a whole line
of thouehf his psychological process would be in agreement with Stanley's statement that
•language as an indicator, can only indicate by suggesting to our consciousness what is
indicated, as object, thought or feeling-lHadamard15] Hadamard said he never met
another man who responded as did Polya.

One of the advantages of analogical representations over Fregean ones is that
structures and actions on structures in the metaphorical context have a functional similarity
to structures and actions in the represented context. It is less likely that operations will be
applied to analogical representations which would be illegal in the other context. When a
representation is analogical, small changes in the representation (syntactic changes) are likely
to correspond to small changes in what is represented (semantic changes). Changes all in a
certain direction or dimension in the representation correspond to similarly related changes
in the configuration represented, and constraints in the problem situation ... are easily
represented by constraints in the types of transfotmations applied to the representation, so
that large numbers of impossible strategies don't have to be explicitly considered, and
reiected Hence 'search spaces' can be efficiently organised. By contrast, the sorts of
changes which can be made to a Fregean, or other linguistic, description, such as replacing
one name with another, ... are not so usefully related to changes in the structure of the

configuration described." [Sloman]

The notion of an analogical representation is task dependent; descriptions analogical
in one domain may be Fregean in another. Even FORTRAN is analogical when dealing
with mathematical formulae;

fix) = a + b x + c

*

F = A * X**2 + B*X + C

But FORTRAN is Fregean and obscure for specifying change, the flow of control, or data
structures other than numbers.

.^.J,^^.-.*. ��.�...,�!....i.w:,--.i^.---->^.—�'�.. �-AA.-^fc^.n.-,..-:i j^i..., ,..�.. .�:..;„�..��, Jj>^>^....Jv^L-aat. ^* .•-�:..^/^.... ,.�����-. , :....,-.I.^^^-.-.JL.��.^. �... �. ... ^.t^....^ »a»J^-^o.-;..,...„r.:.^ ^^^u.^t^-ji..^^.^^.�.^...J.IL^ .-.;....�..M^.^/.. HV*.'��.^. -�...i �'��.u^-l^-^a^iia^^iurfiy.�; f4fr'Mi-iflM'y|

14
Mental Images 1-D

Section D -• Mental Images

Without a presentation, intellectual activity is impossible, r -- Aristotle"

Thinking can deal with objects and events only if they are available to
the mind in some fashion.

- Rudolf Arnheim1

What are mental images like? The branch of psychology known as eidetics holds

C»HoKr rnsof Ml Xm" S f^ ^n* ... r««.««. or e,en.S
in their past;

All patients agreed that the experience is more vivid than anything they
Tould recollect voluntarily; it is not remembering but reliving. The
experienced episode proceeds at its natural speed as long as the electrode
is held in place; it can neither be stopped nor turned back by the
patient's will At the same time it is not like a dream or hallucination
The person knows that he is lying on the operation table and is not
tempted to talk to people he sees in his vision. Such images seem to
approach the completeness of scenes directly perceived in the physical
environment; like that outer visual world they seem to have the
character of something objectively given, whicn can be «PJored bj
active perception the way one scrutmues a painted or real landscape.
[Arnheim19]

in addition to this involuntary re-creation, the psychologist Erich Jaensch has estimated that

^ctTurer ^l^^areT;: SevenU far more accurately than they could
voluntarily.

Some indication of the enormous capacity of the brain is furnished by the
fc nf Rpia lulesz1971 lulesz used "random-dot stereograms to study the

experiments of B^ Ju,eiz ' J^" of computer-generated random dots, typically
CT'^J Vh^Cedlup im oÄ to contain a figure such as a

amondrai^d above a ranSom fackground, (The reader -y try cross.ng hi, eyes to
supenmpose the following stereogram, or he can refer to Juleszs book.)

khl ������..^.. ^^-'-'-^'>---^^^.^w.i^-^-^^:--.:^.^^.^>...^U;JJ^J^J^t»WJ&., .- ^I..- ��.^. .^^ L.-^...^ ��.. i.^.._... - ���... ^..... . ^.....w^j.., ���—��,-^ ��—.���-.� .;... ...t^.i ^ ...�^�-j.>..iti£^tiat ^t^'^i.i.i*.i^~vr.-._^^^ ^t.-j.^..: .*....... i.... -.. .^

ff"*l HIM-»!!^. M^f^. «�">" WPW—

1-D Mental Images 15

/] Random-Dot Stercogram /Jules:. /

The figure will appear only if the superposition is exact, small displacements or
inaccurate reproduction of one of the arrays destroys the effect In a classic sequence of
expenments one stereogram was shown for a few seconds to a subject possessing eidetic
recall After a ten minute interval the subject was shown the other image and correctly
sunn imposed them to detect an inverted T-shaped area. Furthermore the area was sharply
defined which is remarkable since blurring of either array causes the corners to appear
rounded off The time between images was then extended to 24 hours with another set of
stereoerams Again the eidetiker correctly detected a raised square area. "That 10,000
nirture elements of a random-dot texture could be precisely stored for 24 hours without loss
of detail argues that at least a select few of Homo sapiens have a detailed texture
memory "[Julesz22] The subject was then shown a series of stereograms to determine the
ultimate capacity of her eidetic memory; she was able to reproduce with complete accuracy
four 100 x 100 random-dot arrays.

Experiments like these indicate that the mind is capable of storing sensory data in
ereat detail Furthermore, they suggest that the precise temporal order and rate of events is
preserved. Under the proper conditions this information can be regenerated, read out like
a detailed computer dump.

This is the full "data base" of the mind. However it is not the data of thought.
"The kind of 'mental image needed for thought is unlikely to be a complete, colorful, and
faithful replica of some visual scene. But memory can take things out of their contexts and
show them in isolation.lArnheim23] Thought deals with fragments, transformations,
abstractions and combinations of incomplete scenes. The discerning mind selects only those
traits which are relevant to its present goals. In his article "What People Dream About,
Calvin Hall1951 wrote that in ten thousand dreams reported from both men and women.

, L^- J ;.�.....�...— . 1. :'^.l./.:.- ..- -.1. ��������- „-nielli ^-^^^ .-.^.�J. - .- .^.�,..,„—,.J, ...- �- .. -:;.» ..r,.-.-. .��.���^.^-^�^^..w—..�-^^^^.^.v - iniiia-yiii

mfmmmmm^mmtmmmmim******!**" •W!l-pP.«*«li�»-P»^wp«^llll«l«l*IIPi>PWl .»fl f^wBpmpw^i" �Mil ^jjiani i.mm*^ —'" �—��

ID Mental Images 17

i
i n i /

s , i *—

y

28, />«;/«.• Cootf Marringf, Right: Bad Marriage /Arnheim /

Even for concrete objects, images need not look like the objects. Images may be
classified as "mimetic" or "non-mimetic" depending on whether or not they resemble the
objects or concepts in physical appearance.

��

l.oft: Mimetic Image of "Hill"; Right: Non-mimetic Image Str«snng Dimention of "Barrier"

Current research in psychology (see, for example, the Eighth Carnegie Symposium
on Cognition) is beginning to gather quantitafve experimental evidence on the nature of
visual images, rather than merely trying to demonstrate their existence. Arnheim suggests
that mental processes involved in thinking with images are similar to those involved in the

��

18 Mental Images 1-D

perception of images Cooper and Shepard suggest that perhaps the mme mechanism is
involved le the "same functional units in the brain They note selective interference
experiments in which a subject a asked to form a mental visual image of an object. While
he is doing this, his ability to detect and recognize other externally-presented visual images
is i educed The same thing happens with auditory images while thinking of a tune, the
subject is less able to detect and recognize other sounds. However, visual images interfere
less in the detection of audio signals than do audio images, and vice versa. [Cooper and
bhppatd1973] This indicates that the image processing units in the brain are discrete
according to the type of image

As opposed to interference, reinforcement occurs if the external signal is "compatible"
with the internal image The subjects show improved detecting ability when external and
internal images are similar in form In fact, in that situation subjects forming mental
images do better than subjects forming no images at all "Performance should then be best
when the imagery is in a form (modality, structure, or system) that is most -- not least --
similar to the form of the externally presented material." [Cooper29] The quickest mental
response occurs when the representation in the medium is closest to the representation in the
mind

Section E -- The Problem of an Articulate' Representation

I consider it a heresy to think that any painting as such records a sense
impression or a feeling. All human communication is through symbols,
through the medium of a language, and the more articulate that
language the greater the chance for the message to get through.

- E.H.Combrich30

"What is this?"

"A steamboat."

"And that scribble over there?"

"That is art. •31

The fundamental problem for PYGMALION is to design an
ARTICULATE LANGUAGE for communication.

Webster defines "articulate" as "expressing or expressed readily, clearly, or
effectively."32 The most readily, clearly and effectively expressed information is that which
requires the least translation between tie internal representation in the mind and the

.-^ ^_^ ^JJ^:^^Jm^1A^JM^jLM«fc t^^Htmmtmum MUMIHMM �MHMHMMMÜ

 ��' ��
�1ij^i.«»i|llü 1 iiJUIJ HU

I F The Problem of an 'Articulate' Representation 19

extnnal representation in the media An articulate form for a problem is one which
corieMjonds closely to the form used in the mind in thinking about the problem. (This is
problem-dependent, the mind uses different representations in different situations) Let us
define the "translation distance" between two representations as the number of
transformations that one representation must be put through to make it identical to the
second representation Then we can summarize the results in the previous section in a
"mimimum translation principle"

MINIMUM TRANSLATION PRINCIPLE; The most articulate
representatinn for a subject is at a minimum translation distance
from the mind's representation.

Like Amheim. Cooper and Shepatd report that then experiments "establish that the
internal representations and mental operations upon these representations are to some
degree analogous or structurally isomorphic to corresponding objects and spatial
transformations in the external world,"33 This finding is restated in the following corollary

COROLLARY: Analogical systems are more articulate than Fregean
systems for extensional problems.

Programming languages and environments have almost all been Fregean systems.
Computers normally accept problem solutions only in a static, linear form. The programmer
must translate his mind's representation into this static, linear representation in a text file.
The translation distance is large The inarticulateness of a text representation explains the
following phenomena: Most programmers have difficulty understanding someone else's
proeram given just a listing of the source code. They have less trouble if they can talk to
the programmer directly and get the program explained to them. They usually have even
less trouble if a hlackboard or other multidimensional medium can be used as part of the
explanation (Baecker at Toronto is presently engaged in animating program semantics.
His computer animations communicate the meaning of programs more effectively than
anything ehe I have seen Cf Chapter 3.) Really articulate communication can "open our
eyes" to^meanmg "Salvador Dah's way of letting each form represent several things at the
same time may focus our attention on the many possible meanings of each colour and form
- much in the way in which a successful pun may make us aware of the function of words
and their meaning." [Gombnch3"] An articulate representation may illuminate new and
hitherto unrealized aspects of a problem and lead to a creative solution of it. With a
suitable representation, the problem-solving abilities of a person using a computer can be
vastly increased

��

^M—U—K——M^,'^^l^"M"""'"0 r"r"riT "''
. ;i li.t.-.umt^j^ji.Mifi.iS-j v. . ,..^^i<iiJ*ä.vii.ii»i.,i..ÄJ

��' ���������' �� ^nammmm^mn LLiuiiiipili i*mw*r^mB^mm**m**m

20
The Problem of an 'Articulate' Representation 1-E

ABSTRACT CONCRETE

10.5 1

3.6

9.3

14.7

r«o Way. of Dengnating « REAL ARRAY 5 Long

, «wm" fnr communicating with computers? It is generally
What is an "articulate form ^^""'"^ar than programs in higher-level

a„.eed that machine language programs ^ ' ^ Z nowTharts of FORTRAN
langauages like FORTRAN "ALGOL." ^° themse,Ves. IBM requires its
programs are (usually) more articu,a« ^'^^^l ts ln addition to the normal write-
Lgrammers to document their Pr

t
0ffn

m
u\^'h

ow
n^ats themselves as program notation (e.g.

M^^rirZ^ZZ^ that the Ul ogr representational
clarity has been achieved.

As everything so far suggests. I '-J^ hi^;^^a, .IT^S
From an mformat.on processing ^^"^^Sd trough studies such as
communication °ver one-d,mT " ' nnmt educa^rs like Piaget and Dewey have long
Miller's. From an educational standP0 " .^^und rstand^han the abstract. Much
known that the conc^ 'I^'^Z0;^ f^ e abstract and from particulars to the
concept learning P^6605/^'^ ^ve used diagrams as an aid to solving problems general. Scientists since the Eg p.ans housedJ n.cat,on .„ c0
and for communicating results °n�/''^ an increasing use is being made of
understanding involves ^'^ of'thinking we are using
graphical (even 3-0) P^^^^^ctLmal image/are. they "must meet one condition,
asserts that regardless ° f^0^. ^ ^^ c) to the pertinent features of the situations for

for all but the simplest problems.

KWiV*-*' t^-i.-; .�'-���� '��

,i*^,±..\.,fi,;.Li, -..,.. .�.��^�..-^...�I ...�.�^�.�^-^..�^^�^..^.��..^^

�IIJ '��— '' ii ., I Ji.. !Jli|.jl.»i||i«jJl »JJIIJIi II I|WW^IP.J»". *.l. II..IU|.L.I^II^l|»."-^»'!"(Ui.Jl-Pii|i1.i M^J^.M^^MJ»! Jp...f|(i;H..l \ • --' ' . . - - - T-v

l-F The 'Innocent Eye' and Other Myths

Section F - The 'Innocent Eye' and Other Myths

The forms of art, ancient and modern, are not duplications of what the
artist has in mind any more than they are duplications of what he sees
in the outer world in both cases they are renderings within an
acquired medium, a medium grown up through tradition and skill -
that of the aitist and that of the beholder

21

36

Any repi; sentation must of necessity allow of an infinite number of
interpretations and ... the selection of a reading consistent with our
anticipations must always be the beholder's share.

... The interpretation of all images [is] a philosophical problem 38

- E.HGombnch

Instead of dealing with complete, finely-detailed information, thought processes tend
to abstract information down to a skeleton of what the mind considers (at the time) to be
relevant features. This is necessary to prevent the mind from being overwhelmed by a mass
of details. "It is a quality invaluable for abstract thought in that it offers the possibility of
reducing a theme visually to a skeleton of essential dynamic features, none of which is a
tangible part of the actual object." [Arnheim39] In art, caricaturists since the sixteenth
century have been aware that a .'.ingle stroke of the brush could significantly alter the
information content of a picture. A single line is capable of being seen as a complete scene,
indeed a complete event. "The humble suitor is abstracted to the flash of a bent figure.
And this perceptual abstraction takes place without removal from the concrete experience,
since the humble bend is not only understood to be that of the humble suitor but seen as
the suitor himself." [Arnheim40]

The impressionists elevated this principle to high art. As Gombrich tells us, the
beholder of an image always tries to project his internal preconceptions onto the external
world. He interprets an image not only in terms of its content but also in terms of the
context in which the image occurs and in terms of his expectations of what the content will
be. Gombrich notes "a well-known experiment that a familiar shape will induce the
expected color, if we cut out the shape of a leaf and of a donkey from identical material
and ask observers to match their exact shade from a color wheel, they will tend to select a
greener shade of felt for the leaf and a grayer one for the donkey." [Gombrich41] The
reason impressionist paintings often seem more accurate to modern viewers than medieval
or renaissance paintings is that the spare, suggestive lines of the impressionists leave more
latitude for the viewer to fill in missing detail by projecting his preconceptions.

 - �*�-�'�— •|iinriiiTiitii«miaiiriii nun iiilfii*ilifli �'•";-1-" '��-"'-^ >.--^^ — - -- - - ^�..-�^-.v...., �-

r IlipppPiPiiiJii.jiiV-.iliPiiiJf'piW-"iiii!L.iu,iJij , i J.JI. i,uiu.4i-H.P.Mhii.iiyiniiL(i..1i. j i [iiiinwmnv rnfffm^Lim»'** »�«**-ii».i)i-.ii^*in.^-.IHM.".U'IM'IUMr-yrw.jw**'>.'H»}_\nww^^*->\.*WfPIV*rJWJV'''*'''~

22 The 'Innocent Eye' and Other Myths 1-F

42, T/tp /Imrs Chair Demaiulrations fGombrich /

The psychologist Adelbert Ames has devised a set of clever trompe I'oeil
demonstrations that show very clearly this process of projection in the perception of images.
The picture above shows three of the demonstrations. When viewed through strategically-
placed peepholes, each room appears to contain a chair. But when viewed from above, two
of the rooms actually contain only a skewed collection of lines. "What is hard to imagine Is
the tenacity of the illusion, the hold it maintains on us even after we have been undeceived.
We return to the three peepholes and, whether we want it or not, the illusion is there."
[Gombrich43]

The perception of any given picture is heavily dependent on the context in which it
is viewed. This is the reason that art has evolved during its history.

����^J;.. ..,..��-��>�-.'Ti^.—^.'.
 •- ������������- -

.i-^.^^.^.^...^^.^-^.... *:~.*.^.....^.,. .t^^:^ ..:.: ^. ^^^— �-�"-�-^--^^^

f-ü" Wl I I I II WUMUlPpi —.
�f!l!JIJSW,II«,Jv!K!iP««MlMJ •amvp^m.u uiaiii i . -^——

*'

l-G The Role of Mental Images in Thought 23

Section C -- The Role of Mental Images in Thought

Now assuming the existence of mental images in thought, the next question is: what
roles do they play? What functions can they assume' In Arnheim's terms, there are three
functions performed by images; (1) signs, (2) symbols, and (3) pictures, in order of decreasing
abstractness. (I) An image is a 5:^71 if it is Fregean, i.e. "it stands for a particular content
without reflecting its characteristics ... To the extent to which images are signs they can
serve only as indirect media, for they operate as mere references to the things for which
they stand. They are not analogues, and therefore they cannot serve as media for thought
in their own right ... Numerals and verbal languages ... are the sign media par excellence."
The other two functions of images are analogic. (2) "An image acts as a symbol to the extent
to which it portrays things which are at a higher level of abstractness than is the symbol
itself" (3) "Images are pictures to the extent to which they portray things located at a lower
level of abstractness than they are themselves ... A particular image may be used for each of
these functions and will often serve more than one at the same time. As a rule, the image
itself does not tell which function is intended. A triangle may be a sign of danger or a
picture of a mountain or a symbol of hierarchy." [Arnheim]

HIGH
4

5
i a. »-
0)
<

i
LOW

NON-MIMETIC
FORM

STYLIZED
OBJECTS

REPLICAS

IMA6I

Represent

FORCES
IDEAS

SYMBOLIC
VEHICLES

GENERA

PARTICULARS

EXPERIENCE

45; Images at Pictures and Symholt f Arnheim]

Images are metaphors for concepts. They provide an alternate reality which is
simultaneously concrete in structure and analogic in representation. Koestler wrote of
Michael Faraday, whom he termed a 'metaphorical visionary': "He saw the stresses
surrounding magnets and electric currents as curves in space, for which he coined the name
'lines of forces', and which, in his imagination, were as real as if they consisted of solid
matter."46 The visual medium is an extremely useful metaphorical tool not only because it

:^^^^,-^^^M^isSäim^iäi^^i£i>ai^^ ''«^tÜÖä^adilkMHiUi^U^ �. 1 r 1:1 nlM-hi-1- n n.r\h'u nufi'.»JItt\i^u-vi-'i^i 1 vn• ��1.1V11W1 iifrr.yntfttW^�tid'Miäfiäitffrifli-^����*^-"^iiiIJ��nIn innliirtMl

IPf?w—»»�r^--T-T«---—-^-�—-^~—-iw»«^��*«"^^

0. The Role of Mental Images in Thought 1-G

has powerful representational capabilities but also because it has a rich set of topological
transformations within its own domain. Two- and higher-dimensional media possess far
more versatile structural operations than do one-dimensional media.

A system designed to manipulate images should allow them to assume different roles
in a proeram. For example, the programming language LISP permits lists to be used both
as data and as program to be evaluated, depending on the context. This provides a
formalism for proceeding from the concrete to the abstract. A particular image may first be
used as a constant data object, standing for itself, and then it may be used to represent
somethine else, as a variable. The variables in almost all programming languages today are
signs- their representations (e.g. X) bear no resemblance to the structure of their values.
The representation of a problem in most programming languages bears little resemblance to
the thought processes that occured in its solution. For this reason most programming
languages actually impede communication. In a multi-dimensional language the variables
can be analogical, pictures of their values.

Section H - Examples of Purely Iconic Reasoning

Geometrical demonstration must start from the direct visual awareness
of the fact to be proven.

-- Schopenhauer 47

The earliest use of analogical reasoning on a computer was Gelernter's "Geometry-
Theorem Proving Machine"1963. His program employed properties of the representation to
guide the proof of theorems. His simple heruristic "Reject as false any statement that is not
valid in the diagram" enabled his system to vastly reduce the search space of possible
pi oofs.

Geometry has historically provided a fertile ground for analogical reasoning. In
ancient India a branch of geometry developed which used in proofs on/31 diagrams and one
theorem the square of the hypotenuse. "Every proposition is presented as a self-contained
fact relying on its own intrinsic evidence. Instead of presenting a sequence of steps, the
Indian mathematician shows the relevant figure, completed, if necessary, with auxiliary lines
and offered with no comment other than the word "Behold! The proof consists of the
evidence visible within the given figure."48 This is analogical, visual thinking in its purest
form. Examples of such proofs follow.

l..:.^.;,... �. . �������j ��������������.J....;..-:..^-J. 1.1^^..^. ��..^^^^.:.J....:^..^.y^u.,..>:.-:...^Uil^\.^^At-i^.^ \..,^^,.^.i^L.i^^^^^"^rtä^;c.^.J^.^J..1(.».^.—i^». ^^^J^Jr^^;..^^-^-^...,^^ :..^,.: -.- i^^^^^--..^..:^^ .W.^^

PI|WIIU| IIJI.11PIW^MM^l».^11'lUWIIlW'^l VMJU..n. H-lIH. »UlillU,��JL l.^!: w.'m»**'***'**'*: ^^^^W^fl /llWt 'VniSWl^rfVJ J , '-.l. J |M!;. �!ll#i«Mtn^mmU^Wm^MM ^|. ,».,«��«l!>�PT»-���^ ^5 -�TOWW»B^/r'W-^W'TT^WWB-^*^"V.''l''•�'W'l!,TT �!�������i-tw<-"'."�' I-.-�«^

1-H Examples of Purely iconic Reasoning 25

The triangle based on the diameter of a circle is always right-angled. [Amhelm]

cu

BEHOLD!

(A * B)2 = A2 ��2AB + B2 [Arnheimfl3]

a + ^

2 a a

aJL e

BEHOLD!

i-.....^. ^-.. .>k,l_m.?>J.J^...^.ji.^. J.,,..,..>JJto.'.^^.. . . , �������������. 1 I — - - --.-... - -� --.-- -v^ ������^ - ��-���� \ *l ^^^d -...t- -J....,-- -f �ll^ii T

wmmmm*^mmmmmm'i*i'i***iiiiiimimmmimm wm^m^mmm' wi-i ,»�»'�'.�- v*

26 Examples of Purely Iconic Reasoning 1-H

Pythagoras' original proof of the Pythagorean Theorem:

For all right triangles A B C, A2 ��Bz - Cz [Courtesy of Alan Kay]

BEHOLD !

��

l ��������' ^—^^— ^..^.^^^t^^J:„....^^.**~^ ^^^.^^..^.^w^

—""—'�"�� -»-~w'r^—�" 11 " ����'> n"!1"

l-H Examples of Purely Iconic Reasoning 27

As Arnheim points out, mathematics so firmly related to perceptual evidence "can
arouse keen interest m unspoiled people. This is observed in the response of young
children to structural algebra and arithmetic. It is equally true for the person of mature
mind, if he is forced to perform at a level at which the task can only be solved by
memorized routines, his reasoning will protest or dry up. If instead he can operate in such
a way that perception invites comprehension, he will realize by his own experience why
[Bertholdj Brecht makes his Galileo say: Thnkmg is among the greatest pleasures of the
, '"50 human race

Section I -- Concrete and Act1 tedia in Education

The ideas first in the mind, it is evident, are those of particular things,
from when.e, by slow degrees, the understanding proceeds to some few
general ones, which being taken from the ordinary and familiar objects
of ser.se, are settled in the mind, with general names to them. Thus
particular ideas are first received and distinguished, and so knowledge
got about them; and next to them, the less general or specific, which are
next to particular. Tor abstract ideas are not so obvious or easy to
children, or the yet unexercised mind, as particular ones. If they seem
so to grown men, it is only because by constant and familiar use they are
made so.

-- John Locke51

In an abstract setting these concepts are difficult. Concretized in
suitable rojects in [a computer] laboratory they are perfectly accessible.

-- Seymour Papert62

Further foundation for the theory that communication is concrete and that
understanding involve: the abstraction of concrete information is supplied in some current
theories of education. Educators such as Dewey and Plaget have stressed that doing is
better than telling. Children learn more from direct experiences than from vicarious ones.
Direct experiences are those that a child actually does or that actually happen to him.
Vicarious experiences are those in which he participates indirectly, such as by reading
about them or being told about them. With the advent of television, a vast amount of
vicarious experience has been opened to every child "It has shifted the balance between
direct and vicarious experience towards vicarious experience for all of us and has done so
most strongly for the young. Instead of information poverty, they now experience
information richness. Schools as they now exist were designed for an information-poor
society, in part to provide a child with vicarious experience from books and contact with
the teacher. Obviously that function was radically altered by television, radio, and other
media outside the school." [Coleman53] Some teaching methods, such as the Montessori
method, emphasize direct experience and individual guidance. The child is encouraged to

mm • i �«•w^p^BBwwwwifwp^^^^i PF>^ 1 ��' —

28 Concrete and Active Media in Education I-I

actively interact with his env.ronment. "Although the school is no longer necessary to
provide Xmation. it is more important than ever for developing skills for the
management of .nformat.0n."[ColemanM] This applies as much to computer science as to
ITduS Computers must provide their users with effective techniques for managing the
ever growing quantity of information.

The difference between direct and vicarious experience is the difference between an
active and a passive medium. In a passive medium such as television, the user merely
ob erves He has no control over the events. In an attempt to supply an active theater, the
Czechoslovakian exhibit at the 1967 Montreal Expo allowed a movie audience to vote a
S in umes on ^ direction the movie could take. But this provides only partial relief
from passiv.tv It is difficult for conventional media to permit participation. To counter
pass vity acfL media are needed - ones that permit the viewer to interact with and
Knee events. The computer is an obvious candidate because its output is gtneratwe. as
opposed to being fixed or static as in a filmstrip. A computer's output can be changed
accordVng to the input. If the user is to establish a cause-effect relationship, he medium
must be mteractive.so that changes are immedi^bservable. It must give the user the
feeling of participating in an experience.

An active medium must also be inherently positive. If a computer is Jo act as a
laboratory for experimenting with ideas, it must not give negative feedback of the form:
"You did that incorrectly." Instead something consistent with the situation should happen.
IHhe result i not what was anticipated, it is up to the user to figure out why. Contrast this
with conventional computer-aided instruction, in which a child is asked to answer questions
Tnd .told that he is either right or wrong. There is little potentia in such instruction or
a chiW to experiment with a subject in depth until he is finally satisfied he understands it.

Simulation languages, such as SIMULA [Dahl1966]. embody many of the laboratory-
like capabilities of active media. Whenever a model is constructed of a given situation and
hen systematically changed to investigate different effects, the experimental paradigm is in

Iffect BuTtwo difficulties with most simulations are: (1) They have not been immediately
interactive When a parameter is changed, the effect cannot be observed until some time
äter (2) The representation of the parameters and of changes to the parameters have not

been in a natural notation. A translation of the parameters is required into some form, say
a seri " of numbm. that the computer can accept. The PYGMALION laboratory attempts
to overcome these shortcomings by immediate interactive feedback and by flexibility in the
denn ton of presentations. Fubini admirably expresses the delights of a true computer
iaboratorv when he says. "Perhaps the most moving and impressive show I have seen is the
imuS of the universe, and it is still in my eyes. A random population of uniform

bod" obeying Newton's Law was injected in a simulated space. Then in a ^seconds
Sin front of me. the moving bodies in apparently random motion acquired shape It
was thrilling to see spiral, nebular, globular galaxies appear in completely unexpected
Tashion I did not tmly realize the shape of the universe was defined in as gros
morphology by Newton's Law alone. The ability to simulate phys cal and sociologica
rücWs^and to examine in detail the effects of changes is one of the most powerful
oedaeoeical tools I have seen. It can be used to teach in concrete and immediate form the
SÄ consequences of a law or set of relations, and it can be used to teach a student to
find the relations himself."54 This is an admirable statement of the goals of an active
medium. How often with ordinary programs and languages has such enthusiasm been
displayed?

������,

:.,.»B.,J...J-.,.^w..,..t,,.f,,..,..^^^^,...,l>»^..,....M.^^^.-~-^»^^ifei«^: �e,,^..,J,^„-,.:.;.,^.;:..,..^:..l...-,......^:.^,.l Mm ^.o. ^...^.i,... .-..:,........^.-i^^^

wmmmmmmwwmm'^mmrmmm ��mmmm *m '"•' • • .ItWLJ^W." J.illJ u . UIIIIMRBIIVIWJ^' «"'<IIB> L '

II Concrete and Active Media in Education 29

The concreteness and immediacy of computers is beginning ro be appreciated by
contemporary educators Computers are a tool for managing information and conducting
expeiiments. as such they can help people to think and learn Several educators state the
case for computers Robeit Filep "Children can see immediate payoff on a computer in
even ttie most minimal demonstration of their skills 1 believe these factors have much to
do with "he students' excitement about using computers" Mark Greenberger; "The
computer is very concrete It is real �• something students can get their hands on and see
ihe effects of directly It is a refreshing change from abstract discussion in the classroom."
William Huggms: "Students today, at least at the college level, live in a completely symbolic
world a world of symbols, mathematics, and words. They do nor get their hands on active
experiences that give symbols meaning and physical definition that produce intuitions that I
find missing.

In the future education will shift toward the teaching of strategies for learning and
managing information. Computer interaction will shift toward strategies for actively
assisting thinking

��
,-- �'����������,���..,,..�;. ' , . .�������, - , .-. �.�:.-, . ; -.���������.....,,.,

mm*mmmmmim "^^�" . ..,.-«,,... -. J. U. ^M Ll,,,, p.t .. p,.-,,«^, iui ,„. J »j jyi^|.,?M., nui l!-i, i - ' f ^'^IIJ

JO Chapter 2

Chapter 2

On Creativity

We may proceed to define the creative thinking process as the forming
of associative elements into new combinations which either meet
specified requirements or are in some way useful. The more mutually
remote the elements of the new combination, the more creative the
procpss or solution.

-- Sarnoff Mednick.1

Summary

(1) Creative thinking involves the juxtaposition of two normally-distinct
contexts, using elements from both in a new and productive way.

(2) The creative product is novel, appropriate to the situation, a transformation
of contexts, a condensation having summary power.

(3) Creativity is less logical than deductive reasoning. It involves emotion and
may even involve chance.

IT H r V i- l..^.i.-irVtVr.ii l1lrt^'>rn..[T« i -�.-'���^-.~-. ^ ..'I i �����Tlinhnjfr '" '•�" ' rl "ültiitMtflhfl"" ' "" �-A-«.^: �. "..... ..Vl.^.» �^.~. ~..-�.-l^..^::....^..«..^^.^^

I
2-A The Nature ot Creativity '�I

Section A - The Nature of Creativity

We cannot judge expression without an awareness of the choice
situation, without a knowledge of the organon ... Where we have nn
matrix, no keyboard, we cannot assess the meaning of an individual
feature.

-- E.H.Gombnch

Creativity has only been examined quantitatively m the 20th Century Psychologists
have long been uncertain of its nature. Galton thought that creativity involved a coilertion
of qualities, among them what he called "fluency", i.e. "an unusual and spontaneous flow of
images and ideas." The creative mind is "always pullulating with new notions" Other
qualities are "receptivity" and "intuition of insight". James called the latter quality
"sagacity', and T.S.Eliot named it "sense of fact" McDougall added the quality of "demnt
association". But what these really are is a source of mystery. The word "creativity" was
not even defined in the Oxford English Dictionary until its later editions3

One school of thought has held that creativity is not the gift of the individual but
the spirit of the age. "An idea whose time has come," we often hear Goethe �.ailed it
Zeitgeist. For example, had Copernicus, Kepler, and Newton died early in life, then
contemporaries eventually would still have discovered the laws of gravity and motion
Indeed environment does play a pan in the creative act. Had Kepler not formulated hu
theories on planetary motion, Newton would not have discovered the law of gravity (It is
interesting to speculate what he might have discovered instead.) But tu believe that
environment is the whole story is to believe that "if William Shakespeare, like his elder
sisters, had died in the cradle, some other mother in Stratford-upon-A von or Stratford atte
Bow would have engendered his duplicate before the Elizabethan era ended "', No one
really wants to deny the genius of a Shakespeare or Bach or Picasso, and yet to make a
distinction between artists and scientists is to make a distinction between art and science, If
there is one thing that psychologists such as Arnheim, Gombrich and Koestler have shown,
it is that the same mental processes are used in science as are used in art.

Arthur Koestler has written an excellent book on the nature of creativity. The Act of
Creation. Many of the principles in this chapter are derived from his enlightening theories.
Koestler contends that all creative activities have a basic pattern in common, and that comic
inspiration, scientific discovery and artistic originality all share the same pattern "The first
is intended to make us laugh; the second to make us understand, the third to make us
maivel. The logical pattern of the creative process is the same in all three cases It consists
of the discovery of hidden similarities. But the emotional climate is diffeient in the three
panels: the comic simile has a touch of aggressiveness; the scientist's reasoning by analogy is
emotionally detached, i.e. neutral; the poetic image is sympathetic or admiring, inspired by a
positive kind of emotion.... When two independent matrices of perception or reasoning
interact with each other, the result is either a collision, ending in laughter, or their/laion in
a new intellectual synthesis, or their confrontation in an aesthetic experience"5 The same
interaction may produce any of these results, depending on the emotional climate of the
interaction The myth of Pygmalion itself is an example. The artistic or lyric aspects of
creation as symbolized in the myth are represented in literature by Ovid and in painting by
Burne-Jones, who brought Pygmalion's statue Galatea to life in a mystical atmosphere the

�w*r^;, iy.l,.^-.^.l...!±^t-,. -..JSS- �^:.. .:^.-U.1J.^^L..L .- •.�•�^ it* . �,,..L.v-^...w^-.....-* ^«-„�^--.•-^...~..—^/.^.-^.-g,,.... , - ---•*- -��- --- -^ ����ii ��'* i«^M ifc-i^iaa^y^flMaMa

A The Nature of Creativity 33

\ ��UM :i i ;

Mtm^ii

lemmm.
Inlpmrction af Thought Contexts /Koettlpr]

This is the ultimate source of the history of art. When faced with a new Situation,
the artist applies a schema developed in handling other situations, producing a
juxtaposition of the two. He brings an established way of looking at things into a new
context The visual contexts of artists are different from those of laymen. Artists have
created a code of rules which they obey in looking at pictures. The innovations in art have
been modifications of this code. Artists before Constable represented landscapes m "the
browns of an old violin" because their code of rules said that distance should be represented
by varying shades of brown. Constable brought a new perceptual context to landscape
painting - that of the non artist, who sees landscapes in shades of green. This led to the
codification of a new rule, namely: distance may equally be represented in shades of green
as in shades of brown. The drive toward realism has been the attempt to develop a code of
rules "among artists which is the same as the peiceptual code of the viewer. Modern
painting has developed a new goal: create codes that are deliberately different from those of
the layman viewer, forcing the viewer to adopt new rules for perception.

This juxtaposition of thought contexts, Koestler believes, is transitory and unstable.
Sometimes it happens that the thread of thought oscillates rapidly between two frames of
reference More likely though, the established context, the schema, produces an "Einstellung
effect" The Einstellung effect is the following: After once thinking about a problem in one
way it often becomes very difficult to think about it in other (even simpler) ways. A simple
suggestion at this point may produce a powerful effect. Once the initial suggestion is made,
the receptive mind immediately begins exploring the new context. Immediately a host of
comparisons present themselves. Conscious thought may remain in the schema, the
metaphor, until the initial rush of discovery wanes. Thereafter it may return to the schema
periodically for further comparisons and inspiration.

ia ��iti1HM'"f-"A*^"•"*-'�� ..i^*.Uti.'l*.-i.~si..^*L r|iiirtniijrtii1.| _ . - --^^- .�.,-.J^. ��� - — -� —-*��

'.H The Nature of Creativity 2-A

Oscillations Between Two Thought Context« fKoesller]

"Ail coherent thinking is equivalent to playing a game according to a set of rules....
In the routines of disciplined thinking only one matrix [set of rules] is active at a time."10

Therefore it seems plausible that a computer which knows the rules for a particular domain
should be able to assist and even stimulate thinking in that domain.

As an example of the way certain images trigger a whole "train of thought", a
chess board with a single piece on it, say a knight, may immediately start one questioning
whether a knight can legally touch every square on the board. This leads "naturally" into
an entire set of sub-problems. Can the knight get to an adjacent square? Can it get to an
adjacent square on the side of the board? Can it get to an adjacent square from a corner?
Can it get into a corner? From the results in Chapter 1 we can deduce that such trains of
thought are more likely to be initiated by analogical pictures of the chess board than by
Fregean words like "chess board" and "knight". Then we might reformulate our definition
of "articulate" in operational terms:

A medium is "articulate" to the degree in which it elicits a productive
Einstellung effect in its users.

The process of creative thinking has similarities with the process of perception,
mathematician Poincar/ felt that the most productive ideas "are harmonious,

The
and,

consequently, at once useful and beautiful."1' Gombrich applies the metric of "simplicity" to
measure the productivity of ideas: "It might be said, therefore, that the very process of
perception is based on the same rhythm that we found governing the process of
representation: the rhythm of schema and correction. It is a rhythm which presupposes
constant activity on our part in making guesses and modifying them in the light of our
experience.... In looking for regularities, for a framework or schema on which we can at least
provisionally rely (though we may have to modify it for ever), the only possible strategy Is

L_ - ��
iL--. .-.,-,. i^. .--•.... ~. ^.'^Aaw-j-^..^ .J. ,^.^ > -�.. u.^: �������' -'��— ���������������- — •-'-'- -�- It -— '-'- ��•- —��.-�-^--—:- .^.Mm. - —

I
I
I

35
>.A The Nature of Creativity

TU.C it not due to the fact that a simple assumption is to proceed from simple ^ptions Th.s "° ^e to ^ ^ ^^
Jre probably right but ^^.^ \^^he only ond.t.on under which we could learn
hypothesis cannot be --fj , S-J ^^ „J^ that things are simple until they
" an' jL'^erw. eV- Howevt. to say that a concept is Mmp.e" is not to say that it is
C lÄtS many invent.ons seem bizarre at first.

Section B -- The Great 'Whale Ears' Scandal

(The Use of Schemata in Thought)

You cannot create a faithful image out of nothing. You must have
SrneTt-h: tricK if only from other pictures you have - ^^,3

To copy others is necessary, but to copy oneself is pathetic^ ^^

> fhaf wrists always begin a picture with a "schema", a framework to
Gombrich ^«i^ the familiar"'5 A Dutch artist in

serve as a foundation. They classify ^ u"'a . . h d Up on the Coast. Whales
the sixteenth contury drew »^J^^ ifh^tdoubtedl/never seen one before.
in the Netherlands are rare indeed ^d theJj « ^ that the 'whil,e had ears! "The
parucularly not lymg on a beach. H*s ^e sno ^ ear and ^^ ^^

thought of that?

8

:.^....:.^^^^^^*A*^^^^^^.~^ iii.1^a^..^^..^,^^,.^;„..1L.V.;^

36 The Great 'Whale Ears' Scandal 2-B

After Goltziust Whale Washed Ashore in Holland, 1598 /Gombrich]

On a more practical level the same type of reasoning was done by Johannes Kepler
in 1609 when he applied the schema of Euclidian proportion to the new situation of
nlanetarv motion Kepler's laws state that (1) the orbits of all planets are in the shape of an
ilm.P with the sun at one focus, and (2) a line between a planet and the sun sweeps out

equal areas of the ellipse in equal times. Wilson, in his article How Did Kepler Discover
His First Two Laws?", investigates the question: which came first, the data or the model?
"What emerees from Kepler's own account is that he goes on his journey laden with theory,
and that he manages to arrive at the two laws only because he approached the problem
w"th a preconception. It is an initial hunch, a phys.cal hypothesis, that guides him
throughout "18 In other words, the ellipse came first. Kepler knew, through Tycho Brahe s
obsprvations, that Copernicus' circle model was not correct. The observations together with
his area hypothesis suggested a mare egg-shaped oval orbit. However since the calculations
were so "horrendous" with the oval, Kepler simplified the shape to an ellipse. Why an
elliose? Because the oval resembled an ellipse in shape and because the ellipse is the next
Simplest closed figure to a circle! Newton said later, "Kepler knew ye Orb to be not circular
but oval & guest it to be Elliptical."19 Actually Kepler did not start specifically with an
elliose in mind; rather he firmly believed that the eventual solution would be simple, like an
ellipse Throughout his investigations Kepler relied on Euclidean geometry to provide a
schema for organizing the confusing world of Renaissance astronomy.

Kepler's investigation embodies the essence of the scientific method of

.^.^M^;^^^.^^^^^

I
I
I

I

I

T1

|

2-B The Great 'Whale Ears' Scandal 37

understanding: hypothesis formation, experimentation and observation, hypothesis
refutation, followed by hypothesis formation again, until finally an hypothesis remains
unrefuted and becomes a "law". What Gombrich and Koestler tell us we can learn from art
is that hypothesis formation (the creative link in the chain) involves schemata. We form
hypotheses in the same way we paint pictures, not out of nothing but by applying a
preconceived schema to the new situation. The mathematical discipline is a schema which
has proved invaluable for solving problems in physics. Mathematical formulae are
attractive because they have many well-understood properties which can be manipulated
independently of ther referents, and then mapped back onto their referents transformed.
In this sense they are I regean; their structure does not conform to the structure of the things
represented. But nevertheless, as was pointed out in Chapter 1, mathematicians perceive
formulae as structured, two-dimensional images. With practice mathematicians are able to
attain great skill in manipulating these images. Therefore formulating a fact in
mathematical terms is tantamount to "understanding" it at a certain level. For example, the
formula

cost = 2 core(t j) (t, i+1 tJ

might mean "the cost of executing a program is directly related to the amount of core
required at time tj times the length of time {l,t] - l) the core is required." This is an
illustration of Koestler's theory of intersecting thought contexts: if one can map a problem
into another context that he understands better, he may be able to get a solution more
easily. It is the basic idea of linear systems theory: find a mapping from the problem space
into a (mostly) separable one.[Kay20]

Transforming a problem after one becomes familiar with it may indeed lead to a
creative solution, but the question remains: Why do people deliberately approach problems
with preconceived schemata or biases? Artists are well aware of the quandary of starting
"from scratch": "To dnw an unfamiliar sight presents greater difficulties than is usually
realized.'TGombrich2'] Picasso said that "the most awful thing for a painter is the white
canvas."[Wertenbaker22] To create something in an unknown domain is a superhuman
task. True genius is able to make a large creative leap; we cannot overestimate the creative
contribution of Picasso in inventing cubism or of Buxtehude in inventing the organ style
which culminated in Bach. But most creative achievements are transformations on the
schemata of their predecessors. In computer science, programmers usually find it far easier
to "optimize" an algorithm, to produce a more efficient or elegant algorithm that computes
the same result, than to write the original. The use of schema in creativity and the use of
projection in analysis are important aspects of the process of creative thinking.

I
I

i:,,.,.^^.....,..^.^^.^.^^^^^^.^^^^^.... .,.^^w....^:.^..^.^^^--^^^-.^^.^^^^..^^^.^.^-. ^„^.^.^^...^^U^^i.^

38 The Great'Whale Ears'Scandal 2-P

23 Picasso: The empty canvas (detail from "The Studio at Cannes", 1956) fWertenbaker^ /

 J-,-...^..^^..,-^. .:,..-..,....-.--.-^..-^.^. �|l1lT-|l'irTi-ft>t ��-^�-•���-^^.��^..-...�.^^^

39
2-B The Great 'Whale Ears' Scandal

Section C - The Role of Emotions in Creativity

l nf ,he thousands of facts, .mages and perceptions that we
How is it that each of/hf 'hf ^ ve ldea? Why are only certain .mages and

expel,ence every day ^es not ead^o a re u dea^^ J ^ ^ ^ ^
pecepts used in creative thought? W^t s .t TREK,S unem0tl0nal Mr.

conscious thought.
P0,nc,^ in h,S famcu, add,.. ,„ .9.5 on n,.,hem^a. creaUvU, made a Stro„g

case for the aesthetic.
u o.r numbers of comb.nat.ons blindly formed by the

Am0?g rSs Tare w hC
0't merest and without utility; but

subl.mmal self. almost -' are a!s0 wUhout effect upon the esthetic
just for that reason they are also opi/certain ones are
UiHty, C-S—^ belutiful. They will
harmonious, and, consequently, a [h „ mathematicians

,h°s give Ihem occasion to become conscious,

�
whm a sudrre:ar.rres,ra",v�^.obU;hn

-e-S^tSr^r^ -Ä,i e^ance. ^

.^sÄ^r^rÄ^^Ä^:
one lacking it will never be a real creator.

W„son saVs of W^'^ ^TZ^^^n
lheo„: "Kepler's discoven« we, a kind of m. short ^ ^^ ^^ ^ tht ^ and

rt^^rr^ ylrSSdlng- could8
ha.e sustained such a prod.g.ous

effort.

_. . ,. i . ; . i ' ��"•�����" - ' - I II liiirniMf �-"----—•--�•—— "��...^-�;^...„ _^_ , -^.—I—..J...-—^-1«^»

40 Galileo and The Accidental Nature of Discovery 2-D

Section D - Galileo and The Accidental Nature of Discovery

Ellas Howe had been frustrated for many years by his failure to perfect
the sewing machine. One night he dreamed he had been captured by
savages and dragged before their king. The king issued a royal
ultimatum. If Howe did not produce a machine that would sew within
24 hours, he would die by the spear. Howe failed to meet the deadline
and saw the savages approaching. The spears slowly rose and then
started to descend. Howe forgot his fear as he noticed that the spears
all had eye-shaped holes In their tips...

-- Krippner and Hughes2'

How does creation happen? What leads to a new idea or discovery? One might
think it is an eminently rational process; after a body of representative facts is assembled, a
careful process of logical deduction leads to a new invention. While this may have
happened, It is by no means necessary. In fact, Taylor states that "the rules of logic and
scientific method are a psychological straight jacket for creative thought."27 Often
creativity is emotional, imprecise, illogical and just plain wrong. It may even involve
chance. Drake1973 has presented evidence that Galileo obtained his first formulation of the
law of accelerated motion by accident, through an error. Galileo's creative step was
enormous, but what was Its nature? Like Kepler, Galileo applied a predefined schema - the
Euclidean theory of proportion �- to his (hypothetical) data. This led directly to his
synthesis of the law of motion. But Drake points out there was an error in Galileo's
hypothetical data which contributed directly to the result. In fact, there appear to be two
accidents in his derivation; the second was his use of 4 and 9 for his hypothetical distances,
both square numbers. These accidents appear to have been standard fare for Galileo.
Another schema -- "nature always acts in the simplest way" -- he used all his life.' Though
we might be tempted to regard Galileo less highly because of his "lucky" mistakes, as James
Joyce has said, "A man of genius makes no mistakes; his errors are portals of discovery."28

And Hadamard1945 points out that while there is a distinction between invention and
discovery, both Involve creativity. Some people have even carried the process of making
errors to the extreme of making it their working method. Mednick tells of a physicist who
places "In a fishbowl large numbers of slips of paper, each inscribed with a physical fact.
He regularly devotes some time to randomly drawing pairs of these facts from the fishbowl,
looking for new and useful combinations."29 Many creative ideas have even been the result
of dreams, as the story of Ellas Howe illustrates.

Ernst Mach, a 19th century thinker about thinking, has a memorable Introspective
description of how mental "luck" leads to discovery:

After the repeated survey of a field has afforded opportunity for the
interposition of advantageous accidents, has rendered all the traits that
suit with the word or the dominant thought more vivid, and has
gradually relegated to the background all things that are inappropriate,
making their future appearance impossible; then from the teeming,
swelling host of fancies which a free and high-flown imagination calls
forth, suddenly that particular form arises to the light which harmonizes
perfectly with the ruling idea, mood, or design. Then it is that that

w,

t �� - -*��� �����—���'�• •��- � ^_ . ��--���—- - � J.^----: - �- -�^���--^�..��. ...�*.,^-^i.... -�� -. • ^^,*i^Mti*LU*l*tiaLtut-i*M*l*L*ajd

2-D Galileo and The Accidental Nature of Discovery 41

which has resulted slowly as the result of a gradual selection, appears as
if it were the outcome of a deliberate act of ceation. Thus are to be
explained the statements of Newton, Mozart, Richard Wagner, and
others, when they say that thoughts, melodies, and harmonies had
poured in upon them, and that they had simply retained the right
ones 30

"Harmonizes with the mood .." There is a critical principle hidden in these emotional terms.
Unless a person really likes a task, has an affection for it, he is seldom if ever creative in it.

What is the mechanism of creativity? Sarnoff Medmck has clearly outlined one
answer. In general, "any ability or tendency which serves to bring otherwise mutually
remote ideas into contiguity will facilitate a creative solution; any ability or tendency which
serves to keep remote ideas from contiguous evocation will inhibit the creative solution."31

In particular, there are three ways to arrive at a creative solution;

(1) Serendipity - two stimuli may occur together by accident or "luck" and evoke an
associated response. This is what the physicist above was trying. It is irreverently
recognized in the saying, "GIVP enough monkeys enough typewriters and they will
eventually produce the complete works of Shakespeare." The stories of Newton and the
apple and of Fleming and penicillin are other popular anecdotes about serendipity.

(2) Similarity - two stimuli may evoke a response due to the similarity of the
elements evoked by the stimuli. An example is the use in literature of homonyms and
rhyme Medmck feels this is important in areas which are not dependent on the
manipulation of symbols (e.g. painting, sculpture, music, poetry).

(3) Mediation - two stimuli may evoke a response because they have some element(s)
in common. "For example, in psychology, the idea of relating reactive inhibition and
cortical satiation may have been mediated by the common associates 'tiredness' or
'fatigue'."32 Mednick feels this is particularly important for creativity in areas involving
heavy use of symbols (e.g. mathematics, chemistry).

'Mednick distinguishes at least two distinct cognitive properties or dimensions that
govern an individual's creativity; the "associative strength" dimension and the "visualizer-
verbalizer" dimension.

The "associative strength" dimension is the number of associations that an
individual has between ideas and the strength between these associations. For example, we
might ask a person what concepts "table" suggest. Il he is limited to just a few stereotyped
responses or if he has difficulty generating many responses, he is said to have an associative
hierarchy with a steep slope.

I
�- ��, -.- ����—- - - ����- �-—.—.�-.—��i-..-....—�-**——--^—^ ������

42
Galileo and The Accidental Nature of Discovery 2-D

High
 - Steep Associative Hierarchy
 Flat Associative Hierarchy

Associative
Response
Strength

Low

Number of Responses

If the person is easily able to generate more remote associations, he is said to have * flat
ope to his associative hierarchy. This is important because a person obviously is not

Koing to be able to use elements in a creative way if he doesn't have the elements or if it is
very difficult for him to generate them. Medmck concludes;

It would be predicted that the greater the concentration of
associative strength in a small number of stereotyped associative
responses (steep hierarchy) the less probable it is that the individual will
attain the creative solution. Thus, the word association behavior of the
high creative individual should be characterized by less stereotypy and
commonality.

The prediction suggesting an expectation of less creativity from
an individual with a high concentration of associative strength in a few
responses leads to another prediction. The greater the number of
instances in which an individual has solved problems with given
materials in a certain manner, the less is the likelihood of his attaining a
creative solution using these materials.

There is a rather frightening implication for computer science; The more "skilled" or
experienced a person is in using computers, the less likely it is that he will be able to use he
ompü er in a creative way! This induces the argument in Part II for a w.denmg of the

concept of "computer scientist" from a person skilled in the use of computers to anyone who
knows how to do something and wants to use the computer as a tool in doing '. Sucha
widening requires not only an increased access to computers for the common man (Kays
"personal dynamic medium", for example), but it also requires an improved method for
communicating with computers since it is presently too technical.

�—±^ ��^_ _.^_ ^„.^i ^-1 -���������������������-^-.v. *n*-^i±^:^::±iL^^M*MXk^ i.:^^,^^,-^:^:^:^^^^-^;/-,-.^..^.--:....^^^.:^.^:^^^^^^^^:!;^^ .,.Ltki,^>^i.i^-.'ü^J^jr^i-^.^^'.*L;ikA

2D Galileo and The Accidental Nature of Discovery 43

The "visualizer-verbalizer" dimension is a restatement of the notions of analogical
and Freeean The visualize." is one who tends to call up relatively complete memorial
en'oy Representations of the relevant concrete aspects of problems. If the problem deals
wh horses, he tends to p.cture a horse in terms of its sensory qualit.es On the other hand
thP verbalizer explores the problem by associating with words around the word horse If
he ecu.site elements are high in his verbal assoc.at.ve h.erarchy to the word horse, th
valuer will be more l.kely to attain a creat.ve solut.on; the v.sualizer may be thrown off
or at as delayed by many false leads. On the other hand, if a requ.s.te verbal assoc.at.ve
response o the word horse .s very low, or not present in the verbal.zer's h.erarchy then the
v.'s.a zer will be more l.kely to atta.n the creat.ve solut.on. It .s therefore clear that some
types of problems will be solved more eas.ly by the visual.zer and some by the
verhal.zer.tMedn.ck3"] Convent.onal programmmg languages almost ""^y�^"**
person to verbal.ze h.s solut.on if he wants to .mplement it on a computer. PYGMALION
is an attempt to get further to the visualizat.on end of the scale.

-i. . ������-� ������- ^ ��- -.^J-^'-^'— '�- �.. .—>-r.^..,^ ^.- �.,.,.^.:*~. .*...:^,.*~.~..

y. .'

44
Chapter 3

Chapter 3

The Relevance of Computers

��v.

[Computers'] especial talent in the direction of intelligence is the ibiUty
o Ze laborate models and fiddle with them, to answer In detai

aueTtions that begin "What if ...?" In this they parallel (and can help)
?he acquJing oAntelligence by children.... The human m.nd ... can
tolerate and even thrive on inconsistency. ^ ^^

Summary
(1) The computer has characteristics that can be used to assist a persona

thinking and learning processes.

(2) Some of these characteristics are being exploited successfully today.

u «o»n tpHinus work It simply takes too much, time, effort and Programmmg .s often tedwus wor^ „ $ py r must know the

.rrelevant deta.l to implement ^ dea on a c0^r
n ofVcompi,er. and even the capabilities of his pro^ammmg an u^e^ ^ convent

organization of the mVhme. i"« *" fithfullv adhere. Computers are Intolerant of

'S^r^X^�^^��of formUUtln8 . JLon ..
interesting, but the implementation is not.

L„ ����-•
^ . ^-^— ���-^-- -- -�—— ...^^ .„..^^.^^ , ., .. , -.^.-^^.�..�.�^. .^^.^.^^^-^^y.^^ . _ ^ ^^^

lip^piqi^LJIiJWpiin, �PMi^.fiB'i^ppwj* �,.,I^N 1.1 �. .1.1.j i ...if i ii uiiuiu ,i JLJJ 'vm^mvvmrnwrnv*.t, ,1.1 nawiiiwi».JP, m*mjn*W ,'1' ����" "^•-,' �—IIMIUU »"W". ' -

%A 45

This thesis addresses the questions.

(1) Why is programming a tedious process? Is it necessarily ;edl(1us:,

(2) What are the relationships between creating a solution to a problem and
creating a problem to find a solution?

(?) Do programming languages stimulate or inhibit creative solutions^

(4) Does creativity in art and mathematics provide any guidelines for creative
activity on a computer?

(5) Can a programming environment be constructed to stimulate creative
thought? What would be its characteristics?

Programming need not be tedious. The rest of this paper is devoted to computer
systems which make programming/un. As we have seen, creativity is an emotional process,
and joy is one of the strongest emotions. There is playfulness in creativity. Given the
groundwork of the first two chapters, we can begin to answer questions (1) through (4).
Question (4) in particular now warrants a resounding "yes1" This chapter bridges the gap
between the abstract model of thought of Part I and the concrete computer environment of
Part II In so doing, we attempt to tie together the. threads represented by the first four
questions.

The main result of this paper is that the answer to the first part of question (5) is
"yes" The answer to the second part of (5) forms Part II. In fact there are already several
systems existing today which successfully aid some aspects of creative problem solving. This
chapter contains a brief discussion of them and of the problems in interfacing a computer
with a creative human being.

Section A -- Dynamic Programming

The llniinate Robot

The Ummate robot consists of a mechanical arm with 6 degree1 of freedom mounted
above a large base containing electronics. It is a programmable manipulator designed for
industrial applications.

^ ^.,:...�.�.„�...,�...... ^,^.^:..i,^-.-^....., ;..,.,...:-./...,.^,.i..^„^ - - iM —-��
'—^-^.-.-- ..~...*.. .

MIM^ f fBPBPPPWUffPWW-.JIW. �,.iJfI-«l*..'^^- - -— -.-—-, ,.,.,«... .--«M^JI-J.«^^-^«^.;!^:. i.v* ,. AiUUJJ.Jfi.,«...|i.iLt,ji .1. u.1.» ..^r* • «n^« J �.. W.w-i'* -Iju ,

46
Dynamic Programming 3-A

^

Rotary molion

Wrtolyaw

f/»« Unimai« R060I

L ����������������- - .--^»-^^»MM i^.^-»*^^.^..^.., -: .^. .^.....^^ ^^^^^-^^^lä

w^mmi^m^m^^mF'm^mmmmmfmm^i^^mm^mmimmmmmmi

47
3.A Dynamic Programming

u orarPri m either of two modes: framing mode or production
The robot may be operated '" ei *er ° th h [he steps necessary to perform a

mode. in traming mode, the robot arm -J^ Tronic ^ , whlch lt can
task by a human "trainer . The r°Jot hJS a B T cal operations are "rotate a joint ,
"remember" up to 1024 operat.ons and ^r "mmg YP ^ the ^ can operate

••move to (x,v)", "close ^«^^epTating he operations in its memory. It will repeat the
^Z m7etSStVpTd "IHI a pW* cond.tlon occurs.

The robot has been P---^^^^^^
presently us.ng 26 Un.mate robot to do m 0 he ^ ^^ br hing PThe primary practical def.c.enc s 0f the robot ar^ ^ ^ ^ ^ ^ ^^

it^ung cl^s^only'data structures are (X,V) coordinates,

However the animate de^n^s^^^ ^^.^^^

n. u analogous to the/uncrion of the program being

easy.

accessible to a large class of users.
KO wnrten the first time. Since programming

(3) Bug-free programs can b ^ J^ion of the tasK means that a

rrÄrjaf br ^—•and/or tim,ng
inaccuracies).

�r * a P?=ÄKho^^^^^^^^^^^^^ and be honored. \Kauia
attempt.)

"TV" Editor

Th. sunfora Ar,.«.., *^^l^X*'^X��

� r,s.tr.Scan v.deo displays ^^ £'l°Z* P«""al "" ,'slU, 'mer""0" A '"'
I hav, been wrmen at the lab to »P""' '^ "^ swlnehart"" (since written as "ETV b,

edl.« called "TV has been öe»*^ " "„ ^'on-lme d.spla, editors, particular.,
IWriiht and Samuel), TV was mspireo o, . „ m2.\M> Tv is organiied

En^lbarfs -NUS- systen, for J^^;7,«., A ".indow" is the text - s/line. -
around logical "pal"" and physical »W°»s ^ » one time. Tv always shows a screen

^

I
lk^ .i..,,uii^.„..,aJJ«^vi^«i^i^Ä«ai^ü.,m.«j<«ii,i,.ÄMi^..>~...^...,..,.-.,^^,-:- ',,,, .^».n n r -��-— "�- iti�li^lillrnIlnii^-i•>J"^^i

�''"J^'','

Vi(uwiMjij,jpjippi9|pp^ VW***<n>* v iin.i».w<,u\mwfw »�"*- j!j^.-....,,m"P"—^ -t.. r.^,

48 Dynamic Programming 3-A

well as in the document. This makes it extremely easy to create and modify text, and to
comprehend the current state of the document.

TV has several dynamic operations that have the same flavor as the Unimate
operations. Replacing characters in a line of text is accomplished by positioning a cursor
beneath the first character to be replaced and then simply typing the new text. The
updated state of the line is always displayed. It is easy to see if the change has been made
correctly by just looking at the line. But the most analogical feature is "attach mode", a
method of designating text (first implemented in NLS). A group of consecutive lines can be
"attached" and manipulated as a unit. The attached lines can be moved to another part of
the document or even to a different document. Searches and substitutions can be limited to
just the attached lines. This gives the user excellent control over the scope of operations
and over the structuring of text. Since he can always see the context above and below the
attached lines, the user has virtually no difficulty positioning a body of text exactly where
he wants it. Editing with "TV" is far more error-free than with batch oriented or non-
display oriented editors. As with the Unimate, the appearance of each operation is
analogous to its effect.

HP-65 Pocket Calculator

A recent addition to the ranks of analogical programming systems is the Hewlett-
Packard HP-65 pocket calculator. The HP-65 differs from other hand-held calculators in
that it can accept magnetic strips containing up to 100-step programs.

Tha IIP-65 Pocket Calculalnr

.^,„: *: ,...,...�...„.-:,..„...^w.....t,».;..,i^,..^^;„».^^.^..t^^^:^^^ -^.^:,.u.... . ����....^.^^.^.^„.^^.^^^„^

�p^ppp^pip^f»qp-Ti^BpBp^p^p^gfp|)^i*wrp?w?i»TTOn^?7Tni^ ^W.WH^.^'^A^*^»I^^^W»^^I^>IWS w'P^4^W�»^^^;*^*^^-UW�-L^.�ft,-�?

?-A Dynamic Programming 49

The relevant aspect is the way in which programs are written. The calculator is
simply put in "program" mode, and then the desired sequence of keys are pushed, jujf a; if
one were doing a calculation. The keys are remembered on a magnetic strip. In "run" mode
the program can be executed, or the calculator can be operated manually However a major
defect in the design is that while in "program" mode the displa) does not show the current
state of the calculation. Rather it shows a numerical representation for the last key pushed.
So typically programs have to be worked out in "run" mode, written down, and then entered
in "program" mode. Going straight to "program" mode is too abstract. While
programmable desk-top calculators have been available for a number of years, the size and
portability of the HP-6J give it many of the characteristics of Kay's "personal dynamic
media"1975 The calculator comes to be viewed as an extension of the self.

"RAID"

If one must program in machine language, the best debugger for it that I have seen
is "RAID"1970, developed at the Stanford AI Lab for the PDP-10, RAID is the
culmination of a line of debuggers going back to the TX-2 at Lincoln Labs. It represents
the state of the art in debuggers. Using the excellent display facilities at Stanford, RAID is
capable of

(a) dynamically displaying the contents of memory locations, including locations
which are referenced "indirectly" through other locations;

(b) stepping through an instruction sequence, during which the user can
observe changes to his displayed locations;

(c) initiating execution at any instruction;

(d) replacing instructions with other instructions and then re-executing the
sequence with the new code;

(e) replacing the contents of displayed memory cells with values entered from
the keyboard; and

(f) other more standard debugging behavior.

The result is that the user can directly observe the effects of instructions on actual
information. It is concrete, The consequences of a sequence of even such primitive
operations as machine instructions are frequently difficult to comprehend in the abstract.
With RAID, it usually requires no more than one pass through a routine, replacing
incorrect instructions as you go, to completely debug it. Occasionally users even write
routines in debug mode. Interaction, concreteness, and a visual display are the keys to
RAID's success. The chief deficiency of RAID, aside from the fact that one must deal with
machine language to use it, is that it displays only machine words. It does not display the
structure of data.

���'���' -.-��.

������-����������.��...�.,,

iiiuj LH HU i unim PWWPPWWMWin i in �"l i iiiii»iiiiipiiu(i-ii"i i iua IN mi

50 Dynamic Programming 3-A

High-level Debuggers

It is more difficult to design a good debugger for higher-level languages. Since most
such languages are compiled before they are executed, less information is available at run
time than at compile time - information such as the symbol table, the source code
corresponding to an instruction sequence, the logical structure of data types, etc. Kay1969

addressed the problem of writing, displaying, monitoring and debugging high-level
programs through multiple processes. His "FLEX" machine divided its display screen into
multiple "windows" and "viewports". Each window in Kay's system shows a 1024 x 1024
section of a virtual 16384 x 16384 display. Viewports are subdivisions of windows.
Windows and viewports are the communication links to processes. Swinehart197''
implemented ^hese and other ideas using rhe Stanford display facilities. Each of his
windows can show the same computation in a different representation. One window might
be a RAID window showing the machine instructions being executed. Another might show
the source text that corresponds to those instructions. Still others might show the state of
variables used in this part of the program, an image of the stack, program counters, or
debugger options. Ummplemented but possible are dynamic, graphic displays of changing
data structures. An unusual notion is that each window-process can control the execution of
other processes. For example, one can single-step a source language statement in a text
window, which causes the machine language window to execute a sequence of instructions
and then pause. Or we can change variable values in a variable window, which will
modify subsequent execution in other windows. This powerful concept of "floating control"
has also been successfully used in time-sharing systems such as the SDS-940 system
[Lampson19681969] and simulation languages such as SIMULA [Dahl1966] and
SMALLTALK [Kay1972] (a FLEX derivative).

Interpreters and Compilers

Some of the difficulty of telling a user what is going on in compiled programs has
been resolved simply by not compiling them. Some languages, notably LISP, APL and
SMALLTALK, are based on interpreters. Binding of tokens to semantics is delayed until
values are actually required. For example, the identifier X might be bound to a variable
value or a function name; in either case evaluating it will cause it to return a value. In the
first case a simple fetch is done; in the second, an arbitrary amount of work may be
performed before the value is obtained. The languages are not analogical, as with the
Ummate, but the envirmment in which they execute is dynamic and concrete. "X" may be
ambiguci.!; at the time it is written, but at run time it will be bound to something which
knows how to produce a value. Using interpreters, the programmer deals with concepts like
"value producer" and "generic operation", instead of "cell which can contain a real number"
or "integer addition". Interpreters permit the kind of "selective abstraction" that we noticed
in creative thinking (Chapters I and 2). Entities such as "X" can exist on a variety of
conceptual levels: as a (Fregean) representation for information, as a cell which can contain
information, or as a routine which can generate information. This ability to defer
instantiation until necessary, so characteristic of the mind, usually makes it easier to
program in interpreted languages than in compiled languages.

Mitchell1970 merged the concepts of interpreter and compiler. He notes that

�.^-.. ��.. .,.,,.,...;,,J^-.~.^.^........^.-.-..,.-.-....^-^^.A^^^---^.^^ �...^^...^�i;...,^^,..^^... .„^�»i......., - -^—'

IIPPWBWWWWW^WW '« IIIIIHIIMIU. II "� i" "^P^WWW»W»W^«K1^BiWPI mrnvmrnm"''"»'"' v~. i jiiMppwnw^if

I
I

•

3-A Dynamic Programming 51

compilers and interpreters do essentially the same work. Each must analyze program text
for syntactic and semantic correctness. Interpreters then execute code based on the analysis,
while compilers emit code for later execution. Mitchell suggested that a way to delay
instantiation in a compiler is to execute programs interpretively the first time. The compiler
can then (mit the same code that the interpreter executes! The execution of the interpreter
provides a "semantic cache"3 which the compiler can use to emit code with little extra effort.
The successful interpretation of a program (a) indicates that it ss at least syntactically
correct; (b) gives a certain confidence that it is semantically correct as well; and (c) gives a
high degree of confidence in the correctness of the compi^d code, since it is identical with
the interpreter's code. It is even possible to declare the types of variables at "interpreter
time", by indicating to the compiler that the data type bound to a variable the first time will
be the type in all successive bindings. This "dynamic declaration" is a promising concept.

The logical extrapolation of interpreters in a computer environment is the concept of
hardware interpreters. The Burroughs Corporation has developed interpreting machines in
its B-5000 (ca. 1961) and B-600C series. These machines provide instructions to load
descriptors on top of an internal stack. The hardware interprets each descriptor and
executes the necessary operations to produce a value, whether it is by a simple literal call, an
array access (which will pick up indices from the stack and check them against bounds), a
procedure call (which will set up a procedure frame and tnnsfer control), or some other
type of access. The compiler can invoke any of these cases by emitting a single type of
instruction: "fetch descriptor". Needless to say, this substantially simplifies writing compilers
for Burroughs machines. Today, with the availability of fast, inexpensive, microcodable
computers, hardware interpreters are becoming an increasingly viable technique.

\

Programming by Example

Sussman1973 used some of these ideas in an automatic programming context. His
system "HACKER" has the ability to extend general cases to handle unforeseen exceptions.
Using HACKER the programmer writes an algorithm for the situations which he knows
will occur, or which he explicitly wants to handle. If during execution the algorithm
encounters an exceptional situation, the system can (sometimes) automatically modify the
algorithm to handle the new case. There is a fixed set of strategies for modifying
algorithms, which Sussman has observed being used by "hackers" at MIT (programmers
who enjoy squeezing the last ounce of performance out of a machine). This is a variation
on the "learning by doing" concept. The user programs a general strategy, and the final
algorithm evolves in the course of trying various examples. It has similarities with the
Unimate/HP-65 systems discussed above, in that programs are written by doing specific
tasks.

Winston1970 addressed the related task of learning structural descriptions from
examples. He investigated the possibilities (and pitfalls) of generalization. For instance, his
system was able to develop the concept of "arch" from examples of specific arches.

wmuf* m IHM �«�wwi mu im>.»«n*m^m*mmmmm mmmmmmiitiMMMwmmmm lW*ll!lliJI..4«M!»l»liW«UWi».<wt«*«i»WlW«!;»ipi»l,iiii'"PlJl| ����.'-i "

52 Graphical Descriptions of Algorithms 3-B

Section B •- Graphical Descriptions of Algorithms

"Sketchpad"

There havw been and are numerous graphical application programs (cf. Wells19'2).
These are programs written ^n a linear language, eg. FORTRAN or machine language
that are designed to incorporate giaphical interaction in specific application domains, such
as architectural or engineering d.awing systems. They are special purpose program.».
However their operations are often cleverly chosen and provide significant assistance to
workers in their domains.

The first and still among the most elegant graphical application program is Ivan
Sutherland's "Sketchpad"1962. Sutherland's goal was to use the computer to help people
visualize things. He pioneered methods of drawing on display screens. While Sketchpad is
basically a drawing system, it does not just mimic paper. Instead it takes advantage of the
computer's special abilities in such features as multiple "windows" and scaling. The user
draws on the display screen with a light pen. Sketchpad was the first to employ the "rubber
band" line (used in PYGMALION) in which one end of a line remains fixed on the
display while the other end follows the pen. The user may create and modify pictures and
their parts. Pictures may be constructed out of "instances" of other pictures.

Instance Derived Picture

Sketchpad's vocabulary deals with properties of geometric drawings. Sutherland developed
a system for specifying pictorial "constraints", such as two lines are to remain: (a) parallel to
each other, (b) at a fixed angle to each other, or (c) connected at one end. The constraints
arc specifiable pictorially, in an abstract diagram which can itself be given constraints and
manipulated iconically. Sketchpad was used in several applications, including an
engineering application to compute the stresses on a bridge and an animation application in
which placing constraints c:; a diagram caused it to move.

Sketchpad deals with images as picture:, to use Arnheim's terminology. The
diagrams are manipulated as diagrams, not as representations of something else.
"Sketchpad's internal data structure and programs are so rigid that it is inconvenient to
make a geometrical entity have non-geometric meaning."[W.R.Sutherland4] As with most

iL. .^.I . _. �.;..^ .�. .-^.'.^^..,^.'^.^^:y.-^..^^...,^.--^..-.i:--:^^.:\^<^i^.^.^.. I^;.T.....^L-I- i..;; >rf.„* .-.. ,. .. V^J^.V^^M Jw..;.J-...^;.t»--^^.A>av^�.^�jv.;-:JJ;L".i.i-..^1..^.J-..*

^WpgWKWPffP, I,«,' .Ji".PJ, M,ii.mwM,w.f; jTJii..|WIWWW,Wi4a!Ji^M.iflMiWi|l),j(U|ip.iMBJ^iMWji. .^iijiij.wimBji^vjy,]«!.^ -r.-*TXir*r7*-Wi* .1 "tur ^jj-flm^uKwvv urmnvp-vmipy W.^P iw^^uw^iVJiiiwf--.--

3-B Graphical Descriptions of Algorithms
53

of a light pen.

Graphical Procedures
, • hrnrhr-r WR Sutherland, subsequently developed a Sketchpad-like system
Ivans brother' ^ ^."^u",,; ranabilities His system is based on an electronic

glving ^e geometr^^^^ and control units with
^llou^Äs S o^STike the "level" (versus "pulse") outputs of Hip-Hops.

X - (A*B)/(C*D)

• u. „-n tv,P »«Pr can select elements from a menu, connect them, assign
, ^HI^ If thePnetwork execute, a^ real time. The language is very good for

values. and wat .V^^hich s of course, standard operating procedure in circu.
expressmg 9^!'^^%^ the lead labelled "B" above is shunted to the V
diagrams. For example a va,ue P,aceü °n ,ement$ ovid(.$ functions for type-in. type-
"? y^l^T^^^ logic'conditional branching, and some
out, seeing values on cena\" 'c * - A Drobiem With the system, the same problem
''^^ATMSTTAV.) Z\£ SÄHT.��«I of«, » comp.« a. »
Ä."ut to'comp^"" Cons/der th. Mowing prograr,, which compu.« th. .qua«
root function.

,.^—:^-.. , ^__^^^__ , u ; -- '�'---,"a-i>'-' t-'/"--

9&lffmig^F^^�*~m**^�''***''****" ����^ �'.'. »il'fi'f.N»i'-W'!* -iiflPJ'^Vliwv.'..,!^��ii^,iw-^m,^^.ii^vv.^v"-^."''��^ ��' "^' --^.f'I-1 ^P"7'.-���.'f^:».".?.'411 U-i-JW.J.-*'t ��- ������^ -^.v--^v,^,^[Sw'^Wiwyj^:.y;i-va.^'.-Jvi ' , "^iB

54 Graphical Descriptions of Algorithms 3-B

X - SQRT<A)

The angled boxes are used to indicate more clearly the direction of data flow. Races
in networks like this are prevented by the \ notation above input lead». This specifies
that after use, the input is to go to undefined. Thereafter, the operation will not execute
until a new non-undefined value arrives.

go to UNDEFINED '��

preserved

W.R.Sutherland recognizes the potential of this medium of expression when he
writes: "The two-dimensional nature of the language helps in visualizing many things
happening at once.... Being able ... to see a program run giv« one a grasp of detail that is
hard to obtain in any other way."5

,.- ..j...^.«..^..^..^^^:........*..,.;.^ ,.,w..i.^...J.:.,IM ^i....».^...,.;^./^^ .., �.;.:. ^.^....-g-. �. ^�i:..J.J.^... *... M^ ..I.Ail^l^.^L-.

1 "�" mmmmimmmimmm***^! ����I ^mmmmmt wimim*mmmv*imrm*r**m**r^-nt{

?-B Graphical Descriptions of Algorithms 55

The GRAIL language [Ellis1969] developed at RAND was a ...mlar attempt to
describe programs visually. The GRAIL philosophy was that since flowcharts are usually
more articulate than the statements they describe, why not program in the flowchart
notation to begin with? GRAIL incorporated several graphical elements for representing
programming operations, such as conditional branching, functional elements, and loops.
The contents of each box, however, consisted of ordinary machine language statements.
Just the interaction of functional units was described graphically. GRAIL did include a
"zooming" control for dynamically scaling program elements. Complexity could be managed
by enlarging boxes to be examined and then shrinking them again to see the overall
structure

"AMBIT"

Another approach to graphical programming is provided by the AMBIT family of
languages.[Christensen6] Ivan Sutherland's Sketchpad operated on pictorial data but
without assigning machine semantics to the pictures. W.R.Sutherland's system assigned
semantics to pictures, but the data was non-pictorial (e.g. numbers). AMBIT/G (for graphs)
and AMBIT/L (for lists) are attempts to combine pictorial data and procedures. Processing
in AMBIT is by two-dimensional pattern matching. A procedure is actually an image of
the data to be passed to it. The image simultaneously specifies an input pattern to be
matched and a transformation to occur if the match is successful. This dual role is
accomplished by having arrows made up of single lines represent links that exist in the
input data, and arrows made up of double lines represent new links to be formed in the
output data.

An interesting feature is that each procedure-image contains a control link specifying
what to do when the pattern match succeeds (S) or fails (F). In the image above, success
causes the procedure to be called recursively. Some quite large programs have been written
in AMBIT, including several garbage collection algorithms. It is enlightening to see the
AMBIT versions of certain algorithms. AMBIT is a step toward an effective metaphorical
context for working out problems.

..�.^•. �.-; .:-...;�.- ..-. ..>.- .;..> �..,...,;....;',.. �>... , ^.-,.,^,^^w...t:. .^:.„..,,.^,*<„^,,t.^^ ^i^i

mm111 mvvnmmrrwmi «»"i JI��»mm^mmm», i ii mimmmm^immrmsnmmtm mm^rn ww "iw-"" mm "" •« • �—-

56
Graphical Descriptions of Algorithms 3-B

reverse-!

p

y

P
X

1 1 i 1^ %f ':?

b=| c ��

u
1 ���

F

Cstov (f ��" s

reverse-1

Reveninj' o Li«»

However AMBIT is a good illustration of the deficiencies inflicting all current
nowever rt" , ° . nracticai deficiency is that implementations are not

?heorS dSc, .s .heir phtaoph.cal or.en.ation. Every Sr.ph,cal language suffers
from one or more of the following;

(1) They use static representations for dynamic processes.

(9) Thev lack detail suppression mechanisms. Consequently, pictures quickly
increase in complexity beyond the ability of the eye and short term memory
to assimilate. (GRAIL is an exception.)

(3) They operate on formal representations of data, one level removed from
actual information.

(4) Thev lack image-defimng capabilities. The programmer cannot draw his
own images; he must usl the images designed by others. This limits the
effectiveness of the metaphor.

^^^�.^�.^..v..... ^^...-^.L.» ^^—Ja^.,„. �-�^.-:., -^ -. ^.. -.^-^—,^ .v^—. -s- . -^: ^.^. ^. .> .„..^i^^^MHA •�• M

mmm mm^*~m-mi*9 ».MUJUflUIUWll IHN JUM
- - • . -K!«,„L.„i.

mmim'.!Jm'wmmmmiim,iii'i)• im

?-B Graphical Descriptions of Algorithms 57

Anyone who has looked at a large AMBIT program knows how hard it is to understand.
The maze of lines soon becomes overwhelming. Even small algorithms sometimes take a lot
of parsing by the eye before their operation can be discerned. This is probably due to
unfamilianty with the languages, but articulate languages should not need much explaining!

Much of the complexity can be traced to AMBiT's representation of both the
present state and a future state in a single frame. This is an example of ttlling Instead of
doivg. Environments for describing computations are inherently more abstract and require
a greater translation from mental representations than environments for doing computations.
The program frames become more and more complex and full of notational dogma. They
violate one of the cardinal rules of animation:

What happens between each frame of a sequence of pictures is more
important than what exists on each frame. The actual graphical
information at any given instant is relatively slight. The source of
information is picture cAan^Baecker7]

It is the business of animators to communicate effectively with human beings. The next
example discusses a computer animation system.

Animated Graphical Descriptions

hei ght

t ims

ka^:^^^ .�:1...J.,w...r.. i^.-....^-..-.^:....Iv.j.vv-r.. ..ü .^..w/-^, . f,, �����-fcTilTf.^l^ilinli-^iYirti ^^-^^-^�-: ' v-^^^lrtliti^ltfT.irt----'-'-*'-'t-^'-^- -^--^liliirilrni rni^- ' ^^.^ ^..~. ^^»....^ ,.1.Jj4^...i-...^uJJ...fc.^^.../^..^k.:^A^

I«^»^W^^BW* mm mmmmmmmmmmmmmmmmmmmmmrjmwKm MWU,! .1 ijiML:!»»»JI.,IU> »iiMi! u.nLiiy... i«jjj(»i«n ,i«i unmnimmwufmimmfm

58 Graphical Descriptions of Algorithms 3-B

. i

Ron Baecker1969 in his GENESYS system investigated ways to describe animation
sequences using pictorial control For example, the graph above might be ujed to drive a
movie of a ball bouncing. Recently he and his students at Toronto have made some
animations of program semantics, such as (a) recursive functions in LOGO [Papert1970]
and SMALLTALK [Kay1972], dynamically showing recursive calls until a terminating case
is reached; (b) the operation of the railway switching algorithm for parsing; (c) the
execu'ion of various simulations, in particular the simulation of the movement of people In
a subway system. These animations are the most effective presentation of mechanical
semantics that I have seen. They begin to instill the level of insight and intuition so
necessary for creative thought. The critical aspect of their success is the dynamic, visual.
movie-like presentation of information. A descendant called SHAZAM has been
implemented in Kay's Learning Research Group at Xerox PARC (described in section D).
SHAZAM enables the computer to dynamically interact with the animator, permitting him
to create and modify movies In real time. These animations are at the core of
PYGMALION'S model of articulate communication.

Visual media like the ones in this section provide the user with a rich working
environment. If a concept can be placed In one of these metaphors, extensive processing
can be done on it before the limitations of the medium become toe procrustean. With
Fregean media such as verbal languages or one-dimensional programming languages, the
limitations immediately impose constraints. In Koestler's terms, visual media provide
alternative "matrices" or "thought contexts" which are powerful enough to be of use in
creative thinking; linear media do not.

Section C •��The Computer as an Artistic Resource

Art enters when we labor thoughtfully with some ideal in vie v -- that is,
as soon as we cut loose from action that is purely mechanical.

-- Clifton Johnson, photographer*

A good example of the reasons why the aesthetic and technical elements
in design must be considered together is implicit in the term 'fair', used
to describe fluid dynamic surfaces in products such as air-frames, aero-
engines and ships' hulls. It is required that some surfaces be 'fair' in
order that they should work properly, that the air or water should flow
over them In the required way. But fairness can only be judged by
inspection of the surfaces, by aesthetic judgement. Thus we have in its
clearest form the need to keep the data structure and mathematical
methods of design, and the visual or aesthetic aspects going hand in
hand.

The use of 'fairing' is not a reason for Ignoring precise technical
methods in so far as they have been developed. One might perhaps say

. ��..,.,.-.-^.J.,.-.... -i.»^;. j^.^ü,».^i-.=...t..;. >,.i,..J...'i. 'w...-../..i-.^..�... .n .:....i,i...„:..... ^r........ .., ,.,.r.:,., ,„...,,.,,„. ,,.....„. - ,..wt;...^-^..-.,i. ^-..^ �-�>.^---^-«'-'�'"��

^mmimmmmmmmfmmmmmmi&r'mmm* lil.i»iyl.*IH,,
1,.«'ll 1 wuijji^Mium" ——'

3-C The Computer as an Artistic Resource 59

that the use of fairing represents the use of that part of knowledge
which comes from experience and has not yet been precisely formulated.
But there will always be knowledge that has not been precisely
formulated.

-- Anthony Hyman9

P'/GMALION brings art into computer scitnce. Rather than providing a computer
resource which artists can use to create (paint, compose music, etc.), PYGMALION is a first
attempt to provide an artistic resource which computer scientists can use to create. In fact, I
hope PYGMALION will contribute to a re-evaluation of what a "computer scientist" 1$. In
my view, a computer scientist is anyone who knows how to do something and wants to use
the computer in doing it. The view that only highly-trained programmers can implement
tasks on computers is intellectual snobbery of the worst kind. Anthony Hyman describes
such conventional "computer scientists" as "computer specialists":

The idea that computing is necessarily difficult and to be reserved for
senior grades or forms at school is surely wrong, corresponding to a
rather early stage in the development of computers: experimental studies
with seven-year-old children [and even younger] have shown that
children will take to the use of display terminals with ease if they are
given the opportunity young enough. Today computers are still
expensive and computing languages by and large still rather clumsy. (It
is curious that after working with computers for many years some
people have deluded themselves into thinking that FORTRAN, the
most commonly used scientific computing language, resembles a natural
language.)^

Such views are merely historical, an outgrowth of the anachronistic programmirtg languages
that were first provided. As Kay says, we should have a more optimistic opinion of people;
people are smart, and incredibly versatile.

The skilled programmer is necessary only because the distance
between the computer implementation of a task and a person's
mental conception of it is too great.

Symbiotic systems like architectural design systems have eliminated the skilled programmer
altogether, and substituted the architect, a real "computer scientist". But architectural design
systems are special-purpose programs written (by a "skilled programmer") In some general-
purpose language for a specific application. What is needed is a symbiotic general-purpose
language. As Hyman notes,

A good case can be made that to achieve satisfactory results the ultimate
user must have a say in the development of the design systems
themselves ... The designer can no more rely on the computer specialist
to develop design systems appropriate to his needs than a wood carver
can allow other people to sharpen his tools. The computer speclallst
does not have the knowledge and cannot acquire It without becoming a
designer himself."

• - ��������' -r.; - ��.. .V^JÜif^v-iijiüi 'U/ " '�'- ��—^-.�.. r--.^ . '. --- _«_riM^^M*l

lUllLUBl l-,,M".«JJWI4*U�«Wl|'-»:.-'��������'���''ilij- ii-J (MiMilMI"ll^»llJ».l."UÄWItl-»<^Jl-P«».WW,i

'

The Computfr as an Artistic Resource 3-C
60 '

Computer science does employ some general pnnc.ples that are beneficial for every
proeramSo know, such as subgoah and subroutine (subdividing a problem into smaU.
u^hTZsTia and partial algorithms (it is not necessary to insure that a program wil
Zk on al poss.ble inputs or to'specify all possible paths), mursion (parts may exh.b.t the
1ZI cVJensncs as the whole , processes (the computer may remember state), tracing

oTowint he e t"n of a process step by step), debugging anä 'f-, (parts of a process
mav Contain errors and be corrected independently of other parts), and others. But these
Te the conceos that should be taught to a person who is learning to use the computer, for
as Paoert say these are really teaching him about thinking. Too much time .s «pen
teachmg "integer variables must begin with the letters I. J. K. L. M and N and real
variables with other letters."

What is the potenual of using computers artistically? "In Renalsiance Florence men
ui.h as Brunelleschi and Da Vinci were at once artist and engineer. They were deeply
nolved^n extend' gbotH new ideas and new techniques ... [Today the sheer volume o
n?0 mation makes this difficult.] Recently computers, having acquired effective methods of

discUv and Tonsiderable visual processing power, are beginning to be used for design in
A- With this development the possibility is raised of re-establishing the un.ty of
Renaissance Florence." [Hyman1]

Section D -- The Computer as a Creative Resource

A rtu« create usine a medium. The process of creation is incremental. Painters dab,
dab dab ^thei can asses until they find just the right expression of their feelings.
Sculptors chip away at the stone until first a knee, then a nose, slowly a whole figure .,
oer ected Though they begin with an outline, a "grand idea", artists realize the idea n a
Ses of small steps ("subg'oals"). There are a few exceptions. Chine,, bruih painting
emphas res smgle strokes to define figures; the technique of placing the brush on the paper
hTsbeen highfy developed. Paintenusing watercolors are prohibited by the nature ohe
medium from touching up their pictures, but just for this reason watercolors are dlfficuh to
use Photographers seem to be most completely spared the incremental task. (In fact. Henri
Cart.er BreSon refuses to allow his pictures to be cropped or modified during pnntm|
declarlne "The picture is good or not from the moment it was caught in the camera.) declaring i nc pn-iui 6 ,. , ,„^ .. ,, r-rrainlv more than the mechanics of VTlZo^^^*-^ and it is certainly more than the mechanic, of
camera Sm and darkroom The only microscopic part of the photograph.c proce» wh.ch
ca^be remmely described as 'creative' is that fractional instant when the photographer feels:
ves now"14 It may require years of patient experiments before a photographer develops
the instTnct for "the decisive moment". Though photographer» do have a more immed.ate
medium, the process of learning to use it is still incremental.

The value of incrementality has not been ignored in computer science. Time-
sharing is an attempt to provide incremental ""P^ f^
nrotrrammine languages are incremental, most prominently LISP. SMALLTALK and APL.
K tTxTÄgäregincremental; anyone who has tried to use a batch-oriented text editor

 --^. -��—•— ^. .-.. .�.^�...-. .,. _. . ^ . . ., -.. -—-^-...^-^^—^^^^«A

WÄWPPIPWPPPBP^BPWSWW

3-D The Computer as a Creative Resource 61

will appreciate the value of incremental ones' The advantage of incremental computing is
that the consequences of an operation are immediately discernible b, the user. He can

olate the consequences of individual operations and debug them one at a time The
s'lmLity with artists is inescapable: painters dab on a bit of pa.nt and then step back to
look at the result, etc.

A computer will be of the greatest value to creativity if computing
done with it is incremental.

O K Moore stresses the need to take the mark out of learning, making it seem In all
respects like play, if we want to develop creative thinkers With h.s Talking Typewnter
and his notion of an "autotelic environment", Moore concentrated on combining enjoyment
wUh substance. The computer alone Is not sufficient to interest children; it must be used m
Tn inwinat.ve way. Moore defines an activity as autotelic if 'engaging m it is done ^r .t
own sake rather than for obta.nmyewards or avoiding punishments that have no inherent
connection with the activity itself."

The most imaginative work involving computers and children is going on today at
MIT under Seymour Papert and at Xerox PARC und.- Alan Kay Papertand Kay have
abandoned the traditional approach to computer-aided instruction, which they view as
usinethe computer to teach the same old concepts ,n the same old way. The.r goal .s to
develop new wPays to teach concepts and, more importantly, new concepts themselves. Papert
harde^eloped a "turtle" controlled by a computer, and a simple command language
(LOGO) for manipulating it.

Children Using a Turtle

.,_._.- _..,.....,..„.-.. .,..>».ii.^.-.,.. �����--��-......��..,.,. J-J-,...^^.;.„.,...^^^..„^.^.^..^^^i^.^.

IMW �PPWP»|«"W»^^* "— laiiinuiimiii PM^!WIM!liJ^U lll.pf pmni^w^R.U ll,|lili yipn1,! ll

3-D The Computer as a Creative Resource 63

ü

I
I
I
I
I

them that "complete happiness" in creation of which Lucien Freud wrote. For the children,
through the computer, mat« the turtle draw the geometric figures. They create, as it were,
brief life histories for the turtle. Not since Pygmalion's statue Galatea stepped off her
pedestal has a man-made object been brought to life to a comparable degree.

Kay has expanded on Papert's work. He and others at PARC have developed a
small, powerful, stand-alone computer with an excellent graphics display and audio output.
He relies on the display and a clean simulation language called SMALLTALK to teach
children how to think. The computer serves as a laboratory for experimenting with
representations. Kay's eventual goal is to develop an inexpensive, portable "personal
computer" the size of a notebook. People will use it instead of paper. It will have an
interchangeable tape cassette which can hold books, newspapers, letters and memos. It will
have the ability to use multiple type fonts, so that the owner can dynamically display text in
his favorite font (dynamic publishing). It will have a plug for connecting with remote
sources of information, such as libraries, newspaper offices, stores and banks. With its
high-resolution display screen, it can even be used to watch television and video tapes. Of
course, in addition the owner will be able to write programs with it. Its flexible, personal
nature makes the computer a "user-moldable" medium. PYGMALION was begun to
provide a two-dimensional way to communicate with this computer.

A true genius is creative and stimulates the creativity in others. He causes an
atmosphere so charged with excitement that good things are bound to happen. The
computer also, with the correct interface, can cause such an atmosphere. In Koestler's terms,
it can serve as the representational "matrix" whose intersection with the mind's "matrix"
provides the "creative spark". At Xerox PARC this small computer is being used to
stimulate people's enthusiasm, inventiveness and artistry.

Section E Radia Perlmaii and Her Magical Button Box

Radia Perlman, a visitor at PARC from Papert's group at MIT, has developed a
unique instrument for teaching very young children (ages 3 to 6) about programming. The
instrument Is a "button box" and is used as an input device for a Papert turtle. The button
box is connected to a small computer. As the picture below shows, some of the buttons
have an iconic description of their action on top. For example, pushing the button marked
with a vertical arrow (which we will call "UP") causes the turtle to move forward one unit
(about half an inch). Other buttons make the turtle back up, turn to the left or right, honk
its horn, put its pen up or down, turn its light on or off, and stop. Some buttons have
numbers on them and can be used as repeat f;:;tors: pushing 5 UP makes the turtle go five
units forward. Since the turtle responds immediately, the children have little trouble
understanding what the buttons da. With these few commands, children quickly learn to
draw pictures and geometric shapes. Radia calls her button language "TORTIS".

��u^— -j./V-i'**---1^"-'3**-3*5" '"'
a^HM^MPBH

' Respire ^ ^ ktJ*/

;

«^^^^|P mL^VIIIIWUl-UApilllUJI II. Hill HIHI Uli I K. w HlMRi i.|M. I �il|Mll1pnp|lll| II.. ILI i IMUU.IU.. �.. �.IIIUJUIIH ^�^^^�^�Tfl^r^--"- lii^.j|i|i-.,Li|-^..i»i.i,ij;.ip.['ia-'A).'=Piw|HSt|JW^'.w«<?-«

64 Radia Perlman and Her Magical Button Box 3-E

The Basic Button Box

Now the plot thickens. In addition to this basic button box, Radia has developed
another box which can be plugged into it: a "procedure" box. The procedure box, shown
below, has four buttons labelled with iconic descriptions of the actions "start remembering",
"stop remembering", "do it", and "forget it". (I leave it for the reader to figure out which
button represents which action.) Pushing the "start remembering" button causes the
computer to keep track of the buttons that are pushed from then on. While the computer is
remembering the buttons, the turtle is also doing them, so the child can always see what he
has done. Pushing DOIT causes the computer to execute us remembered sequence. DOIT
may be preceded by a repeat factor: 5 DOIT causes the sequence of remembered buttons to
be executed five times. In addition to these four buttons, the procedure box also has four
other buttons labeled with a color (red, blue, green and orange). These are "naming"
buttons and can be used to give a sequence of remembered button-pushes a name. "Start
remembering" RED starts remembering button pushes and names the sequence RED.
DOIT RED executes the red sequence. 5 DOIT RED executes the red sequence five times.
The DOIT button may itself be remembered, so that a command to execute the blue
sequence (i.e. a subroutine) can be included in the red sequence. In fact the red sequence
can DOIT RED (i.e. execute itself) so that recursion is possible. However there is no way to
terminate recursion once started, since there is no "conditional" button.

-�-��� - -—'•"• ^-'"-

iPP^I^.^qilUn'^HWMi immiiu ?V^^.-4.. ,-J)i|l,l,^pi.JllU.^! ^..V.WH.HWWifJi.^.^^iJW^llW,

3-E Radia Perlman and Her Magical Button Box 65

The Procedure Box

Radia has also constructed two simpler button boxes to introduce children gradually
to these concepts. The simplest box is the basic box without numbers, i.e. without the
concept "repeat". The other box is the procedure box without the colored "naming" buttons.

What can we learn from "Radia's Magical Button Boxes"? Surprisingly, these
simple boxes outperform the most sophisticated programming languages in several aspects!

(1) Children as young as four or five years old can learn to program tuith these boxes.
These children have great difficulty learning to program with "adult" languages. And this
is not entirely because the concepts are simpler, since the notions of subroutine, recursion,
iteration and (turtle) state are all incorporated in the system. Children can use the button
boxes because the action associated with each button happens immediately upon pushing it,
and that action is visually concrete. Each button has on its top an easily understood iconic
description of its action. It is very easy to "see what is going on" and to establish
cause/effect relationships. In other words, it is easy for the children lo form a model of the
semantics of each button and of the system as a whole. This ^odel-building is the key to
understanding. What children can understand, they can use.

(2) Children frequently write bug-free programs the first time. How many
programming languages can claim this, even with adult programmers? The reason for this
is that programming with the buttons is incremental with continual visual feedback. To see

 ^i.,..- ---- , , , , -.- -. ^ - .. , —.: ^^^^*i

mm PVIP-UJli.'.^, �� ^,«VlWWW!^,.ll|�^f,«•». w*.*fM.m.mimi '•�y'rwrrwf^r!* nißimfv9m.lii.}j) jjji^in.HJjUji.WPHÄ^iii. ��Ji>.*«im"F|i*(ibP^f w-r

66
Radia Perlman and Her Magical Button Box 3-E

how this can lead to bug-free programs, suppose the child wants to write a program to make
'he tur e dn

raw a squa?e. The s.mplest way is to push "s:art remembermg and then to
push th "forward" and "turn" buttons as many times as necessary to produce the des.red
push trie Ior „ remembering" finishes off the routine. Score: 1 pass, 1
r: UreF 0 gsP TZ tS pTgrams J very simple. But PYGMALION shows that
These same error-free characteristics can be built into a general-purpose programm.ng
language.

•

1
-*�:', T . .1,. —. ~«..^�.��-i- �-miiim I. -.... -..^- ����� . - —— - -—-di

wi^rnrnnrnm"1

'*.'

BlliiiPippi^WPiPB^JIiSWIii^PipiWIPIPPP

PART II

PYGMALION

��

-. -��! -��„ ^ ^^....^.^^.^^..^..^.t*.^^^.::^^.. ��-^ -^.�--^;>^.^ >...�—". -.^.„�^..^ . .^^ ^—.. -—-^—�^�..^�., -��^^.ll

WPWWJBiWHIlilil '- "'- �—�"��� ^w^pw^^ww^^ m^mmmnv^wr^^ �HIIMPIIMII ».»PI.»...! . i . �.��< _

68 Chapter 4

Chapter 4

Principles of Iconic Programming

Graphic communication draws upon the natural resources of its own
language, and refers to visual experience as a source of principles and
values for designing more articulate form ... [It] is a conceptual logic
rather than a technical method; a way of seeing the graphic figure as a
visual statement.

-William Bowman1

Summary

The main innovations of PYGMALION are:

(1) a dynamic representation for programs �- an emphasis on doing rather than
telling;

(2) an iconic representation for parameters and data structures requlfirtg4«$$^
translation from mental representations;

(3) a "remembering" editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns Into the
abstract.

n:

Part I discussed a model of creative thought, emphasizing visual thinking. The
model serves as the basis for the design principles in Part II. Part I may be summarized as
follows.

(I) Visual thought processes deal with images that are structurally similar to the
features of the concepts being represented. Images are a powerful, flexible
and effective metaphor for thought.

Mft^ i ::�;.. �^�,.-:,... -.�. :.-. ^..v-.^. .��.;.^.�.�f.^.v_..>';.^^.^i^-^..~^ia^>.«A^ -.. -^,.^.. - J-f^:.i.--ii^v-.i. �. �.-.. ..:..^...L. ^.^ J.^.^^:U^.I.:.JV^^L^.B.^,^.^.;I-.^I^^

aw" •P».MllJI.MIJ(,ui4l,Hw|W.llii,i!UiJ "WBWWWR^BSR*» i!""R»»JH»«»!l"llU,M-UMJlWWMW'IWAl,ll»MPu|«^u»w»"JI'" .i^liJiP^uwuwii -^.I-W«w)'- p -��" •wi&m

69
4-A

(2) Creativity Involves the conjunct.on of two normally-distinct thought
contexts.

(3) Commun.cat.on is concrete. Abstracts (i.e. understanding) occurs in the
mind from concrete information.

(4) Creativity and understanding are incremental; large discoveries usually
derive from a bisociation of smaller ones.

This chapter utilizes the model in a computer environment. It presents the general
form and goal' of PYGMALION. Most of the specific implementation details are deferred
until the next chapter.

Section A Introduction

The main eoal of PYGMALION is to develop a system whose representational and
.rn^nTf^cZeTcrr spend to and assist the mental processes that occur during creatwe
^r ri , Pmo s to make Pygmalions out of people, to provide the average person with
'^"L.m foSivnrwiS Quiring a substantial recasting of his ideas into terms
a medium for ^'^J"n0 f ^ * The mediUm is an environment for writing
different from his "^ way o th^m , involves lhe manipUiation and
computer W�' "^ flexibility U incorporated to
^ThrpTogfamrrdest -ctures patterned after images in his mi.d. Part I
provides two concrete guidelines for the implementation;

m Multi-dimensional representations are superior to one-dimensional for
commui atm. ömMypes of information to a human being. Since the intent is to provide
as adulate an Terface as possible, the system is founded on visual communication us.ng a

jhics display.

(2) imer^tive feedback is essential in a creative environment. Interactive text
(2) lntemu^^!". thev are far easier t0 USe than batch-oriented editors. A text

editors are. a case in P^^g^!*�* 0per*m on the restricted domain of text
ed,t0r ^rta«^aliP

^X^2^XS^data structures, the similarity becomes
ri ap 3^.?^^ lemberTT^L^ommands and re-executes them on
demand, the two concepts become virtually identical. --^^

The heart of PYGMALION is an interactive, "remembering" ediTof-foUconic data
vws Pd crraohlcallv on a display screen. PYGMALION Is a visual metaphpr

f rUCtUrn^ nf Ini 7o L concepts, the programmer uses concrete
£p;Ä. "A TherK maps ^e -1 ^acteHsU ^ l^s.^o

XTÄ^^r^ — the last of which

WAM^MtM>^«iW»MMtMaM«M((«jitWM'H^i.n.wiw»«».«-"*--*.'-
�:-�������������•*-• ��_ t, v;i.Vt.ij-^..^,,!..;-. �^."^�^-I-^:, �.�.tl»..„^.l.^ �^....�JJ^rl^...

„...^�.��.�. �-�-���������-'-���:� ; •.���������������������-��������-��

N>i;ill. JlNJHrtlJ.«»^}!.!! nw>jB»!(p^p(>iPT»^^Twwipwr�CTw^w^^ ^?«fnTrw!;tJl^ii..lf\twinil"4'll"Jw^'i'!^;V;«r!^rr^r" ����� ll!'lllflll

Introduction 4-A
70

Perhaps >h. «mptet ^^f1" ° J^^�.), d"v4ea lndVn<lB.tly, rt>., are

philosophy are the same.
u i,» n,,f PYfiMALION is not a graphical programning language

program >"»'hlnS;'.PJ°"f "^'^e,, a program U construct^ a. a llde eff«. But the

Ihe PYGMALION programner us« Ih. aisplay scr«n.

r I

Section B -- The PYGMALION Philosophy

derive from the model of thought in Part I.

(1) VISUAL: The system is visually oriented.

in PARTIAL Sine. peopH deal with sttewa. Incomplete fragments of mernory
images^aata sfrlc'ur., m"; bPe 1&. parUall, inst^tlatri ana rourlne. partial., H-clf.«.,
with traps on incomplete paths.

m T rvn c OF DETAIL Since the quantity of information a person can handle

represent. Mon.

^J.-^ .:�•.: .�-.v^^!. .��.. . .-.��. i.iv.^ ��^....�—.-^.�. ^«*:...-. i ^.>..-&.-:^..i,!X*.^.*.^ '-- -^. . ^ ---- ^- a^ J^-._^^_- .�..^^J. . ._. .��.� ^.. - - -- --

fTTTWW*?'?^"«'*"?'!***^?^^ p|.wlw^^!J?,^',vW^^�
i^^ll'v''VT-!V•'•'^!•�'�?�"T-,, �'

I
1 •)-B The PYGMALION Philosophy 71

(5) MULTIPLE ROLES: Icons are capable of assuming different roles,
corresponding to the functions which images serve in thought. Variables may be signs.
symbols or pictures of their values. An icon representing a program may simultaneously be
a part of a picture or data structure.

(6) SCHEMATA: In order to provide schemata for problem solving, generic
prototypes of common operations are provided, such as conditionals, subroutines, iteration,
recursion, sequentiality, ;ubgoal hierarchies, and classes and subclasses. In addition, a
rectangular shape representing a cell for storing information is provided as the default
iconic shape.

(7) INCREMENTAL: Since creativity is incremental, programming proceeds in a
stejj-by-step, interactive fashion, much as one uses an editor to change a body of text.

(8) TIME DEPENDENT: Information is capable of a time-dependent readout, since
it is stored sequentially. The proper representation of a PYGMALION program is a mow«.

(9) CONTEXT DEPENDENT: Since a person projects his internal models during
perception, the system does likewise. It forms expectations about its input and interprets the
input in light of those expectations. For example, the mouse buttons are context dependent.

(10) COMPUTABILITY: Th? system is a general purpose programming language,
capable of computing anything computable (i.e. equivalent to a Turing machine).

Section C -• Iconology

The mysterious way in which shapes and marks can be made to signify
and suggest other things beyond themselves...

-- E.H.Gombrich2

Webster defines "icon" as "a pictorial representation, a vivid or graphic
representation or description, something introduced to represent something else that it
strikingly resembles or suggests, a reproduction or imitation of the form of a thing."3

PYGMALION icons are two-dimensional, visual, analogical, concrete descriptions of
concepts. They can be used to represent anything that can be drawn on a blackboard.
(This is not suggesting that icons may only represent concrete concepts or that they must
look like the concepts. Icons, like mental images, may be classified as "mimetic" or "non-
mimetic" depending on whether they resemble objects or concepts in physical appearance.)
Visual images are a powerful medium for portrayal in the mind. Except for the restriction
to two dimensions, PYGMALION icons retain all the expressive power of mental images.
Icons form the communication interface: person �* PYGMALION ���computer.

The primary entity used for computing in PYGMALION is the
ICON.

PIMI n«1 IJ' -' ' r- '�"?!' P "".w. '.'.��p^r«^'^:',"i! IT"; •—i-r.-^-' «J.i.^uwi! �>f>,W>.-Kni1.^1 �* Vfl 111' V;.)*^«»-« »-«7- i jtliij «J i Muu^fi^Hippnp^^iigi

72 Iconology 4-C

Icon

Icon M fcor ICOil

licorl Icon

Example» of Icon»

Programming In PYGMALION Is a process of dtslgning and editing Icons. The
PYGMALION programmer is an "iconographer" - "a maker or designer of figures or
drawings.lWebster4] The programmer of the future will be as well skilled in design as
architects and artists today. Icons define the "PYGMALION machine". Everything that
can be done to information is done through icons. Icons provide the mechanism for storing
and retrieving information and for representing procedures. Icons exist on a variety of
conceptual levels. On the most primitive level, an icon may simply be a picture, a piece of
data consisting of line drawings. On a symbolic level, an icon may represent a single
machine bit, and the contents of that icon represent the state of the bit, either 0 or 1. On
higher levels an icon may represent a machine word, a sequence of words, an arbitrary data
structure, the state of the computation, all of memory, the entire computer, or indeed
anything which can be simulated. Icons may also represent dynamic processes: func ions,
coroutines, interrupts. The virtue of PYGMALION lies in being able to use icons as
metaphors for the objects to be manipulated. Every operation on icons affects the display
state as well as the internal machine state. The programmer need interact with the system
only on the display level, with the images he has created. The artist Alexander Cozens

^ - �.^.�.��.,..., .,....., V.-. . �.- - ��-- .-- *•.� - �«•.:,::. .:'...�..,-.;.��..... -^.„I, M' T»! ---��-'-� ' | Üj ÜMg - - ������^�.^���'.^^ -^�'��^�^-—' ^—^�..~^-

- iMM""wli,l\«.�,^'-,,Tr!i-inj'w«i.-|»*i"i?:w > „—-^-wH—««T,J,.-.Uplwrr^.im.-«^.p.. ,1 IIP iiMiMfMi.j jiiifij!

I -
4-C Iconology Ti

taueht his students to project their ideas onto random blots of ink, much as Rorschach did
a century later The inkbtots became a source of ideas to the artists. PYGMALION as an
Iconic programming language attempts to fulfill the same role. Icons provide an alternative
representation which stimulates creative thought in the programmer.

iuppose, as an example, we want to design a controller for "spacewar" space ships.
The display screen might contain the following:

A Controller for Space War

This indicates there are four arguments to "controller": an object of type "ship", an
object of type "thrust", an object of type "empty torpedo tube", and an object of type "full
torpedo tube". This is far more descriptive than:

PROCEDURE CONTROLLER (SHIP S; THRUST T;
EMPTY TORPEDO TUBE Tl; FULL TORPEDO TUBE T2).

even assuming the programming language used permitted the above data types to be
defined, which most languages do not. Some extensible languages, like SMALLTALK or
LISP70 [Tester Enea.Smith'973]. permit conceptual entities like "ship" to be easily defined
and manipulated. But imagine trying to manipulate a ship represented as an array of
numbers in FORTRAN. The amount of translation required from the minds
representation is enormous!

Icons have several "properties" or "attributes", some governing the visual (display)
state and some governing the internal (machine) state. The total collection of attributes
constitutes the "state" of an icon. Each attribute will 'je discussed In detail later in the
paper where it Is relevant. A complete listing follows.

ftti:. � ^^ i , , .i'.:.�-. .. .�^^.,. � - . I ! loi . MM ..-�-.. 1^.-J..w.^ua-',!ej.A. , ^ I . u LU ..�.�-�.�.-��.M-^.i. mi rir^--^VJ.v^J:^.^.i.-l.>'V^^'^..^---�����-'��-^"�^'�- �*^^-

 �" ��' mrnmrn wmmm

74
Iconology 4-C

Attributes of Icons

NAME — a string

VALUE — any object

c^pjr — code to generate the shape

B0DY — code representing the functional semantics

DISPLAYED - one of (FALSE. NAME. VALUE. SHAPE)

CONTAINER — an icon

RUNCODE ~ code executed when the icon is told to "RUN"

pRA^ __ a display frame (a Smalltalk class); the
entire rectangular boundary of the icon

jX __ a number, the X coordinate of the upper left
corner of the boundary

IY — a number, the Y coordinate of the upper left
corner of the boundary

U4D — a number, the width of the boundary

jHT __ a number, the height of the boundary

REICHER ~ code to retrieve an attribute of-an icon

gjOR^R — code to store a value into an attribute of
an i con

Icons also respond to several queries and commands. ^ (In Smalltalk P^n«; they
respond to "messages,r) The most important messages are has , run , fttch and stort .

<icon> has x y

<icon> run

<icon> fetch <attribute>

<lcon> store <attribute> <value>

"Has" and "run" are discussed in Chapter 7-F. "Fetch" and "store" are generic access paths
to he 'conic state. Every icon responds to the messages "fetch and store" but the actions
taken are .con-specific. In fact, the semantics of "fetch" ^\lr%fT

b^{^T^R)
variables to the rest of the message, then (b) execute the code in the FETCHER (STORER
attribute This has great potential power, but it has been largely unexploited In the Initial
implementation of PYGMALION. See Chapter S-C for the chief application.

.^^.�^.^.^^^^M a^..^,^^...^.,..u.i,^^J...^.J..^^..,^...^...,.,.,^,^^.. ;.^a,..,.,.,^.^.—^^^^-^^^^iU^-^Lifai^^^i

 »lWUMItt.1 UISK^MHHW*««

4-D Text Editors as Programming Languages 75

Section D •- Text Editors as Programming Languages

The actual implemeniation of PYGMALION is founded upon the following
observation; People using interactive text editors on a computer, even untrained people,
rarely make permanent-typ' mistakes in which they attempt to correct a line, fail to do so,
and exit from the editor wi.h the line still wrong. Since the editor is interactive, the user (if
he is paying attention) will see that the line is still wrong and will simply edit it again until
he corrects it. Thousands of people have used interactive text editors, many of them
untrained in computer programming. Secretaries and office workers are beginning to use
them because it is so easy to create documents, correct mistakes, and change words. But
many of these same people shy away from programming because it is "too difficult".

Text editors begin to lose their error-free characteristics when they become batch
oriented or when they employ complicated macros (for example, string-substitution macros)
that operate on large sections of the text before they show the results. With these types of
editors, changes are sometimes made that were undesired and are not detected until later.

Let's examine the nature of text editors a little more closely. Without too much
difficulty, w. should be able to see that text editors resemble programming languages
operating on a restricted domain. Their operations, though restricted to text strings, have a
functional similarity to operations in programming languages. For example, chan ing a
character in a text string is similar to changing the value of a variable. I'm not gting to
belabor this point; the reader will be able to fmd numerous similarities. Instead, note that
-ine difference between the two is that text ed.tors forget their operations as soon as they
have executed them. A typical cycle is (1) prompt for a command, (2) execute the operation,
(3) display the result, (4) go to 1. in a program one wants the operations remembered, so
that the program may be run as many times as desired. If, instead of forgetting, text editors
remembered the operations as they were done, then the similarity with programming
languages would become even closer. With such a "remembering" editor, we would not only
be editing a body of text; we wouid also be writing a program that, given the same body of
text containing; the same errors, would automatically correct it. Furthermore, we could be
sure that if we correctly edited the text once, every subsequent processing of the same text
would also be correct! Of course this is seldom necessary, but some editors do maintain
transaction files in case of machine crashes. At the heart of such editors is a powerful idea
that may radically change the way software is written. For suppose that instead of limiting
our editor to text, we expand its domain to include arbitrary data structures. And suppose
we also expand its set of operations to include arithmetic, conditionals, subroutines, etc.
Then we find our once-meek editor assuming all the capabilities of a general-purpose
programming language. And the motivation for doing this is our claim that it is a far
easier programming language to use.

BASIC PYGMALION METAPHOR: a program i; a series of
EDITING CHANCES to a DISPLAY DOCUMENT. Input to a
program is an initial display document, i.e. a display screen
containing images. Programming consists of editing the document.
The result of a computation is a modified document containing the
desired information.

L.._^u..,,-.-.;; um ;.......- ;.�.........�.. .^M.^^.*. ^^^.*^L^^>^*.,^.*i*: **^*. ^^MäiiML

- l wiiimtpuij^u ««.»i.» mm ��WPIIPP!IPPiip(IIP»!>OIW","Wn^,^~^"~ ""���-��-..."�i- .M...... ..j—..-T-^^— —•

76 Text Editors a$ Programming Languages 4-D

PYGMALION uses a remembering editor operating on Iconic data structures.
PYGMALION differs from all other programming languages In that there is no static
representation for a program. One programs in PYGMALION by doing the operations on
data structures directly, rather than by telling the program how to do them. When I first
began this project, I spent a great deal of time trying to decide what is a good
representation for communicating with a machine. Should it be at machine-language level,
or higher level? Linear or multi-dimensional? Procedural or descriptive? Pattern-matching
or imperative? Because of the reasons in Part I, I chose a two-dimensional representation
for objects. But all two-dinensional languages I considered suffer from the same deficiency:
they are too complex when representing the dynamic aspects of programming -- the
semantics of operations and the flow of control. The representation had to be articulate. It
had to correspond to representations in the mind. However I don't believe the current state
of knowledge permits one to claim that some fixed notation is th« mind's representation for
any problem, let alone for all problems. In fact I belitve that a myriad of representations
are used in everyone's, mind. The question then arises: why bother to have a predefined
representation at all? The important thing is that the mind have a representation for a
problem. Why not just solve the problem and let the computer "take notes"? The answer,
which rather surprised me, is that there is no need for an intermediate, predefined level of
representation between the mind and the computer. Any Intermediate level Is just extra work.
The reason interactive editors like Engelbart's "NLS" and Swinehart's "TV are so easy to
use is that they don't Interpose an intermediate level of work between a person's intention to
do a task and the task itself.

Section E - The PYGMALION Machine

In computer-aided design these relationships, between the aesthetic and
technical side, must be made explicit, must be clearly and precisely
formulated. There are two aspects of design to be considered: the visual
and physical aspects of design as understood by the designer, and the
mathematical representation of the design and associated Information
which Is i.ie form It takes inside the computer.

-- Anthony Hyman9

• ��

... , . ��^ ��.�...;�»,.�:�:.,...-. �;.�-.�.�> ., ..t. ..,-.�... :-�,„.. .,.�>,�. -j.»»,,:..,- ^..^...^.^..^...^.i.. ...^ u;.,^.;.'.^^;..^^.-,;.^!.^:,-^^^ .c^«-..-.; Jt-^^^^-U^J.;»^.-'».^«

mf^g^g/^g^giigiifff^^^ l»W>lHwi:.1<uijijjK#iW*"'TW»u'".^,-,lJ-"i^;ffl:-w-,J^ m^-7l^r''*lW?i*,'iF*

4-E The PYGMALION Machine 77

Hardware

Display witn Keyboard and Mouse

To use PYGMALION, the designer sits in front of a television-like display screen.
The one ^hown is capable of displaying both text and graphics. In front of the display is a
typewriter-like keyboard and a "mouse''. A mouse is a small device originally developed at
SRI which has an X-Y tracking capability and three buttons on top that can be read under
program control as three binary digits. Pressing a mouse button changes the corresponding
binary digit from 0 to 1; releasing it changes the digit back to 0. Associated with the mouse
i a cursor on the display screen; moving the mouse on the table moves the cursor
. arrespondingly on the display. The cursor instantaneously follows mouse movements;
mouse tracking is done in machine language. An interactive computer, a graphics display
and a pointing device such as a mouse or light pen "*. the essential hardware dements of
PYGMALION.

 .. _ _... ._ _ ^ ___________^_

fffifwi^TOTTwwCTiiwrT'i'WT^iw-OT^wnw^pBrawwnTO ^B

78 The PYGMALION Machine 4-E

nenu

Icons
create
change
delete
copy
rerresh
show
nane
value
shape
body

opcodes

• /

< >
and
or
not

control
if
repeat
done
eval
return

others
newory
disk
next
display
renenber
draw
text
trace
constant
plot
exit

nouse value nouse

renenbered

snailtalk

PYGMALION Deiign Environment

EW —"- m^^mmmmmmmm tuwwmmmu^^mmm n.ppwuw^^i.iiii .�ucjjiiupnpmniwmwu.uu i nniimHwnwuniiwiwiiii

4.E The PYGMALION Machine
79

Software
Pf,rfc fn ii«. the svste:n, the display screen shows the basic

value" (5) -remembered-, and (6) -Smalltalk

(I) Icon "world"

Ever, icon Is an inaance of .he SmalUalk class ICON. Two of .he anributes
possessed b7e,er, icon are a BOUNDARY and a CONTAINER,

BOUNDARY

The BOUNDARY oT an .con --"^T^^^e^^ o? t^
capable of detect.ng ^-^^ " "ee th o^a^con. ^o.n on rAe display lie
"world" encompasses the ^jfifV *r

�^ a correSpondence between the physical
Within the boundary of he world ^�J��* uft Jner of the boundary is called and logical characteristics of the dsplay^ ineupp ^^ a

^VCM^ON^ er^'^tion^r^^thrdisplay. it asKs for location for the
ong^n Tonjof the "Lid" icon is location (0,0) on the display.

CONTAINER
"Containment" is a natural characteristic of images. The rule is:

„r *» irnn "1" is the most recent icon created and

�X'^:*w*«-- ^'"y -h'!l""y tnclott',,s
origin,

fnr thi. oarticular convention is related to the notion of "icon.c context" and is The reason for this P,rt.cu^r c^n conta,nment is the same as log.cal
explamed n f^f'^^d^^icon A encloses icon B on the display screen, then .con contammeni .jMf he bou. day o .c ^ ^ A contains icon h

^m ^Lres'neithe;^ contains ^he other, because neither contains the others

upper left corner.

I
^�i^,,^.;rLv.i-..'i;-».^: ..�����-. .-.„.^„.„„„U..^ ,„ .,.,„�„ „�^„ „: .^^.„^.a,:.,,.. ,^',.-: -� - - ��

mm �' IIMM"W1PM" WH IW.N1J1 I I I , I..IJI|I.UI«IV^m^^millllllUIHI j iiim«i^^««»i^mi iPPP '" ««»ilWWni.UiÄJl'lUln.uiliWJJIpwinuwi^w^^Bir^

8C
The PYGMALION Machine 4-E

. A

B 1

A

B

| 6

A

/conic Containment

An exception to the containment rule is provided by the change container
command (Individual operations are explained in detail in the next chapter.) It U
oc^onally useful for icons to be logically connected while physically.separate The change
c^ntarer command explicitly sets the containment relationship between two icon»^ In he
example aboTe icon A could explicitly be made the container of B. or vice versa, by using
this command.

Iconic Structures

The container attribute is an integral part of the internal semantics of icons. It is
used to organize icons into hierarchical structures. The container of an .con i, .tself an
kon Every icon has a unique container, and every icon may. but need not conta.n other
cons If an icon does contain other icons, its VALUE attribute (discussed later) is »aid to

be an "Ln"c " ucrur*" The VALUE of the "world" is an iconic structure containing all
the top level icons.

?

���^.^W^..^.^^^:^;»^^..,.^..-.^^^

pppp^mji.iiiji-u] x, \MmwmmKmmimmm^».m*m'*y. .em Uin.iHOUilHilu* ll"ll wmmmr-^mmmmm VIJWJWJJlsuiiw'^w^-^J»;')!"

4-E The PYGMALION Machine 8)

Icon

Icon

Icon

/}n /con Conjoining T/irff9 Su6-/coni

An iconic structure is a collection of icons. The purpose of iconic structures is to
provide a symbolic way to access all the icons on the display. Every icon is a member of
some iconic structure. Internally iconic structures are organized as queues. New icons may
be added only to the back of the queue, but icons can be deleted from any position.
Internal descriptions of icons are in the form of index lists, in which each index is an offset
from the front of a queue. Since the boundary of the "world" icon encompasses the entire
display screen, all index lists begin with an offset in the "world's" queue. Icons are
recursively organized. In addition to being a member of some iconic structure, every icon
may contain its own iconic structure. The "world" is the root of the tree; it is the top-level
structure that provides access to all the other icons. The index list (6 3 5) refers to the sixth
icon (call it "A") in the "world's" iconic structure, then to the third icon (call it "B") in A's
iconic structure, and finally to the fifth icon in B's iconic structure. While (S 3 5) 1$ a
Fregean representation internally, it is created analogically by pointing to the icon with the
mouse cursor (see icon "mouse" below).

Since each icon has exactly one container, it follows that each icon must be unique.
Making a COPY of an icon creates a new icon, with its own unique container The
container attribute may be changed by

(a) CREATEing an icon;

(b) FETCHing an icon from memory (core or disk).

(c) COPYing an icon;

(d) CHANGEing an icon's position;

(e) CHANGEing an icon's container explicitly;

vtÜiA-'äi^':^.,.^.�:.-����������'.'^LL^v.:..- .. u^^^-s^^.lA^^a^^;^ ^tf^iiilll.lltirr-i^^"-''-'"^"--^^'^ ^»n;^^^...-.^.^.^ A^^^-^.:^^,^^,.^^^-

BMi^pwwiw^iLi.iuHiiU! m.fiv.vm*-9> .-in'uuj^, ,,u., vnmi.v^ipnmmmm jpn!>w!-^(>l(fl.4H,:Ä,1 ulM^PJfl;.Bi«4^^^Piippf|WIPM.iit^< HHWWMH^I'W^P ~^rr^w^^^w,*wjr_i!fnP^»..^. -T^t^T^w^wr-»^!1-1^-' hna

82 The PYGMALION Machine 4-E

(2) Icon "menu"

As mentioned, PYGMALION uses an interactive
remembering editor operating on iconic representations of data.
On the left of the display screen is a list called the "menu ot the
editing operations and submodes that are currently available. An
interesting aspect of PYGMALION is the scarcity and simplicity of
its operations. The trend among high-level languages is to include
more and more esoteric operations. PYGMALION runs counter to
this trend. There are only a few basic operations, and they are
grouped into four categories;

structure - operations which create and edit icons
themselves

opcodes - arithmetic and boolean operations on values

control - operations which affect the flow of control in
a program (conditional, iteration, subroutine)

others - miscellaneous operations to save icons in
memory, turn remember mode on or off, draw a
shape, etc.

nenu

Icons
create
chanae
dsletc

cerresh
show
rtane
value
shape
body

opcodes
��-
• /

< >
and
or
not

control
If
repeat
done
eval
return

others
nenory
disk
next
display
renenber
dray
text
trace
constant
plot
exit

The principle structure operations are CREATE, DELETE and
COPY icons; CHANGE the size or position of icons; SHOW and
REFRESH different levels of iconic structure; and fetch from and
store into the NAME, VALUE. SHAPE or BODY attributes of
icons. Fetching and storing attributes are comparable to fetching
and storing the contents of a cell in memory -- the most primitive
machine operations. The opcodes provide the standard arithmetic
and boolean functions on values. The control operations provide
conditional branching (IF), iteration (REPEAT, DONE), and
subroutine' invocation (EVAL, RETURN). The miscellaneous
operations provide various other facilities that have been added
from time to time; operations to save icons in memory (MEMORY,
DISK), make line drawings (DRAW. TEXT), step through iconic
structures (NEXT), turn display and remember modes on and off
(DISPLAY. REMEMBER), trace the execution of iconic functions
(TRACE), fetch constant values (CONSTANT), make a hard copy
of the display screen (PLOT), and leave the PYGMALION
environment (EXIT). No claim is made that this is a necessary.
complete or .even the most useful set of operations. PYGMALION
is intended to demonstrate how a set of operations (a display metaphor) can be implemented
iconically The reader should be able to define his own set given he formalism presented
in this report. Additional operations can be added to the menu at any time. In fact, the
only difference between menu operations and iconic functions is that the names of the menu
operations appear in the menu. The reason names (a Fregear. representation) are used in
the menu is that there is not enough space to display all the operations graphically.
However iconically-displayed operations can be created, and Chapter 5-B has an example of
an iconic menu.

�-� :^ /...... .::.^..i-....,^. �� ^..V.^...^^toA^^...:..:::,^,.;^a,^^^fc..-^.*.^^^ . .�.;.. V... . ������. .:^. .^.^ ..,,. ..^ ..^^ , ,. ;- ...v^ «

mmi *1fmf*m^w***�m<*>T?v~****m<*v*n*°^�wmm*^mm'. »P9U»UI**ltLUUJU«llU,UJ5B!«B»!»l|ip«lllPW)Jllllli«»U

*�-�" '^-^��-�-

�i-E The PYGMALION Machine 83

Hyman lias a perceptive comment on the use of menus;

The presentation of a menu of choice is a powerful working tool. With
a well designed system a teaching manual is largely redundant: the
system incorporates a sort of programmed learning as a part of the
design system It may be held than he rhetoric of a subject is not to be
learned that way, but it will serve well enough for the three Rs. It
would also be of help to a designer transferring from one automated
design to another. When the designer is freed from the burden of
attention to detail, which grow, enormously in a real production system,
his attention is freed for creative design.

A menu provides constant reinforcement about the capabilities of the system. It relieves the
short term memory from constantly having to recall the available operations.

The programmer should quickly attain a high degree of confidence in the system
because

(a) each operation is simple and easy to understand;

(b) its effect is immediately displayed;

(c) mistakes can usually be undone without harmful side effects.

A menu operation may be "executed" by pointing to it with the mouse cursor and pressing
the top (DOIT, louse button.

nenu

Icons
create ^
chanae ">
delete
«rroal

C

noute
dolt

>

noute

set point

del point

quit

Kxcculinn a Menu Operation (note change in mourn state.)

This typically sets up a new context in which subsequent commands are interpreted.
One effect is to project an interpretation onto the mouse buttons.

I *•

��

���������

. ��

Cam .Wtwmr— -�����-^-~-.^- . ����- -Jt.-^' .^L..^.^....^.,.^. _^. . • .L.^..^...^. Ü ^ .�^^—^., ^�, ,^.. ,1..^..—...^ . ._. . ,..^^ _ , . ._...--..-. ~ — ^.-^

mm^mt^fufmsfsi i^Mi-w'^^^-wj..^, ymvmown^^.j* v^iimw*m PWPPP||PP^|IIII|I I illnW^ffgijgp^|i...p...,. ��:—T^r-.. .-�^-^pil..li.J..i.^i.^,.J.>f^irF-r-^-7^^...^r^-^^^»^-^-^^ -i .. i Lf.....-...--.--."——--^-;���•- .:-7--^ — —

84 The PYGMALION Machine 4-E

mouse (3) Icon "mouse"

The mouse is the primary input and control device in
PYGMALION. The two main uses of the mc ise are to:

(a) designate an icon

(b) accept button commands.

An icon is said to be ttdtsignat*dn when the mouse cursor Is within its boundary.

Detignating on Icon with th« MOUM Cunor

Only icons currently on the display screen can be designated, and only designated
icons can be affected by menu operations. What you see is what you get. Thw i$ a
simulation of the principle that only images in the brain's short term memory are operated
on by conscious thought. The display screen corresponds to short term memory. Icons not
on the display must first be brought to display level by creating them or retrieving them
from storage. Core and disk memory simulate the brain's long term memory. There Is a
fairly accurate correspondence;

The Mind

short term memory

long term nemory

conscious thought

The Computer

display screen

core and disk memory

operations on icons."

(The simulation breaks down at the interface between short and long term memory. In
PYGMALION icons are retrieved from memory by referring to their symbolic names, e.g.
"factorial" or "resistor", under the control of a (conscious) menu operation, in the mind that
would correspond to bringing everything into short term memory under the control of
conscious thought, which is certainly not the case. As pointed out in Chapter 2. creative
retrieval is often subconscious and involuntary. However, the rest of the simulation is as
faithful as I can make it.)

Actions are initiated by pointing to an icon with the mouse and pressing one of the

1 I --����- -�~-. ������- .--*. �����- . , , U_J - ...�..- -. ������������-����- - ����� ^ML^l 1 I � ... ����-.���� , . : , � ������ � ����. -������-

;*iHHHpp|piP|>nF*f?:"�-* ^ > -' "�< ����- '^ W«. ��JffvW-f.« ^••"�'•w 11 • .^J «IIH^flHI^piin^PEipB^.INPIMUlf "Vl. IM MiPu.Myi ^ i '_��.ui J_Jd I, • 11^,'!» ��!A.i i. fw »nW^WWRM: < ����'. . -^ -TJ^ -;^yi|»vr»«»-«-^T;---ppnT ��-«j --.�.�» Br1'^nrj.'.lwJ!ij?i J1I.B*>T«W'.-|-'-I.-',—

I
/»��

4E The PYGMALION Machine 85

i
!

mouse buttons. The mouse is context sensitive; the mouse buttons have different
interpretations depending on which icon the cursor is in and which operation is currently
being executed. The "mouse" icon acts as a prompt, displaying the current interpretation.
Descriptions of the interpretations are represented in this paper by the following picture.

Explanation of the buttons

nouse
top Iutton

middle button

bottom button

For the menu, the interpretation is:

nouse
dolt Execute the operation pointed to

I

*,-

nouse value

(4) Icon "mouse value"

In PYGMALION, the mouse has a value associated with it, in addition to its cursor
and its buttons. Several operations like NAME and VALUE use the mouse value.
Fetching an attribute from an icon may be thought of as attaching it to the mouse. The
value may then be deposited in some other icon. The "mouse value" icon shows the current
value attached to the mouse.

I
 -.^.w. ��������� ~..A. ff, fa,,...!!****!*^ ^^.*~****J.~.. �.. .. _. ' I I t———«I —, ���:.�,--,..�....>� .„..,.. �..��.-.T^m,-, - - —

l^w fc1«lMfWW.M>'J"*,-W^-*».^e*.?,-W' �..�- .'„Ptiit-iUL^ '�IWH,^*"1, '. .'.-^�.-.M'.UjyffP'" ��1-!r^Wyjr^»4-ML-.l.j. 11,1«^,^^.�^.,^., »^(...UM.B, l,.;W,.. M^.,.^..^ „ -^~r^^7^-TT-w^T-»r-r.

86
The PYGMALION Machine 4-E

reftei*»ered

Z] (5) Icon "reincmbered"

In ".emember" mode (explained later) the iystem keeps track of operations M they
are done and inserts them in a code list. The last operation or two remembered (I.e. in the
current code list) is displayed in the "remembered" icon.

(6) Icon "smalllaik' snalltalK

This icon is for commumcaiing with Smalltalk. When the mouse cursor Is in this
.con. Smalltalk expressions may be typed and evaluated. In addition, other information
about the state of the system is periodically displayed in this icon

The Design Space

The rest of the screen is a large area called the "design space", available for
displaying iconic data and program. The design space lies within the "world's boundary,
of course The programmer performs computations in this environment by pointing with
the mouse cursor to operations in the menu and then selecting operands from the data
structures in the design space. At times an operation may request linear data. e.g. a numbfer.
or string, which may be input from the keyboard. The result of every operation Is
immediately displayed; if it is not what was intended, other operations can be executed until
the desired state is achieved.

Routines are written by editing actual data structures and performing operations on
actual operands. It is programming by example. Instead of trying to imagine what data
objects are being passed around, the PYGMALION designer manipulates the actual
objects And instead of telling the machine the sequence of operations to perform by
putting them down on paper, the PYGMALION designer does them himself, and the
machine records them. With very few exceptions, programming languages have required
programs to be written with formal arguments. This additional level of abstractness
obscures the meaning of routines and is the single most'important soutce of programming
errors In PYGMALION even formal arguments can be visual images of structures. Per
example the structure of a data object can be concretely described while the values of the
fields are formally represented. The following is an example of an iconic structure that
might be used to represent the concept "person" in varying degrees of tangibility. Even
more concrete information could, of course, be shown; the degree >^P ^ the designer. The
chila "Bobby" below may itself be a reference to an instance of PERSON, and It could be
displayed to the same level of detail if desired. I

-,.

e-o^j/Bfa^i^'^'.fej,- ��..-J. l.TJ-t'.A-,!.^--^..' . _ .jLi^wU^iMiBta^AK >J»

MMMH ^MW

4.E The PYGMALION Machine 87

person

nane

sex

warrled

age

children

occupation

street address

city address |

state address

Joe Blow

rale

true

36

carpenter

68 Market St.

San Francisco

California

children

Bobby

Jinny

Sue

Degree» of Repretentation of the Concept "PERSON"

U

mm mm -" ^..^..^^^^^^^^^^^^

88 The PYGMALION Machine HE
:|

Modes of Execution

There are two modes of execution in PYGMALION:

(1) Display mod?

(2) Remember mode

Every operation has a well-defined meaning in each of the modes, but not every operation
does something in each mode.

(1) Display mode provides a means for communicating the semantics of operations
visually in display mode each operation shows icomcally the results of its execution. This
permits the user to remain in the display metaphor without having to deal with the internal
semantics of operations. Display mode is usually on "'^ile a program is being written. It is
also turned on when an iconic trace of a program V .«ired. Display mode may be turned
off to gain additional speed of execution, since the display code in each operation will then
not be executed.

(2) Remember mode is for writing programs. In this mode the designer do«: the
computation and the machine remembers each operation as it is done. The operations place
themselve« in a "code list". When the computation is complete, the designer executes stop
remembering" and assigns the code list to the BODY or SHAPE attribute of an icon.
Programming m remember mode corresponds closely to the debugging process in most
languages. Remember mode is similar to an interactive, display-oriented debugger that
permits operations to be inserted and deleted in the code and that permits execution to be
initiated from any point

PYGMALION routines may be partially written and run while only partially
specified; the specification has to be completed only when the code is about to be executed.
This is frequently done with conditionals. When a program is written using actual data,
only one branch of a conditional -.ill be taken, with th? other branch being left until (and
if) it is entered. Every code list ends with a trap to the user asking for more instructions. If
the list is completely specified (i.e. terminated with "stop remembering"), the trap is removed.
Only if the trap on a partially specified branch is encountered will the programmer have to
give additional instructions.

An unusual aspect of PYGMALION's remember mode is that it does not involve a
compiler from the display-level actions to the machine-level actions. Rather tac\ optration
is its own compiler. Each operation is responsible

(a) for accomplishing a given internal machine task
of the operation;

the machine "semantics"

(b) in display mode, for generating a representative visual action;

(c) in remember mode, for adding onto the current code list the operation(s)
necessary to reproduce itself.

The operations added are "primitive" in the sense that they are not built up out of other

;

•

•

4 1
j

 '-'��'��'-•- '^-' ^-i-.*-. MartkMu MMMlMteflkaMllMI

 w^ammm 1 '<"'*

�\ E The PYGMALION Machine 89

opeiations available to the program designer (An exception mi^ht be a macro-operation
added by the designer to do some commonly-repeated task ; Thiii the product of remember
mode is a code sequence of the lowest level operations possible. Ideally all or parts of these
npetatinns would be coded m machine language or microcode In the current
implementation they are coded in Smalltalk

This concludes the basic hardware and software elements in the "PYGMALION
machine"

Section F - Characteristics of Programming in PYGMALION

Using PYGMALION causes several changes in the way software is constructed:

(1) One rnav expect to write error-free programs the first time. This is not the usual
eise with programming languages, where a great amount of theory and effort has been
spent on the debugging process It is the case with interactive text editors. The relevant
chaiacteristics are: (a) The system is highly interactive. The results of operations are
immediately visible, and mistakes immediately correctable. (Therefore PYGMALION must
be implemented on a computer that permits interaction, for example on a time-sharing
system or mini-computer.) (b) Operations are primarily concrete rather than abstract. Some
operations are inherently abstract, such as evaluating a subroutine or iterating over the "ith"
element of a structure. But most operations are explicitly represented and then-
consequences immediately displayed. This concreteness simplifies the model-building
(understanding) of the programmer (c) Data and program are visually represented.
Programs are display documents that can be visually examined and changed until they
contain the desired information.

(2) The standard mode foi writing programs is lohat other systems consider to be
debugging mode. In the traditional writing mode, one works out the logic of a prog, am and
organizes the operations that will implemen' thaf logic. In debugging mode, one observes
the step-by-step execution of operations on actual data, interrogates key values at certain
times, and corrects (or at least notes) those operations that are in error. In PYGMALION
there is no difference between the two modes. Designers of large systems, such as operating
systems and programming languages, are beginning to realize that debugging tools should
be designed and implemented first, as an integral part of the project The more complex a
system is, the stronger is the need to see what is going on. PYGMALION extracts the
useful features of debuggers and integrates them directly into the programming process.

(3) The human programmer is considered to be part of the execution of the program.
A progiam need not be completely specified in machine-executable terms. At certain points
the human may be called upon to guide the machine through more operations, with the
machine remembering what the human does. Thus there is a distinction between two kinds
of programs in PYGMALION: "open" programs and "closed" programs. An o^n program
consists of one or more machine-executable operations, of which one or more are requests

i i " ��

����-•���

90 Characteristics of Programming In PYGMALION 4-F

far human intervent.on; a closed program consuls of one or more machme-executable
ooerations none of which are requests for human intervention. The program li cloied in
the sense 'that the human has told it everything it has to be told. With few exceptions,
conventional programming languages require closed programs. P^"«»0? •0Pi

W»re <ie;
intended for use by other people without the writer bein^ present) should be closed. But
software in development may. and in fact should, be "ope» ��»ince such ,oflware is far ea»ier

to create.

(4) No additional medium besides the computer is used in designing software: no
oaper listings, no punched cards, no scratch paper. Routines are specified dynamically
rather than statically, by doing rather than by telling. There has been no attempt to make a
uat.r,'presentation fo/a dynamic process. A listing of a PYGMALION routine Is a movte,
a sequence of display frames. Examples of such movies are found In Chapter 8.

Section G �- PYGMALION versus Automatic Programmlng

It Is characteristic of computers that each time they Intrude into a new
subject they force practical decisions on questions which have hitherto
been considered of a philosophical character, more suited to meandering
discussions over cups of coffee far into the night than to the prosaic
daylight world of industrial practice.

- Anthony Hyman7

The goals of PYGMALION are quite different from those of automatic
programming. The general goal of automatic programming Is to automate some of the
programming process. In the ideal system, the human specifies the goal of the program in
the form of input/output relations. The computer chooses Internal representations,
organizes the logic, maintains consistency, verifies correctness, and so on. Such tasks are
problem-independent; they involve techniques that programmers learn from experience and
apply to many different programs. By extracting problem-independent aspects, automatic
programming hopes to make the process of programming easier. Balm19 presents an
example of a person communicating the semantics of an airline reservation system to a
hypothetical automatic programming system. It is evident that such a system would require
less superfluous detail than would conventional programming languages.

However there Is a danger In this, if carried too far. By making the computer Into a
"black box" that does the actual programming, the user has to think less about the logical
structure of the problem. Furthermore, ihe user's interaction with the computer is on a
verbal level Verbal communication is Fregean and Inhibits understanding the developing
program The questions that Balier has his hypothetical system ask often seem obscure,
since the user does not know what logical relationships the computer is forming. The
computer may even Ignore the user's recommendations, for example on Internal
representation, if it thinks it knows better. If successful, automatic programmlns; systems

-- ^ ��'�- �• ��— - - -- — �� 1 I ' II ml n iiMjartlMMMliMMUMi ��-- - -
 ' ' ' L^^^jJ

r wmmmmmmmmmf^mmmm • "' imimiwmn II

1

4 G PYGMALION versus Automatic Programming 91

will replace some fairly high-level thinking processes in humans Instead of encouraging
humans to do more and better thinking, automatic programming may encourage humans to do
less and poorer thinking At any rate, automatic programming is unlikely to stimulate the
develupment of new problem-solving techniques in the user

On the other hand, Kay and Papert have shown that learning to program can
actually improve children's thinking and learning skills The notion of debugging is
particularly fruitful in giving children new learning strategies Programming can serve as a
catalyst for creativity; knowing how to program can provide the schemata necessary to solve
problems, just as knowing how to play chess 1; frequently useful m real-world situations.
With an articulate interlace, computers can form a symbiotic relationship with a person
which will vastly increase his thinking power. PYGMALION and systems such as those
mentioned in Chapter 3 are attempts to provide such an interface.

. ��������iiaif^.'itliiri'»^. » _ ,-.. ..^.-r.^^-.-^..^-.—^.��-...�„.-fn"—�- �** . . ., . -«I,—.«.. — �-�—-wiTi'Miiiiiriinti
 - ��— —-

•�^ ^^m^mnsmri^m'nmmmimmKammaBmmmsmm^'n^mr'fK^^mmmn^mmv'f*'f'.'* '�"�
, - ��.-«f1! ^-^- !r———-——�" ��������« �«^�^•UM

Chapter i
92

Chapter 5

The Internal Structure of PYGMALION

Siimmtrj
(a) Icons can exUt on a variety of conceptual levels: u pictures, symbols or

signs,
(a) PYGMALION is a remembering editor for icons. Operations are provided

to deal with Icons on each of their levels.

Section A �• Smalltalk

PYGMALION is Implemented in Smalltalk, a language designed by Alan K»y "£
.mnUmantS at Xerox PARC by his Learning Research Group. I highly recommend Kays
.mplemented at Xerox ^K y napers197^<')•,•72*,•"7» for an enjoyable reading
"personal ^fj^ language with nilbk display

consistent internal structure, even more consistent than pure L15P.

 .-—...^...-^.^.^—.—...—,.—„^^- ._ I^..^——».^^^-J^-..

innwi I UM' l.V-f»1!! lW.-P!"W^WR!||kllHJiJii JlWl "

^-A Smalltalk
93

to the definition of each class, the semantics are satd to be intrinsic to the class Neither
he evalt "or nor other classes know about the mternal workmgs of a particular class; they

„now onlyt what messages the class will respond and what form 'he responses will ake
ThPrla.s NUMBER responds to the message %" by performing an addition, but how .t
r. ag to a^phsh th'e add.t.on is usually not of interest. �\Mfr �"^Z

v tPms in wh.ch he semant.cs of objects are represented extrins.cally . In compilers the
emant.cs ordata types are represented by the code the compiler produces for thern^ Data
r/s themselves h ve no intrinsic meaning; their meamng is d.stributed among the code
XratorT Having the semantics localized In a s.ngle definit.on U a slgn.f.cant a.d to
understaniing and modifying data types.

Classes and Subclasses

Smalltalk Is a descendant of the orig.nal SIMULA [Dahl186»] and FLEX[Kay18M].
Unt.kP SIMUIA-67[Dahl1970], however, Smalltalk classes normally exist on the same
^on eptua lev ithat is. one does not normally think of Smalltalk classes as being subclasses
n^Xrclasse (except class CLASS). Here we will briefly discuss the concept of
h era'; c Xes sm^e icon.c data structures (cf. section D) are hierarchically organized.
H.erarch.cal classes are not currently in Smalltalk, though they can be simulated.

The key principle of hierarchical classes is that a subclass is M Instanc« of an
/rurarJ Currently Smalltalk objects are classes, instances of classes, and act.v.tlons of
in ances The notion of "subclass" involves a new kind of object: an instance of an
n sane One creates an Instance of a class, as before, and gives it instance-specific state
n ormat.on Then one makes a copy of it, preservmg all the filled-in state Addit.onal
no ma on Is then added to the new instance, making it a subclass of the onglnal mstance^

Sub Usses a "cursive; a subclass can itself have subclasses, forming a tree structure. To
fmnlPment hierar.hica classes, Smalltalk would need the additional capab.l.ty of
ZaZaN aZgaUfibuUs to instances. This is necessary If changes to attributes at a
Scla evel are not to alter Its superclasses. PYGMALION's iconic classes provide this
capability since additional icons can be added to iconic structures at any time.

There are two kinds of behavior that subclasses can exhibit:

(1) Upward Mobility

(2) Dowmuard Mobility

These refer to the information (and hence control) paths between class and subclass.

(1) In "upward mobility", each subclass can access all of the knowledge of all of its
superclasses. In addition each subclass has some information ^\0^^U^ ^
be d strnguished from its immediate superclass. For example, the class HUMAN might be
dUcrSted into subclasses MAN and WOMAN based on the additional Information.
SEX

—r-r-rg 'i 1-. .. . *-�""— '-- .�^r^^^^^'.

���i^^^-~, ll""" ����
 1—

94 Smalltalk 5-A

HUMAN

HAN UOHAN

his additional state may Involve changes :n the values of superclass attributes, or It may
em-rely new attributes not present in a superclass Changes made at the subclass level

do not affect its superclasses. For exampi*', if subclass MAN changes the attribute HAIR-
LLNGTH to SHORT, the change occurs at the subclass (MAN) level, not at the superclass
(HUMAN) level.

The key aspect of upward mobility is the access method that subclasses use to retrieve
information. In what we might call "dynamic upward mobility", a request for th« value of an
attribute begins at th.» level making the request and searches up the tree of sup«rclajses
until it find the first occurrence 01 the attribute. This is the most general form. SIMULA-
67 uses a more restricted form, which we might call "stath upward mobility''. SIMULA
copies superclass information into each subclass, so a subclass can access only the
information that exists In its superclass at tht timt thi subclass is created. No new
knowledge can be added dynamically. (Actually creating subclasses Is a compUe-time action
in SIMULA; at run-time SIMULA does not even remember the class-subclass relationship.)

(2) In "downward mobility", any change in a superclass Is reflected In all of Its
subclasses. Again we might further discriminate this behavior Into "dynamic downward
mobility" and "static downward mobility". Suppose the class HUMAN possassei an attribute
called NUMBER-OF-LEGS, and suppose its value suddenly changes from 2 to 1. In the
dynamic form, all the subclasses of HUMAN (i.e. MAN, WOMAN) are Immediately
updated. In particular, any instance of HUMAN drawn on the display icre«n would now
be drawn with only one leg. In the static form, the change will be observed by fhe
subclasses If they ever ask for the value of the NUMBER-OF-LEGS attributt, but
otherwise they will never know. Static downward mobility is equivalent to dynamic upward
mobility.

Dynamic upward mobility requires that thert be a link from each subclau to at least
its immediate superclass and that the accesi method for attributes search back through the
tree. Dynamic downward mobility requires that each superclass have link» to all of it»
subclasses and that the "change attribute' operation be monitored, so that change! in a
superclass can be broadcast to the subclasses Static upward mobility as In SIMULA doe»
not require the presence of links, but it has the unfortunate trait that each subclass must be
larger than Us superclass, since the superclass information Is copied into It. By the tlmt one
gets to the leaves of the tree, the subclasses might be quiie large.

Smalltalk has proven to be an exceptionally flexible language In which to Implement
PYGMALION, as well as a fascinating language in its own right. The SIMULA notions
of subclasses have also proven useful.

' i- I'Wilf'ttftnilii't .^^_. - �^. �- -.•-^...-:-— - w-'.-^.u^j^i:,^^.,-..^. ..-iw.^,.^.!.-^.-. ^^, iHi'i,ttti ,*-.v-t.^^- �-�--^"- ����^.�.--^^^-�>.>.-^.--.^-^^^...^^^.^^fakiui

r !�' I * < "»<• l '

I
5-B Icons as Pictures

Section B -• Icciis as Pictures

96

icons derive their power of expression from the fact they are abstract in content but
concrete in shape. The virtue of abstraction is that many different instances can be
handled within one framework. The virtue of concreteness is that it provides a schema for
oreamzing thought and reduces the possibility of mistakes. Arnheim points out that mental
images can assume different functions: they can be signs, symbols or pictures of their values.
PYGMALION icons can also assume any of these functions. This section deals with their
most concrete use. as pictures. The operations described here all deal with the visual
properties of icons themselves, as they appear on the display screen. The picture operations
are:

CREATE Icon

COPY Icon Icon

CHANCE Icon Icon

DELETE icon I

REFRESH
1

1c
Icon 1

Icon
)n

1

SHOW NAHE

VALUE

CUAOC BflWX

resistor

10

M/VW

. -^. .—- — in n i n -in ~jim

 „.^^ _ •" ����������������'� ' ' " "——�-!~— .,., ,IV,„.I_--.. ... ,. .„„.„<,

Icons as Pictures 5-B 96

The user interface is basically the same for ail of these, so we will only describe
CREATE in detail. Executing th- CREATE operation in the menu establishes a context
for the mouse. The mouse Icon will show that the user can now

noute

•et point

del point

quit J
Set a point (a corntr of an icon)

Delete the last point sat

üuit

The user moves the mouse cursor into the design area and presses the top button. This
fixes one corner of the rectangular boundary of an icon. As the mouse is moved around, the
oooosite corner follows the cursor, dynamically changing the shape of the rectangle^ The
middle button may be pressed to start over. Once an icon is started pressing the top button
a seco-d time fixes the opposite corner. This completely defines the boundary of an icon.
Each icon starts off with its boundary as its shape, but it can be g.ven a fancier shapj.
The DELETE operation is the inverse of CREATE. The CHANGE operation can be
used to change the position of an icon, the sue of its boundary, or its CONTAINER
attribute

The CREATE CHANGE and DELETE operations have internal semantics in
addition to their display actions. As explained in Chapter 4.E. every icon is a member of
e-actlv one iconic structure, and every icon can (but need not) contain its own iconic
structure The CREATE operation adds the created icon to the structure which contains its
Z n If no icon encompasses its origin, it is added to the "world's" iconic structure.
Similarly for DELETE; the deleted icon is removed from the structure in which it occurred.
Normally physical containment and logical containment are the same: •« fn tegtegly
contains another icon if it physically encloses the other icons origin. The CHANGE
operation can be used to explicitly change the container, and thus the structure containing,
any icon This enables icons to be logically linked while physically separate on the display
screen.

(Aside- Most icons are pointed to only once, but multiple references to icons may be
created if iconic structures are treated as values. For example, if the value of an Icon Is an
.conic structure, and its value is "fetched" and then "stored* in another icon, there will now
be 'wo references to all of the icons in the structure. This is dangerous and not
recommended. However it is sometimes done by the system in controlled circumstances.)

The COPY operation gives icons class/subclass characteristics. An icon can be
constructed which represents a template of a class. For example, the following is an iconic
menu of classes of circuit elements. The elements are all icons which have been given
various pictorial and internal properties. The COPY operation can be used to create
instances of each class. All properties are copied by value, not by reference. Thus Iconic
subclasses display static upward mobility (cf. section A) In the current implementation With
the COPY operation items can be selected and positioned on the display without leaving
the iconic metaphor -- that is. without having to refer to them symbolically.

|1—ÜWitlMMIiniMliillflhil .��> ���--- ������•'- • ---^- .nil | t|-|.|i^" —-.— .1.. .; .^i... .,. -, ^i -j^....—...».^.-

" ' ^.IMII.1 �.J...11.1 i �.m.K^j - -^

5-B Icons as Pictures
97

pienu

icons
create
change
delete
copy
refresh
show
nane
value
shape
body

opcodes
��-
• /

a, i
or
not

control
ir
repeat
done
eval
return

others
wewory
disk
next
display
rewenber
draw
text
trace
constant
plot
exit

jwv-
-]i|h-

nouse value nouse

renewbered

copy Icon

snailtalk

An Iconic Af«<iu

J.-J-.-..-..v^-H-t....i-J..~-.-^ -. ..' , i — - - —^- ii �^�ii tMiiimt\\m»*m*\mw*m

��" ' mmmr^^mm^^r—

98 Icons u Pictures 6-B

The SHOW and REFRESH operation! caui« different leveh of Iconic
representation to be displayed. The REFRESH operation simply redraws an icon at its
current level. This is useful if it has been obscured by other drawings. The SHOW
operation sets up the following mouse context.

MUM

•hOU MM

•how valM
ihoM ship«

Show the NAHE of an Icon

Show the VALUE of an Icon

Show the SHAPE of an icon

Usually pressing any of these buttons simply causes the corresponding attribute of the
designated icon to appear on the display However there are several special cases. If the
NAME of an Icon (sec the next section) is already being displayed when the "show name-
button is pushed, the effect is that (a) the name of the Icon's confairwr is displayed, and (b)
all of the icons in the container's iconic structure are erased. If the VALUE of an icon (see
the next section) is an iconic structure, then pressing the 'show value" button causes all of
the icons in ihe structure to display themselves. The "show name" and "show value"
buttons can thus be used to move up and down in Iconic structures, selectively displaying or
suppressing structure. If an icon has a shape routine defined for It, then pushing the "show
shape" button causes the shape routine to be evaluated.

SHAPE Attribute and Operation

The main pictorial attribute of Icons Is:

5HAPE — cod« to drau the Icon

The initial shape for an ..on consists of the rectangular boundary with Its name inside It.
The default name Is "icon*

D«/«tit leonie SfefW

i

I
-- �—J • — -•- • - - - - • -^>—-: -^-J. .

^mmmmmm^^mmmnMMiii mit i mt—�� mi nai «�•��in in

I
VB Icons as Pictures 99

^

The default shape emphasues the concept of "container" an icon is a cell which can
hold information It also indicates that the cell has a name and can be referenced
symbolically

However icons are not limited to rectangular shapes In general the value of an
icon's SHAPE attribute is a user-definable routine which displays the icons surface-level
structure A shape may be any disp.sv image that can be generated by a routine^ This
flexibility allows the iconographer to design his metaphors. He may give them whatever
shape he considers appropriate to their meaning. This is another example of
PYGMALIONE attempt to program in the language of thought.

preface lengtn

daU
HI|H-

o

\

true

False

Some /cam »1»* Funey Shmput

Any icon can be given a fancy shape, regardless of its intended use; picture.
variable function data type, etc. The value of the shape in communicating semantic intent
is entirely dependent on the user's skill in designing images. It is the task faced by artists in
communicating with the public. PYGMALION presents an empty canvas with only a few
pre-defined icons and operations. A suggestion for the future (Chapter 7) It to develop
within the PYGMALION paradigm a more extensive graphic vocabulary to serve as

- - -—- ���- —�� - �--- - - -- — -- MMIf =J

 —

100
Iconi as Pictures 5-B

u m.,* fnr rhP user But the initial system presents just the tools and not the patterns for
des S.cons (F the who can't draw, fvCMAlllON does prov.de tools for def.ning
designing ,co"s \rü' F.ATE COpY CHANGE.) Defining a shape routine Is exactly like
^f^/n^funcnon except t^t the code assembled is put in the SHAPE attribute

r^d^o the BSDY rb e PShap code I. evaluated with the "show shape" button in
The SHSW oPe?^on un«.on cSde is evaluated w.th the EVAL operation.) The
SHAPE oneranon is used to define shape rout.nes. The procedure is to put the system in
SHA PL operation 1S use" •' operations which draw the shape. This is
"remember mode nd then ^ ^^ functionJ) „^ E. Whi,eP any menu

opS^n "nT lUember^ the two most useful ones for shapes are DRAW and
TEXT.

i
I

DRAW Operation

The DRAW operation is used for making line drawings. It sets up the following
mouse context.

wouse

%un line

stop line
quit

Start a new Iine

End the current Iine

Quit

..,- h.,t,nn raiiMt k new line to be started at the current position of the
SÄr^rmoreT:^ alSthe other end of the line wSl dynamically
?T fK.rlr.nr (Sutherland's "rubber band" line). When the top button is pressed again,
h "her endp^tfed at the current cursor position and a new line begun from there.

Press ne the mSde button causes the end point to be fixed without starting a new ine.
The bottom buuon leases the mouse context. The lines are all relative to the origin of an
Ion designated by the 'user; if t^e icon changes position, the lints move with it.

i
I
I
I

• •��- ^ . ���������' -...-. :��� •- - ��
----- - - ��- ^ MM^iMMlMMMMLi

b B Icons ss Pictures 101

Drawing n Kcuttor

TEXT Operation

Text strings can be included in pictures with the TEXT operation Executing it (a)
first asks the user to type a string in the "Smalltalk" icon, (b) then ask» him to designate an
icon to use as a base position, and (c) finally asks him to position the text on the screen
The text is positioned relative to the origin of the designated icon. As with line drawings.
if the icon moves the text moves also, maintaining the same relative position to the icon s
origin

Section C -- Icons as Variables

The mathematical concept of "variable" has the attributes NAME and VALUE
associated with it. These attributes are preserved in PYGMALION because icons can serve
as variables

NAKE — a string

VALUE -- any object; e.g. number, string, vector.
icon, iconic structure

But PYGMALION variables can have an additional attribute not usually possessed by
variables, a SHAPE For example, a variable which is to be bound to resistors might be
represented by an icon having the following attributes:

 - - ����-- 11 - - ��

r t^mm^^^^^^m^ —

Iconi a» Varlab»«» 5-C

102

NAME _ "R"

VALUE — unbound

SHAPE - -^r

NAME Attribute and Operation

,„ «her «ructur« without «hlbtt"f,^ �Vh,"kM th, „fmn» ot nim« (I.e. Icon.) .«
of wo-ds. not word. <»«^"''"'"^ ^."cXono.-.c. I. .oo<h« of th. «.,. in

rch "pvcrs z�:*Z"v�** ^ -""--«
Examples of names*. "*"

J,alongname" M
"a multi-word name H
"a strange •Ü2I3+...& name • (
"UPPER AND lower case LtutHb

Th. n.« of .n .con «n b. ch.ngK. h, u.,n, th._NAM_E op.r.Uon tn ,h u.

Ex.cot.ng th". NAMEV'«- «» »P *' t°'to-'n' "*'* "*""

muse Fetch the name attribute

Store the namt attribute

Quit

^^r^ir^r:^^^^^^

. —~~. I ����I I �! I Mk^a^Mt^-aJ

-T^" �^•»����^^�B»

3

fi-C Icons as Variables
103

bottom button leaves this context With these buttons the user can point to .con» and
mamnulate rhe.r NAME attr.butes. The effect of the buttons depend» on 'he .con
d" ted . .s not the same for every .con. "Fetching" a name from the "»maUtalk .con
raises a "read" to happen, the user may then type in a name or something wh.ch evaluates
ma name "Stonne" into the "Smalltalk- .con cause» the value attached to the mouse to be
pr.mer "Stormg" mlo any of the other initial icon. ("menu". W". "mouse value".
"remembered" or "world") Is illegal.

VALUE Attribute and Operation

The VALUE attr.bute and VALUE operation are identical to the NAME attribute
and operat.on, except that the VALUE attr.bute can be any object in the system, not just a
n Z wl the NAME attr.bute Since the VALUE of an icon can be any object, in

particular it can be an iconic structure (Recall that an .conic structure is an ordered
co 1 cnon - a queue - of .cons.) Each of the .cons in the structure can be used as a
van able so that any .con can effect.vely have more than one value Indeed any sub-.con
can have us own iconic structure as Its VALUE, and so on indefinitely. In this way entire
structures can be built up and manipulated.

Examples of values: atom
193
"a string"
(a vector) ��

i

 - «MMMMMi

A

1 H. ll I, I I i P^ i ���������u ^

104
koni as Variables 5-C

rsinrp that the NAME and VALUE operations, like the picture operations described Note that the ^ML ana K operationi on display imagts. They
m the last sect7n

n'f" P^ ;'7S r
h;cn

U$" r of their execution. They also change the

Z^^"^"^^*' **" —"'"contains tkt
desired information.

Section D -��Icons as Data Structures

As mentioned in the previous section, an icon can have an iconic «nKture « its
,., fn tH Ise we say the icon "contains" the iconic structure. That terminology derives

"dm thenfacrth" tL "oC structure usually occurs physically within the boundary of the
icon, as is the case with the example presented below:

I
!

Icon
Icon

Icon

An Iconic Slruciur« Contitting of Three Sub-Icon»

Since sub-icons can themselves contain other icons, structures of any degree of
complexity can be built. The structure may be a single level deep. a. in the array below.

•

��^ � ..w-J.v. -.,>-»:>..�...�,, ;-J...,. �-.,. - �.. -,. ^ .,:. . . j ,,_.„^»^^.^^^ji^^i^ji^j^ ^

mm ipinmriMi '�����.nnw. > I^HJJIM u IJUJ.^IMII ������������� '** "--' "�"" . — 11 ��-»��

b-D Icons as Data Structures 105

«rr«y

1 1 1
2
3
4
5 1
6
7
8
9

10

/In Iconic Stmctur« Repreienting on ARRAY

or the structure can have nested sub-levels.

header

preface

preface lenatn

data

length
flags

bacK pointer

W occupied
relocatable
meepable

/Veiled /conic Structure

Classes of-objects can be constructed by creating an iconic structure containing the
des.red number of sub-fields, filling in the relevant iub-field$ with typt-dependent
information, and then saving it in memory or on the disk. This provides a visual tmplatt
for the data type The following are steps defining a dais of 10 ohm reiliton.

„ .^_____ --��- " —— ^..^�L^~-^».M^. --'��-*����"^ ^>-«~.

mm ——�� ^^ wmm

106 Icons as Data Structures 5-D

Create an Icon Icon

Give it a NAME resistor

Fill in the VALUE 10

Draw a SHAPE ^wv-
If we wanted arbitrary (instead of 10 ohm) resistors, we could simply leave the

VALUE attribute unspecified. This is a very simple definition, involving no substructure.
A more realistic simulation of resistors might have sub-icons containing current flow,
connectivity information, and other model-specific details. The design flexibility and the
visual concretcness of iconic structures permit the programmer to use them effectively to
represent his ideas. They serve as schmata in thought.

Section E •- Icons as Functions

Another attribute possessed by every icon is:

BODY — code for functional semantics

This permits icons to represent functions. The BODY of an icon can be evaluated at any
time by executing the EVAL menu operation and then pointing to the Icon to be evaluated.

i-flt nr^i �J-'*—^�� .-.-.�». „•�,....>JMi JJ.I,-J,..-; ,„..>.
--'-—�- - -" �� ��- -— .I.L , r " ^

m, mil'mm- mi it n nujpa ^f^mm ^

i
I
I

'

] Irons di Functions

nenu

icons
create
change
delete
copy
refresh
show
nawe
value
shape
body

opcodes

• /

< >
and
or
not

control
If
repeat
done
eval
return

others
nenory
disk
next
display
rewenber
draw
text
trace
constant
plot
exit

109

reneitoerlng.,.

0999

nouse value mw
renenbered
(retch (5) value)
(store (6) value)

snalltalk

z\ nouse
stop

suspend
resune

:

i

The PYGMALION Environment in Remember Mode

-—'— - - - - ----- -' - - —— - - • '�*—'—*—- - ' �*-~'^~ L-—. - .��^-^�.

��"�� —

r< ^, Icons as Functions
III

ncnu

Icons
create
clutnge
delete
copy
refresh
shC'U
rare
value
shape
body

opcodes
��-

• /

< >
and
or
not

control
if
repeat
done
eval
return

others
nenory
disk
next
display
renenber
draw
text
trace
constant
plot
exit

»interrupt*
»error»
»trao»
»advise*

reuse value rouse

repiewbered

swalltalk

A Shared Siruclur«: An Iconic Interrupt Vector

„id

mm

koti«. .is Functions .13

reru

Icons
create
ctuime
delete
cony
refresh
shcu
ncine
vfllue
shape
body

opcodes

• /

< >
and
or
not

control
If
repeat
dene
eval
return

others
nenory
disk
next
display
rencpbcr
drau
text
trace
constant
plot
exit

ccrron
»interrtirt*

»error*
»trap*

«advise«

x

mouse value rouse

reremtered

snailtalk

Two Shared Structure»: /In Interrupt Vector and a Common Area

^

mamrn^m ^m^m^mmn. ^^m^rtm JJIII«m "^i

1-1

OPCODES

Icons as Functions 5-E

^A; ,.,11 iihKtrate the execution of iconic functions with some simple functions called
�������nJ (A nS^ of FACTORIAL Is presented in Chapter 6-B.)
opcodes (An illustration 01 m frequpntly used that it is convenient to include Opcodes are operations oy^ ^ .^^ to those of lconic

their names in the menu. TheJ�* H
he menu an 0pCode can be invoked -

functions with one exception: ^ ^^ ' ^ he ^ imply executing its menu entry.
that is. its argument 'c0" ^^^i0,^'^^ from sto/age using the MEMORY or DISK
Other functions are m ^d ^^Xelo^ o7^ opcode may be evaluated as soon as

r rmem 21 "eX^*^ ^ ^ f", ^^ ^ argUment ^ whefhe execution is complete. The opcodes presently ava.lable are

Ar i thmetic opcodes:

*
/

add
subtract
tnu 11 i p I y
d i v i de

Boolean opcodes:
<
>
and
or
not

equal
less than
greater than
logical and
I og i caI or
logical not

Since these all work the same way, we will only discuss V here. Executing the.
operation in the menu initiates the following process.

(1) The argument icon for V is brought to display level and positioned where
designated by the mouse cursor The V process then suspends.

(2) V has two formal icons for holding the addend and augend. They may be
given values. ��

i

.... KaVf-iM ..^�^^.^^,^U*:^*L^U^~^^*J^^W:^^~, ma ^

1.1.1 mtm^nm i mmmmmmmK*9^tll''''^*~mmm ini-.Ai. m.uinmmmai wmmm*^* .~m

^ F. Icons as Functions 115

(?) As soon as both values are present, the body of V may be evaluated with
EVAL. in this case the body simply computes the »um of the two values;
i.e. ? ��2.

3 ��2

(4) When the body finishes executing, the value icon is displayed. In this case
it is simply a rectangle containing the number which is the sum.

�f

Actually, the value returned by "*" need not be a number at all. To be completely
acccurate the value is the result returned by passing to the first argument the message "�"
together with the second argument. The position taken by most extensible languages,
Smalltalk included, is that symbols like "�" have no intrinsic meaning. Symbols are defined
by the rules which use them For example, the rule

:INTEGER> <INTEGER>

might be used to define V to be integer addition, but another rule

<nEAL> 4 <REAL> -•

rtJiT.''�^»•"'i''^ -ysiif.u'j -j^,)!^ 1 fM,Vi-,v:iv'ntii_iii- '

��•itmiiniiHillill '�< In i I iliriifniliiilllfilliil'liili llrihiHI'i'iTiarilllimillüaiMlrtiMMlIIIIMttMii

mmmfimmmmm^n^^m^nmmmm^^^^ yiiiiHUny-j .w^iBiip IIJI yjiiiiuiiKjJi^jappK i'i,\us.iM..,.i,,jfMt »,1114, �.JIiiUH.I.-IJ.i-lu,

116 Icons as Functions 5-E

might be used in the same translator to define V to be addition of real numbers. In
Smalltalk classes have intrinsic meaning, not symbols. The symbol V has meaning only
msofar as classes know how to deal with it. For example, Smalltalk objects of class
NUMBER (eg 3) contain code to handle messages containing "«", understanding it to mean
ordinary addition Objects of class STRING (eg "abc") can also handle "�". but in this
case it is interpreted to mean "concatenate" The semantics of classes are Intrinsic in
Smalltalk, the semantics of symbols are extrinsic. This distinction is preserved in
PYGMALION

The body of opcodes [step (?) above] may now be more accurately described as
follows

('3') As soon as both values are present, the body of "�" may be EVALed. The
body passes to the first value the message "�" together with the second
value; e.g.

<value 1> + <value 2> .

The first value must be an object that knows how to handle the message

I

tfi^i^iaete^^.^a^jtwifcÄiiaiiöMjiaiÄi �
/-' ..:--^-..~- ..» ..��x-^-c..-^.„..^.>--J....>.^^^-—�;...-. ,.*~ v^ " �--—nMitftiiiimmr'—�' �•^^"-^�•~J-^"^--^

«-�� IppSBPPPfL»,,!];.!,.^^ 1 '� mm^mmmmi m mmmp*m*mtiBmmG**tmfnmmmmfmmimma

ri-r Icon1; .is Funrtions 117

IF Operation

Conditionals are provided by the IF menu operation. Executing it brings the
following argument icon to display level.

The "if iron

The "if" icon contains three sub-icons. Only the value of the sub-icon named "?" is
ol interest it must be assigned a value before the "if" icon is EVA Led. The BODY of the
"if" icon tests the value of the "?" icon and depending on the result evaluates the BODY of
either the "true" icon or the "false" icon. Initially the BODYs of these Icons consist of code
lists containing only a trap to the user asking for more instructions. When the trap is
encountered, the system is automatically put in remember mode. The BODY can then be
defined in the usual way.

REPEAT Operation

Iteration is provided by the REPEAT menu operation. The "repeat" icon has the
following shape.

3L.
loop

The "repeat" icon

- .- . :.-�� �����������������. ��, . ���������' :....

Lj^v^wA..^s*l^^i.^..1..wi^-.^g.^i^.o..,.^ -,:.�.�,,., :...^^.v-..--

piiWTSP^TTinfsspwffWBHp^

118 Icons as Functions 5-E

The "repeat" icon has one sub-icon named "loop", it has the same flavor as the "if"
icon, except that its semantics are: successively evaluate the BODY of the "loop" icon until
the DONE operation is encountered. The DONE operation is for terminating repeat-loops.
As with the "true" and "false" icons above, the "loop" icon's BODY initially consists only of
a trap to the user asking for more instructions.

EVAL Operation

Subroutines are called with the EVAL menu operation. It may be used to evaluate
the BODY of any icon. The icon must be displayed before it can be evaluated. This
means that invoking an iconic function is a three stage process:

(1) Bring the function's icon to display level.

(2) Instantiate its argument icon with values.

(3) Evaluate its BODY with EVAL.

ft

i Section F -- Icons as Processes

The key to associating actions with icons on the display screen is a set of attributes
possessed by icons:

DISPLAYED — a data attribute

HAS — a procedure attribute

RUN — a procedure attribute

RUN

The RUN attribute is said to be a "procedure" attribute because a procedure, instead
of a piece of data, is associated with it. (In precise Smalltalk terms, RUN is a message
rather than an attribute of icons; but in this case there is no difference in the user's
perception of the two.) PYGMALION is organized as a process structure. Each icon is an
independent process. An icon gains control by being internally told to RUN and by the

i

i �����-—^ --• ~.^.— .�� : , ' a �����- I ���--� ^-.�:..-.-->i>t.tt-^VA.Jj-J.^...^^,^ I-^-.A^ �l--..^..„u.^^..,.:w..,.^JaüM^ikl^d.<«at^aMJaJ

ftmm »l!PP|W!BIRHP!W!P«Wii.Jmi««i^^WPWW^WB"WW^W^iJ ^�niuiiii.u IL«.Ul!-»,.U.l4lip|?HPJPPP»>,>,..l ���I,,'1W«- .JM-"!'.1.«-.!',.-»

!

h-F Icons as Processes
19

u ^,..0 tt will rptam control so long as the mouse remains within
mouse b^ co

g
ntrol manipulator. The user

the boundary. The ^ou ^ tien
m the mou e from orie to the other. (An exception

transfers control between *°"sby�VW ^ � control based on mouse movements,
occurs .f an .con, by error or des.gn does not give up ^^ ^

Thls .s --mes nec.s o '" - h^RUN atibS fS uL-defined icons usually
transferred.) Ttetf*��*� The ..smantalk" lcon has rUn.code that waits for
just invokes the VALUE ^en ' 0Pe ^ and then eva,uateS the subsequent Smalltalk
^^r ^r-ru-ico^^u^executes menu operations. The "remembered"
icon's run-code is an editor for code lists.

, i ^ .vpt frnm the "world" icon. The run-code for the "world" is:
'r5! ^ln i the moL curs^ is w.thin its boundary; if it is. tell the icon to

^''Vte to d^ ""acce^eaTiron because its value contains pointers to all of the top-
'cl-con onTe display screen. These in turn contain pointers to lower level icons.

menu " "mouse" "mouse value

orn€A ICoVS

DISPLAYED
The HAS and DISPLAYED attributes are the primitives used by PYGMALION to

DISPLAYED attribute can have any of the following values:

- the icon is not currently being displayed.

- the name (and boundary) of the icon are
currently being displayed.

the value of the icon is currently being
displayed.

shape - the shape of the icon is currently being
displayed.

fal se

name -

value -

^-�^-' ^...-^�^^^-.^���^ ��-������������-— Ml

5S5<i^PW(�wsWW»w^»^!!^*3'*n"»iT^

120
Icons as Processes 5-F

fnic« nmpi AYED attribute can be designated with the M-r; ^^��'$RiT oper'uom The rMU,t 's ,hat
only .cons d.splayed in some form are accessible to the user.

MAS

^rZn'T^ «r 1=5 K W a p,r.,cuUP
r v,te or X and V; .,.

i has mousex mousey .

u t, .frhp v Y values siven are within the boundary of the icon. In the
The procedure checks if the ^J Vfes gVfn ^ mouse ls currently within its boundaries.
example ^f ^^^^^D SPLAVID aSbute ^al«. returning false if it is. Therefore.
rn^U:S:^ res^nVtL^it-has" a'x-Y value only if it is currently being disced in
some form and the X-Y pair is within its boundaries.

Abstract Designation of Icons

which the mouse is P0'n^gedi.oB;e;70;p
e
er2nTone i add^d to a code list that

PYGMALION'S remembering f ^^^P�^ when the program is run. the .
eventually becomes the

¥^ °^P^U "he programmer even being present. It is
operations will be re-executed. ^^ ^e pr0grammer to point with the
.mposs.ble (and. in ^Z«; ""f^UouTd^have to debate the icon? only while he
mouse to every .con to be o^^ automatically act on corresponding
^T^rS^^T^^, " icons to be identified without using the
mouse? Three solutions:

localloni in memory durmg c
�f XloSn dOTlcX R«uSve calif on a runcion

drawbacks, such as makmg recursion a"d "'^'^ "''."Ic, every time, overlaying and
would have ro dlspl,, '^rre o e ml h« w ^ 'e'X .^ '"n. on .hi display
obscuring earlier ""s- f"�'�^0"', lycMALION's nhHosophy U that one derigni
screen for aesthetic reasons (permitted s'"'eJ;;0""" u^..„„Jbii either to prohibit
a program, and deslgnj^
rTh^TeVSemrns'rim^l" Human visual memory are Invariant over si« and
position changes.)

^.^:.^,v^..^;.,-^-.t..^^.^;..^...^

fly*"*1 i,-^ fwpj^i^a ^ ^t-i«^ II.IPB4II.JI n ^ LJ ri Wf^J^ AI^^'»,".«'R f*^».t»^iii»^^^^|4«if»^.\i-P T^V/" .^'.-IfV^T*'^ vw?^*^- i ^VM

5-F Icons as Processes 121

A variation on absolute addressing might be to order the icons on the display
topoloe,ically But again one might wish to rearrange them for aesthetic reasons, which
should not invalidate code

(2) Another solution might be to specify icons by a unique label. We could give
every icon in the system its own unique identifying symbol (such as a LISP "gensym") and
use those symbols when dealing with icons. But again recursion causes difficulties. There
is no way to tell at program-writing time what names will be used in recursive calls to a
function at execution time. If recursion is permitted, the method of accessing icons must
itself be recursive.

(3) The solution adopted by PYGMALION is a two-dimensional analogue of
dynamic addressing. Some programming languages, e.g. ALGOL and LISP, use a stack to
allocate space for variables. Every time a function is entered, a fresh cell is created on the
stack for each local variable. This simplifies recursion at a slight cost in execution speed.
As mentioned earlier, in PYGMALION iconic structures are actually queues. Whenever an
icon is created on the display screen, it is added to the end of the queue of the iconic
structure which contains it. There is a top-level icon called the "world" whose boundary
encloses the entire display; so every icon occurs within some iconic structure. This queue
stiucture establishes a time sequential access: icons which are put on the screen first occur
"earlier" In an iconic structure than later entries; i.e. they are towards the front of the queue.
Since each icon is contained in exactly one iconic structure, we can uniquely describe it by
its queue index. The complete representation is a list of queue indices beginning with the
outermost structure (the "world"). For example, the sixth icon on the display is represented
by (6). This description is recursive. If the sixth icon on the display contains an iconic
structure, then we may specify the second icon in the structure by (6 2). There is no
theoretical limit to the depth of this nesting. This was discussed in Chapter 4-E.

Time sequential accessing is important to the "remembering editor", aspect of
PYGMALION. Editing operations are done to actual icons on the display screen using the
mouse; the icons are translated by the system into queue offsets when the operations are
remembered. Concrete, aesthetic display images are transformed into abstract, technical
queue offsets. However there is a difficulty. With the time sequential access method
described, the same environment must exist when a function is executed as when it was
written, or at least the same number and types of icons must be present on the display
screen Otherwise a queue representation like (6 2) may be invalid - there may not even be
a sixth icon on the screen. To permit the PYGMALION programmer to use functions
written by others without requiring him to know in detail their environments, each iconic
function carries with it an iconic context (cf. section E). When the function is evaluated, the
screen is set to the state that existed when the function was defined, and restored after
execution is complete. The function's argument/value icon is the primary means of
communicating between the two contexts.

-
.��... . ' ^

jflMiflfliBiBaBaBiHSiB«^ v tt to �- - -- ---v.-^^-.^-.^,^^....-.,.^ ,:,v,lrfr.Hifwt mi-1 iriiMärrhitiiitfiiiäaM^

PPPBpP"P!PPBiB|IWP«BPP«!WTOWW!^^

122 Chapter 6

Chapter 6

Examples of Purely Iconic Programming

This chapter imitates the branch of ancient Indian geometry that used only one
word "BEHOLD" in its proofs (Chapter 1-G). The reasoning was done iconically. In this
chapter sequences of display images are presented with a minimum of text accompanying
them.

Section A -���LISP70 Memory Organization

I The first example is an iconic description of the LISP70 [Tesler.Enea.Smith1973]
memory organization. Memory consists of a series of structured "blocks" of ccmsecutive
words of core. The block structure is presented here in various levels of detail The
purpose of this example is to demonstrate the expository capacity of icons and the detail
suppression facilities in PYGMALION.

^ - ..�.•;.-:..-4:;v^J.W..t,..i-..,.J.^.:..a.^^k.,V^.^^^

W^mr^^m m i 11 m -��� i..-.^. 1U11...111 |« iU.lPi,i»»lWJJ»il.lJ,.lUi.l|ilH inii . 1.1 1 ,.« .IH^.JI.I.V 'j. ...IJ^B-^II"- .�."-— -^T^

I
6-A L1SP70 Memory Organization

123

block

An Abstract BLOCK

header

preface

preface length _

data

CroM Organization of a BLOCK

:.. ����.- �...;1,;i« V .'A ft

t^:-KL.-.;..^'L..u..v.^^..;...-.L-,;-Ar.-,::i.-1..;-.i>a>...-^^^^ U^-^-^^^'i^,;^ ^^..^^^^^^�.^u^^ ^u^^^^^^^i^^i^A^ figaä^aag^^iäiaali ^r ^li^i^r ^ak<k:B^^

�IWmiW—WPPPiPP*" ^^-^—^^-^TOSj^ipmipBmiSBIJOWTWCP»�»^^

124
LISP70 Memory Organization 6-A

header

preface

preface length

data

length
flags

bacK pointer

Sirucmr« of a BLOCK HEADER

header

preface

preface length

data

length
flags

back pointer

nr.cupied
relocatable
sueeoable

Structure of th, FLMS field in a BLOCK HEADER

��

��

I
.^�„.M:.:,. :..>i.,:-v,.^.�-.;�, ..:.„��',,..^1^-.;,,.........^.. .�,/....;,..;����.>..�.:',-.^. :.,^r .-..:-.. ,-...; •..n.^iMiZ

IJWWBWI ^«�M." ..-n—��—..-�i- u ,. «i,,.^.^,.,! ..^-^.--v^jjspuijjjti^^jj^u,,,« l?WBP5!?»?3S^57^w^!?«^»?T!�5^^!«S^FSTWPrW^^^

6-B Factorial 125

Section B �- Factorial

Tins example presents an iconic trace of the execution of the function
FACTORIAL on the argument 6. On the display screen these frames appear In sequence.
fotrnme a movie of the execution. For completeness and to demonstrate that there is a
static representation for PYGMALION functions, the code list assembled by these
operations is included at the end. But this is not the most articulate notation. The proper
representation of a PYGMALION function is a movie.

This example presents the iconic versions of these concepts in the context of a
familiar function. FACTORIAL. While FACTORIAL is not a particularly iconic
function, mapping numbers into numbers, it does exhibit several powerful programming
concepts;

(a) the concept of "variable", and fetching from and storing into variables;

(b) the concept of "conditional";

(c) the concept of "recursion";

(d) arithmetic and boolean operations (+ - >;- -);

Note the dashed lines in the following pictures are NOT part of the definition.
They have been added by hand to clarify the movement of values. In actual use such
clarification is unnecessary, as the movements of the mouse cursor adequately indicate
which icons are affected.

 , . ; ^^^_

*mmmmm*m ^^m^m*mmr^^^mmm �' ��" ^ipppipipqpiPMflilpiMin«f>l<<i«wi|>an.i<j i «n

Factorial 6-B

menu

Icons
create
clinn<ie
delete
copy
rerresh
show
nane
value
shape
body

opcodes

/

<
>
and
or
not

con«, ^i
?
call
return
repeat
done
eval

others
rencrier
constant
define
display
dray
text
break
plot
exit

Q

wouse value mouse
ET

renewbered

Smalltalk

The BODY of FACTORIAL with the VALUE 6 ü evaUated with the EVAL operation

i.;S^J1Aw^^.i^.^^6±^^iiA^^Ma^

^m)Mmmmß*Mmmv<immmmm.u**>'*'L-1- ' �•<�"��"' ��- ••m,^,m.. ^..^..J . -,,.,.--.. ^,,111. «^.„(-„^iM i,.^*- **** �^�p—^i""� Hq

I
I r.-B Factonal J''

127

1 nenn
Icons
create
c ha n je
delete
copy
itTresn
shew
na we
value
shape
body

opcodes

/

<
>
and
or
«iot

control
?
en 11
return
repDat
done
evnl

others
renenber
constant
der i ne
display
draw
text
break
plot
exit

9

piouse vfilue

renenbered

mouse

Smalltalk

��

.-.

The ditplay »creen it let lo FACTORIAUt iconic context (no tup«r//uoui Icon*,)

 ki«.rf.!4-^*..i.:.*i.*-ii_-,:i. r—*

- �- --"-. ��.

Factorial 6-B

no mi

icons
create
chmvje
delete
copy
rerresh
shcui
none
v«i 1 ue
shape
bccly

opcodes

<
>
and
or
not

control
?
call
return
repeat
done
eval

others
renenler
constant
define
display
drau
text
break
plot
exit

9

-£> true

^

false

nouse value ncuse
rm-
ir

renewbered

snalltalk

)

/J conditional icon it brought to ditplay level

LW^iV-W ^^�...M^j**s*i±i*v^fik^^ ^^..w,-^-^--^-.-^--. ->-

UPMPPI �BSP ,- , . :

6 B Factotial 129

nonu

i
i

Icons
croflto
c h.T nqc
delete
cony
ref resh
SIKUI
n<ine
vn 1 ue
shflpe
body

opcodes
��

/

<
>
fl 111
or
not

control
?
Cflll
return
re;eflt
done
evfll

others
renc.Her
constant
def i ne
display
dr«iui
text
break
plot
exit

9

-^ true

.-J
false

nouse value
Tjp nouse

renenhered

bnnlltalk

An icon for telling equality it invoked

:* ..

�i l.^^.v^u^.V «.-.^^^..^^^^ �..-l^V...^ ^ ^^.V- .. |[^|-|(.^.J^J1^^^^^ n^ ^ ^^�^�.^^^^^^^^^tj;^^^M^.^^l^^

hd*U*.

130
Factorial 6-B

nenu

icons
create
cli«mje
delete

reTresh
slicu
n«ine
v.Tlue
shape
body

opcodes

/

<

and
or
not

ontrol
?
call
return
repeat
done
eval

thers
renenl'er
constant
def1ne
display
draw
text
break
plot
exit

\

nouse value
r

picuse

The argument to FACTOHIAL »« teitei o^oinil the conitan« /

-��- �..-—. ^"->-ittiMinii.hh -r , �����-��• � ^ i «ninmiir ��vti-r-'— -^�..��...;...-.i..^.-,.>.^.L,.u> ,..is^ •>.: .- . .. ^.^~ n-.intif!-��•�-''�'J^^• ^ •��-^—^

6-B Factonal 131

nenn

icons
c ron t.e
chnnje
delete
cony
rerresn
shew
nil we
Veil ue
sh.npe
body

opcodes

*
/
<
>
«nd
or
not

control
?
Cflll
return
repent
done
eval

others
renenber
constant
def\ne
display
draw
text
break
plot
exit

Q

4> true

t \ U
\

false

\

V
false

ncuse value 3
nouse

renenbered

snail talk

6/ I

 ��J-...^.. -.:��....—^^-^���'^^-^rtiijhiM^.MY^-iimiiiVrhl-ttfrTiaMiiitli'iliiiiii^^ ������- ��������- ila J.^.,^..^.iMi.^^-ivi..^.>.;-^^<i^^aiJtijiiiii^n^iu^kt-.tUl

i?:

Factorial 6-B

nenn

The "falte" icon rau««»
6 * FACTORIAL - I) to be compu ted

&U i . - . . . 1 �- ' .^ ���������.;� .^. . ., - ,^:-- �-.-�� '�•� .•,:-i:ii^-::*«J:^^i..ij*il.-i^ -* ^'iii.,:*.^*,^*-:^,.:.:**--..;;'^*^-^:*'^^***,*...:^^:^^

^^ ��

6-B Factorial
133

pie nu

!

icons
create
clmnjo
delete
ccny
rerresn
slieu!
nane
value
shape
body

pcodes 0

/

<
>
and
or
not

control
?
call
return
repeat
done
eval

others
renenber
constant
define
display
drau
text
break
plot
exit

o

false true

&
fal se

,-? Q

mouse value ptouse

renewbered

snfllltalk

Preparing for a recursive call on FACTORIAL

&A - j.vj :.. ^. a - 1 '• • ������'- • ..^.�. .. ����^. ; ._ - —' "^^triri^s-'füä a^aa^jafiji

134

>
1 J

Factorial 6-B

menu

icons
ereilte
dm iv je
delete
copy
ret resh
shew
name
vfllue
shflpe
body

opcodes

*
/
<
>
and
or
not

control
?
call
return
repeat
done
eva 1

others
renenber
constant
define
display
draw
text
break
plot
exit

6 9

6 * ^

120 9

nouse value wouse

rewenbered

snail talk

FACTORIAUS) ' 120 (The intermediate itepi have not been thoten.)

I
t^:^~^i**i:^^^^v^^MtAl^'s^*^iA^i^,~r.&^^ **4^ *^^^^*^xg^ 1 - tfjüjjtoA

I
6-B Factorial

135

menu

icons
CIC.Tlc;
ch.-iivjo
��lolcte
cci-y
refresh
she u
ri.nrc
v.i 1 lie
Sllfll'C
liolv

C'i'cccles

*
/

<
>
«n IKI
or
not

control
?
Cflll
return
repent
done
evn 1

others
rewenl'er
constant
define
display
dr.iw
text
break
plot
exit

9
o

false 4> true

>J
fa 1 se

120 9 o

nouse value
Tzü" «ouse

remembered

Smalltalk

The vnlur 120 ha» been placed in the other half of the multiplication icon

136 Factorial 6-B

wenn

Icons
create
clinivje
delete
copy
relresn
shew
name
va 1 ue
shape
body

opcodes

/

<
>
and
or
not

control
?
call
return
repeat
done
eval

others
renenber
constant
def1ne
display
draw
text
break
plot
exit

7\
9

120 9

nouse value piouse
120"

renenbered

Smalltalk

,

6 * 120 - 720
- :

I

,/ := >.V-- ^^.-�'- ���;W.i.--k ^�.:/> �.^���...-;-'- -:Vi ^��V.^V: -.OrS.^,^. V if^-J^^/^^iJ^ ..^^^^*^^^^.^^^^*^^^^^^^ **Jk

6B Factoiial 137

renn

icons
create
chaii'jc
delete
cony
re!resh
show
none
v.i 1 ue
shtipe
body

opcodes

��

/

<
>
and
or
not

control
?
call
return
repeat
done
eval

others
renenher
constant
define
display
drau
text
break
plot
exit

720 9

False true

^

false

120 9

mouse value reuse
7W

rcpicnbered

snalltalk

The mlue 720 i» placed in FACTORIAL'» argument icon, turning it into a value icon

i. i..Li-iiip|i*mwni«iiiiiiinti*iiiiB-mnn)i«jriiir«'Mn*MiHLiiiiiiiir»>iinii>niiir" -ntnitfl >Utli»ilrTMlllll'liniiiili»'"i|l'lltf<WWlllllll>yllHll1ilT*MtWt*,fPttWffh * äCB&GKBÜ ?Wti£U61 - ,.:._.�.�..,.�.:.�.-�. ,-.�., ��.'.� , .. -..'-�..�.,,,..--..^i.y

138 Factorial 6-B

menu

Icons
create
chflivje
delete
cony
reriesh
show
niine
value
shape
body

opcodes

/

<
>
and
or
not

control
?
call
return
repeat
done
eval

others
renenher
constant
dcT i ne
display
drau
text
break
plot
exit

720 9

nouse value wcuse

rewenbered

snail talk

-

I

The diiplay it rettored to it» stale at the time of the call on FACTORIAL

_^ ���....��-» ����^^�o..,.,..«.. ^.�jjif.>^.-i,^.:^ii.-.;^,.»,;^„, M.A^.^>^fc«.i.^.,^>J^>^AA.^..,^tg^

h

Factorial 139

{(IF 192 128
((cunstant 1)
(store (6) value))

((opcode • 160 272)
(opcode - 160 352)
(fetch (6) value)
(store (8 1) value)
(store (9 1) value)
(constant 1)
(store (9 2) value)
(constant 'factorial')
(memory fetch 384 320)
(Eval (9))
(store (10) value)
(Eval (10))
(fetch (10) value)
(store (8 2) value)
(Eval (8))
(store (6) value)))

(opcode = 208 320)
(fetch (G) value)
(store (8 1) value)
(constant 1)
(store (8 2) value)
(Eval (8))
(store (7 1) value)
(delete (8))
(Eval (7)))

Format of the instructions shown:

(IF <x coordinate> <y coordinate) (<true code>) (<false code>))

(opcode <name> <x coordinate) <y coordinate))

(constant <value>)

(fetch (<icon>) <attribute>)

(store (<icon>) <attribute>)

(Eval (<icon>))

(memory [fetch.store] <x coordinate) <y coordinate))

(delete (<icon)))

77ic rode aswinhlcd as a side effect of cemputing FACTORIAL

i<^,..,^^i**^-.^^^j^^^,,^..,'M.,^^^ �
J-"->iiTriiii'niniitfiiailite["«jliir'tiiiiillH,Hliiil>i*i;l

140 Factorial 6-B

Section C -• Circuit Simulator

iconic menus are possible, and in fact encouraged. The initial menu is symbolic
(contains names) to save display space. Below is a menu of electronic circuit elements The
COPY operation is used to select icons from the menu. Each icon has a semanticiilly
descriptive SHAPE attribute. In addition, each icon contains an iconic structure
representing the electronic characteristics that are being modeled. The structure of the
"powei supply" icon is shown in one picture. The choice of structure is entirely up to the
user. r

The definition and execution of operations are not shown here; they are similar to
the FACTORIAL example. The fact that the operations modify icons having fancy shapes
instead of mere rectangles has little significance internally. Programming the semantics of a
circuit simulation proceeds in the same way as programming any function. The difference
between using PYGMALION and using a one-dimensional programming language is that
no additional media (scratch paper, blackboard) need be employed. The display screen can
be used to sketch out ideas.

i
,, ...

^v;w^:ft..ta.^;^,^.i;u^v^-.A^.^t.^...^^^^

I I

C Circuit Simulator 1-11

nenu

icons
create
chanqe
delete
copy
refresh
show
pane
value
shape
body

opcodes

• /

< >
and
or
not

control
if
repeat
done
eval
return

others
newory
disk
next
display
renenber
draw
text
trace
constant
plot
exit

JWV-

-|l|f—

nouse value n nouse
rewewbered

copy Icon

Smalltalk

Tlw COPY oi)rrnlion and a menu of electronic rirruil rlcmrnts

L ^�Me*ll**^M,*,^**^m*'*>*vu>M^^*''****^^ söä»'M-^u«rf.-»iwwrf*«.<i«:vftr*

�! � �—. ^ �����������- '� '� -I- ���� — �����- -�^�-. ..,J.-..--.in.-^l.j:t...-.J--J..-.H..i"-^—�•^•'^�^.^lA^I.^. .-.J- .,..„.V:.,I.L1..I..--»I_ ���: „.-.;.��>�- w.-^^.. ..i..^-...^.- • ...�,_—^.....^.^^^ft--�' A..--. -��������- - ��

npiPiiPW"WW^"�n^W^BBBPH^l«w^|»»f^^>»-p»i^^w»«w—T^^—" 1^

Circuit Simulator 6-C

nenu

Icons
create
change
delete
copy
rerresh
show
nane
value
shape
body

opcodes
��

• /

< >
and
or
not

control
If
repeat
done
eval
return

others
weriory
disk
next
display
rewenber
draw
text
trace
constant
plot
exit

HWr
HWV-
i%-

Hi

wouse value

EZZ
renenbered

snalltalk

I]
nouse

1
copy Icon

Srvrrnl icons artr copied from the menu and (tisemblcd into a circuit

[

i
I
i

1
1 �� ^�•-- •-....-.�..:-.w.^-... , ^,.— ..r .,-�.. - -^ti ri,täit»im,!iyiinmi4m;tetMMUiitiaaiäUkiiaää

h""!» " "~^—; ^ijm^^mni»srMv^- *,.«Pi*T.^_|aii.«»u«.^.«^!.!.MJ..uJHLJ. wI-. Ui^»,-».-/-»s?y *L«v»s-.,, ^-pL J _ j.4..,ii._j.-j.... J41*-'" -»-l-,?P1^'S"! !"��- ��-"-^---.x-i'-^ -

f
(C in mi Simulator 143'

•

i

neru

icons
create
change
delete
copy
refresh
show
nane
value
shape
body

opcodes
��

• /

< >
and
or
not

control
If
repeat
done
eval
return

others
nenory
disk
next
display
renewber
draw
text
trace
constant
plot
exit

M- mnh
m

HI

mouse value

]
nouse

re^enbered

Smalltalk

The circuit is completed

��

rm.Irr..,l^..1^,..,....v^i--.-r-T^1ilr,-,i>-|-jam^...wv.,t»^Jt.iiljt.-<^-

 ^ ^..^^..^ .. ^ .-.�-.�^ - ^�-.^.^�- ^...: .-.^-^ .^�- .-^.- --^.- �������^�.^

iiB*imm^m**^ia^*m^mmi***m'**f***m^***i*******m*!***^****'^*'rm'' "•"" ,,'l
��WIUJ^UI IJ»J" «AM-I»-«!«^

H4
Circuit Simulator 6-C

pienu

Icons
create
chflnge
delete
copy
refresh
show
nane
value
shape
body

jopcodes

• /

< >
and
or
not

control
If
repeat
done
eval
return

others
wenory
disk
next
display
renenber
draw
text
trace
constant
plot
exit

HWV-
rWHh
uyVV

poi wer
pply

mouse value

renenbered

SMlltalK

nouse

2

The NAME and HOUNDflRY of the "power supply" icon am shown

.>.^..^:....<.i.^,...:.,-.. ^^..J^^...^^,,...J<.^,~^^^

'«�»��=r-''iri*Pini!M^WW»^»!»i!!llW**p^

i
I
I

t ;

r>-(. C.in mi Simulator

rienu

Icons
create
change
delete
copy
refresh
show
nane
value
shape
body

opcodes
��

• /

< >
and
or
not

control
if
repeat
done
eval
return

others
nenory
disk
next
display
rewenber
draw
text
trace
constant
plot
exit

146

HWlr HWHh
uwv

type

voltage

-|i|h-

nouse value nouse

renenbered

Smalltalk

77m iconic structure of iho "power supply" icon is shown

.\

 - � Z : - - -�� �' ----- ^ - —- -� -���� *. �-- ���- , . . . J. ^^^^ T ^T^^^^^^^^

,,.

jBfmifmimmmFr^mv.'-.-'-'- i^vva"^^imvrfv---^'.iiVtKV.'�w'WHf �zrzmmrvuKmm ^S:W^^^T^"?1^vv'^*r^^^'^''"^'^''1 •f:^*^^T^'^^-,-^^*

H6 Circuit Simulator 6-C

menu

Icons
create
chanae
delete
copy
rerresh
show
name
value
shape
body

opcodes
��-
• /

< >
and
or
not

control
If
repeat
done
eval
return

others
nenory
disk
next
display
renenber
dram
text
trace
constant
plot
exit

HVW-
HWH
*

DC

10

mouse value
rrar

renenbered

snailtalk

nouse

3
3

The power supply is sot to 10 volts, direct current

gli,^..,^, . ^iÄ �� �.,.::...����
,.�-,...�. -^.' .^-.V. ��..�-;�...•>, J.v;.A...^»;...<^.^J^t1^/^,..^.M^^^,^^L^...A^^i'^,,--V^^

Wl^nnmm^^ Jim liupii ..uiwiiiM.iinii JIIU.IIII .ill I .iHJ^imiWW'MKMii .umi iiaifjun«« ���LI ' 1 �����' -—~

!

G (Ciicmt Simulator 147

Section D -- Smalltalk Evaluator

This example contains part of a simulation of the Smalltalk evaluator. Several
.„.- m the evaluation ot a Smalltalk expression are displayed. The first two pictures
mr^nt the principal memory structures involved: "activation records (AREC and vector
messemws" (VMESS) Subsequent frames show the creation and evolution of instances of
thfVr Pictures Thp actual operations changing the contents of the fields are not shown, as
thev'were in the FACTORIAL example; just the results of operations on the state of the
structuies are presented here,

to cons : hii tl
«hd>

(ItC^hd *• :)
Ithil)

<tU

ttl))

&** cons 3 4

x hd + x 11

The Smalltalk statements involved are listed above in Smalltalk notation. Briefly,
the symbols have the following meanings:

e.yob.3

cioub 1 e r Ight
arrow

double u P
arr ow

hand

co 1 on

peek ahead in the message stream for a literal
symbol

conditional: evaluate the vector on the right
if the expression on the left is true

re turn the value of the expression on the right

quote the following atom

fetch a message evaluated

Thr class presented simulates a LISP "cons" pair. It responds to the messages hd (head)
and "tl" (tail) The variable V is assigned the cons pair (3 . 4). Then the expression x hd
��x tl" devaluated. The display frames describe the execution from this point.

wmmmmmmamammimtmmmmimKm wtmMUM ��
•-•*�•�- ''"'^�' --'•- .-'. I. -.^:..^^^^.:>.^A.^:^ �.�,Jvl^Ü.J.:--..-^:.v.r:^. .-��!—...:s.^.:.^t.v^ ���-�^��^vi^^.^ ,.'.�.,.��i..--, .^^.v,..�..�C^...^�^^^..^w.W.^^>fLJ^l>^^^^^^�^v^a^

yij^B^Ml'W"!*1'* -i^»T?5�^n:F»i!!W!r?»^^-TT^npi^»r^r^^wi!ra^^ — —r

Smalltalk Evaluator 6-D

�ctlvatlon
record

vector
nessenger

The. /jriiin'/jn/ memory strurturos used

class: arec
areaner
global
wessaqe
resume
arclass
arinst
artewps

class; vwess
vwcaller

vec
JBC_
wax

context
fetcher
vndlct

Thr iconic slruclurr of each clcmoit

class; vness
��vwcaller

vec C'k vector ^ U. K tl w*
Ö 5 *ry
5

context

/J l^Affc'SS is instamatcd pointing 10 the voclor (x ltd * x ll)

L^.e^^*i.*^.,.,^^^'^,^M*K^,,y^-.~^^

mggllggfgfBllßßlgmitavirrrrw*?^^ T>*5

Smalltalk Evahiaioi \-i9

class; vness
vncaller

vec

- content

class; free
arcaller
global
wessaqe

cons
arlnst

vector . 1 < tl 5 * i1

cons

tin AREC in inslnntioird ixriniina in ihr entu iits/onrc; note VMliSSipr. -* l

r^^lclass; vness
-- vncaller

vec

context

r^dass; arec

L- global
arcaller

nessage

cons
arlnst

dass; vness
vncaller

vec

ß
—• context

^[vector K ha* K

cons

3 r^^5S
^ »ector

tl

tl»

Itlhd

wectorL frL, . 5 f *r •

/] srennd VMKSS is inslnntintcd ixyiniiiip In ihr CONS mrsangr hnndlrr

£.U1 ^)/-'mf~-J*i:.^<ii-^M,ii3lir,

^^�;^-;i..,^^:-Jia^-,J,-?^^.vAt..v,a,to-bvt,w

^ftmnm&mmmmuwwmwmm.n^ ^l^ni9H^9B9i^np|aBH«7TE?!

1 bO Smalltalk Evaluator 6-D

i

^o^hf:
(Tu;/ce)

TA«? (»«.«flfe M .scmi/iccf for the symbol "lid", and found

,1 -A.-i,.:^;..»^.. .�.�,,M^.,-...;-.^..-:^-.^:.;;.^ ,.k:.,^....,^r-..-.-w .;^^.fa^4,ii-.:.i .M..^- :jjt.i,>ii,^.«.,..<.tf;..:.i^.v.. ,.^...^^,.:i-jt;.^w,.„H.ct,;.t..^ .-..-,-,„^...-,.^^«v^l,sj.<^»MAgMiM

�pPP(|Ppai»BMB!IBI>l..«JI -. I'-'W'^'V^fl-.J. �.»-V»i>I''P1JJ<". «»»mjiUi.lJ.lJHJliJ.. il<i»i.J"lNH».l ,1«. ii»i'i"!«»".u»l"i.i �«iHi<llJ»Wl.Hl"J»,>».Hl.!..i'•.�"»">?��.Ti. �'���WTJ—, w>" I.I.«IU . — ��u.»»^- ,^, ^.»...j. i^,^,^,

6-D Smalltalk Evaluator 151

Alclass: vwess
-��vwcaller

vec

-��context

^[class; arge

t; arcaller
global
wessaqe

cons
arlnst

class! vwess
vncaller

vec

6
context

PfEE ^K/ector tl

cons

vector
6 s 0 tl

--fEEEEEffl l&^^^s

The second ['MESS now points to the vector after the conditional arrow

itii;.. �^�..:-:....-;...;-:.,>;-^„>. !;j^tiv<^e^.-^.».tti^^,^iA,^':^^,. a..y-^^!^iii^ »M.;^^/...J.i-,J^Ja.J,.;j.^ u^^^^^A^^ii^^i^i^^ ^��A^^^Hgiiirj..j^>^^.j:.^^^.,.-<,.^fi;;i't.>... ���.^�..Ki-riaw.^j.tK.i-.a^ , ^��iT|,';<i|.ff'rii

^|||||Pp|||||pjjj)p(^«,1j..;i*'^-OTlyj^'Ty5^^TO^

152
Smalltalk Evaluator 6-D

(Twice)

ffl

classt vwess
vwcaller

vec

- context

J
r^classt arec

arcaller
global
wessage

cons
arlnst

class! vwess
- vwcaller

vec
-» 2

6
l— context

^Ivecto I'H-i'l1'

rs cons \s
3
4

vector
e SMB

:TJ: ^SEEffl
w iööfTOX

The message is scanned for the symbol V". and riol found

tmua T^:_«'�- -.""�.^�">' �c-'�•���^l£Cli ���.^^.�.w^^^^.^^^^^.^'ir.-.lMj/^i^ , ,,,,,��i . ,......: .>...^...^,.,.>^^!^i^:

WMW|il||i»|m^fJ#BAJ',.^,»B^

W

\

6-D Smalltalk Evaluator 153

4.c: :lass: vness
vncaller

vec —i> vectonix Ut K tl 2 5 rrv
5

• context

i class: arge

/p C �• PC +*)

arcaller
global
wessaqe

cons
arlnst

cons

classt vness
-���vncaller

vec
 » 5

6
—• context

sector
e K

:~L-CS /ector
6 0 •��

tl

5
^l^^hcf

-
The return up-arrow is evaluated, which imtantiates another AREC, etc.

iS.L . k

^'^fPfBUPWPBWf^W^PWPIIWWBW»»^'»«"""''!-. «J^lJJ.I»*|»ppBtf»7IP^PW»P>^W»PWW»W^^»«fl(l»5B!W'-»l«.<llMl»J»l» ' '"�'i1' �»,-',""J"l,
�
l '•,l l"1 ''

—»jjBrptir^K-,

�' 1

PART III

The Once and Future PYG

.ffi^^^WJ.,^^.!^.^^^^^^-^^

(HjpnP^BW.lMJiuJ.Ill'»''!^»'!""-I <!.�' ' -IJ»-» ^i-Mi^. ijn.i^i i u I. .>.m i^ipBi "'•••«'""liJ < PtJiuio^p^n^üT.-xi»-- v ' ,,,»..,.-.,,.,..«„_,.. JJ .,,,.„.

1

C.lia|.itpr 7
155

Chapter 7

Conclusions and Suggestions for the Future

Summary

PYGMALION is useful today for the simulation of algorithms. It actively
assists in the creation of programs, but current efficiency is not high enough for
production software.

Part 1 of this paper enumerated capabilities that belong in an articulate medium of
communicauon Part 11 described ways in which the PYGMALION system incorporates
m��of these capabHit^s in a computer interface. Th.s third part summaries the results.
presents some qualifications and suggests future work.

Section A -- Areas of Success

The characteristics of PYGMALION that seem to provide the greatest assistance to
problem solving and creative programming are:

(1) The display screen assists thinking by relieving the load on the short term
memory This reduces mental fatigue and provides a convenient medium
for visualizing and transforming concepts.

n Programming is in a "language of thought". The programmer can design
" many images in the form that is closest to his mental representations.

(3) The display serves as dynamic scratch paper. Ideas can be sketched out and

'i

. ..�--,«J.-. .�• �_ w^-t.jj'.'it.ift.-.nMii ;. �..;-.(i-rt«i',ii~.'-t.-> �»>*�.'�.'�'^�'•�''

^^ ... u . ..- — -

156 Areas of Success 7-A

developed step by step. Programs need not be completely specified befoie
they can be executed.

(4) Icotv.. invocation of functions improves communication between routines
Tin argument and value icons are "templates" or schemata of their
interfaces. They can be examined and instantiated visually by the
programmer. This reduces such errors as calling a function with the wrong
number or type of arguments.

(5) Aesthetic semantics are concrete, mechanical semantics are abstract. The
user has to deal only with the aesthetic attributes of images; the mechanical
aspects are managed automatically. The system maps particulars into
generals.

(6) PYGMALION provides a laboratory-like environment for experimenting
with ideas. T^'sts can be conducted, the results observed, changes made, and
new tests conducted, completely interactively.

Section B •- Efficiency and Other Problems

The current PYGMALION system is only a prototype implementation. It is not a
production programming language since it suffers from several defects.

Efficiency

Systems employing interpreters are usually versatile but slow, in that case,
PYGMALION must be extremelty versatile, because PYGMALION operations are triply
interpreted! Each level of interpretation slows the system down a bit more. The operations
in the menu are

(1) interpreted in Smalltalk, which is

(2) interpreted in Nova code, which is

(3) interpreted in microcode on the mini-computer, since it is not a Nova!

Because efficiency was not an immediate design goal, this was acceptable initially. The
correct way to remedy the situation is to build a "PYGMALION machine" in microcode, or
at least in machine code. This task is made easier by the simplicity of PYGMALION
operations. For example.

..��/„^.v^-.t,..^^. �^c^^-;..,.^,..j..>...i.^-t^^».^^ ��^;..^::^^,.-..s^aii.r^J^.w......„.^v. :;:^.i^^,^i. >.;. ^..^„v;.;,^^^...^^,^^^,,.«,, ^^-w^..---t-^^^^«-tgKa

^ppp^PWiBJiilWP«pjll!»WI4JlLUJii^i^RPHP««i|Jiii . i iiiJimLH �PflWippiPR^waaipjIji..' ��1.1 �H»?«.i-.^i4.-i^,.i^"j-.a=i-i-E ..tuu^.^tj^^ww »s.^-I..:I>WIL4.....I...... .^i;J^.iij;ruiiL,iii . ..]

IV. Efficiency and Other Problems 157

(FETCH <icon> VALUE)

(STORE <icon> NAHE)

are primitive operations that could readily be written in machine code.

Intcriial Representation

Currently all icons are represented as instances of the Smalltalk class ICON. Thus
even if an icon describes a single machine bit, it occupies an elaborate structure in memory.
A mapping needs to be constructed between the display level structure of icons and their
internal representations.

current:

d i spI ay
uni form

internal

'

i

needed:

d i spI ay
generic map

internal

Operations now treat icons in a type-independent, uniform fashion. For example, the "fetch
value" button works the same regardless of the icon designated (except for the "Smalltalk"
icon). There should be a provision for specifying an icon's internal representation in terms
of structural primitives. Then operations on icons could be generic on the type of
representation; e.g. "fetch value" could now have several generic cases:

Icon stored as

bit

uord

part of structure

other

Implementation

"load byte" instruction

"load word" instruction

load ith element of structure

I
I

^vMÜtate&s&^^
•liactb ;,-«J»ü.v»r«-W .-Vü.—**^.'.--^ =��-• '—*

^.J^.^..:.,-^"-^...:- !--�:. :....i..',..>.^WtJV^j"-

�., ,...;„.-.�- ;.vi ;-

> ���lf.:irdJ-4X'eife^tot.-^JIm- '�. J^ W. ^...^^^ , -^-^ | £ m .. , ,...L^-.***i*i£äLAii*äiiiUMi

im^mm ^mm*m*mimgmmmmm**m*^mm*mimii - i. J , ijnmiju 4'IÄIJ,*i,lii..J,^.*!' ,' ' ��...''

^S
For the Future 7-C

i i

g i

Section C -- For the Future

The preceeding section suggested improvements in efficiency as ways to extend
PYGMALION However there are more important directions which future research can
take PYGMALION has merely hinted at the potential of visual communication between
man and machine.

Graphic Vocabulary

PYGMALION places minimum emphasis on pre-defined representations and
structures. It is actually a non-language. PYGMALION is an environment for tuorking
cakulations, a medium of communication with a machine. The stress is on perming the
imwerapher to design his own images. But the complete absence of dogma is anarchy. Pre-

/„red schemata are helpful in the initial attack on a problenr An articulate ^/.c
vocabulan can be of significant assistance to the designer. Several fascinating books have
been written on expressing concepts visually. The most systematic in developing a graphic
vocabuary is Bowman's Grazie Communication. He explores the potential of graphic
expression, developing techniques for many areas. Below are some of the concepts for
which his notation seems particularly appropriate.

PHYSICAL

FORMAL I ZED

SURFACE ENV I RONMF NT AL

TRANSPARENT

tjccrt
COMPOS 1 T I ONAL

/Ippearancc f Bowman J

.-
�,..,.^..^„.^^.^.. -- ,.<^ .^ ^^ ��- -^-^ ^ *~.~~<~VL*-:^. �-�* -:. ...^~...*-±f'i^>.^.*^***^. ^�^�.�,^.^^L..^i.^J^Ag^uü^iaüJiaiiitfi^

IWPPPWJ'-UWII^W.WJW'WSRWPU^WW^WW 1-' ^""fl

I
!

!

7-C. For the Future 159

V

DIVIDED

�=S=tQ

QUANT I FI EO

RTGULAR

m

COMPOUND

EMPHA5IZED

INTERRUPTED

PHASED

I

Liiü^-i

System /Bowman]

��^.:V^.g'-,.;,..-^A^.;.^»a.i..,^.j^^v^.^.HA^^^

||pp||Pj^4!lkWW»W!U_..^"*Ff^M'M^ ^^l

160 For the Future 7-C

fi rib
ELFMCN7 ARY

CONTINUOUS

GROUPED

DECLINING

STRUCTURAL SPATIAL

Organization /Bowman j

^^.-....t.^ . , . ^.•-^��. �������.^ - � I ...��-.�: -- I - - ��- ^J...J _ .��.-,.,.-�..��....�.— ..,

�ww PÜW wmmmmam wmm. MWBB»JWSPPP(BWpPP^P»i�|ippiWWPW!PWW«f^^

I
I
I

7-C For the Future 161

It seems clear that a good visual communications medium should find some common
PTOiind between a predefined graphic vocabulary and freedom of graphic expression.
PYGMALION has concentrated on the freedom end of the scale, primarily because
trndmonal languages have concentrated on dogma. A good project would be to
systematically design sets of icons tailored to stimulating creativity in specific domains.

Dynaniic Operations

A greater use should be made of dynamic operations. By this I mean operations
whose execution inherently involve motion. My favorite example is Arnheim's dynamic
geometry. The motivation arises from the difficulty of visualizing "ideal" concepts (in the
Plntomc sense). Suppose we want to prove a theorem about triangles. Aristotle defines the
task' "Though we do not for the purpose of the proof make any use of the fact that the
quantity in the triangle is determinate, we nevertheless draw it determinate in quantity.""
This is undeniably difficult. We require a triangle which does not embody any unique
characteristic (such as having a right angle) but which is nevertheless concrete in shape.
Much of the difficulty children have in education can be traced to the problem of
differentiating the generic from the specific.

/ *.

Ki/tdid'n Thitty-Mcond Proposition fAntlwim]

Something better is needed for the sake of true understanding. If I
demonstrate Euclid's thirty-second proposition by drawing a parallel to
one of the edges of a triangle (Figure a) and by showing that the
equivalent of the three angles adds up to half a circle, I can point out,
with Berkeley, that the size of the angles need not be referred to, and I
thereby prove that the proposition holds for any triangle. To prove the
correctness of a proposition is valuable practically; but what counts for
thinking is that the range of the proposition be made evident. The
figure I used shows, in fact, that the three angles add up to 180 degrees
in this case. But in order to truly understand that this is so in all

1
?^^i-*!»;i .�."�; - w^i

��WMMMIIMPgWMWWiWWBMaaWMM^ •'V&a&Ws*S&&J&*

��
I ' ' � mW^UMPP -. mm*. „ i, «IIIIIUH . P!l«pllUll...l«|.lll«iWJHmV«l^| MBIII I PfV«91.-'' JAV «fV^ HP^i-yn ^-« u,) IIN iBt*,.*.^» j-^'i ...HUJ^ ! ��J*«*J i.'y.i I*-'; .-^p^

162 For the Future 7-C

triangles ami for what reason, I must go beyond the particular figure to a
full range of triangles. If 1 think of two of the edges as hands of
indefinite length, hinged in such a way that they can sweep
independently across the entire half circle (Figure b) 1 see that, whatever
their positions, they will form three sectors adding up to the same
semicircular whole. When one angle grows, its neighbor declines
automatically by the same amount. In this way, the size of the angles is
not ignored -- as Berkeley bids us to do, at the price of losing our visual
grip on the situation -- but perceived in the sweep of its total range. A
static concept has been replaced with a dynamic one. Generality intended
is notu represented by generality /)<7my«rf.[Arnheim6] [emphasis mine]

Ivan Sutherland began the investigation of constraints on movable objects. For
example the sides of the triangles above must remain connected. Animators have also
considered the problem. But much work remains to be done before a general specification
of iconic movement is developed.

Section D -- Epilogue

If I had to sum up the lessons of this research in two sentences, I would say:

(1) Visual communication with a computer is a productive metaphor for
assisting the thinking and learning processes of human beings.

(2) Research into articulate graphical communication has just begun to scratch
the surface, but the paradigm of operations possessing both aesthetic and
mechanical semantics is a powerful approach.

-^.f^..^M.,....^...v^.^Ki;^.,.<..*:^vi.^.^^

%m&V-H,-^w*r^T^**-''rn-r7K�^y~ yfx^fv-r^wftvrvrpv^^

I
Appendix 163

T Appendix

i

��

The complete listing of the SMALLTALK code for PYGMALION follows. At the
time of this writing, PYGMALION is the largest existing SMALLTALK program.

IkkiSi mm

mmmm^. »^«nn^V^m^apniiini miuii^P^fp^BW-w^^w!��,«J.II J.Xi..! | i.n.iu •WLHHiMinijuu.nninipi m^mmjvmn^ammw^'m^i^m
Wn<!7WTC...>-,..

. ��

pygmuliun ^PAGE 1)

(GET obsrt 0' n(>)i:g[ll][6] »- 0=
(Ci/'vcc- - v(((I to C/^size <- size + 10].
VL'((G/'ciul - .nd + 1] •- input).

y iht frume CALLEH value shape body runcodc displayed fetclier sto to icon x y i : name ix iwd
' 'rer container

(.dr'x. is vector r>
(CtA'x * x eviil.
<f- ^ (Itx •- :) ITx eval)

<Jt- -> (ftx •- :) ifx eval)
<3has ^

(:x. :y.
displayed is false =» (fffalso)
x < ix -> (Itfalse)
y < iy ^ (Itfalse)
x > ix -t iwd -> (Itfalse)
y > iy + iht > (1tfalse)
Ittrue)

<?run ^ (SELF has nix my => (runcode eval))
«^display »

(Onanie ^
((«J«- -> (QPname *��stringify :)).
disptaymode >

(SELF display t'rase.
write SELF name.
CrMisplayed ���Gr'nanie))

"lvalue z>
((«J^ ^ (:value)).
displayinodo �>

(Cj?'displaye((*��lvalue.
value is iconstructuro •> (value niap(xi display name))
write SELF value))

"^shape t»
((O- ., (:sliape)).
displayniodo ->

((null shape �* (SELF display name)
shape eval).
(^'displayed *��dr'shape))

<Jbody .» (-Q*- => (tr:body) tbody)
«3erase r>

(displaymode ^
(ccj displayed C^name =>

(frame (clear.
frame frame 0.
ÖA^displayed «- false)

eq displayed devalue i»
((value is iconstructure ^ (value map(xi display erase))).
frame fclear.
frame frame 0.
är'displayecl *��false)

eq displayed Qr'shape *
((null shape » (1 white shape eval black).
(^'displayed «- Qpvalue.
SELF display erase)))

«Jdelete «
((displayed -> (SELF display erase)).
container's value delete CALLER.
SELF map Cu^'s (Cir'name �- (v'fraTne �- dr'CALLER «- (lvalue

©'shape �• Qr'body «- C^runcode *��ö'fotcher *��

CS^storer �- (^container �• nil)))
«?•- T> (1t:displayed) ^displayed)

<Jfetch => (:x. Itfetcher eval)
<Jstore ^ (:x. :y. (tstorer eval)
«<Jpval ^ (tbody eval World)
<?map =>

(:x.
(value is iconstructure =» (value inap(xi map x))).

^n^^-WUX IJIII>,Um><BI « '•�'"'P.-Ji»"�»!!" �����- iMU.»fc.Wli»l.lHii»U^JW|IHW«V>l:li".JJ.»JJl»yiJ UPUII] ..HWl.l.l ... | �"<�'�—1< >.'.�������������;���������•"�������^w ��..^-T- •��".-«—-V---

l
I

liyjjmalion

iipply SELF to x)
«Jrcipy ->

(Cü/'x •- icon name ix iwd iy ilit nil quick.
x's rnnroil«1 •- runcode.
x's ilispl.iycd �- displayed,
x's fctrlicr •- fotcher,
x's storur •��storiT.
«}(|iilck ^ (Tfx)
x's viiliic <- (value is irons!rurture -> (value copy) value),
x's shape •- (shape is iconcontext -> (shape copy) shape).
x's body <- (body is iconcontext :> (body copy) body).
<Jcontainerless -> (flx)
x's container «- container,
ftx)

<frhanRe ->
((«^position r>

((<?to �>
(d/^x <— ix - :ix.
Cj/Jy ^ - iy - :iy)

CtA'ix •- ix + :x.
G/3iy «- iy + :y).
value is iconstructure r>

(value map (xi change position x y)))
^size ^

(dr'iwd •��max 16 ((:x • iwd) / 100) \ 16.
Grillt - max 16 ((:y • iht) / 100) \ 16.

(value is irnnstructuro ^
(value map (xi change size x y))).

C^ix •- (basex + (x • ix - basex) / 100) \ 16.
CS^iy - (basey + (y • iy - basoy) / 100) \ 16)).

frame param
(G/awinx �- ÖA'frmx «- ix.
(xr'winy *��tj/Trmy �• iy.
d/^winwd <- GrTrmwd »• iwd.
ö^winht ���(j^frmht •- iht))

isnew =>
(G/'name <- stringify :.
Q/'frame «- dispframe rix :iwd ;iy :iht :.
ö'CALLER «- SELF,
^quick �> ()
(displaymode <*

(frame frame - 1.
frame fclear.
write SELF name,
(^displayed «- (jj'naine)).

Gr'runcodc *- iconrun.
G^fetchcr *��iconfetch.
C^storor *- iconstore.
change container absolute SELF ix iy.
ffSELF)

«Jprint => (disp *- Xicon ' name print disp *��'>'))

to iconcontext j oldx oldy oldWorld : i x y quick code World
(<Jeval :»

((World's value is vector *
(C^oldx •��World's value.
World's value �- iconstructure 10.
for j •- 1 to oldx length - 1 do

(World's value push Icontable[oldx[jJ]))),
getioou i - CALLER,
quick » (code eval)
:oldWorld.
ÖT'oldx *��CALLER'S ix.
C^oldy •- CALLER'S iy.
showicon CALLER x y World.
code eval.
SELF delete.
shuwicon CALLER oldx oldy oldWorld)

isnew =>

PAGE 2) I'

HA ...J. ,.,^ �^.-^..., ...::.-..-. �.�^��.�J,;..,,.c^..;;i^- �< -i-..E.-.i.i-.a<..'---..~.-/,.^^

,;t*Ti*wwi.jf*wxTW^ß.wwwS'^-V ^'•"'^.T^?^-^''.i-r^v»«;'V^!^^',T.*rW?^ "��f?'��5^ ^ rr rVr'-VVsV W? «/TT^^-^^^^^^rrw^-^f?!^�^ ^�^ly* «W-,-:.. ^t. ��^.urv-lfl^J

pygmalion
PAGE 3)

(Gr'World » Icontablc['worl(l'] copy quick.
<finitially ^

(:i. :x. :y. :quick.
&C0df! *� • • • 11 -A

(:j is super.ector 9 (j) supervector initially)).
World's value <- w

(:j is vector * (j) iconstructure initially j vector))
erquick * (<»iiuick * (true) false).

wSsvalüö iconstructure initially oldWorld's value vector.
Ctr'x <- i's ix.
(j^y �- i's iy.
ljr*i «- geticon x y index)

«J's =»

^^py^CftiUJicmUext initially i x y quick code World's value)
<is r,'(lSIT eval)

(disp •- 'iconcontext initially CiT .
i print sp.
x print sp.
y print sp.
quick print,
disp <��' Cr" code print,
disp «- ' C^('. . >
World's value niap(xi's name print sp).
disp �• ')�)

«^delete «
(C^oldx �• World's value.
for j «-oldx Iciisth to 6 by - 1 do j , ..^-,

(eq oldx[j] CALLER =» () oldx[j] display delete)))

to iconout i j x v c

disp •- 'Qr'iiii �• icon '.
i's name print.
disp �• ' basex+'.
(i's ix - basex) print.
sp i's iwd print.
disp «- ' basey*'.
(i's iy - basey) print.
sp i's iht print. . ., , �»
(null i's frame param(buf) => (disp *�����ml. er cr)
sp i's frame print disp «��'.' cr cr).

(C^»c «- i's container.
c has i's ix i's iy => ()
disp «- "change container absolute 1111 basex+ .
(c's ix - basex) print.
disp «- ' basey+'.
(c's iy - basey) print.
cKV^sha^nil C^body nil C^runcode iconrun Fletcher iconfetch C^storer iconstore lvalue ni

for J «- 1 to v length - 1 by 2 do
(CJPX ���i's (vU]).
eqxv[j+l]*()
x is iconstructure :» (x map (iconout xij)
disp «��'iiii's ' v[j] print disp «-'«-'.
x is atom or x is vector =>

(disp «- '&" x print disp ���'.' cr cr)
x print disp «- '.' cr cr).

IcontabIe[i's name] *
(IcontableQi's name] delete))

to iconstructL ,e ii xx : vv
«is =» (ISIT eval)
««Jcopy *

(Cy*xx �• vv vector.

 ...^.ü*.-W.... , . �... MMitMl --ii . I~^tg.^^^^-.^^~*<:*^..*.f*^:^^~',^.^.-^—^.a^^..-^..-^^-w.^f^^..yJ^ax^^^fah,

f^r!T3'^?r:i,?^'r^»?"^F^^

!
[lyginnliofi PAGE 4 ir

for ii *• 1 to \x length - 1 do
(xxf iij <- xx[ji] ropy),

flicunstructure initially xx)
isnew >

(«Slnitially r> (ti/'vv �• supervector initially :)
Ci''vv •��supervector :)

«Jprint >
(disp *- 'ironstructurc initially ['.
vv iiiap(sp xi print),
'lisp-']')

eq vv (4/'xx «- apply vv => () fxx)

to abort (disp «- ' ...aborted')

to and (ft:)

to announcn x
(:x.
within dispframe 192 320 IG 16 string 40

(disp clear,
disp «- x.
disp >- '...'))

to blink
(disp >- 20.
do 10().
disp *��8.
do 10())

to box x y wd ht
(penup. Roto :x :y. pendn. up. :wd. :ht.
do 2

(right 90. go wd.
right 90. go ht))

to change i j x y basex basey
(^position �*

(G/^i «- geticon :C5°.
i display erase,
i's container's value delete i.
move i to ;x :y)

<fsi7.e =>
i&'i *• geticon lö3.
i's (G/^basex *��ix. Cv'basey �- ly).
i display erase,
i change size :x :y,
i display shape)

^container =»
((<lfabsolute *

(tv'i <- :.
Cr") *• geticon ;x+l :yi 1)

Q/'i *��geticon :Cir>.
Cf") *��geticon :ljr').

Q/'x <- i's container,
i's container *- j.
(null x^Q
x's value is iconstructure ^ (x's value delete i)).

(eq j's displayed Cw'name * (j's displayed «- (lvalue)),
eq • j =» ()
j's value is iconstructure => (j's value push i)
eq j's value nil ^

(j's value *��iconstructure 2.
j's value push i)

sorry 'container is not an iconic structure: ' + stringify j's value.
SELF display erase))

to constant
(Mouse store Ctr'value :)

1
�-��� .��•: - , -. .. i IMiillllllilll»|illll>llMlW«Mlli<lll|lWMIIIIIIMilWI>1IMItllllilllin»M|IIIM»llllliaill*lliiiMiHilM|l|IMilWlllllllii||||IHIia<llBllillM|jHi^

« "�������' ..�.iii ���ii ij UM 9|pHHn^l|p*f^9ncq!«mnpaP,>,VJ«|.u „wimnßmim

I
Pygmalion

PAGE 5

tu copy i x y
(movi! ^.�Iit.,n :&i copy containerless to :x :y)

to create x wd y lit
(icon 'icon' :\ :wd :y ;ht nil)

to (Iplutu i
(t'J't - («Jicon => (:) gcticon rCtr").

i store G/J(lis|)lay (v=(lelele)

to disk fil basox basey Ijasoicon iiii : ; sliowev
(<•!. > (1T:CI^x aval)
:fil.
<Jfi!lrli ;>

(:ba.sex. :basey.
filin fil.
bast-iron display shape.
k-ontablcl basoicon'S name] �- baseicon copy containerless)

<Jslore :> #

(0/ baseicon »- ^cticon .�6/',
G^hasex *• basoicon'S ix.
G/^bascy »- basi-icon'S iy.
filout fil (^(baseicon)))

to drawline x y
(goto :x + ix ;y + iy)

to Kval
((geticon :CI?3) eval)

to extend x attrib
C:Cj/"attrib.
CS^x »- CALLER'S (attrib).
cr ilisp >- 'ncod more instructions for ' + CALLER'S name
(x is iconcontoxt * (Cj^x •- x's code)).
(»Ml Rcmombor's value x 9 (remember resume)
remember start with x).

repeat (eq Remembers value x =» (World run) done))

to fetch i
i&i *- geticon iGr'.
Mouse store Q^value i fetch lor")

to getbutton m n
(G/'n �- 0.
repeat

(0 = (j7*m ,. mouse 7 * (black t n)
ör'niousex �- mouse 8.
G/^mousey •- mouse 9.
n s m =» Q
^"n «- m.
(m > 3 ^

(C^m �• m - 4.
Mouse's (black box ix iy + 12 iwd - 1 17))

Mouse's (white box ix iy + 12 iwd - 1 17)).
(m > 1 =>

(ör'm �- m - 2.
Mouse's (black box ix iy + 68 iwd - 1 17))

Mouse's (white box ix iy + 68 iwd - 1 17))
(m > 0 ^ JJ'

(Mouse's (black box ix iy + 40 iwd - 1 17))
Mouse's (white box ix iy + 40 iwd - 1 17))))

to geticon x y v i
(:x is vector *

(C^i <- World.

(:v.
for y .- 1 to x length - 2 do (Gr*! «- i's value[x[y]]).

..

jyi^*WM4 it*-« *iiÄrf.«i

J
,:.'i+>^^u.^^>i'*:i-vv-.^;j,Viiii.fc-^*fS«ii?s ,X^.„- ... >:..aiv. J>.^.. t^^.^,. ^Mj.i.;^..-^, . . . -. T.. :\'~-r-r-. : ..- . ,, .;. ...;..^>i,...^ia,.^.;i-j

;ipp(p»Ili>^l|iww!»^«!T^~>'?a«*pwiT»iw>'ai"7^,<"""!^^

I liygiTtalion PAGE €,)

!

*i's valiicfx[x Ipngth - 1]] «- v)
for v •- 1 to x It'ii^tli - 1 do {^r"! *��i's valup[x[y]]).

:y.
^top ->

(«Jitulpx > ("[World's value map until (xi has x y) index])
"World's value map until(xi has x yj)

«Sindi'X ->
(G/ v •��supprvfctor 5,
(jet index x y World's value.
Itv vector)

GA"! - Ketl x y World's value -> (tti) ftWorld)

to gotindex x y z i xi
(:x. :y.
for i »- 1 to :z length do

(G/'xi - zfij.
xi's displayed is false -> (fffalso)
v <- i.
(xi's value is iconstructure T>

(getindcx x y xi's value -> (fftrue))).
xi has x y :» (tflrue) v pop),

ft false)

to get 1 x y z i j xi
(:x. :y.
for i •- 1 to :z length do
(t^xi - zfij.
xi's displayed is false ^ (frfalsc)
(xi's value is iconstructure >

(tjA'j «- get 1 x y xi's value » (^j))).
xi has x y :» (ftxi)).

ft false)

to IF i x y
(Mouse store G/'value 'If.
laA*i *• memory fetch ;x :y.
:C^x.
:l3^y.
i's value[2]'s body «- x.
i's value[3]'s body *��y.
1ti)

to 'mit
(PUT USKR Cu'DO ^World run).
CiA*disp «- Smalltalk's frame,
disp clear.
World's frame fclear.
World display shape.)

to makelinc x y
(penup. goto :x :y.
pendn. goto :x :y)

to max x y
(:x > :y * (ftx) fty)

to memory i x y
(<fetch »

(^x. :y.
(r\ «- Icontablc[Mouse's value] ^ (ffmove i copy to x y)
sorry '<icon ' + stringify Mouse's value + '> is not in memory')

«f store :>
(C^i *��geticon :(&'.
Icontable[i's name] •- i copy containerless))

to memq x v
(:x.
to < :v[l to v length] find x)

.»^:mesw.*fc^iÄ*«iU^.*Q^i*-K^-f^. ^^ ^^ ..-�'*.:" A'-^U,^.^^;^t,v.^-^ V.>.^.«^

AA<JHt«tt-- *������vy ^ ^ gj^ t^L^^^l. J.V-:- ..�.^. ^.^ . , .. .,-_�- .^.1._.^^ ,. . ^. ^ A. �-^i«u.w.. ^A. •>��«-.v* i.^J^- .>��...% ��i Mrf ^.w.^-^- ^ -•-^- �»- H w^.', :^..ixi_.——^ „. -. ^ . ,.> i^Z.« ��^^ '- -.»: -.. ^ v^ -^ ^.t-?^^^ w^rti-l AS^r.

U-.IMPJJWI-I-U-l Lill ^U„m_L 1-1.1,1, .1 .?�».., l.yiU.JLJliillJ'U wmmmmm^mmmmm^mmm �iji.»,iüL»,ij 'xummm miumnumiMmui-

1
py^nialion PAGE 7

I
I

to in in x y
(:x < :>��^ [U) ty)

tu move i x y
(a.

iliiiiini- container ahsolutc i :x
i ilian^'c positiun to x y.
i display shape.
ffi)

to namcout i
(ii'S

(Cv'cli.splayed
framn framu
frame show.
within ilispframe ix iwd iy - 16 16 string 100(disp �• name)))

Cj/'name.
1.

to iieg x
(:x < 0 (ft[x])ftx)

to opcode op i x y
(ö/'i <- icon �.(is'op :x 176 :y 64 nil.
icon " i's ix + 16 48 i's iy + 16 32 nil.
icon " i's ix + 112 48 i's iy + 16 32 nil.
i display ���dr'shape.
i's shape •- (JS*

(SELF display name.
valuef 1] display value.
valuni^J display value).

GA'X �- ^(SEIJ'' display value �•
Mouse store devalue value[l]'s value © value[2]'s value).

x[15] �• op.
i's body �- x[l to x length].
my

to opcodel op i j x y
(;CS^op.
Ci^i •- icon " :x 1!2 :y 64 nil.
QA3i •• gcticon x y index.
[toA'tcxl, op, j, 16, 24] eval.
icon " i's ix + 48 48 i's iy + 16 32 nil.
i display �• (v^shape.
(S'x *�&

(text name © 16 24.
value[l] display value).

x[3] �• j.
i's shape «- x[l to x length].
dr'x «- (^(SELF display value «-

Mouse store (lvalue ^ valuef 1]'$ value).
x[9] *��op.
i's body <- x[l to x length],
tti)

to or
(:. fftrue)

to plot
((null GET xplot C^DO => (filin 'xplot')).
disp fclear.
xplot :.
disp show)

to refresh i
(C^i «- geticon :Cj?*.
i display erase,
i display shape)

- - ��

»��mm ' wf^mmtfmriim'mrf^mm^^timmm^mmmfn^^^m^mmmm^ii^mmmii lHM^iJl*|f?^l^^ppj.i<llll._JJ",»* ^^» ^J|!I.J"*4l !i_«i|/Ji l ,

l
l
l

:

i

Pygmalion

td ri'incmlx'r i x CALLER
(«Jsl;irt ->

(announce 'romembering'.
(xr*Tfincinhurmode <- true.
<}\vith ^

(Kpincinber's value ���-.x.
Ui'ini'iiilx'fs fraiiH! clear,
within Ucmeinlicr's frame

(for i ^ 1 to x length - 1 <«o (cr x[i] print)))

Rcmembor's value - supervector initiailyrC^^tcnd x]].
Roinomber'S frame clear)

<sUip -»
(rememberrnode is false ^ ()
Hi'miMiiiier's valut'l end] *��nil.
announce 'stopped remembering',
ö^remomberrnorte •- false.
Kciiii'mli'T's frame dear)

«jsuspend �» (roniembonnode ä» i
(announce 'temporarily stopped remembering .
G/Jremeiiil)ermotlo «- false))

«J resume =>
(Kcmember's value v

(announce 'remembering'.
G/Vemembermoile »• true))

;x.(ri'riPinbermode ->
(G/Ji - Uemomber'S value pop.
llemomber's value push x.
Uoinomber's value push i.
within Uemomlier's frame(cr x print))).

<doit :» (1tx oval) 1tx)

to REPEAT « x y.
(Mouse store devalue 'repeat .
Cr'i *��memory fetch :x :y.
:C^x.
i-s valuoHl's body �- x.
Iti)

to setmouse x y I
(•.x. :y. :z-
within Mouse's frame

(disp clear,
cr disp *��x cr.
ci disp «- y cr.
cr disp �- i))

to Show i
(ö^i •��geticon ;(v*.

i store CiA'display :C3*)

to showicon i x y
(•i change position to :x :y. , , >
within dispframe 112 400 32 432 nil(disp fclear).
;i's value map from r)(xi display shape))

to sorry
(cr disp •• 'sorry, ' disp ���:.
cr disp �• 'last operation aborted . „.„J..
cr disp *����read-eval-print loop -- type done to proceed. .
ev)

to startline x y
(penup. goto :x + ix :y + iy. pendn)

to store i x
(örS «- geticon -.(v*.

i store tCj^x Mouse's value)

PAGE 8

 ___^

_... Jit^pU^JllllJi-IJ^J-^WMJl^lW!.;, ^*JW,v^'»l^l,»«»*.J'll;itl,!..,.*l', ,^ «U-t-W-l, , M ,.-a*»iHhmtim^mim ^^^«itr?'^^"I^^J wl+v^^?,"'W^—H^S^Tt'^Mf �^,1slf5.Wt'^^.!

pygiiialiiin PACK 9 i

lu slrinnil v \ ili^p
(:x is sliinn , (fx)
V «lisfi •- s»u|)C'rslring 10.
\ print,
ffclisp string)

to supcrstring xx : vec (iiul

(:\x is slrinj; f
(G/^vcr - s(<[l ti> end + xx length}.
vi'cf end + 1 to Gr'eiul �• end + xx length] �- xx.
ffxx)

VPC length < G/'ond «- end + 1 r>
(Gr'veR - v«'c[1 lu 2 • end - 1].
tvec[>iid] •- xx)

1tvf>i[pnd) - xx)
•«Jslrii^ > (ftvoc[l to end])
isni'w >

((j/^vrc *• string :.
Cl/'end *• Ü))

to supi-rvoctor ii xx xi : vec end

(VJ-< lenglli > QPomi *��end + 1 r» t1Tvec[ond] «- :)
CuJv(!(? ��vcc(1 to 2 • end],
ftvocfcndj •- :)

<?inap >
(<JiiiUil �*

(^xx.
for ii »- 1 to end do

(G/'xi •> ve([ii].
xx eviil > («Jindex �* (ftii) ftxi)).

<Jimlcx > (ItO) ftfalso)
fi/'xi »• ("Jfrom => (;) 1).
I'IT'XX.
for ii <- xi to end do

(Ci'^xi «• viH;[ii].
xx oval))

«»push » (ftSELF �- ;)
«9 pop >

{end = 0 ., (ftnil)
dr'xx •- vnr[end].
vecfond] »- nil.
Q/'end «- end - 1.
Itxx)

^length T> (ffend)
«Jvectiir => (1tvec[l to nnd + 1])
<Jeval => (ttvec cval)
««fdolete >

(CH^ii i- voc[l to end] find :.
ii = 0^()
vec[ii to end - 1] «- vec[ii + 1 to end].
vec[end] •- nil.
G/'end «- end - 1)

<*is -, (IS1T oval)
<?print ^ (vec[l to end + 1] print)
isnew =>

(«»initially ->
(G^ond *- :vec length - 1.
ITSELF)

C^ver: �• vector :.
(S'eaA :��0.
ftSELF)

eq v%c C^xx *��apply vec > () ffxx)

to table i x : names values

(^. «»].
Cv3! <- names map until (x = xi) index.

�I' .

^.. J . >:, �i.:^«^ak-^»^(liYfinirt||ihiiifnim i - ""- --^i^.^u^.t-:^.^..^ ^ „..,.,�����- , . ^.^^ :.:1.^..^^ü^^m!i-^m^üi

^�pp|Pf^.-i-\^^^J,-^.^ ^.--v. jV^-ri^jT? ^Tirr---^--r-^-' '"" ^_ ^TTS^fl^^^f^^^-^-^^^T^T^^^^ ~T^^'-ii.,';l" TV-~.---����7-:-—F^-v^,-^—^ -

I
I
I
I

:

1

I
1

I'v »;i [.limn

(1 = 0-,
(riiinns •��x.
*\ .ilins *��:)

.\.

i = il > ("f.ilsc)
«Jdi'lplt- >

(n.iiH.s ildi ti. ii.iinisf i].
\;iliii s (lihMc v,ilufs[ij)

*viiliins[i])
isnow ->

(u/ Hiimes •• sii|irrvoctor :i.
W vahii'S <- siipcrvcctor i)

<|irint ^ (n.inics print))

tu text s i x y
(:s
G.' i •- ROlicon �.Cir'.
G/'x 1- i's ix + :,
CPy »��i'b iy + :.
within ilispfnimc x 256 y 256 string 100((lisp �- s))

to wnitmousp n x y z
(M'l mouse :x :y :/..
Gr'ti)|il)uiion - Gr'initlbutton <- G^botbutton »- false.
repeal

(0 = moiisp 7 > ()
G/ M *- RPlhntton.
n = .'i » (Moiisp's framp show, opplot) done).

MOUSP'S frainn rlpar.
n = 1 •> (Q/ ti»|)liutton *��true)
n = 1 > ((�(] y iliishps , (abort) G/^midbutton «- true)
n = 2 -» (ei) /. dashps •> (abort) CiA'botbntton «��true)
abort)

In within disp
(tdisp.

1>(:G^) pval)

to writp i v x wd y ht

G'v *��stringify :.
tli' wd •- min i's iwd 8 • v length.
Qr'Ui •- min i's iht 16 •
] 1 + (v length - I) / i's iwd / 8).

Grx »- i's ix + -I + (i's iwd - wd) / 2.
CPy <- i's iy + 2 + (i's iht - ht) / 2.
i's frame frame - 1.
i's frame fclear.
vilhin dispframe x wd y ht string 100(disp «- v))

to f v i
(Cj*v *��vector 10.
C^i �• 0.
repeat
(<] -> (irv[l to i + 1])
vCCu'i �• i + 1] �- ;.
<f,.
1 % Ungth , (Gr'v ^ v[l to 2 • v length])))

to < i
(<?icon ^ (C^i �- lcontablc[:i]. *9>, fti))

to opl op
(:Ci^op.
waitmousc ' position' dashes dashes,
topbutton •,

(rpmomV)«r[(3aopcodcl, op, mouscx \ 16, mousey \ 16] doit.))

PACK 10

. . ..

ayayaaeaaaia Hagaaaaa^M^iiitiMai^aai^^ L^aiBMiiiB "'"ii'Tii-iihuriiiiiiii

^&m^^~^-m*imimm^<^mmi**vmmm*wm]�*mm^mm!m*^�**^**m&"1 "M-^ � "w j'ii^^i^.'w-'w-u"M'^iw-i
 ?r"—

1 ����i- fPAGE 11)

to c)|)2 op
(:Gr"o|(.
w.iitiiKuisi' ' jiosilion1 dashes dashes.
tupUutton >

(r.iii<Miiljir[ClA'o|icodt', up, moiisex \ 16, mousey \ 16] doit.))

to opbody i
(waitmouse ' define body' ' fetch body' ' store body',
topbut ton ->

(G/"""! *• geticon mousex mousey,
sp disj) •- i's naino.
i1s body is iconcontext �>

(remember start with i's body's code)
remember start body.
i's body *��iconcontext World i Kemember's value.
Irontabli'l i's name] >

(Icontaljle|i"s name]'s body «- i's body copy)
cr disp - 'do you want ' + i's name + ' saved in memory? (y or n)'.
meinq read[I) C^y Y) r>

(hi)ntaljli[i's name] •- i copy conlainerless))
midbutton =>

(reineinljir[(v'fetch, geticon mousex mousey index, öPbody] doit)
botlmlton »

(remember[Ca^,store, geticon mousex mousey index, CiPbody] doit))

to opcliange i j
(waitmouse ' change pus' ' change size' ' change cont'.
topbut ton ->

(G?"i <- geticon mousex mousey.
eq i World -> (sorry 'cant < ange position of world')
(^�j •- geticon mousex mousey index,
waitmouse ' upper left' dashes dashes,
topbutton >

(rcmeml)er[Ci?*change, Composition, j, mousex\l6, mousey\l6] doit))
midbutton ->

(Cj/"! i- geticon mousex mousey,
eq i World ^ (sorry 'cant change size of world')
(j/Jj *- geticon mousox mousey index.
waitmouse ' lower right' dashes dashes.
topbutton r»

(remember[CiA'change, G/'size, j,
(100 * mousex - i's ix) / i's iwd,
(100 * mousey - i's iy) / i's iht] doit))

botbutton >
(G^i •• geticon mousex mousey index,
waitmouse ' container' dashes dashes,
topbutton :>

(remembcrCC^change, (^container, i, geticon mousex mousey index] doit)))

to opconstant
(cr disp �• 'value? '.
rpmember[(j/=constant, read eval] doit)

to opcopy i
(waitmouse ' copy icon' dashes dashes,
topbutton :>

(Ci/^i v geticon mousex mousey index,
waitmouse ' position' dashes dashes,
topbutton ^

(rememberflv'copy, i, mousexMB, mousey\16] doit)))

to opcreate n started x wd y ht
(dpstartcd «- false.
setmouse ' set point' ' del point' ' quit',
repeat

(Gr'n •��getbutton.
n = 4 *

(Mouse's (white box ix iy + 12 iwd - 1 17 black).

�������-���� -�•-•-'��^-�—iVifiTiiriii-fiiii-^----'- '^ •---�*�-� ^-•^~-''^^'-�•'�'•-J-^ ��
:--�.ariiirii-tMi*-'''^--'-- -- -���'-

|Ppqqiqm«!i|^iwnp>««a^viin!raCTi9Vvipa)n<«v<|i»^'>in.u^m*i| " �������' ' i—��•—"• ���..mj^.uwmmwfu.Mt.-��i' '*'•—�-'iiT.:'yw**"v'-"'*i'".w.'" •»."-•�" ' • t^

[
T

py^ in ilimi PAGE 12) r

M.irtcMl is f.iU«- ,
(G'^x •- riumsi'X \ lü.
(s' y •- moiiscy \ lf>.
fi/'wil - G/'ht •- 0.
^/''started *��truo).

111.M11 (i5 - 1 '\()U ink".
Iinx x y svd hi.
in pin fif) •- 0.
'.''»(I •- (llll)llM'X \ IG) - x.
G'Mit i- (nionscy \ 16) - y.
(wd < 0 ->

(Ci/'wd «- - wd.
ÜA'X »��inousi'x \ 16)).

(lit < 0 ^
(&ht <- - ht.
Ci^y *��inousfy \ 1 (>)),

ri'iiii'iiilicrl fi/^crcatp x wd y ht] doit.
Ci/Martcd - false)

11 = 1 •>
(Mouse's (white box ix iy + 40 iwd - 1 17 black),
started >

(mem 65 «- 1.
hiix x y wd lit.
mein t),1) •- 0.
Ö'wtl •- Cj/'bt <- 0.
C'^slaited - false))

n = 2 ^
(dune with Miuisc's frame clear)

started ->
(mem 65 <- 1.
box x y wd ht.
box x y öT'wcl *- (mx \ 16) - x Q^ht �- (my \ 16) - y.
mem 6f) *��0)))

to opdoleto
(waitmouse ' delete icon' dashes clashes.
toplniUon ->

(remember(d/'delete, geticon mousox mousey irdex] doit))

to opdisk i j fil
(waitmouse ' fetch' ' store' dashes.

1 nplnitton ->
(rr disp <- 'please typo a file name: '.
Ci/ fil ��read oval,
fil is string ->

(remeMiber[Gf,disk, fil, öJ'fctch, mouscx \ 16, mousey \ 16] doH)
abort)

midbtitlon ->
(G/'i •- geticon mouscx mousey.
6/ j <- gel icon mousex mousey index.

(i's name = 'icon' ^
(rr disp * 'please type a name (a string) for the icon: ',

i display name »- read eval)).
cr rlisp •- 'please type a file name: '.
CT^fil •- read eval.
fil is string «

(sp disp f i's name.
remember [G/'disk, fil, C^store, j] doit)

abort))

I

to opdisplay
(waitmouse ' on' ' off dashes.
topbntton -, (remember (^(G^displaymode «- true) doit)
inidbuUon -> (remember (^(C^displaymode «- false) doit))

to opdraw i n started xstart ystart xstop ystop
(fi/'started - false.
waitmouse ' relative to' dashes dashes.
topbntton is false �> ()

I
��" ��������" ��������������������.

.-�—^ u^-^i^-.! - ��• ����- �-— -^�:«..-A.;...-.^--;..^: -- - ..^ —����� —^^„.^�.�.J...t^J.,^.J.^.......:���...^..-^.^J^..^.^^-^—^,

�l!n!ri^'?«!i^wpiB*yim!B�«WT»-w^'�^^5-^^

1
Pygmalion

u/ i *- in'itcon niouscx mousey.
setnu-usp ' start lino' ' stop line' ' ciuif
repeal '

(G/-"!! - gothutton.
II = « >

(Moiis-i (white box ix iy + 12 iwd - 1 17 blackl
slarteil > ''

(rem^nhorCC^drawline, xstop - in, ix, neg ystop - i's iyl. u/ xstart *��xstop. = ^ i JJ
G^ystart »• ystop)

^>-st;lrt *- Cz-'xstop «- mousex.
CL' ystart •- CS^ystop *• mousey.
reM.en.herrC/Martlin.. xstart - i's ix, neg ystart - i's iy].
u,- started •- true) *J

n = I -.>
(Mouse's (while box ix iy + 40 iwd - 1 17 black).

läf;£«Är
eT)Hne'xstop �i,s ix'neB ystop - i's ^x

n = 2 =,
((started r>

(mem 05 - 1 'XOK ink',
mnkcline xstart ystart xstop ystop
mem 65 �- 0)).

done with Mouse's frame clear)
started =>

(mem 65 �• 1.
makelino xstart ystart xstop ystop.

mLn0 yr/o)1;;1 ysiart ^siop -m* ^^ - "*��

PAGE 13

eval icon' dashes dashes.
to opeval

(wait mouse
topbutton s

(remomber[C5^Eval, geticon mousex mousey index] doit))
to opexit

(PUT USER G/=no sysUSER.
Cl/'disp *• sysDISP.
remembor suspend.
World's frame fclear.
disp frame - 1.)

to opif
(waitmouso ' position' dashes dashes,
topbutton i»

(rememberC^IF, mousex \ 16, mousey \ 16
supervoctor initially Ö=((extend body)),
supervector initially ^((extend body))] doit))

to opmemory i j
(waitmouse ' fetch' ' store' ' fetch mouse'.
topbutton =>

(rC
f.^,nliSP|," A56 typ0 a name (a strin«) für the icon: '. rcmemborrG>constant, read eval] doit

muZuon^ me,n0ry' ^fetCh- ,nOUSeX ' 16' —> ^ �1 doit)
^.i *" Peticon mousex mousey,
d/'j «- geticon mousex mousey index.

(i's name = 'icon' =>
(;C^,rSPrVPleaSe ty?B a na,ne (a strine) for th« icon: '. i store GPname read eval)).

(Icontablo[i's name] *
(cr i print disp - ' is already in memory'.
cr disp �- 'type y to replace: '.
memq read[l] C^(y Y) =, () tabort)).

sp disp •- i's name.
remember [G^memory, Ö'store, j] doit)

bot button ,> 'J /

^|.
^�-^---- —.�.-�.....,-�..,�... ��--^ ..^-*^^^^**i**i*ia*****~^^~...^

poWTi^vrT-^-J^MV^-ir-if.-��v?7F^r!r^^w^rr^^.^^^^rs^./r^i^lUw^^r ^^wr^vf>\rn^f^-,^^.^^^^^ry-^rv,^y-'-^ i^r.iy /^-r-rry^vi;...^,. .,, .j^^^^y.^..^

I
|i\ i; ni.i linn PAGE 14

i

(roiuPinlicrfCi/ iiwiiiory, t^fi'tcli, mousex \ 16, mousey \ Iß] doit))

to O|III.IIIU> (ri'pi'at
(waitinrms*' ' f(<t(-li name' ' stort» name' ' quit".
ti)|il)iit tun >

(ri'iiK'inhei{ tT/-r<'tf:h, nr-ticon mousex mousey index, C^naine] doit)
iiiiilluit tun >

(n'ini'mhpr[Ci/:'storo, getteun mousex mousey index, Cj^name] doit)
liutliiitiun > (done))]

to opnnxt()

to opplot fil
(rr disp »��'please type a file name: '.
Gr'fil - read oval.
fil is string -> {rcmomberfG/'plot, fil] doit) abort)

to oprefresh (repeat
(wait mouse 'refresh iron' dashes ' quit',
toplmtton ->

(ii'ini'iiihcifG/'refrosh, geticon mousex mousey index] doit)
bot button �> (done)))

to oprcmember
(wait mouse ' stop' ' suspend' ' resume'.
topbutton r> (remember stop)
micllmtton -> (remember suspend)
botbutton �> (remember resume))

to oprepeat
(wiiilmnuse ' position' dashes dashes,
topbutton ->

(rcm>'n)bci(iv'UIM'KAT, mousex \ 10, mousey \ 16,
supervector initially ^((extend body))] doit})

to opshape i
(waitmouse 'define shape' ' fetch shape' ' store shape'.
topbutton =»

(Ctr'i <- get iron mousex mousey,
sp disp *• i's name,
i's shape is iconcontext =>

(remember start with i's shape's code)
remember start shape.
i's shape •• iconcontext quick World i Remember's value.
Icontable| i's name] =>

(Icontablej i's name]'s shape �- i's shape copy))
midbutton -»

(rernember[CTA,fctch, goticon mousex mousey index, Gr'shape] doit)
botbutton ->

(r('member[(aA:'store, geticon mousex mousey index, tv'shape] doit))

to opshnw i j
(waitmouse ' show name' ' show value' ' show shape'.
topbut ton ->

(CiA'i •- got icon mousex mousey,
Qf i >- geticon mousex mousey ij.dex.

(eq i display G/'name ^
(eq i's container World * ()
j|j length - 1] «- nil.
lv-"j ^ j[1 to j leiiKlh - 1])).

rememberfG^Sbow, j, d^name] doit)
midbutton r»

(remember[Ci/ Show, geticon mousex mousey index, (lvalue] doit)
botbutton ->

(0/ j <- geticon mousex mousey index.
rememberfCir'Show, j, G^shape] doit))

to oplext i j s
(waitmouse ' relative to' dashes dashes.

I .1

IV�Mli!m<mn<<PPn*lfll|P^M,' ^if$%%im^mmmi^-.v*-MA-m

1 ��

pyK'ii-ilirni (PAGE 15)

1 j

:

tuplmtton >
(Cv i •- gfticun intuiscx mousey.
C/'j •- gi.'licon niouscx iiunist^y index.
cr disp • 'pluasi' typ« the text (a stringj to be displayed: '.
(If's "- stringify read oval.
wailnmus.' ' position' dashes dashes,
toplml ton >

(n'ir.iMiil)i.'r[CiA'tuxt, s, j, mousox - i's ix, mousey - i's iy + 16] doit)))

to optrace
(wail in oust- ' tra'M' icon' 'untrace icon' dashes,
topbuttun ->

(rouieinI)or[1jr,trace, gettcon mousex mousey index, C^on] doit)
niidlm t ton >

(remi'iiil)('r['l/5'tract'1 guticon mousex mousey index, Ctr'offj doit))

to opvaluc n
(satinuuKn ' fetch value' ' store value' ' '.
repeat

(G/'n »• gel button,
n - 1 ^

(Mouse's frama clear.
remembei^G^fctch, geticon mousex mousey index, Gr'value] doit,
done)

n = 1 ^
(Mouse's frame dear.
reinenili'M | G/'store, goticon mousex mousey index, Cir'value] doit.
done)

CALLKU has mx my -> ()
done with Mouse's frame clear))

to initall
(disk's

(to showov x
(disp «��'Cir'baseicon *��'.
iconoul :x oval)),

(ineimi (tP\ GET number (^"DO * ()
addto number &(-Q\ * (t:x * (SELF + x / 2) / x)).
addto dispframe ö^^print => (buf print)).
(GET dispframe G?"l)O)[,')<J][50] «- 0.
(GET pshow Ci/'D())[lü][4] »- 6.
(GET pshow Q?sDO)[:22][34] «- (S'C- C^^ftC^^Ö).
(GET file GAM)0)[7G][2.»][4J <- Cy*

(dpO evals filesopen map C^*
(ve. | i J evals C>(Gr-dirinst «- nil))).

Gf-syslISIClt *• GET USER C^DO.
d/^sysDISP �- disp).

G^Mashes �- ' '.
G^run «- Qr'run.
G^lcontable *��table 10.
Icontable['world'] �- nil.
Gr'iconrun <- G^fopvnlue).
Gf'iconfotch �• (^([CALLER C^'s x] eval).
Ct/^iconstore «- Gr"

(eq x C^distilay •* ([CALLER Gr'display y] eval)
[CALLER Grdisphiy x &*��tf^Sh y] oval).

<a^"specialslore »- ^"(sorry 'cant change ' + stringify CALLER).
G/'displayinode «- true.
G/'Yeinenibennode *��false.
initworld initmenu initmouse initremember initsmalltalk initicons.
World's frame clear,
disp frame -1.
G/Mnitworld *��(^"initmenu �• Gr"initmouse *��Cy'initremember �• (^initsmalltalk *��C5?*initicons «- (^^inita

•Ml » nil)

to initicons i baseicon basex basey
(Cy^basox «- 192.
(v'basey �- 192.

p»i ���--" —�--�'' �����' .,..,—,. ^..�. ,

r py^nuilion PACK 16

C-'li.i^iiroti - (]' i - icon 'if liiisi'\ + 0 102 liasry + O 112 nil.
i-s sli ipi' - Ci' {valin'f I') display iiami'. valiic[2] display valuo. vahip[3] display value, startline

12 1 IK. drawliiH! Ill 10. di .iwlin.. 1 1 I 2fi. drawlinc 121 18. startline GO 3'1.
drawiinc ii2 7.r>. drawline 101 C5. drawlinc 101 77).

i's liody •- G/'(value [I] 's value! -> (value [2 J eval) valuo [3] eval).

' •lit. 1 S. dr.iu li
* 'draw line KM

ot'l <- icim "." Ii.iscx + O (M Imscy+O 32 ' '.
i'b nmcDil" <- tu/ (upvalue).

Ci'r'i *- icon 'true lirnnch' hasi'X+128 G-l basey + 0 32 ' '.
i's shape »- CT/J(SKLh' display value).
i's value true.

C/'i *��iron 'false hranch' basex + Ofi 61 basey+80 32 ' '.
i's shape t- Ci/='(SELF display value).
i's value ���false.

Ironlablpfif] •- baseieon copy containerless.
baseicon display delete.

Ci/'baseicon *• 'T^i - iron 'repeat' hasex + O 48 basey + 0 32 nil.
i's shape »• Ci'''(CAI.I.KU display value, startline 23 33. drawline 23 59. drawline -31 60. drawline
"-31 (-38). drawline 23 (-38). drawline 23 (-2). drawlinc 13 (-13). drawline 33 (-13). drawli
••ne 23 (-2)).
i's value *• ' loop'.

Irontablef'repeal'] »- baseicon copy containerless.
baseicon display delete)

to initmenu i
(Ci/'Menu •- Icontablef'menu'] �- icon 'menu' 1C 80 32 647 string 300.
Menu's shape •- Ci/''(nameout SELF),
Menu's ruiicodi! <- GA"

(setniouso ' doit' da is dashes,
re] eat

(Ketbutton = 4 -»
(Mouse's frame clear.
Cs'x *��(Menu's frame mfindt mousex mousey) / 2.
0 < x < menuops length + 1 :>

(sp ini'iiunamesfx] print.
G/'opcration <- inenuops[x].
ec] operation Ci/=undefiued ^

(done with disp »- ' undefined')
World's (operation eval).
disp *• ' ok',
done))

SPM,F has mx my => ()
done with Mouse's frame clear)).

Menu's fetcher �- iconfetch.
Menu's storer <- specialstore.
G/'menu names »- superve-tor 50.
Qr'inenuops <- supervoctor 50.
within Menu's frame

(supervoctor initially Or"
((icons undefined create opcreate change opchange delete opdeletc copy opcopy refresh

•• oprefresh show opshow name opname value opvahie shape opshapc body opbody)
(opcodes undefined
+ {oi)2 +) - (op2 -) • (op2 *) / (op2 /)
= (op2 =) < (op2 <) > (op2 >)
and (op2 and) or (op2 or) not (opl not))

(t-uiUiul unilcfinud if opif repeat oprepcat done opdone eval opeval return oprcturn
**)

(others umlefined memory opmemory disk opdisk next opnext display opdisplay rememb
"er npremembcr draw opdraw text optext trace opt.race constant opconstant plot opplot exit ope
••xit))

map
(menunamos <- xi[l].
menuops <- xi[2].
cr xi[1J print or.

—j • ^i. . r u -- ��������-. ^.��...^ ii tin-' -*^..<-~-—.-.-.Ajr;.uJ..>.:-,.iw..iix.<i^K.i^.i^^...T„. . y.to-,nr.gi|.^.t--L..,..-.w..u~.'

igpiVVV^P^**"^* ' " ���PM.** |.�.^gq|lHV<|1l
��
l, * w?&mmnmt*?rrT3p?rn*?^r*^^ �r-rm'-r--?-^jtTw- a-

'

liygnmliun PAGE 17

fur i �- .'! to xi longlii - I by 2 do
(iM('iuiii:iim>s «- xi[i].
nifiiiiops «- xiTt + 1J.
minu) xil i J 'l'J(+ * <) ^ (sp xi[i] print sp)
sp .vi[i) print cr))))

I» init nioiisc
(G/'Mousc - h.ontiililcl'nioiibo'] •- icon 'inuuoe* 400 0G 480 96 string 50.
Mouso's shape *• (^(namuout SELF).
Mouse's runcorte <- nil.
Mouse's felcher <- iconfetch.
Mouse's storer �• G/3

(ei) x C/Misplay -> (nil)
\siiliiii Mousevalue's frame

(ili-.p dear.
Mouse's value <- y print)).

GT'Mousevalue •- Inontabk^'mouso value'J �- icon 'mouse value' 112 272 480 32 string 100.
Monsis aloe's value <- supervector initially &'(" " ").
Mousevalue's shape «- Mouse's shape.
Mouse-alue's runcoile *• nil.
Mousevalue's fetther •- iconfetch.
Mousevalue's storer *- spc<:ialstore)

to initremi'inbor
(Ci'JHeiiiember •- Icontablf['renieinbnred'] �- icon 'remembered' 112 272 544 32 string 100.
Hemeniber's value «- false.
Uemember's shape »- ([/^(nameout SELF).
Hemcmbor's ru'icotle <- ö?"

(setmouse ' insert' ' delete' ' scroll'.
repeat

(Cu'y *- getbutton.
x = 4 =.('...')

x = 1 ^ ('...')
x =2 ., ('...')
SKLF lias mx my ^> ()
done with Mouse's frame clear)).

Uemember's fetcber «- iconfetch.
Heiueiiiber's storer ���spociaistore)

to initsuialltnlk
(Qr'.Sinalltalk - Icontablel'Smalltalk'] «- icon 'Smalltalk' 112 384 608 71 string 300.
Smalltalk's shape «- (^(naineout SELF).
Smalltalk's body �• d?3

(er dlsp i- 'input? '.
Mouse store öpvaluo read eval).

Smalltalk's runcode •- ^"(repeat
(kbek T» (cr read eval print)
SELF has mx my t> (blink)
done)).

Smalltalk's fetcher «- G?3

(cr x print disp �- '? '.
read eval).

Smalltalk's storer �- (^(Mouse's value print))

to iuilworld
(tip-World «- Icontable['world'l �- icon 'world' 0 512 0 680 nil quick.
World's value •- iconstructure 10.
World's shape »- devalue map(xi display shape)).
World's runcode *��(r

(Mouse's frame clear,
value map(xi run)).

World's fetcher <- iconfetch.
World's storer *��specialstore.
World's container *��World)

(initall)

-»

�����

1.1

i.^'tfr.^.^.v.j.Mju./. �;, :���. „...;., ^.M,.V.- -�„ .-,..-.J.^-a.>i,.^^.tf,^.aJ;^ �;-^m^.J...^ij»^c,^J—>..^.ai...^.i...^.-oi^,:.Jw.-v>.a..«t..-.^. .r^iM..,,.^^..-.^—m..^:.^«^

FiiMui..;! iphy 185

Flli^ T<> HMÜMT, JF. md Siblev. WL. T^ r.RAIL Project An Experiment in Man-
M: *,!',� i mmunkttiemt, R^NI) Rppoit lU-WHAHwA, 1%^"

Iii-Ihiir DE faf*unttil§ Hu"i':n lntet!i\t a Conceptual Framewcrh, Summary Report
•Mt .S'I r'".r-. ST'.i Profr: 1578, Sranfotd Research Institutf, Menlo Park, Calif, 1962

-��. ,m t F.ntlrli. W K . "A Research Centei -or Augmenting Human Intellect", Proc. AFIP5
,"; H Fill Join; CmpHtm Confetence. jip ?fii-410.

Cflrrnter, H. "Rejlmtion of a CeonenyTheorem Proving Machine" in Computers and
T; ught, E Feigenbaum and J Feldn,in (Eds). McGraw-Hill Book Co.. New York,
IM3. pp.|54*lS2

Colann, stuai:. "Psvchological Study of Creativity", Psyhologual Bulletin, 60, 6 (November
IMS),l».MI>9U

Gonbtich, EH, Irt and Illusion. No. 5 in the AW Mellon Lectures in the Fine Arts,
Bollingen Series XX W (copvight (c) I960, 1961 and 1969 by The Trustees of the
National Gallery of Art, Washington DC), Princeton University Press, Princeton,
Ntrw Jersey, I96C

Hadamard, Jacques. Tfir Psychology of Invention in the Mathematical Field, Dover
Publications, New Yo-k, 1915

Hall. Calvin. "What People Dream About", Scientific American, IS4, b (May 1951), pp.60-63.
Havs. John. "On the Function of Visual Imagery in Elementary Mathematics" in Chase,

197'', pp 177.2 H
H'.man. Anthony. T^e rcmputer m Design. Studio Vista, London, 1973
Hrwet: C, Bishop. P and Steiger, R, "A Universal Modular ACTOR Formalism fo."

Artificial Intelligence", Proc Third IJC Al. Stanford. 1973, pp.235-245
Jacks. Edwin. "A Laboratory for the Study of Graphical Man-Machine Communication",

P'rc 4FIPS Fall Joint Computer Conference. 1964, pp 343-350
Julesz, Bela. Foundations cf Cyclopean Perception, University of Chicago Press, Chicago

Kanruiahl, Hanna. Pictuie Algorithm Language (PAL). NSF application. University of
Illinois, Urbana, 1974

Kay Al.in, Tit Reactive Engine. PhD thesis, Ummsuy of Utah, Salt Lake City, 1969.
, "A Personal Computer for Children of All Ages", Proc. ACM National Conference,

Boston, lcj72(a)
-•-, "A Dynamic Medium for Creative Thought", ^roc. National Council of Teachers of

English Conference. Minneapolis, 1972(b).
��--. Personal [>\namic Media, 'internal document m press), Xerox Palo Alto Research

Center, Palo Alto, Calif, 1975.
Kontier, Arthut, The Act of Creation, Dell Publishing Co., New York, 1964.
Knppnei. Stanley, and Hughes, William, "Genius at ZZZZ Work ZZZZZZZ", Psychology

Today. 4. I (June 1970"), pp.40-43
Lampson, Butler, "A Scheduling Philosophy for Multiprocessing Systems", Comm. ACM, II

5 (May 1968), pp.347-365
--, "Dynamic Protection Structures", Proc. /iFIPS Fall Joint Computer Conference, 31

1969, pp 27-38
Meriiiick, Sarnoff, "The Associative Basis of the Creative Process", Psychological Review, 69

3 (May 1962), pp220-232.
Miller. George, "The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information" in Tht Psychology of Communication, G Miller.
Basic Books, New York, 1967

Mitchell, James, The Design and Construction of Flexible and Efficient Interactive
Programming Systems, Ph D thesis, Carnegie-Meüon University, Pittsburgh, 1970.

3
I

MMajMMMUfaMMMMMi

tM^lAl

186

I
Bibliography I

u - ok "Auiotelic nilirrr-- Envnonments and Exteptional Children" m Thf j
-"'$£(tlSTcJSSy 21. JHellmuth (Ed;, Seat.l. Spec.al Ch.ld Publicat.ons of |

^ ^^'^Zn^uncuW. fur the Design of Clanfym, Educat.onal
- "SvÄS- i «.Ä ^SSELä r*,; 3 ««-^ Coshn (Ed , Rand j

M« .r^r^'svI'Lic NOT o, Visual Imag^", PW FIM »/C^l. Manfo.d.
'fl '' IS^^J.. TA- tvkiue* it Ma.hf.,- The MIT Press. Cambtidi;e, Mass. 1970 |

Vravsji^ 7/, North-Holland Publishnik; Co. lO^. , ., , . I
p „. i ol SIMULA - ����M ***** Pr^amru.g ami S.muaüon LMfMf».
1 ' ' No .i.n £***< Center. F.rs.mn.sveien lb Oslo. No.w.y^ 1 70 I

-SIMULA « I Tool tor Extensible P.otram Products. SICPUN Notues. 9. |

P.,.j^rJr'-LOcIS Bo!: Notes", A. Ubo,atory. MIT Cam.udge. Mass. .97. [
TXcSpZ iSmUmy f* EUmentan S^vls. Art.ficial intell.,ence Memo 246. MIT.

J. r^CS-^V^, Artiticial intelligence Memo 2.7, M.T. Cambridge. Mass.. J

T^Unt Children to U Mcthemaliaans H r«K«jU «M IHtiW^ft. Artificial
' intelligence Memo 249. MIT, Cambiiu^e, Mass, 1971(c). •

P«Ä.%5%^Ä Anificial lntell.ence Laboratory Operating Note 58 1.
stantoid University. Staiituic WK .. „ r . /- '

p..,,.," LG "CnphKal Conmumcation Mid Control Lancia,.- , ** $*** Conguss \
o,,/.;.^^^^.^,^^ pp211.2^ of AMB1T/G „

P I �������Kmt LMnUKf tc Set \ an Nottrand Remhold Co. New York. 1971

1. uition and Non-log.cal Reasoning in Intelligence . Pl«t Second IJCAI. London.

SussrrirCe^'.rLmp.ran.na/ ItaM cf SkUl A^mnUon. PhD thes.s. MIT Project
NUC TR 297, Cambnage. Mass.. 197? c . DI, n I

s.ube.l nd Ivan Sketchpad A Man-Machine Graphical Commumcation System. PhD |
thest, MIT, Cambr.d.e.^Mas.. 196?, also m Proc. AFiPS Fall /** Computer 1

SutheManrwmlam.' flSuJTS^ S^ct/u-anon; o/ Com^ur.r PMMkPM, Ph.D. thes.s. I
MIT Cambndee, Mass, 1966 I
nj 'n^mpl COPILOT -) M«MM< PW«M ^Jlimrt f0 I****** Programming Sw,nTr;Jf ^^ UDoratory Memo A,M-2?0 stanforcl
m TÄÄTri1«^. Cn'-nal document), Stanford Artificial Intelligence

Laboratory, Stanford University, Stantord. 1971 ^ . .
TeMe, Law-ence Enea. Horace, and Smth. David. The L1SP70 Pattern Matching System .

Proc rmnnyC^/, Stanford. 197?. pp671.676o

Wallace Robert. The World cf Leonardo. Time-Lite Books. New \ ork, 1966
vAluer:s Seventh Sew Colligiate IncUonav, G. and C Merr.am Co. Springfeld. Mass..

1967.

I
I
I
I
]

 . -.WJ-

wmmi �""•

I'.lliliii,,: ijilr, 18*

Will' M«ik. md Moni!' JMMI, F>x tfmMtum M Tuicnn'ifniicnal A/an-AfiirA/n«-
» mmunu rffMi.SlCri NN Notices.7. KMOcHk« IfW

Wr;-, nl. (»..•�, l.i. I Thf Wi ���/ . • r;.,i;5p. TIIUP Lite Bookj. New Yoik. 1967
Wtu ti'I'i, stP|ili.ii. md P'�; ;tjiil'eiiv, CHIP. T't Mnkmg of Stat T>rk, Balhntme Book^,

N.A N'uu. 1961
U'll-mi. C u:-iv. "Hu.v Dir. Ktpfel Discovci His Fust Two Laws^", SiiftUijic Am>ruan. 226.

J (Mardi lC|7.:), ppfC.IOI
\\ iii^.m. P.itmk. LMrning SttHtttMl Dfiinplicns from ExampUs, PhD thesis, MIT

Pioject MAC TR 2? 1. Cambridge, Mass, 1970

dp^BM^HH««*«
. ^-^^ ^_ — -. ^— fcJ^-.. — ^ ^^ —

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whmn Data Enttred)

REPORT DOCUMENTATION PiTGE »iß Tt
READ INSTRUCTIONS

BEFORE COMPLETING FORM
1 REPORT NUMBER

1 öTA:i-c::-Y
4 TITLE rand Sub(/(l»)

&% fiLi'i''- I 1
l. GOVT ACCESSION NO >• REC|PIENTJ f-AfAl nc MUMBEH -r

. PY^i/iLiüü: A CREATIVB PHOClKAMMIIJa EIJVIKOHMEIJT.

5 TYPE OF REPORT ft PERIOD COVKRED-^ *

technical, June 1975
6 PERFORMING ORG. REPORT NUMBER
STAN-CS-75-499 (also AIM 26o;

7 AUTMORr«) 8. CONTRACT OR GRANT NUMBER^-.,

David Canfielci/Smith j il£fi>l9 p. aÄ DAJICQ^-73-0^43^ ^f^'

GRAM ELEMENT. PROJECT, T
A_6 WORK UNIT NUMBERS

9 PLRFORMING ORGANIZATION NPME AND ADDRESS
Computer Science Department
Stanford University
Stanford, California 9^805

10. PROG
ARE

ASK

i^RPAiörder I 494

11 CONTROLLING OFHCE NAME AND ADDRESS

Col. Di Russell, Deputy Director AHPA/lPT
ARPA headquarters
1400 Wilson Blvd.. Arlington, VH. 88208

12. RETORT DATE

1 f? mmii of
195

PAGES

14 MONITORING AGENCY NAME ft AODRESSfff df//*ranr trom Conlrolllnt Otllce)

QHR Representative: Philipp Lurra
Üurand Aeronautics Bldg., Rm. 16^
Stanford University
Stanford, Ca. 94305

IS. SECURITY CLASS, (ot Ihlt report)

UNCLASSU^IED
15a. DECLASSIFICATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT (ol Ihl» Report)

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (ol (ha abafract enlered In Block 30, II dlllerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree elde II neceeemry and Identlly by block number)

20. ABSTRACT (Continue on reveree elde II neceeemry and Identlly by block number)

see reverse

/ 4 <f DO 1 JAN 73 1473 EDITION OF 1 NOV6S IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enlered)

. - �����i —^^^_—_,_- •Aiaaaiikaiau^MMia^Mriia

^^K- 1 �����

UliCLAGGli-IEL
SECURITY CLASSIFICATION OF THIS PAOCflWl •n Dmlm Enll.-Vf

PYOMALIUU li a two-diiriensioaal, visual pro^ramminü syctem implemente I
on an iriteraclive computer with graphic. <li3play. Communication betweenhuman
tolflg tnd computer is by meanc of visual entities called 'icons , subsummy
.he notions of "variable", "rererence-, "data structure", "function" and
"picture". The heart Of the system is an interactive "remembennt: editor lor
icons, vhich executes and (optionally) saves operations Tor later re-execution.
i'he display screen is viewed as a document to be edited. Procramminc consists
of ereatin* a sequence or display rrames, the last or which contains the
desirea inromation. Display 1'rames are modified by editing operations.
PYÜMALIÜN employs a powerl^l paradigm ihat can be incorporated in virtually
any other programming language:

Every operation has both visual (aesthetic) semantics
and internal (mechanical) semantics.

In ract, every operation in PKMALXOI has three responsibilities:
(a) I'or accomplishing a given internal machine task -
the machine "semantics" Of the operation;

(b) in display mode, for generating a representative
visual action;

(c) in remember mode, for adding onto a code list the
operation(s) necessary to reproduce itself.

Thus the system includes an incremental "iconic compiler". Since each operatio^
has visual semantics, the display becomes a visual metaphor for computing.
The programmer need deal with operations only on the display level; the
corresponding machine semantics are managed automatically. The mecnanical
aspects of programming languages has been and is continuing to be well studied.
The focus in this paper is on developing and interacting with an articulate

visual presentation. . • _«.
PYGMALION is a computational extension of the brain's short term

memory. It is designed to relieve the load on the short term memory by providug
alternative storage for mental images during thought. The display screen is
seen as a "dynamic blackboard", on which ideas can be projected and animated.
Instead of abstract symbols, the programmer uses explicit display images.
Considerable flexibility is provided for designing icons; the programmer may
give them any shape that can be generated by a routine. This helps to reduce
the translation distance between representations used in the mind m thinking
about a problem and representations used in programming the problem.

The main innovations of PYGMALION are:
(1) a dynamic representation for programs- an empnasis on
doing rather than telling;
(2) an iconic representation for parameters and data struc-
tures requiring less translation from mental representations;
(3) a "remembering" editor for icons;
{k) descriptions in terms of the concrete, which PY(3«1A1I0N
turns into the abstract.

The responsive, visual characteristics of PYGMALION permit it to play an active
role in human problem solving. The principal application has been in assisting
the design and simulation of algorithms.

UNCLASSIFIED
SECURITY CLASSIFICAT^N OF THIS PAGEfWh.n D.I. Ent.r.d)

 —— -_- .. - - . . . -^— __^_^J^_^^_^^.

