Stanford Artificial Intelligence™baboratory June 1975
Memo AIM-260
Computer Science Department @ F &
Report No. STAN-CS-75-499
PYGMALION:

= ¢ A Creative Programming Environment
i |
oD « by
Q- David Canfield Smith
—
S
-1’
Q
< Research sponsored by
Advanced Research Projects Agency
ARPA Order No. 2494 |
and 'Y
National Insttute of Mental Health > D T~

i,
A N
3

s o L b R S e T

L

i
w
?
3
:
:
:
:

e enam el g o L i el s e e e A i R L e e

it e T 3 i e i

]
4
4
]
f
!‘,‘

Stanford Artificial Intelligence Laboratory June 1975
Memo AIM-260

Computer Science Department
Report No. STAN-CS-75-499

PYGMALION:

A Creative Programming Environment

by
David Canfield Smith

ABSTRACT

1
\{.PYGMALION 1s a two-dimensional, visual programming system implemented on an
interactive computer with graphics display. Communication between human being and
computer 1s by means of visual entities called '”lc?ns";' subsuming the notions of *variable",
Keference’, "data structure”, “Function® and picture”. The heart of the system is an interactive
#remembering? editor for icons, which executes and (optionally) saves operations for later re- -
esecution. The display screen 1s viewed as a document to be edited. Programming consists of
creating a sequence of display frames, the last of which contains the desired information.
Display frames are modified by editing operations. \PYGMALION employs a powerful
paradigm that can be incorporated in virtually any oth r\programming language:
Every operation has both visual (aestheuic)*

(mechanical) semantics.

semantics and internal

In fact, every operation in PYGMALION has three responsibilities:

(a) for accomplishing a given internal machine task — the machine
“semantics” of the operation;

T his research was supported by the Advanced Rescarch Projects Agency of the Department of
Tiefinse under Contract DAHC 15-73-C-0435 and the National Institute of Mental Health. The
views and conclusions contained in this document are those of the author(s) and should not be
inter preted as necessarily representing the official policies, either expressed or implied, of Stanford
University, ARPA, NIMH, or the U. S. Government.

Reproduced in the U.S A. Available from the National Technical Information Service, Springfield,
Virginia 22161

by wiadn S A it 0o,

i TR A R S R L

id s

Ltk b - kARl b Bk ik g g b o Tt o s el k) e et

A

e PR T e L e

A

=

(b) 1n display mode, for generating a representative visual action;

(c) in remember mode, for adding onto a code list the uperation(s) necessary
to reproduce itself.

Thus the system includes an incremental "iconic compiler”. Since each operation has visual
semantics, the display becomes a visual metaphor for computing. The programmer need deal
with operations only on the display level; the corresponding machine semantics « > managed
automatically. The mechanical aspects of programming languages has been and is
coniinuing to be well studied. The focus in this paper is on developing and interacting with
an articulate visual presentation. ,
PYGMALION 1s a computational extension of the brain's short term memory. It is designed
to relieve the load on the short term memory by providing alternative storage for mental
images during thought. The display screen is seen as a "dynamic blackboard”, on which ideas
can be projected and animated. Instead of abstract symbols, the programer uses explicit
display 1mages. Considerable flexibility is provided for designing icons; the programmer may
give them any shape that can be generated by a routine. This helps to reduce the
translation distance between representations used n the mind in thinking about a problem
and representations used in programming the problem.

The main mnovations of PYGMALION are:

(1) a dynamic representation for programs — an emphasis on doing rather
than telling;

(2) an iconic representation for parameters and data structures requiring less
translation from mental representations;

(3) a "remembering” editor for icons,

(4) descriptions in terms of the concrete, which PYGMALION turns into the .
abstract.
The responsive, visual characteristics of PYGMALION permit it to play an active role in
human problem solving. The principal application has been in assisting the design and
simulation of algorithms,

This dissertation was submitted to the Departmernt of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

T ¥ e oY R T L e

Preface iii

Preface

1'he following 1s a map of this document.

Chapters 1.2 -- A psychological model of creative thought, forming the basis for
the PYGMALION design principles.

Chapter 3 -- Other pro jects which adhere to some of the same principles.
Chapters 4,5 -- The PYGMALION programming environment in detail.
Chapter 6 -- Examples of PYGMALION programs and data structures.

Chapter 7 -- Conclusions and suggestions for the future.

This paper places equal emphasis on presenting a psychological model of thought
and using the model in a computer environment. Readers interested in aspects of creative
thought which can be assisted by a computer should read chapters 1 and 2. Readers
interested in how the PYGMALION system attempts to stimulate creative thought should
look at chapter 6 (mostly pictures) to get the flavor, then read chapters 4 and 5. The works
of others which deal with the same aspects are described in chapter 3. Chapter 7 suggests
areas for future exploration. Thorough readers will read the chapters in order. Chapter 6

and 4-A through 4-D are a minimal set for readers in a hurry.

There are three parts to this report.

Part 1 examines a psychological model which contends that visual imagery is a
powerful metaphor for thought. Mental images are derived from sense perceptions, but
they may be abstracted and fragmented. Visual images are superior to linguistic
descriptions in the quantity of information they can contain and in the quality of their
portrayal of objects and concepts. Aspects of creativity are also discussed. Creative
thinking involves the conjunction of two normally distinct thought contexts using images

from both.

This part develops the criteria.for articulate communication between a human being
and a computer. A programming language can be more than just a passive medium for
communication. The technology now exists to design systems which actively augment the
user's ability to think and learn.

R TP TR P R T T

2 s

JR ST, Sty R

Rl o DL _a et ik e

C sopmadiie il S et L A

o 4a

-

Preface

The goal is to develop a system whose representational and
processing facilities correspond to and assist mental processes that

occur during creative thought.

Part 11 derives a programming environment calied PYGMALION from the 1. .del
o thought in Part 1. PYGMALION 1s a two-dimensional, visual programming system
implemented on an interactive computer with graphics display. Communication between
human bemg and computer 1s by means of visual entities called "icons”, subsuming the
notions of "variable”, "reference”, "data structure”, "function” and "picture”. The heart of
the system 1s an interactive "remembering” editor for icons, which executes and (optionally)
saves operations for later re-execution. The display screen is viewed as a document to be
edited. Programming consists of creating a sequence of display frames, the last of which
contamns the desired information. Display frames are modified by editing operations.
PYGMALION employs a powerful paradigm that can be incorporated in virtually any

other programming language:

Every operation has both visual (aesthetic) semnantics and internal
(nechauical) semantics.

In fact, every operation in PYGMALION has three responsibilities:

(a) for accomplishing a given internal machine task -- the machine “semantics”
of the operation,

(b) in display mode, for generating a representative visual action;

(c) in remember mode, for adding onto a code list the operation(s) necessary to
reproduce itself.

Thus the system includes an incremental "iconic compiler”. Since each operation has visual
semantics, the display becomes a visual metaphor for computing, The programmer need
deal with operations only on the display level, the corresponding machine semantics are
managed automatically. The mechanical aspects of programming languages has been and is
continumng to be well studied. The focus tn this paper is on developing and interacting

with an articulate visual presentation.

PYGMALION is a computational extension of the brain's short term memory. It is
designed (o relieve the load on the short term memory by providing alternative storage for
mental images during thought. The display screen is seen as a "dynamic blackboard", on
which ideas can be projected and animated. Instead of abstract symbols, the programer
uses explicit display images. Considerable flexibility is provided for designing icons; the
programmer may give them any shape that can be generated by a routine. This helps to
reduce the translation distance between representations used in the mind in thinking about
a problem and representations used in programming the problem.

Pretace A

The main innovations of PYGMALION are:

(1) a dynamic representation for programs -- an emphasis on doing rather than
telling,

(?) an iconic representation for parameters and data structures requiring less
translation from mental representations,

(2) a "remembering” editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns into the
abstract.

The responsive, visual characteristics of PYGMALION permit it to play an active role in
human problem solving. The principal application has been In assisting the design and
simulation of algorithms. Part 11 describes the implementation in detail and presents
numerous examples.

Part 111 summarizes the results, with suggestions for the future. The responsive,
visual characteristics of PYGMALION permit 1t to play an active role in human problem
solving. The prinapal application has been in assisting the design and simulation of
algorithms.

The appendices include a listing of the initial 1mplementation, notes and
bibliography. In this paper, material that would normally be placed in footnotes has been
assimilated directly into the text (possibly in parentheses) or dropped entirely. The notes

designated by superscripts et 99 contain only specific article and page information and are
found at the end of the paper. They do not contain any supplementary text. Superscripts

having a number higher than one hundred *8 1975 are dates.

| wish to express my sincere thanks to my advisers, Drs. Alan C. Kay of the Xerox
- Palo Alto Research Center and Kenneth M. Colby of Stanford University. Dr. Kay has
inspired the most stmulatng project of my career by demonstrating the power of an
individual with a personal computer. In seven years of association with Dr. Colby, he has
never been less than enlightening, motivating, and, in general, amazing. "His encouragement
and guidance have been invaluable. T also wish to thank Drs. Terry Winograd and Cordell
Green for helpful suggestions in the preparation of this manuscript; Horace Enea for
interesting and informative conversations too numerous to mention; Dr. John McCarthy,
Lester Earnest and everyone at the Stanford Artificial Intelligence Laboratory for making
the lab a good place to work; my wife Janet for all the midnight hours spent helping me
with this thesis and with life; and finally the Greeks for the wonderful myth of Pygmalion,
giving shape to the dreams of creative people everywhere.

% Table of Contents

Table of Contents

Preface
Introduction

Part I - Aspects of Creative Thinking
Chapter 1 - Some Characteristics of Thought

A. Words and Symbolic Thought .

B. Conscious Thought and Short Term Memory
C. Analogical versus Fregean . !

D. Mental Images

E. The Problem of an Artlculate Representauon
F. The "Innocent Eye” and Other Myths .

G. The Role of Mental Images in Thought

H. Exarnples of Purely Iconic Reasoning .

I. Concrete and Active Media in Education

Chapter 2 - On Creativity

A. The Nature of Creauvny .
B. The Great "Whale Ears" Scandal -
" The Use of Schemata in Thought
C. The Role of Emotions in Creativity
D. Galileo and the Accidental Nature of Dlscovery

Chapter 3 - The Relevance of Computers

A. Dynamic Programming
a. The Unimate Robot
b. "TV" Editor
¢. HP-65 Pocket Calculator
d. "RAID"
e. High-leve! Debuggers

i1

12
14
18
. 21
.23
.24

o
<

30
3i
'35
39
40
14

15

Bt sl o \vy s ok o S

L

;L«,,.hv,'-“i B Nvads F RUTIE

Lok LU0 e o] kel Pa el e g el - T Fag 170 b T S P Tk

Table of Contents

f. Interpreters vs. Compilers
g. Programming by Example
B. Graphlcal Descriptions of Algorithms .
a. "Sketchpad”
b. Graphical Procedures
¢ "AMBIT"
d. Amimated Graphical Descriptions
C. The Computer as an Artistic Resource
D. The Computer as a Creative Resource . .
E. Radia Perlman and Her Magical Button Box

Part I1 - PYGMALION

Chapter 4 - Principles of Iconic Programming

A. Introduction . .
B. The PYGMALION Phllosophy
C. Iconology N
D. Text Editors as Programmlng Languages
E. The PYGMALION Machine
a. Hardware
b. Software
¢. lcon "world"

d. BOUNDARY and CONTAINER Attributes

e. lconic Structures

f. Icon "menu”

g. Icon "mouse”

h. Icon "mouse value"
i. Ieon "remembered”
J- Icon "smalltalk”

k. The Design Space
I. Modes of Execution

F. Characteristics of Programming in PYGMALION .

G. PYGMALION versus Automatic Programming

Chapter 5 - The Internal Structure of PYGMALION

A. Smalltalk .
a. Classes and Subclas;es
B. Icons as Pictures

a. Operations CREATE, COPY, CHANGE,

DELETE, REFRESH, SHOW
b. SHAPE Attribute and Operation
¢. Operations DRAW, TEXT
C. Icons as Variables . . .
a. NAME Attribute and Operatlon
b. VALUE Attribute and Operatlon
D. Icons as Data Structures .

Vii

52

58

. 60

I

I

63

67
68
59
70
71

75
76

89
90

92

95

0l

04

TR AR AU

Vil

¢ E. Icons as Functions . .
s a. BODY Attribute and Operatlon
3 b. Defining Iconic Functions
¢. Remember mode
d. Calling Iconic Functions
Iconic Contexts
Local Variables
Global Yariables
Software Interrupts
e. OPCODES
f. Operations IF, REPEAT, EVAL
F. Icons as Processes .
a. RUN, DISPLAYED and HAS ¢ ttnbutes
b. Abstract Designation of Icons

Chapter 6 - Examples of Purely Iconic Programming

A. LISP70 Memory Orgamzauon
3. Factorial

C. Circuit Simulator

D. Smalitalk Evaluator .

Part 111 - The Once and Future PYG
Chapter 7 - Conclusions and Suggestions for the Future

A. Areas of Success
B. Efficiency and Other Problems
a. Efficiency
b. Internal Representation
C. For the Future
a. Graphic Vocabulary
b. Dynamic Operations
D. Epilogue

Appendix - Listing of the Smalltalk Code for PYCMALION
Notes

Bibliography

Table of Contents

106

118

153
154
154
155

157

161

162

181

184

2 e TN

el 0 o L iR s

Fi 4

Introduction |

Introduction

In Greek mythology, Pygmalion was a king of Cyprus who fell in love |
with a statue of Aphrodite. Ovid, in the Metamorphoses, invents a 1
more sophisticated version. Pygmalion, a sculptor, makes an ivory statue
representing his 1deal of womanhood, then falls in love with his own '

creation; Venus brings 1t to life in answer to his prayer.'

Arusts down through the centuries have felt Pygmalion's lure: to play the role of
creator. But outside the mythological world of gods and goddesses the struggle has been all
frustrating Artists have consistently reported a feeling of excitement during the process of 1 ;

creation, followed by depression when the work is finished. Their best efforts always 3
remained lifeless and, in the end, unsatisfying. Michelangelo is said to have struck with his g
mallet the knee of perhaps the most beautiful statue ever created, the Pieta, when 1t would ‘i;
not speak to him. The historian E.H.Gombrich discusses “the belief in the power of art to i

create rather than to portray” in his eloquent book Art and [llusion:

Without the underlying promise of this myth, the secret hopes and
fears that accompany the act of creation, there might be no art as we
know 1t. One of the most original young painters of England, Lucien
Freud, wrote very recently: "The moment of complete happiness never
occurs In the creation of a work of art. The promise of it is felt in the
act of creation, but disappears toward ihe completion of the work. For 1
it 1s then that the painter realises that it is only a picture he is pamnting. }
Until then he had almost dared to hope that the picture might spring to 1 1
hfe" i

"Only a picture,” says Lucien Freud. It is a motif we find in the
whole history of Western art; Vasari tells of Donatello at work on his
Zuccone, looking at it suddenly and threatening the stone with a
dreadful curse, "Speak, speak -- favella, favella, che ti venga il
cacasangue!" And the greatest wizard of them all, Leonardo da Vinci, !
extolled the power of the artist to create. In that hymn of praise to ”L
painting, the "Paragone,” he calls the painter "the Lord of all manner of d

people and of all things.” "If the painter wishes to see beauties to fall in 2
love with, 1t 1s in his power to bring them forth, and if he wants to see]
monstrous things that frighten or are foolish or laughable or indeed to 1
be pitied, he 1s their Lord and God.” _ 4

s wamp ewss S.Es SDu @ SNNG SENS 2 GEGM 2 GEmn O SENG A Aam BN R BB e

». = L. e]
T

Bl e s\ e Y i i il i SR e g il e o B

i i i L

rd

Introduction

Leonardo Da Vinci: Left: Grotesque heads, c.1495; Right: Leda, c.1509 /Combrichzl

Indeed the power of art to rouse the passions is to him a token of
its magic .. And yet Leonardo, if anyone, knew that the artist's desire to
create, to bring forth a second reality, finds its inexorable limits in the
restrictions of his medium. I feel we catch an echo of the
distllusionment with having created only a picture that we found in
Lucien Freud when we read in Leonardo’s notes. “Painters often fall
into despair ... when they see that their paintings lack the roundness 2nd
the liveliness which we find in objects seen in the mirror .. but it is
impossible for a painting to look as rounded as a mirror image ... except
if you look at both with one eye oniy."

Perhaps the passage betrays the ultimate reason for Leonardo's
deep dissatisfaction with his art, his reluctance to reach the fatal
moment of completion: all the artist's knowledge and imagination are of
no avail, it is only a picture that he has been painting, and it will look
flat. Small wonder that contemporaries describe him in his later years

QU

Chie ik L B Lot

Introduction 3

as most impatient of the brush and engrossed 1n mathematics.
M athematics was to help him to be the true maker. Today we read of
Leonarda's project to build a “flying machme,” but if we look 1nto
Leonardo's notes we will not find such an expression. What he wants to
make 1s a bird that will fly, and once more there is an exultant tone in
the master's famous prophecy that the bird would fly. 1t did not .. The
claim to be a creator, a maker of things, passed from the painter to the
engineer -- leaving to the artist only the small consolation of deing a

maker of dreams.3

Leonardo Da Vinci: Airscrew, c.1488 /Wallaceal

Today, with the advent of inexpensive computers, for the first time the average man
i1s presented with a powerful medium through which his ideas can attain a life of their own.
A computer program is a creation: unusual, appropriate, in a very real sense a work of art,
perhaps more so than computer "scientists” like to admit. Many programmers have felt a
sense of creative excitement watching their programs execute on a computer without
needing their intervention, particularly if they can watch the programs’ progress with their

own eyes. Curprise, stimulation, satisfaction and savoring are the rewards of creativity.

There is much to be learned from associating artistic concepts with computers. The
potential use of computers in creative activity is the source of much of their attraction and
mystique. "The computer 1s the world's best toy," Papert has said in discussing his pro ject
to use the computer to enhance education.’> Arnheim advances a more serious reason:
"There [is] much evidence that truly productive thinking, in whatever area of cognition,
takes place in the realm of imagery. There has been a longstanding isolation and neglect of
the arts in society and education.”® Pye is succinct in his agreement. "If anyone thinks it
important to a civilization that a common ground between art and science shall be found,

PR g Ry 0 ¢ GOCHP T VENESGgy o g g e SR .

[ntroduction

then he had better look for it in front of his nose; for it 1s ten to one that he will see there

something which has been des:gned."’ And Koestler contends that there is no difference
between scientific and artistic creativity, or even between satentific and comic creativity:
"Regardless of what scale of values you choose to apply, you will move across a continuum
without sharp breaks; there are no frontiers where the realm of science ends and that of art

begins."® This report Investigates ways to exploit the creative potential of those using
computers,

SCTRITIT T e

il |

Durer: Drawing, ¢.1527 [Gombrich®)

".qﬂ‘m-....-_.. =

o ¥ ol

PART I

Aspects of Creative Thinking

i Chapter |

Chapter 1

Some Characteristics of Thought

Swminary

(1) Visual imagery 1s a productive metaphor for thought. Visual images are
concrere and easily manipulated, and they provide a powerful
representational capability. The images are multi-dimensional and are
analogous to the pertinent features of the sub jects they represent.

(2) Words are "Fregean” and lack the representational power of images.

This part of the report is divided into three chapters. The first chapter presents a
model of some types of thought processes in the brain. The second chapter focuses more
particularly on the niature of creative thinking, thought processes that are both original and
productive The third chapter surveys several approaches to using machines which
augment these processes. The model of thinking has been largely adopted from the theories
of the psychologist Rudolf Arnheim, particularly from his superb book Visual Thinking,
augmented with other results from current psychological research. Only those aspects of the
model which provide guidance for the design of a computer interface have been
emphasized The goal of PYGMALION 1s to develop a computer system whose
representational and processing facilities correspond to and assist mental processes that
occur during creative thought. Part [serves as the raw material for the system.

r_oma il ttea p i L. ke sl send il Tilianiin e

TN ©

far'd

35y "‘-’,ﬂ!;.

I A Words and Symbolic Thought 7

Section A -- Words and Symbolic Thought

The difference between words and pictures is the difference between

telling and showing.

-- William Bowman'

Often we have to get away from speech in order to think clearly.
-- Woodworth?

A traditional theory of psychology is that the mind manipulates words in the process
of thinking. As late as 1921 Edward Sapir in his book Language wrote, "Thought may be
a natural domain apart from the artificial one of speech, but speech would seem to be the

only road we know of that leads to it."3 In other words, language is the only discernible
medium available for thought. Indeed, the capacity for symbolic reasoning has come to be
a determining factor in measuring “intelligence”. Undeniably words and symbols are
imp :tant to thought, but their precise role in the mind har never been well defined or
understood. "[Psychologists] know a good deal about what thinking does but little about
what 1t 1s... A prinapal question remains. What are the mental shapes of thought?"

(Arnheim?) (This question, and this entire thesis, deals with the highest levels of cognitive
activity. Obviously at the neuro-chemical level of individual brain cells, it makes little sense
to talk about "shapes of thought”. We are investigating and attempting to aid high level
mental processes which are distinguishing characteristics of intelligent human beings.)

Suppose we remove words from their meanings and limit them to their actual
shapes, 1e. examine language as language. The perceptual dimensions of language -- its
sounds and written appearance -- are unstructured. Little information can be communicated
to someone who does not know a language just by presenting him with spoken or written
words. (Though some languages, such as hieroglyphic languages, do use pictures of ob jects
as words.) Language has meaning only insofar as individual words and phrases are
understood to have meaning, ie. only if we understand to what the words refer, both
externally 1n the world and internally within ourselves. "Our ability to apply names and
descriptions to ob jects in the world has to be mediated by analogical representations. For
instance, one can define a word such as ‘plank’ in terms of other words, such as ‘straight’,
‘parallel’, ‘wooden’, etc., but eventually one has to say of some words, to a person who claims

not to understand them, ‘You'll just have to learn how things of that sort look."[Sloman®)
Words are "signs”, ie. they stand for a content without representing its structure. (This
terminology is defined n section G.) The mind must have something structural to
manipulate.

Hayes'%”? has presented evidence that images are used even in such non-pictorial
domains as arithmetic and algebra. Most mathematicians visualize their formulae and

manipulate them as structure. Martin® agrees that the ability to visualize a problem is a
useful skill in solving it, and that to mathematicians, notation is a form of graphical
visualization. In 1945 Jacques Hadamard conducted a systematic survey of the creative
methods of American mathematicians. He concluded: "My mental pictures are exclusively
visual... About the mathematicians born or resident in America, whom I asked, phenomena
are mostly analogous to those which | have noticed in my own case. Practically all of them

b i e - og s

i3

k

B S

P e ol

1
fv‘
E
.
{

8 Words and Symbolic Thought i-A

_avoid not only the use of mental words but also, just as I do, the mental use of algebraic
or any other precise signs .. The mental pictures of the mathematicians whose answers |
have received are most frequently visual, but they may also be of another kind -- for

instance, kinetic."” Einstein, replying to the survey, felt compelied to emphasize in a
personal letter to Hadamard:

The words or the language, as they are written or spoken, do not seem
to play any role in my mechanism of thought. The physical entities
which seem to serve as elements in thought are certain signs and more
or less clear images which can be ‘voluntarily’ reproduced and
combined... Taken from a psychological viewpoint, this combinatory
play seems to be the essential feature in productive thought -- before
there 1s any connection with logical construction in words or other kinds
of signs which can be communicated to others. The above-mentioned
elements are, in any case, of visual and some of muscular type.
Conventional words or other signs have to be sought for laboriously
only in a secondary stage, when the mentioned associative play is

sufficiently established and can be reproduced at will®

Arnheim finds in art parallels between visual perception and cognitive processes:
"Arustic activity is a form of reasoning, in which perceiving and thinking are indivisibly
intertwined. The person who paints, writes, composes, dances .. thinks with his senses.
This union of perception and thought [1s] not merely a specialty of the arts .. The
remarkable mechanisms by which the senses understand the environment are all but
identical with the operations described by the psychology of thinking. Inversely, there [is]
much evidence that truly productive thinking, in whatever area of cognition, takes place in

the realm of imagery."® : . =

Images are derived from sense perceptions. They may be visual, auditory,
kinesthetic, olfactory, and may even use taste. This thesis concentrates on visual images
because (a) they have powerful representational capabilities; (b) operations on visual images
are versatile, yet simple; and (c) computer technology is at a stage where visual processing
can be effectively augmented. Arnheim summarizes the relative potential of words and
images in productive thought:

Concepts are perceptual images and ... thought operations are the
handling of these images .. Images come at any level of abstractness.
However, even the most abstract among them must meet one condition.
T hey must be structurally similar (isomorphic) to the pertinent features of

the situations for which the thinking shall be valid.'® [emphasis mine)

.. [While] language can supply information by what Kant calls
analytical judgmenus, .. purely verbal thinking is the prototype of
thoughtless thinking, the automatic recourse to connections retrieved
from storage. It is useful but sterile. What makes language so valuable
for thinking, then, cannot be thinking in words. It must be the help
that words lend to thinking while it operates in a more -appropriate
medium, such as visual imagery.

e e

T T A e L o ol i g A TR

i St s Liasioche 2 SO A M i

I-A Words and Symbohic T hought 9

The visual medium is so enormously superior because it offers
structural equivalents to all characteristics of ob jects, events, relations.
The variety of available visual shapes is as great as that of possible
speech sounds, but what matters is that they can be organized according
to readily definable patterns, of which the geometrical shapes are the
most tangible illustration. The principal virtue of the visual medium is
that of representing shapes in two-dimensional and three-dimensional
space, as compared with the one-dimensional sequence of verbal
language. This polydimensional space not only yields good thought
models of physical ob jects or events, it also represents isomorphically the

dimensions needed for theoretical reasoning.”

Arnheim's notion of “isomorphic” here is not to be confused with the mathematical concept
of "isomorphism”. Rather it means that there is an element in the representation for each
feature of the concept represented that the mind considers to be relevant. For complex
concepts this requires considerable representational flexibility. Perceptual images,
particularly visual images, provide more descriptive power than do words.

Section B -- Conscious Thought and Short Term Memory

Experiments in psychology indicate that the brain possesses at least two kinds of
memory, “long term” and "short term". (There are apparently finer divisions of each, but
y g PP y ,

this 1s the gross organization.) The “long term” memory (LTM) contains all the information .

that a person is able to recall, either voluncarily or involuntarily. We will 'make no
assumptions in this paper as to how information is stored in the long term memory. The
“short term” or "working” memory (STM) contains the ob jects currently being dealt with in
conscious thought. Much psychological research is being done on the nature of such
ob jects. Representative experiments are described later in this chapter which support
Arnheim’s theory that visual imagery is an exceptionally productive medium.

In my view, words normally play two roles in thinking:

(1) Words suppress detail, keeping the brain’s limited-capacity short term
memory from overflowing.

(2) Words provide access paths to more complex structures in the long term
memory, which are then retrieved and manipulated directly in thought.
Thus words are indices, pointers to concepts.

Psychologists are in substantial agreement that the information capacity of the short term
memory is limited. Miller, in a classic paper %7, proposed the "magic" number 7 +- 2 as the

size of the STM. The STM can hold between 5 and 9 "chunks” of information (the

number now appears to be as small as 4 or 5 [Chase and Simon'%73]), but the size of each
chunk can vary. More total information can be stored when an organization is imposed on

b i e

P S)

.

LT O NGRS A A

R Rl Dot o Lt by Kl _—vee S e O
. % T T LT T R T, T N et L I T | i T R R (T Tl N T g (e T o] i TS

R - —

10 Conscious Thought and Short Term Memory 1-B

] individual pieces of informaiion than when the individual pieces are stored directly.
Moran'?”3 reports an experiment in which sub jects were asked to remember a sequenée of

4 directions of the form: north, east, south, east, south, west, ... The experiment was designed
” s0 that only the short term memory was involved. The subjects were able to remember
quite long sequences (two-to-three times the usual capacity of the STM) by visualizing a line
? drawing of the directions:

North, east, south, east, south, weast, ...

An interesting corotlary of Moran's experiments is that the STM seems to have
spatial as well as quantitative limits. With one sequence, sub jects complained that the path

"keeps dragging out” to the east'Z, causing space bounds to be exceeded.

Visual organization is an extremely efficient chunking method. A closed curve that :

can be remembered topologically contains an infinite amount of information about

) individual points. One thing experimenters usually do with data is plot it on a graph or in '-
a table, to organize it visually. Concepts become clear only when the overall structure of

ind1vidual pieces of information can be grasped.

o

|
‘
]
4

oV

R

SRS S

ey -

B TP eL———————

R

1

e e R e e e e e — e —

A A GBS S 5. 53 Wmﬂm—:‘q

1-B Conscious Thought and Short Term Memory 11

In computer programming, “structured” programming [Dijkstra'®72) is an attempt ‘o

organize the procest of programming by chunking related activities into separate stages.
"Automatic” programming [Balzer'®%) 15 similar to structured programming except that
some of the stages are left for the computer to complete. These two concepts share an
important characteristic with visual organization in the mind: they enable more information
- more of the structure of a problem -- to be contained in the conscious memory. We must
be able to grasp the whole in all its fuzzy detail as well as to investigate parts of it as
minutely as necessary. However it 1s ironic that "structured programming” has dealt with
unstructured programming languages. They are "unstructured” in the sense that programs
have no spatial organization, and data is designated abstractly, without displaying its
structure. A "structured” programming language would use structure in its semantics. As
Bowman points out, "spatial quality in the graphic figure is defined by the form that it
o;;_anluisnm In other words, the spatial relationship betwee:. elements in a picture has as
much to do with meaning as do the elements themselves. But “linear” programming
languages have no spatial structure at all. (By "linear” is meant a verbal language such as
English, consisting of a sequence of words) One of the few characteristics of “linear”
languages that even approaches spatial organization is indentation:

IF ... THEN
WHILE ... DO
BEGIN

END
ELSE ...

At best this 1s only an indirect indicator of meaning. The vast potential of multi-
dimensional communication 1s simply not realized in linear languages because they are
spatially unstructured.

This paper primarily deals with conscious thought, concentrating particularly on
visual thinking as a basis for designing a graphical computer interface. The model of
visual thinking presented so far may be summarized as follows.

(1) Conscious thought deals with concepts in the short term memory
which are retrieved (in some fashion) from the long term memory.

(2) Concepts in the short term memory are metaphorical images
derived from sense perceptions. Words are pointers to full concepts
and are used to suppress unnecessary detail.

(3) Thought operations are transformations of images.

PYGMALION uses a computer display as a computational extension of short term memory.
Operations are provided to retrieve and store images between the display screen and long
term memory (secondary storage). No assumptions are made as to the structure of long term
memory items. The critical re: riction is to concepts that enter and are manipulated in the
short term memory as perceptual images.

PORE

e Rtk s esackib Ao s ak i n b Lk

1% Conscious Thought and Short Term Memory 1-B
3 \I_
1 Conversions
| HAGES — ?
short term memory long term memory

By patterning itself after this model PYGMALION hopes to stimulate and assist such
thinking processes in people.

Section C -- Analogical versus Fregean

To put the preceeding sections into different terms, Sloman distinguishes two kinds
of systems “analogical® and "Fregean" (after G Frege, the inventor of predicate calculus).
Analogical systems are analogous in structure to the things they describe; Fregean systems
bear no such resemblance. Natural language, for example, is Fregean for most tasks,
whereas architectural diagrams are analogous (at some level) to the buildings they describe.

In an analogical system .. the structure of the representation gives
information about the structure of what is represented. As two-
dimensional pictures of three-dimensional scenes illustrate, the
correspondence need not be simple.... The interpretation of an analogical
representation may involve very complex procedures, including the
generation of large numbers of locally possible interpretations of parts of
the representation and then searching for a glebally possible
combination... By contrast, in a Fregean system there is basically only
one type of ‘expressive’ relation between parts of a configuration,
namely the relation between "function-signs” and "argument-signs’....
The structure of such a configuration need not correspond to the
structure of what it represents or denotes. At most, it corresponds to the

structure of the procedure by which the object is identified, such as the

structure of the route through a complex "data structure” '

Fregean representations have the advantage that concepts which are difficult to
represent (such as universals and non-ostensive concepts) can still be manipulated, since the
representation is always the same. However, as discussed in the last section this is not as
powerful a medium for conscious thought as is visual imagery. Concepts which cannot be
represented visually are more difficult to "think about” than visual concepts, since the

transformations are more abstract. Occasionally the words themselves become images for

Slber Sl AL R b el R s L hali s s 2 b St e e i Al
At syt e

b e SN WTETRENRN S e

e e L e

T

TSN TR

1.C. Analogical versus Fregean 13

non-visual concepts hike "time”, "space”, "infimty", "love", "justice”. "Infimty” is not an eight-
lette1 concept; it has many dimensions, each of which can be retrieved and dealt with on
demand. The collection is represented n the unage INFINITY, or perhaps ». Even the
mathematician G.Polya, who claims he thinks with words, “does not use words as
equivalents of ideas, since he uses one word or one or two letters to symbolize a whole line
of thought; his psychological process would be in agreement with Stanley’s statement that
‘language, as an indicator, can only indicate by suggesting to our consciousness what 1s
indicated, as ob ject, thought or feeling...'"[Hadamard'5] Hadamard said he never met
another man who responded as did Polya.

One of the advantages of analogical representations over Fregean ones is that
structures and actions on structures in the metaphorical context have a functional similarity
'0 structures and actions in the represented context. It is less likely that operations will be
applied to analogical representations which would be illegal in the other context. “When a
representation is analogical, small changes in the representation (syntactic changes) are likely
to correspond to small changes in what is represented (semantic changes). Changes all in a
certain direction or dimension in the representation correspond to similarly related changes
i the configuration represented, and constraints in the problem situation .. are easily
represented by constraints in the types of transformations applied to the representation, so
that large numbers of impossible strategies don't have to be explicitly considered, and
rejected. Hence 'search spaces’ can be efficiently organised. By contrast, the sorts of
changes which can be made to a Fregean, or other linguistic, description, such as replacing
one name with another, .. are not so usefully related to changes in the structure of the

configuration described.” [Sloman'®)
The notion of an analogical representation is task dependent; descriptions analogical
in one doraain may be Fregean in another. Even FORTRAN is analogical when dealing

with mathematical formuiae:

fix) =ax?+bx+c

F = A x Xxx2 + BxX + C

But FORTRAN is Fregean and obscure for specifying change, the flow of control, or data
structures other than numbers.

Mental Images 1-D

14
Section D -- Mental Iinages

Without a presentation, intellectual activity 1s impossible.
.- Aristotle'’

Thinking can deal with ob jects and events only 1f they are available to

the mind 1n some fashion.
. Rudolf Arnheim'®

What are mental images like? The branch of psychology known as eidetics holds
that they are faithful replicas (eidola) of the actual scene. People possessing eidetic recall
can examine their mental images and discover information of which they had not originally
been aware, almost like examining a photograph. The neurosurgeon Wilder Penfield has
performed operations in which he used an electric probe to stimulate certain areas in the
temporal lobes of the brains of his patients. The patients reported the recreation of events

in their past.

Al patients agreed that the experience is more vivid than anything they
could recollect voluntarily; it 15 not remembering but reliving. The
experienced episode proceeds at its natural speed as long as the electrode
is held in place; 1t can neither be stopped nor turned back by the
patient’s will. At the same time it 1s not like a dream or hallucination.
The person knows that he is lying on the operation table and is not
tempted to talk to people he sees in his vision. Such images seem to
approach the completeness of scenes directly perceived in the physical
environment; like that outer visual world, they seem to have the -
character of something objecuvely given, whicn can be explored by
active perception the way one scrutinizes a painted or real landscape.
[Arnheim'?]

In addition to this involuntary re-creation, the psychologist Erich Jaensch has estimated that
40% of all children and some adults possess voluntary eidetic recall,?® though eidetic recall
seems to deteriorate as children acquire language. Similar results have been obtained for
sub jects under hypnosis: they are able to recreate events far more accurately than they could

voluntarily.

Some indication of the enormous capacity of the brain is furnished by the
experiments of Bela Julesz'®’'. Julesz used "random-dot siereograms” to study the
physiology of perception. These are arrays of computer-generated random dots, typically
100 x 100. When viewed superimposed, the arrays appear to contain a figure such as a
diamond raised above a random background. (The reader may try crossing his eyes to
superimpose the following stereogram, or he can refer to Julesz's book.)

1, THR ORI [T YR T S 0 R0 Uty (| N TR T I T e, T (U 1, VR TP T AT, T e
: o PP U W S B PO T ——— o ——— = 4
= T A ATy M e ke £

- e et o SN Y

18

1.D Mental Images

BT

i
IS

A Random-Dot Stereogram /Julr'sz2|/

The figure will appear only if the superposition is exact, small displacements or
maccurate reproduction of one of the arrays destroys the effect In a classic sequence cf
experiments, one stereogram was shown for a few seconds to a sub ject possessing eidetic
recall. After a ten minute interval the subject was shown the other image and correctly
superimposed them to detect an inverted T-shaped area. Furthermore the area was sharply
defined, which 1s remarkable since blurring of either array causes the corners to appear
rounded off. The time between images was then extended to 24 hours with another set of
ams. Agaimn the eidetiker correctly detected a raised square area. "That 10,000
elements of a random-dot texture could be precisely stored for 24 hours without loss
of detail argues that at least a select few of Homo sapiens have a detailed texture

memory."[Julesz??) The subject was then shown a series of stereograms to determine the
ultimate capacity of her eidetic memory; she was able to reproduce with complete accuracy

four 100 x 100 random-dot arrays.

stereog?
picture

Experiments like these indicate that the mind is capable of storing sensory data in
great detail. Furthermore, they suggest that the precise temporal order and rate of events is
preserved. Under the proper conditions this information can be 1egenerated, "read out” like

a detatled computer dump.

This is the full "data base” of the mind. However it is not the data of thought.
! “The kind of ‘mental image’ needed for thought is unlikely to be a complete, colorful, and
_ faithful replica of some visual scene. But memory can take things out of their contexts and
show them in isolation."TArnheim?) Thought deals with fragments, transformations,
abstractions and combinations of incomplete scenes. The discerning mind selects only those
traits which are relevant to its present goals. In his article "What People Dream About,”

Calvin Hall'®®' wrote that in ten thousand dreams reperted from both men and women,

16 Mental Images 1.D

21% of the characters in the dreams were not identified as to sex. Though obviously a
characteristic of every human being, sex was not a relevant dimension in the dream report,
so 1t was ignored by the mind. Something quite different is going on here from what
Pentieid reported. The psychologist Edward Titchener summed up the difference (in 1909).
“The incompleteness of the mental image is not simply a matter of fragmentation or
insutficient apprehension but a positive quality, which distinguishes the mental grasp oi an
object from the physical nature of that object itself. [It is an error to assume) that the

mind’s account of a thing is identical with all or some of the thing's ob jective properties "2

In fact, as Colby points « (%5, “intelligence” might be defined as the ability to make
appropriate selections leadi: - to destred goals achieved under varying circumstances.

Plato first advanced the concept that mental images are built up out of successive
sense impressions, like transparent photographs stacked one on top of the other. Gradually
the common elements from many different horses will emerge in an "ideal” horse
Philosophers for two thousand years have struggled with the problems created by “ideal”
images. How can we have a concrete image of a horse without assigning it some attributes
of actual horses> How detailed can an “ideal” image be? Is a three-legged horse still a
horse? A two-legged horse? A horse with no head? "None of us, | believe, carries in his
head such schematic pictures of bodies, horses, or lizards as [this] theory postulates. What
these words con jure up will be different for all of us, but it will always be an elusive welter
of fleeting events which can never be communicated in full "[Gombrich?%) Colby?®
speculates that perhaps memory is generative: specific memories are processes which
generate the item remembered. For example, we remember how to swim by generating the
actions involved

Mental images are not limited to concrete physical objects. Many fascinating books
have been written on the range of concepts that can be expressed visually.?’

1] i

A Visual Representation of "Rhythm"

Recently several experimenters have asked their sub jects to represent such abstract concepts
as Past, Present and Future, Democracy, Good and Bad Marriage, and Youth in drawings.
Most drawings successfully captured some essential dimension of the concept.

e

s R T A T TR e i ke ek i s (i - e T

I-D Mental Images 17

=
P ()
| I—

{ P AN =
/. } M “;.‘{(o B =
T W » 2

> (.(=
i ==
—

Left: Good Marriage; Right: Bad Marriage //)rnheimu/

Even for concrete objects, images need not look like the objects. Images may be
classified as "mimetic” or "non-mimetic” depending on whether or not they resemble the
ob jects or concepts in physical appearance.

A

Left: Mimetic Image of "Hill"; Right: Non-mimetic Image Stressing Dimension of "Barrier"

Current research in psychology (see, for example, the Eighth Carnegie Symposium
on Cognition) is beginning to gather quantitat've experimental evidence on the nature of
visual images, rather than merely trying to demonstrate their existence. Arnheim suggests
that mental processes involved in thinking with images are similar to those involved in the

18 Mental Images 1-D

perception of images. Cooper and Shepard suggest that perhaps the same mechanism 1s
mvolved. 1e the same functional unuts in the brain They note selective Interference
experiments in which a sub ject «s asked to form a mental visual image of an object. While
he 1s doing this, his ability to detect and recognize other externally-presented visual images
's teduced The same thing happens with auditory images: while thinking of a tune, the
subject 1s less able to detect and recognize othcr sounds. However, visual images interfere
/ess 0 the detection of audio signals than do audio images, and vice versa. [Cooper and

5hepard'973] This indicates that the image processing units in the brain are discrete
according to the type of image

As opposed to interference, reinforcement occurs if the external signal is "compatible”
with the internat image. The subjects show improved detecting ability when external and
imternal images are similar in form. In fact, in that situation subjects forming mental
unages do better than sub jects forming no 1mages at all. "Performance should then be best
when the imagery 1s 1n a form (modality, structure, or system) that is most -- not least --

similar to the form of the externally presented material” [Cooper®®] The quickest mental
response occurs when the representation in the medium is closest to the representation in the

mind.

Section E - The Problem of an ‘Articulate’ Representation

I consider 1t a heresy to think that any painting as such records a sense
impression or a feeling. All human communication 1s through symbols,
through the medium of a language, and the more articulate that
language the greater the chance for the message to get through.

.- EH.Gombrich3®
"What 15 this?”
"A steamboat.”

“And that scribble over there?”

“That is art.">!

The fundamental problem for PYGMALION is to design an
ARTICULATE LANGUAGE for communication.

Webster defines "articulate” as ‘“expressing or expressed readily, clearly, or

effectively.”®2 The most readily, clearly and effectively expressed information is that which
requires the least translation between tne internal representation in the mind and the

E I T The Problem of an ‘Articulate’ Representation 19
|

F

]

external representation n the media An articulate form for a problem 1s one which

. corresponds closely to the form used 1n the mind m thinking about the problem. (This 1s

t problem dependent, the mind uses different representations in different situations) Let us

Hetime the “translation distance” between wo representations as the number of

{rancstormations that one representation must be put through to make 1t 1dentical to the

second 1epresentation Then we can summarize the results in the previous section In a
"mumimum translation principle”

MINIMUM TRANSLATION PRINCIPLE: The most articulate
representation for a subject is at a minimum translation distance
from the mind's representation.

Like Ainheim, Cooper and Shepard report that their experiments “establish that the
mirnal tepresentations and mental operations upon these representations are to some
degree analogous or structurally 1somorphic to corresponding objects and spatial

transformations in the external world "33 This finding 1s restated in the following corollary.

COROLLARY: Analogical systems are nore articulate than Fregean
systems for extensional problems.

Programming languages and environments have almnst all been Fregean systems.
Computers normally accept problem solutions only 1n a static, linear form. The programmer
must translate his mind's representation nto this static, hinear representation in a text file.
The translation distance 1s large The inarticulateness of a text representation explains the
following phenomena: Most programmers have difficulty understanding someone else's
program given Just a listing of the source code. They have less trouble if they can talk to
the programmer directly and get the program explained to them. They usually have even
{ess trouble 1f a blackboard or other multi-dimensional medium can be used as part of the
explanation (Baecker at Toronto is presently engaged In animaring program semantics.
His computer animations communicate the meaning of programs more effectively than
anything else | have seen. Cf Chapter 3.) Really articulate communication can “open our
eyes” to meaning “Salvador Dali's way of letting ¢ach form represent several things at the
same time may focus our attention on the many possible meanings of each colour and form
— much n the way in which a successful pun may make us aware of the function of words
and then meamng.” [Gombrich®®] An articulate representation may illuminate new and
hitherto unrealized aspects of a problem and lead to a creative solution of it. With a
suttable representation, the problem-solving abilities of a person using a computer can be
vastly increased.

A Rl G K A A A AU A AR AT S A A A h VDA VAR A S A SR S AP SN 0 30 Y20 A

N T R T L, T gy S g D e i

2

The Problem of an ‘Articulate’ Representation I-E

ABSTRACT CONCRETE

18.5

3.6

9.3

14.7

6.2

Two Ways of Designaling @ REAL ARRAY § Long

What is an “articulate form” for communicating with computers? It 1s generally
are less clear than programs in higher-level

agreed that machine language programs
Jangauages like FORTRAN or ALGOL. 1t is also true that flow charts of FORTRAN
an the programs themselves. IBM requires its

programs are (usually) more articulate th
h flow charts in addition to the normal write-

rogrammers to document their programs wit
ups. Some languages have attempted to use flow charts themselves as program notation (eg.

GRAIL -- see Chapter 3.B). But no one would claim that the limit of representational

clarity has been achieved.

r suggests, 1 lean toward higher-dimensional representations.
From an nformation processing standpoint the superiority of two-dimensional
communication over one-dimensional has been well documented through studies such as
Miller's. From an educational standpoint educators like Piaget and Dewey have long
known that the concrete is easier for children to understand than the abstract. Much
concept learning proceeds from the concrete to the abstract and from particulars to the
eneral. Scientists since the Egyptians have used diagrams as an aid to solving problems
and for communicating results to fellow scientists. Communication is concrete,
understanding involves abstraction. In computer science an increasing use is being made of
graphical (even 3.D) presentation of data. And finally the model of thinking we are using
asserts that regardless of how abstract mental images are, they "must meet one condition.
They must be structurally similar (isomorphic) to the pertinent features of the situations for
which the thinking shall be valid." [Arnheim3®] This requires more than one dimension

for all but the simplest problems.

As everything so fa

N i e T

T ™

I-F The 'Innocent Eye' and Other Myths 21
Section F -~ The 'Innocent Eye’ and Other Myths

The forms of art, ancient and modern, are not duplications of what the
artist has in mind any more than they are duplications of what he sees
in the outer world. In both cases they are renderings within an
acquired medium, a medium grown up through tradition and skill --

that of the ai:st and that of the beholder 3¢

.. Any representation must of necessity allow of an infiriute number of

interpretations and .. the selection of a reading consistent with our

anticipations must always be the beholder’s share 3’

.. The interpretation of all images [is] a philosophical problem 32
-- EH . Gombrich

Instead of dealing with complete, finely-detailed information, thought processes tend
to abstract information down to a skeleton of what the mind considers (at the time) to be
relevant features. This ts necessary to prevent the mind from being overwhelmed by a mass
of details. "It 1s a quality invaluable for abstract thought in that it offers the possibility of
reducing a theme visually to a skeleton of essential dynamic features, none of which is a

tangible part of the actual ob ject” [Arnheim®®] In art, caricaturists since the sixteenth
century have been aware that a single stroke of the brush could significantly alter the
information content of a picture. A single line is capable of being seen as a complete scene,

g l indeed a complete event. "The humble suitor is abstracted to the flash of a bent figure.

And this perceptual abstraction takes place without removal from the concrete experience,

since the humble bend is not only understood to be that of the humble suitor but seen as
40])

the suitor himself." [Arnheim

The impressionists elevated this principle to high art. As Gombrich tells us, the

beholder of an image always tries to project his internal preconceptions onto the external 4
world. He interprets an image not only in terms of its content but also in terms of the
context v which the image occurs and in terms of his expectations of what the content will E
be. Gombrich notes "a well-known experiment that a familiar shape will induce the
expected color; 1f we cut out the shape of a leaf and of a donkey from identical material f._i

and ask observers to match their exact shade from a color wheel, they will tend to select a

greener shade of felt for the leaf and a grayer one for the donkey." [Gombrich*!'] The]
reason impressionist paintings often seem more accurate to modern viewers than medieval ;
or renaissance paintings is that the spare, suggestive lines of the impressionists leave more :
latitude for the viewer to fill in missing detail by projecting his preconceptions.

The 'Innoceni Eye’ and Other Myths |.F

The Ames Chair Demonstrations /Combrichqzl

The psychologist Adelbert Ames has devised a set of clever trompe (oeil
demonstrations that show very clearly this process of projection in the perception of images.
The picture above shows three of the demonstrations. When viewed through strategically-
placed peepholes, each room appears to contain a chair. But when viewed from above, two
of the rooms actually contain only a skewed collection of lines. "What is hard to imagine s
the tenacity of the illusion, the hold it maintains on us even after we have been undeceived.
We return to the three peepholes and, whether we want it or not, the illusion is there.”
[Gombrich®?]

The perception of any given picture is heavily dependent on the context in which it
1s viewed. This is the reason that art has evolved during its history.

-G The Role of Mental Images in Thought
Section G - The Role of Mental Images in Thought

Now assuming the existence of mental images in thought, the next question is: what
roles do they play?> What functions can they assume? In Arnheim’s terms, there are three
functions performed by images: (1) signs, (2) symbols, and (3) pictures, in order of decreasing
abstractness. (1) An image 1s a sign if it is Fregean, ie. "it stands for a particular content
without reflecting its characteristics .. To the extent to which images are signs they can
cerve only as indirect media, for they operate as mere references to the things for which
they stand. They are not analogues, and therefore they cannot serve as media for thought
in their own right .. Numerals and verbal languages ... are the sign media par excellence.”
The other two functions of images are analogic. (2) "An image acts as a symbol to the extent
to which it portrays things which are at a higher level of abstractness than is the symbol
itself.” (3) "Images are pictures to the extent to which they portray things located at a lower
level of abstractness than they are themselves .. A particular image may be used for each of
these functions and will often serve more than one at the same time. As a rule, the image
itself does not tell which function is intended. A triangle may be a sign of danger or a

picture of a mountain or a symbol of hierarchy." [Arnheim®®]

HIGH
? FORCES
IDEAS
8 4
oy NON-MIMETIC
5 FORM SYMBOLIC
b4 VEHICLES
o
= STYLIZED
A OBJECTS GENERA
< :
resent 1
¢ REPLICAS | (ePresent | o aticuLars é
WOW |MAGE EXPERIENCE

Images as Pictures and Symbols [Arnheimqsl

Images are metaphors for concepts. They provide an alternate reality which is
simultaneously concrete in structure and analogic in representation. Koestler wrote of
Michael Faraday, whom he termed a ‘metaphorical visionary: "He saw the stresses
surrounding magnets and electric currents as curves in space, for which he coined the name
Yines of forces’, and which, in his imagination, were as real as if they consisted of solid

matter."® The visual medium is an extremely useful metaphorical tool not only because it E

T T e o = eomi - (im sk Lamasretfas

e T i M e i i N o e e v s Y et i, i o e e N S e G e i S e o e

The Role of Mental Images in Thought 1-G

has powerful representational capabilities but also because it has a rich set of topological
transformations within its own domain. Two- and higher-dimensional media possess far

more versatile structural operations than do one-dimensional media.

A system designed to manipulate images should allow them to assume different roles
i a program. For example, the programming language LISP permits lists to be used both
as data and as program to be evaluated, depending on the context. This provides a
formalism for proceeding from the concrete to the abstract. A particular image may first be
used as a constant data object, standing for itself, and then it may be used to represent
something else, as a variable. The variables in almost all programming languages today are
signs, their representations (eg X) bear no resemblance to the structure of their values.
The representation of.a problem in most programming languages bears little resemblance to
the thought processes that occured in its solution. For this reason most programming
languages actually impede communication. In a multi-dimensional language the variables

can be analogical, pictures of their values.

Section H -- Examples of Purely Iconic Reasoning

Geometrical demonstration must start from the direct visual awareness

of the fact to be proven.
- Schopenhauer“7

The earliest use of analogical reasoning on a computer was Gelernter’s "Geometry-
Theorem Proving Machine"'%%3. His program employed properties of the representation to
guide the proof of theorems. His simple heruristic "Reject as false any statement that is not
valid in the diagram” enabled his system to vastly reduce the search space of possible

- proofs.

Geometry has historically provided a fertile ground for analogical reasoning. In
ancient India a branch of geometry developed which used in proofs only diagrams and one
theorem, the square of the hypotenuse. "Every proposition is presented as a self-contained
fact, relying on its own intrinsic evidence. Instead of presenting a sequence of steps, the
Indian mathematician shows the relevant figure, completed, if necessary, with auxiliary lines
and offered with no comment other than the word "Behold!" The proof consists of the
evidence visible within the given figure™® This is analogical, visual thinking in its purest

form. Examples of such proofs follow.

k
g
4
§
3
b
A
1
i
i
i
b
Y
;

:
¢

E I.H Examples of Purely Iconic Reasoning 25
m
’{: {
E
% T he triangle based on the diameter of a circle is always right-angled. [Arn heim?%]
;
E,
:
a 2
BEHOLD !
i
| I
| (A » B = A2+ 2AB + B? [Arnheim®] i
L] q
a + £
2 ¢
:?
| j
l A
| ok £ %
’
| |
BEHOLD !

26 Examples of Purely Iconic Reasoning 1-H

Pythagoras' original proof of the Pythagorean Theorem:

For all right triangles A B C, A% + B? = C? [Courtesy of Alan Kay]

b g

BEHOLD !

e LR rl i e

I.H Examples of Purely Iconic Reasoning 27

As Arnheim points out, mathematics so firmly related to perceptual evidence “can
arouse keen interest in unspoiled people. This is observed in the response of young
children to structural algebra and anthmetic. 1t is equally true for the person of mature
mind. If he 1s forced to perform at a level at which the task can only be solved by
memorized routines, his reasoning will protest or dry up. If instead he can operate in such
a way that perception invites comprehension, he will realize by his own experience why
[Berthold) Brecht makes his Galileo say: ‘Thinking is among the greatest pleasures of the

human race.”">°

Section I -- Concrete and Act! © .edia in Education

The 1deas first in the mind, 1t 1s evident, are those of particular things,
from when:e, by slow degrees, the understanding proceeds to some few
general cnes, which being taken from the ordinary and familiar ob jects
of serse, are settled in the mind, with general names to them. Thus
particular ideas are first received and distinguished, and so knowledge
got about them; and next to them, the less general or specific, which are
next to particular. For abstract ideas are not so obvious or easy to
children, or the yet unexercised mind, as particular ones. If they seem
50 to grown men, it 15 only because by constant and familiar use they are
made so.

-- John Locke®!

In an abstract setting these concepts are difficult. Concretized in
suitable ~rojects in [a computer] laboratory they are perfectly accessible.
-- Seymour Papert52

Further foundation for the theory that communication is concrete and that
understanding involves the abstraction of concrete information is supplied in some current
theories of education. Educators such as Dewey and Plaget have stressed that doing 1s
better than telling. Children learn more from direct experiences than from vicarious ones.
Direct experiences are those that a child actually does or that actually happen to him.
Vicarious experiences are those in which he participates indirectly, such as by reading
about them or being told about them. With the advent of television, a vast amount of
vicarious experience has been opened to every child. "it has shifted the balance between
direct and vicarious experience towards vicarious expe:tence for all of us and has done so
most strongly for the young. Instead of information poverty, they now experience
information richness. Schools as they now exist were designed for an information-poor
society, in part to provide a child with vicarious experience from books and contact with
the teacher. Obviously that function was radically altered by television, radio, and other
media outside the school.” [Coleman®3] Some teact.ing methods, such as the Montessori
method, emphasize direct experience and individual guidance. The child is encouraged to

O

R e

A e ey R

v VRSN T

S e el Al

Concrete and Active Media in Education -]

actively interact with his environment. "Although the school is no longer necessary to
provide information, it is more important than ever for developing skills for the

management of information."[Coleman®*] This applies as much to computer science as to
education. Computers must provide their users with effective techniques for managing the

ever growing quantity of information.

The difference between direct and vicarious experience is the difference between an
active and a passive medium. In a passive medium such as television, the user :aerely
observes. He has no control over the events. In an attempt to supply an active theater, the
Czechoslovakian exhibit at the 1967 Montreal Expo allowed a movie audience to vote at
certain times on the direction the movie could take. But this provides only partial relief -
from passivity. It is difficult for conventional media to permit participation. To counter
passivity, active media are needed -- ones that permit the viewer to interact with and
influence events. The computer is an ebvious candidate because its output is generative, as
opposed to being fixed or static as in a filmstrip. A computer's output can be changed
according to the input. If the user is to establish a causz-effect relationship, the medium
must be interactive, so that changes are immediat .y»clbservable. It must give the user the

feeling of participating in an experience.

An active medium must also be inherently positive. If a computer is to act as a
laboratory for experimenting with ideas, it must nut give negative feedback of the form:
"vou did that incorrectly.” Instead something consistent with the situation should happen.
If the resuli is not what was anticipated, it is up to the user to figure out why. Contrast this
with conventional computer-aided instruction, in which a child is asked to answer questions
and is told that he is either right or wrong. There is little potential in such instruction for
a child to experiment with a sub ject in depth until he is finally satisfied he understands it.

Simulation languages, such as SIMULA [Dah1'%¢€), embody many of the laboratory-
like capabilities of active media. Whenever a model is constructed of a given situation and
then systematically changed to investigate different effects, the experimental paradigm is in
effect. But two difficulties with most simulations are. (1) They have not been immediately
interactive. When a parameter is changed, the effect cannot be observed until some time
later. (2) The representation of the parameters and of changes to the parameters have not
been 1n a natural notation. A translation of the parameters is required into some form, say
a series of numbers, that the computer can accept. The PYGMALION laboratory attempts
to overcome these shortcomings by immediate interactive feedback and by flexibility in the
definition of representations. Fubini admirably expresses the delights of a true computer
laboratory when he says, "Perhaps the most moving and impressive show | have seen is the
simulation of the universe, and it is still in my eyes. A random population of uniform
bodies obeying Newton's Law was injected in a simulated space. Then in a few seconds
right in front of me, the moving bodies in apparently random motion acquired shape. It
was thrilling to see spiral, nebular, globular galaxies appear in completely unexpected
fashion. 1 did not truly realize the shape of the universe was defined in as gross
morphology by Newton's Law alone. The ability to simulate physical and sociological
structures and to examine in detail the effects of changes is one of the most powerful
pedagogical tools I have seen. It can be used to teach in concrete and immediate form the
ultimate consequences of a law or set of relations, and it can be used to teach a student to

find the relations himself"% This is an admirable statement of the goals of an active
medium. How often with ordinary programs and languages has such enthusiasm been

displayed?

o . Bhaii i L

-

RRRECT I e WO g L

I-1 Concrete and Active Media in Education og

The concreteness and immediacy of computers 1s heginning to be appreciated by
contemporary educators Cumputers are a tool for managing information and conducting
experiments, as such they can help people to think and learn Several educators state the
case for computers Robert Filep "Children can see immediate payoff on a computer 1n
even the most nunimal demonstration of their skills. | believe these factors have much to
do with *he students’ excitement about using computers” Mark Greenberger: "The
computer 1s very concrete. It 1s real -- something students can get their hands on and see
the effects of directly It s a refreshing change from abstract discussion in the classroom.”
William Huggins: "Students today, at least at the college level, live in a completely symbolic
world: a world of symbols, mathematics, and words. They do not get their hands on active
experiences that give symbols meaning and physical definition that produce intuitions that 1

find missing "®°

In the future education will shift toward the teaching of strategies for learning anA
managing information. Computer interaction will shift toward strategies for activery
assisting thinking.

i RS ACREN S S e A TR Sl S KL R LRt

R, Py

Chapter 2

Chapter 2

On Creativity

We may proceed to define the creatuve thinking process as the forming
of associative elements into new combinations which either meet

specified requirements or are in some way useful. The more mutually
remote the elements of the new combination, the more creative the

process or solution.
- Sarnoff Mednick'

Summary

(1) Creative thinking involves the juxtaposition of two normally-distinct
contexts, using elements from both in a new and productive way.

(2) The creative product is novel, appropriate to the situation, a transformation
of contexts, a condensation having summary power.

(3) Creativity is less logical than deductive reasoning. It involves emotion and
may even involve chance.

LN R e e Bl s Gl i i B e A e e

¥ Xl

P T e e Wy SE ST LT Ao —",

Jnd oo

To

el e

o S sy esews EmwS esewm e GSONE 0 SONN O NG WY e SN O WER M R R OB 0

10 et

T T AT, e

2 A The Nature ot Creativity |
Section A -- The Nature of Creativity

We cannot judge expression without an awareness of the choice
situation, without a knowledge of the organon .. Where we have no
matrix, no keyboard, we cannot assess the meaning of an individual
feature.

- EH.Gombrich?

Creativity has onty been examined quantitatively in the 20th Century Psycholopists
have long been uncertain of its nature. Galton thought that creativity involved a collection
of qualities, among them what he called “fluency”, 1e "an unusual and spontaneaus flow of
images and ideas” The creative mmd is "always pullulating with new notions” Othey
qualities are “receptivity” and “intuition of insight”. James called the latter quality
“sagacity”, and T.$.Eliot named 1t “sense of fact” McDougall added the quality of "de /1ant
association”. But what these really are is a source of mystery. The word “creativity” was

not even defined in the Oxford English Dictionary until its later editions.3

One school of thought has held that creatvity is not the gift of the individual but
the spiit of the age. "An idea whose time has come,” we often hear. Goethe called 1t
Zeutgeist For example, had Copernicus, Kepler, and Newton died early in hfe, then
contempotaries eventually would stll have discovered the laws of gravity and moton,
Indeed environment does play a part in the creative act. Had Kepler not formulated
theories on planetary moticn, Newton would not have discovered the law of graviaty (It s
imnteresting to speculate what he might have discovered instead.) But to believe that
environment 1s the whole story 1s to believe that “if William Shakespeare, ike his elder
sisters, had died in the cradle, some other mother in Stratford-upon-Avon or Stratford atte-

Bow would have engendered his duplicate before the Elizabethan era ended " No one
reatly wants to deny the genius of a Shakespeare or Bach or Picasso, and yet to make a
distiniction between artists and scientists is to make a distinction between art and science, 1f
there 1s one thing that psychologists such as Arnheim, Gombrich and Koestler have shown,
1t 1s that the same mental processes are used in science as are used in art.

Arthur Koestler has written an =xcetlent book on the nature of creativity, T'ke Act of
Creation. Many of the principles in this chapter are derived from his enlightening theo: 105,
K oestler contends that all creative activities have a basic pattern 1in common, and that conic
mspiration, scientific discovery and artistic originahty all share the same patterni “The firse
1s intended to make us taugh; the second to make us understand; the third to inake us
maivel. The logical pattern of the creative process ts the same in all three cases It consists
of the discovery of hidden similarities. But the emotional climate 1s different in the thiee
panels: the comic simile has a touch of aggressiveness; the scientist’s reasoning by analoyy 1s
emotionally detached, ie. neutral; the poetic image 1s sympathetic or admirimg, mspired by a
positive kind of emotion... When two independent matrices of perception or reasoning
interact with each other, the result is either a collision, ending in laughter, or thewr fusien in
a new intellectual synthesis, or their confrontation in an aesthetic expertence.”® The same
interaction may produce any of these results, depending on the emotional chmate of the
mteraction. The myth of Pygmalion itself 1s an example. The artistic or lyric aspects of
creation as symbolized in the myth are represented in literature by Ovid and in painting by
Burne- Jones, who brought Pygmalion's statue Galatea to life in a mystical atmosphere. The

The Nature of Creativity 2-A

2
rd

comic attributes of this same event are represented in literature by Shaw and in painting by
Daumier, who treated the event in an irreverent, satirical manner. The intellectual aspects
have been pursued In a serious manner by Gombrich in his book Art and lllusion, and n
computer science by this report.

Left: Burne-Joncs, Pygmelion, 1878; Right: Daumier, Pygmalion, 1842 /Combrirhsj

It 1s interesting to try to place various phenomena on the continuum between science,
humor and art. In mathematics a popular way to refute a proposi on is by reducio ab
absurdum, which extrapolates the consequences of a theorem in a fogically vahd sequence of
steps to a result that is s0 absurd as to be almost humorous. And frequently
mathematicians or computer scientists have criticized solutions to problems not because they
were incorrect but because they lacked elegance

The pattern underlying a creative event is "the perceiving of a
situation or idea in two self-consistent but habitually incompatible
frames of reference ... While this unusual situation lasts, the idea is
not merely linked to one associative context, but bisociated with

two."[Koestle;’]

k4

2. A The Nature of Creativity 39

N s it et & S 81 T‘("'“"’T’P""

P gt ‘l'!l I'»lll‘!lhll‘"
[

(1REAAN i |
Lk e hy A O : '
LARIHMAES SIS

LA

Al

B S SRS SN O

Sl L

Intersection of Thought Contexts /Koesllersl

This 1s the ultimate source of the history of art. When faced with a new situation,
the artist applies a schema developed 1n handling other situations, producing a
juxtaposition of the two. He brings an established way of looking at things into a new
context. The visual contexts of artists are different from those of laymen. Artists have
created a code of rules which they obey in looking at pictures. The innovations in art have
been modifications of this code. Artists before Constable represented landscapes in “the
browns of an old violin" because their code of rules said that distance should be represented
by varying shades of brown. Constable brought a new perceptual context to landscape
pamung -- that of the non-artist, who sees landscapes in shades of green. This led to the
codification of a new rule, namely: distance may equally be represented in shades of green
as 1 shades of brown. The drive toward realism has been the attempt to develop a code of
rules among artists which 1s the same as the peiceptual code of the viewer. Modern
paimting has developed a new goal: create codes that are deliberately different from those of
the layman viewer, forcing the viewer to adopt new rules for perception.

This juxtaposition of thought contexts, Koestler believes, is transitory and unstable.
Sometimes 1t happens that the thread of thought oscillates rapidly between two frames of
reference. More likely though, the established context, the schema, produces an "Einstellung
effect”. The Einstellung effect is the following: After once thinking about a problem in one
way, 1t often becomes very difficult to think about it in other (even simpler) ways. A simple
suggestion at this point may produce a powerful effect. Once the initial suggestion is made,
the receptive mind immediately begins exploring the new context. Immediately a host of
comparisons present themselves. Conscious thought may remain in the schema, the
metaphor, until the initial rush of discovery wanes. Thereafter it may return to the schema
periodically for further comparisons and inspiration.

3
4
b
t‘.

-

g

24 The Nature of Creativity 2-A

Oscillations Between Two Thought Contexis /Koesllerg/

"All coherent thinkintg is equivalent to playing a game according to a set of rules....
In the routines of disciplined thinking only one matrix (set of rules] is active at a time."'°
Therefore it seems plausible that a computer which knows the rules for a particular domain
should be able to assist and even stimulate thinking in that domain.

As an example of the way certain images trigger a whole "train of thought”, a
chess board with a single piece on it, say a knight, inay immediately start one quesnon-ng
whether a knight can legally touch every square on the board. This leads "naturally” into
an entire set of sub-problems. Can the knight get to an ad jacent square? Can it get to an
ad jacent square on the side of the board? Can it get to an ad jacent square from a corner?
Can it get into a corner? From the results in Chapter | we can deduce that such trains of
thought are more Ilkely to be initiated by dnaloglcal pictures of the chess board than by
Fregean words like "chess board" and "knight". Then we might reformulate our definition
of "articulate” in operational terms:

A medium is "articulate” to the degree in which it elicits a productive
Einstellung effect in its users.

The process of creauve thinking has similarities with the process of perception. The
mathematician Poincar€ felt that the most productive ideas "are harmonious, and,

consequently, at once useful and beautiful.’ "I Gombrich applies the metric of "simplicity” to

measure the productmty of ideas: "It might be said, therefore, that the very process of
perception is based on the same rhythm that we found governing the process of
representation: the rhythm of schema and correction. It is a rhythm which presupposes
constant activity on our part in making guesses and modifying them in the light of our
experience... In looking for regularities, for a framework or schema on which we can at least
provisionally rely (though we may have to modify it for ever), the only possible strategy is

N Siae i bt ol Sl o

T R L i

2.A The Nature of Creativity 35

to proceed from simple assumptions... This 1s not due to the fact that a simple assumption is
more probably right but because it 1s most eastly refuted and modified... The simplicity
hypothesis cannot be learned. It is, indeed, the only condition under which we could learn

at all. To probe the visible world we use the assumption that things are simple until they
rove to be otherwise."'? However, to say that a concept is "simple” is not to say that it is

“tamiliar” or “natural’, many inventions seem bizarre at first.

Section B - The Great ‘Whale Ears' Scandal

(The Use of Schemata in Thought)

You cannot create a faithful image out of nothing. You must have
learned the trick if only from other pictures you have seen.

.. EH.Gombrich'3

To copy others is necessary, but to copy oneself is pathetic.

-- Pablo PicassoM

Gembrich asserts that artists always begin a picture with a "schema”, a framework to
serve as a foundation. They "classify the unfamiliar with the familiar.”'® A Dutch artist in
the sixteenth contury drew a picture of a whale that had washed up on the coast. Whales
in the Netherlands are raré indeed, and the artist had undoubtedly never seen one before,
particularly not lying on a beach. His picture shows that the whale had ears! "The
draftsman probably mistook one of the whale's flippers for an ear and therefore placed it
far too close to the eye. He, o0, was misled by a familiar schema, the schema of a typical
head."[Gombrich‘°] Though unintentional, in a sense the Dutch artist was actually being
creative; he created a new kind of animal -- a whale with ear lobes. Who would ever have

thought of that?

16 The Great ‘Whale Ears’ Scandal 2-B

After Goltzius: Whale Washed Ashore in Holland, 1598 /Gombrich”}

On a more practical level the same type of reasoning was done by Johannes -Keplér
in 1609 when he applied the schema of Euclidian proportion to the new situation of
planetary motion. Kepler's laws state that (1) the orbits of all planets are in the shape of an
ellipse with the sun at one focus, and (2) a line between a planet and the sun sweeps out
equal areas of the ellipse in equal times. Wilson, in his article "How Did Kepler Discover
His First Two Laws?, investigates the question: which came first, the data or the model?
"What emerges from Kepler’s own account is that he goes on his journey laden with theory,
and that he manages to arrive at the two laws only because he approached the problem
with a preconception. It is an initial hunch, a physical hypothesis, that guides him
throllghout."|8 In other words, the ellipse came first. Kepler knew, through Tycho Brahe's
observations, that Copernicus' circle model was not correct. The observations together with
his area hypothesis suggested a more egg-shaped oval orbit. However since the calculations
were so "horrendous” with the oval, Kepler simplified the shape to an ellipse. Why an
ellipse? Because the oval resembled an ellipse in shape and because the ellipse is the next
simplest closed figure to a circle! Newton said later, "Kepler knew ye Orb to be not circular
but oval, & guest it to be Elliptical"'® Actually Kepler did not start specifically with an
ellipse in mind, rather he firmly believed that the eventual solution would be simple, like an
ellipse. Throughout his investigations Kepler relied on Euclidean geometry to provide a
schema for organizing the confusing world of Renaissance astronomy.

Kepler's investigation embodies the essence of the scientific method of

il o nad el Sl ikl Sloiut il L0 Sl Sl S DRl S BCia e

il

pacie . 2N

2-B The Great ‘Whale Ears’ Scandal 3%

understanding: hypothesis formation, experimentation and observation, hypothesis
refutation, followed by hypothesis formation again, until finally an hypothesis remains
unrefuted and becomes a “law”. What Gombrich and Koestler tell us we can learn from art
is that hypothesis formation (the creative link in the chain) involves schemata. We form
hypotheses in the same way we paint pictures, not out of nothing but by applying a
preconceived schema to the new situation. The mathematical discipline is a schema which
has proved invaluable for solving problems in physics. Mathematical formulae are
attractive because they have many well-understood properties which can be manipulated
independently of their referents, and then mapped back onto their referents transformed.
In this sense they are I regean; their structure does not conform to the structure of the things
represented. But nevertheless, as was pointed out in Chapter I, mathematicians perceive
formulae as structured, two-dimensional images. With practice mathematicians are able to
attain great skill in manipulating these images. Therefore formulating a fact in
mathematical terms is tantamount to "understanding” it at a certain level. For example, the
formula

. n
cost = 9 corelt)) (t,,, -t
i=1

might mean “the cost of executing a program is directly related to the amount of core
required at time t; times the length of time (t,, - t) the core is required." This is an
illustration of Koestler’s theory of intersecting thought contexts: if one can map a problem
into another context that he understands better, he may be able to get a solution more
easily. It is the basic idea of linear systems theory: find a mapping from the problem space

into a (mostly) separable one.[Kay2°]

Transforming a problem after one becomes familiar with it may indeed lead to a
creative solution, but the question remains: Why do people deliberately approach problems
with preconceived schemata or biases? Artists are well aware of the quandary of starting
"from scratch™ “To draw an unfamiliar sight presents greater difficulties than is usually

realized."[Gombrich?'). Picasso said that "the most awful thing for a painter is the white

canvas."[Wertenbaker??) To create something in an unknown domain is a superhuman
task. True genius is able to make a large creative leap; we cannot overestimate the creative
contribution of Picasso in inventing cubism or of Buxtehude in inventing the organ style
which culminated in Bach. But most creative achievements are transformations on the
schemata of their predecessors. In computer science, programmers usually find it far easier
to "optimize" an algorithm, to produce a more efficient or elegant algorithm that computes
the same result, than to write the original. The use of schema in creativity and the use of
pro jection in analysis are important aspects of the process of creative thinking.

38

D i e i S T bt il ey 8 ag At

The Great 'Whale Ears' Scandal 2-R

Picasso: The empty canvas (detail from "The Studio at Cannes”, 1956) /erlvnhakerm/

o.p The Great 'Whale Ears’ Scandal ag

Gection C -- The Role of Eniotions in Creativity

images and perceptions that we
lead to a creative idea? Why are only certain images and

nt? What is 1t about those 1mages that others do not have?
wer that STAR TREK's unemotional Mr.

t each of the thousands of facts,

How 1s 1t tha
experience every day does not
percepts used 1n creative thoug

Several noted thinkers have suggested afn ans
Spock would scarcely be able to comprehend. The answer suggested is that the aesthetic

quahtes of 1deas react with our emotions on a subconscious level, and those ideas having a
avorable reaction (in terms of the individual's personality) are raised to the level of

conscious thought.

Pomcal‘e/. in his famous address in 1913 on mathematical creativit made a stron
Yy 124

case for the aesthetic.

4
:
i
1
.
g
q

Among the great numbers of combinations blindly formed by the
subliminal self, almost all are without interest and without utility, but
just for that reason they are also without effect upon the esthetic
censibility. Consciousness will never know them; only certain ones are
harmonious, and, consequently, at once useful and beautiful. They will
be capable of touching this special sensibility (that all mathematicians
know), ... and which, once aroused, will call our attention to them, and

thus give them occasion to become conscious.

When a sudden illumination seizes upon the mind of the
mathematician, it usually happens that it does not deceive him, but it

also sometimes happens . that it does not stand the test of verification,

well, we almost always notice that this false idea, had 1t been true, would

have gratified our natural feeling for mathematical elegance.

sensibility which plays the role of the

Thus it is this special esthetic
nd that sufficiently explains why the

delicate sieve of which I spoke, a
one lacking it will never be a real creator.

Wilson says of Kepler's four-year, 900 page calculation that Jed to his planetary
theory: "Kepler's discoveries were a kind of miracle of chance anc love, and also of

inventive hypothesizing and dtzteect'xvalc;gic.“25 Nothing short of his love for the quest and
his "belief in the possibility of understanding” could have sustained such a prodigious

effort.

R

vt S Bl e MR il i Rt e a0 -

40 Galileo and The Accidental Nature of Discovery 2.D
Section D -- Galileo and The Accidental Nature of Discovery

Elias Howe had been frustrated for many years by his failure to perfect
the sewing machine. One night he dreamed he had been captured by
savages and dragged before their king. The king issued a royal
ultimatum. 1f Howe did not produce a machine that would sew within
24 hours, he would die by the spear. Howe failed to meet the deadline
and saw the savages approachking. The spears slowly rose and then
started to descend. Howe forgot his fear as he noticed that the spears
all had eye-shaped holes in their tips...

-- Krippner and Hughes”

How does creation happen? What leads to a new idea or discovery? One might
think 1t 1s an eminently rational process: after a body of representative facts is assembled, a -
careful process of logical deduction leads to a new invention. While this may have
happened, it 1s by no means necessary. In fact, Taylor states that “the rules of logic and
scientific method are a psychelogical straight jacket for creative thought."?” Often
creativity is emotional, imprecise, illogical and just plain wrong. It may even involve
chance. Drake'%® has presented evidence that Galileo obtained his first formulation of the
law of accelerated motion by accident, through an error. Galileo's creative step was
enormous, but what was its nature? Like Kepler, Galileo applied a predefined schema -- the
Euclidean theory of proportion -- to his (hypothetical) data. This led directly to his
synthesis of the law of motion. But Drake points out there was an error in Galileo's
hypothetical data which contributed directly to the result. In fact, there appear to be fwo
accidents in his derivation; the second was his use of 4 and 9 for his hypothetical distances,
both square numbers. These accidents appear to have been standard fare for Galileo.
Another schema -- "nature always acts in the simplest way” -- he used all Ais life. Though
we might be tempted to regard Galileo less highly because of his "lucky” mistakes, as James
Joyce has said, "A man of genius makes no mistakes; his errors are portals of discovery."?3

And Hadamard'®% points out that while there is a distinction between invention and
discovery, both involve creativity. Some people have even carried the process of making
errors to the extreme of making it their working method. Mednick tells of a physicist who
places "in a fishbow! large numbers of slips of paper, each inscribed with a physical fact.
He regularly devotes some time to randomly drawing pairs of these facts from the fishbowl,
looking for new and useful combinations."?® Many creative ideas have even been the result
of dreams, as the story of Elias Howe illustrates.

Ernst Mach, a 19th century thinker abeut thinking, has a memorable introspective
description of how mental "luck” leads to discovery:

After the repeated survey of a field has afforded opportunity for the
interposition of advantageous accidents, has rendered all the traits that
suit with the word or the dominant thought more vivid, and has
gradually relegated to the background all things that are inappropriate,
making their future appearance impossible; then from the teeming,
swelling host of fancies which a free and high-flown imagination calls
forth, suddenly that particular form arises to the light which harmonizes
perfectly with the ruling idea, mood, or design. Then it is that that

—

o.D Galileo and The Accidental Nature of Discovery 41

which has resulted slowly as the result of a gradual selection, appears as
if 1t were the outcome of a deliberate act of cveation. Thus are to be
explained the statements of Newton, Mozart, Richard - Wagner, and
others, when they say that thoughts, melodies, and harmonies had

poured 1n upon them, and that they had simply retained the right

0nes.3°

"Harmonizes with the mood .." There 15 a critical principle hidden in these emotional terms.
Unless a person really likes a task, has an affection for it, he is seldom if ever creative in it.

What 15 the mechanism of creativity? Sarnoff Mednick has clearly outlined one
atiswer. In genieral, "any abihity or tendency which werves to bring otherwite ratually
remote icdeas 1nto contiguity will facilitate a creative solution; any ability or tendency which
serves fo keep remote iceas from contiguous evocation will inhibit the creative solution."3!
In particular, there are three ways to arrive at a creative solution:

(1) Serendipity -- two stimuh may occur together by accident or "luck” and evoke an
associated response. This is what the physicist above was trying. It 1s irreverently
recognized 1n the saying, "Give enough monkeys enough typewriters and they will
eventually produce the complete works of Shakespeare.” The stories of Newton and the
apple and of Fleming and penicillin are other popular anecdotes about serendipity.

(2) Similarity -- two stimult may evoke a response due to the similarity of the
elements evoked by the stumuli. An example is the use in literature of homonyms and
rhyme. Mednick feels this is 1mportant in areas which are not dependent on the
U Ion af 'I.','mb. il rg painnn:, sculr-{ure music, poetryj.

(3) Mediation -- two stimuli may evoke a response because they have some element(s)
in common. “"For example, in psychology, the idea of relating reactive inhibition and
cortical satiation may have been mediated by the common associates ‘tiredness’ or
‘fatigue'."3? Mednick feels this is particularly important for creativity in areas involving
heavy use of symbols (e.g. mathematics, chemistry).

"Mednick distinguishes at least two distinct cognitive properties or dimensions that
govern an individual's creativity: the “associative strength” dimension and the "visualizer.
verbalizer” dimension.

The “associative strength” dimension is the number of associations that an
individual has between ideas and the strength between these associations. For example, we
might ask a person what concepts “table" suggest. It he is limited to just a few stereotyped
responses or if he has difficulty generating many responses, he is said to have an associative
hierarchy with a steep slope.

T o o e W T T e NI e (RTTR w fal. Th G . T T

2 Galileo and The Accidental Nature of Discovery 2-D

’

High
—— Steep Associative Hierarchy
— — - Fiat Associative Hierarchy

Associative
Response
Strength

Louw

Number of Responses

If the person is easily able to generate more remote associations, he is said to have a flat
slope to his associative hierarchy. This is important because a person obviously is not
going to be able to use elements in a creative way if he doesn't have the elements or if it is
very difficult for him to generate them. Mednick concludes:

It would be predicted that the greater the concentration of
associative strength in a small number of stereotyped associative
responses (steep hierarchy) the less probable it is that the individual will
attain the creative solution. Thus, the word association behavior of the
high creative individual should be characterized by less stereotypy and

commonality.

.. The prediction suggesting an expectation of less creativity from
an individual with a high concentration of associative strength in a few
responses leads to another prediction. The greater the number of
instances in which an individual has solved problems with given
materials in a certain manner, the less is the likelihood of his attaining a

creative solution using these materials. 3

There is a rather frightening implication for computer science: The more "skilled” or
experienced a person is in using computers, the less likely it is that he will be able to use the
computer in a creative way! This induces the argument in Part II for a widening of the
concept of "computer scientist” from a person skilled in the use of computers to anyone who
knows how to do something and wants to use the computer as a tool in doing it. Such a
widening requires not only an increased access to computers for the common man (Kay's
“personal dynamic medium”, for example), but it also requires an improved method for

communicating with computers since it is presently too technical.

43

oD Gahleo and The Accidental Nature of Discovery

The "visualizer-verbalizer" dimension 1s a restatement of the notions of analogical
and Fregean. The visualizer is one who tends to call up relatively complete memorial
sencory representations of the relevant concrete aspects of problems. If the problem deals
with horses. he tends to picture a horse in terms of its sensory quahities. On the other hand,
the verbalizer explores the problem by associating with words around the word "horse”. |f
the requisite elements are high in his verbal associative hierarchy to the word horse, the
verbahzer will be more likely to attain a creative solution; the visualizer may be thrown off
or at least delayed by many false leads. On the other hand, if a requisite verbal associative
response to the word horse 1s very low, or not present in the verbalizer's hierarchy, then the
visuahzer will be more likely to attain the creative solution. It is therefore clear that some
types of problems will be solved more easily by the visualizer and some by the
verbalizer [Mednick3?] Conventional programming languages almost uniformly require a
person to verbalize his solution if he wants to implement it on a computer. PYGMALION

is an attempt to get further to the visualization end of the scale.

TN ETMERE R P

Y

TS L el oo agpiy - e P e R T IR I TR T

-

b dias - o il o

fd i 2T MR o b g ol O ik et b

44

i
g Chapter 3

Chapter 3

The Relevance of Computers
[Computers’] especial talent in the direction of intelligence is the ability
to make elaborate models and fiddle with them, to answer in detail
questions that begin "What if ..?* In this they parallel (and can help)
the acquiring of intelligence by children... The human mind .. can
tolerate and even thrive on inconsistency. -

' . Stewart Brand'

Summary

(1) The computer has characteristics that can be used to assist a person’s
thinking and learning processes.

(2) Some of these characteristics are being exploited successfully today.

Programming is often tedious work. It simply takes too much. time, effort and
irrelevant detail to implement an idea on a computer. The programmer must know the

capabilities of his proiramming language, the efficiencies of its compiler, and even the
organization of the m chine. There are syntax conventions, semantic conventions and

conceptual conventions to which he must faithfully adhere. Computers are intolerant of
even the tiniest mistake; a single wrong bit may kill a program. As Stewart Brand
irreverently says, "The basic fact of compuier use is ‘Garbage In, Garbage Out’ -- if vou
feed the computer nonsense, it will dutifully convert your mistake into insanity-cubed and
feed it back to you'? Few laymen feel competent to undertake large programs. Even
among computer scientists, there is a notable reluctance to do the actual coding. They
prefer to hire people to implement their ideas. - The process of formulating a solution is

interesting, but the implementation is not.

S

TS

3
1

45

E;}
i’ |
E.

e
W
e

This thesis addresses the questions:
(1) Why is programming a tedious process? s it necessarily tedtous?

(2) What are the relationships between creating a solution to a problem and
creating a problem to find a solution?

S et e

A

3 (2) Do programming languages stimulate or inhibit creative solutions?

4 (4) Does creativity in art and mathematics provide any guidelines for creative
: activity on a computer?

K.

1

R (5) Can a programming environment be constructed to stimulate creative

thought? What would be its characteristics?

3 Programming need not be tedious. The rest of this paper 1s devoted to computer
systems which make programming fun. As we have seen, creativity is an emotional process,
and joy 1s one of the strongest emotions. There is playfulness in creativity. Given the
groundwork of the first two chapters, we can begin to answer questions (1) through (4).
3 Question (1) in particular now wairants a resounding "yes!" This chapter bridges the gap
between the abstract model of thought of Part I and the concrete computer environment of
Part II. In so doing, we attempt to tie together the threads represented by the first four

questions.

i The main result of this paper is that the answer to the first part of question (5) 1s

' "ves” The answer to the second part of (5) forms Part I In fact there are already several
systems existing today which successfully aid some aspects of creative problem solving. This
chapter contains a brief discussion of them and of the problems in interfacing a computer
with a creative human being.

. Section A -- Dynamic Programming

A The Unimate Robot

The Unimate robot consists of a mechanical arm with 6 degrees of freedom mounted
above a large base containing electronics. It s a programmable manipulator designed for
industrial applications.

Dynamic Programming 3-A

46

T

Rotary mation

f.meuon

f
!
Yertical ‘

The Unimate Robot

SEES

bt e rvem———

- ‘FA.

-————c

3.A Dynamic Programming 47

The robot may be operated in either of two modes. training mode or production
mode. In training mode, the robot's arm 1s guided through the steps necessary (o perform a
task by a human "wainer’. The robot has a digital electronic memory in which it can
“remember" up to 1024 operations and their timing. Typical operations are "rotate a joint”,
"move to (x.y)", "close the hand", etc. After the training phase the robot can operate in

production mode, automatically repeating the operations in its memory. It will repeat the
operations indefinitely, until stopped or until a pathological condition occurs.

oA

The robot has been particularly successful on assembly hines. General Motors is
presently using 96 Unimate robots to do 80% of the final welding on iis Vega assembly line.
The primary practical deficiencies of the robot are the absence of (a) conditional branching
and (b) force or visual feedback. From a conceptual standpoint, the robot is a relatively
uninteresting computer since its only data structures are (X,Y) coordinates.

s

B il s bk

However the Unimate demonstrates the potemial of dynamic, analogical
programming. Rather than writing an algorithm whose form bears no resemblance to the

task to be done, programming occurs by actually doing the task. Advantages:

P TR I Sy o e AT
- - S T g, TR U

Jgw-A

L

(1) The act of programming is analogous to the function of the program being
written. It is learning by doing. Programming is exceptionally clear and

easy.

(2) An untrained operator can program the robot, "untrained” in the sense that
he need have little xnowledge of computer programming -- he need only be
familiar with the task the robot is to perform. This makes the robot

accessible to a large class of users. .

(3) Bug-free programs can be written the first time. Since programming
‘ involves doing the task once, successful completion of the task means that a

correct program has peen written (modulo mechanical and/or uming
inaccuracies).

If there is a programming language which can make these claims, it should come forward
and be honored. (Radia Periman’s "TORTIS", described in section E, 1c an excellent first ¥

attempt.)

"TV" Editor

The Stanford Artficial Intelligence Laboratory has installed a network of about 50
raster-scan video displays driven by a Data Disc video disk. Several excellent programs
have been written at the Jab to exploit the displays’ potential for visual interaction. A text
editor called "TV" has been developed by Dan swinehart'?7! (since written as "ETV" by
Wright and Samuel). TV was inspired by other on-line display editors, particularly
Engelbart's "NLS" system for "augmenting human intellect” 9621968 TV is organized
around logical “pages” and physical wwindows' of text. A “window" is the text -- 33 lines --
that can be physically shown on the display screen at one time. TV always shows a screen
full of text as it currently exists; editing changes are made in place on the display screen as

i e s e e g o ol e e ke s e B e

i o oabiieoied b e

Ry B D Ca e T

L

48

Dynamic Programming 3-A

well as in the document. This makes it extremely easy to create and mndify text, and to
comprehend the current state of the document,

TV has several dynamic operations that have the same flavor as the Unimate
operations. Replacing characters in a line of text is accomplished by positioning a cursor
beneath the first character to be replaced and then simply typing the new text. The
updated state of the line is always displayed. It 1s easy to see If the change has been made
correctly by just looking at the line. But the most analogical feature is "attach mode”, a
method of designating text (first implemented 1n NLS). A group of consecutive lines can be
"attached” and manipulated as a unit. The attached lines can be moved to another part of
the document or even to a different document. Gearches and substitutions can be limited to
just the attached lines. This gives the user excellent control over the scope of operations
and over the structuring of text. Since he can always see the context above and below the
attached lines, the user has virtually no difficulty positioning a body of text exactly where
he wants it. Editing with "TV" is far more error-free than with batch oriented or non-

display oriented editors. As with the Unimate, the appearance of each operation is
analogous to its effect.

HP-65 Pocket Calculator

A recent addition to the ranks of analogical programming systems is the Hewlett-
Packard HP-85 pocket calculator. The HP-65 differs from other hand-held calculators in
that it can accept magnetic strips containing up to 100-step programs.

The Il P-65 Pocket Calculator

e —p—— e ———

PR ¢

e g SRS], e 2 S

E.
s
g
3
|
1
;
:
r._
E‘ _

i e ML O b o8 b e it B Sy ooy o e e e

e Skl i sl

3.A Dynamic Programming 49

The relevant aspect is the way in which programs are written. The calculator is
simply put in “program” mode, and then the desired sequence of keys are pushed, just as if
one were doing a calculation. The keys are remembered on a magnetic strip. In "run” mode
the program can be executed, or the calculator can be operated manually. However a major
defect in the design is that while in "program” mode the display does not show the current
state of the calculation. Rather it shows a numerical representation for the last key pushed.
So typically programs have to be worked out in “run” mode, written down, and then entered
in “program” mode. Going straight o ‘program’ mode is too abstract. While
programmable desk-top calculators have been available for a number of years, the size and
portability of the HP-6Z give it many of the characteristics of Kay's "personal dynamic

media"'%75 The calculator comes to be viewed as an extension of the self.

"RAID"

If one must program in machine language, the best debugger for it that I have seen
is "RAID"!979, developed at the Stanford Al Lab for the PDP-10. RAID is the
culmination of a line of debuggers going back to the TX-2 at Lincoln Labs. It represents
the state of the art in debuggers. Using the excellent display facilities at Stanford, RAID is
capable of

(a) dynamically displaying the contents of memory locations, including locations
which are referenced "indirectly” through other locations;

(b) stepping through an instruction sequence, during which the user can
observe changes to his displayed locations;

(c) initiating execution at any instructiom;

(d) replacing instructions with other instructions and then re-executing the
sequence with the new code;

(e) replacing the contents of displayed memory cells with values entered from
the keyboard; and

(f) other more standard debugging behavior.

The result 1s that the user can directly observe the effects of instructions on actual
information. It is concrete. The consequences of a sequence of even such primitive
operations as machine instructions are frequently difficult to comprehend in the abstract.
With RAID, it usually requires no more than one pass through a routine, replacing
incorrect instructions as you go, to completely debug it. Occasionally users even write
routines in debug mode. Interaction, concreteness, and a visual display are the keys to
RAID’s success. The chief deficiency of RAID, aside from the fact that one must deal with
machine language to use it, is that it displays only machine words. It does not display the
structure of data.

TR

A= s o T

50 Dynamic Programming 3-A

High-level Debuggers

It is more difficult to design a good debugger for higher-level languages. Since most
such languages are compiled before they are executed, less information is zvailable at run
time than at compile time -- information such as the symbol table, the source code

corresponding to an instruction sequence, the logical structure of data types, etc. Kay!'96®
addressed the problem of writing, dlsplaymg ‘monitoring and debugging high-level
programs through multlple processes. His "FLEX" machine divided its display screen into
multiple "windows” and "viewports”. Each window in Kay's systsm shows a 1024 x 1024
section of a virtual 16384 x 16384 display. Viewports are subdivisions of windows.
Windows and viewports are the communication links to processes. Swinehart!%74
implemented these and other ideas using the Stanford display facilities. Each of his
windows can show the same computation in a different representation. One window might
be a RAID window showing the machine instructions being executed. Another might show
the source text that corresponds to those instructions. Still others might show the state of
variables used in this part of the program, an image of the stack, program countars, or
debugger options. Unimplemented but possible are dynamic, graphic displays of changing
data structures. An unusual notion is that each window-process can control the execution of
other processes. For example, one can single-step a source language statement in a text
window, which causes the machine language window to execute a sequence of instructions
and then pause. Or we can change variable values in a variable window, which will
modify subsequent execution in other windows. This powerful concept of "floating control”
has also been successfully used in time-sharing systems such as the SDS-940 system

[Lampson'%6%196%] and simulation languages such as SIMULA [Dah!'®®] and
SMALLTALK [Kay'"?)(a FLEX derivative)

Interpreters and Compilers

Some of the difficulty of telling a user what is going on in compiled programs has
been resolved simply by not compiling them. Some languages, notably LISP, APL and
SMALLTALK, are based on interpreters. Binding of tokens to semantics is delayed until
values are actually required. For example, the identifier X might be bound to a variable
value or a function name; in either case evaluating it will cause it to return a value. In the
first case a simple fetch is dune; in the second, an arbitrary amount of work may be
performed befere the value is obtained. The languages are not analogical, as with the
Unimate, but the environment in which they execute is dynamic and concrete. "X" may be
ambigucis at the tiine it is written, but at run time it will be bound to something which
knows how to produce a value. Using |nterpreters the programmer deals with concepts like
value producer” and "generic operation”, instead of "cell which can contain a real number"
or "integer addition”. Interpreters permit the kind of “selective abstraction” that we noticed
in creative thinking (Chapters 1 and 2). Entities such as "X" can exist on a variety of
conceptual levels: as a (Fregean) representation for information, as a cell which can contain
information, or as a routine which can generate information. This ability to defer
instantiation until necessary, so characteristic of the mind, usually makes it easier to

program in interpreted languages than in compiled languages.

Mitchell'®’® merged the concepts of interpreter and compiler. He notes that

2.A Dynamic Programming 51

comptlers and interpreters do essentially the same work. Each must analyze program text
for syntactic and semantic correctness. Interpreters then execute code based on the analysis,
while compilers emit code for later execution. Mitchell suggested that a way to delay
instantiation 1n a compiler is to execute programs interpretively the first time. The compiler
can then emit the same code that the interpreter executes! The execution of the interpreter

provides a “semantic cache"® which the compiler can use to emit code with little extra effort.
The successful interpretation of a program (a) indicates that it s at least syntactically
correct; (b) gives a certain confidence that it is semantically correct as well; and (c) gives a
high degree of confidence in the correctness of the compi'~d code, since it is identical with
the interpreter's code. It is even possible to declare the types of variables at "interpreter
time”, by indicating to the compiler that the data type bound to a variable the first time will
be the type in all successive bindings. This "dynamic declaration” is a promising concept.

The logical extrapolation of interpreters in a computer environment is the concept of
hardware interpreters. The Burroughs Corporation has developed interpreting machines in
its B-H000 (ca. 1961) and B-600C series. These machines provide instructions to load
descriptors on top of an infternal stack. The hardware interprets each descriptor and
executes the necessary operations to produce a value, whether it is by a simple literal call, an
array access (which will pick up indices from the stack and check them against bounds), a
procedure call (which will set up a procedure frame and transfer control), or some other
type of access. The compiler can invoke any of these cases by emitting a single type of
instruction: "fetch descriptor”. Needless to say, this substantially simplifies writing compilers
for Burroughs machines. Today, with the availability of fast, inexpensive, microcodable
computers, hardware interpreters are becoming an increasingly viable technique.

Programming by Example

Sussman %73 used some of these ideas in an automatic programming context. His

system "HACKER" has the ability to extend general cases to handle unforeseen exceptions.
Using HACKER the programmer writes an algorithm for the situations which ‘he knows
will occur, or which he explicitly wants to handle If during execution the algorithm
encounters an exceptional situation, the system can (sometimes) automatically modify the
algorithm to handle the new case. There is a fixed set of strategies for modifying
algorithms, which Sussman has observed being used by “hackers” at MIT (programmers
who en joy squeezing the last ounce of performance out of a machine). This is a variation
on the "learning by doing” concept. The user programs a general strategy, and the final
algorithm evolves in the course of trying various examples. It has similarities with the
Unimate/HP-65 systems discussed above, in that programs are written by doing specific
tasks.

Winston'%7% addressed the related task of learning structural descriptions from
examples. He investigated the possibilities (and pitfalls) of generalization. For instance, his
system was able to develop the concept of "arch” from examples of specific arches.

e e e

) Py g - A A e

52 Graphical Descriptions of Algorithms 3.B

Section B .- Grayphical Descriptions of Algorithms

“Sketchpad”

There have been and are numerous graphical application programs (cf. Wells'972),
These are prograr:: written in a linear language, eg. FORTRAN or machine language,
that are designed to incorporate giaphical interaction in specific application domains, such
as architectural or engineering d.awing systems. They are special purpose programs.
However their operations are often cleverly choser and provide significant assistance to
workers in their domains.

The first and still among the most elegant graphical application program is Ivan
Sutherland's "Sketchpad"'%®%. Sutherland's goal was to use the computer to help people
visualize things. He pioneered methods of drawing on display screens. While Sketchpad is
basically a drawing system, it does not just mimic paper. Instead it takes advantage of the
computer’s special abilities in such features as multiple "windows" and scaling. The user
draws on the display screen with a light pen. Sketchpad was the first to employ the "rubber
band" line (used in PYGMALION) in which one end of a line remains fixed on the
display while the other end follows the pen. The user may create and modify pictures and
their parts. Pictures may be constructed out of "instances” of other pictures.

Instance - Derived Picture

Sketchpad’s vocabulary deals with properties of geometric drawings. Sutherland developed
a system for specifying pictorial "constraints”, such as two lines are to remain: (a) parallel to
each other, (b) at a fixed angle to each other, or (c) connected at one end. The constraints
are specifiable pictorially, in an abstract diagram which can itself be given constraints and
manipulated iconically. Sketchpad was used in several applications, including an
engineering application to compute the stresses on a bridge and an animation application in
which placing constraints ci: a diagram caused it to move.

Sketchpad deals with images as pictures, to use Arnheim’s terminology. The
diagrams are manipulated as diagrams, not as representations of something else.
"Sketchpad's internal data structure and programs are so rigid that it is inconvenient to

make a geometrical entity have non-geometric meaning."[W.R.Sutherland*] As with most

e ———

Ty g 3

RS

AT

RN e 1

3.8 Graphical Descriptions of Algorithms

53

graphical application programs, Sketchpad is not a general-purpose programming language.

But 1t is an articulate medium for manipulating pictures, and the first to make effective use
of a hight pen.

Graphical Procedures

Ivan's brother, W.RSutherland, subsequently developed a Sketchpad-like system
giving the geometric diagrams symbolic capabilities. His system is based on an electronic
circuit metaphor. His program elements are arithmetic, logical and control units with
input/output leads that operate like the "level” (versus "pulse”) outputs of flip-flops.

B —
+
—

—
B — ’f e %
—_—

X = (A+B)/(CxD)

Using a light pen, the user can select elements from a menu, connect them, assign
values, and watch the network execute, all in real time. The language is very good for

expressing parallel control, which is, of course, standard operating procedure in circuit
diagrams. For example, a value placed on the lead labeiled "B" above is shunted to the "+"

and "x" boxes in parallel. A menu of circuit elements provides functions for type-in, type-
out, "seeing” values on certain jeads, arithmetic, logic, conditional branching, and some
diode-like elements for controlling data flow. A problem with the system, the same problem
experienced by AMBIT (see below), is that the circuit diagrams are often so complex as to
be difficult to comprehend. Consider the following program, which computes the square

root function.

I et e T

o Sy AT STy

v

1 B T S T T T Ty R T T 18 R I P T | WU AT e I e e . (e .

E,
]
Erz 54 Graphical Descriptions of Algorithms 3-B
t: |
- —eed
3 a 4
‘ \ ———— 3
k I s o '/
:
2
+ X 3
A —t— o <
i :
e et :
:
E:
X = SQRT(A)) :
The angled boxes are used to indicate more clearly the direction of data flow. Races :
‘ in networks like this are prevented by the ". aotation above input leads. This specifies .
that after use, the input is to go to undefined. Thereafter, the operation will not execute

until a new non-undefined value arrives.

{
5
° 3
'§

go to UNDEFINED ' ———r

preserved —————b

W.R.Sutherland recognizes the potential of this medium of expression when he
writes: "The two-dimensional nature of the language helps in visualizing many things
happening at once... Being able .. to see a program run gives one a grasp of detail that is

hard to obtain in any other way."®

The GRAIL language (Ellis'?®%] developed at RAND was a _.unlar attempt to
describe programs visually. The GRAIL philosophy was rhat since flowcharts are usually
more articulate than the statements they describe, why not program in the flowchart
notation to begin with? GRAIL incorporated several graphical elements for representing
programming operations, such as conditional branching, functional elements, and loops.
The contents of each box, however, consisted of ordinary machine language statements.
Just the nteraction of functional units was described graphically. GRAIL did include a
“zooming” control for dynamically scaling program elements. Complexity could be managed
by enlarging boxes to be examined and then shrinking them again to see the overall
structure.

"AMBIT"

Another approach to graphical programming is provided by the AMBIT family of

languages[Christensen®] Ivan Sutherland’s Sketchpad operated on pictorial data but
without assigning machine semantics to the pictures. W .RSutherland’s system assigned
semantics to pictures, but the data was non-pictorial (e.g. numbers). AMBIT/G (for graphs)
and AMBIT/L (for lists) are attempts to combine pictorial data and procedures. Processing
in AMBIT is by two-dimensional pattern matching. A procedure is actually an image of
the data to be passed to it. The image simultaneously specifies an input pattern to be
matched and a transformation to occur if the match is successful. This dual role is
accomplished by having arrows made up of single lines represent links that exist in the
input data, and arrows made up of double lines represent new links to be formed in the
output data.

An interesting feature is that each procedure-image contains a control link specifying '

what to do when the pattern match succeeds (S) or fails (F). In the image above, success
causes the procedure to be called recursively. Some quite large programs have been written
i AMBIT, including several garbage collection algorithms. It is enlightening to see the

“AMBIT versions of certain algorithms. AMBIT is a step toward an effective metaphorical

context for working out problems.

2.B Graphicas Descriptions of Algorithms 55

e

SR S

Graphical Descriptions of Algorithms 3-B

reverse-1

p

y

\

c

T\
N
L

Reversing a List

However AMBIT is a good illustration of the deficiencies inflicting all current
graphical programming languages. A practical deficiency is that implementations are not
yet efficient enough to make the languages usable on a large scale. But a more basic,
theoretical deficiency is their philosophical orientation. Every graphical language suffers

from one or more of the following:
(1) They use static representations for dynamic processes.

(2) They lack detail suppression mechanisms. Consequently, pictures quickly
increase in complexity beyond the ability of the eye and short term memory

to assimilate. (GRAIL is an exception.)

(3) They operate on formal representations of data, one level removed from
actual information.

(4) They lack image-defining capabilities. The programmer cannot draw his
own images; he must use the images designed by others. This limits the

effectiveness of the metaphor.

.

o e L

e A — S o g g o = AT e

3.B Graphical Descriptions of Algorithms 57

' Anyone who has looked at a large AMBIT program knows how hard it is to understand. i
The maze of lines soon becomes overwhelming. Even small algorithms sometimes take a lot ‘i
of parsing by the eye before their operation can be discerned. This is probably due to
unfamiliarity with the languagss, but articulate languages should not need much explaining!

LR el

Much of the complexity can be traced to AMBIT's representation of both the
present state and a future state in a single frame. This is an example of telling instead of :
doing. Environments for describing computations are inherently more abstract and require {
a greater translation from mental representations than environments for doing computations. il
The program frames become more and more complex and full of notatinnal dogma. They 1
violate one of the cardinal rules of animation: i

What happens between each frame of a sequence of pictures is more
important than what exists on each frame. The actual graphical
information at any given instant is relatively slight. The source of

information is picture change[Baecker’]

] It is the business of animators to communicate effectively with human beings. The next
example discusses a computer animation system.

Animated Graphical Descriptions

o L L

Ceaidn Skt

Graphical Descriptions of Aigorithms 3-B

Ron Baecker'%%® in his GENESYS system investigated ways to describe animation
sequences using pictorial control. For example, the graph above might be used to drive a
movie of a ball bouncing. Recently he and his students at Toronto have made some

animations of program semantics, such as (a) recursive functions in LOGO [Papert'"°]

and SMALLTALK [Kay'%2), dynamically showing recursive cails until a terminating case
is rcached; (b) the operation of the railway switching algorithm for parsing; (c) the
executton of various simulations, in particular the simulation of the movement of people in
a subway system. These amimations are the most effective presentation of mechanical
semantics that | have seen. They begin to instill the level of insight and intuition so
necessary for creative thought. The critical aspect of their success is the dynamic, visual,
movie-like presentation of information. A descendant called SHAZAM has been
implemented in Kay's Learning Research Group at Xerox PARC (described in section D).
SHAZAM enables the computer to dynamically interact with the animator, permitting him
to create and modify movies in real time. These animations are at the core of
PYGMALION's model of articulate communication.

Visual media like the ones in this section provide the user with a rich working
environment. If a concept can be placed in one of these metaphors, extensive processing
can be done on ii before the limitations of the medium become toc procrustean. With
Fregean media such as verbal languages or one-dimensional programming languages, the
iimitations immediately impose constraints. In Koestler's terms, visual media provide
alternative "matrices” or "thought contexts” which are powerful enough to be of use in
creative thinking; linear media do not.

Section C -- The Computer as an Artistic Resource

Art enters when we labor thoughtfully with some ideal in vie v -- that is,
as soon as we cut loose from action that is purely mechanical.

-- Clifton Johnson, photographer®

A good example of the reasons why the aesthetic and technical elements
in design must be considered together is irnplicit in the term 'fair’, used
to describe fluid dynamic surfaces in products such as air-frames, aero-
engines and ‘ships’ hulls. It is required that some surfaces be Yair' in
order that they should work properly, that the air or water shoutd flow
over them in the required way. But fairness can only be judged by
inspection of the surfaces, by aesthetic judgement. Thus we have in its
clearest form the need to keep the data structure and mathematical
methods of design, and the visual or aesthetic aspects going hand in
hand.

The use of ‘fairing’ is not a reason for ignoring precise technical
methods in so far as they have been developed. One might perhaps say

T PRI

P |

o el bttt A S

& 2 2Rl

Eo L ol o

3.C. The Computer as an Artistic Resource 59

that the use of fairing represents the use of that part of knowledge
which comes from experience and has not yet been precisely formulated.
But there will always be knowledge that has not been precisely
formulated.

-- Anthony Hyman®

P'/GMALION brings art into computer science. Rather than providing a computer
resource which artists can use to create (paint, compose music, etc.), PYGMALION is a first
attempt to provide an ariistic resource which computer sclentists can use to create. In fact, 1
hope PYGMALION will contribute to a re-evaluation of what a “computer scientist” is. In
my view, a computer scientist is anyone who knows how to do something and wants to use
the computer in doing it. The view that only highly-trained programmers can implement
tasks on computers is intellectual snobbery of the worst kind. Anthony Hyman describes
such conventional “"computer scientists” as “computer specialists”.

The 1dea that computing 1s necessarily difficult and to be reserved for
senior grades or forms at school is surely wrong, corresponding to a
rather early stage in the development of computers. experimental studies
with seven-year-old children [and even younger] have shown that
children will take to the use of display terminals with ease if they are
given the opportunity young enough. Today computers are stiil
expensive and computing languages by and large still rather clumsy. (It
1s curious that after working with computers for many years some
people have deluded themselves into thinking that FORTRAN, the
most commonly used scientific computing language, resembles a natural

lznguage)'®

Such views are merely historical, an outgrowth of the anachronistic programming languages
that were first provided. As Kay says, we should have a more optimistic opinion of people;
people are smart, and incredibly versatile.

The skilled prograinmer is necessary only because the distance
between the computer implementation of a task and a person’s
mental conception of it is too great.

Symbiotic systems like architectural design systems have eliminated the skilled programmer
altogether, and substituted the architect, a real ’ computer scientist”. But architectural design
systems are special-purpose programs written (by a "skilled programmer”) in some general-
purpose language for a specific application. What is needed is a symbiotic general-purpose
language. As Hyman notes,

A good case can be made that to achieve satisfactory results the ultimate
user must have a say in the development of the design systems
themselves .. The designer can no more rely on the computer specialist
to develop design systems appropriate to his needs than a wood carver
can allow other people to sharpen his tools. The computer specialist
does not have the knowledge and cannot acquire it without becoming a

designer himself.'!

L b et ek haihas T o s e e i ot st e o e

R, TRr . AR R e C e e e
o L os alih i ad o ed i fti

60 The Computer as an Artistic Resource 3-C

Computer science does employ some general principles that are beneficial for every
programmer to know, such as subgoals and subroutines (subdivicing a problem into smaller
units), heuristics and partial algorithms (it is not necessary to insure that a program will
work on all possible inputs or to specify all passible paths), recursion (parts may exhibit the
same characteristics as the whole), processes (the computer may remember state), tracing
(following the execution of a process step by step), debugging and editing (parts of a process
may contain errors and be corrected independently of other parts), and others. But these
are the concepts that should be taught to a person who is learning to use the computer, for
as Papert says, these are really teaching him abou! thinking. Too much tirne is spent
teaching "integer variables must begin with the letters I, J, K, L, M and N and real
variables with other letters.”

What 1s the potential of using computers artistically? "In Renaissance Florence men

such as Brunelleschi and Da Vinci were at once artist and engineer. They were deeply

| involved in extending both new ideas and new techniques ... [Today the sheer volume of
information makes this difficult.] Recently computers, having acquired effective methods of

display and considerable visual processing power, are beginning to be used for design in

earnest. With this development the possibility is raised of re-establishing the unity of

Renaissance Florence." (Hyman 12

Section D - The Computer as a Creative Resource

Artists create using a medium. The process of creation is incremental. Painters dab,
dab, dab at their canvasses until they find just the right expression of their feelings.
Sculptors chip away at the stone until first a knee, then a nose, siowly a whole figure is
perfected. Though they begin with an outline, a "grand idea", artists realize the idea ir: a
sertes of small steps (“subgoals”). There are a few exceptions. Chinese brush painting
emphasizes single strokes to define figures; the technique of placing the brush on the paper
has been highly developed. Painters using watercolors are prohibited by the nature of the
medium from touching up their pictures, but just for this reason watercolors are difficult to
use. Photographers seem to be most completely spared the incremental task. (In fact, Henri
Cartier-Bresson refuses to allow his pictures to be cropped or modified during printing,

declaring "The picture is good or not from the moment it was caught in the camera."'3)
But photographic creativity is ill-defined, and it is certainly more than the mechanics of
camera, film and darkroom. "The oniy microscopic part of the photographic process which
can be remotely described as ‘creative’ is that fractional instant when the photographer feels:
yes, now."'? It may require years of patient experiments before a photographer develops

: the instinct for “the decisive moment”. Though photographers do have a more immediate
medium, the process of learning to use it is still incremental.

The value of incrementality has not been ignored in computer science. Time-
sharing is an attempt to provide incremental computing, among its other goals. Many
programming languages are incremental, most prominently LISP, SMALLTALK and APL.
Some text editors are incremental; anyone who has tried to use a batch-oriented text editor

=

Rl o o

TR

61

1.D The Computer as a Creative Resource

will appreciate the vatue of incremental ones' The advantage of mcrementat computing is
that the consequences of an operation are immediately discermble by the user. He can
isolate the consequences of individual operations and debug them one at a time. The
similarity with artists is inescapable: panters dab on a bit of paint and then step back tn

look at the resutt, etc.

A computer will be of the greatest vatue to creativity if computing
done with it is incremental.

O.K Moore stresses the need to take the work out of learning, making it seem in all
respects like play, if we want to develop creative thinkers With his "Talkl;wg Typewriter”
and his notion of an “autotetic environment", Moore concentrated on combining enjoyment
with substance. The computer alone is not sufficient to interest children; 1t must be used in
an imaginative way. Moore defines an activity as awfotelic if "engaging mn it is done for its
own sake rather than for obtaining rewards or avording punishments that have no inherent

connection with the activity itsetf."!®

The most 1maginative work involving computers and children 1s going on today at
MIT under Seymour Papert and at Xerox PA RC under Alan Kay. Papert and Kay have
abandoned the traditional approach to computer-aided nstruction, which they view as
using the computer to teach the same old concepts i the same old way. Their goal is to
develop new ways to teach concepts and, more importantly, new concepts themsetves. Papert
has devetoped a “turtle” controlted by a computer, and a simple command tanguage

(LOGO) for maniputating it.

Children Using a Turtle

o i

CRREEE o

B e o

3.D The Computer as a Creative Resource 63

them that "complete happiness” in creation of which Lucien rreud wrote. For the children,
through the computer, make the turtle draw the geometric figures. They create, as it were,
brief life histories for the turtle. Not since Pygmalion's statue Galatea stepped off her
pedestal has a man-made ob ject been brought to life to a comparable degree.

Kay has expanded on Papert's work. He and others at PARC have developed a
small, powerful, stand-alone computer with an excellent graphics display and zudio output.
He relies on the display and a clean simulation language called SMALLTALK to teach
children how to think. The computer serves as a laboratory for experimenting with
representations. Kay's eventual goal is to develop an inexpensive, portable "personal
computer” the size of a notebook. People will use it instead of paper. It will have an
interchangeable tape cassette which can hold books, newspapers, letiers and memos. It wil!
have the ability to use multiple type fonts, so that the owner can dynamically display text in
his fuvorite font (dynamic publishing). It will have a plug for connecting with remote
sources of information, such as libraries, newspaper offices, stores and banks. With its
high-resolution display screen, it can even be used to watch television and video tapes. Of
course, in addition the owner will be able to write programs with it. Its flexible, personal
nature makes the computer a "user-moldable” medium. PYGMALION was begun to
provide a two-dimensional way to communicate with this computer.

A true genius is creative and stimulates the creativity in others. He causes an
atmosphere so charged with excitement that good things are bound to happen. The
computer also, with the correct interface, can cause such an atmosphere. In Koestler's terms,
it can serve as the representational "matrix” whose intersection with the mind's "matrix”
provides the "creative spark”. At Xerox PARC this small computer is being used to
stimulate people’s enthusiasm, inventiveness and artistry.

Section E -- Radia Perliman and Her Magical Button Box

Radia Perlman, a visitor at PARC from Papert's group at MIT, has developed a
unique instrument for teaching very young children (ages 3 to 6) about programming. The
instrument is a "button box" and is used as an input device for a Papert turtle. The button
box 1s connected to a small computer. As the picture below shows, some of the buttons
have an iconic description of their action on top. For example, pushing the button marked
with a vertical arrow (which we will call "UP") causes the turtle to move forward one unit
(about half an inch). Other buttons make the turtle back up, turn to the left or right, honk
its horn, put its pen up or down, turn its light on or off, and stop. Some buttons have
numbers on them and can be used as repeat fz:tors: pushing 5 UP makes the turtle go five
units forward. Since the turtle responds immediately, the children have little trouble
understanding what the buttons do. With these few commands, children quickly learn to
draw pictures and geometric shapes. Radia calls her button language "TORTIS".

e e P =1 'k-...!?ﬁ,i”.vw“-\;wmm&_ %;:;'”‘L : :’ ."‘, N
" PRECEDING PAGE BLANK-NOT FILMED iﬂ{;gz& : ‘}ﬁ :

e izl

Y AT s g
B

64 Radia Perlman and Her Magical Button Box 3-E

[

The Basic Button Box

Now the plot thickens. In addition to this basic button box, Radia has developed
another box which can be plugged into it: a "procedure” box. The procedure box, shown
below, has four buttons labelled with iconic descriptions of the actions “start remembering”,
"stop remembering”, "do it", and "forget it". (I leave it for the reader to figure out which
button represents which action.) Pushing the “start remembering” button causes the
computer to keep track of the buttons that are pushed from then on. While the computer is
remembering the buttons, the turtle is also doing them, so the child can always see what he
has done. Pushing DOIT causes the computer to execute 1is remembered sequence. DOIT
may be preceded by a repeat factor: 5 DOIT causes the sequence of remembered buttons to
be executed five times. In addition to these four buttons, the procedure box also has four
other buttons labeled with a color (red, blue, green and orange). - These are "naming”
buttons and can be used to give a sequence of remembered button-pushes a name. "Start
remembering” RED starts remembering button pushes and names the sequenc: RED.
DOIT RED executes the red sequence. 5 DOIT RED executes the red sequence five times.
The DOIT button may itself be remembered, so that a command to execute the blue
sequence (i.e. a subroutine) can be included in the red sequence. In fact the red sequence
can DOIT RED (i.e. execute itself) so that recursion is possible. However there is no way to
terminate recursion once started, since there is no “conditional” button.

3.E Radia Perlman and Her Magical Button Box 65

The Procedure Box

Radia has also constructed two simpler button boxes to introduce children gradually
to these concepts. The simplest box is the basic box without numbers, ie. without the
concept "repeat”. The other box is the procedure box without the colored "naming” buttons.

What can we learn from "Radia’s Magical Button Boxes™ Surprisingly, these
simple boxes outperform the most sophisticated programming languages in several aspects!

(1) Children as young as four or five years old can learn to program with these boxes.
These children have great difficulty learning to program with "adult” languages. And this
is not entirely because the concepts are simpler, since the notions of subroutine, recursion,
iteration and (turtle) state are all incorporated in the system. Children can use the button
boxes because the action associated with each button happens immediately upon pushing it,
and that action is visually concrete. Each button has on its top an easily understood iconic
description of its action. It is very easy to "see what is going on" and to establish
cause/effect relationships. In other words, it is easy for the children t> form a model of the
semantics of each button and of the system as a whole. This morlel-building is the key to
understanding. What children can understand, they can use.

(2) Children frequently write bug-free programs the first time. How many
programming languages can claim this, even with adult programmers? The reason for this
is that programming Wwith the buttons is incremental with continual visual feedback. To see

N B ot = e v o ol P =2 a8

L R T TR T 1 L0 L i TR [T B
. 1 s R TR — PR S e i ol L e e, U L b et DR e e

Radia Perlman and Her Magical Button Box 3.E

65

suppose the child wants to write a program lo inake

how this can lead to bug-free programs,
h “s:art remembering” and then to

the turtle draw a square. The simplest way is to pus

] push the “forward” and “urn” buttons as many times as necessary to produce the desired
square. Finally, pushing "stop remembering" finishes off the routine. Score: 1 pass, |
f procedure, 0 bugs. True, these programs are very simple. But PYGMALION shows that
3 these same error-free characteristics can be built into a general-purpose programming
; ! language.
i
i
| |
:
4
]
5 W
-
1 :
¥

PART II

PYGMALION

Chapter ¢

68

Chapter 4

Principles of Iconic Programming

Graphic communication draws upon the natural resources of its own
language, and refers to visual experience as a source of principles and
values for designing more articulate form .. (It] is a conceptual logic
rather than a technical method; a way of seeing the graphic figure as‘a

visual statement.
.- William Bowman'

Summary

The main innovations of PYGMALION are:

(1) a dynamic representation for programs -- an emphasis on doing rather than
telling,

(2) an iconic representation for parameters and data structures requiring-less
- N

translation from mental representations; \

(3) a "remembering” editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns into the
abstract.

Part I discussed a model of creative thought, emphasizing visual thinking. The
model serves as the basis for the design principles in Part Il. Part I may be summarized as

follows.

(1) Visual thought processes deal with images that are structurally similar to the
features of the concepts being represented. Images are a powerful, flexible

and effective metaphor for thought.

ap At o o {nd i
T hre T e -
—— T Ty WY e T TR

4-A 69

(2) Creativity involves the conjunction of two normally-distinct thought
contexts.

(3) Communication 1s concrete. Abstraction (1.e. urderstanding) occurs in the
mind from concrete information.

o T TIBN - L s TR Sy 5 I W S R e SRS o L

(4) Creativity and understanding are incremental; large discoveries usually
derive from a bisociation of smaller ones.

This chapter utilizes the model 1n a computer environment. It presents the general
form and goals of PYGMALION. Most of the specific implem_1tation details are deferred

until the next chapter.

Section A -- Introduction

The main goal of PYGMALION is to develop a system whose representational and
processing facilities correspond to and assist the mental processes that occur during creative
thought. It attempts to make Pygmalions out of people, to provide the average person with
2 medium for creativity without requiring a substantial recasting of his ideas into terms
different from his normal way of thinking. The medium is an environment for writing
computer programs. Non-numeric programming primarily involves the manipulation and
transformation of structure. In PYGMALION sufficient flexibility is incorporated to
permit the programmer to design structures patterned after images in his mind. Part |
provides two concrete guidelines for the implementation:

(1) Multi-dimensional representations are superior to one-dimensional for
communicating some types of information o a human being. Since the intent is to provide
as articulate an interface as possible, the system is founded on visual communication using a

hics display.

ive feedback is essential in a creative environment. Interactive text

(2) Inter
hey are far easier to use than batch-oriented editors. A text

editors are a case in porRit

editor is similar to a program language operating on the restricted domain of text
strings. If we generalize the domain tfo—arhjtrary data structures, the similarity becomes ;
more apparent. If the editor remembers the editing- commands and re-executes them on 1
demand, the two concepts become virtually identical T i
\\‘\\ |
The heart of PYGMALION 1s an interactive, "remembering” editor for_iconic data '
structures exhibited graphically on a display screen. PYGMALION is a visual métaphor :
for computing. Instead of symbols and abstract concepts, the programmer uses concrete T j

display images, called "icons”. The system maps the visual characteristics of icons into
corresponding machine semantics. The display screen is equivalent to a document to be
edited. Programming involves creating a sequence of- display frames, the last of which

Angiad- et T I I T] g e Kl 4 ¥ Y
S frerppmm T P T T A

Introduction 4-A

70

E

E

contains the desired information. Display frames are modified by editing operations.
L When in "remember mode”, the system records the operations as they are done.

!
]
|

PYGMALION is a direct descendant of Kay's FLEX machine'%*%. Many of the
features of the implementation are derived from FLEX and from conversations with Kay.
Perhaps the simplest description of PYGMALION is to say it is just Radia Periman’s
1 button box “grown up" (cf. Chapter 3.E). Though developed independently, they are
B simlar in design. [Instead of the elemental turtle operations like "go forwatd",
§ PYGMALION incorporates general-purpose programming operations like 'store value”.
But the instant-response, visually-oriented, "teaching," error-free characteristics and

philosophy are the same.

| want to emphasize that PYGMALION is not a graphical programming language
in the traditional sense. Graphical programming languages have all attempted to find two-
dimensional ways to tell programs what to do. This inherently involves the manipulation
of formal representations of data. PYGMALION has no representation for telling a
program anything; PYGMALION is an environment for doing computations. If the system
happens to remember what is done, then a program is constructed as a side effect. But the
goal of the programmer is to do a computation once. This is helpful for understanding in
any case: a good way {0 understand a complicated algorithm tn any language is to work
through it with representative values. Instead of using the medium of paper or blackboard,

the PYGMALION programmer uses the display screen.

Section B - The PYGMALION Philosophy

y of PYGMALION is summasized in the following list. ,'

The overall philosoph
les guiding the implementation. The individual principles

These are the design princip
derive from the model of thought in Part L.

(1) VISUAL: The system is visually oriented.

(2) CONCRETE: Since for many sub jects concrete information is easier to deal with
than abstract concepts, the form of information manipulated is explicitly represented, rather
than implicitly described. Arguments and values of functions are analogical.

| with selected, incomplete fragments of memory

(3) PARTIAL: Since people dea
fally instantiated and routines partially specified,

images, data structures may be left part
with traps on incomplete paths.

(4) LEVELS OF DETAIL: Since the quantity of information a person can handle
comfortably (his short term memory) is limited, the system incorporates a detail suppression
control. ‘A structure may be displayed at any level of detail, including a symbolic (ie. string)

represenlaf.ion.

4
E
.
:
o
si-.
g]
3
‘E,

it R e e e e B il T g el T s ot e e e ¢ e T i G e

4B The PYGMALION Philosophy N

(5) MULTIPLE ROLES: Icons are capable of assuming different roles,
corresponding to the functions which images serve in thought. Variables may be signs,
symbols or pictures of their values. An icon representing a program may simultaneously be
a part of a picture or data structure.

(6) SCHEMATA: In order to provide schemata for problem solving, generic
prototypes of common operations are provided, such as conditionals, subroutines, iteration,
recursion, sequentiality, ;ubgoal hierarchies, and classes and subclasses. In addition, a
rectangular shape representing a cell for storing information is provided as the default
iconic shape.

(7) INCREMENTAL: Since creativity is incremental, 7rogramming proceeds in a
step-by-step, interactive fashion, much as one uses an editor to change a body of text.

(8) TIME DEPENDENT: Information is capable of a time-dependent readout, since
it is stored sequentially. The proper representation of a PYGMALION program is a movie.

(9) CONTEXT DEPENDENT: Since a person projects his internal models during
perception, the system does likewise. It forms expectations about its input and interprets the
input in light of those expectations. For example, the mouse buttons are context dependent.

(10) COMPUTABILITY: The system is a general purpose programming language,
capable of computing anything computable (i.e. equivalent to a Turing machine).

Section C -- Iconology

The mysterious way in which shapes and marks can be made to signify
and suggest other things beyond themselves ...
-- EH.Gombrich?

Webster defines "icon" as "a pictorial representation, a vivid or graphic
representation or description, something introduced to represent something else that it

strikingly resembles or suggests, a reproduction or imitation of the form of a thing.”
PYGMALION icons are two-dimensional, visual, analogical, concrete descriptions of
concepts. They can be used to represent anything that can be drawn on a blackbeard.
(This is not suggesting that icons may only represent concrete concepts or that they must
look like the concepts. Icons, like mental images, may be classified as "mimetic” or "non-
mimetic” depending on whether they resemble ob jects or concepts in physical appearance.)
Visual images are a powerful medium for pertrayal in the mind. Except for the restriction
to two dimensions, PYGMALION icons retain all the expressive power of mental images.
Icons form the communication interface: person & PYGMALION & computer.

The primary entity used for computing in PYGMALION is the
ICON.

Gl b o b e L B it ek e ity (et i P e R P et b i S e M et) I LR BT ., SO AL oo ke ot rr——

79 iconology ¢.C

ficon | _ icon |

WL |

icon [coi

Examples of Icons

" b e e s kS et A 3 e TR SR

Programming in PYGMALION is a process of designing and editing icons. The
FYGMALION programmer is an "iconographer” -- “a maker or designer of figures or

drawings."[Webster') The programmer of the future will be as well skilled in design as
architects and artists today. Icons define the "PYGMALION machine”. Everything that
can be done to information is done through icons. Icons provide the mechanism for storing
and retrieving information and for representing procedures. Icons exist on a variety of
conceptual levels. On the most primitive level, an icon may simply be a picture, a piece of
i data consisting of line drawings. On a symbolic level, an icon may represent a single
E - machine bit, and the contents of that icon represent the state of the bit, either 0 or 1. On
1 i higher levels an icon may represent a machine word, a sequence of words, an arbitrary data

' structure, the state of the computation, all of memory, the entire computer, or indeed
, anything which can be simulated. Icons may also represent dynamic processes: func:ions,
coroutines, interrupts. - The virtue of PYGMALION lies in being able to use icons as
metaphors for the objects to be manipulated. Every operation on icons affects the display
state as well as the internal machine state. The programmer need interact with the system
only on the display level, with the images he has created. The artist Alexander Cozens

L e e W e = L e
oty e o adhiat o D g _iRRL i oo el L uo i B ilidie sk i S bt okt e Bidinhs o 2o

4-C lconology 73

T
-

taught his students to project their ideas onto random blots of ink, much as Rorschach did
a century later The inkblots became a source of ideas to the artists. PYGMALION as an
1conic programming language attempts to fulf1ll the same role. Icons provide an alternative
representation which strmulates creative thought in the programmey’.

Suppose, as an example, we want to design a controller for "spacewar” space ships.
The display screen might contain the following:

e danis o Yo Dt ket A

controller

& (]

A Controller for Space War

This indicates there are four arguments to "controller”: an object of type “"ship”, an
ob ject of type “thrust”, an ob ject of type “empty torpedo tube", and an object of type “full
torpedo tube”. This is far more descriptive than:

PROCEDURE CONTROLLER (SHIP S; THRUST T;
EMPTY TORPEDO TUBE T1; FULL TORPEDO TUBE T?2),

even assuming the programming language used permitted the above data types to be
defined, which most languages do not. Some extensible languages, like SMALLTALK or
LISP70 [Tesler,Enea,Smith'®73), permit conceptual entities like "ship" to be easily defined
and manipulated. But imagine trying to manipulate a ship represented as an array of
numbers in FORTRAN. The amount of translation required from the mind's
representation 1s enormous!

Icons have several “properties” or "attributes”, some governing the visual (display)
state and some governing the internal (machine) state. The total collection of attributes
constitutes the "state” of an icon. Each attribute will he discussed in detail later in the

paper where it is relevant. A complete listing follows.

ol ot " 1 S—y o Y g 2 " .
a2 R ol) s et ek Fg F A TRt A aad opafs . . opa okl) T oiateden . = U p A o
I b S B Ty » i Lt Ry Sadtal S e o BB L o eaiihou gty

P L0 gm—— SO

74

NAME

R iy - W WL Wiy e e o

VALUE
SHAPE
BODY
DISPLAYED
CONTAINER
RUNCODE
FRAME

IX

1Y

IWD

[HT
FETCHER
STORER

Icons also resP
»

Iconology 4-C

Attributes of lcons '
a string
any object
code to generate the shape
code representing the functional semantics

one of (FALSE, NAME, VALUE, SHAPE}

_an icon

code executed when the icon is told to "RUN"

a display frame (a Smalltalk class); the
entire rectangular boundary of the icon

a number, the X coordinate of the upper left
corner of the boundary

a number, the Y coordinate of the upper left
corner of the boundary

a number, the width of the boundary
a number, the height of the boundary
code to retrieve an attribute of.an icon

code to store a value into an attribute of
an icon

ond to several queries and commands. (In Smalitalk parlance, they
respond to "messages™.) The most important messages are "has", "run", "fetch” and "store:

<icon> has x Yy
<icoh> run

<icon> fetch <attribute>

~icon> store <attribute> <value>

"as" and "run” are discussed in Chapter 7-F. "Fetch” and "store” are generic access paths
to the iconic state. Every icon responds to the messages "fetch” and “store”, but the actions
taken are icon-specific. In fact, the semantics of "fetch” ("store”) are: (a) bind some internal
variables to the rest of the message, then (b) execute the code in the FETCHER (STORER)
attribute. This has great potential power, but it has been largely unexploited in the initial
implementation of PYGMALION. See Chapter 5-C for the chief application.

4-D Text Editors as Programming Languages 75
Section D -- Text Editors as Programiming Languages

The actual implementation of PYGMALION 1s founded upon the following
observation: People using interactive text editors on a computer, even untrained people,
rarely make permanent-typ: mistakes in which they attempt to correct a line, fail to do so,
and exit from the editor wi.h the line still wrong. Since the editor is interactive, the user (if
he 15 paying attention) will see that the line is still wrong and will simply edit it again until
he corrects it. Thousands of people have used interactive text editors, many of them
untrained (n cornputer programming. Secretaries and office workers are beginning to use
them because 1t 1s so easy to create documents, correct mistakes, and change words. But
many of these same people shy away from programming because :t is "too difficult".

Text editors begin to lose their error-free characteristics when they become batch
oriented or when they employ complicated macros (for example, string-substitution macros)
that operate on large sections of the text before they show the results. With these types of
editors, changes are sometimes made that were undesired and are not detected until later.

Let's examine the nature of text editors a little more closely. Without too much
difficulty, w. should be able to see that text editors resemble programming languages
operating on a restricted domain. Their operations, though restricted to text strings, have a
functional similarity to operations in programming languages. For example, chan ng a
character In a text string is similar to changing the value of a variable. I'm not gcing to
belabor this point; the reader will be able to find numerous similarities. Instead, note that
ane difference between the two is that text editors forget their operations as soon as they
have executed them. .\ typical cycle 1s (1) prompt for & command, (2) execute the operation,
(3) display the result, (4) go to 1. In a program one wants the operations remembered, so
that the program may be run as many times as desired. If, instead of forgetting, text editors
remembered the operations as they were done, then the similarity with programming
languages would become even closer. With such a "remembering” editor, we would not only
be editing a body of text; we would also be writing a program that, given the same body of
text containing the same errors, would automatically correct it. Furthermore, we could be
sure that if we correctly edited the text once, every subsequent processing of the same text
would also be correct! Of course this is seldom necessary, but some editors do maintain
tramsaction files in case of machine crashes. At the heart of such edditors is a powerful idea
that may radically change the way software is writien. For suppose that instead of limiting
our editor to text, we expand its domain to include arbitrary data structures. And suppose
we also expanud its set of Operativiie 10 geclute arithmetie, eonditionals, subroutines et
Then we find our once-meek editor assuming all the capabilities of a general-purpose
programming language. And the motivation for doing this is our claim that it is a far
easier programming language to use.

BASIC PYGMALION METAPHOR: a program i. a series of
EDITING CHANGES to a DISPLAY DOCUMENT. Input to a
program is an initial display document, ie a display screen
containing images. Programming consists of editing the document.
The result of a computation is a modified document containing the
desired information.

o et Do Tt b s At e T,

7 Text Editors as Programming Languages 4.D

PYGMALION uses a remembering editor operating on iconic data structures.
PYGMALION differs from all other programming languages ii that there is no static
representation for a program. One programs in PYGMALION by doing the operations on
data structures directly, rather than by telling the program how to do them. When I first
began this project, 1 spent a great deal of time trying to decide what is a good
representation for communicating with a machine. Should it be at machine-language level,
or higher level? Linear or multi-dimensional? Procedural or descriptive? Pattern-matching
or imperative? Because of the reasons in Part I, I chose a two-dimensional representation
for objects. But all two-dirensional languages | considered suffer from the same deficiency:
they are too complex when representing the dynamic aspects of programming -- the
semantics of operations and the flow of control. The representation had to be articulate. It
had to correspond to representations in the mind. However I don't believe the current state
of knowledge permits one to claim that some fixed notation is the mind’s representation for
any problem, let alone for all problems. In fact I belicve that a myriad of representations
are used in everyone's. mind. The question then arises: why bother to have a predefined
representation at all? The important thing is that the mind have a representation for a
problem. Why not just solve the problem and let the computer "take notes"? The answer,
which rather surprised me, is that there is no need for an intermediate, predefined level of
representation between the mind and the computer. Any intermediate level is Pst extra work.
The reason interactive editors like Engelbart’s "NLS" and Swinehart’s "TV" are 5o easy to
use is that they don't interpose an intermediate level of work between a person’s intention to
do a task and the task itself.

Section E - The PYGMALION Machine

In computer-aided design these relationships, between the aesthetic and
technical side, must be made explicit, must be clearly and precisely
formulated. There are two aspects of design to be considered: the visual
and physical aspects of design as understood by the designer; and the
mathematical representation of the design and associated information
which is the form it takes inside the computer.

-- Anthony Hyman®

R R T R A

PETIETETTWT NURETIY T e

Y-Sy

IR | Ay

RS n i T L " b o B Sy et
g cao st b i G s BT S SRS i it TSI BNt A T i T e
v i s b SR VHL RN [€ AW SR Tl S . (W (g o

4.E The PYGMALION Machine 79

Hardware

o S T

Display witn Keyboard and Mouse 4
. 3

To use PYGMALION, the designer sits in front of a television-like display screen.
The one shown is capable of displaying both text and graphics. In front of the display is a
typewriter-like keyboard and a "mouse”. A mouse is a small device originally developed at
SRI which has an X-Y tracking capability and three buttons on top that can be read under
program control as three binary digits. Pressing a mouse button changes the corresponding
binary digit from 0 to I; releasing it changes the digit back to 0. Associated with the mouse
i. a cursor on the display screen; moving the mouse on the table moves the cursor
¢ orrespondingly on the display. The cursor instantaneously follows mouse movements,
mouse tracking is done in machine language. An interactive computer, a graphics display
and a pointing device such as a mouse or light pen >-e the essential hardware ~lements of :

PYGMALION. .;

e T e R R o Ml L B

repeat
done
eval
return

others
memory
disk
e
splay
remember
draw
text
trace
constant
plot
exit

Y- N-»__r'fl 3

D T R L A B

The PYGMALION Machine

mouse value

mouse

remembered

smalltalk

PYGMALION Design Environment

4-E

A =

e

e e A

e T Wi

P R O R TR F R T B

4.E The PYGMALION Machine

Software

When a programmer starts to use the system, the display screen shows the basic
PYGMALION design environment. This provides a visual schema, an initial design
metaphor. The basic environment consists of six icons and an empty area called the
"design space”. The initial icons are named (1) "world", (2) "menu"”, (3) "mouse”, (4) "mouse

value", (5) "remembered”, and (6) "smalltatk”.

(1) Tcon "world"

Every icon is an instance of the Smalltalk class ICON. Two of the attributes
possessed by every icon are a BOUNDARY and a CONTAINER.

BOUNDARY

The BOUNDARY of an icon is a rectangular area of the display screen. An icon is
capable of detecting when the mouse cursor is within its boundary. The boundary of the
"world" encompasses the entire display screen; therefore all icons shown on the display lie
within the boundary of the wworld" icon. This sets up a correspondence between the physical
and logical characteristics of the display. The upper left corner of the boundary is called
the ‘origin”. Al coordinates used by icons are relative to this point. When a
PYGMALION operation positions an icon on the display, it asks for a location for the
origin. The origin of the "world" icon is location (0,0) on the display.

CONTAINER

"Containment" is a natural characteristic of images. The rule is:

The container of an icon “[" is the most recent icon created and
currently being displayed whose boundary physically encloses I's

origin.

The reason for this particular convention is related to the notion of “iconic context” and is
explainec in Chapter 5-F. Ordinarily physical containment is the same as logical
containment; i.2. if the bouadary of icon A encloses icon B on the display screen, then icon
A is B's CONTAINER. In the top two pictures below, icon A contains icon B; in the
bottom two pictures neither icon contains the other, because neither contains the other’s

upper left corner.

T ETar TS e

P s Y I TR N o 2 i
] iR e L e iy 3 R i i s T D

80

. TR (s

The PYGMALION Machine 4-E

A A
B
B
A B 8
A
Iconic Containment
An exception to the containment rule is provided by the "change container”
command. (Individual operations are explained in detail in the next chapter) It is

occasionally useful for icons to be logically connected while physicaily separate. The change
container command explicitly sets the containment relationship between two icons. In the
example above, icon A could explicitly be made the container of B, or vice versa, by using

this command.

Iconic Structures

part of the internal semantics of icons. It is

The container attribute is an integral
container of an icon is itself an

used to organize icons into hierarchical structures. The
icon. Every icon has a unique
icons. If an icon does contain other icons,
be an "iconic structure”. The VALUE of

the top level icons.

container, and every icon may, but need not, contain other
its VALUE attribute (discussed later) is said to
the "world" is an iconic structure containing all

L g i e it o et s U il e B e

e YT PP 1 PR SO AW LN P TP T AT

4-E The PYGMALION Machine 8]

icon

icon

icon

An Icon Containing Three Sub-Icons

An iconic structure is a collection of icons. The purpose of iconic structures is to
provide a symbolic way to access all the icons on the display. Every icon is a member of
some iconic structure. Internally iconic structures are organized as queues. New icons may
be added only to the back of the queue, but icons can be deleted from any position.
Internal descriptions of icons are in the form of index lists, in which each index is an offset
from the front of a queue. Since the boundary of the “world" icon encompasses the entire
display screen, all index lists begin with an offset in the “world’s" queue Icons are
recursively organized. In addition to belng a member of some iconic structure, every icon
may contain its own iconic structure. The "world" is the root of the tree; it is the top-level
structure that provides access to all the other icons. The index list (6 3 5) refers to the sixth
icon (call it "A") in the "world's" iconic structure, then to the third icon (call it "B") ih A’s
iconic structure, and finally to the fifth icon in B's iconic structure. While (6 3 5) is a
Fregean representanon mternally. it is created analogically by pointing to the icon with the
mouse cursor (see icon "mouse” below).

Since each icon has exactly one container, it follows that each icon must be unique.
Making a COPY of an icon creates a new icon, with its own unique containe: The
container attribute may be changed by

(a) CREATEIing an icon;

(b) FETCHing an icon from memory (core or disk).
(c) COPYing an icon;

(d) CHANGEIng an icon's position;

(e) CHANGEIing an icon’s container explicitly;

Ty R S I Ty I

82 The PYGMALION Machine

(2) Tcon "menu”

As mentioned, PYGMALION uses an interactive
remembering editor operating on iconic representations of data.
On the left of the display screen 1s a list called the "menu” of the
editing operations and submodes that are currently available. An
mteresung aspect of PYGMALION is the scaraity and simplicity of
its operations. The trend among high-level languages is to include
more and more esoteric operations. PYGMALION runs counter to
this trend. There are only a few basic operations, and they are
grouped into four categories:

structure -- operations which create and edit icons
themselves

opcodes -- arithmetic and boolean operations on values

control -- operations which affect the flow of control in
a program (conditional, iteration, subroutine)

others -- miscellaneous operations to save icons in
memory, turn remember mode on or off, draw a
shape, etc.

The principle structure operations are CREATE, DELETE and
COPY icons: CHANGE the size or position of icons; SHOW and
REFRESH different levels of iconic structure; and fetch from and
store into the NAME, VALUE, SHAPE or BODY attributes of
icons. Fetching and storing attributes are comparakie to fetching
and storing the contents of a cell in memory -- the most primitive
machine operations. The opcodes provide the standard arithmetic
and boolean functions on values. The control operations provide
conditional branching (IF), iteration (REPEAT, DONE), and
cubroutine’ invocation (EVAL, RETURN). The miscellaneous
operations provide various other facilities that have been added
from time to time: operations to save icons il: memory (MEMORY,
DISK), make line drawings (DRAW, TEXT), step through iconic
structures (NEXT), turn display and remember modes on and off
(DISPLAY, REMEMBER), trace the execution of iconic functions
(TRACE), fetch constant values (CONSTANT), make a hard copy
of the display screen (PLOT), and leave the PYGMALION
environment (EXIT). No claim is made that this is a necessary,
complete or,even the most useful set of operations. PYGMALION

is intended to demonstrate how a set of operations (a display metaphor) can be implemented
iconically. The reader should be able to define his own set given 'he formalism presented
in this report. Additional operations can be added to the menu at any time. In fact, the
only difference between menu operations and iconic functions is that the names of the meinu
operations appear in the menu. The reason names (a Fregean representation) are used n
the menu is that there is not enough space to display all the operations graphically.
However iconically-displayed operations can be created, and Chapter 5-B has an example of

an 1conic menu.

i i 7 i it e et g R e o T S e LR S iaiiong

control
if

repeat
done
eval
return

others
memo
diskry
prpd
splay
remember
draw
text
trace
constant
plot
exit

4-E

T AL RPN, TP

P G T PRSI Y

L bl i e & S g

v S e A e P T

£ caparch

4-E The PYGMALION Machmne 89

Hyman has a perceptive comment on the use of menus.

The presentation of a menu of chaice 1s a powerful working tool. With
a well designed systemi a teachiny manual 1s largely redundant the
system incorporates a sort of programmed learning as a part of the
design system It may be held ihat the rhetoric of a sub ject is not to be
learned that way. but it will serve well enough for the three Rs. It
would also be of help to a designer transferring from one automated
design to another. When the designer is freed from the burden of
attention to detail, which grows enorrmously in a real production system,

his attention 1s freed for creative des»lgn.6

A mcnu prevides constant reinforcement about the capabilities of the system. [t relieves the
short term memory from constantly having to recall the available operations.

The programmer should quickly attain a high degree of confidence in the system
because

(a) each operation is simple and easy to understand;
(b) 1ts effect 1s immediately displayed;
(c) mistakes can usually be undone without harmful side effects.

A menu operation may be “executed" by pointing to it with the mouse cursor and pressing
the top (DOIT, :ouse button.

menu , mouse moUse
cons doit set point
create
change X smmemseese del point
delete
gg?!neh q“t

Executing @ Menu Operation (note change in mouse state)

This typically sets up a new context in which subtequent commands are interpreted.
One effect is to profect an interpretation onto the mouse buttons.

R4 The PYGMALION Machine 4-E

(3) Icon "mouse” mouse

The mouse is the primary input and control device in
PYGMALION. The two main uses of the mc1se are to:

(a) designate an icon

;

o (b) accept button commands.

4 ,

ﬁ ' An 1con is said to be "designated” when the mouse cursor is within its boundary.

!..

; .

3

E‘, icon fcon !

L Designating an Icon with the Mouse Cursor

1

3

l Only icons currently on the display screen can be designated, and only designated
icons can be affected by menu operations. What you see is what you get. This is a

simulation of the principle that only images in the brain's short term memory are operated
on by conscious thought. The display screen corresponds to short term memory. Icons not
on the display must first be brought to display level by creating them or retrieving them.
from storage. Core and disk memory simulate the brain's long term memecry. There Is a

fairly accurate correspondence:

The Mind - T he Computer
short term memory o display screen
long term memory “ core and disk memory
conscious thought o operations on icong

(The simulation breaks down at the interface between short and long term memory. In
PYGMALION icons are retrieved from memory by referring to their symbolic names, e.g.
"factorial” or "resistor”, under the control of a (conscious) menu operation. In the mind that
would correspond to bringing everything into short term memory under the contrcl of
conscious thought, which is certainly not the case. As pointed out in Chapter 2, creative
retrieval is often subconscious and involuntary. However, the rest of the simulation is as

faithful as I can make it.)

Actions are initiated by pointing to an icon with the mouse and pressing cne of the

1
13
e

1

;

1

L l +-E The PYGMALION Machine 85

:

E

g mouse buttons. The mouse is context sensitive, the mouse buttons have different

5‘ l interpretations depending on which icon the cursor is in and which operation is currently

i being executed. The "mouse” icon acts as a promgt, displaying the current interpretation.

4 Descriptions of the interpretations are represented in this paper by the following picture.

- | Explanation of the buttons

X, 3

: mouse 1

i £

4 top tutton 3

cecseccene middle button 1

4

- bottom button ;

e 4

:

: For the menu, the interpretation is:

: mouse 4

g [Execute the operation pointed t

: doit P P o

e | 4

& | ssssseoeoe 7

:
mouse value 3
(4) Icon "mouse value"

: In PYCMALION, the mouse has a value associated with it, in addition to its cursor |4

i and its buttons. Several operations like NAME and VALUE use the mouse value. E

. 1 Fetching an attribute from an icon may be thought of as attaching it to the mouse. Th= :

value may then be dcposited in some other icon. The "mouse value” icon shows the current

1 . value attached to the mouse.

P '

E | 2

| :

b s;

L T T T e M T L P T W e Eakad e 0L o o WO e e .
ks v o — L e Gl e RN, TL P [y Cpnnna e T S W i g

1

The PYGMALION Machine 4-E

[skt MU S s il L ol

86

remembered

(5) Icon "remembered”

i
-
'S

s

In ".emember" mode (explained later) the system keeps track of operations &s they
are done and inserts them in a code list. The last operation or two remembered (l.e. in the

current code list) is displayed in the ‘remembered” icon.

|
3

(6) Icon "smalitaik” cuaiitalk

This 1con 1s for communicaiing with Smalltalk. When the mouse cursor Is in this
icon, Smalitalk expressions may be typed and evaluated. In addition, other information

about the state of the system is periodically displayed in this icon.

T Y W e Y IR T T S T T W

The Design Space

TP LT, BN

The rest of the screen is a large area called the “design space”, available for
displaying iconic data and program. The design space 'tes within the "world’s" boundary,
of course. The programmer performs computations in this environment by pointing with
the mouse cursor to operations in the menu and then selecting operands from the data
structures in the design space. At times an operation may request linear data, eg. a number. .
or string, which may be input from the keyboard. The result of every operation is : §
immediately displayed; if it is not what was intended, other operations can be executed until

the desired state is achieved.

L Attt

Routines are written by editing actual data structures and performing operations on
actual operands. It is programming by example. Instead of trying to imagine what data
objects are being passed around, the PYGMALION designer manipulates the actual
objects. And instead of telling the machine the sequence of operations to perform by
putting them down on paper, the PYGMALION designer does them himself, and the ‘
machine records them. With very few exceptions, programming languages have required
programs to be written with formal arguments. This additional level of abstractness
obscures the meaning of routines and is the single most:important so..ice of programming
errors. In PYGMALION even formal arguments can be visual images of structures. For
example, the structure of a data object can be concretely described while rhe values of the §
fields are formally represented. The following is an example of an iconic structure that |
might be used to represent the concept "person” in varying degrees of tangibility. Even
more concrete information could, of course, be shown; the degree is up to the designer. The
chilc "Bobby” below may itself be a reference to an instance of PERSON, and it could be

displayed to the same level of detail if desired.

ae gt sk ot i bl L i e g

L G

T, TN o e T

e o SR

el it Sl

)
ETE B SO T

U SR

4-E The PYGMALION Machine

porson

Joe Blou

male 38

nare

sex age

rried children

occupation

street address

city address

Iy
| ol

true

carpenter

88 Market St.

san Francisco

California

state address

children

3

Bobby

Jimmy

Sue

Degrees of Representation of the Concept "PERSON"

o

88 The PYGMALION Machine 4.E

Modes of Execution
There are two modes of execution in PYGMALION:
(1) Display mode
(2) Remember mode.

Every operation has a well-defined meaning in each of the modes, but not every operation
does something in each mode.

(1) Display mode provides a means for communicating the semantics of operations
visually. In display mode each operation shows iconically the results of its execution. This
permits the user to remain in the display metaphor without having to deal with the internal
semantics of operations. Display mode is usually on “ile a program is being written. It is
also turned on when an iconic trace of a program '« - sired. Display mode may be turned
off to gain additional speed of execution, since the display code in each operation will then
not be executed.

(2) Remember mode is for writing programs. In this mode the designer does the
computation and the machine remembers each operation as it is done. The operations elace
themselves in a "code list". When the computation is complete, the designer executes “stop
remembering” and assigns the code list to the BODY or SHAPE attribute of an icon.
Programming in remember mode corresponds closely to the debugging process in most
fanguages. Remember mode is similar to an interactive, display-oriented debugger that
permits operations to be inserted and deleted in the code and that permits execution to be
initiated from any point.

PYGMALION routines may be partially written and run while only partially
specified; the specification has to be completed only when the code is about to be executed.
T'his 1s frequently done with conditionals. When a program is written using actual data,
only one branch of a conditional *:ill be taken, with th2 other branch being left until (and
if) 1t 1s entered. Every code list ends with a trap to the user asking for more instructions. If
the list is completely specified (i.e. terminated with "stop remembering”), the trap is removed.
Only if the trap on a partially specified branch is encountered will the programmer have to
give additional instructions.

An unusual aspect of PYGMALION's remember mode is that it does not involve a
compiler from the display-level actions to the machine-level actions. Rather eacA operation
is its own compiler. Each operation is responsible

(a) for accomplishing a given internal machine task -- the machine "semantics”
of the operation,

(b) in display mode, for generating a representative visual action;

(c) in remember mode, for adding onto the current code list the operation(s)
necessary to reproduce itself.

The operations added are "primitive” in the sense that they are not bullt up out of other

4k The PYGMALION Machine 89

operations available to the program designer. (An exception might be a macro-operation
added by the designer to do some commonly-repeated task.) Thus the product of remember
mmnde 15 a code sequence of the lowest-level operations possible. Ideally all or parts of these
operations would be coded In machine language or microcode. In the current
tmplementation they are coded 1n Smalltalk.

This concludes the basic hardware and software elements in the "PYGMALION
machine”.

Section F .. Characteristics of Programming it PYGMALION

Using PYGMALION causes several changes in the way software 15 constructed:

(1) One mav expect to write error-free programs the first time. This 1s not the usual
case with programming languages, where a great amount of theory and effort has been
spent on the debugging process. It is the case with interactive text editors. The relevant
characterstics are: (a) The system 15 highly interactive. The results of operations are
immediately visible, and mistakes immediately correctable. (Therefore PYGMALION must
be 1mplemented on a computer that permits interaction, for example on a time-sharing
system or mini-computer.) (b) Operations are primarily concrete rather than abstract. Some
opeiations are inherently abstract, such as evaluating a subroutine or iterating over the "ith”
element of a structure. But most operations are explictly represented and their
consequences immediately displayed. This concreteness simplifies the model-building
(understanding) of the programmer. (c) Daia and program are visually represented.
Programs are display documents that can be visually examined and changed until they
contain the desired information.

(2) The standard mode for writing programs is what other systems consider to be
debugging mode. In the traditional writing mode, one works out the logic of a prog.am and
orgamzes the operations that will implemen: that logic. in debugging mode, one observes
the step-by-step execution of operations on actual data, interrogates key values at certain
times, and corrects (or at least notes) those operations that are in error. In PYGMALION
there 15 no difference between the two modes. Designers of large systems, such as operating
systems and programming languages, are beginning to realize that debugging tools should
be designed and implemented first, as an integral part of the project. The more complex a
system 1s, the stronger is the need to see what 1s going on. PYGMALION extracts the
useful features of debuggers and integrates them directly into the programming process.

(3) The human programmer is considered to be part of the execution of the program.
A program need not be completely specified in machine-executable terms. At certain points 18
the human may be called upon to guide the machine through more operations, with the ‘
machine remembering what the human does. Thus there is a distinction between two kinds
of programs in PYGMALION: "open” programs and “closed" programs. An open program L
consists of one or more machine-executable operations, of which one or more are requests :

NPT T ARG PR W e

an Characteristics of Programming in PYGMALION 4.F

for human intervention;, a closed program consists of one or more machine-executable
operations, none of which are requests for human intervention. The program is “closed” in
the sense that the human has told it everything it has to be toid. With few exceptions,
conventional programming languages require closed programs. Production software (i.e.
intended for use by other people without the writer being present) should be closed. But
software in development may, and in fact should, be "opr:1, since such software is far easier

to create.

(4) No additional medium besides the computer is used in designing software: no
paper listings, no punched cards, no scratch paper. Routines are. specified dynamically
rather than statically, by doing rather than by telling. There has been no attempt to make a
static 1 =presentation for a dynamic process. A listing of a PYGMALION routine is a mouie,
a sequ-nce of display frames. Examples of such movies are found in Chapter 8.

Section G -- PYGMALION versus Automatic Programming

It is characteristic of computers that each time they intrude into a new
sub ject they force practical decisions on questions which have hitherto
been considered of a philosophical character, more suited to meandering
discussions over cups of coffee far into the night than to the prosaic
daylight world of industrial practice.

-- Anthony Hyman’

The goals of PYGMALION are quite different from those of automatic -

programming. The general goal of automatic programming is to automate some of the
programming process. In the ideal system, the human specifies the goal of the program in
the form of input/output relations. The computer chooses internal representations,
organizes the logic, maintains consistency, verifies correctness, and so on. Such tasks are
problem-independent; they involve techniques that programmers learn from experience and
apply to many different programs. By extracting problem-independent aspects, automatic

programming hopes to make the process of programming easier. Balzer'%? presents an
example of a person communicating the semantics of an airline reservation system to a
hypothetical automatic programming system. It is evident that such a system would require
less superfluous detail than would conventional programming languages.

However there is a danger in this, if carried too far. By making the computer into a
“black box" that does the actual programming, the user has to think less about the logical
structure of the problem. Furthermore, the user's interaction with the computer is on a
verbal level. Verbal communication is Fregean and inhibits understanding the developing
program. The questions that Balzer has his hypothetical system ask often seem obscure,
since the user does not know what logical relationships the computer is forming. The
computer may even ignore the user’s recommendations, for example on internal
representation, if it thinks it knows better. If successful, automatic programming systems

A pp—

R T T N T gt T

1ol gl e Tl a st L e ot e s cag B R gt Lot de) e gl atoy

4+.G PYGMALION versus Automatic Programming 9]

will replace some fairly high-level thinking processes in humans. Instead of encouraging
humans to do more and better thinking, automatic programming may encourage humans to do
less and poorer thinking. At any rate, automatic programming is unlikely to stimulate the
development of new problem-solving techniques in the use:.

On the other hand Kay and Papert have shown that learning to program can
actually improve children’s thinking and learning skills The notion of debugging is
particularly frutful in giving children new learning strategies. Programming can serve as a
catalyst for creativity, knowing how to program car provide the schemata necessary to solve
problems, just as krnowing how to play chess Ir frequentiv useful 1n real-world situations.
With an articulate intertace, computers can form a symbiotic relationship with a person
which will vastly increase his thinking power. PYGMALION and systems such as those
menttoned in Chapter 3 are attempts to provide such an interface.

L r—r—

&x

Ry WS G T NE ge——
e Fh ol o oo Ul et il

Chapter 8

92

Chapter §

The Internal Structure of PYGMALION

Summary

(a) Icons can exist on a variety of conceptual levels: as pictures, symbols or
signs.

(2) PYGMALION is a remembering editor for icons. Operations are provided
to deal with icons on each of their levels.

Section A -- Smalitalk

PYGMALION is implemented in Smalltalk, a language designed by Alan Kay and
implemented at Xerox PARC by his Learning Research Group. I highly recommend Kay's
"personal dynamic media” and Smalltalk papers"""’""2"""7' for an en joyable reading
experience. Smalltalk is an interactive symbol-processing language with flexible display

rimitives. Smalltalk, like LISP, Is an interpreted language, with an evaluator for implicitly
and explicitly evaluating ob jects. The dominant characteristics of Smalitalk are its notions
of "class” and “intrinsic semantics”. In Sralitalk every object is an instance of a class.
Classes themselves are instances of the class CLASS. This provides an elegant and
consistent internal structure, even more consistent than pure LISP.

Communication between instances is done with "messages”. A message is a sequence
of symbols. The set of messages that a class can handle, together with the responses to those
messages, constitute the "semantics” of the class. (Hewett'*"3 has derived a similar concept
called "actors” from these Smalltalk ideas) Since the code for processing messages is internal

S B LT M T 37T Tt L. W e e
o Y T — v e aliby T o

93

5.A Smalitalk

‘o the definition of each class, the semantics are said to be "intrinsic” to the class. Neither
the evaluator nor other classes know about the internal workings of a particular class; they
know only to what messages the ciass will respond and what form the responses will take.
The class NUMBER responds to the message "s" by performing an addition, but how it
r.anages to accomplish the addition 1s usually not of interest. This differs from most other
systems 1n which the semantics of ob jects are represented “extrinsically”. In compilers the
semantics of data types are represented by the code the compiler produces for them. Data
types themselves have no intrinsic meaning; their meaning is distributed among the code
generators. Having the semantics localized in a single definition is a significant aid to

understaning and madiiying data types.

Classes and Subclasses

Smalltalk is a descendant of the original SIMULA (Dah!'%%*] and FLEX[Kay'%®9].

Unlike SIMULA-67(Dahi'®°), however, Smalitalk classes normally exist on the same
conceptual level; that is, one does not normally think of Smalltalk classes as being subclasses
of other classes (except class CLASS). Here we will briefly discuss the concept of
hierarchical classes, since iconic data structures (cf. section D) are hierarchically organized.
Hierarchical classes are not currently in Smalitalk, though they can be simulated.

The key principle of hierarchical classes is that a subclass is an instance of an
instance. Currently Smalltalk ob jects are classes, instances of classes, and activations of
instances. The notion of “subclass’ involves a new kind of object: an instance of an
instance. One creates an nstance of a class, as before, and gives it instance-specific state
information Then one makes a copy of it, preserving all the filled-in state. Additional
information is then added to the new instance, making it a subclass of the original instance.
Subclasses are recursive; a subclass can itself have subclasses, forming a tree structure. To
implement hierarchical classes, Smalltalk would need the additional capability of
dynamically adding attributes to instances. This is necessary if changes to attributes at a
subclass level are not to alter its superclasses. PYGMALION's iconic classes provide this
capability since additional icons can be added to iconic structures at any time.

There are two kinds of behavior that subclasses can exhibit:
(1) Upward Mobility
(2) Downward Mobility
These refer to the informatinn (and hence control) paths between class and subclass.

(1) In "upward mobility", each subclass can access all of the knowledge of all of its
superclasses. In addition each subclass has some information of its own which causes it to
be distinguished from its immediate superclass. For example, the class HUMAN might be
discriminated into subclasses MAN and WOMAN based on the additional information,

SEX.

T YR T VT T

94 Smalltalk 5-A

HUMAN

MAN WOMAN

““his additional state may involve changes :n the values of superclass attributes, or it may

_entirely new attributes not present in a superclass. Changes made at the subclass level
do ot affect its superclasses. For exampie, if subclass MAN changes the attribute HAIR-
LENGTH to SHORT, the change occurs at the subclass (MAN) level, not at the superclass
(HUMAN) level.

The key aspect of upward mobility 1s the access method that subclasses use to retrieve
information. In what we might call “dynamic upward mobility", a request for the value of an
attribute begins at the level making the request and searches up the tree of superclasses
until it find the first occurrence oi the attribute. This is the most general form. SIMULA-
67 uses a more restricted form, which we might call "static upward mobility". SIMULA
copies superclass information into each subclass, 30 a subclass can access only the
information that exists in its superclass at the time the subclass is created. No new
knowledge can be added dynamically. (Actually creating subclasses is a compile-time action
in SIMULA; at run-time SIMULA does not even remember the class-subclass relationship.)

(2) In "downward mobility", any change in a superclass is reflected in all of its
subclasses. Again we might further discriminate this behavior into "dynamic downward
mobility" and “static downward mobility”. Suppose the class HUMAN possusses an attribute
called NUMBER-OF-LEGS, and suppose its value suddenly changes from 2 to 1. In the
dynamic form, all the subclasses of HUMAN (ie. MAN, WOMAN) are immediately
updated. In particular, any instance of HUMAN drawn on the display screen would now
be drawn with only one leg. In the static form, the change will be observed by the
subclasses if they ever ask for the value of the NUMBER-OF-LEGS attribute, but
otherwise they will never know. Static downward mobility is equivalent to dynamic upward
mobility.

Dynamic upward mobility requires that there be a link from each subclass to at least
its immediate superclass and that the access method for attributes search back through the
tree. Dynamic downward mobility requires that each superclass have links to' all of its
subclasses and that the "change attribute” operation be monitored, so that changes in a
superclass can be broadcast to the subclasses. Static upward mobility as in SIMULA does
not require the presence of links, but it has the unfortunate trait that each subclass must be
larger than its superclass, since the superclass information is copied into it. By the time one
gets to the leaves of the tree, the subclasses might be quite large.

Smalltalk has proven to be an exceptionally flexible language in which to implement
PYGMALION, as well as a fascinating language in its own right. The SIMULA notions
of subclasses have also proven useful.

5-B Icons as Pictures g%
Section B -- Iccas as Pictures

icons derive their power of expression from the fact they are abstract in content but
concrete in shape. The virtue of abstraction is that many different instances can be
handled within one framework. The virtue of concreteness is that it provides a schema for
organizing thought ard reduces the possibility of mistakes. Arnheim points out that mental
images can assume different functions: they can be signs, symbols or pictures of their values.
PYGMALION icons can also assume any of these functions. This section deals with their
most concrete use, as pictures. The operations described here all deal with the visual
properties of icons themselves, as they appear on the display screen. The picture operations

are:
CREATE
icon
COPY
icon icon
CHANGE icon C fcon___] i
1
t
;
—]
REFRESH 1 icon it
icon n 4
| I
l-.
NAME ;
SHOW resistor]
VALUE J
10 i
Hure 10 1

o AT A T S T T Y R TR TR T s e e

96 Icons as Pictures 5-B

The user interface 1s basically the same for all of these, so we will only describe
CREATE in detail. Executing the CREATE operation in the menu establishes a context
for the mouse. The mouse icon will show that the user can now

mouse
set point Set a point (a corner of an lcon)
del point Delete the last polnt set
quit Uuit

The user moves the mouse cursor into the design area and presses the top button. This
fixes one corner of the rectangular boundary of an icon. As the mouse is moved around, the
opposite corner follows the cursor, dynamically changing the shape of the rectangle. The
middle button may be pressed to start over. Once an icon is started, pressing the top button
a second tirne fixes the opposite corner. This completely defines the boundary of an icon.
Each icon starts off with its boundary as its shape, but it can be given a fancier shap~.
The DELETE operation is the inverse of CREATE. The CHANGE operation can be
used to change the position of an icon, the size of its boundary, or its CONTAINER
attribute

The CREATE, CHANGE and DELETE operations have internal semantics in
addition to their display actions. As explained in Chapter 4-E, every icon is a member of
exactly one iconic structure, and every icon can (but need not) contain its own iconic
structure. The CREATE operation adds the created icon to the structure which contains its
origin. If no icon encompasses its origin, it Is added to the "world’s" iconic structure.

Similarly for DELETE; the deleted icon is removed from the structure in which it occurred. .

Normally physical containment and logical containment are the same: an icon logically
contains another icon if it physically encloses the other icon's origin. The CHANGE
operation can be used to explicitly change the container, and thus the structure containing,
any icon. This enables icons to be logically linked while physically separate on the display
screen.

(Aside: Most icons are pointed to only once, but multiple references to icons may be
created if iconic structures are treated as values. For example, if the value of an icon is an
iconic structure, and its value is "fetched” and then "stored" in another icon, there will now
be :wo references to all of the icons in the structure. This is dangerous and not
recommended. However it is sometimes done by the system in controlled circumstances.)

The COPY operation gives icons class/subclass characteristics. An icon can be
constructed. which represents a template of a class. For example, the following is an iconic
menu of classes of circuit elements. The elements are all icons which have been given
various pictorial and internal properties. The COPY operation can be used o create
instances of each class. All properties are copied by value, not by reference. Thus iconic
subclasses display static upward mobility (cf. section A) in the current implementation. With
the COPY operaticn items can be selected and positioned on the display without leaving
the iconic metaphor -- that i¢, without having to refer to them symbolically.

.y

b i G b e madny & L _ Lol ot g

Icons as Pictures

renuy

icons
create
chanrge
delete
copy
refresh
shou
name
v:lue
shape
body

opcodes
*» -

s /
B >
and

or
not

control
if

repeat
done
eval
return

pthers
mermo
diskry
il
splay
remember
draw
text
trace
constant
plot
exit

97

1k
—T|l|l-—

1
mouse value mouse
copy icon
remembered S
smalltalk

An Iconic Mynu

98 : Icons as Pictures 5B

The SHOW and REFRESH operations cause different levels of iconic
representation to be displayed. The REFRESH operation simply redraws an icon at its
current level. This is useful if it has been obscured by other drawings. The SHOW
operation sats up the following mouse context.

mOUSS

Sh the NA ¢
shou onw the NAME of an icon
show value Shou the YALUE of an icon
show shape Show the SHAPE of an icon

Usually pressing any of these buttons simply causes the corresponding attribute of the
designated tcon to appear on the display. However there are several special cases. If the
NAME of an icon (see the next section) is already being displayed when the "show name”
button is pushed, the effect 13 that (a) the name of the icon's container is displayed, and (b)
all of the icons in the container's iconic structure are erased. If the VALUE of an icon (see
the next section) is an iconic structure, then pressing the "show value” button causes all of
the lcons in the structure to display themselves. The “show name’ and “show value®
buttons can thus be used to move up and down in iconic structures, selectively displaying or
suppressing structure. If an icon has a shape routine defined for it, then pushing the "show
shape” button causes the shape routine to be evaluated.

SHAPE Attribute and Operation
The main pictorial attribute of icons Is:
SHAPE -~ code to draw the icon

The initial shape for an i.on consists of the rectangular boundary with its name inside it.
The default name is “icon”.

fcon

Defauls Iconic Shape

B, © ST

99

5.8 lcons as Pictures

The default shape emphasizes the concept of “container™ an icon Is a cell which can

hold information It also indicates that the cell has a name and can be referenced

symbohcally

However icons are not hmited to rectangular shapes. In general the value of an
icon's SHAPE attribute 1s a user-definable routine which displays the icon's surface-level
structure A shape may be any dispiav image that can be generated by a routine. This
flexibihity allows the iconographer to design his metaphors. He may give them whatever
shape he considers appropriate to ther meanming. This 15 another example of
PYGMALION's attempt to program in the language of thought.

header _J_imm___
i -
preface back pointer
preface length _ _-l ‘—-

il

data

false

Some [cons with Fancy Shapes

Any 1con can be given a fancy shape, regardless of its intended use: picture,
variable, function, data type, etc. The value of the shape in communicating semantic intent
1s entirely dependent on the user’s skill in designing images. It 1s the task faced by artists in
communicating with the public. PYGMALION presents an empty canvas with only a few
pre-defined 1cons and operations. A suggestion for the future (Chapter 7) is to develop
within the PYGMALION paradigm a more extensive graphic vocabulary to serve as

/ b Tera T b el e SR e = B Ll eyt s ki Dl

100 Icons as Pictures 5B

schemata for the user. But the iniual system presents just the tools and not the patterns for
designing icons. (For those who can't draw, PYGMALION does provide tools for defining
rectangular shapes: CREATE, COPY, CHANGE.) Defining a shape routine is exactly like
defining an iconic function, except that the code assembled is put in the SHAPE attribute
nstead of the BODY attribute. Shape code is evaluated with the "show shape” button in
the SHOW operation. (Function code 18 evaluated with the EVAL operation.) The
SHAPE operation is used to define shape routines. The procedure is to put the system in
"remember” mode, and then execute menu operations which draw the shape. This is
discussed extensively in the section on icons as functions, section E. While any menu
operation can be “remembered”, the two most useful ones for shapes are DRAW and

TEXT.

DRAW Operation

The DRAW operauoﬁ is used for making line drawings. It sets up the following
mouse context.

mouse
start: line Start a neu line
stop line End the current |ine
quit Quit

Pressing the top mouse button causes a new line to be started at the current position of the
mouse cursor. As the mouse is moved around, the other end of the line will dynamically
follow the cursor (Sutherland’s "rubber band" line). When the top button is pressed again,
the other end point is fixed at the current cursor position and a new line begun from there.
Pressing the middle button causes the end point to be fixed without starting a new line.
The bottom button leayes the mouse context. The lines are all relative to the origin of an
icon designated by the user; if the icon changes position, the lines move with it.

Kd
i

+

T

% B lcons as Pictures 101

Drawing a Resistor

TEXT Operation

Text strings can be included 1n pictures with the TEXT operation. Executing it (a)
first asks the user to type a string 1n the "smalitalk” icon, (b) then asks him to designate an
icon to use as a base position, and (c) finally asks him to position the text on the screen.
The text 1s positioned relative to the origin of the designated icon. As with line drawings,
'f the 1con moves, the text moves also, maintaining the same relative position to the icon's
origin :

Section C -- Icons as Variables

The mathematical concept of “variable” has the attributes NAME and VALUE
associated with 1t. These attributes are preserved in PYGMALION because icons can serve
as varables

NAME -- a string

VALUE -- any object; e.g. number, string, vector,
icon, iconic structure

But PYGMALION variables can have an additional attribute not usually possessed by
variables. a SHAPE. For example, a variable which is to be bound to resistors might be |
represented by an icon having the following attributes:

Icons as Variables 5-C

NAME — 'R’

VALUE — unbound

SHAPE — -MN—

NAME Attribute and Operation

The NAME attribute 1s an ordinary string of characters and is one way to refer to
an 1con. Names are used to suppress detail when complex structures are being manipulated.
They can refer to 1CONS without causing their shapes to be displayed. Names serve the same
functions in PYGMALION that words serve in conscious thought: they provide a reference
to other structures without exhibiting the full detail of the structures. Just as the referents
of words, niot words themselves, are used in thinking, the referents of names (i.e. icons) are
used 1n computations in PYGMALION. This correspondence is another of the ways in

which PYGMALION attempts to bring programming closer to thinking.

Examples of names: "
"alongname"

"a multi-word name"
"a strange e!1283+._,8& name".
"UPPER AND |ower case LETTERS"

The name of an icon can be changed by using the NAME operation in the menu.
Executing the NAME operation sets up the following mouse context.

mouse
fetch name Fetch the name attribute
store name Store the name attribute
it
w Quit

con to the mouse. The
he designated icon. The

The top button attaches the name attribute of the designated i
middle button deposits the mouse value in the name attribute of t

5.C. lcons as Variables 103

battom button leaves this context. With these buttons the user can point to icons and
mamipulate their NAME attributes. The effect of the buttons depends on the icon
designated, it 1s not the same for every icon. "Fetching” a name from the "smalitalk” icon
causes a "read” to happen; the user may then type in a name or something which evaluates
to 3 name. "Storing” into the “smalltalk” icon causes the value attached to the mouse to be
printed "Storing” into any of the other intial icons ("menu”, "mouse”, "mouse value”,

“remembered” or "world") 18 illegal.

VALUE Attribute and Operation

The VALUE attribute and VALUE operatior: are identical to the NAME attribute
and operation, except that the VALUE attribute can be any object in the system, not just a
string as with the NAME atribute Since the VALUE of an icon can be any ob ject, in
particular 1t can be an iconic structure. (Recall that an iconic structure is an ordered
collection -- a queue -- of icons) Each of the icons in the structure can be usec as 2
variable, so that any icon can effectively have more than one value. Indeed any sub-icon
can have its own 1conic structure as its YVALUE, and so on indefinitely. In this way entire

structures can be built up and manipulated.

Examples of values: atom
193

"a string"
(a vector)

icon

icon

icon

icon

-
NS e L L e o

|
|
|
|

Icons as Variables 5-C

104

Note that the NAME and VALUL operations, like the picture operations described
in the last section, are perceived by the user as editing operations on display images. They
change the contents of the display screen as part of their execution. They also change the
internal state, of course, but the mapping between this state and the display screen permits
the user to deal with them on the display level, without bothering about the internal
implementation. He perceives his task as editing the display screen until it contains the

desired information.

Section D -- lcons as Data Structures

As meationed in the previous section, an icon can have an iconic structure as its
value. In that case we say the icon "contains” the iconic structure. That terminology derives
from the fact that the iconic structure usually occurs physically within the boundary of the

icon, as is the case with the example presented below:

-1 tcon

ioon

fcon

An Iconic Structure Consisting of Three Sub-Icons

Since sub-icons can themselves contain other icons, structures of any degree of
complexity can be built. ‘The structure may be a single level deep, as in the array below,

5.D Icons as Data Structures 105

array

EO\GNOQOQNF‘

An Iconic Structure Representing an ARRAY

or the structure can have nested sub-levels.

header v Tength -
. flags {
i preface back pointer !

preface length i

data L—W upied
OCC i i

relocatab
sweepable

Nested Iconic Structure

| Classes of -ob jects can be constructed by creating an iconic structure containing tne

' desired number of sub-fields, filling in the relevant sub-fields with type-dependent
information, and then saving it in memory or on the disk. This provides a visual template
for the data type. The following are steps defining a class of 10 ohm resistors.

B Ty Y e

106 Icons as Data Structures 5-D

Create an Icon icon
Give it a NAME resistor
Fill in the VALUE 10

10
Draw a SHAPE

If we wanted arbitrary (instead of 10 ohm) resistors, we could simply leave the

VALUE attribute unspecified. This is a very simple definition, involving no substructure.
A more realistic simulation of resistors might have sub-icons containing current flow,
connectivity information, and other model-specific details. The design flexibility and the
visual concreteness of iconic structures permit the programmer to use them effectively to
represent his ideas. They serve as schemata in thought.

Section E -- Icons as Functions

Another attribute possessed by every icon is:

BODY -- code for functional semantics

This permits icons to represent functions. The BODY of an icon can be evaluated at any
time by executing the EVAL menu operation and then pointing to the icon to be evaluated.

5-FE lcons as Functions 107

Since the EVAL oneration, like all operations, can be “remembered”, subroutine calls to
tconic functions car be included in a function’s definition. An iconic function can EVAL
1self, so that recursion is possible. This is similar to Radia Perlman’s Button Box, but
PYGMALION includes conditional and iteration operators for execution control. (Recall
that Periman’s procedures had no way to terminate recursion.)

Defining Iconic Functions

Iconic functions can be defined in PYGMALION by executing the BODY
operation in the menu. Basically this entails putting the system in "remember” mode and
then doing the calculation to be performed by the function. This is precisely the "dynamic
programming” philosophy of the Unimate robot, HP-65 calculator and Periman Button
Box: the programmer “teaches” rhe machine a procedure by doing it once. The following
are the steps necessary to compieteiy define a function

(I) Create an icon. This is called the "function’s icon” and serves as the
framework for the definiticn. The code for the function will be put in the
icon's BODY attribute

(2} Give the icon a symbolic name. Symbolic names are used to invoke
tunctions that are not on the display screen (i.e. that are in memory or on
the disk) The function need not have a name if it will never be invoked

symbolically, in which case it is like an unlabeled LAMBDA expression in
LISP.

(3) Create sub-icons in the function's icon to hold individual arguments to the
function. This makes the function’s icon into a formal "argument icon".
This need not be done if the function takes no arguments.

(4) START REMEMBERING.

(5) DO THE COMPUTATION ONCE.

(6) Create sub-icons in the function's icon to hold the values computed. This
makes the function's icon into a "value icon”. This need not be done if the

function returns no values. Frequently the same structure can be used both
as argument icon and as value icon.

(7) STOP REMEMBERING

The argument icon and the value icon provide the communications interface
between routines. Anything in the argumerit icon when a function is EVALed may be used
by the body of the function. Anything in the value icon when the function returns may be
used by the caller. It is easily seen that functions in PYGMALION can take zero or more
arguments (the contents of the argument icon) and return zero or more values (the contents
of the value icon). So we get multi-valued functions easily. The argument and value icons

s, |

S

108 Icons as Functions 5-E

can be any size. In particular they can cover the entire design area. In that case everything
on the display screen is passed to and returned from the function

As with iconic data structures, the argument and value icons correspond to the
schemata used in thought. Once the argument icon is displayed, the designer fills it in with
actual values. This eases the problem of interfacing procedures since the called procedure
can display the structure of the arguments that it wants. It eliminates a major source of
*ugs: calling a procedure with the wrong number or type of arguments. Similarly the value
1con helps to reduce confusion about the values functions return. A cleverly designed value
icon can be of substantial assistance in keeping values straight. In a large program with
many procedures, it is a difficult task to remember the calling/returning conventions.
Fregean descriptions of parameters (eg. "ARRAY X", "LIST L") provide little help. One of
the aspects of PYGMALION 1 like best is the very real assistance provided by concrete,
analogical argument/value icons.

Icons representing functions can, of course, have any of the other attributes of the
class ICON, such as a SHAPE routine.

Remember Mode

“Remember” mode is one of the two modes in which PYGMALION can operate.
(The other is "display” mode.) Remember mode is entered by evaluating either the BODY
or the SHAPE operation in the menu, depending on whether the user wants to define a
function body or an iconic shape. (Actually the difference between the two is purely a
matter of convention; the SHAPE attribute could be used to hold a second function body if

" the programmer so desires. Both attributes use the same set of operations) When the

BODY or SHAPE operation is executed, an empty “code list” is placed in the corresponding
attribute of the designated icon. A “code list" is a sequence of operations. A reference to
the code list is also placed in the "remembered” icon. The code list in the "remembered”
icon is called the "current code list". As mentioned in Chapter 4, each operation in the
menu is capable of adding itself to the current code list. An internal flag called
REMEMBERMODE controls this: when true, operations execute and add themselves to the
current code list; when false, the operations simply execute. The BODY and SHAPE
operations se¢ REMEMBERMODE to true. The "stop remembering” option of the
REMEMBER operation sets it to false when the computation is complete.

There are several display indications that the system is in remember mode. The
notation "remembering..” appears at the top of the screen. The last operation or two done
is shown in symbolic form in the "remembered” icon. The picture above shows that the
user has just fetched the value 9999 from the fifth icon ("smalltalk”) and stored it in the
sixth icon (in the middle of the screen). Then the REMEMBER operation was executed to
display the “remember” options available: remembermode can be temporarily suspended and
then resumed, or stopped altogether. The suspend/resume option is useful to make
ad justments to the display screen without having the operations remembered.

i s B s i s s o

——

¥

.

lcons 43 Functions

mend

icons
C{eate
change
delete
copy
refresh
show
name
vglue
shape
body

control
if

repeat
done
eval
return

others
memory
disk
avept
splay
remember
drau
text
trace
constant
plot
exit

remembering...

mouse value mouse
999
stop
remembered suspend
Fetch (5) value)
(store (6) value) resune

smalltalk

The PYCMALION Environment in Remember Mode

T e

T ———————

110 Icons as Functions 5-E

Calling Iconic Functions -- Iconic Contexts

Each iconic function carries with it an “iconic context”. An iconic context is an
image of the display screen -- the state of the display that exists when the function is first
defined. Internally an iconic context is just a copy of the "world's” iconic structure, in which
the icons are copied into a new iconic structure by reference. Iconic contexts are necessary to
insure that the display screen looks the same when a function is evaluated as when it was
‘sfined. (This is explaired further at the end of the next section) The following are the
stei= involved in calling an iconic function; the steps marked with an asterisk (:) are done
by w..e user.

(1%) The argument icon for the function is brought to display level. Recall that
the argument icon is an iconic structure containing cells for all the
parameters to be passed to the function. The icon is displayed by retrieving
it from memory, from the disk, or by making a copy of an icon already on
the display screen. The parameter cells aie then filled in with actual values.

(2«) When its argument icon is sufficiently (not necessarily completely)
instantiated, the function is evaluated with the EVAL operation.

(3) The display screen is set to the function’s iconic context. The display screen
now contains the same number and types of icons as it did when the
function was defined, except that the newly-instantiated argument icon
replaces the argument icon used when the function was written.

(4) The BODY of the function is executed. Recall that the BODY attribute of
an icon contains a list of menu operations. Some of the operations must
place the values to be returred into the argument icon, turning it into a
value icon.

(5) The display screen is restored to its state before step (3), except that the
function's value icon now appears where its argument icon used to be.

(6%) The values in the vaiue icon are attached with the mouse and deposited in
other argument or value icons, for use in further computations.

Normally iconic functions should be defined with no superfluous icons on the screen.
However some interesting effects can be acheived through the judicious choice of
“"permanent” icons, icons which remain on the screen across function boundaries. They can
provide an alternative means of communicating between functions, similar to global
variables in other ianguages The following is an iconic context with a four-icon interrupt
vector in one corner of the display screen. This can remain on the screen, and thus appear
in iconic contexts, for a number of functions. Any of the functions can set or interrogate
the icons. The icons themselves can be iconic functions that the user evaluates after he
fetches or stores their values. This is an iconic version of software interrupts.

-

“E lcons as Functions

menu

icons
create
change
delete
copy
refresh
show
name
value
shape
body

opcodes
L J -

« /

< D>
and
or

not

control
if

repeat
done
eval
return

[sinterrupte
serrors
stirrape
bthers sadvises
memory
disk mouse value
Qiept
splay

renenbgr
draw
text
trace
constant
plot
exit smalltalk

remembered

A Shared Structure: An Iconic Interrupt Vector

12 Icons as Functions 5-E

Another possibility 1s to create a set of shareable cells for use as global variables
The picture below shows a four-cell structure similar to a FORTRAN "COMMON" area,
of which three are taken by the (global) variabies X, Y and Z. If more cells are needed, the
user can always add additional icons to the iconic structure. The cells then be used to hold
information for later access by other functions.

Local variables are easy to create and a very natural concept in this environment. A
variable is just a cell for holding information. Since icons can have values, to create a new
local variable the user has only to create a new icon. (The CREATE operation can be
remembered.) The normal procedure is to position the icon in the design area so that it
becomes part of the “world's" iconic structure, but it could be placec' inside some other icon.
The icon's VALUE attribute can then be set and retrieved using the mouse. Local
variables can be created and deleted at any time as part of the definition of a function.
The number of variables is limited only by the size of the display screen. Using the detail-
suppression techniques of the last section, even physical size presents little constraint.

E
! 5 fcone as Fanctions 13
]

menu

icons
create
chanje
delete
copy
rc#resh
show
name
value
shape
body

opcodes
'S -

/

< >
and
or
not

control
if
repeat comeon

don? sinterrupte |
eva serrors

return sthape
others sadvises

remory
disk mouse value mouse
next
display
gencnber
rew
text remembered
trace
constart
plot
exit smalltalk

rNch

Two Shared Structures: An Interrupt Vector and a Common Area

L gt iaa B sloeibaliie Ul e

114

OPCODES

We will illustrate the execution of 1co
; “opcodes”. (An 1llustration of the execution O
: Opcodes are operations on values tha
thetr names n the menu.
functions with one exception: since its nam
that 15, its argument icon brought to display level -
Other functions are invoked by fetching them from s
operation. As with all iconic functions, the
the argument 1con is sufficiently instanti
when the execution 1s comp

Ar i thmetic opcodes: +
X
/!
Boolean opcodes:’ =
<
S
and
or
not

Since these all work the same way, We will only
operation 1n the menu initiates the following process.

(1) The argument icon for "+
designated by the mouse cursor.

5-E

Icons as Functions

T T

mic functions with some simple functions called
f FACTORIAL s presented in Chapter 6-B.)
t are so frequently used that it is convenient to include
The semantics of opcodes are identical to those of iconic
e is in the menu, an opcode can be invoked --
- by simply executing its menu entry.
torage using the MEMORY or DISK
body of the opcode may be evaluated as soon as
ated. The value icon replaces the argument icon

lete. The opcodes presently available are

add

subtract
multiply
divide

equal

less than
greater than
logical and
logical or
logical not

discuss "+" here. Executing the, "s"

" is brought to display level and positioned where
The "+" process then suspends.

1 s

A

(2) "+" has two formal ico
given values.

ns for holding the addend and augend. They may be

P R e — e

5 F lcons as Functions {15

(1) As soon as both values are present, the body of "+" may be evaluated with
EVAL. In this case the body simply computes the sum of the two values;
1e 342

(4) When the body finishes executing, the value icon is displayed. In this case
it 1s simply a rectangle containing the number which is the sum.

Actually, the value returned by “." need not be a number at all. To be completely

A acccurate, the value is the result returned by passing to the first argument the message "+"
4 together with the second argument. The position taken by most extensible languages,
Smailtalk 1ncluded, 1s that symbols like “+" have no intrinsic meaning. Symbols are defined ia

by the rules which use them. For example, the rule

<INTEGER> + <INTEGER> = ...
might be used to define “+" to be integer addition, but another rule

<REAL> 4 <REAL> =~ ... 1

e P o

16 Icons as Functions 5.E

might be used 1n the same translator to define "+" to be addition of real numbers. In
Smalitalk, classes have mtrinsic meamng, ot symbols. The symbol "+" has meaning only
nsofar as classes know how to deal with it For example, Smalltalk ob jects of class
NUMBER (eg 3) contain code to handle messages containing "+", understanding 1t to mean
ordmary addition. Objects of class STRING (eg. "abc") can also handle "+, but in this
case 1t 1s interpreted to mean "concatenate” The semantics of classes are intrinsic in
omalltalk, the semantics of symbols are exirinsic This distinction is preserved in

PYGMALION

The body of opcodes [step (3) above] may now be more accurately described as
follows.

(3 As soon as both values are present, the body of “+" may be EVALed. The
body passes to the first value the message "+" together with the second
value; eg.

<value 1> + <value 2> .

The first value must be an ob ject that knows how to handle the message "t

hEC*'I}EF

ABCOEF

S s i g e 2 ::JAF'.V._, G 4 " ¢ s

nF lcons as Functions Y

IF Operation

Conditionals are provided by the IF menu operation. Executing it brings the
following argument 1con to display level,

7 |—p| true

N

false

The "if" icon

The "if* 1con contams three sub-icons. Only the value of the sub-icon named "?" is
of mterest. It must be assigned a value before the “if* icon is EVALed. The BODY of the
"/f* 1con tests the value of the "?" 1con and depending on the result evaluates the BODY of
either the "true” icon or the “false” icon. Initially the BODYs of these icons consist of code
lists containing only a trap to the user asking for more instructions. When the trap is
encountered, the system is automatically put in remember mode. The BODY can then be

defined in the usual way.

REPEAT Operation

Iteration is provided by the REPEAT menu operation. The "repeat” icon has the
following shape.

loop

The "repeat” icon

" - : : ‘i

Rt < s it s T e A R S AT e e 4T, Fasgik 2 5 <k) e
PPy RSy O e o T NP LTI R R TS e TP P | Chat st S ekins st {2 T
o b B ST e d R o F A A L T o S APl e Tl S ey i e ki s BT SO L R bty S S Ty :
- 3y e p I T I e IATeY e 1 N Tyq Rt]

T e Ty e W R 0 o 10t I T O 1 Iy, Ty g S

118 Icons as Functions 5-E

The "repeat” 1con has one sub-icon named "loop”. It has the same flavor as the "if
1con, except that its semantics are: successively evaluate the BODY of the "loop" icon until
the DONE operation is encountered. The DONE operation is for terminating repeat-loops.
As with the "true” and "false” icons above, the "loop” icon’s BODY initially consists only of
a trap to the user asking for more instructions.

s ; < 2

EVAL Operation

rvsecn

1 Subroutines are called with the EVAL menu operation. It may be used to evaluate
the BODY of any icon. The icon must be displayed before it can be evaluated. This
' means that invoking an iconic function 1s a three stage process:

3
1 (1) Bring the function's icon to display level.

3 (2) Instantiate its argument icon with values.

(3) Evaluate its BODY with EVAL.

18 Section F -- Icons as Processes

The key to associating actions with icons on the display screen is a set of attributes

d possessed by icons:

DISPLAYED -- a data attribute

K HAS -- a procedure attribute |
RUN -- a procedure attribute
_z
¢ |
:
4 The RUN attribute is said to be a "procedure” attribute because a procedure, instead '3 j
of a piece of data, is associated with it. (In precise Smalltalk terms, RUN is a message r
& rather than an attribute of icons, but in this case there is no difference in the user'’s

perception of the two) PYGMA LION is organized as a process structure. Each icon is an
independent process. An icon gains control by oeing internally told to RUN and by the

e

n.F lcons as Processes 119

mouse bemg within its boundary It will retain control so long as the mouse remains within
the boundary. The mouse, then, serves as a dynamic control manipulator. The user
transfers control between icons by moving the mouse from one to the other. (An exception
occurs 1f an icon, by error or design, does not give up control based on mouse movements.
This is sometimes necessary to insure that a task gets completed before control is
transferred.) The code associated with the RUN attribute for user-defined icons usually
Just mnvokes the VALUE menu operation. The "smalitalk” 1con has run-code that waits for
a character to be typed on the keyboard and then evaluates the subsequent Smalltalk
expression. The “menu” icon's run-code executes menu operations. The “remembered”
‘con's run-code is an editor for code lists.

Process control de‘ives from the "world" icon. The run-code for the "world" is:
repetitively ask each icon if the mouse cursor is within its boundary; if it is, tell the icon to
RUN. The "world” can access each icon because its value contains pointers to all of the top-
level 1cons on the display screen. These in turn contain pointers to lower level icons.

"wor d"

"menu" “"mouse" “"mouse value" "remembered" "smalltalk"”

OTHER ICONS

DISPLAYED

The HAS and DISPLAYED attributes are the primitives used by PYGMALION to
control the “aesthetic” and mechnical” elements in design. The programmer/designer can
manipulate only those icons that he can see, that are on the display screen. The
DISPLAYED attribute can have any of the following values:

the icon is not currently baing displayed.

false

name - the name (and boundary) of the icon are
currently being displayed.

value - the value of the icon is currently being
displayed.

shape - the shape of the icon is currently being
displayed.

lcons as Processes 5B-F

1 120

o Qnly those icons having a non-false DISPLAYED attribute can be designated with the
3 mouse. And only designated icons can be the ob ject of menu operations. The result is that
] only icons displayed in some form are accessible to the user.

s

]

E; HAS

3

E Like RUN, the HAS attribute is said to be a "procedure” attribute because a
procedure is associated with it. The procedure takes two parameters, an X coordinate and a
K Y coordinate. An icon can be asked if it “has" a particular value of X and Y; e.g.

3

] .
* . i has mousex mousey .

The procedure checks if the X-Y values given are within the boundary of the icon. In the
% example above, the icon "i" is being asked if the mouse is currently within its boundaries.
HAS first checks if the DISPLAYED attribute is false, returning false if it is. Therefore,
an 1con will respond that it "has’ an X.Y value only if it is currently being displayed in

some form and the X-Y pair is within its boundaries.

Abstract Designation of Icons

8
e
-
Eet
4
i

3 ; There is no difficulty in designating icons when operations are first done. The
f programmer merely points to an icon with the mouse and executes a command (such as
4 “fetch value") by pushing a mouse button. The command then operates:on the icon to.
which the mouse is pointing. But suppose we are defining a program. With

PYGMALION's “remembering editor” every operation done is added to a code list that

‘;;' operations will be re-executed, probably without the programmer even being present. It is
impossible (and, in any case, undesirable) to require the programmer to point with the
4 mouse to every icon to be operated on. He should have to designate the icons only while he
1s writing the program; thereafter the program must automatically act on corresponding
icons. The problem is; how are “corresponding " icons to be identified without using the

mouse? Three solutions:

; (1) One solution might be to specify an icon by its X-Y coordinate location -- its two-
\ dimensional "address" on the display. This is the two-dimensional analogue of absolute
addressing, in which symbolic variables (like "X") in a program are mapped to absolute
l locations in memory during compilation. However, absolute addressing has several
i drawbacks, such as making recursion and relocation difficult. Recursive calls on a function
would have to display the function's icons in the same place every time, overlaying and
obscuring earlier calls. Furthermore, one might wish to rearrange the icons on the display
screen for aesthetic reasons (permitted since PYGMALION's philosophy is that one designs
: a program, and designing involves aesthetics). It seems unreasonable either to prohibit
: rearranging icons or to have it invalidate code written earlier. (Aslvan Sutherland pointed
out, the representations of images in human visual memory are invariant over size and

position changes.)

A S e B

eventually becomes the BODY or SHAPE of some icon. When the program is run, the

i D8V g L v

pes

i el Sl e e S

5.F lcons as Processes 121

A variation on absolute addressing might be to order the icons on the display
topologically But again one might wish to rearrange them for aesthetic reasons, which
should not mvalidate code

(2) Another solution might be to specify icons by a unique label. We could give
every 1con 1n the system its own unique identifying symbol (such as a LISP "gensym") and
use those symbols when dealing with icons. But again recursion causes difficulties. There
1s no way to tell at program-writing time what names will be used in recursive calls to a
function at execution time. f recursion is permicted, the method of accessing icons must
itself be recurstve.

(3) The solution adopted by PYGMALION is a two-dimensional analogue of
dynamic addressing. Some programming languages, eg. ALGOL and LISP, use a stack to
allocate space for variables. Every time a function is entered, a fresh cell is created on the
stack for each local variable. This simplifies recursion at a slight cost in execution speed.
A's mentioned earlier, in PYGMALICN iconic structures are actually queues. Whenever an
icon 1s created on the display screen, it is added to the end of the queue of the iconic
structure which contains it. There is a top-level icon called the "world” whose boundary
encloses the entire display, so every icon occurs within some iconic structure. This queue
stiucture establishes a time sequential access: 1cons which are put on the screen first occur
"earlier” in an iconic structure than later entries; i.e. they are towards the front of the queue.
Since each icon 1s contained in exactly one iconic structure, we can uniquely describe it by
its queue index. The complete representation is a list of queue indices beginning with the
outermost structure (the "world"). For example, the sixth icon on the display is represented
by (6). This description is recursive. If the sixth icon on the display contains an iconic
structure, then we may specify the second icon in the structure by (6 2). There is no
theoretical limit to the depth of this nesting. This was discussed in Chapter 4-E.

Time sequential accessing is important to the ‘remembering editor” aspect of
PYGMALION. Editing operations are done to actual icons on the display screen using the
mouse; the icons are translated by the system into queue offsets when the operations are
remembered. Concrete, aesthetic display images are transformed into abstract, technical
queue offsets. However there is a difficulty. With the time sequential access method
described, the same environment must exist when a function is executed as when it was
written, or-at least the same number and types of icons must be present on the display
screen. Otherwise a queue representation like (6 2) may be invalid -- there may not even be
a sixth icon on the screen. To permit the PYGMALION programmer to use functions
written by others without requiring him to know in detail their environments, each iconic
function carries with it an iconic context (cf. section E). When the function is evaluated, the
screen 15 set to the state that existed when the function was defined, and restored after
execution is complete. The function's argument/value icon is the primary means of
communicating between the two contexts.

122 Chapter 6

Chapter 6

Examples of Purely Iconic Programming

This chanter imitates the branch of ancient Indian geometry that used only one
word "BEHOLD" in its proofs (Chapter 1-G). The reasoning was done iconically. In this
chapter sequences of display images are presented with a minimum of text accompanying
them.

Section A -- LISP70 Memory Organization

The first example is an iconic description of the LISP70 [Tesler,Enea,Smith!®73)
memory organization. Memory consists of a series of structured "blocks” of consecutive
words of core. The block structure is presented here in various levels of detail. The
purpose of this example is to demonstrate the expository capacity of icons and the detail

suppression facilities in PYGMALION.

6.A LISP70 Memory Organization 123

An Abstract BLOCK

header

preface

preface length |

. data
|
Gross Organization of @ BLOCK

>

‘5‘,’4‘...“‘:* 2t

b

RN 1 DRSPS NP SRP s} WL AV R o

TE B TI t S P RS TL g R o
: e P T S TR TR et R e kg
- L e rgen ey o R e s e carkd i e i a

; e TR TR PR T W = e e T S B

LISP70 Memory Organization 6-A

124

P Rt TNl Sl o i -
M, ceat e BT i o ittt B a it L
£l b o e b gl gt L L il Al L v e
: -

b

1 header lengqth !
flags | |
preface back pointer

x preface length

kel s

- data
3

: Structure of a BLOCK HEADER : ..
1 header Tength :
4 —flags !
; preface back pointer .
preface length .E
|
i data L™ occupied 4
3 relocatable]
"‘ sweepable : &
| .

: Structure of the FLAGS field in a BLOCK HEADER

5
| | |4
W i

G xR

6-B Factonal 125
Section B -- Factoriai

This example presents an iconic trace of the execution of the function
FACTORIAL on the argument 6. On the display screen these frames appear in sequence,
formig a movie of the execution. For completeness and to demonstrate that there is a
static representation for PYGMALION functions, the code list assembled by these
operations 1s included at the end. But this is not the most articulate notation. T he proper
representation of a PYGMALION function is a movie.

This example presents the iconic versions of these concepts in the context of a
famihiar function, FACTORIAL. While FACTORIAL is not a particularly iconic
function, mapping numbers into numbers, it does exhibit several powerful programming
concepts:

(a) the concept of "variable”, and fetching from and storing into variables;
(b) the concept of “conditional”,

(¢) the concept of "recursion”;

(d) arithmetic and boolean operations (s - =)

Note: the dashed lines in the following pictures are NOT part of the definition.
They have been added by hand to clarify the movement of values. In actual use such

clarification is unnecessary, as the movements of the mouse cursor adequately indicate
which icons are affected.

Al Mo ao o Bl o el

menu

icons

opcodes

create
change
delete
copy
refresh
show
name
value
shape
body

*

con"u oy |
?

call
return
repeat
done
eval

others
remcmler
constant
define
display
drau
text
break
plot
exit

mouse value

o<

mouse

Factorial

3

remembered

smalltalk

The BODY of FACTORIAL with the VALUE 6 is evaluated with the EVAL operation

6-B

~
I T L T AR S) T e e T e

6-B

Factorial o

menu

icons

delete Q
copy
refresh

value
shape
body

opcodes
*

VANINS

control
?

call
return
repoat
clone

eval mouse

127

create
chanjge 6 3

show
name

mouse value
b
othoers
remember
constant
define
display
draw

remermbered

text

break smalltalk

plot
exit

The display screen is set to FACTORIAL's iconic context (no superfluous icons)

o WP TR Ly g oo et

T B e s

S et ey ol G ko e A o g

T S T T T

oy

i s ua e s

I s e, a1 T

vadyial g s et e foa X T

menu

icons
create
change
delcte
copy
rcefresh
show
name
value
shape
body

opcodes

control
?

call
return
repeat
done
ceval

others
remember
constant
define
display
draw
text
break
plot
exit

AR e A S

T —P| true
\

|

false

mouse value

Factorial

mouse

flrl

remerbered

smalltalk

A conditional icon is brought to display level

6-B

gy

e s

6-B Factonal 129

ment

icons
create K}
change 6
delete Q
copy
refresh
show
name

value ? —p| true

shape
bhody \\\\

opcodes e
*

faise

VANRINS

andd
or
not

! controel
?

call
return
reneat
done
eval mouse value mouse
Ilfl

others
remerber
constant
define
display
clraw

- text
R break smalltalk
plot
exit

rememhered

An icon for testing equality is invoked

B it s

menu

jcons
create
chamnje
delete
C(l 'ly
refresh
show
name
value
shape
body

opcodes
L

VAUNNS]

and
or
not

control
?

call
return
repeat
done
eval

othet's
remember
constant
define
display
draw
text
break
plot
exit

\ﬁzf-m

Factorial

mouse value

mouse

1]
remerbered _]
smalltalk

e

The argument to FACTORIAL is tested against the constant |

6-B

2l

R Bt e the

o~

R YT T RS

6-B Factorial

menu

icons
create
chanje
delete
copy
refresh
showm
name
value
shape
bhody

opcodes

+»

centrol
?

call
return
repeat
done
eval

othet's
remember
constant
define
display
drau
text
break
plot
exit

K/l o<

true

false

false

mouse value

mouse

131

1

remembered

smalltalk

641

§
¢
t

%

L o

Gl TnEr AR Iy N T e

6-B

Factorial

icons
create
chanje
delcle
copy
relresh
show
name
value
shape
body

—
-
-]
it
ul
11
T

'

| %
(I ;
]
\ :-,.g
e a
\ ;
] |
return :
repeat .
done ,
eval mouse value mouse {
, k
ot hers F
reneqhe: |
constan
3?f‘?e remerbered :
spiay | |]
drau !
text a
break smalltalk 1
plot i
exit é

| I _ |

The "false" icon causes 6 + FACTORIAL(6 - 1) to be computed

Factorial

meny

jcons
create
chanije
delete
cQ \y
refresh
show
name
value
shape
body

opcodes

control
?

call
return
repeat
done
eval

others

define

draw
text
break
plot
exit

remember
constant

display

false |

_____—Ea true
N

mouse value

0D

mouse

133

Fedce Tt

IR

s

e

e Lo e i e a2

L)
PR

5

remembered

e e e

i ptag et oty At dea

smalltalk

Preparing [or a recursive call on FACTORIAL

T e s e P s

g -

menu

icons
create
chanje
delcte
copy
ref'resh
shom
name
value
shape
body

cpcodes

+

VANINE]

control
?

call
return
rrejeat
done
eval

others
remember
constant
define
display
draw
text
break
plot
exit

mouse value

Factorial

5

remembered

smalltalk

FACTORIAL(5) = 120 (The intermediate steps have not been shown.)

6-B

e T

N e —————

Factorial

menu]

icons
crcate
chanje
delote
«opy
vetreceh
show
name
value
shap e
l'l(n‘y

pcorles

VANNE I ¢

and
or
not

contrel
?

call
return
repeat
done
eval

ot hors
rememor
constant
deline
display
cdraw
text
break
plot
exit

Q
false __a_—{p true

false

120

2] U
Q
5
mouse value mouse
120
remerbered
smalltalk

The value 120 has been placed in the other half of the multiplication icon

135

Er
»’

meny

icons
create
change
delete
cQ ‘\y
refresh
show
name
value
shajpe
body

opcodes

+

control
?

call
return
repeat
done
eval

others
remcmber
constant
define
display
draw
text
break
plot
exit

true

False

720

120

rouse value

mouse

Factorial

o)

120

remembered

smalltalk

6% 120 =

720

Pt e W

o o ot ERy

TR ¥

S gt i e T kg f ok ok o = i

ot o St AN A ot e =

6-B Factoral

menu

icons
create
chanje 720
delcte
cQ '|y
rctresh
show

name
v%luc false —————49 true

shape
hody \\

opcodes il
L

o2

T T DaPs, e - gt) R e S s T e o A

false

"’7
VANNSE I

720

120

=) 7E)
[»
(ad
0<)

control
? 5
call

return
repeat
done

eval mottse valie moLse
20

xthers
remember
constant
define
display
draw
text
break smalltalk
plot
exit

remembered

The value 720 is placed in FACTORIAL's argument icon, turning it into a value icon

137

menu

icons
create
change
delete
copy
refresh
show
name
value
shaje
body

opcodes

control
?

call
return
rejpeat
done
eval

others
remember
constant
cdefine
display
draw
text
break
plot
exit

mouse value

mouse

Factorial

b

remermbered

smalltalk

The display is restored to its state at the time of the call on FACTORIAL

6-B

el

1

|
I
)

6-B Factoral 139

((IF 192 128
((constant 1)
(store (6) value))
((opcode * 160 272)
(opcode - 160 352)
(fetch (6) value) .
(store (8 1) value)
(store (9 1) value)
(constant 1)
(store (9 2) value)
(constant ‘'factorial')
(memory fetch 384 320)
(Eval (9))
(store (10) value)
(Eval (10))
(fetch (10) value)
(store (8 2) value)
(Eval (8))
(store (6) value)))
(opcode = 208 320)
(fetch (6) value)
(store (8 1) value)
(constant 1)
(store (8 2) value)
(Eval (8))
(store (7 1) value)
(delete (8))
(Eval (7)))

Format of the instructions shown:
(IF <x coordinate> <y coordinate> (<true code>) (<false code>))
(opcode <name> <x coordinate> <y coordinate>)
(constant <value>)
(fetch (<icon>) <attribute>)
(store (<icon>) <attributed)
(Eval (<icon>))
(memory [fetch,store] <x coordinate> <y coordinate>)

(delete (<icon>))

The code assembled as a side effect of cemputing FACTORIAL

5200 3008 3 o S AT A A 15 SRR T T Y I Tl A T T S AT RN ke ol

G A sl A S A Rt S

i = R S e e

T T T

oyl Lt Ty S e

R

T

Y R

U 22 e Ao ML S S T

cF D
o o fa S\ P ST

- g —

ST

140

Factorial 6-B

Section C -- Circuit Simulator

Iconic menus are possible, and in fact encouraged. The initial menu is symbolic
(contains names) to save display space. Below 15 a menu of electronic circuit elements. The
COPY operation 1s used to select icons from the menu. Each icon has a semantically
desciiptive. SHAPE attribute. In addition, each icon contains an iconic structure
Iepresenting the electronic characteristics that are being modeled. The structure of the

“power supply” 1con is shown in one picture. The choice of structure is entirely up to the
tser.

The definition and execution of operations are not shown here; they are similar to
the FACTORIAL example. The fact that the operations modify icons having fancy shapes
instead of mere rectangles has little significance internally. Programming the semantics of a
circuit simulation proceeds in the same way as programming any function. The difference
between using PYGMALION and using a one-dimensional programming language is that

no additional media (scratch paper, blackboard) need be employed. The display screen can
be used to sketch out ideas.

TN

e Ry

p

T Py T ST

" C

Circuit Simulator

menu

icons
create
change
delete
copy
refresh
show
name
value
shape
body

opcodes
*

s /

< >
and
or

not

control
if
repeat
done
eval
return

others
memory
disk
i
splay
remember
drauw
text
trace
constant
plot
exit

mouse value

mouse

remembered

copy icon

smalltalk

The COPY operation and a menu of electronic circuit elements

e

LA b e e S i e

e

e

menu

{cons
create
change
delete
copy
refresh
shou
name
value

sha
Body

S R s stk e SN e

Circuit Simulator

-
-

| —
mouse value) mouse
copy icon
remembered sesesemeT
smalltalk

Several icons are copied from the menu and assembled into a circuit

2 oL e i B i sk R R -t il St & 1 ol e s

6-C

n(Cnour Simlator 143°

meinu

icons —JV\Ar—

create

change

delete —-{ }“'
copy P__

rﬁ resh

show

name —I"'—-

value
shape

body —

ppcodes =
& -

s /

< >
and

or
not

contirol
if

. repeat
' , done
eval
return

others
memory
disk mouse value mouse
Qe
splay
Senenber
rau
text rerembered
trace
constant
3 plot
exit §nalltalk

The circuit is completed

e T e

Circutt Simulator 6-C

{

:
E
! menu
|
E icons
F[create *
o chan%e :
] delete]
copy ‘__ ‘_
E rﬁ?resh 5
; show ;
| il—
- value 4
3 shape :
3 body gl |
3 ppcodes - X
1 Ec - wer : 3
. / pply]
:ﬁ - ———— "1‘
3 < 2 -
P and ;
e or ;
. not 3
control
3 if 3
g repeat ;
N done 1
3 eval :
3 return }
3
pothers b
memory 1
] disk mouse value mouse d
Bispl
3 splay ;
i genenber ;
i rau ‘
4 text rerembered
] trace
: constant
. plot
8 exit smalltalk ;
: i
The NAME and BOUNDARY of the "power supply" icon are shown
b :
k.
:

o-C Conoant Sunalator

menu

X icons

3 create

o change

[delete
copy

refresh

show

- | name

k. value

5 | shape

g i body

3 opcodes
& -
& 'Y /

<
and

% or
) not

] control
1 - if
9 repeat
b done
1 eval
k| return

3 Ethers

i 1 memory

i disk

il
spla

renenbgr

. drauw

b text

3 trace

A constant

3 plot

exit

o

type
voltage

mouse value

145

mouse

remembered

smalltalk

' The iconic structure of the "power supply” icon is shown

o o

P

T A

o

et g st Do

e = . -, . ST

146

Circuit Simulator 6-C

¥
and
or
not

control
if

repeat
done
eval
return

others
memory
disk
aiep1
spla
renenbgr
drawu
text
trace
constant
plot
exit

W -

10

mouse value

-
b

mouse

o

remembered

smalitalk

The power supply is set to 10 volts, direct current

By S s o et bt e b e o Y i e

Rt o g v

Sl o Sl

e T Fe T e JEFoN e

el et ol el o abtad sl R e

6 C Cucuit Simulator

147

Geetion D -- Smalltalk Evaluator

This example contains part of a simulation of the Smalltalk evaluator, Several
«aves i the evaluation of A Smalltalk expression are displayed. The first two pictures
present the principal memory structures imvolved: "activation records” (AREC) and "vector
messenzers” (VMESS). Subsequent frames show the creation and evolution of instances of
these cructures. The actual operations changing the contents of the fields are not shown, as
they were in the FACTORIAL example, just the results of operations on the state of the

structures are presented here.

to cons : hd tl
(<hd->
(<Feo
(fGPhd «)
Thd)
<$tl>
(e
(@7 - 1)
T11))

GPx « cons 3 4

x hd + x tl

The Smalltalk statements involved are histed above tn Smalltalk notation. Briefly,
the symbols have the following meanings:

auebal | peek ahead in the message stream for a |iteral
symbo |

coub le right conditional: evaluate the vector on the right
arrowW i f the expression on the left is true

double up return the value of the expression on the right
arr oW

handd quote the following atom

colon fetch a message evaluated

The class presented simulates a LISP "cons” pair. it responds to the messages "hd" (head)
and 0" (tar)) The variable “x" 1s assigned the cons pair (3.4). Then the expression "x hd
. « 11" 1s evaluated. The display frames describe the execution from this point.

T PV

iaie e

Y W B

LA

=

—— TR T

5 st T e s g e e

S b St e i

Smalltalk Evaluator 6-D
ctivation vector
ord pessenger

The principal memory structures used

c1asss arec classy vmess
arcaller vrcaller
global ‘ vec
message bC
resume max
arclass context
|_arinst | fetcher
artemps vmdict
"‘ The iconic structure of each element “
i b
f’ ’i
j 3
_ i
|6
fg
1‘ s ;:,'
I..,
- class? vmess 3
4 - vecaller
- vec _+———Prpectod [LT T ol
;_ 5 < ;
1 > |
i t _context | |
g ! o ‘;
__‘ | | ~
..‘ I
i E ol
; A VMUESS is instantiated pointing to the vector (x hd + x tl) 1
;: . ;
H
4 i

——

;
:

ool mmallalk Evalaaton 149
—%class: vress :
—+ vmcaller £
V 3] "
! _6’(1?_—9 eﬁtor, e }‘ lﬂ
T 5 | .

H _context

A
b
:
;
E
3
:

4 lass$ arec 4

arcaller !
, “+ qicbal L cons

: message 3 1

a i

cons “

arinst

An AREC is instantivted pointing ta the cous iustance; note VM ESS:pe = 1 1

A |
—%class: vmess E
—~+ vmcaller 1
vec -—-4>ve§tor£ hde & l" 1
5 .
-+ context

iclasss arec
arcaller N .
~_qlobal |_cons 9
message 3 4
4 f_
cons p
arinst b
class; vmess| —Dwecto h+ B nl’
—t_vmcaller J 8 N E
vec .) L
g LBPegtor ? l_ l. l" hd |
e 1 A
—t_conhtext .
E ecto P s
i 5 . 9
- A second VMESS is iustautiated pointing to the CONS message handler b
x; %
¥ 4 1 “
4 %

Smalltalk Evaluator

class: vmess

+ vecaller

Vec +—

2 &

= =
context

ftclass: arec

arcaller
- global

message

cons
arinst

- vmcaller 8
vec 1

2 ’-BIFecta P |"L
8 6
r_context
(=1
)

class? unesitjﬁ—{iuectur

The message is scanned for the symbol "hd", and found

6-D

6-D Smalltalk Evaluator 151

4
3
Ea
-
]
;

EPEE TR

pidie Sl S S i

%Elassi vrmess
—+ vmcaller
vec 3—Pecto
2 5 F‘ ¢
5
+ context

-Fglassi arec |
arcaller
LEqicba —{cons
message 3
4
cons
arinst
class? vmess vecto h+ " M.
—t_ vmcaller 8 A
vec . J
/——"P 0 LF?Eectool_L]nhi

P

The second VMESS now points to the vector after the conditional arrow

3% P30 -

Sikas B0

Smalitalk Evaluator
lass! vmess
;T— vrcaller
vec____+—>vectod b 4, 1 by
2 5
)
-+ context
-f‘ lass arec
L arcaller
[qlobal Bl cons
message 3
a
cons
arinst
Flass; vmess| vecto » lnL
- vmcaller 8)
vec E —)
2 R b
L- i
- _context ==
rBFectoqn }, P
5 L[]

The message is scanned for the symbol "«

, and not found

6-D

o

Smalltalk Evaluator

lass? vress
- vmcaller

)

2
S
r_context

vec___ +—P>jectof

class) arec

&

arcaller

-_qlobal

cons

message

cons

arinst

_—m
- vecaller

vec 4

£ 5

6

O L]

—+ context

m

The return up-arrow is evaluated, which instantiates another /AREC, etc.

e s S

Py

SO e P2

R ey =5 A o oo, ST T

e

Ttk Ul

ST

A

23 ki

L

T

TR

B T Y Ly

PART III
The Once and Future PYG

shery oo

Chapter 7 155

Chapter 7

Conclusions and Suggestions for the Future

Summary
PYGMALION 15 useful today for the simulation of algorithms. It actively
assists 1n the creation of programs, but current efficiency 1s not high enough for
production software.

Part | of this paper enumerated capabilities that belong in an articulate medium of
communication. Part 11 described ways in which the PYGMALION system incorporates
many of these capabilities in a computer interface. This third part summarizes the results,

presents some qualifications and suggests future work.

Section A -- Areas of Success

The characteristics of PYGMALION that seem to provide the greatest assistance to

problem solving and creative programming are:

(1) The display screen assists thinking by relieving the load on the short term
memory. This reduces mental fatigue and provides a convenient medium

for visualizing and transforming concepts.

(2) Programming is in a ‘language of thought". The programmer can design
many images in the form that is closest to his mental representations.

(3) The display serves as dynamic scratch paper. Ideas can be sketched out and

R T e e i AR AT

156 Areas of Success 7-A

developed step by step. Programs need not be completely specified before
they can be executed.

(1) lcon:. mvocarion of functions improves communication between routines.
The argument and value icons are “templates” or schemata of their
inter‘aces. They can be examined and instantiated visually by the
programmer. This reduces such errors as calling a function with the wrong
number or type of arguments.

(5) Aesthetic semantics are concrete; mechanical semantics are abstract. The
user has to deal only with the aesthetic attributes of unages; the mechanical
aspects are managed automatically. The system maps particulars into
generals.

(6) PYGMALION provides a laboratory-like environment for experimenting

with 1deas. Tests can be conducted, the results observed, changes made, and
new tests conducted, completely interactively.

Section B -- Efficiency and Other Problems

The current PYGMALION system is only a prototype implementation. It is not a
production programming language since 1t suffers from several defects.

Efficiency

Systems employing interpreters are usually versatile but slow. In that ‘case,
PYGMALION must be extremelty versatile, because PYGMALION operations are triply
interpreted! Each level of interpretation slows the system down a bit more. The operations
in the menu are

(1) interpreted in Smalltalk, which is

(2) interpreted in Nova code, which is

(3) interpreted 1n microcode on the mini-computer, since 1t is not a Nova!
Because effictency was not an immediate design goal, this was acceptable intially. The
cortect way to remedy the situation is to build a "PYGMALION machine” in microcode, or

at least in machine code. This task 15 made easier by the simplicity of PYGMALION
operations. For example,

ke s T e i e T b it Tt oot kst P i g

—

7.6 Efficiency and Other Problems

(FETCH <icon> VALUE)
(STORE <icon> NAME)

are primitive operations that could readily be written in machine code.

Iuternal Representation

Currently all icons are represented as instances of the Smalitalk class ICON. Thus
even 1if an icon describes a single machine bit, it occupies an elaborate structure in memory.
A mapping needs to be constructed between the dispiay level structure of icons and their

internal representations.

current:

uniform
display | « - | internal

needed:

generic map
display | - | internal

QOperations now treat icons in a type-independent, uniform fashion. For example, the "fetch
value” button works the same regardless of the icon designated (except for the "smalitalk”
icon). There should be a provision for specifying an icon's internal representation in terms
of structural primitives. Then operations on icons could be generic on the type of
representation; eg. "fetch value” could now have severai generic cases:

Icon stored as Implementation
bit "load byte" instruction
or d "load word" instruction
part of structure load ith element of structure
other _

VRS R S S 3NN R A deRiminded TR WIS B e S SR Vel a A M T gebian e S Vel

I HS For the Future 7-.C

Section C -- For the Future

The preceeding section suggested improvements in efficiency as ways to extend
PYGMALION., However there are more important directions which future research can
take. PYGMALION has merely hinted at the potential of visual communication between

man and machine.

Graphic Vocabulary

PYGMALION places minimum emphasis on pre-defined representations and
structures. 1t 1s actually a non-language. PYGMALION is an environment for working
calculations, a medium of communication with a machine. The stress is on permitting the
iconographer to design Ais own images. But the complete absence of dogma is anarchy. Pre-
dotied schemata are helpful i the intial attack on a problem. An articulate graphic
pacabulary can be of significant assistance (o the designer. Several fascinating books have
heen wrilten ol expressing concepts visually. The most systematic in developing a graphic
vacabulary 15 Bowman's Graphic Communication. He explores the potential of graphic
expression, developing techniques for many areas. Below are some of the concepts for

which his notation seems particularly appropriate.

Tl Lo i e

i

i {
y f
PHYSICAL '
: 3
;.:, 4
; 3
' FDRMAL I ZED ;
- 1
|]
SURFACE ENVIRONMENTAL 5‘;3-
{

S
PO DTN N

i TRANSPARENT

Vo g
g
7

COMPOSITIONAL

Appearance /Bowmaul}

ol ¥ Ty D TN S A A A Y S

R o ki i

PR e

e b

e

1.C

For the Future

DIVIDED

COMPOUND

QUANTIFIED

REGULAR

-—L-—

EMPHASI1ZED

5

INTERRUPTED

PHASED

System /BowmanZ/

e
ey T R L

A

RN A

=

P e e S T

S S TSEN ey R T e

Rt e i o - et SR e

R e A e

sl s Gl ¢ L o SR

160

5

S5YMBOLIC

RELATIONAL @

EMPHAS I ZED

COMPOUND E

SUBDIVIDED

- ,
INTERNAL !

QUANTIFIED

STRUCTURAL

Organization /Bowmanal

S ST i ol SR L

For the Future 7-C

O

ELEMENTARY

T

CONTINUOUS

€

GROUPED

i

DECLINING

&0,

SPATIAL

161

7.C. For the Future

It seems clear that a good visual communications medium should find some common
ground between a predefined graphic vocabulary and freedom of graphic expression.
PYGMALION has concentrated on the freedom end of the scale, primarily because
traditional languages have concentrated on dogma. A good project would be to
systematically design sets of icons tailored to stimulating creativity in specific domains.

Dynamic Operations

A greater use should be made of dynamic operations. By this I mean operations
whose execution inherently involve motion. My favorite example is Arnheim's dynamic
geometry. The motivation arses from the chfficulty of visualizing "ideal” concepts (in the
Platonic sense). Suppose we want to prove a theorem about triangles. Aristotle defines the
task: "Though we do not for the purpose of the proof make any use of the fact that the
quanuty 1 the triangle s determinate, we nevertheless draw it determinate in quantity.”
This 1s undeniably difficult. We require a triangle which does not embody any unique
characteristic (such as having a right angle) but which is nevertheless concrete in shape.
Much of the difficulty children have in education can be traced to the problem of
differentiating the generic from the specific.

‘‘‘‘‘

/ a ¥

Euelid's Thirty-second Proposition //lrnlml'msl

Something better is needed for the sake of true understanding. If I
demonstrate Euclid's thirty-second proposition by drawing a parallel to
one of the edges of a triangle (Figure a) and by showing that the
equivalent of the three angles adds up to half a circle, 1 can point out,
with Berkeley, that the size of the angles need not be referred to, and I
thereby prove that the proposition holds for any triangle. To prove the
correctness of a proposition is valuable practically; but what counts for
thinking is that the range of the proposition be made evident. The
figure T used shows, in fact, that the three angles add up to 180 degrees
in this case. But in order to truly understand that this is so in all

e e et e T o a o O oo

I P e e g Ty vt T T A M P R r e

sl s sl Sl M e S SRR . L LR Bt

162 For the Future 7-C

triangles and for what reason, I must go beyond the particular figure to a
full range of triangles. If 1 think of two of the edges as hands of
indefinite length, hinged in such a way that they can sweep
independently across the entire half arcle (Figure b) | see that, whatever
their positions, they will form three sectors adding up to the same
cemicircular whole. When one angle grows, its neighbor declines
automatically by the same amount. In this way, the size of the angles is
not 1gnored -- as Berkeley bids us to do, at the price of losing our visual
grip on the situation -- but perceived in the sweep of its total range. 4
static concept has been replaced with a dynamic one. Generality intended

is now represented by generality perceived[Arnheim®] [emphasis mine)

t
:
5

~

fr.
:
.
-
E]
f

lvan Sutherland began the investigation of constraints on movable objects. For
example, the sides of the triangles above must remain connected. Animators have also
considered the problem. But much work remains to be done before a general specification

of 1conic movement 1s developed.

Section D -- Epilogue

If 1 had to sum up the lessons of this research in two sentences, I would say:

(1) Visual communication with a computer is a productive metaphor for
assisting the thinking and learning processes of human beings.

(2) Research into articulate graphical communication has just begun to scratch
the surface, but the paradigm of operations possessing both aesthetic and

mechanical semantics is a powerful approach.

TR RN R YL T

T arh

e

T

G ke e e e e

ST AT

pbage) g gt S et MIE LA TAR T S g LTt e e N e S D T

1
| ' Appendix 163
¢ Appendix

The complete listing of the SMALLTALK code for PYGMALION follows. At the
time of this writing, PYGMALION is the largest existing SMALLTALK program.

e e Eo b b Th e SN T 7t ok 4O AL w e i

pa

et e 73 meer

1

pygmalion

(GET obset G DO)[4][14][6] « G°
(GPvee = vee[1 to Gsize « size + 107].
vee[Gend « cnd + 1] « input),

to icon x y ¢ mme ix iwd iy iht frame CALLER valne shape body runcode displayed fetcher sto

**rer container
(d's »
(.GPx is vectar »
(GPx « x eval,
«Fe > (fx 1) Tx eval)
Je 5 {Tx «:) Tx eval)
<Jhas »
(:x.:y.
displayed is false » (fffalse)
x € ix » (Nfalse)
y < iy » (ffalse)
x > ix + iwid - (Mfalse)
y 2 iy + iht 5 (ffalse)
ftrue)
<Frun » (SELSF has mx my » (runcode eval))
<Fdisplay »
(<¥name »
((F¢ » (Guame + stringify :)).
displaymode »

(SELF display erase.

write SELF name.

GFdisplayed « GPname))
Ivalue »

(N« > (:value)).
displaymode -»

(G displuyed « GPvalue,

value is iconstructure > (value map(xi display name))

write SELEF value))
«Ishape »
({4~ » (:shape)).
displaymode »

{(null shape » (SELF display name)

shape eval).

GPdisplayed « GPshape))
<thody » (<F+ » (T:body) Tbody)
<Jerase »

(displaymode »
(ey displayed GPname
(frawe fclear,
frame framne 0.
Grdisplayed « false)
eq displayed GPvalue »

((value is iconstructure » (value map(xi display erase))).

frame fclear.
frame frame 0.
GPdisplayed « false)
eq displayed GPshape »
{({(null shape » () white shape eval black).
G~displayed « GPvalue.
SELF display erase)))
<Idelete »
({displayed » (SELF display erase)).
container's value delete CALLER.

SELF map GP(’s (G°name « Gframe « C”CALLER « Gvalue «

@ shape ¢ GPbody « GPruncode « GPfotcher
7storer « GPcontainer « nil)))

«F+ > (N:displayed) ftdisplayed)
<Ffetch » (:x. Tfetcher eval)
«¥store » (:x. :y. fstorer eval)
<teval » (Tbody eval World)
<Imap »

(:x.

(value is iconstructure » (value map(xi map x))).

S A

R T T

RN e i

S

YV e

vl St

> N W Y

ad e T i

pygmalion

= T et

apply SELF to x)

<Fcupy >

ML R - Tl s

gl

£ S S e R

(&x « icon name ix iwd iy ilit nil quick.
x's runcode « rnncode.

x's displayed « displayed.

x's fetcher « feteher,

X's storer « storer,

<Fquick » (Mx)

x's value « (value is iconstrueture » (value copy) value).
x's shape « (shape is iconcontext » (shape copy) shape).
x'$ body « (body is iconcontext > (body copy) body).

<tcontainerless » (fx)
x's container « container.
Tx)

<Jchange »

((<¥position »
(<o »
(g”x e - ix - ix,
Py « - iy - :iy)
GPix « ix + :x.
Gy « iy + :y).
value is iconstructure »
(value map (xi change position x y)))
<Fsize »
(GPiwd « max 16 ((:x * iwd) / 100) \ 16.
G7iht « max 16 ((cy * iht) 7 100) \ 16.
(value is iconstructure =»
(value map (xi change size x y))).

@ix « (busex + (x * ix - basex) / 100) \ 16.
GPiy « (basey + (y * iy - basey) / 100) \ 16)).

frame param
(GPwinx « Gfrmx « ix.
GPwiny « GPfrimy « iy.
GPwinwd « GPfrmwd « iwd.
GPwinht « G*frmht « iht))

1Isnew >

(GPname « stringify :.
GF*frame + dispframe :ix :iwd :iy :iht :.
GPCALLER « SELF.
<Fquick » ()
(displaymode »

(frame frame - 1,

frame fclear,

write SELF name.

GPdisplayed « GPname)).

runcode + iconrun,
G fetcher « iconfetch.
GPstorer « iconstore.
change container absolute SELF ix iy.
fSELF)

<Iprint » (disp « 'Cicon ' name print disp « ">'))

to iconcontext j oldx oldy oldWorld : i x y quick code World

(eval »

L
g
E:

3

o

£ i

£2

((World’s value is vector »
(GPoldx « World’s value.
World’s value ¢ iconstructure 10.
for j « 1 to oldx length - 1 do

(World's value push Icontable[oldx[j]]))).

geticona - CALLER,

quick » (code eval)

:oldWorld.

@oldx « CALLER’s ix.

G#oldy « CALLER’s iy.

showicon CALLER x y World.

code eval.

SELF delete.

showicon CALLER oldx oldy oldWorld)

isnew =

-

£
2t
3

J=t imid 4.-‘“‘“"7."!"”‘-‘ gkl s athim ol oy sn i L SOl

1o
pygmalion PAGE 3)

(GPWorld « lcontable['world'] copy quick.
<Finitially »
(:i. ix. oy, iquick,
G7code «
(:j is supervector » (j) supervector initially j).
World’s value «
(:j 1s vector » (j) iconstructure initially j vector))
GPquick « (Rquick » (true) false).
:oldWorld, :i. :code.
World’s value « iconstructure initially oldWorld’s value vector.
GPx « i's ix.
GPy « i's iy.
GPi « geticon x y index)
s o>
(:G7;.
¢ » ()« :) tjeval)
<Jcopy » (Ticoncontext initially i x y quick code World’s value)
<Fis -» (1SIT eval)
<Fprint »
(disp « 'iconcontext initially G™'.
1 print sp.
x print sp.
y print sp.
quick print.
disp « ' @' code print,
disp « ' G°("
World’s value map(xi’s name print sp).
disp «')")
<3Jdelete »
(GPoldx « World's value.
for j + oldx length to 6 by - 1 do
(eq oldx[j] CALLER » () oldx[j] display delete)))

to iconoutijxve
(:i.
disp « 'G7iiii « icon '
i’s name print.
disp « ' basex+'.
(i>s ix - basex) print.
sp i’s iwd print.
disp « ' basey+'.
(i>s iy - basey) print.
sp i’s iht print.
(null i’s framne param(buf) » (disp « ' nil.' cr cr)
%,i‘s frame print disp « ".' cr cr).
(@&Pc « i's container.
c has i's ix i's iy » ()
disp « 'change container absolute iiii basex+'.
(c’s ix - basex) print.
disp « ' basey+'.
(c’s iy - basey) print.
disp « ! cr cr).
@ v « [GPshape nil @ body nil @ runcode iconrun G fetcher iconfetch @ storer iconstore GFvalue ni
==,
forj« 1 to vlength - 1 by 2 do
(é’x « is (vLiD)-
eqx v[j+11= ()
x is iconstructure » (x map (iconont xi))
disp « ‘iiii’s ' v[j] print disp ¢ ' ¢ '
x is atom or x is vector »
(disp ¢ 'GP x print disp « '.! cr cr)
x print disp ¢« '.' cr cr).
Icontable[i’s name] »
(Icontable[i’s name] delete))

to iconstructuve ii xx : vv
(is » (ISIT eval)
<fcopy >
(@xx ¢ vv vector.

pygmalion PAGE 4) 1

PV . 2
L R R

for ii « 1 to xx length - 1 do
(xx[ii] » xx[ii] copy).
Ticonstructure initially xx)
isnew -
(<initially 5 (G@Pvv « supervector initially :)

G vy « supervector)
<gprint »
(disp « 'iconstructure initially ['.
vy map(sp xi print).
disp « ')
eqp vv @Pxx « apply vv » () Txx)
to abort (disp « ' ...aborted')
to and (1) ’
\ to announce x ij
il ' (:x. ¥
‘ within dispframe 192 320 16 16 string 40 5
(disp clear. 3
disp « x. 2
disp « '...")) »3
e
to blink
(disp « 20.
do 10().
disp « 8.
do 10()) 4

b to box x y wd ht E
% (penup. goto :x :y. pendn. up. :wd. :ht.
N do 2 i

4 (right 90. go wd.

7! right 90. go ht))

4l h
2. | to change i j x y hasex basey i

B (<¥position » k
' (GFi « geticon G, :
i i display erase. :
e i's container’s value delete i.

| move i to :x :y) 5

i <Fsize » 4
: (G"i « geticon (&, i
) i's (GPhasex « ix. G basey « iy).
g i display erase. 4
; i rhange size :x :y. K
b i display shape) 13

B <Jcontainer » :

((<Fabsolute »

‘ (@:i LN |
GPj + geticon :x+1 :y41) §
X GPi « geticon @G>, I
GP) « geticon :GP). I
k- G7°x + i's container. I §
4 & i's container ¢ j. K

(null x » () ;
. ! x's value is iconstructure » (x’s value delete i)). 5
A {eq j's displayed G°name » (j’s displayed « G”value)). :
E | : eqij» () -z‘
j's value is iconstructure » (j’s value push i) y
¥ eq j's value nil » ;
3) (j's value « iconstructure 2. 1
| j's value push i) i
i i sorry 'container is not an iconic structure; ' + stringify j's value. X
g ! SELF display erase)) s ki
¥ - R:
i to constant 1
. . (Mouse store GPvalue :)]
. F

N o Y S 6 SRR D e Fl LA eI R

|

pygmation

to copy i x y
(move geticon (@2 copy containerless to :x :y)

to create x wd y ht
(icon *icon' :x :wil 1y :ht nil)

to elete i
(@1 « (Ficon » (:) goticon :G).
i store GPdisplay GPdelete)

to disk fil basex basey baseicon iiii : : showev
(s > (1:@x oval)
fil.
Ffeteh o
(:basex. :basey.
filin fit,
haseicon display shape.
tcontable| bascicon's name] « baseicon copy containerless)
Jstore o»
(Gbascicon « geticon :@=.
GPhasex « baseican's ix.
Gbasey «~ baseicon’s iy,
fitont fit G>(baseicon)))

to drawline x y
(goto :x + ix :y + iy)

to Eval
((geticon :G) eval)

to extend x attrib

(:GPattrib.

@°x « CALLER’s (attrib).

¢r disp « 'need more instructions for ' + CALLER’s name,
(x is iconcontext » (Gx « x's code)).

(eqq Remember's value x » (remember resume)
remember start with x).

repeat (eq Remember's value x 5 (World run) done))

to fetch i
(@i « geticon :G°.
Mouse store G°value i fetch :@)

to gethutton m n
(GPn « 0.
repeat
(0 = G”m « mouse 7 » (black 7 n)
G¥”mousex « mouse 8.
mousey + mouse 9.
n=msx()
n + m.
(m>3x
(@m ¢ m - 4.
Mouse's (black box ix iy + 12 iwd - 1 17))
Mouse’s (white box ix iy + 12 iwd - 1 17)).
(m>1y
(GPmem-2,
Mouse's (black box ix iy + 68 iwd - 1 17))
Mouse’s (white box ix iy + 68 iwd - 1 17)).
(m>0s
(Mouse’s (black box ix iy + 40 iwd - 1 17))
Mouse’s (white box ix iy + 40 iwd - 1 17))))

to geticon x y vi
(:x is vector »
(@i « World.
Je o
Gv.
for y « 1to x length - 2 do (@i « i’s value[x[y]]).

Gt Dt I S A e e R e g b T S L e L

el Bt TN T AR T, s e e s

‘PAGE 5

F e i e

g PO r L T Ly U ST s i o 30,00 RS Aoty T 100 S MY o 4712 5 et

pygmalion "PAGE 6) 1T

~4 —

s value[x[x length = 1]] « v)
for y « 1 to x length - 1 do (%71 « i's value[x[y]]).

i)

3 ! Y.

] : Jtop »

- (<index > (" World's value map until (xi has x y) index])
E “World's value map until(xi has x y))

it SGindex »

5)' (C#v « supervector 5.

13 getindex x y World's value,

e | fv vector)

b @i+ gotl x y World's value » (1) TWorld) }
3

. to gotindex x y z i xi

(:x.y.

for i« 1to:zlength do
(G xi « 2[1).
xi*s displayed is false > (Tfalse)
v+,
(xi's value is iconstructure »

(getindex x y xi's value » (Ttrue))).

xi has x y » (ftrue) v pop).

ffalse)

A N T R T Ty N O e T e

togetl xyzijxi

k- (:x.:y. 3
¥ for i « 1 to :z length do F

(GPxi «~ 2[i].

xi's displayed is false » (ffalse) 1

b (xi's value is iconstructure » :

. (GPj « getl x y xi's value » (1j))).
xi has x y » (Txi)).

Mfalse)

e

tolFixy

(Mouse store GPvalue 'if°.
G7%i « memory fetch :x :y.
(@x.
Gy,
i's value[2]'s body « x.
i's value[3]'s body « y,
i)

T v

to init
(PUT USER GFDO G(World run). 4

3 Gdisp « Smalltalk’s frame.

4 disp clear.

3 World’s frame fclear. . ‘

. World display shape.)

to makeline x y
E | (penup. goto :x :y.
3 ‘ pendn. goto :x :y)

3 to max x y :
3 ‘ (Gx >y s (™) Ty) y b

to memory i x y
| (<¥fetch »
o (x. :y.
b l @"i « Icontable[Mouse’s value] » (Tmove i copy to x y)
E | sorry 'Cicon ' + stringify Mouse’s value + '> is not in memory')
g <Fstore

(&"i «~ geticon :@.

i Icontable[i’s name] « i copy containerless)) 1
) 4
3 . to memq x v 5 ‘

i (:x.
-) : 10 <:v[1 to v length] find x)

5

(S gl AL T i L S

1

pygnuriion

PAGE 7 |

¢
)
to min x y
(:x Ciy > (7x) Ty)
to move i x y
(:i.
<o, 7
chinge container absolute i :x :y,
i change position to x y.
i display shape.
ti)
to nameout i
(:i's

(Gdisplayed + @ name.

frame frame - 1,

frame show.

within dispframe ix iwd iy - 16 16 string 100(disp + name)))

to neg x
(:x €0 » (M[x]) tx)
to opcode op i x y
(G#*i « icon :@Pop :x 176 :y 64 nil,
icon " i's ix + 16 48 i’s iy + 16 32 nil.
icon " s ix + 112 48 i's iy + 16 32 nil.
i display « Gshape.
i's shape «
(SELF display name.
value[1] display value.
_value[2] display value).
G@”x « GP(SELF display value «

Mouse store @ value value[1]'s value ® value[2]'s value).

x[15] « op.
i's body « x[1 to x length].
ti)
to cpcodel opijxy
(:GPop.
i «icon ' :x 112 :y 64 nil.
@"j « geticon x y index.
[Gétext, op, j, 16, 247] eval.
icon ' i's ix@t 48 48 i's iy + 16 32 nil.
i display « G/°shape.
G~ x ? G%’ P
(text name ® 16 24,
value[1] display value).
x[3] « j.
i's shape « x[1 to x length].
@ x + GP(SELF display value «

Mouse store GPvalue & value[1]'s value). f»
x[9] « op. 7
i’s body « x[1 to x length].

i)
to or

(:. ftrue) ! :
to plot "

((null GET xplot GPDO » (filin 'xplot')).

disp fclear.

xplot :.

disp show)

to refresh i
(GPi « geticon :@", -
i display erase.
i display shape)

pygnnlion

to remember i x CALLER
(<Fstart »
(announce ‘romembering’.
Grememberimode « true.
<fwith »
(Remember's valune « :x.
Remendber's frame clear.
within Remember’s frame
(for i« | to x length - 1.do (er x[i] print)))
(GFx.
Remember's value « supervector initially[[GPextend x]1].
Remember’s framne clear)
sFstop »
(remembermode is false » O
Remember’s valuefend] « nil,
announce ‘stopped remembering’.
G remembermode « false.
Remembers frame clear)
«Isuspend » (rememberimode »
(announce 'temporarily stopped remembering’.
G remembermode « false))
sfresume >
(Remember's value =
(announce ‘remembering’.
G’ rememberimode « true))
:x.(remembermode »
(@i « Remember’s value pop.
Remember's value push x.
Remember's value push i,
within Remember's frame(cr x print))).
&doit » (Tx eval) fx)

to REPEAT ix y
(Monse store GFPvalue 'repeat’.
G7°i « memory fetch :x :y.
G7x.
i*s value[1]'s body ¢ x.
ti)

to setinouse x y z
(:x. :y. iz
within Monse’s frame
(disp clear.
cr disp « x cr.
cr disp ¢ y cr.
cr disp ¢ z))

to Show i
(G"i « geticon :GP.
i store GPdisplay :@*)

to showicon i x y
(:i change position to :x ty.
within disptrame 112 400 32 432 nil(disp fclear).
.i*s value map from 6(xi display shape))

to sorry
(cr disp + 'sorry, ' disp « &
cr disp « 'last operation aborted'.
cr disp + 'read-eval-print loop -- type done to proceed:'.
ev)

to startline x y
(penup. goto :x + ix :y + iy. pendn)

to store i x
(GPi + geticon :G7.

i store :@°x Mouse’s value)

IPAGE 8'

1

b e a e A e B

LA el ol el ey Do biuh il

.

b

T e iy i B LT TR T

Lo M ek b

'

1

pyenralione

PAGE 9)

to striegeify x disp
Cix is stringe 5> (Px)
disp < superstring 10,
N priat,
Tdisp string)

to superstring xx : vec end
(- >
(:xx is string »
(GPvee « vee[1 to end + xx length].
vec[end + 1 to @?end « end + xx length] « xx.
fxx)
vee length < @Pend ¢ end + 1 =
(G vee = vee[1 to 2 * end - 17
Tveefend] « xx)
Tvee[end] « xx)
Fstring > (Tvee[1 to end])
isteew -
(G vee « string @
Gead « 0))

to supervector ii xx xi : vec end
(- »
(vec length > GPend « end + 1 o (Tvec[end] « 1)
Fvee « vee[l to 20 end].
fvecfend] « 1)
<Fmap >
(<Funtil »
;G xx.
for ii « 1 to end do
(G7xi » vee[ii].
xx evied > (Findex » (Tii) Txi)).
<index s (70) Tfalse)
@xi « (From » (2) 1).
P xx.
for ii « xi to end do
(G xi « vece[ii].
xx eval))
Dpush 5 (TSELF « 1)
Qqop >
(end =0 5 (Tnil)
7xx + vec[end].
vee[end] « nil,
@cnd « end - 1.
Fxx)
<Hlongth » (fend)
<Fvectar » (Tvec[1 to ond + 1])
Feval 5 (Tvec eval)
Fdelete »
(G7ii + vec[1 to end] find :.
it=0ax () :
vec[ii to end - 1] ¢ vec[ii + 1 to end].
vec[end] « nil,
G7’end « end - 1)
<Fis » (1S1T eval)
<Fprint » (vec[1 to end + 1] print)
isnew »
(<Finitially »
(GFend « :vec length - 1,
TSELF)
vec « vector :.
Gend - 0.
ftSELF
eq vec Wxx « apply vec » () Txx)

to table i x : names values
(<[»
(:x. <F].

°i « names map until (x = xi) index.

e T e S aeA T T RO S g T

oL fa e o,

e e e e e

pyerabion PAGE 10 L

A K
(i=0-
(nataes e x,
Tvalunes « 3)
N
Tvalines] i} - x)
20 (“lalse)
Sdelote o
i (names delote wannesfi),
vithu s detete values[i])
, “vatues[i])
! isnew -
‘ (GPnames - supervector :i.
Givalues « supervector i)
<Fprint 5 (uanies print))

to text sixy
i (s
CFN e geticon (@7,
- Gi% - its i+ o
Py e s iy + 1,
within dispframe x 256 y 256 string 100(disp « s))

. to waitmouse n x y z
(setmonse :x @y :z,
GFtopbntton « GPmidbutton « GPbotbutton « false.
s repeat
., (0= monse 7 5 ()
/ G770 e gothntton,
n =3 (Mowses frame show. opplot) done).
Monsess frame clear,
n =4 (GPtophutton « true)
i n=1,(eqy dashes » (ahort) GZ>midbutton « true)

n =25 (eqz dashes » (abort) GPhotbntton « true)
l ahort)

to within disp
(:elisp.

f(:G) eval)

to write i v x wd y ht
3 (:i.
@G=v « stringify :.
8 G7'wd = min i's iwd 8 * v length.
A G/t « min i's iht 16 *

(1 +(viength - 1)/ i'siwd / 8). !
GPx «i'six + 4 + (i's iwd - wd) / 2. E
Gy « i's iy + 2 + (i's iht - ht) 7 2,
i's frame frame - 1,

§ i's frame fclear,

vithin dispframe x wd y ht string 100(disp « v))

S Tt et e R

e

T

(@°v « vector 10,

s to(vi %

3 - @G7i « 0.
3 repeat
' (] »>(Mv[1toi+1]) 3
! vGPiei+ 1]« :
| <, |
E ’ Vi dength 5 (GPvev[1to2*y length]))) i
[i
\ to<i h
4 (Ficon » (i « Icontable[:i]. <>, 1)) ¥
to opl op B
[-- (:GPop. ;
& waitmouse ' position' dashes dashes. ¥
A8 tophutton » . i
(remember[GPopcodel, op, mousex \ 16, mousey \ 16] doit.))

Lk Sy gt

Aot gShC L b B

it % P

PR 2

|1)_\';imuli()n { PAGE 11)

to op2 op
(:G?"np.
waitmouse
topbutton »
{remember[@GPopeode, op, mousex \ 16, mousey \ 16] doit.))

position' dashes dashes.

to opbody i
(waitimouse ' dofine hody' ' fetch body' ! store body'.
topbutton »
(G + geticon monsex mousey.
sp disp « i's name.
i's body is iconcontext »
{remember start with i's body’s code)
remember start body.
i's body « iconcontext World i Remember's value.
Icontableli's namme] »
{Trontable[i*'s name]'s body « i's body copy)
cr disp + ‘do you want ' + i's name + ' saved in memory? (y or n)'.
memy read{ 1] G(y Y) »
(Teontable[is name] « i capy containerless))
midbutton »
(remember[GPfetch, geticon mousex mousey index, @”body] doit)
hothuttan »
(remember[GPstore, geticon mousex mousey index, @body] doit))

to apchange i j
(waitmouse ' change pos'
tophutton -
(G"i « goticon mousex mousey.
";Li Warld » (sorry 'cant ' ange position of world')
G7j « geticon mousex monsey index.

change size' ' change cont'.

smitmouse npper left' dashes dashes.
topbutton »
(remember[@ change, GPposition, j, mousex\16, mousey\16] doit))
midbutton »
(G771 « geticon monsex mousey.
eq i World » (sorry ‘cant change size of world’)
G7°j « geticon mounsex mousey index,
waitmouse ' lower right' dashes dashes,
topbutton »
(remeinber[GPchange, GPsize, j,
(100 * mousex - i’s ix) / i's iwd,
(100 * mousey - i's iy) / i's iht] doit))
hotbutton »
(@i « geticon mousex mousey index.
waitmouse ' container' dashes dashes.
topbutton »
(remember[@Pchange, G container, i, geticon mousex mousey index] doit)))

to opconstant
(cr disp « 'value? .
rememher[GPconstant, read eval] doit)

to opcopy i
(waitmonse ' copy icon' dashes dashes.
topbutton »
(G7i « geticon mousex mousey index,
waitmouse ' position' dashes dashes,
topbutton »
(remember[GPcopy, i, mousex\16, mousey\16] doit)))

to opcreate n started x wd y ht
(Gstarted « false.
setmouse ' set point' ' del point' ' quit’,
repeat
(Gn « getbutton.
n=4o»
(Mouse’s (white box ix iy + 12 iwd - 1 17 black).

S s

AR =)

T A RS IR

an

pyemalion

started is false »
(G7°x « monsex \ 16.

Gy - moimsey \ 16,

G wil = Gt « 0.

Gstarted « trine).

mem 65 « 1 'XOR ink'.
box x y wd Iit,
mem 65 « (),
Cwd v (monsex \ 16) - x.
G’ht « (mousey \ 16) -y,
(wd <0 »

(GPwid + - wd.

@°x « monsex \ 16)).
(Wt <0

(G7ht « - ht.

Gy « mousey \ 16)).
rememberf GPereate x wd y ht] doit.
Grstarted « false)

ms=1.
(Mouses (white hax ix iy + 40 iwd - 1 17 black).
started -
(mem 65 « 1,

hox « y wid ht,

mem 65 « 0.,

GFwd « G7°hit « 0,

Gstarted « fulse))
n=ls
(done with Mouse's frame clear)
started »
(mem G5 « 1,
hox x y wid ht.
box x y @wid « (mnx \ 16) - x G*ht « (my \ 16) - y.
mem 65 « 0)))

to opdelete
(waitimonse
topbntion »
(remember[G*delete, geticon monsex mousey irdex] doit))

delete icon' dashes dashes.

to apdisk i j il
(waitmonse ' feoteh'' store' dashes.
topbutton -
(er disp « ‘please type a file name: *,
G/ fil + read eval,
fil is string »
(remember[GPdisk, fil, @ fetch, mousex \ 16, mousey \ 16] doit)
abort)
midbutton »
(G#i = geticon mousex mousey.
G7°j « peticon mousex mousey index.
(1°s name = 'icon' »
(cr disp « "please type a name (a string) for the icon: .
i display name « read eval)).
cr disp « 'please type a file name: °,
G7fil « read eval.
fil is string »
(sp disp « i's name.
remember [Gdisk, fil, G store,)] doit)
abort))

to opdisplay
(waitmonse' on'' off' dashes.
topbutton - (remember GZ(GPdisplaymode « true) doit)
midhuttan » (remember GP(GPdisplaymode « false) doit))

to opdraw i n started xstart ystart xstop ystop
(G7*started « false.
waitmonse ' relative to' dashes dashes.
tophntton is false -» ()

Sasha b o,

e e T

7 o P G AT N Jaar il

1

pygnalion

i ity 4T

B X R Tt e e T W

G - peticon monsex niousey,
sctimouse " start line' ' stop line' '
repuet

(G7n « getbutton.

ns=-

(Mouses (white hox ix iy + 12 iwd - 1 17 black).
started .

(remember[Gdrawline, xstop - i
Glxstart « Xstoy.
Gystart « ystop)
@ astart - G xstop « mousex.
G ystart « GPystop « nousey,
remember[Gstartline, xstart - §
G started « true)
ns=1.
q (Mouse's (white hox ix iy + 40 iwd - 1 17 black).
A started o
' (rnnwmlwr[G’drawline, xstop - i
GHstarted « false))
n =25
((started »
(mem 65 « 1 'XOR ink".
mikeline xstart ystart xstop ystop.
mem 65 « 0)),
done with Mouse’s frame clear)
) started »
1 (mem 65 « 1,
makelive xstart ystart xstop ystop.

nmakeline xstart ystart Gﬁxstop « mx @’yslop + my.
niem 65 « 0)))

quit’,

R T e

s ix, neg ystop - i's iy].

'S ix, neg ystart - i's iy].

’s ix, neg ystop - i*s iy].

to opeval
i3 (waitmouse * pval icon’ dashes dashes.
,T tophutton -

(remember[GPEval, geticon mousex mousey index] doit))

to opexit
(PUT USER G*DO sysUSER.
G disp « sysDISP.
remember suspend.
Warld's frame fclear.
disp frame - 1,)

3

to opif
(waitmouse ' position' dashes dashes.
; topbutton »
(remember[GPIF, mousex \ 16, mousey \ 186,
supervector initially GP((extend body)),
supervector initially @7((extend body))] doit))

to opmemory i j

(waitmouse ' fetch'' store' ' fetch mouse'.
toplmtton »

(er disp « 'please type a name (a string) for the icon: °.
remoml)err@_”cunsmnt, read eval] doit.

remember[fv‘“memory, G?’fetch, mousex \ 16, mousey \ 16] doit)
midbutton »

(G « geticon mousex mousey,
.. . .

@) « geticon mousex mousey index.
(i*s name = 'icon’' 5

(er disp « 'please type a name (a string) for the icon: '
i store @ name read eval)).

(lcontable[i's name] »
(cri print disp « ' is already in memory".

er disp « 'type y to replace: ',
memq read[1] GP(y Y) » () fabort)).
sp disp « i's name,

remember [GPmemory, @store, j] doit)
j botbutton »

"PAGE 13

P
e = A B g T I T T

2

N T L

o el Balar e b bl T e o R

pyumalion

(remember{ GPmemory, GPfeteh, monsex \ 16, mousey \ 16] doit))

to opname (repeat
{waitmonse * feteh name’
topbntton -»

(remember| GPfetel, geticon monsex mousey index, @G name] doit)
midbutton »

{rememboer[Gstore, geticon mousex monsey index, @ name] doit)
botbutton - (done)))

store mame' quit’'.

to opuext ()

to opplot fil
{erddisp « 'please type a file name: *,
@il ~ read eval,
fil is string -» (remember[GPplot, fil] doeit) abort)

to oprefresh (repeat
(wintimonse ‘refresh icon' dashes ' quit’,
tophntton »

{reameber[@ refresh, geticon mousex mousey index] doit)
botbutton 5 (done)))

to opremember
(waitinouse ' stop'' suspend' ' resume’.
tophutton » (rentember stop)
midhutton » (remember suspend)
botbutton -» (remember resnme))

to oprepeat
(waitmonse
tophutton »
(remember] GPREPEAT, mousex \ 16, monsey \ 16,
supervector initinlly G°((extend body))] doit))

position’ dushes dashes.

to opshape i
{waitmouse ‘define shape' ' fetch shape' ' store shape'.
topbutton »
(G « goeticon nmonsex mousey.
sp disp « 'S name,
i’s shape is iconcontext »
(renember start with i's shape’s code)
remember start shape,
i's shape « icoucontext quick World i Remember’s value.
teantable] i's name] »
(teontable[i’s nume]’s shape « i's shape copy))
midbutton -»

(remember[G7*fetch, geticon monsex mousey index, G”shape] doit)
bothutton -»

{remember[GPstore, geticon mousex monsey index, GPshape] doit))

to opshow i j
(wuaitmonse ' show name' ' show value' ' show shape’,
topbutton -
(G~ geticon monsex mousey,
GPj « peticon monsex monsey index.
{eq i display G name »
(eq i's container World » ()
j[}' length - 17 « nil.
W)« jl 1 to j length - 1])).
remember[GPShinw, j, @Pname] doit)
midbutton »
{remember[GF Show, geticon mousex mousey index, G*value] doit)
bothutton »
(G7j « geticon mousex monsey index.
remember{ GShow, j, Gshape] doit))

to optext i js
(waitmouse ' relative 1o’ dushes dashes,

"PAGE 14 5§

1

| pyrmalion

Gl U

tophutton »
(G ¢ geticon monsex mousey.
G%j = peticon monsex wousey index.
er disp « "please type the text (a string) to be displayed: '.
G « stringify read eval.
waitmaouse © position' dashes dashes.
tophutton »
{remember[@text, s, j, mousex - i's ix, mousey - i's iy + 16] doit)))

ta optrace
(waitmousce ' trace icon' 'untrace icon’ dashes.
topbutton -»
(remember[@ trace, geticon mousex mousey index, @on] doit)
widhutton »
(remember[@Ptrace, geticon mnousex mousey index, GPoff] doit))

to opvalue n
(setinouse ' feteh value' ' store value' ' ~===-====u d
repeat
(GPn + gothutton.
n=4-
(Mouse's framae clear.
remember{GPfetch, geticon mousex mousey index, GPvalue] doit.
dane)
n=1-=-
(Mouse's frame clear,
renemhes | GPstore, geticon mousex mousey index, @value] doit.
done)
CALLER has mx my - ()
done with Mouse's frame clear))

to initall
(disk’s
(to showev x
(disp « '@ baseicon « ',
iconont :x eval)),

(g G2\ GE'T nnmber GPDO » ()
addte number GP(<\ » (Tix * (SELF + x / 2) / x)).
addto dispframe GP(<Fprint » (buf print)).

(GET dispframe GPDO)[59][50] « O.
(GET psbow GPDO)[10][4] « 6.
(GET pshow GPDO)[22][34] « P G # M [I3).
(GET file GPDO)[75][24][4] « @
(dp0 evals filesopen map
(vecji] evals GP(@dirinst « nil))).

G7’sysUSER « GET USER GPDO.

G7PsysDISP « disp).
dashes ¢ ' ---=ccaemu Ko

@ run « G run,

G#lcontable « table 10,
Icontable['worid'] « nil,

GFiconrun « G}"gopvnlue).

G7”iconfeteh « G°([CALLER G™s x] eval).
G?“iconsﬂt(:re « @

(eq x G72display » ([CALLER G display y] eval)
CALLER GPdisplay x GPe GG y] eval).
specialstore « G(sorry 'cant change ' + stringify CALLER).

G displaymode « true.

GPremembermode « false.

initworld initmenu initmmouse initremember initsmalltalk initicons.
World's frame clear.

disp frame -1,

*s11 « nil)
to initicons i baseicon basex basey

(GPbasex « 192,
GPhusey « 192,

(PAGE 15)

GFinitworld « Ginitmenu « @initmouse « @initremember ¢ @initsmalltalk ¢ @initivons « @ inita

by
>

et

AN

o v

¥

Py enalion "PAGE 16

CHhasercon « G e icon ' basex+0 192 hasey+0 112 nil.
s slope = G2 Cvatue[17 display name. value[2] display value. value[37] display value. startline
Trot IS ddrawline 120 18 drawline 110 10, diawlive 111 26, drawline 121 18, startline 66 341,

*tdrawline 1040 77 deawline 92 75, drawline 1041 65, drawline 101 77).
i's hody ~ GP(valne [1]°s value 5 (value [2] eval) value [3]eval).

G721 e icon " basex+0 64 basey+0 32 ' .
s runcods « G°(opvalue).

G7i « ican ‘trne liranch® basex+128 61 basey+0 32 ' *.
i's shape « GP2(SELF display value).
i's value true.

Gi « icon ‘false hranch' basex+96G 6.1 basey+80 32 ' ',
i*s shape » G(SELF display value),
i's valne « false.

leontable['if'] « bascicon copy containerless.
Laseicon display delete,

GPhaswican « CP - jcon ‘repeat’ hasex+0 48 liasey+0 32 nil,

i's shupe « GP(CALLER display value, startline 23 33. drawline 23 59. drawline =31 60. drawline
**-31 (-38). drawline 23 (-38). drawline 23 (-2). drawline 13 (~13). drawline 33 (-13). drawli
sone 23 (-2)).

i's valne « ' loop'.

leontalile['repeat’] « baseicon copy containerless.
baseicon display delete)

to initmenu i
(G7>Menn « leontalilel 'menu'] « icon 'menn’ 16 80 32 647 string 300.
Meonu's shape « G2 (nameont SELFE).
Menu's runcode « G
(setmouse ' doit' da 25 dashes.
rej eat
(getbutton = 4 »
{(Mousc's frame clear.
G7°x « (Menu's frame mfindt mousex mousey) / 2.
0 < x < mennops length + 1 »
(sp menunames[x] print,
G’operatian « mennaps[x].
eq openttion GPundefined »
(done with disp « ' undefined')
World’s (operation eval).
disp « * ok',
done))
SELF has mx my » ()
done with Mouse’s frame clear)).
Menus fetcher « iconfetch.
Menu's storer « specialstore.
G menunames « superve-tor 50,
G menuops « supervector 5(.
within Menn’s frame
(supervector initially @
((icons nndefined create opcreate change opchange delete opdelete copy opcopy refresh
** oprefresh shaw apshow name opname value opvalue shape opshape hody opbody)
(opcodes undefined
+ (op2 +) - (op2 -) * (op2 *) / (0op2 /)
= (op2 =) < (op2 <) > (op2))
and (op2 and) or (op2 or) not (opl not))
(vuntiol nadefined if opif repeat oprepeat done opdone eval opeval return opreturn
L3
(others undefined memory opmemory disk opdisk nexi opnext display opdisplay rememb
**er opremember draw opdraw text optext trace optrace constant opconstant plot opplot exit ope
**xit))
map
(menunames « xi[1].
menuops « xi[2].
cr xi[1] print cr.

R asa e

e e

pyrmalion PAGE 17]'

| fori« 3 to xilength - 1 by 2 do

¢ (uennmnmnes « xifi].

: mennops « xifi + 1.

49 memy il i] @2+ * <) » (sp xi[i] print sp)
] spoxili] print er))))

L3
to initianse
: (W Mouse « leantahle] ‘mouse’] « icon 'mow.e’ 400 96 480 96 string 50. .
;! Mousess shape « @(nameont SELF).
3 Maouse's runcode « nil,
E | Mouse’s fetcher « iconfetch.
| Mouse's storer «
(vq x Gdisplay » (nil)
within Mounsevalue’s frame
(disp elear.
Mouse's value « y print)).
G Mounsevalue + Teontable['mouse vilue'] « icon 'mouse value' 112 272 480 32 string 100.
Mousevalunes value « supervector initially G2('* "' '),
Mousevaloe's shape € Mause's shape.
Monsevalue's runcode « nil,
Mouscevalues fetcher « iconfetch.
Monsevalue’s storer « specialstore)

s U D

to initrewmember
(GRemember « lcontable['remembered'] « icon 'remembered’ 112 272 544 32 string 100.
Remewbers value & false,
Remembers shape « GP(naineout SELF).
Remember's runcode «
(setinonse © insert’ ' delcte'' scroll',
repeut
(G7°x ~ gethutton.
x=4 5 ("..")
x=1-(.."
x =2 (") .
SLELE has mx my » ()
done with Mouse’s frame clear)),
Remember's fetcher « iconfetch. ’
Remember’s storer « specialstore)

to initsmalltalk
(GFSmalltalk - lecontable['smalltalk'] « icon 'smalltalk' 112 384 608 71 string 300.
Smalltalk's shape « GP(nameout SELF).
Smalltalk’s body « G
(vr disp « 'input? ',
Mouse storc @ value read eval).
Smalltalk’s runcade « GP(repeat
;- (kbek » (er read cval print)
SELF has mx my » (blink)
done)).
Swalltalk’s fctcher « G
(cr x print disp « '? ',
read cval).
Smalltalk’s storer « GP(Mouse’s value print))

p to initworld
i (GPWorld « lcontable['world'] « icon 'world' 0 512 0 680 nil quick.
i World’s value « iconstructure 10.
i World’s shape « G(value map(xi display shape)). L
World's runcode « G
4 1 (Mouse’s frame clear.

\ value map(xi run)).

World's fctcher « iconfetch.

1 ‘ World's storer « specialstore. o
I World's container « World)
g | (initall)
. [
£, -y
b

g T

3
4
4]

PRI

e oS,

et o e Fae T S enot B By ekt

e et e ¢

P AR

Notes 181

Notes

Introduction
Encyclopaedia Britannica, Encyclopaedia Britannica Inc., 18, 1973, p.891.
. Gombrich, p.95
. Gombrich, pp.94-97 (reprinted by permission of Princeton University Press)
. Wallace, p.116
. Papert, unrecorded talk, but see Papert 1970, 1971(a), 1971(b), 1971(c), 1973 for ways to
make the computer fun for children.
Arnheim, p.v
. David Pye, in Hyman, ¢.31
. Koestler, p.28
. Gombrich, p.306

OV e LD [e

Pod b b e o NS GND BB

D a>D

e

@]

hapter |
. Bowman, p.vii
. Koestler, p.173
. Quoted in Arnheim, p.228
. Arnhewm, p.227
. Sloman, p.276
] . William A. Martin, p.78
| ws . Hadamard, p83-5
| 8. Hadamard, p.142-3
: - 9. Arnheim, p.v
10. Arnheim, p.277
g 1. Arnheim, pp.221-232
12. Moran, p475
13. Bowman, p.16
14. Sloman, p.273

3D vt D) -

: 15. Hadamard, p.85
_—— 16. Sloman, p.275
17. Aristotle, On Memory and Reminiscence, p.449.
3 18. Arnheim, p.98

19. Arnheim, pp.103-104
i T 20. Paraphrased in Arnheim, p.102
i @3 21. Julesz, p.xi
al 22. Julesz, p. 240
23. Arnheim, p.104
I 24. Arnheim, p.107
25 Gombrich, p.23
26. Colby, private communication
I 27. See, for example, Bowman (op.cit.) and Learning to See.

T

e

T ———

T N TR

TV

IS T T TR

TR T

18

28.
29.

30
21
29

-

22

24.

25

o Notes

Arnheim, pp.125-126 (reprint=* by permission of the University of California Press)
Cooper & Shepard, p.80

Gombrich, p.385

Gombrich, p 119

Webster's dictionary, p.50

Cooper & Shepard, p.85

Gombrich, p.395

Arnheim, p.277

& Gombrich, p.370

29

0.

41
42

13
4.
45.
46.
47.
18.
49.
50.
51.
52,
53.
54.

55

*7. Gombi ich, p.293
28

Arnheim, p.108

. Gombrich, p.x

Arnheim, p.108

Gombrich, p.226

Gombrich, p.248

Gombrich, pp.248-249

Arnheim, pp.136-138

Arnheim, p.151 (reprinted by permission of the University of California Press)
Koestler, p.170

Faraphrased in Arnheim, p.224

Arnheim, p.223

Arnheim, p.221

Arnheim, p.225

John Locke, An Essay Concerning Human Understanding, Introduction, sect.8.
Papert 1971(a), p.14

Coleman, pp.117-118

Coleman, p.125

. Quoted in Coleman, p.132

Chapter 2

L ID U DN -

. Mednick, p.22i

. Gombrich, p.376

. Quoted in Koestler, pp.14-15
. Koestler, p.16

. Koestler, pp.27,45

. Gombrich, p.9¢

. Koestler, p.35

. Koestler, p.35

Koestler, p.37

. Koestler, p.39

. Campbell, p.387

. Gombrich, pp.271-272 .
. Gombrich, p.83

. Wertenbaker, p.74

. Gombrich, pp.79-80

. Gombrich, pp.80-81

. Gombrich, p.80

. Wilson, p.93

. Wilson, p.106

. Alan Kay, private note
. Gombrich, p.8l

SRR N 5 S AL O AR S

M ST e

.

OB ool e e e e e e e e e eaw Ged OED GBS 0NN BN B @B

Notes

22. Wertenbaker, p.162
22 Wertenbaker, p.162
24. Campbell, pp.387-388
25 Wilson, p.106

26 Krippner. p 42

27 Golann, p 550

28 Drake, p.89

29 Mednick, pp.221-222
20, Campbell, p.287

21 Mednick, p.222

22. Mednick, p. 22

33, Mednick, p.223

24 Mednick. p.224

Chapter 3

I. Brand, p.77

. Brand, p.77

. Term suggested by Alan Kay

. W.R Sutherland, p.59

. W.R.Sutherland, p.89

6. Christensen 1966,1968,1971(a).1971(b) and Rovner 1969
7. Paraphrased from Baecker (1969)

8. Saturday Evening Post, 173, 21 (June 1900).

9. Hyman, p82

10. Hyman, p.30

11. Hyman, pp 88,107,110

12. Hyman, p.7

12. Cartier-Bresson, 1953 (no page numbers)

14. Lincoln Kirstein in Cartier-Bresson, 1963 (no page numbers)
15. Moore (1964), p.170

16. Quoted in Koestler, p.170

oY e 31D

Chapter 4

I. Bowman, p.1

2. Gombrich, p.vii

2. Webster, pp412.415
4. Webster, p.412

5. Hyman, p6l

5. Hyman, pp.104-105
7. Hyman, p61

Chapter 7

I. Bowman, p.62 (reprinted by permission of the author)
2. Bowman, p.124 (reprinted by permission of the author)
2. Bowman, p.94 (reprinted by permission of the author)
4. Quoted in Arnheim, p.180

5 Arnheim, p.180 (reprinted by permission of the University of California Press)

6. Arnheim, p.180

183

T T
L e

o

184 Bibliography

Bibliography

(Note: "[JCAI" = “International Joint Conterence on Aruficial intelligence”,; “ACM" «
“Association of Computing Machinery®)

Arnheim, Rudolf, Vesual Thinking, (copyright (c) 1969 by the Regents of the University of
Cahfornia), University of California Press, Berkeley, 1971.
Baecher. Ronald. Interactive Computer-Mediated Animation, Ph.D thesis, MIT Project
MAC TR-61, Cambiidge, Mass., 1969,
Balzer, Robert. dutomatic Programming, Information Sciences Institute, USC Technical
Memorandum, Los Angeles, 1972.
Bowman, Wilham, Graphic Communication, John Wiley and Sons, New York, 1968.
Brand, Stewart, I/ Cybernetic Frontiers, Random House, New York, 1974.
Campbell. Donald. "Blind Variation and Selective Retention in Creative Thought as in
Other Knowledge Processes”, Psychological Review, 67, 6 (November 1960), Pp-380-
100
Cartier-Bresson, Henri. Photographs, Grossman Publishers, New York, 1963
Chase, Wilhiam, (Ed), Vizual Information Processing, Academic Press, New York, 1973
- and Simon, Herbert, “The Mind's Eye in Chess” in Chase, 1973, pp.215-281.
Chnistenen Carlos, "On the Implementation of AMBIT, A Language for Symbol
Manpulation”, Comm. ACM, 9, 8 (August 1966), pp.570-573,
<~ "An Example of the Manipulation of Directed Graphs in the AMBIT/G Programming
Language” in Interactive Systems for Experimental and Applied Mathematics,
M Klerer and] Reinfelds (Eds.), Academic Press, New York. 1968.
-, "An Introduction to AMBIT/L, a Diagrammatic Language for List Processing”, Proc.
Second Symposium on Symbolic and Algebraic Manipulation, Los Angeles, 1971(a).
. Woltberg, Michael, and Fischer, Michael, 4 Report on AMBIT|G, Massachusetts
Computer Associates, Wakefield, Mass, 1971(b).
Coleman, James, "Education in Modern Society” in Computers, Communications and the
Public Interest, M.Greenberger (Ed.), Johns Hopkins Press, 1971.
Cooper, Lynn, ana Shepard, Roger, "Chronometric Studies of the Rotation of Mental
Images” in Chase, 1973, pp.75-176.
Dahl, Ole-johan, and Nygaard, Kristen, "SIMULA -- an ALGOL-Based Simulation
Language”, Comm. ACM, 9, 9 (September 1966), pp.671-678.
- and Myhrhaug, Bjorn, SIMULA 67 Common Base Language, Norwegian Computing
Cente:, Forskningsveien 1b, Oslo, Norway, 1970.
Davis, MR, and Ellis, T.O, "The RAND Tablet: A Man-Machine Graphical
Communication Device”, Proc. AFIPS Fall Joint Computer Conference, 1964, pp.325-
23
Dijistra, E., "Notes on Structured Programming”™ in Structured Programming, O.Dahl,
E Dijkstra and C.Hoare, Academic Press, New York, 1972, pp.1-82.
D1 ake, Sullman, "Galileo's Discovery of the Law of Free Fall”, Scientific American, 228, 5
(May 1972), pp.84-92.

-y

Bibliogiaphy 185

Elis. T O, Heafner, JF, and Sibley, W L. The GRAIL Project: An Experiment in Man-
Machore Commumpeations, RAND Report RM-5999-ARPA, 1969.
Fooetbart. DE - dugmenting Human Intellect: a Conceptual Framework, Summary Report
A1) 289-565, SRt Proect 2578, Stanford Research Instuitute, Menlo Park, Calif., 1962.
ant Englich, W kK "A Research Center for Augmenting Human Intellect”, Proc. AFIPS
1908 Fail Jome Computer Conference, pp.295-410.
Gelernrer, H, "Reahization of a Geometry-Theorem Proving Machine” in Computers and
Trongie, EFercenbaum and J Feldman (Eds). McGraw-Hill Book Co., New York,
1952, pp 124-152.
Golann. Stuait, "Psychological Study of Creativity”, Psychological Bulletin, 60, 6 (November
1962). pp.548-565
Gombrich, EH. 4rt and Nlusion, No. 5 mn the AW Mellon Lectures in the Fine Arts,
Bollingen Series XXXV (copynight (c) 1960, 1961 and 1969 by The Trustees of the
National Gallery of Art, Washington. D.C)), Princeton University Press, Princeton,
New Jersey, 1960.
Hadamard, Jacques, The P:syclology of Invention in the Mathematical Field, Dover
Publications, New York, 1945
Hall. Calvin, "What People Dream About”, Scientific American, 184, 5 (May 1951), pp.60-63.
Havs, John, "On the Function of Visual Imagery in Elementary Mathematics™ in Chase,
1972, pp.177-214
Hyman. Anthony, T ke Computer in Design, Studio Vista, London, 1973.
Hewet:. C. Bishop. P. and Steiger, R, "A Universal Modular ACTOR Formalism fo:
Aruficial Intelhigence”, Proc. Third 1]C Al, Stanford, 1973, pp.235-245.
Jacks. Edwin, "A Laboratory for the Study of Graphical Man-Machine Communication”,
Proc. AFIPS Fall Joint Computer Conference, 1964, pp 343.350.
Julesz, Bela. Foundations of Cyclopean Perception, University of Chicago Press, Chicago,
1971
Kanwaerahl, Hanna, Picture Algorithm Language (PAL), NSF application, University of
lhinois, Urbana, 1974.
I ay. Alan, T e Reactive Engine, Ph.D. thesis, Umiversity of Utah, Salt Lake City, 1969.
. "A Personal Computer for Children of All Ages®, Proc. ACM National Conference,
Bostun, 1972(a)
--, "A_ Dynamic Medium for Creauve Thought”, Proc. National Council of Teachers of
English Conference. Mimneapolis, 1972(b).
. Personal Dynamic Media, (internal document in press), Xerox Palo Alto Research
Center, Palo Alto, Calif,, 1975.
IKoestler, Arthur, The Act of Creation, Dell Publishing Co, New York, 1964.
Krippner. Stanley, and Hughes, Wilham, "Genius a1 ZZZZ Work ZZZZZZZ", Psychology
Today, 4. 1 (June 1970), pp.40-43.
l.ampson, Butler, “A Scheduling Philosophy for Multiprocessing Systems”, Comm. ACM, 11,
5 (May 1968), pp.347-365.
---, "Dynamic Protection Structures®, Proc. AFIPS Fall Joint Computer Conference, 31,
1969, pp.27-38.
Mednick, Sarnoff, "The Associative Basis of the Creative Process”, Psychological Review, 69,
3 (May 1962), pp.220-222.
Miller, George, "The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information™ in The Psychology of Communication, G.Miller,
Basic Books, New York, 1967. :
Mitchell, James, The Design and Construction of Flexible and Efficient Interactive
Programming Systems, Ph.D. thesis, Carnegie-Me'lon University, Pittsburgh, 1970,

S it N e i

{
| 186 Bibhography]

Moore, O K, "Autotehic Responsive Enviionments and Exceptional Children” in The 1
Speaal Cald in Century 2{. JHellmuth (Ed), Seattle: Special Child Pubhcations of
the Sequin School, Seattle, 1964

~and Anderson, 7 R, "Some Principles for the Design of Clarifying Educational

Environments” m Handbook of Socializarion Ther:y and Research, Goslin (Ed). Rand
McNally and Co, 1969

“fo1 an, Thomas, "The Symbolic Nature ot Visual tmagery”, Proc. Third 1 JCAl, Stanford,
1472, pp 472477

N roponte, Nicholas, The drchitectioe Machine, The MIT Press, Cambrudge, Mass., 1970.

Poer. David, "On the Problem of Communicatity Complex Information”, {nformation
Precessing 71, North-Holland Publishing Co., 1972

P.me, Jacob, SIMULA 67 .. an Advanced Programeung and Simulation Language,
Norwegian Computing Center, Forskiungsveten 1b, Oslo, Norway, 1970.

_"SIMULA as a Tool for Extensible Program Products’, SIGPLAN Notices, 9, 2

(February 1974), pp.24-40 .

Papert. Seymour, "LOGO Book Notes”, Al Laboratory, MIT, Cambridge, Mass., 1970.

.-, 4 Computer Laboratory for Elementary Schools, Artifiaal Intelligence Memo 246, MIT,
Cambridge, Mass., 1971(a)

..., Teaching Children T hinking, Artificial luteligence Memo 247, MIT. Cambrnidge, Mass,, [
1971(b).

-, Teaching Children to be Mathematicians vs. Teaching Abour Mathematics, Aruficial
Intelligence Memo 249 MIT. Cambiidge, Mass, 1971(c).

..., Uses of Technology to Enhance Educanon, Aruficial Inteligence Memo 298, MIT, I
Cambridge, Mass., 1973

Pett, Philip, RAID, Stantord Aruficial Intelligence Laboratory Operating Note 58.1,
stanford University, Stanfor¢ 1970,

Roberts, L.G. "Graphical Communication and Control Languages”, Proc. Second Congress !
on {nformation System Sciences, 1964, pp 211-217.

Povner, Paul, and Henderson, D Ausiin, "On the Implementation of AMBIT/G: a
Graphical Programming Language”, Proc First { JCAl, Washuigton, D.C. 1969 [

Rowland, Kurt, Learning to See, vV an Nostrand Remnhold Co., New York, 1971.

Sioman. Aaron, “Interactions Between Philusophy and Aruficial Intelligence: The Role of

trtuition and Non-logical Reasoning in Intelligence”, Proc. Second 1JCAl, London, I

1371, pp.270-278.

Sussman, Gerald, 4 Computational Model of Skill Acquisition, Ph.D. thesis, MIT Project
MAC TR-297, Cambridge, Mass, 1973

Sutherland. Ivan, Sketchpad. A Man-Machine Graphical Communication System, Ph.D
thesis. MIT, Cambridge, Mass, 1962, also in Proc. AF{PS Fall Joint Computer
Conference, 23, 1962, pp 329-146.

Sutherland, William, On-Line Graphical Specifications of Computer Procedures, Ph.D. thesis,
MIT, Cambridge, Mass., 1966.

Swinehart, Daniel, COPILOT: A Multiple Process Approach to Interactive Programming
Systems, Stanford Aruficial Intelligence Laboratory Memo AIM.230. Stanford
University, Stanford, 1974.

e, TV, A Display Text Editor, (internal document), Stanford Artificial Intelhgence 3
Laboratory, Stanford University, Stanford, 1971

Tesler. Lawience, Enea, Horace, and Sraith, David, "The LISPT0 Pattern Matching System”,
Proc. Third 1]C Al Staniord, 1973, pp671-676. 1

Wallace, Robert, The World of Leonardo, Time-Life Books, New York, 1966.
W ebster's Seventh New Collegiate Dictionary, G. and C. Mernam Co., Springfield, Mass.,
1967.

i Lhn L s i e Pyem——— o

o = . o - P -

e B e

Wbliogt aphy 187

Welle, Mark, and Morris, James, Proc Symposium om Two-Dimensional Man-Machine
Comnnezeon, SEIGPT AN Notices, 7, 10 (October 1972)

Wertenbaher, Lael The BWor/d of Preasso. Time-Lite Books, New York, 1067

Wit ld, Stephen, and Pocdenberry, Gene, Tre Making of Star Trek, Ballantine Books,
New York, 1468

Wition, Cuttis, "How Did Kepler Discover His First Two Laws?™, Scientific American, 226,
2 (March 1672), pp 92-106.

Winston, Pattick, Learntng Structural Descriptions from Examples, PhD. thesis, MIT
Project MAC TR-231, Cambnidge, Mass, 1670,

e N T T W YT

GG s YT TR e SRR MM TS R e = S e = o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date EJ!.lod) '

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

N P
.

REPORT NUMBER

e e e =

STAN=CS=75=49y9. HlltL" 24 ‘!f |

2. GOVT ACCESSION NO.

4

ﬁ-'BEClP!ENwLQEMFL —7‘ \

C P
// ; o A ply e« AL /

A

TITLE (and Subtitie)

- e

. PYGMALION: A CREATIVE PROGRAMMING ENVIRONMENT. /

-

S. TYPE OF REPORT & PERIOD COVERED

technical, June 1975

—= —— e oo -

e e e 00 2oty

6. PERFORMING ORG. REPORT NUMBER

STAN=-CS-75-499 (also AIM 260)

243

~

AUTHOR(s)

David Cw:fiel78mith ,' d=, 4176].,.
; bl

&

S

8. CONTRACT OR GRANT NUMBER(s)

9 T ST "
' DAHC 15 -T3-C-pus5, g)

—— \

9. PERFORMING ORGANIZATION NAME AND ADDRESS [3

Computer Science Lepartment
Stanford University
Stanford, California 94305

L]

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

e e
YARPA ﬁrdefp—e@h

CONTROLLING OFFICE NAME AND ADDRESS

Col. D. Russell, Deputy Director ARPA/IFT

ARPA lHeadquarters

1400 Wilson Blvd., Arlington, Va. 2220G

v,

12._REFORT DATE

PAGES

. NUM
195

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Ollice)
Philipp Surra
Durand Aeronautics Bldg., Rm. 165

ONR Representative:

Stanford University
Stanford, Ca. 94305

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6.

o

DISTRIBUTION STATEMENT (of thie Report)

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Bfock 20, if different from Report)

SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide if necessary and identl!fy by block number)

seée reverse

20. ABSTRACT (Continue on reveree elde If neceeeary and Identify by bfock number)

.

DD , (" 1473

EDITION OF 1 NOV 63 1S OBSOLETE

UNCLASSIFIED

A

/

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data lnlm..w ' ®

UNCLASSIFIED

on an interaetive computer with graphics display. Communication betwcen human
being and computer is by means of visual entities called "icons", subsuming
the notions of "variable", "reference", "data structure", "function" and
"picture". The heart of' the system is an interactive "remembering" ecditor for
jcons, which executes and (optionally) saves operations for later re-cxecution.

of creating a scquenee of display frames, the last of which contains the
desired information. Display frames are modified by editing operations.
PYGMALION employs a powerful paratiigm fhat can be incorporated in virtually
any other programming language:

In fact, every operation in PYGMALION has threc responsibilities:

Thus the system includes an incremental "jconic compiler". Since each operatio
has visual semantics, the display becomes a visual metaphor for computing.

The programmer need deal with operations only on the display level; the
corresponding machine semantics are managed automatically. The mechanical

The focus in this paper is on cdeveloping and interacting with an articulate

memory. It is designed to relieve the load on the short term memory by providi

#20

PYGMALION is a two-dimensional, visual programming system implemente%

The display scrcen is viewed as a document to be edited. Programming consists

Every operation has both visual (aesthetic) semantics
and internal (mechanical) semantics.

(a) for accomplishing a given internal machine task -
the machine "semantics'" of the operation;

(b) in display mode, for generating a representative
visual action;

(¢) in remember mode, for adding onto a code list the
operation(s) necessary to reproducc itself. +

aspects of programming languages has been and is continuing to be well studied.

visual presentation.
PYGMALION is a computational extension of the brain's short term +
£

alternative storage for mental images during thought. The display screen is
seen as a "dynamic blackboard", on which ideas can be projected and animated.
Instead of abstract symbols, the programmer uses explicit display images.
Considerable flexibility is provided for designing icons; the programmer may
give them any shape that can be generated by a routine. This helps to reduce
the translation distance between representations used in the mind in thinking
about a problem and representations used in programming the problem.
The main innovations of PYGMALION are:

(1) a dynamic representation for programs- an empnasis on

doing rather than telling;

(2) an iconic representation for parameters and data struc-

tures requiring less translation from mental representations;

(3) a "remembering" editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION

turns into the abstract.
The responsive, visual characteristics of PYGMALION permit it to play an active
role in human problem solving. The principal application has been in assisting
the design and simulation of algorithms.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

