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Light-front two-dimensional QED: Self-field approach
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The self-field approach to quantum electrodynan{i@&€D) is used to study the bound state problem in
light-front two-dimensional QED with massive matter fields. A composite matter field describing bound states
is introduced and the relativistic bound state equation for the composite field including a self-potential is
obtained. The Hamiltonian form of the bound state equation in terms of the invariant mass squared operator is
given. The eigenvalue problem of this operator is solved for a fixed value of the self-potential, the correspond-
ing eigenfunctions and the mass spectrum are found. In the case of massless matter fields, there are no self-field
terms in the bound state equation, and the invariant mass spectrum can be evaluated explicitly. Possible ways
of deriving more complete information about the bound state spectrum are briefly discussed.
[S0556-282198)01522-7

PACS numbsgs): 11.10.Kk, 12.20.Ds

I. INTRODUCTION composite matter field and rewrite the action of the model
entirely in terms of this field. We then vary the action with
Bound state problems in relativistic field theory, particu- respect to the composite field and derive a bound state equa-
larly quantum electrodynamic€QED), are basic ones for tion. In Sec. IV we give the Hamiltonian form of the bound
particle physics. It is well known that in perturbative QED State equation in terms of the invariant mass squared operator
the bound state problems cannot be treated starting from firdfl - We solve exactly the eigenvalue problem fdf for a
principles. Instead one begins from a Sdinger or Dirac-  fixed value of the self-potential and find explicitly the corre-
like equation obtained from some approximation to theSponding eigenfunctions and the spectrum. We C(_)n5|de_zr also
Bethe-Salpeter relations and then calculates the perturbatidA€ massless case when the mass of the matter fields is zero.
diagrams to the bound state solutions of these equations. " S€C- V we conclude with a discussion.

A nonperturbative treatment of two and many body sys-
tems in closed form is possible in the self-field formulation Il. LIGHT-FRONT TWO-DIMENSIONAL QED

of QED [1,2]. Here one starts from two fermion fields Two-dimensional quantum electrodynamics describes
and ¢, coupled by the usual electromagnetic minimal cou-matter fields interacting with an electromagnetic field in two-

pling. One then eliminates the electromagnetic field, introyimensional space-time. The Lagrangian density of Q&D
duces a composite field® = ¢, ® ¢, and derives a two-body

wave equation for this composite field including the radiative _ _ 1 _
corrections. This relativistic bound state equation is a genu- L=igpy"d, p—miph— 2Pk ey A, (2.9
ine and exact one obtained directly from the action without
using any approximation. For two-dimensional QED, the
g\g_ l:[)g]d y wave equation was constructed and analyzed I—aVA“ is the electromagnetic field stre_ngth. The matter field
In the present paper we aim to apply the self-field ap-¥ iS @ two-component Dirac spinor,.arzy!d=ip*y°.
proach to light-front two-dimensional QED (QEPdefined We choose the light-front coordinates™=x°+x*, x
on the circle. Light-front quantizatiofd] has a number of andx— playing the role of time and space coordinates, re-
advantages. These include kinematical Lorentz boosts ands@ectively. The metric tens@*" for the light-front coordi-
simpler vacuum structure. By quantizing at equal time on théates has the form
light front a gauge theory can be reduced to an eigenvalue

Mvhere (,v)=0,1, * are Dirac matrices,F#"=g*A”

+

problem for the invariant mass squared operator. The relativ- g""=g =0, g' =g "=2
istic spectrum emerges as the set of eigenvalues of this op- o o
erator. We must distinguish upper and lower indices; for example,

In the self-field approach the quantum theory is first quaniime and space derivatives are
tized. The electromagnetic field has no separate degrees of

freedom, they are determined by the matter degrees of free- 9" =20,=2dlx",
dom, but then one must include nonlinear self-field terms.
We consider the standard QEith one matter fieldy and 9" =20_=20l9x".

describe bound states by the composite field y® . We _ e oua
use the advantages of the light-front formulation in order to The algebra of Dirac matriceg™ = y"* y~ is
get exact expressions for the bound state wave functions and

spectrums for both massless and massive fermions. Yy =y y =0,
Our paper is organized as follows. In Sec. Il we give the
light-front formulation of QED. In Sec. lll we introduce the Yy +y yt=4.
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Using this algebra, we can define projection operatofs i L
=147 y* and projected spinorg.=A (). go(x x")=— §m7+J e(x” =y )y (y x)dy .

In terms of the light-front coordinates the Lagrangian den- 0 (2.6)
sity (2.1) is rewritten as ’

The solution(2.6) fulfills antiperiodic boundary conditions,

1
L= o+ ia )= smyt y o+ iy yo) - (LX)=—y (0x"), sothatx_==3,

2 The action of the electromagnetic field can be reexpressed
by a partial integration, using Eq$2.43, (2.4b and the

1 1 ) -
+ E(a,A+—a+A,)2— €] TAL+]TAL), (2.20  boundary conditions, as
% L
whereA. =Ay+ A, while j*=24¢7% ¢ are light-front mat- EJ dx+f dx (9_A,)2
ter currents. 2) - 0

In what follows we work in the light-front gaugé _

) L 3]
=0. We suppose that light-front space is a circle of lerigth = EJ dX+J dx ALj"— EJ dx*A, (0x)Q.
0=<x~ <L, and impose the boundary conditions 4) 0 2

AL (x',00=A,(x",L), (2.33  With Eq. (2.6), the total action becomes

S(xt,L)=expli2mr . (xT,0), 2.3h o L e
pochmeizmeioc B wy e [ o [Cac| pire it
. . — o0 0 4
x. being arbitrary numbers.

The action of the light-front QERis 1 (o
—=| dx*A,(0x"HQ"

) L 2
W=f dx+f dx™L(x",x7).
— o0 0 | © L L
—Emf dx*f dx*f dy ¢ (x7,xT)
The Lagrange-Euler equations deduced from it are - 0 0
ITE=—ej", (2.43 Xe(X" =y )y x). 2.7
I E=ej" (2.4b) If we solve Eqgs.(2.49, (2.4b), expressA, in terms ofj ™"
' and insert the expression obtained into E47), then we get
and an action written only in terms of the matter fields.
The electromagnetic field equations can be rewritten in
. 1 the form
ig" tﬂf:Emf /2 (2.5a
1
. a%A+=——§er, (2.89
10 g =omy y-+eA iy, (2.5
1
where E=d_A, is the electric field strength. From Egs. ‘9—‘9+A+:§el . (2.8

(2.49, (2.4b we have

Equations(2.8a, (2.8b with the periodic boundary con-
ditions for the gauge field are solved by

d_j +d,j =0,

i.e., the matter current is conserved. 1 (L
Equation(2.49 gives us the Gauss’ law and the boundary A, (X~ xT)=— _ef dy D(x 7,y |L)j " (x*,y ),
conditions forE(x,x™): 2 Jo

(2.9
+ + LN R +
E(L,x")—E(0x™)= —GEJO dx7j7=-Q7, where the Green’s function is
i.e., the electric field is not single-valued if the light-front = Sy Y L
chargeQ™ is nonzero(see below. D"y |I')_2|X Yl L 2X '

The equation fors, involves the light-front time deriva-
tive, so, is a dynamical degree of freedom. On the otheri.e., A, (x~,x") is completely determined by" (x~,x*).
hand, the equation fag_ involves only spatial derivative, so The Green's functiorD(x~,y~|L) is not symmetric in
_ is a constrained degree of freedom that should be elimix~ andy~. The reason for that is nonze®@*. We can
nated in favor ofi, : easily see this if for a moment use
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Syl - - ZE -\ X_y_ :l “ + L - L - *, + +
DYMx™,y [L)=5x" -y [+ ——, W[ D] dx* | dx; | dx, @
2 L 2] = 0 0
DSYMx~,y~|L)=D¥y~,x"|L), X (Xg XXy ,X+)(’7T(_1)+ T2

_ sel +HiyT wHlywo wt
instead ofD(x~,y”|L) in Eqg. (2.9. The boundary condi- MNP (x X [xg X7, @3

tions for the fieldA, become Here the index1) refers to the coordinates of the first field

1 o (x,x7) in the ansat23.1), the index(2) refers to the
AL(LxH=A_(0x")+ §Q+, second fieldy, (x; ,x™).
The generalizedkinetic) momentaw(ii) are given by

i.e., A, is periodic only ifQ*=0. SoD®¥™x~,y"|L) is a P N

right choice only for the vanishing chargg’. (i) = Piiy T A, self 3.4
However, only the symmetric part of the Green'’s function

contributes to the action. If we insert EQ.9) into Eq.(2.7),

we obtain the action in the light-front gauge as

with
PiH=1dG)

% L
wiul= [ axt [ Caxuriow, and

I S L A sl X XD =25 (X7 x")
—5m| dx" | dx” [ dy ¥}
o 0 0

2 e L L
=—f dy‘f dz ®***(y ,x*|z",x")
2)o 0

X (X~ xM)e(x™ =y ) (y”,x")

e? (= L L XD,y [L)® T (y " x"|z7 ,x7),
+ §j dx+f dx‘j dy~
— 0 0

oy ot e g oyt A(72),seh(xi’x+)5d)(sgf(xi’XJr)
XJ(xT,x DY,y T L) Ty xT),

e (L L
(2.10 = —f dy*j dz®** (y~ x¥|z",x")
2Jo 0
the last term representing the current-current interaction. KDYz |L)D** (y x|z X ),
Ill. BOUND STATE EQUATION A(+i),sel1(x_'x+)20-

Let us define a composite fiefll by "
the self—potentialsﬁfie) being nonlinear integral expressions.

D(X; XXy X)) =9 (Xg X))@ (X5 ,xT). (3.0 The self-potential in the mass term
e _ ; ; af_ a1 B L L L
This is_a four-component spinor fieldd*#=y< y% . ¢Se,f(x+):f dy‘f dZ_J' dy ot
(a,B)=1,2. However, only one component of the composite 0 0 0

field is nonvanishing: (27 x|y~ x*)
zZ7 X7y, x

11,1 ,1 _
(I) _¢+l/,+_q)++, xie(yf_77—)(1)++(7777X+|Z*,X+) (35)

P2=Pp=P*=0. does not depend on the light-front space coordinate and does
not contribute to the action in the massless case.
The configuration spacex{ ,x;) is a square of sidé (0 We can write the actiofB.3) in another, equivalent form.
=X; <L, 0<x; <L) with the opposite sides being identi- |f 425" are not included into the generalized momenta and
fied, i.e., a torus. are considered separately, then these self-potentials can be

We can rewrite the actio(2.10 entirely in terms of the  shown to reduce to the potentefD®™. The action becomes
composite fieldP. In order to do this we multiply the action

with the normalization factofwhich is constant of motion 1 (e L L
W)= 3 dx*J dxl_f dx; &=
— o 0 0

L
dx ¢ (x7,x* X", x")=1. 3.2
fo v Y ) 32 X(xg X |Xg XT) - (Pt Pz + DY

The resultant action in terms of the composite field is —mg*N D (x ,xF[x, xF). (3.6)
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Since there is only one self-potential in the acti@r6), itis  theory. By acting on E¢(3.8) by P* we get the Hamiltonian
much simpler to work with this action rather than with the form of the bound state equation in termsMf:
action(3.3).

In the self-field approach thg currents are actual mate- D.(R)
rial charge currents, and not just probability currents. The IR
corresponding charges are actual matter charges. With the
normalization facto(3.2), we get _m¢self]&iR}q)++'

Q' =e,

i.e., Q" is actual charge of the positive chirality matter. Fo
our model with a single charge on the circle, the electric fiel
is not therefore periodic. We must consider at least two mat- M2p++ =g+ 4.2
ter fields with charges equal in magnitude and opposite in

sign in order to get vanishing total charge and single-valuegyhere o has the dimensiofenergy?.

total electric field. _ . _ With the normalization condition
Now we require the actiofB.6) to be stationary not with

respect to the variation of the original matter field 2L L s L
¥ (x~,x") but with respect to the total composite field fo de_Ldr‘D T, R)®T(r,R)=1,
only. This is a weaker condition and leads to the following

equation for®* " (x; ,x*|x; ,x™) in configuration space: Equation(4.2) is solved by the eigenfunctions
(P1)+ P2y +EDIM—me¥N DT (x X [xz ,x")=0. fin(T)
BD @l R=Cme) "

d
|v|2c1>++=[—4ie2 +4i[e’D_(r)+e?D,(R)

4.1

To find eigenfunctions and eigenvalues Mf we must
rdsolve the equation

L
exp i — opnH(dm(r),R)
. . . +dn(r) p{ e "
We next introduce center of mass and relative coordinates (4.3

according to
where

+ *

P*=p{,+Pz, P =P1)~P

~

) ’
_ _ _ _ 4L
R=X1)F X T=X0) "X du(r)=——7mp+4LD (1),
The configuration space (R) is again a torus, but with the _ _ o _
circle length 2 (—L<r<L, 0<R<2L). The function ¢ is a fixed value of the self-potentiah>*", f.,(r) is an

D¥™x; ,X, |L) can be rewritten as a sum of center of massarbitrary function
and relative parts:

Fldw(r),R]
D¥™(x; ,%; |L)=D_(r|L)+D.(RIL), . .
———=arctan —— for d(r)>0,
Vdm(r) ’(Vdm(r)

101,
D_(rlL=3Irl= 7% =
Jdn(D[-R|

1
In
2\[dn(D] | dn(N[+R]

for d,,(r)<0,

1 2
D (RIL)= 4 R*.

and
Equation(3.7) becomes 1
P~ (r,x |Rx")={—eXD_(r)+D,(R)) Fdy(r),R)=— R for d,(r)=0.
_ sel ++ + +
M=o (r.x"|RX"). The normalization constai@(m, ¢) is
(3.9
. . _— 2L L f2(r) v
Equation (3.8) is a Hamiltonian form of the bound state c(m, )= f de dr—— ™~ ]
equation. We have in this equation only one time variable 0 L [R%+dy(r)]1?

conjugate to the center of mass enefjy; the relative en-
ergy p~ does not enter. The eigenfunction®, * become singular at those points

of the configuration space (R) where

IV. ANALYSIS OF BOUND STATE EQUATION 2
R2+d,(r)=0.

Let us define the operatd?=P*P~, so that its eigen-
values correspond to the invariant mass spectrum of thelowever, if
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?
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0,0) L -L (0,0) L

FIG. 1. A schematic representation of the boundary conditions
for the composite matter field on the configuration spaed €r (a)
<L, 0=<R<2L). Each two boundary points connected by a dotted
line are related also by the corresponding boundary condition.

5 e’L R
>Z W, (4.4)

then all singularity points are outside of the torusl(<r . .

<L, 0<R<?2L). There are no singularity points also for . * .
negative values 0. For any nonzeran we can therefore : *
chooseg in such way that the conditiof@.4) is fulfilled and . .

the eigenfunction®,  are not singular. Fom=0, the con- ) ST DR
dition (4.4) is not already valid, and the eigenfunctions are (-L,L)

singular at one point of the configuration space, namely, (
=0, R=0).

"(L,L)

A. Spectrum

The spectrum of eigenvalues, is fixed by the boundary -L (0,0) L
conditions. From the boundary conditions for the individual
fields ¢, we can deduce in general three boundary condi-
tions for the composite field " * (see Fig. I (b)

dTF(LIL)=exgi2mk, P (0]0), FIG. 2. A schematic representation of the boundary conditions
for the solution(4.3). (a): f(r)=1, (b): f(r)#1.
®TF(—L|L)=exgi2mk, }PTT(0]|0),

++ — H ++ L _ _ —
®**(0]2L) =explidmr . 1D+ +(0]0). o Fldn(— L) L]=Ady(L), L]} =27n, neZ.
e

Nevertheless, only part of them are really valid. Indeed, the

preexponential in the solutiofd.3) is not a constant and Sinced,,(—r)=dm(r), the expression in the squared brack-
depends on the relative coordinate Only those boundary ets vanishes ana,, drops out of the boundary conditions. In
points at which the values of the preexponential coincide cafne casef,,(r)=1 we therefore cannot derive any informa-
be used in the boundary conditions. Let us first pytr) tion concerning the spectrum.

=1. Then the preexponential[B?+d,(r)] takes the same For the general cask,(r)# 1, we can use one boundary

value at two boundary pointsHL,L) and (,L). So we  point more in the boundary conditions. If we takg(r) with
have one boundary conditidsee Fig. 2a)] the boundary values connected as

dTF(=L,L)y=dT(L,L) (4.5
fm(—L)=fm(L),
which can be considered as an equation dorwhile «
remains arbitrary. 2
For the solution(4.3) with f,(r)=1, from Eq. (4.5 we (L) = L7+ dm(L) ,
get fm(0)  4L2+d,(0)

125008-5
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then the preexponentidl,(r)/[R?+d,(r)] takes the same
value at three boundary points-¢,L), (L,L), and (0,2).
The corresponding boundary conditions gsee Fig. 2b)]

®d*F(0|2L)=expli2mr, tPTT(L|L),
®F(02L)=expgli2mKr DT (—L|L),
dFF(LIL)=dTF(—L|L).
Again o, drops out of the third boundary condition, while
the first two ones coincide and give us fer =0 the spec-

trum

2me?
on=

n, nez, (4.6

Ay
which is linear inn, where
am=L{FAdn(0),2L]— A dn(L),L]},

and n must be taken positive fo,,>0 and negative for
am<0. Equationg4.3) and(4.6) represent a solution of the
invariant mass squared operator eigenvalue problem for
fixed value ofp%e,

B. Massless case

For the massless case, there are no self-energy terms
the bound state equation. The eigenfunctionéfbecome

fo(r
P =c(00 5 M)
R+dy”(r)
L0 o0
xexpl i oV FOLAP(N),R]f, (4.7
e

whered{®)(r)=4LD_(r) is positive for all nonzera and
vanishes at =0. The superscript0) means that Eq4.7) is

PHYSICAL REVIEW D 58 125008

Jo
1

I

B =

| |
| |
| |
| |
l 1

L

b - e - —
— — — — —

0 L

FIG. 3. A special choice of the functiorfy(r):
= 6[(L%4)—r?]+ 3 6[r2— (L¥4)].
L2
re— —)

2
L__rz)
4 4

(see Fig. 3. With this choice the normalization constant
takes the value

a

fo(r)

+1¢9
2

fo(")za(

1 3 -1/2
C(0,0= L(ZlnE + |n7) ~1,38..

in V. DISCUSSION

(1) In our study of the bound state problem in two-
dimensional QED we have tried to combine the advantages
of both the self-field approach and the light-front formula-
tion. The self-field approach allows us to construct a relativ-
istic bound state equation. Bound states are described by a
composite matter field which is a bilinear combination of the
original matter field and therefore four-component. On the
light front only one of these components is nonzero, so the
bound state equation is simply onecomponent.

We have derived the Hamiltonian form of the bound state
equation for the invariant mass squared operator. The equa-

the solution of the invariant mass squared operator €igefon, includes a self-potential which enters the mass term. For

value problem without the self-energy terms.
We easily evaluater”) as

T
(0) _ 1+ —

2

<0,

so that the spectrum takes the form

8me?

T+ 2

0)_
n

n, n=0,1,2, .... (4.8

For the boundary values df,(r) we have

fo(=L)="fo(L),

1
fo(L)= 5fo(0).

One possible choice dfy(r) is

a fixed value of the self-potential, we have solved the eigen-
value problem of the invariant mass squared operator and
found its spectrum as well as the corresponding eigenfunc-
tions. The invariant mass spectrum turns out to be discrete
and linear. For the massless matter fields, when the self-
potential contribution vanishes, we have evaluated the in-
variant mass spectrum explicitly.

(2) Our solution of the invariant mass squared operator
eigenvalue problem is not complete. In particular, in the
massless case the eigenfunctions are singular at one of the
boundary points, so only a part of the boundary conditions
can be employed. Since just the boundary conditions deter-
mine the spectrum, some information about the spectrum is
lost. As a result, the invariant mass spectrum obtained in our
work differs from the well-known one of the second-
guantized massless QEDon light front (the light-front
Schwinger model[5].

There are several puzzles or problems regarding the light-
front formulation, e.g., the null plane and missing degrees of
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freedom, causality and boundary conditions, the zero maghe ones we would construct in the equal-time formulation.
limit, and so on(see, for example, Refi6]). Many aspects of We believe that with the finite box regularization and the
the Schwinger model on light front such as the anomaly andjeneralized ansatz for the composite matter field it will be
the 6§ vacuum cannot be understood without worrying aboutpossible to perform a complete construction of the light-front
these problemEg7]. Ignoring the problems works only in one two-body Hamiltonian in our model. If so, this will allow us
case when we evaluate the spectrum. The spectrum of phydb derive exact and complete expressions for the invariant
cal bosons of the light-front Schwinger model is reproducednass spectrum and the eigenfunctions.
exactly without a complete formulation in which all these (3) For nonzerom, the solution(4.3) is a formal one
problems are solved. because it contains an undetermined value of the self-field
In the self-field approach we first find the eigenfunctionspotential.
of the two-body Hamiltonian or the invariant mass squared In the self-field quantum electrodynamics the self-field
operator, and then impose the boundary conditions and dgotentials are calculated by iteration procedure. To lowest
termine the spectrum. An exact expression for the spectrurarder of iteration we solve the Hamiltonian eigenvalue prob-
cannot be therefore reproduced unless a complete construem without the self-energy termsﬁfg')fz $o=0). Next we
tion of the two-body Hamiltonian on the light front is given. substitute the eigenfunctions obtained into the expressions
In the usual equal-time formulation of the self-field QED for the self-field potentials and calculate these potentials ex-
we have only one time variable in the relativistic bound stateplicitly. For our model with¢®'f independent of spatial co-

equation[2,3]. We could start in principle with the field ordinate, we would get tha;bfle;fz ¢4 is simply a number.
To the next order of iteration we find the solution of the
1,0 11 0 \_ 1,0 1,0
(X 'X<l>|x(2) X(2)) = 1(X(1) X(1)) @ h2(X(z) X () eigenvalue problem already with the potentgl. Using the

: : self__ .
composed of the matter fields, and i, taken at different NeW eigenfunctions, we calculaig;;)= ¢, then find the

times. However, only the center of mass energy conjugate tgigenfunctions and eigenvalues corresponding>icand so

the time t=x{;,+X(, enters the bound state equation and°™ the potentialsp,, ¢s, ..., depending om.

contributes to the two-body Hamiltonian. The relative energy ftlf thtere tlr? a_tsmf?ll param%ter mlthe dthe?try,t:]hefr) V‘t’e ((:jan

conjugate to the relative time=xfy —x{y drops out of this "0 Bl h o b e massas such a parameter

equation automatically. That is why, without loss of gener- : A P .

ality, we putx®,=xC, from the beginning and (_:onS|der the mass contribution to the b'ound state eigen-
' (1) 7(2) . L0 functions and eigenvalues as small corrections to the corre-

In the light-front formulation the situation seems to be

o . ; ) . sponding eigenfunctions and eigenvalues for the vanishing
quite different. The time and spatial variables are mixed, STass. To do actual calculations in the massive case we there-

both _the light-front center of mass ﬁ!”d relative energies C3fbre need again the complete solution of the eigenvalue prob-
contribute to the bound state equation. In the present work, 't tho massless case. The mass corrections in the

following the equal-time formulation prescription we have ) ; - ;
taken the matter fields in the ansd&21) at the same light- Ec,se]cond quantized light-front QEDwere calculated in Ref.

front time, and the relative energy contribution was lost. A
generalization of the ansaf3.1) is then obvious: we should
take the matter fields at different light-front times.

As shown in Ref[6], infrared regularization using a finite
volume and a careful treatment of the boundary surfaces are This research was supported by Deutscher Akademischer
required to construct a light-front theory that is equivalent toAustauschdienst and done partially during the visit of the
the equal-time theory. The Hamiltonian and other conserveauthor to the Max-Planck-Institut” fukernphysik, Heidel-
charges obtained in this way are guaranteed to be identical toerg.
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