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Light-front two-dimensional QED: Self-field approach
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Institute of Physics, Academy of Sciences of Azerbaijan, Huseyn Javid pr. 33, 370143 Baku, Azerbaijan

~Received 5 June 1998; published 12 November 1998!

The self-field approach to quantum electrodynamics~QED! is used to study the bound state problem in
light-front two-dimensional QED with massive matter fields. A composite matter field describing bound states
is introduced and the relativistic bound state equation for the composite field including a self-potential is
obtained. The Hamiltonian form of the bound state equation in terms of the invariant mass squared operator is
given. The eigenvalue problem of this operator is solved for a fixed value of the self-potential, the correspond-
ing eigenfunctions and the mass spectrum are found. In the case of massless matter fields, there are no self-field
terms in the bound state equation, and the invariant mass spectrum can be evaluated explicitly. Possible ways
of deriving more complete information about the bound state spectrum are briefly discussed.
@S0556-2821~98!01522-7#

PACS number~s!: 11.10.Kk, 12.20.Ds
u
r
D
fi

he
t
.

ys
on

u
ro

ive
n
ou
he
d

p

nd
th
lu
ti
o

an
s
re
s

t
a

he

del
th
qua-
d
rator

e-
also
zero.

es
o-

ld

re-

le,
I. INTRODUCTION

Bound state problems in relativistic field theory, partic
larly quantum electrodynamics~QED!, are basic ones fo
particle physics. It is well known that in perturbative QE
the bound state problems cannot be treated starting from
principles. Instead one begins from a Schro¨dinger or Dirac-
like equation obtained from some approximation to t
Bethe-Salpeter relations and then calculates the perturba
diagrams to the bound state solutions of these equations

A nonperturbative treatment of two and many body s
tems in closed form is possible in the self-field formulati
of QED @1,2#. Here one starts from two fermion fieldsc1

and c2 coupled by the usual electromagnetic minimal co
pling. One then eliminates the electromagnetic field, int
duces a composite fieldF5c1^ c2 and derives a two-body
wave equation for this composite field including the radiat
corrections. This relativistic bound state equation is a ge
ine and exact one obtained directly from the action with
using any approximation. For two-dimensional QED, t
two-body wave equation was constructed and analyze
Ref. @3#.

In the present paper we aim to apply the self-field a
proach to light-front two-dimensional QED (QED2) defined
on the circle. Light-front quantization@4# has a number of
advantages. These include kinematical Lorentz boosts a
simpler vacuum structure. By quantizing at equal time on
light front a gauge theory can be reduced to an eigenva
problem for the invariant mass squared operator. The rela
istic spectrum emerges as the set of eigenvalues of this
erator.

In the self-field approach the quantum theory is first qu
tized. The electromagnetic field has no separate degree
freedom, they are determined by the matter degrees of f
dom, but then one must include nonlinear self-field term
We consider the standard QED2 with one matter fieldc and
describe bound states by the composite fieldF5c ^ c. We
use the advantages of the light-front formulation in order
get exact expressions for the bound state wave functions
spectrums for both massless and massive fermions.

Our paper is organized as follows. In Sec. II we give t
light-front formulation of QED2. In Sec. III we introduce the
0556-2821/98/58~12!/125008~8!/$15.00 58 1250
-

rst

ion

-

-
-

u-
t

in

-

a
e
e

v-
p-

-
of
e-
.

o
nd

composite matter field and rewrite the action of the mo
entirely in terms of this field. We then vary the action wi
respect to the composite field and derive a bound state e
tion. In Sec. IV we give the Hamiltonian form of the boun
state equation in terms of the invariant mass squared ope
M2. We solve exactly the eigenvalue problem forM2 for a
fixed value of the self-potential and find explicitly the corr
sponding eigenfunctions and the spectrum. We consider
the massless case when the mass of the matter fields is
In Sec. V we conclude with a discussion.

II. LIGHT-FRONT TWO-DIMENSIONAL QED

Two-dimensional quantum electrodynamics describ
matter fields interacting with an electromagnetic field in tw
dimensional space-time. The Lagrangian density of QED2 is

L5 i c̄gm]mc2mc̄c2
1

4
FmnFmn2ec̄gmcAm , ~2.1!

where (m,n)50,1̄, gm are Dirac matrices,Fmn[]mAn

2]nAm is the electromagnetic field strength. The matter fie
c is a two-component Dirac spinor, andc̄5c!g0.

We choose the light-front coordinatesx65x06x1, x1

and x2 playing the role of time and space coordinates,
spectively. The metric tensorgmn for the light-front coordi-
nates has the form

g115g2250, g125g2152.

We must distinguish upper and lower indices; for examp
time and space derivatives are

]252]1[2]/]x1,

]152]2[2]/]x2.

The algebra of Dirac matricesg65g06g1 is

g1g15g2g250,

g1g21g2g154.
©1998 The American Physical Society08-1
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Using this algebra, we can define projection operatorsL (6)

[ 1
4 g7g6 and projected spinorsc6[L (6)c.
In terms of the light-front coordinates the Lagrangian de

sity ~2.1! is rewritten as

L5~c1
! i ]2c11c2

! i ]1c2!2
1

2
m~c2

! g1c11c1
! g2c2!

1
1

2
~]2A12]1A2!22

1

2
e~ j 1A11 j 2A2!, ~2.2!

whereA65A06A1 , while j 6[2c6
! c6 are light-front mat-

ter currents.
In what follows we work in the light-front gaugeA2

50. We suppose that light-front space is a circle of lengthL,
0<x2,L, and impose the boundary conditions

A1~x1,0!5A1~x1,L !, ~2.3a!

c6~x1,L !5exp$ i2pk6%c6~x1,0!, ~2.3b!

k6 being arbitrary numbers.
The action of the light-front QED2 is

W5E
2`

`

dx1E
0

L

dx2L~x1,x2!.

The Lagrange-Euler equations deduced from it are

]1E52e j1, ~2.4a!

]2E5e j2, ~2.4b!

and

i ]1c25
1

2
mg1c1 , ~2.5a!

i ]2c15
1

2
mg2c21eA1c1 , ~2.5b!

where E[]2A1 is the electric field strength. From Eq
~2.4a!, ~2.4b! we have

]2 j 21]1 j 150,

i.e., the matter current is conserved.
Equation~2.4a! gives us the Gauss’ law and the bounda

conditions forE(x2,x1):

E~L,x1!2E~0,x1!52e
1

2E0

L

dx2 j 1[2Q1,

i.e., the electric field is not single-valued if the light-fro
chargeQ1 is nonzero~see below!.

The equation forc1 involves the light-front time deriva-
tive, soc1 is a dynamical degree of freedom. On the oth
hand, the equation forc2 involves only spatial derivative, so
c2 is a constrained degree of freedom that should be el
nated in favor ofc1 :
12500
-

r

i-

c2~x2,x1!52
i

8
mg1E

0

L

e~x22y2!c1~y2,x1!dy2.

~2.6!

The solution~2.6! fulfills antiperiodic boundary conditions
c2(L,x1)52c2(0,x1), so thatk256 1

2 .
The action of the electromagnetic field can be reexpres

by a partial integration, using Eqs.~2.4a!, ~2.4b! and the
boundary conditions, as

1

2E2`

`

dx1E
0

L

dx2~]2A1!2

5
e

4E2`

`

dx1E
0

L

dx2A1 j 12
1

2E2`

`

dx1A1~0,x1!Q1.

With Eq. ~2.6!, the total action becomes

W@c,A#5E
2`

`

dx1E
0

L

dx2S c1
! i ]2c12

e

4
j 1A1D

2
1

2E2`

`

dx1A1~0,x1!Q1

2
i

2
mE

2`

`

dx1E
0

L

dx2E
0

L

dy2c1
! ~x2,x1!

3e~x22y2!c1~y2,x1!. ~2.7!

If we solve Eqs.~2.4a!, ~2.4b!, expressA1 in terms of j 1

and insert the expression obtained into Eq.~2.7!, then we get
an action written only in terms of the matter fields.

The electromagnetic field equations can be rewritten
the form

]2
2 A152

1

2
e j1, ~2.8a!

]2]1A15
1

2
e j2. ~2.8b!

Equations~2.8a!, ~2.8b! with the periodic boundary con
ditions for the gauge field are solved by

A1~x2,x1!52
1

2
eE

0

L

dy2D~x2,y2uL ! j 1~x1,y2!,

~2.9!

where the Green’s function is

D~x2,y2uL ![
1

2
ux22y2u1

x2y2

L
2

1

2
x2,

i.e., A1(x2,x1) is completely determined byj 1(x2,x1).
The Green’s functionD(x2,y2uL) is not symmetric in

x2 and y2. The reason for that is nonzeroQ1. We can
easily see this if for a moment use
8-2
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LIGHT-FRONT TWO-DIMENSIONAL QED: SELF- . . . PHYSICAL REVIEW D 58 125008
Dsym~x2,y2uL ![
1

2
ux22y2u1

x2y2

L
,

Dsym~x2,y2uL !5Dsym~y2,x2uL !,

instead ofD(x2,y2uL) in Eq. ~2.9!. The boundary condi-
tions for the fieldA1 become

A1~L,x1!5A1~0,x1!1
1

2
Q1,

i.e., A1 is periodic only if Q150. SoDsym(x2,y2uL) is a
right choice only for the vanishing chargeQ1.

However, only the symmetric part of the Green’s functi
contributes to the action. If we insert Eq.~2.9! into Eq.~2.7!,
we obtain the action in the light-front gauge as

W@c#5E
2`

`

dx1E
0

L

dx2c1
! i ]2c1

2
i

2
mE

2`

`

dx1E
0

L

dx2E
0

L

dy2c1
!

3~x2,x1!e~x22y2!c1~y2,x1!

1
e2

8 E2`

`

dx1E
0

L

dx2E
0

L

dy2

3 j 1~x2,x1!Dsym~x2,y2uL ! j 1~y2,x1!,

~2.10!

the last term representing the current-current interaction.

III. BOUND STATE EQUATION

Let us define a composite fieldF by

F~x1
2 ,x1ux2

2 ,x1![c1~x1
2 ,x1! ^ c1~x2

2 ,x1!. ~3.1!

This is a four-component spinor field,Fab5c1
a c1

b ,
(a,b)51,2. However, only one component of the compos
field is nonvanishing:

F115c1
1 c1

1 5F11,

F125F215F2250.

The configuration space (x1
2 ,x2

2) is a square of sideL (0
<x1

2,L, 0<x2
2,L) with the opposite sides being ident

fied, i.e., a torus.
We can rewrite the action~2.10! entirely in terms of the

composite fieldF. In order to do this we multiply the action
with the normalization factor~which is constant of motion!

E
0

L

dx2c1
! ~x2,x1!c1~x2,x1!51. ~3.2!

The resultant action in terms of the composite field is
12500
e

W@F#5
1

2E2`

`

dx1E
0

L

dx1
2E

0

L

dx2
2F!,11

3~x1
2 ,x1ux2

2 ,x1!~p~1!
2 1p~2!

2

2mfself!F11~x1
2 ,x1ux2

2 ,x1!. ~3.3!

Here the index~1! refers to the coordinates of the first fie
c1(x2 ,x1) in the ansatz~3.1!, the index~2! refers to the
second fieldc1(x2

2 ,x1).
The generalized~kinetic! momentap ( i )

6 are given by

p~ i !
6 5p~ i !

6 1eA~ i !,self
6 ~3.4!

with

p~ i !
6 [ i ]~ i !

6

and

A~1!,self
2 ~x2,x1![f~1!

sel f~x2,x1!

5
e

2E0

L

dy2E
0

L

dz2F!,11~y2,x1uz2,x1!

3Dsym~x2,y2uL !F11~y2,x1uz2,x1!,

A~2!,self
2 ~x2,x1![f~2!

self~x2,x1!

5
e

2E0

L

dy2E
0

L

dz2F!,11~y2,x1uz2,x1!

3Dsym~x2,z2uL !F11~y2,x1uz2,x1!,

A~ i !,self
1 ~x2,x1!50,

the self-potentialsf ( i )
self being nonlinear integral expression

The self-potential in the mass term

fself~x1!5E
0

L

dy2E
0

L

dz2E
0

L

dh2F!,11

3~z2,x1uy2,x1!

3 i e~y22h2!F11~h2,x1uz2,x1! ~3.5!

does not depend on the light-front space coordinate and d
not contribute to the action in the massless case.

We can write the action~3.3! in another, equivalent form
If f ( i )

self are not included into the generalized momenta a
are considered separately, then these self-potentials ca
shown to reduce to the potentiale2Dsym. The action becomes

W@F#5
1

2E2`

`

dx1E
0

L

dx1
2E

0

L

dx2
2F!,11

3~x1
2 ,x1ux2

2 ,x1!•~p~1!
2 1p~2!

2 1e2Dsym

2mfself!F11~x1
2 ,x1ux2

2 ,x1!. ~3.6!
8-3
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FUAD M. SARADZHEV PHYSICAL REVIEW D 58 125008
Since there is only one self-potential in the action~3.6!, it is
much simpler to work with this action rather than with th
action ~3.3!.

In the self-field approach thec currents are actual mate
rial charge currents, and not just probability currents. T
corresponding charges are actual matter charges. With
normalization factor~3.2!, we get

Q15e,

i.e., Q1 is actual charge of the positive chirality matter. F
our model with a single charge on the circle, the electric fi
is not therefore periodic. We must consider at least two m
ter fields with charges equal in magnitude and opposite
sign in order to get vanishing total charge and single-val
total electric field.

Now we require the action~3.6! to be stationary not with
respect to the variation of the original matter fie
c1(x2,x1) but with respect to the total composite fie
only. This is a weaker condition and leads to the followi
equation forF11(x1

2 ,x1ux2
2 ,x1) in configuration space:

~p~1!
2 1p~2!

2 1e2Dsym2mfself!F11~x1
2 ,x1ux2

2 ,x1!50.
~3.7!

We next introduce center of mass and relative coordina
according to

P65p~1!
6 1p~2!

6 , p65p~1!
6 2p~2!

6 ,

R5x~1!
2 1x~2!

2 , r 5x~1!
2 2x~2!

2 .

The configuration space (r ,R) is again a torus, but with the
circle length 2L (2L<r ,L, 0<R,2L). The function
Dsym(x1

2 ,x2
2uL) can be rewritten as a sum of center of ma

and relative parts:

Dsym~x1
2 ,x2

2uL !5D2~r uL !1D1~RuL !,

D2~r uL ![
1

2
ur u2

1

4L
r 2,

D1~RuL ![
1

4L
R2.

Equation~3.7! becomes

P2F11~r ,x1uR,x1!5$2e2~D2~r !1D1~R!!

2mfself%F11~r ,x1uR,x1!.

~3.8!

Equation ~3.8! is a Hamiltonian form of the bound stat
equation. We have in this equation only one time varia
conjugate to the center of mass energyP2; the relative en-
ergy p2 does not enter.

IV. ANALYSIS OF BOUND STATE EQUATION

Let us define the operatorM25P1P2, so that its eigen-
values correspond to the invariant mass spectrum of
12500
e
he

d
t-
in
d

s

s

e

e

theory. By acting on Eq.~3.8! by P1 we get the Hamiltonian
form of the bound state equation in terms ofM2:

M2F115H 24ie2
]D1~R!

]R
14i @e2D2~r !1e2D1~R!

2mfself#
]

]RJ F11. ~4.1!

To find eigenfunctions and eigenvalues ofM2 we must
solve the equation

M2F115sF11, ~4.2!

wheres has the dimension̂energy&2.
With the normalization condition

E
0

2L

dRE
2L

L

drF!,11~r ,R!F11~r ,R!51,

Equation~4.2! is solved by the eigenfunctions

Fn
11~r ,R!5C~m,f!

f m~r !

R21dm~r !
expH i

L

e2
snF~dm~r !,R!J ,

~4.3!

where

dm~r ![2
4L

e2
mf14LD2~r !,

f is a fixed value of the self-potentialfself, f m(r ) is an
arbitrary function

F@dm~r !,R#

55
1

Adm~r !
arctanS R

Adm~r !
D for dm~r !.0,

1

2Audm~r !u
lnUAudm~r !u2R

Audm~r !u1R
U for dm~r !,0,

and

F~dm~r !,R!52
1

R
for dm~r !50.

The normalization constantC(m,f) is

C~m,f!5S E
0

2L

dRE
2L

L

dr
f m

2 ~r !

@R21dm~r !#2D 21/2

.

The eigenfunctionsFn
11 become singular at those poin

of the configuration space (r ,R) where

R21dm~r !50.

However, if
8-4
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LIGHT-FRONT TWO-DIMENSIONAL QED: SELF- . . . PHYSICAL REVIEW D 58 125008
f.
5

4

e2L

m
, ~4.4!

then all singularity points are outside of the torus (2L<r
,L, 0<R,2L). There are no singularity points also fo
negative values offself. For any nonzerom we can therefore
choosef in such way that the condition~4.4! is fulfilled and
the eigenfunctionsFn

11 are not singular. Form50, the con-
dition ~4.4! is not already valid, and the eigenfunctions a
singular at one point of the configuration space, namelyr
50, R50).

A. Spectrum

The spectrum of eigenvaluessn is fixed by the boundary
conditions. From the boundary conditions for the individu
fields c1 we can deduce in general three boundary con
tions for the composite fieldF11 ~see Fig. 1!:

F11~LuL !5exp$ i2pk1%F11~0u0!,

F11~2LuL !5exp$ i2pk1%F11~0u0!,

F11~0u2L !5exp$ i4pk1%F11~0u0!.

Nevertheless, only part of them are really valid. Indeed,
preexponential in the solution~4.3! is not a constant and
depends on the relative coordinater . Only those boundary
points at which the values of the preexponential coincide
be used in the boundary conditions. Let us first putf m(r )
51. Then the preexponential 1/@R21dm(r )# takes the same
value at two boundary points (2L,L) and (L,L). So we
have one boundary condition@see Fig. 2~a!#

F11~2L,L !5F11~L,L ! ~4.5!

which can be considered as an equation fors, while k1

remains arbitrary.
For the solution~4.3! with f m(r )51, from Eq. ~4.5! we

get

FIG. 1. A schematic representation of the boundary conditi
for the composite matter field on the configuration space (2L<r
,L, 0<R,2L). Each two boundary points connected by a dot
line are related also by the corresponding boundary condition.
12500
l
i-

e

n

L

e2
sn$F@dm~2L !,L#2F@dm~L !,L#%52pn, nPZ.

Sincedm(2r )5dm(r ), the expression in the squared brac
ets vanishes andsn drops out of the boundary conditions. I
the casef m(r )51 we therefore cannot derive any inform
tion concerning the spectrum.

For the general casef m(r )Þ1, we can use one boundar
point more in the boundary conditions. If we takef m(r ) with
the boundary values connected as

f m~2L !5 f m~L !,

f m~L !

f m~0!
5

L21dm~L !

4L21dm~0!
,

s

FIG. 2. A schematic representation of the boundary conditi
for the solution~4.3!. ~a!: f m(r )51, ~b!: f m(r )Þ1.
8-5
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FUAD M. SARADZHEV PHYSICAL REVIEW D 58 125008
then the preexponentialf m(r )/@R21dm(r )# takes the same
value at three boundary points (2L,L), (L,L), and (0,2L).
The corresponding boundary conditions are@see Fig. 2~b!#

F11~0u2L !5exp$ i2pk1%F11~LuL !,

F11~0u2L !5exp$ i2pk1%F11~2LuL !,

F11~LuL !5F11~2LuL !.

Again sn drops out of the third boundary condition, whi
the first two ones coincide and give us fork150 the spec-
trum

sn5
2pe2

am
n, nPZ, ~4.6!

which is linear inn, where

am[L$F@dm~0!,2L#2F@dm~L !,L#%,

and n must be taken positive foram.0 and negative for
am,0. Equations~4.3! and ~4.6! represent a solution of th
invariant mass squared operator eigenvalue problem fo
fixed value offself.

B. Massless case

For the massless case, there are no self-energy term
the bound state equation. The eigenfunctions ofM2 become

Fn
~0!,115C~0,0!

f 0~r !

R21d0
~0!~r !

3expH i
L

e2
sn

~0!F ~0!@d0
~0!~r !,R#J , ~4.7!

where d0
(0)(r )54LD2(r ) is positive for all nonzeror and

vanishes atr 50. The superscript~0! means that Eq.~4.7! is
the solution of the invariant mass squared operator eig
value problem without the self-energy terms.

We easily evaluatea0
(0) as

a0
~0!52

1

2S 11
p

2 D,0,

so that the spectrum takes the form

sn
~0!5

8pe2

p12
n, n50,1,2, . . . . ~4.8!

For the boundary values off 0(r ) we have

f 0~2L !5 f 0~L !,

f 0~L !5
1

2
f 0~0!.

One possible choice off 0(r ) is
12500
a

in

n-

f 0~r !5uS L2

4
2r 2D1

1

2
uS r 22

L2

4 D
~see Fig. 3!. With this choice the normalization consta
takes the value

C~0,0!5LS 1

4
ln

3

2
1 ln

11

7 D 21/2

'1,35L.

V. DISCUSSION

~1! In our study of the bound state problem in tw
dimensional QED we have tried to combine the advanta
of both the self-field approach and the light-front formul
tion. The self-field approach allows us to construct a rela
istic bound state equation. Bound states are described
composite matter field which is a bilinear combination of t
original matter field and therefore four-component. On t
light front only one of these components is nonzero, so
bound state equation is simply onecomponent.

We have derived the Hamiltonian form of the bound st
equation for the invariant mass squared operator. The e
tion includes a self-potential which enters the mass term.
a fixed value of the self-potential, we have solved the eig
value problem of the invariant mass squared operator
found its spectrum as well as the corresponding eigenfu
tions. The invariant mass spectrum turns out to be disc
and linear. For the massless matter fields, when the s
potential contribution vanishes, we have evaluated the
variant mass spectrum explicitly.

~2! Our solution of the invariant mass squared opera
eigenvalue problem is not complete. In particular, in t
massless case the eigenfunctions are singular at one o
boundary points, so only a part of the boundary conditio
can be employed. Since just the boundary conditions de
mine the spectrum, some information about the spectrum
lost. As a result, the invariant mass spectrum obtained in
work differs from the well-known one of the second
quantized massless QED2 on light front ~the light-front
Schwinger model! @5#.

There are several puzzles or problems regarding the li
front formulation, e.g., the null plane and missing degrees

FIG. 3. A special choice of the functionf 0(r ): f 0(r )
5u@(L2/4)2r 2#1

1
2 u@r 22 (L2/4)#.
8-6
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freedom, causality and boundary conditions, the zero m
limit, and so on~see, for example, Ref.@6#!. Many aspects of
the Schwinger model on light front such as the anomaly
the u vacuum cannot be understood without worrying ab
these problems@7#. Ignoring the problems works only in on
case when we evaluate the spectrum. The spectrum of ph
cal bosons of the light-front Schwinger model is reproduc
exactly without a complete formulation in which all the
problems are solved.

In the self-field approach we first find the eigenfunctio
of the two-body Hamiltonian or the invariant mass squa
operator, and then impose the boundary conditions and
termine the spectrum. An exact expression for the spect
cannot be therefore reproduced unless a complete cons
tion of the two-body Hamiltonian on the light front is given

In the usual equal-time formulation of the self-field QE
we have only one time variable in the relativistic bound st
equation@2,3#. We could start in principle with the field

F~x~1!
1 ,x~1!

0 ux~2!
1 ,x~2!

0 !5c1~x~1!
1 ,x~1!

0 ! ^ c2~x~2!
1 ,x~2!

0 !

composed of the matter fieldsc1 and c2 taken at different
times. However, only the center of mass energy conjugat
the time t[x(1)

0 1x(2)
0 enters the bound state equation a

contributes to the two-body Hamiltonian. The relative ene
conjugate to the relative timet[x(1)

0 2x(2)
0 drops out of this

equation automatically. That is why, without loss of gen
ality, we putx(1)

0 5x(2)
0 from the beginning.

In the light-front formulation the situation seems to
quite different. The time and spatial variables are mixed,
both the light-front center of mass and relative energies
contribute to the bound state equation. In the present w
following the equal-time formulation prescription we ha
taken the matter fields in the ansatz~3.1! at the same light-
front time, and the relative energy contribution was lost.
generalization of the ansatz~3.1! is then obvious: we should
take the matter fields at different light-front times.

As shown in Ref.@6#, infrared regularization using a finit
volume and a careful treatment of the boundary surfaces
required to construct a light-front theory that is equivalent
the equal-time theory. The Hamiltonian and other conser
charges obtained in this way are guaranteed to be identic
s
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the ones we would construct in the equal-time formulatio
We believe that with the finite box regularization and t
generalized ansatz for the composite matter field it will
possible to perform a complete construction of the light-fro
two-body Hamiltonian in our model. If so, this will allow u
to derive exact and complete expressions for the invar
mass spectrum and the eigenfunctions.

~3! For nonzerom, the solution~4.3! is a formal one
because it contains an undetermined value of the self-fi
potential.

In the self-field quantum electrodynamics the self-fie
potentials are calculated by iteration procedure. To low
order of iteration we solve the Hamiltonian eigenvalue pro
lem without the self-energy terms (f (0)

self[f050). Next we
substitute the eigenfunctions obtained into the express
for the self-field potentials and calculate these potentials
plicitly. For our model withfself independent of spatial co
ordinate, we would get thatf (1)

self[f1 is simply a number.
To the next order of iteration we find the solution of th

eigenvalue problem already with the potentialf1 . Using the
new eigenfunctions, we calculatef (2)

self[f2 , then find the
eigenfunctions and eigenvalues corresponding tof2 and so
on, the potentialsf2 , f3 , . . . , depending onm.

If there is a small parameter in the theory, then we c
often stop the iteration procedure already after the first ord
In our model we could take the massm as such a paramete
and consider the mass contribution to the bound state ei
functions and eigenvalues as small corrections to the co
sponding eigenfunctions and eigenvalues for the vanish
mass. To do actual calculations in the massive case we th
fore need again the complete solution of the eigenvalue p
lem for the massless case. The mass corrections in
second-quantized light-front QED2 were calculated in Ref.
@8#.
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