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Charge Transfer in Overlapping Gate
Charge-Coupled Devices

AMR M. MOHSEN, T. C. McGILL, AND CARVER A. MEAD

Abstract—A detailed numerical simulation of the free charge
trsnrfer in overlapped gate charge-coupled devices (CCD) is pre-
sented. The transport dynamics are analyzed in terms of thermal
diffusion, self-induced fields, and fringing fields under all the rele-
vant electrodes and the interelectrode regions with time-varying gate
potentials. The results of the charge trmwfer with clifferent clocking
schemes and clocking waveforms are presented. The dependence
of the sta,ges of the charge trsnsf er on the device parameters are
discussed in detail. A lumped-circuit model of CCD that could be
used to obtain the charge-trsmfer characteristics with various
clocking waveforms is also presented.

I. INTRODUCTION

T

HE overlapping gate charge-coupled device
(CCD) is presently the most technically promising

structure for the potential large scale applications
of these devices. Compared to the simplicity of the three-
phase metal gate CCD [1], [2 I and the resistive gate
CCD [3], the interelectrode spacing in the overlapping
gate structure is reduced to an oxide thickness and the
overlapping electrodes provide good control of the sur-
face potential in the entire channel region, seal the
active channel from any externa,l contaminations, shield
out the charge repulsion,l and thus enhance the charge
transfer. Overlapped gate CCD’S can be manufactured
with two levels of metallization technology such as
silicon gate and refractory gate technology [4], [5].

The two levels of metallization simplify the layout of
large CCD arrays. The use of the overlapping gate struc-
ture with polysilicon and aluminum electrodes in an
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1 The maximum current that can be transferred Rcross an in-
version k.yer produced by a metal gate of length t and width W
is given approximately by (as shown in Appendix III)

where C is the oxide capacity, p the surface mobility, and % is
the surface potential without charge. If an inversion layer is
produced by a constant normal field in a gap of length Zand width
W on a substrate of doping N. then the relation between the sur-
face potential % and surface charge q is given by

q = ti%selv= (%’@j – %“1%1),

where % is the surface potential without charge, es the semi-
conductor dielectric constant, and e the electronic charge. Then
using the gradual channel approximation, it can be shown that
the maximum current that can be iransferred by tbe inversion
layer under the gap is approximately gwen by

where Cn ie the depletion layer capacity under the gap with no
surfac: charge. Thus the presence of a metal gate over the
inversion layer shields out the charge repulsion and increases
the maximum rate of transfer of charge by the ratio of the oxide
to the depletion layer capacity that is typically about an order
of magnitude.

The three sequences of page-flip “movies” illustrate the
dynamics of the charge transfer and charge storage in charge-
coupled devices (CCD’S). The framee of the movie were
drawn by a SC4020 plotter directly from a numerical simu-
lation of the charge transfer dynamics. The transport dynamics
were analyzed in terms of thermal diffusion, self-induced
fields and fringing fields under the relevamt electrodes and
interelectrode regions with various clocking waveforms. A
p-channel overlapping gate CCD was used in the numerical
simulation. The storage gates were 14 y wide and 8 ~ apart.
In each frame the horizontal axis represents the distance
along the semiconductor–insulator interface of the device.
From right to left are the regions under the first transfer
gate, first storage gate, second transfer gate and second
storage gate of one bit of the device. The vertical axis at
the bottom of the frame represents the surface charge density
of the mobde carriers in normalized units. The vertical axis
at the top of the frame represents the voltages applied to
the storage and transfer gates (O to — 15 V). The vertical
axis at the middle of the frame represents the surface poten-
tial (O to — 15 V). The upper curve is the surface potential
with charge, the lower curve without charge, so the difference
between the two lines is proportional to the mobile surface
charge density. The time interval from one page to the next is
4 ns. The clocking waveforms and the device dimensions for
the flip-page movie Sequences I, II, and III are shown at the
top of Figs. 3, 4, and 7, respectively, of the paper entitled,
“Charge Transfer in Overlapping Gate Charge-Coupled
Devices” (thin issue, pp. 191-207).

Sequence I: This flip-page movie sequence illustrates the
time evolution of the surface charge density and surface
potential profiles during charge transfer when a CCD is
operated with a two-phase drop clock. In the two-phase
clocking scheme, each successive storage and transfer gate
pair is driven by one phase of the clock. The clock frequency
is 5 Mc. With drop clocks the signal charge is stored under
a storage gate with a holding voltage V, (—7 V in this case).
Charge transfer occurs when the voltage of the second phase
of the clock driving the next transfer and storage gates is
lowered to V~ (–15 V) ; the charge thus flows to the potential
minimum created under the receiving storage gate. The
charge transfer ends when the voltage of the receiving storage
gate m raised to V,.

Sequence II: This illustrates the operation of a two-phase
push clock., The clock frequency is 5 Mc. With push clocks
the charge R stored under a storage gate with its voltage equal
to k’~ (—15 V). To effect the charge transfer, the potential
of the original storage gate is gradually raised, and the charge
stored there begins to spill over the area beneath the next
transfer gate. As the potential of the original storage gate
continues to rise, more of the charge under it is brought to a
potential higher than that under the next transfer gate, and
so is able to flow to the next storage gate. When the potential
of the original storage gate returns to V~, the charge transfer
ends, and some of th: ~esidual charge under the transfer gate
spills back to the orlgmal storage gate.

Sequence III: This illustrates a CCD operating with a
four-phase push clock. In the four-phase clocking scheme, the
gates of each bit of the device are driven by a sepm-ate phase
of the clock, thus allowing Q more flexible control of the
storage and transfer of the signal charge. The clock frequency
M 15.4 Mc, With push clocks the charge is stored under a
storage gate with its voltage equal to V~ and with the voltages
of the transfer gates equal to the resting voltage V,. For
example, to transfer the charge frOm under the first stOrage
gate to the second one, the voltages of the second transfer
and storage gate are lowered to l’~. Then the voltage of the
original storage gate increases gradually to push the charge
from under the first storage gate to the adjacent ones. The
second transfer gate voltage is then increased to push $he
charge to the second storage gate. As it reaches the resting
voltage V,, the charge transfer ends and some of the residual
charge under the transfer gate spills back to the preceding
storage gate.
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operating memory system has been reported recently [6].
Several authors [7] - [12] have reported studies of the

free charge transfer for a model consisting of a single
gate to which a time independent potential is applied and
assuming a perfect sink at the end of the gate.

The purpose of this work is to study in detail the
limitations on the performance of the overlapping gates
CCD’S due to incomplete charge transfer and interface
state trapping [1], [13] and their dependence on the de-
vice parameters and the clocking waveforms. Therefore
we have developed a detailed numerical simulation of
the charge-transfer process in the overlapping gate
CCD’S. We have analyzed the charge transport dy-
namics in terms of charge motion due to thermal dif-
fusion, self-induced drift, and fringing fields. With some
assumptions and approximations, which are shown to be
well satisfied, we have solved the nonlinear nonlocal
equations describing the transfer dynamics, under all
the relevant gate electrodes and interelectrode regions”
with time-varying gate potentials using a new finite
difference scheme, the box scheme [14]. We also discuss
in this paper the dependence of the different. stages of
the transfer process on the device parameters. Using
a lumped-circuit model of CCD’S, analytic expressions
describing the charge transfer with various clocking
waveforms are developed. These expressions can be
used to derive the charge-transfer characteristics for
other device structures, dimensions, clocking waveforms
and voltages, thus providing practical charge-coupled
device and circuit design tools. The influence of clocking
waveforms and clocking schemes on incomplete free
charge transfer and the effects of trapping in interface
states in overlapping gate CCD’S are discussed by the
authors in detail elsewhere using the results of the
present study [15] -[18], [26].

In Section II we discuss the theoretical model and
the basis of our approximations. In Sections III and IV
we present the results of the charge transfer in two-phase
and four-phase CCD’S. A discussion of the results is
presented in Section V.

II. THEORETICAL MODEL

In the calculations presented here we have considered

p-channel’ devices with dimensions consistent with typi-

cal layout tolerances of silicon gate technology.

Transport Equations

The storage and transfer of charge along the insulator-
semiconductor interface is described by the continuity
equation:

where

J.= –D~–pq~. (2)

q is the surface-charge density of the free minority

2 The calculations and results can be applied to n-channel
devices after the proper scaling of the transfer times by the sur-
face mobility ratio of the electrons and holes and the use of the
appropriate values of the threshold and flat-hand voltages.

carrier, J@ the sheet current density, and O. the surface
potential. D and p are the minority carrier diffusion
and mobility at the interface, respectively. z is the dis-
tance along the interface in the direction of charge
transfer.

~ bemal.e.er,tior.t

is the rate of generation of surface charge due to thermal
generation currents from generation centers at the inter-
face, the depletion regions, and the substrate. For a
total delay time from the input to the output of the
device much smaller than the storage time of the inter-
face, the effect of thermal generation can be neglected.’

~
‘t tra..ing

is the total rate of capture of the mobile carriers due
to their interaction with the interface states in the band
gap. Since the mobile carriers interact with interface
states within an energy range of the order of thermal
voltage and for the low interface state density obtainable
with the present thermally grown silicon oxide, the rate
of capture or emission of the mobile carriers by the
interface states is smaller than the divergence of the
sheet current density in (1) [15]. Thus one can obtain
the free charge-transfer characteristics by neglecting

aq
at tr.ming

in (1) and solving the continuity equation. The effects
of trapping on the incomplete charge transfer can then
be calculated by studying the interaction of the mobile
carriers with the interface states from the Shockley–
Read–Hall equations together with the surface-charge
density profiles q(z, t) under the gates [15]. Thus the
free charge-transfer continuity equation reduces to

(3)

The surface-potential gradient a@,/ax is due to the
variable surface-charge density and the two-dimensional
nature of the CCD structure. For given electrode po-
tentials, device geometry, andcharge density profile, the
surface-potential gradient is obtained from the solution
of the two-dimensional Poisson equation. Thus a rigorous
treatment of the free charge-transfer problem would
require the simultaneous solution of (3) and the two-
dimensional Poisson equation. While this rigorous ap-
proach is conceptually possible, the cost of such an
analysis leads us to seek some valid approximation to
simplify the solution.

The surface-potential gradient due to variations in
the surface-charge density (self-induced fields) can be
obtained, according to the standard gradual channel
approximation [20]. In this approximation, we take
the gradient of the surface potential O, obtained from
the one-dimensional solution of the Poisson equation
with the parameters of the solutions chosen to cor-

3 Thermal generation and leakage currents impose a limit on
the maximum delay time and the minimum clock frequency of
the device. For more detailed discussion see [171-[19].
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kig. 1. Plots of the surface potential and surface-potential
gradient along the silicon-silicon oxide interface obtained from
~he solution %f the two-dimensional Poisson equation of the
overlapping gate structure in Fig, 1 with minimum geometry
dimensions, The thickne.m of the polysilicon and the aluminum
61ectrodes is 0.5 .u. The electrode voltages correspond to the
last stages of the charge transfer. A signal charge of about
5.5 V is in the receiving storage electrode. The substrate
doping is 8 x 1014 donors/cm3 in Fig. 1(a) and 10LA donorq/
cmq in Fig. l(b).

res~ond to the one-dimensional out through the struc-
bw-;. In Appendix I we show, using a Gr;en’s function
solution of the two-dimensional Poisson equation for an
arbitrary minority charge density profile, that the
gradual channel approximation is reasonably accurate
when the lateral variation of the various charges over
a distance on the order of the depletion layer width is
small.

The simfaee-potential gradient under the electrodes
due to the adjacent electrodes (fringing fields) is ob-
tained by solving the two-dimensional Poisson equation
of the CCD structure. In Fig. 1 we have plotted the
surface potential and surface-pcltential gradient along
the semiconductor insulator interface,. These plots were
obtained from the solution of the two-dimensional Pois-
son equation [21] of an overlapping gate CCD with the
electrode voltages corresponding to the last stages
of the charge transfer and with most of the signal charge
in the receiving storage electrode. The fringing fields in
devices with dimensions consistent with typical layout
tolerances of MOS technology, are of the order of a
few hundreds volts/centimeter. During the first stages of
the charge-transfer process the self-induced fields are
typically few thousands volts/centimeter, therefore, the
fringing fields are only important at the last stages

k
,\\\\.

+3 ‘$,A:

-1, &
.

193

L--@,. -r– -

-2L V,’”2X

////4sooL I

,,,
Gate Voltage (volts)

Fig. 2, Plots of the one-dimensional relation between the
surface pot~ntial @, and the gate voltage for a polysilicon gate
with 1200 A and aluminum gates with different oxide thickness,
The substrate doping is 0.8 x 10I6 donors/cmZ, q., = 3.1 x
1011/cm3.

of the charge transfer when the self-induced fields be-
come very small. Accordingly, the fringing-field profile
under the electrodes obtained from a two-dimensional
solution of the Poisson equation of the CCD structure
with the gate voltages corresponding to the last stages
of the charge transfer and with most of the signal charge
in the receiving electrode can be used during the entire
charge-transfer process.

The two-dimensional solution of the Poisson equation

for the overlapping gate structure shown in Fig. 1 il-
lustrates that the surface potential under the interelec-
trode regions varies quite smoothly for different gate

G+

“

__— —

L_’J-d:”

electrode potentials [5], [21]. Therefore we have used
a smooth interpolating polynomial to approximate the
surface potential in these regions. We have also assumed
a constant surface mobility to simplify the solutions of
the transport equations. The dependence of the surface
mobility on the normal surface field and the surface-
potential gradient along the interface introduce neg-
ligibly small error on the charge-transfer character-
istics of typical minimum geometry devices.~

Nonlinear Diflusion Equation

In Appendix II, we show that according to the pre-
viously mentioned assumptions the surface-potential
gradient under the gates or in the interelectrode regions

4 Carrier nobilities at the Si-SiO, interface are approximately
constant up to a normal surface field of 1.5 x 106 V/cm cor-
responding to a surface carrier concentration of 1012/cm2 [221.
Therefore, for mobile carrier concentration equal or less than
l,BIZ/cmZ, the reduction in the surface mobility due to the normal

-. “

surface field is small. The carrier velocity in silicon saturates at
——

s critical field around 5 V,/g [231. During the charge transfer,
the surface-potential gradient usually does not exceed 1 V/w tii”
except in the interelectrode region between the tranafer gate
and the receiving storage gate, where it may reach about 10
V/p, Since the mtiximum sheet cu~rent density, is about few . A!o’
rnicroamperesjmiwon, and the mobde carrier concentration in

x

this region is smaller by more than an order of magnitude than
that under the gate electrodes, the changes in the mobile carrier
concentration in this region due to velocity saturation has
negligible effects on the charge-transfer characteriatic$.
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can be written in the form

I?@.
— – L(X, i) + M(% ?$(7+ N(%,og“
ax –

(4)

Substituting in (3), the continuity equation reduces to
the nonlinear diffusion equation

#=&[D!#+pq(L+M, +Ng)]. (5)

If fringing fields under the gate electrodes are negligible
then L= M=O.

The dynamics of the charge transport in each bit are
thus described by equations similar to (5) with the
appropriate functions, L, M, and N under the storage
and transfer electrodes and the interelectrode regions.
At the junction points between the different regions, the
surface potential, and surface-charg~ density must be
continuous and the current must be conserved.

We have solved the set of nonlinear equations with
the appropriate boundary conditions using a new finite
clifference scheme, the box scheme [14]. The numerical
formulation of the problem’ and its accuracy is treated
in detail in [18].

Overlapping gate CCD’S can be operated with four-
phasej three-phase, two-phase, and single-phase clock-
ing schemes. With three-phase and four-phase clocking
schemes the gate electrodes are equal in size so that
charge may be stored under each gate during the transfer
process. Alternatively the upper electrodes may be made
smaller and used to control the transfer of charge be-
tween the buried storage electrodes. In this case, four-
phasej two-phase, and single-phase clocking schemes
may be used to control the storage and transfer of charge
for both serpentine and parallel signal flow.

III. TWO-PHASE CLOCKING SCHEME

In the two-phase clocking scheme only two clock
phases are used to control the storage and transfer of
charge along the interface. The asymmetry in the sur-
face potential needed to provide the directionality of
the signal charge transfer can be achieved by using a
step in the channel oxide [5] or ion implanted barrier
[24] or the charge storage properties of double dielec-
tric structures such as the MNOS structures [25]. In
this section we present some of the calculations of the
charge-transfer characteristics of two-phase overlapping
gates CCD’S where the asymmetry of the structure is
achieved by a step in the channel oxide. However our
results can be applied to all other structures with the
appropriate modifications.

Complete Charge-Transfer Mode

In the complete charge-transfer modes the charge
under the storage gate is transferred to the following
gates; none is deliberately retained.

5The box scheme has very desirable features that made it
suitable for solving the set of nonlinear diffusion equations
describing the charge transport dynamics in CCD. For example,
second order accuracy can be achieved with nonuniform nets.
Thus small net spacing can be used in the interelectrode regions
where the surface-charge demity is changing rapidly, while a
large net spacing can be used in the other regions where the
surface-charge density gradient is small. Also both the surface-
charge density and its gradient are approximated with the
same accuracy. Thus the charge flow across the boundaries be-
tween the different regions is conserved to the same order of ac.
curacy of the surface charge under the electrodes.
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Drop Clock: With drop clock the signal charge is
stored below a gate at a holding voltage VI that is a
fraction of the largest clock voltage V,}, that the MOS

structure can tolerate; charge transfer occurs when V~
is then applied to the adjacent gates and the charge
flows to the potential minimum thus created [26].

In Fig. 2 we have plotted the one-dimensional relation
between the surface potential and the gate voltage for
a polysilicon gate with 1200-A oxide and for an alu-
minum gate with different oxide thickness for a substrate
doping of 8 X 10’4 donors/cm3. Since in the two-phase
clocking scheme the surface potential under each suc-
cessive set of transfer and storage gates is controlled
by a single-clocking voltage, the maximum amount of
charge that can be stored under the storage gate with-
out spill over and the fringing fields under it depend
on the silicon oxide thickness under the transfer and
storage gates. Therefore, for optimum operation of the
device, the oxide thickness under the storage and trans-
fer gates should be properly chosen.’

We have simulated numerically the charge-transfer
characteristics for the device shown at the top of Fig. 3
clocked by square-wave drop clocks with zero fall and
rise times.7 In Fig. 3 we have plotted the residual charge
under the source storage gate as a percentage of a full
buckets for two different initial charges equivalent to
about 3 V and 1 V with a substrate doping of 8 X 10i4
donors/cm3 and 10’4 donors/cm’. Consideration of the
transient currents at the ends of the transfer gate and
the surface-charge and surface-potential profiles’ under
the gates during the charge transfer show that the charge
transfer divides naturally into several distinct stages.

1) In the first stage, the charge initially confined under
the source storage gate spreads to charge up the adjacent
transfer gate for a fraction of a nanosecond.

2) In the second stage, the charge transfer is limited
by the transport of charge across the transfer gate to
the next storage gate. The transfer gate acts as a MOS
transistor at pinchoff with the storage gates as its source
and drain. Thus the source and receiving storage gates
are capacitors charged and discharged through the
transfer channel.

According to the lumped-circuit model discussed in
Appendix IV the decay of the residual charge under the
gates is described by

—pcT,w
: (Q., + 4?,,) “= —21Tr

. [2KT(@~, – @n.,) + (@fl, – o~.o)z] (6a)

~For example, in applications requiring maximum charge to be
transferred along the device (such as digital serial memories
and analog delay lin$s) and if the oxide thickness under the
storage gate is 1200 A, then to operate the device in the com-
plete charge-transfer mode with two-phase drop clock the opti-
mum oxide thickness under the transfer gate is about 3200 A for
V~ = —15 V and a substrate doping of 8 x 10~q/cms. In other
applications such as low le~el injection CCD imagers it may
be more Important to maxlmlze the fringing fields under the
storage gate. In this case thicker silicon oxides under the storage
and transfer gates with a low substrate doping may optimize
the performance of the device.

7 For rise and fall time comparable or larger than the transfer
times of interest the same equations given with the push clocks
below in (17) and (18) could be used,

s A full bucket is the equilibrium surface charge density under
the storage gate electrode with its voltage equal to V~.

8 The surface-charge and surface-potential profiles are shown in
the flip page movie in the issue. The current plots are given
in [181.
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Fig. 3. The residual charge under the storage gate as a per-
centage of a full bucket for two different initial char es
equivalent to about 3 and 1 V versus transfer time. ~he
full line curves are for a substrate (doping of 8 x 1014 donors/
~ms and 1014 donors{cm3. The dashed line curves are obtained
~m_(!~ ~dv (16) according to the lumped-circuit model.
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Fig. 4. Ilesidual charge under the storage gate as a fraction
of a full bucket for different initial charges versus transfer
time, using two-phase push clocks with a rise time T. = 40
ns, The dimensions of the device used are shown at the top
of the figure.

Q,, = WlstCs,(%, – %), (6b)

where Q~t and Q~r are the total charges under the source

storage gates and transfer gates. ml, and o1,o are the
surface potential under the source storage gate with and
without surface charge when its voltage is equal to V1.
ofir and @~~’ are the surface potential with charge at
the beginning and at the end clf the transfer gate, re-
spective [y, and @~~Ois the surface potential under the
transfer gate without charge when its voltage is equal
to V%. (7,w and CT, are the effective oxide and depletion
layer capacity under the storage and transfer gates.

L,st and lT? are the lengths of the storage and transfer
gates, W is the active channel width, and KT the thermal
voltage. Since in this stage (@~T — @nTI)) >> KT, then
for an initiaf total charge Q. the residual charge under
the storage gate decreases hyperbolically and is given by

195

Q= %+Q’ _Q,

()

t–t, ‘

(7)
l+—

T2

where @ = W&t C5t(@l,o – @~~o),tl is the time at which

the second stage starts, and ,Z is given by

lJ,q, (78, R
72=2 ——

K c,, (Qo + Q’j
(8)

W18,C8,
where

(9)

When the charge under the storage gate decreases to
a small value Qo’, the discharge current becomes so small
that the electric field in the transitional region between
the source storage gate and the next transfer gate can
sweep out the carriers fast enough to form an almost
perfect sink of charge there.’” This brings the second
stage to an end at a time tz given by

For the device parameters given as

1s, - 13.5 p,

Cs, = 3.5 X 10-’ F/cmZ,

M = 200 ‘cm’/s V,

Q’ = 0.8V,
W1.,c,,

1,, = 7p,

C,, = 1.45 X 10-8 F/cm’,

(lo)

and for a signal charge equivalent to about 3 V we ob-
tain rz = 6.9 ns and tz = 13.3 ns. For a signal charge
equivalent to about 1 V, we obtain fiz = 14.6 ns and
tz = 5.9 ns.

3) In the third stage the charge transfer is limited by

the transport of charge out of the storage gate with an
almost perfect sink at its end. The storage gate can be
considered in this stage also as a capacitor discharged
through a transfer channel that is the same storage gate.
Thus it can be easily shown according to the lumped-

10The value of Q,, at which the perfect sink at the end of the
storage gate becom~s a good approximation unfortunately can-
not be defined premsely. It can be estimated approximately by
assummg that the almost perfect sink is formed, when the surface-
charge density in the transitional region is about a fifth of its
value ,under ~he storage gate. Assuming the average surface-
potentlal gradient in the transitional region is A@jAz,where A@
is the difference in surface potential with no charge under the
source storage gate and transfer ga,te and Ax k the spatial extent
of the transitional region (which 1s equal to about a depletion
layer thickness), then Q{ is given by solving

Although the approximate values of Qo’ and k may lead to abOut
1.5 percent error in defining the onset of the last two stages, thi$
is a much better approximation than using the perfect sink
assumption at the end of the storage gate from the beginning
of the charge-transfer process.
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circuit model [or by expanding the denominator in

(A4-6) ] that the residual charge under the storage dur-
ing the first part of this stage (when Q (t)/ (WktCS~) >
KT) decreases almost hyperbolically with a time con-

stant rs. So,

of fringing fields on the charge transfer is given in [9]
and [21].

The transition between the hyperbolic regime of the
third stage and the exponential regime of the last stage
of the charge is rather broad and is best described by
(A4-8) in Appendix IV.

(12)

where ccis a constant of the order of unity (about 1.2).
During this stage the charge is spread over the entire
gate even if fringing fields are appreciable.

4) In the last stage of the charge’transfer, the self-
induced fields become negligible. The residual charge
decreases exponentially with a time constant that de-
pends on thermal diffusion and the fringing fields under
the storage gate.

Forthedevice we have considered here and for a sub-
strate doping of 8 X 1014 donors/cmfi and larger, fring-
ing fields under the storage gate are negligible. For
t > tsthe residual charge under the storage gate de-
creases exponentially with the thermal diffusion time
constant 7a = lS~2/2.5 D [7], where

For the device we have considered and for substrate
doping equal to 10’4 donors/cm3j solutions of the two-
dimensional Poisson equation at the end of the charge
transfer show a minimum fringing-field E~,. under the
storage gate of about 70 V/cm and an average value 1?
of about 140 V/cm. The fringing fields considerably en-
hance the rate of charge transfer. The single-carrier transit
time across the storage gate t,,due to fringing fields is
given by

where ~ is the average fringing field under the storage
gate, A* is equal to ~ls, and is related to the voltage
drop across the storage gate due to fringing fields.

Under the influence of the fringing fields, the charge
profile under the storage gate starts to drift after a time
t~ = tz -t t~, for about one single-carrier transit time
and then becomes stationary at a position that depends
on the minimum fringing-field E,.in. The residual charge
then decreases exponentially with a final decay time
constant given approximately by

1
(–)
rz D + (’Emin)2

– = 4418,2Tf 4D “
(15)

The factor 4 in the second term is due to the large

fields at the edges of the gate. For negligible fringing
fields this factor takes a value of unity. The exponential
decay is due to the diffusion at the tail end of the
residual charge packet under the storage gate irrespective
of the fringing-field profile. Fringing fields alone, with-
out diffusion and self-induced fields, will sweep out the
residual charge under the storage gate in a single car-
rier transit time. A more detailed discussion of the effect

(16)

The dashed lines” in Fig. 3 are obtained from (7) and
(16) with the device parameters given in (10).

Push Clocks: With push clocks the charge is stored

under a gate held at V., that is the largest clock voltage

the MOS structure can tolerate. The charge is transferred
to a nearby gate also at V,, by raising the potential of

the gate where the charge has been residing and thus

pushing the charge to the next gate [26].
For optimum operation of the device with two-phase

push clock in the complete charge-transfer mode, the
oxide thickness under the storage and transfer gates
should be properly chosen.~z

We have simulated numerically the charge-transfer
characteristics for several devices with various clocking
waveforms. In Figs. 4 and 5 we have plotted the residual
charges under the source storage gate versus transfer
time. The clock voltages and rise time as well as the oxide
thickness under the transfer gates of the device are shown
for each case at the top of the figures. Zero time coincides
with the instant the clock voltage starts to increase to
push the charge and starts the transfer process.

From the plots of the transient currents at the end of
the transfer gate and the residual charges versus time and
the surface charge and surface-potential profiles under
the gates” one can identify several distinct stages
of the charge transfer.

1) In the first stage, the surface potential under the
storage gate containing charge increases as the storage
gate voltage is increasing, until it becomes equal or less

11 The good fitting in Fig. 3 to the numerical solution is partly
because the precise values of Q.’ and t, could be obtained from the
time evolution of the numerically calculated surface-potential
profiles under the gates.

M Note that in the overlapping gate two phase structure, the
asymmetry is obtained by the SIep in the oxide under the two
electrodes connected to the same phase, therefore a larger signal
charge could be stored under the storage gate with push clock
than witl? drop, clocks, Also the maximum signal cha.~ge increases
as the oxide thickness increases. The limlts on the oxide thickness
under the transfer gates are imposed by the following two fac-
tors. First, as the oxide thickness under the transfer gates in-
creases the maximum cunent that can be transferred across it,
which is the saturation current of a similar MOS transistor,
decreases. Thus the rate of charge transfer d~ring the first :tages
of. the transfer process decreases. Second, lf the oxide l? too
thick the regions ,under the transfer gates will ,go into majority
carrier accumulation, when its phase voltage IS at the resting
potential V,. Thus the majority carriers fill the traps, and re-
combination centers at the interface and may recombme with
the signal ,minority carriers during the charge transfer. The charge
loss m this case E not as severe as the case when the regions
under the storage gates are driven into accumulation [271, be-
cause the signal charge does not spend as much time under the
transfer gates as it spends under the storage gate. This phe-
nomenon does not impose severe limitations, but it is preferable
to keep the regions under the transfer gates always depleted
to avoid the second order effects of charge loss especially for
long registers.

13 The ~urface-charge and surface-potentizl profiles under the
gates for the case shown in Fig. 4 are illustrated in the flip page
movie in this issue. The current plots are given in [181.
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Fig. 5. The residual charge under the storage gate as a per-
centage of a full bucket for two different initial charges 0.2
and 0.42 of a full bucket. for a device with, 3200 A under the
transfer gate. The full hne curves are for a substrate doping
of 8 x 1014 donors/ems, and 10~4 donors/cm~. The dashed
line curves a~e obtained from (16) and (18) according to the
lumped-circmt model. V- = —15 V, T, = 13 ns.

than the surf ace potential under the next transfer gate by
KT. Then the charge initially confined under the storage
gate spreads to charge up the next transfer gate. The time
interval of the first part of this stage depends on the
amoun-~ of initial charge and tbe clock rise time as given
in (19).

2) The second stage of the charge transfer is limited
by the transport of charge cross the transfer gate to the
next storage gate. The transfer gate acts as an MOS
transistor at ~Inchoff, and the storage gate as its source
and drain. For mtiimum rate of discharge in this stage,
the gate voltage should be rising with a rate that keeps
the surface potential under the storage gate at a value
that does not exceed 2@~ to avoid injection of the signal
charge into the substrate where @r is the Fermi potential
of the substrate. Since the surface potential under the
gate varies almost linearly with the stored charge and
the gate voltage, the maximum rate of charge transfer can
be achieved hy clocking waveforms with ramps of a slope
that matches the saturation current of the transfer gate.

According to the lumped-circuit model discussed in
Appendix IV the decay of the residual charge under the
storage gate in this stage can be described by the fol-
lowing equations.

. [2K!f’(@mT – @mTo) + (Om, – I’m.,)’] (17a)

Q,, = wtstcs*(@,– @*o) (17b)

Q,, =$WL-,CTJ’=M- =’.,0) (17C)

@.~= B,* v -1-IL and @.~O = Z31~Vm+ llz~ (17e)

where V and V~ are the voltages of the first and second
phases, driving the source storage gate and transfer gate,
respectively. I?l,, Bz,, BIT, and B2~ are constants chosen to
give the best linear fit to the relation of the surface
potential under the storage and transfer gates to the volt-
ageapplied tothem. The rest of the notation is similar to
that in (6). Forclocklng waveforms with ramps or with
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sufficiently smooth driving function14 and for an initial
charge Q. the residual charge under the storage gate is
given by

Q = Q’(t) -1- Q“ tanh ((t – Q/T,)

where

Q’(t) = Wd7st(omm – ~,,)

and

(18a)

(18b)
I

—--..”
——

(18c)
F~”

(18d)

(18e)

tl is the time at which the discharge current I starts to
flow. The value of Q’(t) is the minimum initial charge
under the source storage gate that causes the discharge
curient I to start at time t.Hence, for’ a given initial
charge QO,tl is given by

Q’(h) = Q,. (19)

It follows directly from (18) that for a ramp clocking
waveform the minimum rise time Tr I~i. of the clocking
voltage to prevent injection of the signal charge in the
substrate is given by

21&, Cs, B,,(V, – Vna)
T’r 1.,. = — —

B C,r (2% – %.o)z ‘
(20)

where V.zand V~ are the resting and minimum voltages of
the clock. For (t– t,)>.2 the residual charge under the
storage gate decreases according to the waveform of
v(t).

The parameters of the device used in the numerical
simulation are given here.

1,s, = 13.5 p, 1!%= 7 ~,

Cs, = 3.14 X 10-’ F/cmz, B18 = 0.9162,

v. = –15V, ~ = 200 cm2/V.s. (21)

If the oxide thickness under the transfer gate is 3200 ~
and Vz = –6 V and T, = 13 ns, then Cm =
1.45 X 10-8F/cm’, T.lm,. G 5.5 ns, and ~, ~ 6.5 n%
If the oxide thickness under the transfer gate is 4400 A
and Vz = –3 V and T. = 40 ns, then C,, = 1.32 X
10-gF/cm’, T, ,mi,,G 21 ns, and ~, = 11.5 ns.

3) In the third stage the clock voltages are constant
and the charge transfer is limited by the transport of
charge out of the storage gate with an almost perfect sink

14 For arbitrarily smooth waveforms solution of (17) can be
easily obtained analytically using ELicatti’s substitution and the
Wentzel-Kramer-Brillouin-Jeffreys (WKBJ) method [281. The
find solutions are similar to the results reported by Thornber
[291 for the MOS bucket brigade. For sinusoidal drive functions
the solutions can be written in {erms of Mathieu functions. We
mean by sufficiently smooth drive function that the time de-
pendence of

is much smaller than that of (OM — *-To)’.
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at its end. The storage gate in this stage is discharged
through itself as in the case of the drop clock. The
residual charge under the storage gate Q (t) decreases
during the first part of this stage hyperbolically with
a time constant 73.

Q(,) = -* t> t,, (22)

l+y

where

18,’

“ = :-r—
Cs,l,s.tw p

and Qo’ is the total charge under the source storage gate
when the perfect sink at its end is formed at time LZ.tz
is approximately 16 equal to T, and Qo’ is obtained from

(18) with t = t,.
4) In the last stage the residual charge decreases ex-

ponentially with a time constant that depends on thermal
diffusion and fringing fields under the storage gate as
discussed previously in (13)-(16).

Incomplete Charge- Transfer Mode
In the incomplete (or residual) charge-transfer mode,

a bias charge is deliberately retained under the storage
gates at each transfer. This can be achieved by controll-
ing the resting surface potential under the storage gate
relative to that under the next transfer gate at the end
of the charge-transfer process [11], [30]. In the two-
phase clocking scheme, for a given substrate doping and
minimum voltage l’~ the oxide thickness under the stor-
age and trans;er gates should also be properly chosen for
optimum device operation in this mode.

We have simulated numerically the charge transfer for
the device shown at the top of Fig. 6 clocked by a two-
phase push clock in the incomplete charge-transfer mode
with a bias charge equivalent to about 1 V. We have
plotted in Fig. 6 the residual charge under the source
storage gate as a fraction of a full bucket versus transfer
time for two different initial charges 0.6 and 0.4 of a full
bucket. From the plots of the currents at the ends of the
gates and the residual charges versus time and the sur-
face-charge and surface-potential profiles under the gates
one can identify distinct stages of the charge transfer.
The first two stages are similar to the first two stages of
the two-phase push clock case described before. The third
stage starts when the clock voltage stops at time tz = 7’7
with a residual charge under the source storage gate equal
to Q,’.

The charge transfer in the first part of this stage

(Q(t) – Q’ > 2KT
Wl,tcst )

is similar to the charge transfer in the second stage of

the two-phase drop clock discussed previously in (7)- (9).

The residual charge is thus given by

15 Actually the perfect sink may be formed before or after
the clock voltage stops changing. The value of t,unfortunately
cannot be evaluated precisely and this may lead to about 15
percent error in locating the exponential tail of the last stage of
the charge transfer. If t,> 2’.,then after the clock voltage stops
the residual charge under the stor~ge gate decreases hyperbolically
with z time constant m as given by (7)–(9). If t: < T, then the
perfect sink is formed before the clock voltage stops, In Fig. 5
the good fitting to the numerical solution is because the precise
values of t, could be obtained from the numerically calculated
surface-charge profiles under the gates.

0.6 I I I I 1 I I

Q’(t)

Fig. 6. The residual charge as a fraction of a full bucket for
two different initial charge O,6 and 0,4 of a full bucket versus
transfer time. The device is operated with two-phase push
clock in the incomplete charge-transfer mode. The dimensions
of the device used are shown at the top of the figure. The
dashed line curves are obtained from (18), (23), and (27)
?ccording to the lumped-circuit model.

Q(t) = Q,’ – Q’
t - t,)+ ‘“ (23a)

1+(
T3

where

(23b)

Q’ is the bias charge and is equal to Wl~,Cs, (@~*o – @l,O).
This stage ends at time t~ when

l,$’,lT,Cst
Q(tJ – Q’* WCs,ls, .2KT -+ t3 = t, + —D– ~.R.

(24)

In the last stage of the charge transfer, the surface
potential under the storage gate drops below that under
the transfer gate. However, the discharge current still
continues to flow due to thermal emission of the carriers
under the storage gate over the potential barrier. The
mobile charge under the transfer gate also becomes so
small that thermal diffusion becomes dominant. Fringing
fields under the transfer gate are usually small because
the surface potential under the transfer gate and the
preceding storage gate are almost equal. The residual
charge under the storage gate in this stage decreases
logarithmically with time. Using the lumped circuit de-
scribed in Appendix IV the charge transfer in the incom-
plete charge-transfer mode is described by the following
equations.

L&cT,w
: (Q., + Q.,) = –~

(25c)

c~r(om. – @mTo)= Cst(% – %80)

. exp (—(~n~ — @,.)/KT); @m~’= @m~o (25d)
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stages of the static drop clock in the complete charge-

transfer mode. However in the last stage, the residual

charge in the incomplete charge-transfer mode decreases
logarithmically according to (27).

IV. FOUR-PHASE CLOCKINGSCHEME

+;(%,O– @mTo:). (25e) In the overlapped gates CCD’S, four-phases may be
used td control the storage and transfer of charge along
the interface. Since each gate electrode is driven by a
separate phase, more flexibility in operating the device
is expected. With four-clocking phases the polysilicon

electrodes can be used to store the signal charge and the
aluminum electrodes to control the transfer and storage

1—..——
b---q

J=+--J”

Assuming a sufficiently large bias charge (Q’ >> KT
Wls,Cs,) andtaking (@~T+KT)(@~, +3KT’) x (@~+
2KT)2, then (25) is reduced to

_ /.lcTTw
—–[(%,- @.,o)2+ 2KT(@., –@.,o)]217,

process, or both thepolysilicon and aluminum gates can
be used as storage sites. Thelatter method requires four
transfers/bit and the aluminum electrode should have the
same areas as the polysilicon electrodes, but the former
method requires two transfers/bit and the aluminum

[( )= Wl,,c.t1+ ~ ~:T@m,j +;wll.,c’f.r. 1
(26)

electrodes can have a smaller area. We will consider the
first method as it requires less area/bit and results in less

For (T?.,, – ~~~o) < KT the residual charge under the
source storage gate is given by”

signal degradation due to incomplete free charge trans-
fer.Q(t) = Q’ – KT?Vl~,C~, ln[l + (t – t,)/,,] (27a)

where Complete Charge-Transfer Mode
Drop CLock: With the four-phase drop clock, the

minimum and resting voltages (V’~’and V2’) of the clock(27b)
phases driving the transfer gates can be independently
controlled whatever is the oxide thickness under the
transfer electrodes foroperation in the complete charge-

Ift> t,=t3+74exp (Q’/W&CsiKT), (25) reducesto

Q(t) =c~,KTwz,, exp (-(t –t,)/~,), (28a) transfer mode, The stages of the charge-transfer process
are similar to the two-phase drop clocks [17], [26]. So
increasing the complexity of the clock from two-phases

‘vwhere
——

u+”to four-phases with drop clock does not improve the per-
formance of the device.

Push Cl,ock: Push clocks take full advantage of the
more flexible control of the storage and transferor charge
with the four-phases of the clock. At the top of Fig. 7,
we show the device dimensions and the clocking wave-

--J1°Howeverfo rabiascharg eequivalent to IV, tzandrs are
larger than the interface storage time [31] of the best
thermally grown oxide and hence that stage will never
be reached practically. If fringing fields under the transfer
gate are appreciable for a closer spacing device or a lower
substrate doping, then the previous relations still hold
except D/1~, is replaced by (PE + D/lT,) where ~is the
average fringing field under the transfer gate.

When astatic two-phase drop clock isused cooperate
the device in the incomplete charge transfer, the two first
stages of the charge transfer are similar to the two first

forms we have used in our computer simulation of the
four-phase push clock.

Since with four-clocking phases the preceding transfer
gate can be turned off by the resting voltage Vz’, the
maximum signal charge that can be stored under the
storage gate with its voltage equal to Vw can be almost a
full bucket. In the two-phase clocking scheme, each set
of transfer and storage gate i; driven by the same phase
of the clock so the preceding transfer gate is turned on
when the storage gate is turned on. Hence, the maximum
charge that can be stored with four-phase push clock is
larger than with two-phase clock for the same voltage

Iene residual charge under the source storage gate during the
last two stages (after the clock voltage stop) given by (23)
and (27) mu be approximately described by one equation if we
assume that

amplitude. To transfer the charge for example, from
under the first storage gate to the second one, 42A and

42s drops to ‘V~ to turn on heavily the second transfer
and storage gate. Then +Ifl increases to push the charge
from under the first storage gate to the adj scent gates.

= Wlstc. t.
Then (27) can be solved to give

——.-,,—
— IQ(t) s%Q’ + ‘0’– “

~l(t–tz)
T

Then $2* increases to push the charge to the next storage
gate. As 42,4 reaches the resting voltage Vz’, the charge
transfer ends and some of the residual charge under
the transfer gate spills back to the preceding storage gate.
The rate of rise of @~*should be sufficiently slow so that
the amount of charge under the transfer gate that spills
back to the preceding storage gate is small. Therefore,
the rise time T, of the transfer gate clock should increase
with the increase of the clock bit time.

w---p
.rL-!O

x

where
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Fig. 7. The residual charge under the storage gate for two
different initial charges 0,75 and 0.35 of a full bucket versus
transfer time with the four-phase push clock. The dimensions
of the device and the clocking waveforms used are shown
at the top of the figure.

In Fig. 7 we have plotted the residual charge under the

storage gate for two different initial charges 0.75 and
0.35 of a full bucket. With the four-phase push clock,
more charge can be stored and much faster rates of
charge transfer in the first stages of the transfer process

can be achieved since the transfer gates can be controlled

independently. However, in the last stages of the charge-

transfer process, the residual charge decreases exponen-

tially with a time constant that depends on thermal dif-

fusion and fringing fields as with the two-phase clocks.

Incomplete Charge-Transfer Mode

In the incomplete charge-transfer mode, a bias charge
is left under the storage gate at each transfer. Whether
push or drop four-phase clocks are used, the first stages
of the charge transfer will be similar to those in the com-
plete charge-transfer mode. But in the last stage of the
charge transfer, the residual charge under the storage
gate does not decrease exponentially as in the complete
charge-transfer mode, but it decreases logarithmically
with a much slower rate.

V. DISCUSSION AND CONCLUSION

We have developed a detailed numerical simulation

of the transport dynamics in terms of charge motion

due to thermal diffusion, self-induced fields, and fring.

ing fields under all the relevant electrodes and inter-

electrodes regions of CCD’S. This numerical simulation——_

!“ is a simple mathematical model that can be used to

~~”
study the free charge-transfer characteristics of different

device structures with various clocking schemes and

L\,”
waveforms. We have also presented the charge-transfer

x characteristics of overlapping gate CCD’S clocked with

two- and four-phase clocks and various waveforms.

The charge transfer with three-phase and single-phase
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clocking schemes can be readily understood from the re-
sults of the numerical simulation of the charge transfer
with two- and four-phase clocking schemes. The charge
transfer with a single-phase clocking scheme can be
easily deduced from the charge transfer with the push
and drop two-phase clocks. The’ charge transfer with
dynamic three-phase push clock also follows from the
charge transfer with the four-phase push clock [17],
[18].

We have shown that the charge transfer in the over-
lapping gate structure divides naturally into several dis-
tinct stages. In the first stages, the storage gates are like
capacitors charged and discharged by the transfer gates
that limit the transfer rate. The overlapping transfer
gate shields out the repulsive forces of the surface charge
in transit and enhances the rate of charge transfer. The
nonlinearity due to the self-induced fields is dominant
in these stages and the charge transfer depends on the
clocking waveforms. In the two-phase clocking scheme
the transfer gates are like MOS transistors at pinchoff,
and the storage gates are the sources and the drains. In
these stages the transferred charge increases according to
the portion of the clock voltage waveform that pushes
the charge from one storage site to another for the push
clocks, or according to the portion of the clock voltage
waveform that creates the deeper potential well for the
drop clocks.

The last stages of the charge-transfer process depend
on whether the device is operated in the complete charge-
transfer mode or in the incomplete charge-transfer mode.
During the last stages of the complete charge-transfer
mode the rate of charge transfer in the overlapping gate
structure depends on how fast the storage gates can be
discharged. The transfer gates in this structure are
usually shorter and have larger fringing fields, and the
charge transfer across the transfer gates is much faster
than the charge transfer out of the storage gate. In the last
stage, the residual charge under the storage gate decreases
exponentially with a time constant that depends on fring-
ing fields and thermal diffusion. For strong fringing fields,
the final decay time constant Tf is a fraction of the
single-carrier transit time across the storage gate. In
this case the exponential decay is due to the diffusion
at the tail end of the residual charge packet under the
storage gate. In the incomplete charge-transfer mode,
the charge transfer is very similar to the charge transfer
in the MOS bucket brigade [19]. In this case, the charge
transfer in the last stage is dependent on the transfer
gate length. The residual charge under the storage gate
decreases logarithmically, due to the thermally emitted
carriers from the residual charge that diffuses across the
transfer gate to the next storage gate.

The time constants of all stages of the charge transfer
are proportional to the product of the storage gate and

transfer gate lengths or the storage gate length squared,
and the inverse of the surface mobility. In the first stages,

the time constants are proportional to the inverse of the

portion of the clock voltage used to store the signal
charge. In the last stages the time constants are pro-

portional to the inverse of the thermal voltage or the

voltage drop across the gates due to fringing fields.
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We have shown also that the charge-transfer char-

acteristics calculated from a lumped-circuit model of the

overlapping gate CCD’S agree with the results of the
numerical simulation. According to this model, the
charge-transfer dynamics could be described by the
charging and discharging of lumped capacitors through
lumped-transfer channels. This is possible because the
redistribution times of the surface charges under the
CCD gates are orders of magnitude smaller than the
transfer times and therefore the surface charge profiles
under the gates reach steady state. The lumped-circuit
model can be used to derive the charge transfer charac-
teristics for other device structures and dimensions with
various clocking waveforms and voltages, thus providing
practical CCD and circuit design tools.

The signal degradation due to incomplete free charge
transfer can be calculated from the charge transfer char-
acteristics obtained from the numerical simulation or
the lumped-circuit model of the free charge-transfer
process. These calculations [17], [18] show that the
signal degradation of the incomplete free charge is due
to an intrinsic transfer rate and due to the modulation
of the device parameters by t’he signal charge being
transferred. The intrinsic transfer rate is due to the finite
carrier mobility and finite transfer time. The modulation
effects are due to the dependence of the effective lengths
of the gates, the effective capacitances per unit area and
fringing fields under the storage and transfer gates on
the signal charge being transferred.

Calculations of the signal degradation due to incom-
plete charge transfer (plotted in Fig. 8) show that the
performance of the overlapping gate CCD is better than
the MOS bucket brigade. At very high clock frequency
the signal degradation due to incomplete free charge
transfer in the MOS bucket brigade is almost the same as
in the overlapping gate CCD. But at moderate and low
clock frequency the signal degradation in the MOS bucket
brigade is larger than in the overlapping gate CCD. The
MOS bucket brigade always operate in the incomplete
charge-transfer mode; the p islands are storage buckets
with undefined bottoms that always contain residual
charge. SO the residual charge decreases logarithmically
with tirr e and the signal degradation tends to a constant
value at low clock frequency due to transfer gate length
and barrier height modulation.17 But the overlapping
gate CCD’S can he operated in the complete charge-
transfer mode. So the residual charge decreases exponen-

tially and the signal degradation due to incomplete free

charge transfer (intrinsic transfer rate and device param-
eters modulation) also decreases exponentially with time.

The signal degradation due to trapping in the interface

states, which is the dominant effect in the overlapping

gate CCD at low clock frequency [15], is also less than
the signal degradation in the MOS bucket brigade [19]
at low clock frequency.

Calculations of the signal degradation due to incom-

plete charge transfer (plotted in Fig. 8) also show that

17Barrier height modulation results in a modulation of the
residual charge in the storage sites.
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Fig, 8, Signal degradation factor e(e = AQ,,/AQt, where AQ, ie
the change in the residual charge after each transfer due to
a change in the initial charge AQi ) versus blt time. The
dotted curve is the signal degradation factor due to incomplete
free charge transfer (intrinsic transfer rate and device param-
eters modulation) for the case described in Fig. 6 where the
device is operated with a two-phase push clock in the in-
complete charge transfer mode (similar to the MOS bucket
brigade). The dashed and full line curves are the signal
degradation factors for the cases described in Figs. 3 and 5,
where the device is operated with a two-phase drop and push
clock in the complete charge transfer mode, respectively. The
lower dashed and full line curves represent the signal deg-
radation factor due to incomplete free charge transfer (in-
trinsic transfer rate and, device parameter modulation). The
upper dashed and full lme curves represent the signal deg-
radation factor of the incomplete free charge transfer and
incomplete charge transfer due to trapping in the interface
states.

the signal degradation with push clocks is less than with
drop clocks. This is because with push clocks the residual
charges after each transfer are more independent of the
initial charge than with drop clocks. The clifferences in the
charge-transfer characteristics and the mobile charge
profiles under the CCD gates and the interaction of the
charges with the interface states depending on whether a
large or small charge is being transferred are minimized
with push clocks [26].

The plots of the residual charge due to incomplete free
charge transfer versus the initial charge with any clock-
ing waveform show saturation characteristics as shown
in Fig. 9 due to the strong nonlinearity inherent in the

transport dynamics. The plots of the net residual charge
due to trapping in interface states versus the initial

charge show also the same saturation shape. For larger

charge, the residual charge tends to be less dependent

on the initial charge. This saturation characteristic indi-

cates that the signal degradation due to incomplete free
charge and trapping in interface states can be con-

siderably reduced by using a circulating background

charge or fat zero to represent the zero signal. Also the

saturation characteristic indicates that for digital signal

applications due to incomplete charge transfer the oPti-

mum size of the fat zero which results in maximum

signal output increases by increasing the clock frequency

and the number of stages in the charge-coupled shift

register [17], [18] and is independent of the size of the

l-hit charge.
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APPENDIX I

GREEN’S FUNCTION SOLUTION OF THE POTENTIAL IN A

MIS STRUCTURE

Consider a MIS structure as shown in Fig. 10. The

insulator-semiconductor interface, and the insulator-

metal interface are parallel to the y–z planes. It is de-

sired to estimate the surface potential and the surface-

potential gradient at the semiconductor-insulator inter-

face, for an arbitrary surface-charge density profile

~(Y) and a voltage VG onthemetale lectrode. Although
the Poisson equation for this problem is nonlinear in

the semiconductor region, we may still solve it as a linear

equation using the depletion approximation. First, let

us calculate the potential and electric field at any point

(z, y) in the semiconductor region due to a linear

charge of unit strength, i.e., 1 C/cm, at a point (z’, ~’)

parallel to the z-axis. The semiconductor region, in this

case, is treated as a dielectric of permittivity ~l. The

resulting potential function G(x, y, z’, y’) is the Green’s
function solution of the two-dimensional Poisson equa-
tion of the structure. Assuming the metal plane is at
ground potential, the desired potential function can be
calculated by the method of images. Since the boundary
conditions at both the insulator-semiconductor interface
and insulator-metal interface should be satisfied, an
infinite series of image line charges are required to cal-
culate the potential function in each region. It can be
shown that the Green’s function in the semiconductor

The surface potential for a surface-charge density pro-

file and a gate voltage VG is given by (neglecting
the fixed insulator-semiconductor interface charge q,,,
and the difference in the metal and semiconductor work
functions)

!
+-

@,(y) = @(ojy) = v.+ G(O, y, O, Y’)q(y’) dy’
—Cf

+ ~: ~y ~-
da?G(O, ~,x’jy’)eN~ (Al-4)

where N~ is the donor concentration fern-semiconductor.
X~(y) is the depletion layer thickness defined by the
implicit relation

J
+-

I@,y) = v. + G(zD, y, O, Y’)q(y’) (@’
—m

+L:dy, ~-

G(z~, y,x’, y’)eN~dy’=O. (Al-5)
.0

Itcanbe shown from (Al-1) and (Al-2) that

G(z, y,z’, y’) = G(z, z’, y– y’) (Al-6a)

f

+m

G(x, y, O,y’)dy’ =: =+
—Gs o

(A1-6b)

region is given [32] by

{
J

‘“ G(O, y,zl, yt)dy’ ‘~ ‘~ (A1-6C)
G(z, Y,~’, Y’) =~ ‘1 ~ In [(~ – y’)’ + (z + $’)’] ‘m

+ in [(y – y’)’ + (z – z’)’]
/

‘- dG
~ (z, y, z’, y’) dy’ = o (A1-6d)

—cc
— *Z> (~)”-’ where CO is the insulator capacity per unit area. In the

}

case when q (y) is a constant, using (AI-4)–(-AI-6), the

. In [(y – y’)’ -1- (x i- z’ -i- 2TnCZO)z] (Al-1) surface potential is given by

,. where do is the insulator thickness._— _
v

eN~X~
If the point ($, y) lies at the semiconductor-insulator O,. VG+:+T (Al-7a)

w--l”

0 0

interface, then substituting in (Al-1) we get
eN~X~

{

v.+:+~ _ eN~X~2—=0. (A1-7b)

-~!”
G(O, V, $’, y’) = z~(e~~ ,,, In [(~ – y’)’ + z“] 0 0 2e1

Equations (Al-7a) and (A1-7b) are the one-dimensional

—
*~ (a)”-’

solutions of the Poisson equation using the depletion
approximation for the MIS structure [33 ]. For a given

}
. In [(y – y’)’ + (z’ + 2mdO)2] .

surface-charge density profile, the surface-potential gra-
‘A1-2) client can be obtained according to the gradual channel
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approximation by clifferentiating (Al-7a)

A more accurate estimation of the surface-potential gra-
dient can be obtained from (Al-4) and (Al-6).

a%=
/‘m~ (o,y, o,Y’)Q(Y’)w

dY ..- ay

+ ~~ dy’ ~x”(ti’) # (O, Y, x’, y’)eN~ dz’ (AI-9)

The first term in (Al-9) represents the repulsive force
due to the nonuniform surface charge q(y), screened by
the metal electrode. The second term represents the re-
pulsive force from the ionized fixed impurity atoms due

to the nonuniform depletion region thickness. Let us
consider the first term from (A1-3)

For the silicon oxide, silicon substrate

%-~zwl
= ;~.

% + ez

Thus the successive terms in the previous series decrease
rapidly. So the G;een’s function (dG/dy) decreases
rapidly within a region of a few do from y, however not
as rapid as it would be if c~ = cl. Hence, we may expand
q (u’) as a Taylor series shout V. Since (dG/dy) is odd,
all even terms in the expansion vanish. If the variation
of the surface charge q(y) is small over a distance on the

order of a few oxide thickness do, (83q (y’) /dy’3) and
higher derivatives may be neglected. Hence,

[
‘m; (O,y,O,~’)g(y’)dy’

—m

8(J

—— +% ~+”G’(O,y,O,y’) dy’ = :. (Al-n)
.

This is the result obtained in the first term of the one-
dimensional solution in (A1-8). So if the variation of the
depletion layer width is neglected, the surface-potential
gradient obtained by differentiating the one-dimensional
solution in (Al-7a) includes the charge repulsion effect,
and gives a reasonably accurate estimate of the self-in-
duced fields when the lateral variation of the surface-
charge’ density over a distance on the order of several
oxide thickness is small. The error in this estimate de-
pends upon the charge profile and may be positive or
negative.

$limilarly the contribution of the second te~ in (Al-9)
can be shown to be almost equal to the value obtained
from thesecond term of the one-dimensional solution in
(Al-8) when the lateral variation of the charge overa
distance on the order of the depletion region thickness
is small.

The surface-charge density profiles under the CCD
gates, show that, during the charge transfer, the surface-

charge density varies slowly under the electrodes but
:rapidly in the interelectrode regions. So the gradual
(channel approximation gives accurate estimates of the

self-induced fields under the electrodes. As discussed in
:Sections 111 and IV, the charge transfer in all stages is
limited by the transfer of charge across the transfer
~gates or out of the storage gate. Hence, the error in
(estimating the self-induced fields in the interelectrode

/
——”

regions has a negligible effect on the overall charge- —.

transfer characteristics. -[”

APPENDIX II

.DERIVATION OF THE SURFACE-POTENTIAL GRADIENT UNDER ~n

THE GATE ELECTRODES AND IN THE INTERELECTRODES

REGIONS

The one-dimensional solution of the Poisson equation
using the depletion approximation gives the following
relation between thesurface-potential ~,, and the surface-
charged ensity [1] q:

4%=V.-V PB+++:
00

[d ( )1
“ 1–2f&A77,+&l , (-42-0

0

where 1? = e,/ (cOa)eNDdo. VG is the voltage applied to
the electrode, Vr~ is the flat-band voltage, Co the oxide
capacitance per unit area, e the electronic charge, ND the
donor concentration, do the oxide thickness, and Xd
the width of the depletion region. e, and cOOare the dielec-
tric constants of silicon and silicon oxide, respectively.
The equilibrium surface-charge density q. is equal to —.,
Co (V,, – V~), where V~h is the threshold voltage. If —.

the surface-charge profile q is not uniform then according &i:
to the gradual channel approximation, the surface-po-
tential gradient is given approximately by

4.0
,3+$ _ a~. aq = 8q/8X
ax aqax co+ c.

‘ih-2%3(;_vFB+%jl~ (A2-2)
where CD is the depletion layer capacity. For typical
oxide thickness, (*1 OOO-45OO A), substrate doping

(~10’4-10’’/cm3) and electrode voltages the previous re-

lations can be simplified to

%=%,+:

and

aas 1aq
-X=C’%’ (A2-3)

where Oso is the surface potential with no charge. C is
an effective capacity given by

qO.F
c = (2% – Q.,) ‘

(A2-4)

where 2% the surface potential at equilibrium, and F a
factor less than unity to reduce the error in this approxi-
mation to less than few percents.

Numerical calculations using values of the self-induced
fields given in (A2-2) and (A2-3) show almost no differ-
ence in the charge-transfer characteristics. Since the
latter expression is simpler, we will use it below.

——
~

— v

D--+”
.13J0



1’—.,
—.

b-+”
+.--l”

204 IEEE JoURNAL OF SOLID-STATE CIRCUITS, JUNE 1973

If fringing fields under the electrodes are appreciable,
then @,SOand go are functions of time and the spatial [ 1

I = –w/.LcTrla’~ + (@.– =’.0) y: , (A3-3)

coordinate z and are given by where K!i” is the thermal voltage.
If we let the surface potential at the beginning and

OS”(Z, t) = @,O(t) – f E,,(u) @ (A2-5) end of the transfer be @, and o,’, then assuming the.
current I across the gate constant and integrating (A3-3)

qo(% t) = 6’0{[2@F – @so(z, 01 we get

+ <2egeN= [< Io,,(z, t) I – v’120FI]} (A2-6)

where Ef. (y) is the fringing-field profile obtained from I= * [2KT(% – %.’)

the solution of the two-dimensional Poisson equation and
,

@,o(t) is given by (A2-1) with q = O. The surface po-
+ (@, – @,’) (@, + 0,’ – 20,.)], (A3-4)

tential under the electrode is thus given by and

In the interelectrode regions the surface potential is also
given by

where P (x, t) and C (x, t)are the surface potential with
no charge and the equilibrium surface-charge density,
respectively, both approximated by a smooth interpolat-
ing polynomial. From (A2-7) and (A2-8) the surface-

“ potential gradient under the electrodes and the inter-
———. electrode regions can be written in the following form

~-!.

m ‘o
~ (z, t, q) = L(*, t) + M(z, t)q + N(x, t) ~ (A2-9)

--..+ 1-,,
APPENDIX III

STEADY-STATE CURRENT ANDCHARGEUNDERTHE
TRANSFERGATE

Assuming that the charge redistribution time under
the transfer gate is much smaller than the transfer times

of interest, then the current across it and the charge
under it can be approximately derived by a steady-state
approach.

The relation between the surface potential and surface-
charge density under the transfer gate according to the
gradual channel approximation is given by

——, ,

E+-+’
I--L___!,”

x

.3*=%+;, (A3-1)
t,

where @~ and @~Oare the surface potential under the
transfer gate with charge and with no charge, respec-
tively, q is the mobile surface-charge density, Cr, the

effective oxide and depletion layer capacity under the
transfer gate. The current I under the transfer gate is
given by

where D and p are the surface diffusion constant and
mobility, respectively, and W is the channel width. If
fringing fields under the transfer gate are neglible (A3-2)
may be rewritten as

where 1~, is the length of the transfer gate and Qr, is the

total charge under-the transfer gate.;’ In the case the
surface-charge density at the end of the transfer gate is
very small (as in the two-phase clocking scheme) then
@*’z Go and (A3-4) and (A3-5) reduce to

[(QT – %) + W31. (A3-7)
‘“ = ~z’rwcT’(@T – ‘“) [(0, – %,) + 2KT]

If (G – @,o) >> KT, (A3-6) and (A3-7) reduce fur-
ther to

~ = pc,,w
~ (OT – %)’ (A3-8)

r

QTr = #lT,WC~,(@~ – QTJ. (A3-9)

The current formula in (A3-8) is the quadratic relation
of the MOS transistor at pinchoff, and the factor ~ in
(A3-9) is due to the square root dependence of the sur-
face-charge density q on the distance from the end of
the transfer gate.

If (o, – @,o) < 2KT, then the charge transport under
the transfer gate is mainly by diffusion, and the previous
equations reduce to

(A3-1O)

Q,. = HT,WC.,(% – tJ.J . (A3-11)

The factor ~ in (A3-11) is due to the linear dependence
of the surface-charge density q on the distance from the
end of the transfer gate.

If the fringing fields under the transfer gates are ap-
preciable then the previous current relations still hold
approximately after replacing KT and (D/1~,) by (KT +
l,,E) and (D/1., + ,uR), respectively, where ~ is the
average fringing field weighted by the surface-charge
density profile under the transfer gate.

IS Note th~t the last term in (A3–5) is a very SIOWlYvarying
function taking a value between ~ and ~ depending on the
value of (@.,r — @w,) and (~.,~’ — ~fir. ‘). So taking the value
of this term unity is a good approximation to simplify the
solution of the differential equation (A4-5) for any clocking wave-
forms.
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APPENDIX IV

LUMPED-CIRCUIT MODEL OF CCD’S

The detailed numerical solution of the transport dy-

namic with various clocking waveforms show that during

the different stages of the charge-transfer process the
surface-charge profiles under the gates take almost a
steady shape. The response time of the charge distribu-
tion under the gates is of the order of the dielectric
relaxation time of the surface minority carrier [33].
During all the stages of the charge transfer the surface-
charge density is sufficiently large that the response time
is orders of magnitude smaller than the transfer times
of interest. Hencej it is possible to describe approximately
the details of the charge-transfer dynamics with various
clocking waveforms by means of a lumped-circuit model
that consists of lumped capacitors charged and dis-
cb.arged through lumped-transfer channels (MOS transis-
tors).

As discussed in Sections III and IV in the first stages
of the charge-transfer process, the rate of charge transfer
is limited by the transport of charge across the transfer
gate and depends strongly on the clocking waveforms.
Due to the relatively large carrier concentration under

the storage gates, a very small gradient in the quasi-

Fermi level Ef under the storage gates is sufficient to bal-

auce the discharge current. Thus the surface potential and
the mobile carrier concentration under the storage gates

are almost constant. So the total charge under the source

and receiving storage gate Q~t and Q,t’ are given by
WIStC~t (o. – @,O) and Wl~tC~f(o: – O,.’), respectively,

where the surface potential with and without charge,

under the source storage gate are OS and @SO and under

the receiving storage gate are oS’ and @sO’, respectively.

The transfer gate acts as a MOS transistor with the

source and receiving storage gates as its source and rain.

The quasi-Fermi level may be assumed constant across

the transitional region between the source storage gate

and the transfer gate during the first stages of tbe

charge-transfer process as this region extends over several

times the mean carrier freepath and the mobile carrier

concentration there is relatively large. Therefore the sur-

face potential at the end of the source storage gate @S

is related to the surface potential at the beginning of the

transfer gate @T by

CT,(@T – @,O) = cs,(@s – *SO) exp (–(@T – @s)/KT)

(A4-1)

and

.@ @8– Q*O)+ f (*SO– %3.~~( (A4-2)

@T and @To are the surface potential under the beginning

of the transfer gate with and without charge. For (QT

-- @To) >> KT and (oS – @flO) >> KT the previous

equations reduce to

and

GT s a?~ (A4-3)

— *SO) + $ (*SO – %0). (A4-4)

205

If the mobile carrier concentration in the transitional
region between the transfer gate and the receiving storage
gate is also relatively large (as in the four-phase clocklng
scheme) then the surface potential at the end of the
transfer gate @~’is related to the surface potential at the
beginning of the receiving storage gate OH’ by similar
relations. The total charge under the transfer gate Q~r
and the current I across it are given by (A3-5) and
(A3-4). So, according to this Iumped-circuit model, the
total charges under the storage and transfer gates are

related to the surface potentials by lumped capacitors of

almost constant values that are charged and discharged
through lumped-transfer channels with discharge current
that depend mainly on the difference between the surface
potential at the ends of the transfer channels. The charge-
transfer dynamics could be simply described by a first
order nonlinear differential equation given by

$ (Qw + 4?TJ = -I(@IT, @,’, @To) (A4-5a)

Q., = Wts,CsSTIs – @s,) (A4-5b)

Qs,’ z Wl,s,Cs,(@s’ – @.,’) = QO– Q,, – Q,, (A4-5c)

Q., = ;Wl,rc.(%– %) (A4-5d)

+ (% – %’)(% + %’ – 2%)] (A4-5f)

1—.”

—.

b--’-[”
q---.-l”

,,
.—...-.+”

—.

My

where T = lst2/2D and Qo is the initial total charge under

.-=#==u.”

where KT is the thermal voltage and QO is the initial
total charge. %0, @flo,and @so’ depend on the clock volt-
age waveforms. In the two-phase clocking scheme, there
is usually a large surface-potential gradient between the
transfer gate and the receiving storage gate. The transfer
gate thus acts as an MOS transistor at pinchoff and %’
= @*I).In this case the current I and the total charge
under the transfer gate Qr, are given by (A3-6) and
(A3-7). The solutions of the charge-transfer characteris-
tics using the lumped-circuit model for a two-phase drop
clock with zero fall and rise times and for a two-phase
push clock discussed in Section III, give good agreement
with the numerical solution of the transport equations
given in (5).

During the last stages of the charge transfer, when
the device is operated in the complete charge-transfer
mode, the charge transfer is limited by the transport of
charge out of the storage gate with an almost perfect
sink at its end,. In this case also the storage gate can be
considered as a capacitor discharged through a transfer
channel which is the same storage gate. Assuming a
constant steady current across the storage gate, the
total charge under it Qs~ and the discharge current I are
given by (A3-6) and (A3-7), respectively. Solving the
discharge equation I = – (d/dt) Q,s, gives approximately u-i:

Qm= exp (–(t – .t8)/7) .L!.”
Qo

x“

1 + ;Cj,W 2iT [1 – exp (–(t – t3)/~)] ‘

(A4-6)
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the gate when this stage of the charge-transfer process
starts at time t3.

The assumption of a constant steady current across
the storage gate is expected to be reasonably good when
the nonlinear terms due to the self-induced fields are
dominant. But since the effects of the boundary con-
ditions, the fringing fields, the shape of the mobile carrier

i
——.-..., concentration profile under the gates arc not properly

—— considered in the previous derivation, the time constant ~

W1’”
of the exponential decay of the charge should be modified.
Analytic solutions of the charge transport dynamics in-

A“
eluding thermal diffusion and fringing-field drift only

with the appropriate boundary conditions show that the
final decay time constant , is given approximately [21]

by

(A4-7)

where E,~i. is the minimum fringing field under the

storage gate, T~ is the thermal diffusion time constant and

is equal to (&#/T2~). The factor 4 in front of the
second term is due to the large fields at the edges of the
gate, and for zero fringing field this factor takes a value
of unity. Accordingly (A4-6) could be modified to

a= exp (– (t – t,)/7f)

Qo ~+ ~C~~,,W.*~ [1 – exp (–t – t,)/7f)]

(A4-8)

The factor rf/,d in the denominator is included in order
not to modify the original equation for (t — ta) < rf,
as the effect of the fringing-field drift is expected to be
smaller than the self-induced drift in this period.

Using (A3-6) and (A3-7) the charge under the transfer
gate is described approximately by

dQ,, + ~C.,W QT,
dt 21T, ~Cy,lvTW

[ 1. 2(1,,I7 + KT) + ;C$;,w = –% (A4-9)

where ~ is the average fringing field weighted by the
surface-charge density profile under the transfer gate.
Using Ricatti’s substitution, this equation could be solved
by the WKB method [28]. Howeverj an approximate
solution can be obtained in the overlapping gates struc-
tures as the transfer gates are usually shorter and have
larger fringing fields than the storage gates. So the carriers
are swept rapidly from under the transfer gate and for
transfer time of practical interest, the solution simplifies to

(A4-lo)

_—lv

G-’-+*
where 7~, is the single-carrier transit time under the trans-
fer gate and is given by ~T. = [ZT,2/2&(KT’ + J!?lT,)].
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Bucket-Brigade Shift-Register Operation-Exact Correlation
Between Experimental Data and a Computer Model

E. T. LEWIS

Absfrcrct-In this paper a detailed analysis of the IGFET bucket
brigade is presented covering its low frequency, midfrequency,
end high frequency performance. Attention is first focused on those
factors giving rise to performance limits in the midfrequency range
of operation. The concept of en optimized threshold voltage V~O
is introduced and related to the array parameters. It is shown that
if the threshold voltage VT of the IGFET’s in the array are below
l’To, then transfers become incomplete. The effect that substrate
resistivity has on the array performance is also considered. It is
shown that conventional IGFET channel length modulation is not
the only factor to be considered in analyzing this performance limit.
It is also shown that high frequency and low frequency limits can be
accounted for using conventional IGFET theory.

Finally, calculations resulting from a simple model that includes
all these effects are presented. They are shown to correlate exactly
with the experimental data from operating arrays.

I. INTRODUCTION

T

HE bucket-brigade shift register has been in-
vestigated in some detail by a number of people
[1]-[8]. However, to date, there has been little

attempt to consolidate the growth in accumulated data.
Even more important, there has been no attempt to give
an explicit analysis of the low frequency, midfrequency,
and high frequency performance of an integrated array
illustrating all the interdependencies that exiet between
operating conditions and the array parameters. Such an
analysis is necessary if it is desired to seek optimum
design and, hence, optimum performance of bucket-
brigade shift registers.

Manuscript received September 15, 1973.
The author was with the Sperry Rand Research Center, Sud-

bury, Masa 01776, He is now with the Missile Systems Division,
Raytheon Company, Burlington, Mass.

—— ;“
——

b-”
-E+L2Lj”

In the analysis to be presented here we begin from a
quasi-static position (midfrequency) illustrating all the

basic parameter interdependencies, and then proceed to
include the factors affecting the low frequency and high
frequency performance. This analysis has been confirmed
by experiment using a relatively complex integrated test
vehicle and a computer model that incorporates all the
physical parameters of an integrated array. In addition
to measurements performed on integrated arrays some
data were obtained on single elements to demonstrate
and quantify basic effects associated with an IGFET.
The results of these measurements were important in
that they aided in explaining some of the effects observed
in the integrated bucket-brigade array.

II. DESCRIPTION AND BASIC OPERATIONOF AN
INTEGRATEDBUCKET-BRIDGADESHIFT REGISTER

The basic elements of a p-channel IGFET bucket
brigade are shown in Fig. 1. In the electrical equivalent
shown in Fig. 1 (b) are included node-loading elements
and an output precharge device. The node-loading ele-
ments can represent either junction capacitance or a
combination of this capacitance and that of input/
output devices. In some applications it is desired to have
serial input to the array and parallel output from every ——— ,
storage node. Actually, there are many combinations of
input/output arrangements for which bucket brigades
can be designed. These include serial in-serial out, serial u--i:

in-parallel out, parallel in-serial out, and parallel in-
parallel out. In addition to this any of these arrange- -U,.” x
ments can be operated in a recirculation mode. This per-
mits a dynamic storage mode of operation in which


