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The SCHEME-79 Chip

by
Jack Holloway, Guy Lewis Stecle Jr., Gerald Jay Sugsman
and Alan Bell
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We have designed and implemented a single-chip microcomputer {which we call SCHEME-79) which
divcetly interprets a typed-pointer variant of SCHEME, a dialect of the language LISP. To suppoit i inter-
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preter the chip implements an automatic storage allocation system for heap-allocated data and an interrupt
facility for user interrupt routines implemented in SCHEME. We describe how the machine architecture is
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tailored to support the language, and the design methodoelogy by which the hardware was synthesized. We
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develop an interpreter for SCHEME weitten in LISP which may be viewed a8 a microcode spectfication. This is
converted by successive compilation passes mto actual hardware structures on the chip. We develop a language
embedded in ISP for describing layout artwork so we can orocedurally define generaiors for generalized
marra components. The generalors accept parameters to produce the specialized mstances used in a particular
dosign, We discuss the performance of the current design and directions for improvement, both in the circuit
serformance and in the algorithms implemented by the chip, A complete, annotated listing of the microcode
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embodied hy the chip is lncluded.
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The Major Blocks of the SCHEME-79 Chip
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Introdection

We have designed and implemented a single-chip microcomputer (which we call SCHEMUE-79) which
directly interprets a typed-pointer variant of SCHUME [Revised Report], a dialect of the language LISP [1ISP
1.5} To support this interpreter the chip implements an automatic storage allocation system for heap-allecated
data and an interrupt facility for user int‘crrupt routines implemented in SCHEME, In this paper we describe
why SCHEME is particulatly well suited to direct implemeniation of a LISP-like language in hardware,
how the machine architecture is tailored to support the language, and the design methodology by which the
hardware was synthicsized. We develop an interpreter for SCHEMTE written in LISF which may be viewed as a
microcrode specification. We deseribe how this specification is converted by successive compilation passes into
actnal hardware structures on the chip. To help us do this we developed a language embedded in LISP for
describing layout artwork. This language allows us to procedurally define generators for architectural elements.
‘Fhe architectural elements are generatized macro components. The generators accept parameters to produce
the specialized instances used in a pardeular design. In conclusion, we discuss the performance of the current
design and directions for improvement, both in the circuit performance and in the algorithms impiemented by
the chip.

Why LISP?

LISP is a natural choice for implementation of a “higher level language” on a single chip (or in any
hardware, for that matter — cf. [LISP Macbine] [IFLATS]). LISP is a very simple language in which ouly a
few primitive operators and data types are sufficient for buitding a powerful system. Tn LISP there is a uniform
representation of programs as data. We have extended this idea to machine language by representing machine
instructions with typed list structure. 'Thus the same primitive operators which arc used by a user’s program to
manipulate his data arc used by the system to effect control,

LISP programs manipulate primitive data such as numbers, symbols, and character strings. What makes
LISP unique is that T.ISP provides a construction material, called list structure, for gluing pieces of data
together to make compound data objects. Thus a modest st of primitives gives us the ability to manufacture
complex data abstractions. IFor example, a programmer can make his own record structures out of list structure
without the language designer cxplicitly putting in special features for him. The same cconomy applies to
procedural abstractions because of the convenient extensibility of the primitives.

In addition, T.ISP supports an integrated operating system, in one language, complete with dynamic link-
ing of procedures. The uniform representation of programs as data supports the construction of interactive
editors and debugging systems. These features are particutarly welcome in a simple single-chip implementation.

The particular dialect of LISP we have chosen is SCHEME because of further cconomies it offers in the
implementation of our machine. It is tail recursive and lexically scoped. Tail recursion is a call-save-return
discipline in which a called procedure is not expected to return to its immediate caller unless the immediate
caller wants to do something after the called procedure finishes (rather than just returning to its own caller). The
use of tail recursion atlows us to conveniently define all common control abstractions in terms of just two primi-
tive notions, procedure call and conditional [Imperative], without significant loss of efficiency [Debunking]. In
order for this to work, however, we must adopt lexical scoping of free variables. Fortunately, this’is'simpler to
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implement on the chip than shallow dynamic binding schemes used in traditional LISPs, and it is more efficient
than the alternative of deep dynamic binding [Shallow]. In some cases, for example when rapidly changing
cnvironments as in multiprecessing applications, lexical binding is move cllicient than any kind of dynamic
binding strategy.

How the machine supports SCHEME

All compound data in the system is built from list nodes which consist of two pointers (ca led the CAR and
the COR for historical reasons.) A pdimcri a 32 bitobject with 3 ficlds: a 24 bit data field, a 7 bit type field, and
one bitused only by the storage allocator. The type ideniifies the object referred to by the data ficld. Sometimes
the datum refered to is an immediate quantity, and otherwise the datum points to another list node. [MDL]
[LISP Machine} [ECL]
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Tigure 1. Format of a list node

LISP is an expression-oriented language. A LISP program is represented as list structure which notates the
parse tree of a more conventional language. LISP expressions are exccuted by a process called evaluation. The
evaluator performs a recursive tree walk on the expression, cxccuting side cffects and developing a value. At
cach node of the expression the evaluator dispatches on the syntactic type of that node to determine what to do.
It may decide that the node is an inimediste datum which is to be returned as a value, a conditional expression
which requires the evaluation of one of two alternative subtrees based on the value of a predicate expression, or
an application of a procedure o a set of arguments. The evaluator recursively evaluates the arguments and then
passes then to the indicated procedure,

LISP cexpressions are converted into machine programs for execution by the SCHEME-7S chip. The
machine programs are also represented as Hst structure made of typed pointers. The syntactic type of the
expression (which is used by the evaluator) is encoded in the type ficld of the pointer to the translated expres-
sion. The transformation from LISP to machine language prescrves the expression structure of the original
LISP program. The type ficlds are also used to annotate the structure of the expression to tell the evaluator
what is coming up. The type fields in our machine are analogous to the op-codes of a traditional instruction
sel. (Indeed, the 1BM 650 [650 DPS] had an instruction set in which cach instruction pointed at the next one,
However, it was used to implement a traditional lincar programming style, not to implement runnable parse
trees.) In the SCHEMUE-T9 architecture, the recursive tree walk of the evaluator over expressions takes the place




of the finear scquencing of fnstructions in traditional computers. We call the machine language for our chip '§-

y

ode.

The S-code representation differs from the original Lisp expression in several ways. Tt distinguishes be-
tween two kinds of vartables in the original Lisp expression. Global variable references translate into a special
kind of pointer which points at the global value of the symbol. A local variable reference is transformed into
an instruction containing a lexical address of its value in the environment structure, Constants are transformed
into instructions which move the appropriate constant into the accumulated value. Certain primitive procedures
{(for cxample, CAR, CDR, CONS, EQ, etc)) are recognized and are realized divectly as machine ep-codes.
Procedure calls are converted from prefix to postfix notation, Conditionals and control scquences (PROGN) are
perfurmed somewhat differently than they are in the source language, For example, the following simple LISP
pregram for appending two lists:

(defun append (Tistl 1ist2)
(cond ({eq 1istl '()) 1ist2)
(t (cons (car Tistl)
(append (cdr Tistl) Tist2)))))
is translated into the S-code shown in Figure 2 below. (The details of the S-code language are unt explained
here; this example is only to give an idea of what the S-code is like. The appendix gives a complete listing of the
microcode interpreter for the S-code language, if you want to know the details. A uscr of the SCHEME-79 chip
should never sce the S-code.)
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Vigure 2. The S-code for Append

At each step the hardware evaluator dispatches on the state of the expression under consideration. The
state of the evaluator is kept in a set of registers on the chip. There is a register for the current cxpression,
LEXP. When the value of an expression is determined it is put into the VAL register. When the arguments for
a procedure call arc being evaluated at cach step the result in VAL is added to the list of alrcady evaluated
arguments kept in ARGS. When the arguments are all evaluated, the procedure is wnvoked. This requires that
the formal patameiers of the procedure be bound to the actual parameters computed. This binding oceurs by
the DISPILAY register getting the contents of the ARGS register prefixed to the environment pointer of the
closed procedure being applied. When evaluating the argnment(s to a procedure, the evaluator may have to
recurse to obtain the value of a sub-expression. The state of the evaluator will have to be restored when the sub-
expression returns with a value. This requires that the state be saved before recursion. The evaluator maintains
a pointer to the stack of pending returns and associated state in the register called STACK.

. Tn our machine, even the stack is represented using list structure allocated from a heap memory. Neither
the user nor the system interpreter is interested in how the memory is allocated. But we only have a finite




amount of memory and normal computation leads to the creation of garbage. For example, cntries built on
the stack during the evaluation of subexpressions are usnally useless after the subexpression has been evaluated.
Thus the storage allocator must have a means of reclaiming memory which has been allocated but which ean
no longer affect the future of the computation so that this memory can be reused. The problem is to determine
which parts of memory are garbage. There are several common strategies for this [Art]. One involves reference
counts.  Another, garbage collection (which we usc), is based on the observation that if the computation
involves only list operations then the future of the computation can only be influenced by objects which can
be referenced by list operations starting with the contents of the interpreter’s registers. That is, a cell is only
in use if it is part of some accessible memory structure; however, if a cell is part of an accessible structure, it
must be glued in by having a pointer to it from some other picce of accessible structure. This structure must
be well founded, The only structures we know a priori to be in use are the machine registers. The strategy
of garbage collection we use is thus the mark-sweep plan. We recursively trace the structure pointed at by the
machine registers, marking cach cell reached as we go. We eventually mark the transitive closure of the list
access operations starting with the machine registers; therefore a cell is marked if and only if it is accessibie. We
theu scan alt of memory. Any location that was not marked is swept up as garbage and made reusable,

Usually recursive traversal of a structure requires an auxiliary stack. This is unfortunate for our machine
since we need list structure to build stack and we are presumably garbage collecting because we ran out of
memory. Deutsch, Schorr, and Waite [DSW] developed a clever method of tracing structure without auxiliary
meraory. We use their scheme.,

In our sweep phase we use a two finger compaction algorithm [MDT] which relocates all useful structure
to the bottom of memory. The allocation process simply increments the free storage pointer. This allows us
to sweep only as much memory as has been allocated before the garbage collection. In addition, we allow the
uscfprogmm to set the value of the MEMTOP registér, which s compared with the free-storage poinytcr when
allocation is done. When the free storage pointer gets to MEMTOP, the user receives an interrupt (see below).
He then has the option of moving the MEMTOP if he has more memory available, or of taking a garbage
cotlection by invoking the garbage-collector as a primilive procedure. This gives the user a convenient control
on how distributed he will fet his working set become, In the case of a paged memory, this allows the user to
trade off garbage collector time against paging time.

Our chip also supports an interrupt system. The interrupt handlers are written in SCHEME, Thus the
user can, for example, simulate parallel processing or handle asynchronous 1/0. The problem here is that the
state of the interrupted process must be saved during the exccution of the interrupt routine so that it can be
restored when the interrupt is dismissed. This is accomplished by building a data structure which contains the
state of the relevant registers and passing it to the interrupt routine as a continuation argument [Continuations].
The interrupt routine can then do its job and resume the interrupted process, if it wishes, by invoking the
continuation as a procedure, The interrupt mechanism is also used (as described above) (o interface the garbage
collector to the interpreter.

The SCHEME-79 Architecture

The SCHEME-79 chip implements a standard von Neumann architecture in which there is a processor
attached to a memory system. The processor is divided into two parts: the data paths, and a controller. The




data paths cousist of a set of special purpose registers, with built-in operators, which are interconnected with a
single 32 bit bus. The controfler is a finite state machine which sequences through microcode implementing the
interpreter and garbage collector. At cach step it performs an operation on some of the registers (for example,
transferring the address of an allocated cell in NEWCELL into the STACK register) and selects a next state
bascdd on its carrent state and conditions developed within the data paths. We will sce that this decomposition
facilitates the automatic generation of the hardware from a program written in a high-level language that
de

sribes the algorithms,

Chere are 10 registers, which have specialized characteristics. To save space these registers are shared by
the interpreter and ihe garbage collector, This is possible because the interpreter cannot mun while a garbage
collection is taking place (but sce [Concurrent] {Real Time[). Figure 3 (below) shows (schematically) the
geometric layout of the register array. The registers and operators are all sitting on the same bus (the bus lines
run vertically in the diagram). The arrows in the diagram depict control actions that the controlier may take on
the register array or branch conditions that the register array develops which may be tested by the controller.
'The TO controls are used to load tie spocified register ficlds from the bus; the FROM controls are used to read
the specified register onto the bus.
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Figure 3. The Register Array

The division of storage words into mark, type, and data ficlds is reflected in physical structure of most

of the registers. In the EXP register, the data field is further decomposed into a FRAME field and a
DISPLACEMENT ficld; thus in some microcyele the microcode can enable TODISPLACEMENT-EXP and
FROM-RETPC-COUNT-MARK, which will wansfer the bits from the DISPLACEMENT part of the data
fcld of the RETPC-COUNT-MARK register to the DISPLACEMENT part of the data field of the EXP
register. The data part of the EXP register can be decremented and placed on the bus (that is, a number one
less than the data part of BXP can be rcad onto the bus; the data part of EXP is not itself modified). The
"DISPLACEMENT and FRAME subfields of the bus can be scparately tested for zero; this feature is used to
implement the lookup of variables as specified by their lexical address. Since the data ficld of the EXP register
can be decremented as a whole, it can be used as the scan down pointer in the sweep phiase of the garbage
collector. The register NEWCELL, which contains the frce storage pointer during interpretation, can be read
onto the bus either directly, or its incremented value can be read onto the bus. The same register is used fo
scan up in memory during the sweep phase of garbage cotlection. The NFWCELL register also contains logic
that continually tests whether its data field (which here represents the address of the next free cell in memory) is
equal to the data field on the bus. This comparison is used for checking during allocation to see if the available




memory limit has been exeeeded. "The register MIL, on the other hand, has only one capability: it can be read
onto the bus and its value is always zero in all bits, ' ‘

On cach cycle the registers can be controfled so that one of them is gated onto the bus, and selected ficlds
of the bus gated into another register. The bus is extended off the chip through a set of pads. The external
world is conceptualized as a set of registers with special capabilitics, The external ADDRESS register is used
for accessing memory and can be set from the bus. The pscudo-regisicr MEMORY can be read onto the bus or
written from the bus. The actual access is performed to the list cell addressed by the ADDRESS register. The
CDR bit controls which half of the cell Is being accessed. One miore external register, INTERRUPT, which can
be read outo the bus, contains the address of a global symbol whose value (its CAR} is an apprepriate interrupt
handler,

The finite-state controller for the SCHEME-79 chip s a synchronous system composed of a state register
and a large picce of combinational logic, the control map (see Figure 4, below.). The contrel map is used to
develop, from the current state stored in the state register, the control signals for the register array and pads,
the new state, and controls for selection of the sources for the next sequential state. One bit of the next state is
computed using the current value of the selected branch condition (if any). The rest of the next sequential state
is chosen from either the new state generated by the control map, or {ram the type field of the register array bus
(dispatching on the type).
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Figure 4. The Finite-state Controller

Including both the interpreter and garbage collector on the chip makes a compact realization of the map
from statc to new state and control function difficult. 11 we tried to implement this in the straightforward
manner using a programmed fogic array (PLA) for the map, this structure would physically dominate the design




and make the implementation infeasible. The map logic was made feasible by several decompositions. Gnly
a few of the total possible number of combinations of register controls arc actually used. For exampic, only
one register can be gated onto the bus at onc time. We can usc this interdependence to compress our register
control, Instead of developing all of the registor controls out of one picce of logic (which would have to be very
wide), we instead develop an encoding within the main map of the operation to be performed and the registers
involved. This encoding is then expanded by an auxiliary map (also constructed as a PLA) to produce the actual
control signals. (See Figure § below.) This was inspired by the similar decomposition using both vertical and
horizontal microcode in the M68000 [M68000] (cf. [QM-1], [Maneprogramming]).
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Figure 5. Two stage map

Unfortunately, this is not adequate to fix the problem. When examining the microcode, we found many
microcode instructions that were nearly identical, differing only in the particular registers being manipulated.
To take advantage of this regularity we extended the previous decomposition so that the encoded operation is
specified independently of the registers taking part in that operation.” Thus, the Micro control map develops
a full-blown vertical microcode, consisting of an operation specification {the Nano opcode) and scparate
specifications of registers to be used as source (f rom) and destination (to) operands. The Nano opcode deter-
mines which of the operands are enabled for decoding (that is, whether one, both, or neither of the operands
is to be used.) The vertical microcode is then expanded by the Nano control map into a horizontal microcode
which is the actual register, sclector, and pad controls,




Further savings were realized by neticing that there were many identical sequences of micreinsteactions
{oxcept for renaming of registers) which contained no conditional branches, For example, o take the CAR
of a specified source vegister and put it in a specified destination register takes tvo cycles — ane to put the
source out on the pads and tell the memory to latch the address, and another to read the data from memory
into the destination register. Since sequences like CAR are common, the microcode could be compressed if
we allowed a limited form of micrecode subroutine. We did this rather painlessly by extending the horizontal
(Nano) micrecode map to be a full state machine (See Figore 6 below.). These common subsequences are then
represented as single cycles of the Micro engine which stimulate several cycles of the Nano engine, T'o make
this work, the vertical {Micro) sequcncer must be frozen while the Nano-sequencer is running, This mechanism
was necded in any case to make it possible for the chip to wait for memory response.

@i H H 4 HIPRRPI 1 4 % ; . 3 : ; i
f I\/AMO ' o and from
CawMI M*P S
f ‘ 1
o ? ’ n NetState
Pod|Gutnls  RegishiGubwb M
] seten %
y e
: I~ . !
Y
; T ~
i A .
_& MICRO

o 27D
£
-
iy
<

- Branch .
P.J'k.r : Coditons

Figure 6. SCHEME-79 Control

Even further savings were realized by clever subroutinization of common subsequences in the soutce

-microcode.  Some of the common subsequences could not be captured by the Nano engine because they

involved conditional branch operations, which the Nano engine was incapable of performing. These sub-




sequences could be subroutinized in the source code by the conventional use of a free register to hold the retirn

~microcode address (Micro state) in its type fickd. Many microcode instructions were saved by this analysis.

Synthesizing the SCHEME-T9 chip

The major problem introduced by VIS8T is onc of coping with complexity. Togic densities of over T million
gates per chip are predicted from extrapolating fabrication techniques that are appearing in laboratories. In the
design of the SCHEME-79 chip we take advantage of the techniques and perspectives we have igherited from
confronting the complexity problem in the software domain. We feel that the activity of hardware design will
increasingly become analogous fo the programming of a large software system, :

Current practice in chip design uses the idea of a cefl, a patticular combination of primitive structures
which can be repeated or combined with other cells to make more complex structure. The advantage of this
approach is that onc only has to define a cell which performs a coinmon function once. More importantly,
the cell encapsulates much detail so that the problem of design is simplified by suppressing that detail. As in
programmming we cxtend this notion (following Johannsen [Bristle Blocks]) by parameterizing our cells to form
sompound abstractions which represent whole classes of cells which can vary both in structure and function.
We call these abstract parameterized cells architectural elements. For example, a simple nMOS depletion load
pullup comes in a variety of sizes. The particular length-to-width ratio of such a transistor is & simple numerical
parameter. A tivial architectural clement is just such a parameterized pullup. Tt encapsulates the particufar
rules for constructing the pulup including the placement of the contact from the poly to the diffusion layer and
the placement of the ion-implant. A more interesting architectural element is an n-way sclector parameterized

“by the number of inputs, In this case higher level detail is suy pressed, such as the means of driving the input

lines and the particular logic by which the selector is implemented. Small sclectors may be more cffectively
implemented with one kind of logic and large selectors may be morce effectively implemented with another.

But these are stilt only simple paramecters. We have developed much more powerful architectural elements,
For example, a finite-state machine controller can be implemented as a PLA and state register. We have
constructed a PLA gencrator which is parameterized by the logical contents and physical structure. This gen-
erator is used with a compiler which takes a program to be embodied in the state machine o produce the
state machine controller, an architectural element parameterized by a program written in a high-level language.
Although we have not completely parameterized it, we can think of our register array generator as an architec-
tural element. In fact, we believe that an entire high-level language interpreter module can be successfully
defined as an architectural clement parameterized by the interpreter program augmented with declarations
which describe how the interpreter data is represented in registers., ‘

To achieve this goal, we need a high level fanguage adequate for deseribing the algorithm to be embodied
in the hardware. We chose LISP as a convenient base language for embedding the description of the SCHEME
interpreter. By adding primitive operations that operate on the machine structures we arrive at a form of ISP
(micro-1.1SP) which is suitable for expressing our microcode. Although micro-LISP has the structure of LISP,
all of its basic operations are ultimately for side effect rather than for value. They represent actions that can
be performed on the registers on the chip. However, by using the form of T.ISP we can take advantage of the
features of a high level Tanguage such as conditionals, compound expressions, and user macro definitions. For
cxample, the following fragment of the on-chip storage allocator is written in micro-LISP;
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{(defpc mark-node
‘ (assign *Teader® (&car (fetch *node~pointer*)))
(cond ((and (&pointer? (fetch *leadar®))

(not (&in-use? {fetch *leader®))))
(&mark-car-being-traced! (fetch *node-pointer¥®))
(&rplaca-and-mark! (fetch *node-pointer¥) (fetch *stack-top*))
(go-to downstrace))

(t
(&mark-in-use! (fetch *node-pointer*))
{go-to trace-cdir))))
(defnc down-trace
(assign *stack-top* (fetch *node-pointer®))
(assign *node-pointer® {fetch *leader®))

(go~to mark-node))

This example shows two subsequences of the microcode, which are labeled mark-node and down-
trace. Down-trace is a simple scquence that transfers the contents of the machine registers *node -
pointer* and *Teadar® into *stack-top* and *node-pointer#. Although the storage allocator was
written as if it uses a sct of registeis distinct from those of the evaluator, there are micro-LISP declarations
that make these names cquivalent to the registers used by the evaluator. The mark-node sequence illustrates
the use of a compound expression that refers to the result of performing the CAR operation on the contents of
the *node-pointer® register. The CAR operation is itsclf a sequence of machine steps that access memory.
{(This is an example of a nuno-operation which performs a step to output the address to be accessed, followed
by a step that reads the data from the external memory into the *Teader* register) The compound beolean
cxpression that tests the contents of the *Teader® register for being a pointer to an unused cell is compiled
into a series of microcode branches that transfer to separate chains of micreinstructions corresponding to the
consequent and alternative ¢lauses.

Onc benefit of embedding the microcode language in LISP is that by providing definitions for the primi-
tive machine operators that simulate the machine actions on the registers, we can simulate the operation of the
machine by running our microcode as a LISP program.

More importantly, micro-LISP is also an casy language to compile. Micra-1.ISP is compiled info artwork
by a cascade of three compilation steps. The first phase transforms Micro-1.ISP into a relatively conventional
machine language. It removes all embedded structure such as the compasition of primitive operators, This in-
volves the allocation of registers to hold the necessary intermediate results. The compiler tries to optimize these
computations by storing intermediate results in the ultimate target of a compulation, because that cannot be
needed later, Conditionals are lincarized and the compound boolean expressions are transformed into simple
branches. The machine language is specialized to the actual target machine architecture by the code generators
which transform the conceptually primitive operators of Micro-LISP into single major cycle machine opera-
tions, which can be encoded as single transitions of MICRQ (the vertical microcode state machinc). This phase
doces not know how thesc operations will be executed by NANO (the horizontal microcode state machine).

For example, the fragment of Micro-LISP from the storage-allocator shown above is translated into the
following microcode instruction scquences:
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MARK-NODE -1
((FROM *DTSPLAY*) (TO PADS) ALE)
((FROM PADS) (7O *INTERMEDIATE-ARGUMENT®) READ)
((FROM *INTFRMEDIATE-ARGUMENT#) (TO PADS) WRITE MERGE-MARK-1
(GO-TO TRACE-CDR))
MARK - NODE -2
((FROM *DISPLAY*) (TO PADS) ALE)
((FROM PADS) (TO *INTERMEDIATE-ARGUMENT*) READ COR)
({FROM *INTERMEDTATE-ARGUMENT*) (T0O PADS) WRITE MERGE-MARK-1 CDR)
((FROM *DISPLAY#) (TO PADS) ALE)
((FROM *VAL*) (TC PAD3) WRITE MERGE-MARK-1 (GO-TO DOWN-TRACE))
MARI(~NODE -3 '
({FROM *ARGS*) (TO PADS) ALE)
((FROM PADS) READ (BRANCH MARK-BIT-BUS MARK-NODE-1 MARK-HODE-2))

MARK-NODE
((FROM *DISPLAY*) (TO *ARGS*) DO-CAR)
((FROM *ARGS*) (BRANCH TYPE=POTNTER-BUS MARK-NODE-3 MARK-NODE-1))
DOWN-TRACE
((FROM *DISPLAY*) (TO *VAL*))
((FROM *ARGS*) (TO *DISPLAY*) (GO-TO MARK-NODE))

Llach micre-instruction specifics a source register (from .. .), destination register (to .. .), aset of
operations and controls, and possible branch conditions. For example, the alternative of the conditional in
mark-node,

(t

{&mark-in-usel (fetch *node-pointer®)})
(go-to trace-cdr))))

translates into micro-sequence labeled mark-node~ 1. Notice that the registers named in the Micro-1.ISP code
have been translated into their cquivalent evaluator register names (*node~pointer* —— *display®).
The &mark-1in-use! operation performs a memory cycle that merges a mark bit into the contents of the
CAR of the node addressed by the register. The first micro-instruction puts the register contents onto the chip’s
data bus and cemits the ALE control (to set the ADDRESS pscudo-register). The following step rcads CAR of
the ADDRESSed node into a temporary register. Finally, the temporary is re-written into memory with the
merge-mark-1 control which modifies the bus contents (by forcing the mark bit to be 1) on the way to the
pads, and the sequence continues at trace~cdr.

The second phase of the compilation process converts the microcode into specifications for the PLA’s that
control the Micro and Nano scquencers, For cach sequencer, a micro-word (which will be the contents of one
row of the OR-planc of the PLLA) must be constructed for cach microinstraction of the microprogram. Then
cach microword must have a state number (i.e. program address) assigned to it. These state numbers are
used to control sequencing fron one microinstruction to another, The assignmient of state numbers is affected
by certain constraints {described below). Once state numbers are assigned, then references to tags (which are
symbolic names of states) must be replaced by the equivalent state numbers. The assembled microwords will
become the programming for the PLLA OR-planc, and the AND-plance will decode the input state number to
cnable the appropriate microword (in the case of the Nano PLA, more than on¢ micro-word may be cnabled,
and all enabled micro-words are ORed together).
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The contents of the Mano PLA arc cos 1%t1UL(\d fmt Now the Nano PLA actually pe ert forms three qqx arate
k'f"chodyi‘w"fimmioﬁ@‘ it decodes the ‘i‘om to, and operation ficlds of the microinstructions in the Micro PILA.
[Fach of these three decoding functions is compiled separately, Tirst, all the symbols which appear in From
specifications in the symbolic microcode are gathered together (in the above sample microcode, these symbols
include *display*, pads, *intermediate~argumont®, *val*, and *args*). Fach of these symbols
is agsigned a number; these numbers will be used to encode the from field in microwords in the Micro PLA.
Microwords are then assembled for the Nano PTLA which will decode the from field number and raise the
appropriate register from-control line. For example, suppose that #args* is assigned the number 6 for the
from field. Then there will be a Nane microword which is cnabled iff the from ficld is 6, and which has all its

bits zero cxeept for the “fromeargs™ bit,

The same gathering and number assignment is then performed for all to-ficld specifications in the sym-
bolic microcode. In general, the sct of symbols appeating in to specifications is not the same as for rom
specifications, (For example, there i a “from-NTL” signal, bul no “to-NIL” signal; it is meaningless to have
“(to nit)”. Converscly, there are signals “to-stack-type” and “to-stack-address”, so that each can be written
separately, but thete is only one signal “from-stack”™.) It follows that the assignment of numbers is unrelated.
For example, (from args) might be assigned the number 6, but (to args) might be assigned the number
15. The two signals are distinct and arc cneoded in different fields of Micro microwords. ‘

Next a similar operation is performed for all distinct combinations of operators appearing in symbolic
microinstractions. In the example, such combinations include “ale”, “do~-car”, and “read cdr”. Fach such
combination is assigned a number to be used in the operation ficld of Micro microwords. If the combination
takes more than one Nano microword to express, then several numbers are assigned, one for cach Nano-word;
the Micro-word will then contain the number of the first Nano-word of the sequence, and each Nano-word
except the fast will specify the number of the next Nano-word ,n the sequence, and also assert the nana-run
bit to indicate that the sequence is not complete (asserting the nano - run bit inhibits the stepping of the Micro

sequencer to the next Micro-word).

Nano-instructions {whether single ones or sequences) can be viewed as macros or subroutines invoked
by Micro-instructions. The operation ficld of the Micro-instruction selects the Nano-instruction: the Nano-
instruction can then selectively enable decoding of the from and to fields. For a single-word Nano-routine,
both arc automatically enabled. Multiple-word Nano-routines are predefined, and specify when to enable the
decodings. For example:

(defnano (do-car)

((from*) (als))
((to*) (read)))

(defnano (do-cdr)

((from*) (ale))
((to*) (read cdr)))

(defnano (do-restore)
(() (from-stack ale))

{(to*) (read))
({) (read cdr to-address-stack to-type-stack)))

The definition of do-car says that it expands into two Nano-words. The first enables from decoding
and asscrts ale; the sccond asserts read and enables to decoding. (The symbols from* and to* may be
considered to be pronouns, meaning “whatever f rom or to was specified in the Micro-word™.) This definition
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is assenibled into two Nano-words as follows: (This fragment of printed output from the compiler is included to
show its flavor, the details are irrelevant.)
{NANO-RUN ALE (NANO-OR-STATE 100))

" ((000400 177400) (00 00 200) 20000000000020100)
yEnable FROM, ALE, next-state 100

(READ)
e ((001000 177400) (00 00 100) 00100000000000000)
;Enable TO, READ

The first one is assigned state number 200, and the second one number 100. The first one containg the
auinber of the sccond one, and also asserts nano-run, Any Micro-word which specifies the do-car operation
will have state number 200 assembled into its operation field.

Once the Nano PLA contents have been assembled, then the Micro PLA contents are assembled. As for
the Nano PLA, cach Micro-word must be asigned a state number. There are several constraints that affect
the assignment of state numbers for the Micro PLA. One complication is introduced by the technigue used to
implement conditional Micro-code branches. When a branch occurs, the condition being tested is developed
as a boolean bit valuc which is then merged into the low bit of the next state value, This means that the two
targets of the branch must be allocated in an even/odd pair of states. If a given Micro-word is the target of
more than one branch, then several capies of it may have to be made (for example, one in an odd location and
another in an even location). Another complication is that the assignment of states has to be compalible with
the assignment of type numbers (the S-code operations) used by the dispalch mechanism of the Micro state
machine.

For example, consider a fragment of microcode as produced by the compiler from Micro-LiSP, and its
cortesponding PLA specification: ’ .

MARK-NODE

((FROM *DISPLAY*) (TO *ARGS*) DO-CAR)
((FROM *ARGS*) (BRANCH TYPE=POINTER-BUS MARK-NODE-3 MARK-NODE-1))

Once the assignments for nano-ops have been chosen (durring assembly of the Nano PLLA), the contents of
the Micro PLLA arc assembled from the original microcode as follows:
MARK-NODE ((FROM *DISPLAY#) (TO *ARGS*) DO-CAR))
— (554 1503401250 (250 200 007 15)) _

;GO-TO 250, DO-CAR, FROM 7, TO 15
MARK-NODE+1 ((FROM *ARGS*)
(BRANCH TYPE=POINTER-BUS MARK-NODE-3 MARK-NODE-1)))

—t (052 0003343044 (044 307 006 00)) 1 GO-TO 44, BRANCH, FROM 6

The first Micro-word specifics do-car, and so has 200 in its operation ficld. It also specifies (to
*args*), and so has 15 in its to ficld. The second micro-word has been assigned Micro-state number 250, and
so the first Micro-word contains 250 in its next-state field. The second Micro-word contains a branch, and so
the two branch targets must be allocated in an even/odd pair. Hence a copy of the Micro-word labelled mark -
node-3 has been assigned Micro-state number 44, and a copy of the Micro-word labelled mark-node-1 has
been assigned number 45,

The third major phase of the compilation is performed by the PILA architectural clement gencrator. One
parameter is the PLA specifications output by the previous phases. Other parameters control special details of
the clocking, the order of bits in ficlds in the inputs and output wiring, the ground mesh spacing, and the option
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- of folding the PLA for adjustment of the aspect ratio. These parameters provide fexibility in accommodating
the PLA layout to the other structures on the chip.

The Layout Language

In our system, an architectural element generator is a procedure, written in LISP angmented by a set
of primitive database and layout operators. This augniented TISP is the Layout Language. An architectural
clement generator builds an annotated representation of the particular artwork that implements an instance of
the element described by the parameters.

The Layout Language primitives create representations of elementary geometric entities such as points and
boxes on a particular mask layer, For example:

(PT 3 4) is the point at location (3,4)
(THE=X (P7 3 4)) 45 3
(BOX 'POLY 3 4 5 6) is a box on the poly layer from (3,4) to (5,6)

Sequences of connected boxes on a single layer can be conveniently constructed by specifying a width, an
initial point and a sequence of directions for proceeding along the desired path, The paths must be rectilinear;
they are specified as a sequence of movements in cither coordinate direction (X or Y). Fach movement can be
either incremental or to an absolute position.

(BOXES (POLY 3) (PT 3 4) (+X 20) (Y 35) (X 70))
specifies a path in 3 wide poly from (3,4) to {(23,4)
to (23,35) to (70,35).

The layout language also provides, as primitive, certain common structures which are used in nMOS

layouts, such as contact cuts between the various layers,

(CONTACT V POLY (PT 3 4)) makes a metal-to-poly contact which is
vertically oriented and is centered at point (3,4).

We can combine picces of layout by instantiating cach piece separately. We can then make compound
cells by giving a name to a program which instantiates all of its picces. The cell can be parameterized by means
of arguments to the procedure which generates it. The following layout procedure creates a depletion-mode
pullup of a given width and fength. Tt encapsulates knowledge of the design rules by referring to globally
declared process parameters.

(deflayout general-pullup (length width)
(boxes (diff width) (pt 0 -1) (+Y (+ Tength 2)))
(boxes (poly (+ {* 2 *poly-overhang*) width)) (pt 0 0) (+Y Tength))
(call (butting-contact)) '
(boxes (implant (+ (* 2 *implant-overhang*) width))
(pt 0 (- 0 *implant-overhang*))
{(+Y (+ length (* 2 *implant-overhang*)))))

A compound cell can be instantiated as part of a larger structure by invoking its name. The instance
created by a call to a compound cell can be translated, rotated and reflected te place it appropriately in the
larger structure (cf. CUF in [VL.SI Systems]). For example, we could get a pullup where we want it by writing;




(call (general-puliup 8 2) (rot 0 1) (trans (pt 24 35)))

Lach object can be given a local symbolic name relative to the larger structure of which it is a part. These
names can be referred to by means of paths which describe the sequence of local names from the root of the
structure [Multics]. These symbolic names, which are attached to the coordinate systems of cells, are useful for
describing operations to be done when creating artwork without explicitly writing the nuinerical values of the
operands, For example, if we wish to place a driver cell at the end of a register, so that its control outputs
align with (and conncct to) the control inputs of the first cell of the register column (think of the rows of the
register array as bit-slices and the columns as the individual registers), we can call the driver cell generator to
get an instance of the driver. We then can align the newly called out instance so that the appropriate points are
coincident. We also can inherit names from substructure to make new local names.

(set-the 'exp-driver (call (regcell-driver)))
(align (the exp-driver)
(the-pt end phl-to ph2-driver exp-driver)
(the-pt to-type-exp array))
{set-the 'to-type-exp (the-pt start sig to-driver exp-driver))
(set-the 'from-exp (the-pt start sig from-driver axp-driver))

(A form (the-pt ...) is a path-name: “the point which is the end of the phl-to of the ph2-
driverofthcexp-driver (of me)”)

Virtual instances of cells can be made. These do not actually create artwork but they can be interrogated
for information about the properties of the virtual artwork, such as the relative position of a particular bus
metal or the horizontal pitch. In the following (ragment putTup-pair is made to be the local name of a
virtual instance of the pulTup-pair cefl. This is then used to extract patameters to control the elaboration of
pullup-gnd so that it is compatible with the pulTup-pair cell and can be abutted with it.

{deflayout pullup-gnd (gnd-width)
(set-the' v-pitch -10)
(set-the' pullup-pair
(invoke* (pullup-pair gnd-width)))
(set-the' vdd
(wire (metal 4) (pt (the-x end vdd pullup-pair) 0) (Y -10)))
(set-the' vdd2
(wire (metal 4)
(pt (the-x end vdd pullup-pair) -5)
(X (the-x vdd2 pullup-pair))))
(set-the' gnd
(wire (metal gnd-width)
(pt (the-x end gnd pullup-pair) 0)
(Y -10)))
(boxes (metal 4) (pt (the-x end gnd) -5) (X (the h-pitch pullup-pair})))

The layout language system is intended to be part of an interactive environment in which designs are
developed by combining incremental modifications to and adaptions of existing fragments of design. Thus the
layout procedures arc not just a file transducer which takes an input design and cranks out artwork. The layout
procedures produce a data-base which describes the artwork to be constructed. The output artwork is just one
way of printing out some aspects of this data base. QOther information contained in'the data base is the user's
conception of the structure of the artifact he is constructing. He has mnemonic names by which he refers to
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parts o his design. This data base can be interrogated by the user to help him exaniine his design, to annotate i,
and to help him produce incremental changes when debugging is necessary.

SCHEME-T9 Tnterface Description

The SCHEME chip interfaces to the external world through a 32 bit bi-dlirectional data bus (chip-bus)
that is used for specifying addresses, reading and writing heap memory, referencing 170 devices, rcading
interrupt vectors, and accessing the internal microcode stare during debugging. On any cycle where the
chip i3 not performing an cxplicit transfer over the chip-bus it outputs whatever is on the register array’s
internal data bus. Besides the chip-bus and power conaections, there are also pins for control inputs (ph1,
phz, freeze, read-scate, load-state, and interrupt-request) and outpuis (ale, read,
write, cdr, read-interrupt, and GC-needed). Figure 7 is the logic symbol for the SCHEME-79
chip.

ot — 7‘12- ADDRESS/DATA
-] | DR i
: FREEZE:—— — ALE
oo T —| SCHEME e
i emp ‘"’"EF_“ CHIP R
- INTERRUT REuBT—d ——ReAD TNTERRUPT
‘ ‘ L ¢ NEEDED

Figure 7. Chip Logic Symbol

The chip is driven by a two-phase non-overtapping clock supplied externally on the ph1 and ph2 pins.
During the ph1 phase, the chip performs the data manipulations specified by the current microcode state and
computes the new microcode stale specified by the MICRO and NANO PLAs. If the chip is outputting onto the
chip-bus, the data will become valid by the end of ph1. If external data is being read it should be valid soon
after the beginning of ph 1 so that any microcode branch that tests the read data will have had time to propagate
through both of the PLAs. During ph2 the chip transitions to the new state and the control outputs change
accordingly.

The control signal freeze causes the chip to inhibit any state change. 1t must be stable du ring phl, When
asserted, it inhibits the from-x and to-x controls in the register arrvay, and causes the two state machings to
refetch their current state. The control outputs are not specifically disabled, so the external interface should
ignore them during cycles that are frozen.

A reference to heap memory norwially consists of two cycles: First, the chip sources the 24-bit node
address on the low-order bits of the chip-bus and asserts address-latch-cnable (ate). Then a following cycle
asserts either read or write to access the node, simultancously specifying which half (CAR or CDR) of the
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node with the cdr signal. For memories that are slower than the chip, the external memory control should
assert freaze unt! the cycle where the memory can complete the memory operation. A timing diagram for a
typical read cycle is shown in Figure §, Figure 9 shows a double write cycle (changing both the CAR pointer
and the CDR pointer of the LISP node pointed at by the address latched by the ale). ’
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Figure 8. Read cycle (with one {eeze cycle)
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Figure 9. Double write cycle (with 2nd cycle frozen)
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170 devices sre mapped into a high part of the node space that is never reached by the allocation/collection
mechanism, They arc accessed by CAR, £DR, and RPLACx operations on sel1f-evaluating-immediate
quantities (numbers) that point to the 170 locations. To be useful, the chip interface should supply data with
valid and consistent data types to read references. Besides the normal sort of /0 devices, other pseude-
maemory locations are assumad to exist that provide those primitive functions not implemented internal to the
SCHEME-79 processor, such as fixed and floating point arithmetic. ’ -

Interrupts

The SCHEME-79 chip provides a simple facility for interrupting user processcs. At points where irterrupts
can oceur, the microcode cxamines the external input interrupt-request, Ifitis true, an interrupt-point
is created which encapsulates the state of the current process, and a read-interrupt cycle is parformed to
obtain an address from the interrupting device. The CAR of (his address should be a user procedure of one
argument {the interrupt-poing which will handle the interrupt. Weé assume some external 1/0 {ceations that
control interrupt priority level and re-enabling of the interrupt system.

Interestingly, in our system garbage collections are mitiated as if they were external 170 interrupts. Thig
allows the user to provide a GC-handler function that can be invoked whenever a garbage collection is called
for, a convenient system feature. During all CONS operations, the on-chip nano-code checks the allocation
pointer (*newcel1¥) against the limit register (*memtop*). If these registers are cqual, a flip-flop is set that
appears exterpally on the GC-needed pin. The external interrupt interface is expected to turn this around as
an interrupt request and provide the appropriate vector when the read-interrupt is given, The interrupt-
point pussed to the GC-handler serves as both the continuation of the interrupted process and also as the root
from which the garbage collector marks. GC interrupts can occur during user intermupt sequences, but they
ought not in turn be interrupied. The S-code primitive operation mark clears the internal GC-needed flip-tlop
and performs a garbage collection,

Dcbugging

firee control lines give us the ability to initialize the chip microcode state, and indirectly It us examine
from and deposit into the internal data registers. Tor these functions to work, the chip must be stopped with
freeze asserted. Load-state scts the microcode state number from 9 bits of the chip-bus {(bits 23,22,30-
24). Read-state will read out the current MICRO state onto the same bits, Then, for instance, the chip can
be single stepped by lowering freeze for onc cycle, and the internal data observed on the chip-bus, There are
special sequences in the microcode that have been provided just for scanning in and out the internal registers,
so that that a Toad-state to the right state followed by single-stepping the chip will accomplish an examine
or deposit from the “switches”,

Boot-load sequence

The SCHEME-79 chip requires some assistance when cold starting after power-up. We assurne that
memory has been initialized to the following contents:

CAR CDR
0: NIL NIL's property list ;has OBARRAY
1. dnitial *MEMTOP*  ---
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The bootload sequence starts at MICRO-state 111111110, and as the first thing, loads the internal
*memtop™ from the CAR of location 1, and then does a read-1interrupt o get an interrupt vector which
designates a cell whose CAR has the initial (and sole) procedure to be executed. (This may be a read-eval-print
loop for example.)

History

This project started with the (painful) haud layout of a prototype interpreter chip by Stecle [SCHEME
Chip 0] [SCHEME Chip 1] as part of the 1978 MIT class project chip, The prototype differs from our current
design in several ways. Tt used a separate set of registers for the storage allocator process and the cvaluator
process while our new design shares the same set of registers between the processes. Although this saves space
(by titee multiplexing) it precludes the use of a concurrent garbage collector algorithm. The prototype chip was
fubricated but it was never tested because a fatal artwork crror was discovered {through a microscope!).

We started the design for the SCHEME-T9 chip at the MIT Al Lab on (or about) 18 June 1979. The
first task was to construct the micrecode we wanted the machine to interpret. We adapted a previous ex-
perimental implementation of the SCHEME language (written in LISP) for the PDP-10, by defining a storage
representation and adding a garbage collector. We studicd the microcode to determine what architecture would
be effective for its implementation. The next step was to create a layout language so that we could write proce-
dures that would build the chip artwork. This was followed by the simultancous construction of a compiler
of the microcode to the PLA implementation, and the layout of the register array. Complete, preliminary
implementations of the main structures of the chip were ready in our database | by 8 July 1979,

At this point we went to XEROX Palo Alto Rescarch Center {SSI) (o use their automated draftsman
program {ICARUS] to asscmble and interconnect these picces. This was the hardest part of the job. It took
almost two weeks to do this. During this time we had much support and encouragement from Lynn Conway
and the XEROX stafl. The first completely assernbled version of the SCHEME-79 chip was completed at 0600
PDT on 19 July 1979. At this point the implementation was considered done except for crrors to be discovered.

Some of the errors were discovered by the sharp eyes of people at XEROX and MIT. We had an 8x10
foot check plot with features of approximately 1710 inch. Within a few weeks we had discovered and corrected
about 10 design rule violations or artwork crrors, and also 2 non-fatal logic bugs. At this point, a program
was written by Clark Baker that extracted an electrical description (in terms of nodes and transistors) from our
artwork. This discovered an implausible circuit fragment which, when investigated, turned out to be an extra
power pad superimposed on one of the data pads! This clectrical description was then simulated with a program
written by Chris Terman (based upon an carlier program developed by Randy Bryant [MOSSIM]). Before we
were done, the simulator helped find 5 additional serious logic errors, a rare PLA compiler bug, an invisible
(1/8 minimum feature size) error introduced in' the artwork conversion process, and an cxtrancous picce of
polysilicon that had appeared magically during the repair of previous errors. The final simulations checked out
a complete garbage collection and the evaluation of a trivial (450 microstep) user program. Ihm experience
indicates that cfficient tools for checking both the physical and logical design are essential.

The chip went out for fabrication as part of the MPC79 Multi-University Multiproject Chip-Set compiled
by the 1.51 Systems Area, of the System Science Laboratory, of the Xcrox Palo Alto Rescarch Center on 4
December 1979. Using a process with a minimum line width of 5 microns (LAMBDA = 2.5 microns) the
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SCHEME-T9 chip was 5926 microns wide and 7548 microns long, for a total arca of 44.73 square millimeters.
The masks were made by Micro Mask, Tnc. and the wafers were fabricated by Flewlett-Packard’s Integrated
Circuit Processing Laboratory.

We reccived 4 chips bonded into packages on 9 January 1980. By that time Howard Cannon had designed
and fabricated a board to interface the SCHEMIE-79 chip to the MIT ISP Machine, This was a substanfial
project which included an interface to altow our chip to access LISP Machine memory. The interface board
contains a map tor chip addresses (o LISP Machine memory addresses, a programmable clock to allow the LISP
Machine to vary the durations of the clock phases and the interphase spaces, debugging apparatus to allow
the LISP Machine to set and read the state and internal registers of the chip, circuitry for allowing the LISP
Machine tw interrupt the SCHEME chip, circuitry to allow the LISP Machine to single-step the chip, and an
interface from chip bus protocols to LISP Machine bus protocols. This interface project materially contributed
to the success of the SCHEME-79 chip project by allowing us to begin to test the chip almost instantly on
reecipt,

The first chip we unpacked had a visible fatal law in the metal layer. The second one we tried could load
and read state but would not run. The third chip scems to work! Tt has successfully run programs, garbage
collected memory, and accepted interrupt requests. We have found two (non fatal) design errors which had
escaped our previous simulation and testing. One is a subtle bug in the garbage-collector microcode which
could cause tare disasters, but which will never be a problem in actual programs likely to be run by the chip.
Another is a race condition in the logic associated with the pad which is used by the chip to signal the need for
an interrupt (o collect garbage. Luckily, this function is redundant and can be assunied by the interface.

Performance of the SCHEME-T79 Chip

The main goat of the design of the SCHEME-79 chip was to have a project that would provide us with
cxperience in VILST design and to force us to test our ideas about design methodology and tools. Many
simplifications were made Lo allow us to complete a design within a short time. (The entire project, including
prototype tool building and chip synthesis, was completed in § weeks) Tn every instance where there was a
fradeofl between performance and simplicity, we opted for simplicity. But it is still interesting to consider what
some of those tradeofls were, and what could be done to improve the performance of a machine based upon
this design,

Although we cannot definitively characterize the performance of the SCHEME-79 chip, because we have
not had enough experience yet with working parts, we can estimate the performance. We will try to identily
the eritical determiners of this performance and offer suggestions for future modifications which will improve it.
There are three areas which independently limit the performance of our machine. The algorithms embodiced by
the chip are not optimal. There are architectural improvements that can reduce the number of machine cycles
perstep in the interpreter. And there are clectrical performance limits in our design.

FFor the sake of uniformity, the interpreter on the chip uses the heap memory system for all of its data
structures, including the interpreter’s stack. Since usually the interpreter stack is not retained from subexpres-
sion cvaluation to subexpression evaluation (although it can be retained if an interrupt occurs or the user
creates a control point) it is not usually necessary that the stack be allocated from heap memory. In fact, most
implementations of LISP usc a lincar stack structure, This is more eflicient because the garbage cells resulting
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from evaluating a subexpression are reclaimed explicitly rather than through garbage collection, There is also
a factor of two more pointers needed to represent the stack stored in the heap than in the finear case (this
would not be truc if the SCHEME-79 machine used cdr-coded list structure [CDR Coding]). This becomes the
dominant source of garbage produced by exccution of a program, and is thus the dominant cost of execution.,

Specifically, we have estimated by examining fragments of the microcode for the interpreter that we allo-
cate a heap cell for every 10 cycles of computation. The cost of allocating this cell is broken into two parts:
approximately 8 cycles are required to perform the allocation, and, under the assumption that onc half of the
heap is reclaimed per garbage collection, 35 cycles are required to reclaim cach cell. This, of course, implies
that the current machine will spend 80% of the time in the storage allocator. The garbage collector itself
has respectable performance. Assuming a I MHz clock (which is what preliminary mcasurements seein fo
indicate is the speed of the current part), collection of a 1 megabyte heap (128K LISP nodes) takes Ioss than
6 seconds. Approximately a third of the total time is spent in cach of the mark, sweep, and relocate phases of
the garbage collection. It would be difficult to make a significant impact on the performance of the machine by
improving the process of garbage collection. Obviously, we must reduce the amount of garbage gencrated in the
interpretation process.

There arc several ways to attack this problem, One way is to make the evaluator use a more traditional
stack structure, This can ouly be done at the cost of increasing complexity in many parts of the system. For
example, there would have to be a mechanism for allocating non-list structures in memory. The garbage collec-
tor would need to treat these structures specially, and would also have to be able to mark from pointers stored
in the stack. Also, a lincar stack regime makes retention of control environments very complicated [Spaghetti].
Specifically, this impacts user features concerned with multiprocessing such as interrupts and non-local catch
points,

Richard Stallman has observed that one can make stack out of list nodes, as we do, but by allocating it
from a scparate region, the stack will usually be a linear sequence of cells. Thus, if we can be surc that there
are no poinfers to the current stack region, pops can be done by just moving the stack pointer as in a traditional
machine. [f, however, the control environment is to be retained, we cannot just deallocate linearly, but rather
we must defer to the garbage collector as usual. Since it is only the construction of retained control environ-
ments which makes the stack non-linear, and since these retained control environments arc only constructed at
known times by cither the user or the interrupt system, it is possible to know just which control environments
are to be retained. Stallman suggests having a movable base register which points to the base of the linear (not
relained) portion of the stack. When the stack is retained, the base register is just moved up to the stack pointer.
When the stack is popped, it may be deallocated unless the pointer is below the base register. Assuming that
such retained control environments are rare by comparison to the usual uses of the stack, one can usuaily treat
most of the stack as a lincar array, getting most of the cfliciency of normal stack operations on conventional
machings.

A more speculative approach for improving the performance of our interpreter is to optimize the use
of the stack by exploiting the observation that the stack discipline has regularities which make many of the
stack operations redundant. In the caller-saves convention (which is what the SCHIEME-T9 chip implements)
the only rcason why a register is pushed onto the stack is to protect its contents from being destroyed by the
unpredictable uses of the register during the recursive evaluation of a subexpression. Therefore one source
of redundant stack operations is that a register is saved even though the cvaluation of the subexpression may
not affect the contents of that register. 1f we could look ahead in time we could determine whether or not

23




the register will retain its contents through the unknown evaluation, This is one standard kind of optimization
done by compilers, but cven a compiler cannot optimize all cases because the exccution path of a program
depends in general on the data being processed. flowever, instead of looking ahead, we can try to make the
stack mnechanism Jazy in that it postp(,ncs pushing a register until its contents are about to be destroyed. The key
idea s that cach register has a state which indicates whether its contents are valuable. If such a valuzble register
is about to be assigned, it is at that moment pushed. In order to make this system work, cach register which may
be pushed has its own stack so thet we can decouple the stack disciplines for cach of the registers. Fach register-
stack combination can be thought of as having a state which encodes some of the history of previous operations.
[t is ovganized as a finite-state automaton which mediates between operation requests and the internal registers
and stack. "This automaton serves as an on-the-fly pecphole optimizer, which recognizes certain patterns of
operations within a small window in time and transforms them so as to reduce the actual number of stack
operations pecformed. We have investigated this strategy [Dream} and we believe that it can be implemented
in hardware casily and will substantially improve the performance of the algorithm. In pilot studics, we have
determined that this technique can save 3 out of every 4 stack allocations in the operation of the interpreter.

Another way of building prescience into the machine language is to include S-code instructions (type
ficlds) that encapsitate those special cases of argument cvaluation or sequencing which are trivial and do not
require that the interpreter save state. This would reduce the stack usage and also result in a more compact S-
code and shorter S-code execution sequences. For example, evaluation of friviel expressions containing only
variables, constants, or applications of primitive operators to trivial expressions does not require saving of state.
But the augmented instruction st would considerably expand the sizc of the on-chip microcode.

Other tradeolls were made in the architecture of the chip. For cmm,)lc we chose to make our register
array have a single bus. This forced the m icrocode to serialize many xwm ' transfer u*)uatmns which logically
could have been done in parallel. A more powerful bus structure would result in 2 sienificant speed up. We
also decided to use simple register cells rather than buffered registers. This means that a register cannot be
read and written at the same time. This is not usually a problem because on a single bus machine it is not
useful to read out and load the same register. But it does cause increnient and decrement operations to take
two microcycles rather than one microcycle. This is significant becausc it is in the innermost loop of the local
variable lockup routine. Decrementing the frame and displacement field take twice as long as is really neces-
sary. Finally, we could have used more registers for intermediate vatues to be stored. In several cases, having
an cxlra intermediate would result in fewer register shuffles and CONSes to get something dore. For example,
having special argument registers for holding the arguments for primitive one- and two-argument functions
could make a serious dent in the storage allocated in argument cvaluation and henee ultimately in time taken
to garbage collect. This optimization may be combined with our stack optimizer strategy (mentioned above). In
fact, the entire argument about stack optimization may be thought of as an architectural issue, because of the
simpie implementation of our peephole optimizing automata in hardware.

We also made significant tradeofls in the cicctrical characteristics of the SCHEME-79 chip. The busis
not precharged. The PLASs are ratio logic, not switched. There is no on-chip clock generator. There arc many
long runs which were made on poly and diffusion which should have been made on metal. Some buffers are
insufficient to effectively drive the Tong lines to which they are connected. We also used a selector design with
implanted pass transistors which is an exceptionally slow cirenit. We feel that careful redesign of some of the
circuitry on the chip would greatly improve the performance.
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We include the actual measured perfornunce of our chip on a samiple program. We calculated the
values of Fibonacei numbers by the doubly recursive method. {This explodes exponentially; computing each
Fibonacei number takes 1—'1'52—\/5 times the time it takes to compute the previous one)) This is an excellent test
program because it thoroughly excrcises most of the mechanisms of the interpreter. Additionally, surns were
computed using Peano arithmetic, which is the enly arithimictic available on the chip. The progrant is as follows:
(DEFTNE (+ X Y)

(COND ((ZEROP X) Y)

(T (= (1= X) (+ YIN))
(DEFINE (FIB X)
(COND ({ZEROP X) 0) :If 0, resull is 0,
((ZEROP (1- X)) 1) iIf 1, result is 1.
(T {+ (FIB (1- X)) (FIB (1- (1- X)}))N))

We computed (fib 20.,) = 6765. with two diffcrent memory loadings, with a clock period of 1595
nanoscconds (not the top speed for the chip), and a memory of 32K LISP cells. If the memory was substan-
tially empty (so that garbage collection was maximally efficient) the SCHEME-79 chip took about | minute to
exccute the program. With memory half full of five structure (a typical load for a LISP system) the SCHEME-
79 chip took about 3 minutes.

We also compared this performance with that of our standard MACLISP interpreter on the same program
running on the DEC KA10 and with a SCHEME interpreter written in MACLISP. LISP did not garbage collect
during this operation, but it took about 3.6 minutes. The MACLISP SCHEME interpreter (with unknown
memory loading) took about 9 minutes with about 10% of the time spent in the garbage collector.
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Appendix - The SCHEME-79 Micrecode

h}mmammnmxwcpmmnuummpmeMMgofmcnﬁammdcmrmcSCHRMEJ9ch.MIMSHNMg
swnbohsunnundcdbysmgmzmmﬁﬂw(ag.*ni1*)mc1mnwsorammcsofwmdnncrqﬁﬁms.Swnbombegn~
ﬂMgwnhammeMM(&)mcﬂmnmnaxﬁhmdwmcopmmkm&1%0SwmdcOmmnﬂopaxmsmccmmcoﬂﬂm
data types. These are given specific numerical valucs. When a DEFTYPT is used to define the microcode that is
used when that type is exceuted, T usually place a comment showing how that data type is expected to be used
inapkmcof81mdch&uncdamtypouwepohueercsanmﬂngUuuthcgmbagcmﬂkcﬂnrnuﬂrnmkthcﬂﬂng
pointed at by the address party and others arc immediate data (hence terminal to the garbage collector). The
folowing are the data types with preassigned numerical values:

{(defschip **pointer-typesi*
"{(self-evaluating~-pointer 0)

(symbol 1)
(global 2}
(set-global 3)
(conditional 4)
(procedure 5)
(First-argument 8)
(next-argument 7)
(Tast-argument 10)
(apply-no-args 11)
(apply-l-arg 12)
(primitive-apply-1 13)
(primitive-apply-2 14)
(sequence 15)
(spread-argument 16)
(closure 17)
{get-control-point 20)
{control-point 21)
(interrupt-point 22)
{self-evaluating-pointer-1 23)
(self-evaluating-pointer-2 24)
(self-avaluating-pointer-3 25)
(self-evaluating-pointer-4 26)

))

(defschip **non-pointer-types**
"((self-evaluating-imnediate 100)
(Tocal 101)
(tail-local 102)
(set-local 103)
(set-tail-local 104)
(set-only-tail-local 105)
{(primitive-car 108) ;Built-in operators
(primitive-cdr 107)
(primitive-cons 119)
(primitive-rplaca 111)
(primitive~rplacd 112)
(primitive-eq 113)
(primitive-type? 114)
{(primitive-type! 115)
(gc-special-type 116) yNever appears except during ge
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(self-evaluating-immediate-1 117)
(se1f-evaluating-immediate~2 120)
(self-evaluating-immediate~3 121)
(self-svaluating-immadiate~4 122)
{mark 123)

(done 124)

{(primitive-addl 125)
{primitive-subl 128)
(primitive-zerop 127)
{primitive-displacement-addl 130)
(primitive-not-atom 131)

{boot-Toad 776) imicro-address forced by RESET
(process-interrupt 777) imicro-address forced by EXT INT RQ
))

Pointer data is indicated by the 100 bit being off in the data type.
(defschip **pointer** 100) ;100 bit means non-pointer,

Next we find the definitions of the registers. The following registers are used by EVAL: ®val#*,
Fexp*, *args®, *display*, *stack® Inaddition, *newcel1* contains the pointer to the beginning
of free storage. It is changed by CONSing or saving something on the stack. Whenever *newcel11% is
changed, it is compared with *memtop® which contains the (user set) memory limit. When these are equal
an interrupt is signalled, setting the one bit register *gc-needed® ~ indicating need for garbage-collection.
*Nil1* s a dummy register, it cannot be set, and its value is nil. The garbage collector uses the following
registers: *stack-top*, *node-pointer®, *leader® arc used by the GC mark phase only. *Scan-
up® *scan-down® and *memtop® arc used by the GC sweep phase. *Rel-tem-1%, *rel-lem-2* are
temporaries used in GC relocate phase only. *Intermediate~argument® is used by microcode cotapiler
for storing ancnymous teinporaries and *retpc-count-mark® is used in increment operations to store inter-
mediate values because our registers are not dual rank, [t is also used for storing microcode return addresses
thmeinxnknmodcsubnuwhws.ThmcisovcﬂnpinthcmeofﬂwxchUX&fhrcxmnph,*scan~up*isﬂm
*newcet 1* pointer when in EVAL. Thus the above names are really aliases for the real underlying physical
registers, The mapping is made below:

{defschip **machine-registers¥*

T((*ni1)
(*memtop*)
{*newcel ™)
(®*scan-up® *newcel1*)
(*exp*)
{*scan-down* *exp*)
(*val*)
(*rel-tem-2* *val#)
(*stack-top* *val*)
(*args*)
(*leader* *args*)
(*rel-tem-1* *args*)
(*display*)
(*node-pointer* *display*)
(*stack*)
(*retpc-count-mark*)
(*intermediate-argument*)))
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- Hach physical register has certain capabilitics which are controlled by particular control wires which go
into it. Thus the to-dispTacement wirc on the *exp* register will, if raised, allow the displacement feld
of the register o be sct from the corresponding ficld of the bus. The registers also develop certain conditions
which are reflected by the states of sense wires. So, for example, the type=bus wire coming out of the *vai#
register indicates if the type field of the register is equal to the corresponding ficld on the bus. The following
cxpressions define the control lines and sense wires on (he registers,

{defreg "exp* (to-type to-displacement to-frame from from-decremented) ()

defreg *newcell® (to-type to-address from from-incremented address=bus
4 Y

(defrag #*val®
(to-type to-address from)
{type=bus address=bus =bus)) ;=bus is AND of type, address=bus

(defreg *retpc-count-mark* (to-type to-address from) ())
(dafreg *stack* (to-type to-address from) ())
{(defreg *memtop* (to from) ()) 4
(defreg *args* (to from) ())
{defreg *display® (to from) ())
{defreg *intermediate-argument* (to from) ())
(defreg *nil* (from) ())
Additionally, the bus is sensitive to several conditions:

(defreg bus
() (mark-bit type-not-pointer frame=0 displacement=0 address=0))

A tegister has two basic operations which can he done to it. Tts contents can be fetched, and its contents
can be assigned from some source. In addition, for the LISP simulator we define two additional eperations
which are used for stacks:

(defmacro save (quantity)
(assign *stack* (&cons ,quantity (fetch *stack*))))

(defmacro restore (register)
(progn (assign ,register (&car (fetch *stack*}))
(assign *stack* (&cdr (fetch *stack*)))))

At this point we begin to look at the microcode proper. Boot~Toad is the place where the chip is initial-
ized to run. The first thing it docs is initialize the memory limit register and then it picks up (as an interrupt
address) a pointer to the expression to begin cxccuting, 1t stashes this away in the stack and gocs off to MARK
to get memory organized and set up a reasonable value for *scan~-up* (*newcel1*), The (micro) return
address is stored as the type of the stack pointer. Thus all micro return addresses must be pointer types ~
something the compiler must know about!
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(deftype boot-load
o (assign *scan-up* (fetch *nilx))

(&increment~scan-up) : ito tocation 1
(assign *memtep* (&car {fetch *scan-up*)))
(assign *scan-up®* (fetch *memtap*))
(assign *stack* (&get-interrupt-routine-pointer)) ;from pads
(&set-type *stack® boot-~Toad-return)
(go-to mark})

(defreturn boot~Toad-return
(assign *exp* (&car (Teteh *stack*)))
(assign *stack® {Ffetch *nil#*}))
{&set-type *stack* done)
{dispatch-on-exp-allowing=interrupts))

When (here is nothing more to do the machine halts.

(deftype done
{(go-to donsg))

‘The next section of the microcode is the SCHEME-79 chip storage allocator and garbage collector. Mark
is the garbage-collector entry point. It is a user function with no arguments which returns N11. when it is done.
We use the Deutsch-Schorr-Waite mark algorithm. There arc 3 registers containing pointer data: *stack-
top*, *node-pointer®, *1eader*./\dauﬂnxnaybczlpohucroratcnnhuﬂdauun;lhwxnaybeteﬁed
by &pointer? Objects have 2 data parts which can fit a pointer - the CAR and CDR. These are accessed
by &car and &cdr functions of the pointer to the object. They are clobbered by &rplaca and &rplacd
functions of a pointer to the object and the replacement datum. Objects also have two mark bits, the in-
usa and car-trace-in-progress bit. The in-use bit s stored in the CAR of the node and the car-
trace-in-progress bitis stored in the CDR of the node. They are accessed by &in-use? and &car~
being-traced? of a pointer to the object. They are set and cleared by &mark-in-use!, &mark-car-
being-traced!, &mark-car-trace-over! and &unmark! of the pointer to the object. In addition,
any &rplaca or &rplacd operation will clear the associated mark bit. This requires the introduction of
&rptaca-and-mark! to change the CAR pointer while setting the 1n-use bit.

(deftype mark i MARK(?)
(&rplaca (fetch *nil*) (fetch *stack*))
(assign *node-pointer* (fetch *nil*))
(assign *stack-top* (fetch *nil*)})
(&set-type *stack-top* gc-special-type)
(go-to mark-node))

(defpc mark-node
(assign *leader* (&car (fetch *node-pointer*}))
(cond ((and (&pointer? (fetch *leader*))

(not (&in-use? (fetch *leader*))))
(&mark-car-being-traced! (fetch *node-pointer*))
(&rplaca-and-mark! (fetch *node-pointer*) (fetch *stack-top*))
(go-to down-trace))

(t
(&mark-in-use! (fetch *node-pointar*))
(go-to trace-cdr))))
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{defpc down-trace
(assign *stack-top* (fetch *node-pointer®))
(assign *node-pointer* (fetch *leader*))
{go-to mark-node))

(defpc trace-cdr
(assign *leadar* (&cdr (fetch *node-pointer®)))
(cond ((and (&pointer? (fetch *leader*)) (not (&in-use? (fetch *leader*))))
{&rplacd (fetch *node-pointer*) (fetch *stack-top*))
(go-to down-trace))
{(t (go-to up-trace))))

{defpc up-trace
(cond ((&=typa? (fetch *stack-top*) gc-special-type)
{go-to swesp))
(t (assign *leader* (fatch *stack-top*))
{cond ((&car-being-traced? (fetch *leader®))
(&mark-car-trace-over! {fetch *leader*))
(assign *stack-top* (&car (fetch *leader*)))
(&rplaca-and-mark! (fetch *leader*)
(fetch *node-pointer*))
(assign *node-pointer* (fetch *leader®))
(go-to trace-cdr))
(t (assign *stack-tcp* (&cdr (fetch *Teader#)))
(&rplacd (fetch *leader*) (fetch *node-pointer®))
(assign *node-pointer* (fetch *leader®))
(go-to up-trace})))))

The sweep algorithm for this garbage collector is the simple two finger compacting method. The two
“fingers” are: *scan-up* and *scan-down*, Remember, *scan-up® is the newcell register for cons.
Thus, because mark does not disturb it, initially, *scan-up® points at the last successfully completed cons.

(defpc sweep
(&increment-scan-up)
(assign *scan-down*®* (fetch *scan-up*)) yinitialization
(assign *scan-up* (fetch *nil%*)) imake address = 0
{&set-type *scan-up* gc-special-type)
(&clear-gc-needed)
(go-to scan-down-for-thing})

(defpc scan-down-for-thing
(&decrement-scan-down)
(cond ((&scan-up=scan-down?) (go-tc relocate-pointers))
((&in-usc? (fetch *scan-down*)) (go-to scan-up-for-hole))
{t (go-to scan-down~-for-thing))))
(defpc scan-up-for-hole
(cond ((&in-use? (fetch *scan-up*)})
(&increment-scan-up)
(cond ((&scan-up=scan-down?} (go-to relocate-pointers))
(t (go-to scan-up-for-hole))))
(t (go-to swap-thing-and-hole))))
"The following code is rather tricky. The last rplaca operation performs several important operations at
once. Since the type of *scan-up* is gc-special-type, the cell pointed at by *scan-down* (which is
above the eventual *scan-up* and thus will be free storage) is marked as a “broken heart” pointing at where
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Ve its contents has gone. This will be looked at fater by the relocation phase. This frec-cell-to-be is also unmarked
by this eperation.

(defpc swap-thing-and-hole
(&rplaca-and-markl (fetch *scan-up*) (Rcar (fetch *scan~-down*))y
(&rplacd (fetch *scan-up*) (&cdr (fetch *scan-down™)))
(&rplaca (fetch *scan-down*) (fetch *scan-up*))
{go-to scan-down-for-thing))

The relocation phase now adjusts ali live pointers which point at object which have been moved, leaving
behind broken hearts. At the entiy te reTocate-pointers, *scan-up* = *scan-down® and they point
at the highest cccupied location in memory. *Scan-up™ is left there to become the future *newcal1* and
*sean-down® is used to count down until we get to the bottom of memory.

(defpc relocate-pointers
(assign *rel-tem-1* (&car (fetch #*scan-down*)))
(cond ((&pointer? (fetch *ral-tem-1%))
(assign *rel-tem-2* (&car (fetch *rel-tem-1%)))
(cond ((&=type? (fetch *rel-tem-2*%) gc-special-type)
{&set-type *rel-tem-2* (fetch *rel-tem-1*))
(&rplaca (fetch *scan-down*) (fetch *rel-tem-2%))))))

(assign *rel-tem-1*% (Zcdr (fetch *scan-down*)))
{cond ((&pointer? (fetch *rel-tem-1*))

(assign *rel-tem-2% (&car {(fetch *rel-tem-1%)})})

(cond ((&=type? (fetch *ral-tem-2*) gc-special-typs)

t“’ﬁ ' : (&set-type *rel-tom-2% (fetch *rel-tem-1%))
k (&rplacd (fetch *scan-down*) (fetch *rel-tem-2%)}))))

{(&unmark! (fetch *scan-down*))
(cond ({&scan-down=07)

(&sel-type *scan-up* self-evaluating-pointer)

(assign *stack* (&car (fetch *nil*))) imight have been relocated

(&rplaca (Fetch *nil*) (fetch *nil¥))

(assign *val* (fetch *nil*))

(dispatch-on-stack))

(t (&decrement-scan-down)

(go-to relocate-pointers))))

Congratulations, you have just survived the garbage collector! We now proceed to examine the cvaluator
proper. The first part of the evaluator is the stufl for dealing with variable references. The opeodes which take
a lexical-address as their data field decode that ficld into a frame number and a displacement number in the
*exp* register. Lexical access of Jocal variables uses Tookup-exp to get a locative to the value. The CAR of
the locative is the value cell for that variable. Micro-call is a microcode macro operation which stashes the
(micro code) return address specified by its second argument in the type field of *retpc-count-mark* and
then gocs to the micro-code address specified by its first argument. Micro-return is used to dispatch on this
saved type ficld.

(deftype local ;LOCAI{Texical-address)
(micro-call Tookup-exp local-return))
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~ (assign *val® (&car (fetch *display*)))
(dispatch-on-stack))

Tail local variables give SCHEME an LSUBR option. That is, a procedure may be passed the fist of
evaluated arguments as the value of a variable rather than having an cxplicit local variable for each value
passed. Forexample: in ({Tambda x (foo x)) 1 2 3), x isa tail variable which is beund to the list (1
2 3). additionally, this is extended to give the power of rest variables as follows: in (Tambda (x y . z)
~=-) x and y are bound te the first two arguments while z is a tail variable which is bound to the remaining
arguments.

(deftype tail-Tocal s TATL-LOCAL(Texical-address)
(micro-call Tookup-exp tail-local-return))
(defpc tail-local-return
(assign *val* (fetch *display*))
(dispatch-on-stack))

Global variables are stored in the value cell of a symbol. The value cell is assumed to be in the CAR of
the symbol. The CDR may be used for other purposes (such as property lists). Thus the global type may be
thought of as an alias for CAR.

{deftype globatl i GLOBAL(symbo1}
(assign *val* rglobal-value=&car
(&global-value (Totch *exp*)}))
(dispatch-on-stack))

The following stulf is for assignment to variables. These £ aes are to be used as pait of a se quence whose
provious entry develops a value in #val* which will be the value stuffed into the variable’s value locative,

(deftype set-local ySET-LOCAL{Texical~addrass)
{micro-call lookup-exp set-local-return))

{(defpc set-local-return
(&rplaca (fetch *display*) (fetch *val*))
(dispatch-on-stack))

(deftype set-tail-local VSET-TAIL-LOCAL(Texical-address)
(micro-call Tookup-exp set-tail-local-return))

(defpc set-tail-local-return
{&rplacd (fetch *display*) (fetch *val*))
(dispatch-on-stack})

The following is a tricky little critter. Tt is nceded because if we have a tail only variable (c.g. (lambda x
~=-)) we nced to be able to get at the header of the sublist of the display referred to by the tail variable.

(deftype set-only~tail-local ;SET-ONLY-TATIL-LOCAL(Texical-address)
(if (&frame=07)
{progn (&rplaca (fetch *displiay*) (fetch *val*))
(dispatch-on-stack))
(progn (assign *display* (&cdr (fetch *display*)))
(&decrement~frame)
(go-to set-only-tail-local))))
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i&set-global-vaiue = &rplaca

deftype set-global 1 SET-CLOBAL(symbo1)
(&set-global-value (fetch *exp*) (Fetch *val*))
(dispatch~on-stack})

(defpc lookup-exp
(1f (&frame=07)
{progn (assign *display® (&car (fatch *display*)))
(go-to count-displacemsant))
{progn (&decremeni-frame)
(assign *display* (&cdr (Fetch *display*)))
{go-to Tookup-exp))))

(defpc count-displacement
(if (&displacement=07?)
{micro-raturn)
{progn (&decrement-displacement)
(assign *display* (&cdr (fetch *display*)))
(go-to count-displacement))))

Next come all of the various types of self-evaluating data. There are two different classes —~ pointer data and
immediate data. A symbo1 is pointer data. We provide several unspecified varicties of such self-evaluating data
for the user to assign to things like fixed numbers and floating numbers.

(deftype self-evaluating-immediats s SELF-EVALUATING- IMMEDIATE(frob)
(assign *val* (fatch *exp*))
(dispatch-on-stack))

deftype self-evaluating-immediate-1  ;SELF~EVALUATING-IMMEDIATE-1{frob)

\J g

{assign *val* (fetch *exp¥))
(dispatch-on-stack))

(defiype self-evaluating-immediate-2 1 SELT-EVALUATING-TMMEDTATE-2(frnb)
{assign *val* (fetch *exp*))
(dispatch-on-stack})

{deftype self-svaluating-immediate-3 iSELF-EVALUATING-IMMEDIATE-3({frob)
(assign *val* (fetch *exp*))
(dispatch-on-stack))

(deftype self-evaluating-immediate-4 ;SELF-EVALUATING-TMMEDTIATE-4(frob)
(assign *val* (fetch *exp*))
(dispatch~on-stack})

(deftype symbol 1 SYMBOL(frob)
(assign *val* (fetch *exp*))
(dispatch-on-stack))

(deftype self-evaluating-pointer ; SELF-EVALUATING-POINTER(frob)
(assign *val* (fetch *exp™))
(dispatch-on-stack))

(deftype self-avaluating-pointer-1 s SELF-EVALUATING-POINTER-1{frob)
{assign *val* (fetch *exp*))
(dispatch-on-stack))
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{deftype self-evaluating-pointer-2 tSELF-EVALUATING-POINTER~2(frob)
(assign *val* (fetch *exp*))
(dispatch-en-stack))

(deftype self-gvaluating-pointer-3 i SELF-EVALUATING-POINTER-3(frob)
(assign *vai* (Tetch *exp*))
(dispatch-on-~stack))

(deftype self-evaluating-pointer-4 ySELF~EVALUATING-POINTER-4(frob)
(assign *val* (fetch *exp*))
{dispatch-on-stack))

A Tambda expression in the original SCHEME code turns into a procedure in the S-code. When
executed, a procadure constructs and returns a closure. Procedures may be documented with a
description of the original variable names and the context they were compiled in (perhaps even a direct pointer
to the source code) thus providing for debugging tools.

(deftype procedure s PROCEDURE({(script . documentation))
(assign *val* (&cons (fetch *exp*) (fetch *display*)))
(&set-type *val* closure)

(dispatch-on-stack))

An 1T expression in the SCHEME source code turns into a sequence which evaluates the predicate part
of the if and then falls into a conditional to choose between the consequent and alternative expressions on
the basis of the value of the *val* register.

{(deftype conditional ;CONDITIONAL((consequent . alternative))
(if (&eq-val (fetch *nil*))
(assign *exp* (&cdr (fetch *exp*)))
(assign *exp* (&car (fetch *exp*))))
(dispatch-on-exp-allowing-interrupts))

The following macro definition defines a common sequence in the rest of the microcode. This sequence
will be the standard way to attack a compound cxpression. The (micro) return address is stashed in *retpc-
count-mark® se that it can be used as the type of a stack cell. The top of the stack had better be standard~
return which knows how to undo this mess. '

(defmicromacro save-cdr-and-eval-car (return-tag)
(progn (&set-type *retpc-count-mark* ,return-tag)
{go-to standard-eval)))

(defpc standard-eval
(save (fetch *display*))
(&set-type *stack* (fetch *retpc-count-mark*))
(save (&cdr (fetch *exp*)))
(&set-type *stack™ standard-return)
(assign *exp* (&car (fetch *exp*}))
(dispatch-on-exp-allowing-interrupts))

37




(defreturn standard-return
(rostore *exp*)
(assign *retpc-count-mark* (fetch *stack*))
{(restore *display®*)
(dispatch (fetch *retpc-count-marki}})

The sequence construct is very important in the S-code language. Not only is it used to implement
PROGN but also, it is used to develep values in the *val* register to be used by later parts of the sequence
such as conditionals or variable assigners.

(deftype sequence (SEQUENCE{(exprassion . rast))
{assign *val* (fatch *nil#)) ifor gc
(save-cdr-and-eval-car sequence-return))

{(defraturn sequance-raturn

(dispatch-on-exp-allowing-interrupts))

Control points are used to implement the general “catch tags” used in construicting non-standard control
structures, It is useful for error exits, and multiprocess sorts of work. It is only to be used with extreme
caution since it is easy to screw oneself with constructs such as this which violate the expression structure of the
language.

(deftype get-control-point ;GET-CONTROL-POINT({variable-setter . rest))
(assign *val* (&cons (felch *stack*) (fetch ¥nil*}))

(&set-type *val* control-point)
(save-cdr-and-eval-car saquence-return))

f'o evaluate a form with more than one arguinent one starts with a pointer of type fir st-argument
which is used to initialize the *args* register which will be used to accumulate the ugumuuts The cvaluation
of the first argument is to be continued with an cvaluation of cach successive acxt argument until the last
argument is encountered which should fall into the execution of the body of the procedure being called.
(deftype first-argument ;FIRST—ARGUMEMT((argi . rest))

: (save-cdr-and~eval-car first-argument-return))

(defreturn first-argument-return

(assign *args* (&cons {fetch *val*) (fetch *ni1*)))
(save (fetch *args*))
(dispatch-on-exp-allowing-interrupts))
Next argument just accumulates the value of an argument and continues the evaluation of the form.

(deftype next-argument sMEXT-ARGUMENT{(arg . rest))
(save {fetch *args*))
(save-cdr-and-eval-car next-argumenti-return))
(defreturn next-argument-return
(restore *args*)
(&rplacd (fetch *args*) (&cons (fetch *val*) (fetch *nil¥)))
(assign *args* (&cdr (fetch *args*)))
(dispatch-on-exp-allowing-interrupts))
Finally we get to the evaluation of the last argument. At this time the continuation is an expression which
should evaluate to a closure which is to be applied.
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£ (deftype Tast-argument s LAST-ARGUHENT((arg . fun))
(save (fatch *args™))
(save-cdr-and-eval-car last-argument-return))

(defreturn last-argument-return
(restore *args*)
(&rplacd (fetch *args™)
(&cons (fetch *val#*) (fetch *nil#)))
{eval-exp-popj-to internal-apply)) sAmazing!l Where did retpc go?

Procedures with zero or one argument are handled specially for efficiency reasons.
(deftype apply-l-arg JAPPLY~1-ARG{(arg . fn))
{save-cdr~and-eval-car apply-l-arg-return))

(defreturn apply-i~arg-return
{assign *args* (&cons (fetch *val*) (fetch *nil*)))
(save (fetch *args*))
(eval-exp-popj-to internal-apply))

(deftype apply-no-args JAPPLY=NO-ARGS((Tn . 7))
(assign *exp* (&car (fetch *exp*)))
(save (fetch *niit*)) jugh! need a place for retpc.

(eval-exp-popj-to internal-apply))

Spread argumentis apply . It evaluates an argument, takes it as the set of arguments to be passed to the
procedure specified by the continuation.

€ ee(deftype spread-argument ySPREAD-ARGUMENT((arg . fun))
: (save-cdr-and-eval-car spread-argument-return))

(defreturn spread-argument-return
(save (fetch *val#*))
{eval-exp-popj-to internal-apply))

(defreturn internal-apply ;function is in *val*
(restore *args*)
(assign *exp* (fetch *val*))
(dispatch-on-exp-allowing-interrupts))

Bvery user procedure is a closure. The closures are produced by evaluating procedures. A closure
has a script which is the body of the procedure to be exccuted and a display which is the cnvironment which

the closure was manufactured in. Notice that there two CAR operations required to get the actual body of the
procedure. This is necessary to bypass the documentation packaged in the procedure definition.

(deftype closure ;CLOSURE((script . display))
(assign *display*
(&cons (fetch *args*) (&cdr (Ffetch *exp*))))
(assign *exp* (&car (&car (fetch *exp*))))
(dispatch-on-exp-allowing-interrupts))

When a control point (non-standard continuation) is exccuted it is interpreted as a procedure with one
argument which returns that argument to the constructor of the control point.
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(deftype

control-point iCONTROL~POINT(state)
(assign *val* (&car {Ffetch *args*)))

(assign *stack* (&car (fetch *exp*)))
(dispatch-on-stack))

An interrupt point is similar to a contrel point except that the *dispTay* and *val* registers must be
P} I Y 2

restored.,
(deftype

(deftyps

interrupt-point yINTERRUPT-POINT(stata)
(assign *stack* (fetch *axp*))

(restors *val®)

(restore *display*)

(go-to rastore-exp-args-dispatch))

primitive-apply-1 ;PRIMITIVE-APPLY-1{(arg
{save (&cdr (fetch *exp*}))

{assign *exp® (&car (fetch *axp*)))

{aval-exp-popj-to primitive-apply-1-return))

(defreturn primitive-apply-1-return

(restora *exp*)
(dispatch-on-exp~allowing-interrupts))

. oprimop))

The primitive operators included on the SCHEME-79 chip arc imiplemented in the following microcode.

{(deftype

(deftype

(deftype

(deftype

(deftype

(deftyne

primitive-car s PRIMITIVE-~CAR(?)
{assign *val* (&car (fetch *val*)))
(dispatch-on-stack))

primitive-cdr s PRIMITIVE-CDR(?)
(assign *val* (&edr (fatch *val*)))
(dispatch-on-stack))

primitive-type? sPRIMITIVE-TYPE?(?)
{assign *exp* (fetch *val*))

{assign *val® (fetch *nil™®))

(&set-type *val* (fetch *exp*)) ybuild profofype.
(dispatch-on-stack))

s PRIMITIVE-NOT-ATOM(?)
primitive-not-atom
(if (&pointer? (fetch *val*))
(progn (assign *val* (fetch *nil¥))
(&set-type *val* self-evaluating-immsdiate))
(assign *val* (fetch *nil*)))
(dispatch-on-stack))

primitive-zerop yPRIMITIVE-ZEROP(?)
(if (&val=07)
(progn (assign *val* (Ffetch *nil*)}))
(&set-type *val* self-evaluating-immediate))
(assign *val* (fetch *nil*)))
(dispatch-on-stack))
primitive-sub1 yPRIMITIVE-SUB1{?)
(assign *scan-down* (fetch *val*))
(&decrement-scan~down-to-val)
(dispatch-on-stack))
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£ (deftype primitive-addl s PRIMITIVE-ADDI(?)
(assign *exp* (fetch *scan-up*))
(assign *scan-up* (fetch *val*))
(&increment-scan-up-to-val)
{assign *scan-up* (Tetch %aoxp*))
(dispatch-on-stack))

{(deftype primitive-displacement-addl s PRIMITIVE-DISPLACEMENT~ADD1{?)
(assign *exp* (fetch *nil*))
(&dgcremant-frame) ymake -1 in frame part
(&val-displacement-to-exp-displacement)
(assign *args* (fetch *scan-up*))
(assign *scan-up* (fetch *exp*))
{(&increment-scan-up)
{assign *exp* (fetch *scan-up*))
(&val-frame-to~exp-~frame)
(assign *val* (fetch *exp*))
(dispatch-on-stack})

Thus cons = list*,

{deftype primitive-apply-2 ;PRIMITIVE-APPLY-2((arg . primop))
' (save (fetch *args*))

{save (&cdr (fetch *exp*)))

(assign *exp* (&car (fetch *exp*)))

(eval-exp-popj-to restore-exp-args-dispatch))

defreturn restorc-axp-args-dispatch
g
e {restore *exp®*)
{restore *args*)
(dispatch-on-exp-allowing-interrupts))

(deftype primitive-cons i PRIMITIVE-CONS(?)
(&rplacd (fetch *args*) (fetch *val*))
(restore *val¥)
(dispatch-on-stack))

(deftype primitive-eq i PRIMITIVE-EQ(?)
(restore *args®*)
(assign *args* (&cur (Fetch *args*)))
(if (&eqg-val (fetch *args*))
(progn (assign *val® (fetch *nil*))
(&set-type *val* self-evaluating-immediate)) T
(assign *val* (fetch *nil1*)))
(dispatch-on-stack))

(deftype primitive-rplaca i PREMITIVE-RPLACA(?)
(restore *args*)
(assign *val* (&rplaca (&car (fetch *args*)) (fetch *val*)))
(dispatch-on-stack))

(deftype primitive-rplacd s PRIMITIVE-RPLACD(?)
(restore *args*)
(assign *val* (&rplacd (&car (fetch *args*)) (fetch *val*}))
(dispatch-on-stack))
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(daftype primitive-typel JPRIMITIVE-TYPEI(?)

(restore *args#*)

(assign *exp* *yal+*)

(assign *val* (&car (fstech *args*)))
(&set-type *val* (fetch *exp%))
(dispatch-on-stack))

When an interrupt is requested and the machive is altowing interrupts, the microcode contintes from the
following place:

(deftype process-interrupt

(save (fatch *args+®))

(save (Tetch *exp*))

(save (fetch *display*))

{save (fetch *val®*))

(&set-type *stack* dinterrupt-point)
(assign *args* (fetch *stack*))

(assign *exp* (&car (&get-interrupt-routine-pointer)))

{dispatch-on-exp-allowing~-interrupts))

;from pads

The following routines are used to let the user get at the internal storage allocator registers (GCD telp

him!).

(defpc

(defpc

(defpe

(defpc

Jet-memtop
(assign *val* (fetch *memtop*))
{dispatch-on-stack))

sat-memtop
(assign *memtop* (Tetch *valw#))
(dispatch-on-stack))

get-scan-up
(assign *val* {(Tetch *scan-up*))
(dispatch-on-stack))

set-scan-up

(assigh *scan-up* (fetch *val*))

(&set-type *scan-up* solf-evaluating-pointer)
(dispatch-on-stack))

1%cﬁﬂbwhmcodcmputmfbrddn@gngpmpow&IWSCMDgﬂmsmmff&mnumhmcunhcapmanMe
value we can read out or set any of the internal machine registers.

(defpc

debug-routine

(&write-to-pads (fetch *exp*))
(&urite-to-pads (fetch *val*))
{&write-to-pads (fetch *args*))
(&write-to-pads (fetch *display*))
(&write-to-pads (fetch *stack*))
(&write-to-pads (fetch *newcell*))
(&write-to-pads (fetch *memtop*))
(&write-to-pads (fetch *retpc-count-mark*))

(&write-to-pads (fetch *intermediate-argument*))

(&read-from-pads *exp*)
(&read-from-pads *val*)
(&read~-from-pads *args*)

(&read-from-pads *display*)
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(&read-from-pads
(&read-from-pads
(&read-from-pads
(&read-from-pads
(&read-from-pads

*stack™)

*newcell#)

*memtop*)
*retpc-count-mark*)
*intermediate-argumant®)

{go-to debug-routine))

s
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