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The Classical Lamb Shift: Why Jackson is Wrong!1

Jonathan P. Dowling2
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I provide here a classical calculation of the Lamb shift that is of the same order
of magnitude as the quantum Bethe result. This contradicts Jackson’s claim that
a classical calculation can not get the Lamb shift right ± ± even to within an order
of magnitude .

1. INTRODUCTION

At a recent NATO ASI summer school held in Edirne, Turkey, ( 1) a discus-
sion developed on how it seemed to be possible to use classical methods to
calculate atomic spontaneous emission rates, but not the Lamb shift. This
point of view has particularly been emphasized in Jackson’s book, Classical
Electrodynamics , in which he flat-out states that a classical argument based
on radiation-reaction theory and the Abraham± Lorentz equation will give
the correct Einstein A coefficient for spontaneous decay, but gives the
wrong value for the Lamb shift.( 1) This bit of folklore is often touted as
some sort of proof that classical methods cannot reproduce elements of
quantum electrodynamics, even in a limiting sense. Usually, as Jackson
does, the blame is placed on electromagnetic vacuum fluctuations± ±
a manifestly nonclassical phenomenon± ± that is claimed to be the `̀ true’’
origin of the Lamb shift. But people claim that vacuum fluctuations are
also the cause of atomic spontaneous emission± ± how come classical radia-
tion-reaction theory is right in that case? `̀ Just good luck,’’ is the usual
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reply. This seems an unsatisfactory state of affairs, for several reasons. To
me, the correspondence principle presents the biggest objection to the notion
that there is no classical analog to the Lamb shift. In the limit of large
quantum numbers, one would expect the quantum electrodynamical Lamb
shift to go over into a classical frequency pulling that an oscillating macro-
scopic charge experiences by interacting with its self-field. An additional
disturbing fact is that classical theory is quite often used to compute cavity
corrections to the Lamb shift, ( 2) and at least for excited atoms the results
agree exactly with full QED calculations.( 3) Why then can the classical
approach get the cavity-induced Lamb shift right, but not the free-space
shift? As we shall see, there is nothing wrong with the classical approach
to the free-space Lamb shift; it is Jackson who is wrong.

2. JACKSON’S ARGUMENT

This argument is given in Jackson,( 1) and can even be found in the
book by Barut.( 4) The derivation is based on the belief that the most
general nonrelativistic equation of motion for a classically-charged har-
monic oscillator of frequency v 0 is given by ( 1 { 4 )

tx
. ..

2 xÈ 2 v 2
0x= 0 (1)

the Abraham± Lorentz± Dirac (ALD) equation, where

t=
2
3

e2

mc 3 ( 2)

is the usual radiation-reaction time constant, and x is the position coor-
dinate. Assuming a solution of the form x= x0 e { at yields a characteristic
equation

ta3+ a2+ v 2
0= 0 (3)

This has one real root, 2 a0 , and two complex conjugate roots, a± . The
real root leads to the unphysical `̀ runaway’’ solution x= x0 ea0 t, which is
discarded. The two remaining roots correspond to damped harmonic
oscillations. In the limit of slow oscillations, v 0<< 1/t @ 1.67 3 10 23 Hz, the
complex roots may be approximated as (1)

a± @ C

2 6 i(v 0+ Dv c ) ( 4)
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where

C = v 2
0 t ( 5a)

Dv c= 2 5
8 v 3

0t2 ( 5b)

The most general solution in this approximation can be written

x( t)= x0 e { (C / 2) t cos(v 0+ Dv c ) ( 6)

if x0 is the oscillator position at t= 0. Clearly, this indicates a damped and
frequency-shifted oscillation. The classical decay constant C differs from the
correct QED decay rate C ij for the |i ñ ® | j ñ transition only by the quan-
tum mechanical oscillator strength f ij that is on the order of unity or less.
Hence

C ij= f ij C ( 7)

and we see that the classical calculation is correct, to within at least an
order of magnitude. Clearly, in addition to the classical decay constant C ,
there is apparently a classical frequency pulling Dv c , Eq. (5b). However,
Jackson argues that this shift is many orders of magnitude too small to be
considered the classical analog of the Lamb shift Dv q . The Bethe calcula-
tion of the quantum Lamb shift gives

Dv q

v 0

~ v 0t log 0 mc 2

av 0
1 ~ v 0 t ( 8)

if we take v 0 @ |v i 2 v j | in a correspondence-principle limit. However, the
classical quantity from Eq. ( 5b) becomes

|Dv c |
v 0

~ (v 0t ) 2 ( 9)

where, remember, we have assumed v 0t<< 1. Hence, it appears that the
so-called classical Lamb shift is one order of v 0t too small to be the analog
of the Bethe shift. For this reason, Jackson claims that the `̀ real’’ quantum
shift Dv q , Eq. (8), arises from a completely different mechanism. Somehow,
radiation reaction and the self-field can be held responsible for the classical
shift, but `̀vacuum fluctuations’’ are responsible for the much larger quan-
tum Lamb shift.
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3. THE CORRECT CLASSICAL SHIFT

Several years ago I mentioned this puzzle to John Sipe; that
apparently classical calculations can give the correct cavity QED Lamb
shift, but not the free-space one. Sipe told me that, in fact, Jackson was
wrong and that he (Sipe) had shown that a classical Lamb shift could be
derived in free space that was of the same order of magnitude as the Bethe
result. Unfortunately, Sipe never sent me this reference, so in Edirne, when
Barut asked me how Sipe’s calculation might go, I produced the following
original and covariant derivation and presented it on the board.

Let us work with the classical limit of Barut’s self-field approach to
electrodynamics. In covariant form, the self-field action density has the
form

W =
1

2c3 & & dx4 dy4 j m(x) D mn(x 2 y) j n( y) ( 10)

where j m= [r, j] is the electric source current four-vector, x= xm= [ct, x]
and y= ym= [cu, y] are space-time four vectors, and Dmn is the Green’s
function in the radiation gauge. In the full-quantum Barut theory, j m(x) is
the appropriate Dirac current. However, here, we take it to be the classical
current associated with a classical point dipole oscillating at frequency v 0 .
In particular,

r(x, t)= 0 (11a)

j(x, t)= v 0 pe iv 0 td(x) ( 11b)

where p is the point-dipole moment. Since j0= cr= 0, Eq. (10) for the
action becomes

W =
1
2c & & dt du & & d 3x d 3y j(x, t) . D$ [x 2 y; t 2 u] . j(y, t) ( 12)

where j is given above in Eq. ( 11b), and the dyadic Green’s function in the
radiation gauge has the form(6 )

D
«

[x 2 y; t 2 u]= 2
4p

(2p ) 4 & dv

c & d 3k
e { iv ( t { u )e i k ´ ( x { y )

|k |2+ ie
[d

$
2 kÃ kÃ ] ( 13)

Hence, the action W can be written as

W = 2
1
2

p2v 2
0

c2 & & dt du & dv

(2p ) &
d 3k

( 2p ) 3

e i(v0 { v ) tei(v + v 0) u

v 2/c2 2 |k |2+ ie
[1 2 ( p̂ . kÃ ) 2] ( 14)
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where we have carried out the spatial integration, and kÃ and p̂ are unit vec-
tors. Carrying out the angular kÃ integration, the v integration, and the two
temporal integrals yields

W = 2
p2v 2

0

(2p ) 2

8p2

3c2 & dk
k2d(v 0)

v 2
0 /c2 2 k2+ ie

( 15)

where here k= |k |, and I have used d(2v 0) = d(v 0 )/2. Now, according to
the Barut prescription, I can extract a frequency shift Dv from the action
W via ( 5)

W = 2pd (v 0 )
Dv

v 0

E ( 16)

where E= mx 2
0 v 2

0 /2 is the total invariant energy of the dipole, treated as a
harmonic oscillation of mass m and maximum extension x0 , and Dv is the
shift of frequency of oscillation. Hence, from Eq. ( 15), we have

E
Dv

v 0

= 2
4p

3
p2v 2

0

( 2p ) 2 c2 & dk ( 1
2 9 v 0 /c

v 0 /c 2 k+ ie
2

v 0 /c
v 0 /c+ k+ ie: 2 1 * ( 17)

The contour integral selects out only the positive frequency solution. The
infinite factor ò dk contributes to mass renormalization, required even
classically. ( 10) The renormalized shift DvÄ then is, implicitly,

E
DvÄ

v 0

= 2
1
3

p2v 3
0

c3p & dk ( P 9 1
v 0 /c 2 k : 2 ipd(v 0 /c 2 k ) * ( 18)

where P stands for principal part, and an extra factor of two has been
added to account for the two degrees of polarization. Writing DvÄ =
DV + iC/2, we have C = p2v 4

0 /( 3c3E) . If we take p= ex0 / Ï 2, and recall that
E= 1

2 mv 2
0 x2

0 , then we have C = v 2
0t, in agreement with the Jackson result,

Eq. (5a), and hence with the quantum Einstein A coefficient.
However, the frequency shift DV is not the same as Jackson’s `̀ classi-

cal’’ Lamb shift. Already, from Eq. ( 18) , we can see that DV º Re{DvÄ } has
the form of the Bethe logarithm for the Lamb shift.( 6) A cut-off K for the
integral can be arrived at classically by noting that wavelengths l< r0 , the
classical electron radius, should not contribute much to the shift. Hence
k< 1/r0= mc 2/e2 is a reasonable cut-off, and we get

DV

v 0

=
1
2p

v 0 t ln 9 2
3v 0t : ( 19)
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where the argument of the logarithm is very large, since v 0 t<< 1. This
expression, I would claim, is then the classical Lamb shift. It certainly does
not agree with Jackson’s result in Eq. (5b). We can see that the classical
Lamb shift of Eq. ( 19) is comparable to or greater than the classical
linewidth of Eq. (5a), just as is the quantum Lamb shift. Hence, Jackson’s
classical shift, Dv of Eq. ( 5b), is an order of v 0t too small. Clearly, the
shift of Eq. ( 19) is the correspondence-principle limit of the quantum Bethe
logarithm calculation of the shift, Eq. (8) ( See Ref. 7.)

4. SUMMARY AND CONCLUSIONS

The question then becomes, what has Jackson done wrong? An
expression for a classical Lamb shift similar to Eq. ( 19) was derived inde-
pendently by Sipe and co-workers in a noncovariant formalism.( 9) These
authors point out that, classically, the decay of a classical dipole arises
from the interaction of the dipole with the out-of-phase portion of its own
self field, and the frequency shift from the interaction with the in-phase
part. However, the assumption that the ALD formula used in Jackson’s
calculation, Eq. (1) is the correct equation of motion must then be in fact
incorrect. Somehow the first-order, in-phase contribution to the classical
shift, Eq. (19), is missing in the ALD, and only the much smaller higher-
order shift that Jackson gets, Eq. ( 5b), remains. It is not clear to me at this
time why this term is missing from standard derivations of the ALD equa-
tion. However, these results would seem to indicate that the ALD equation,
as used in Jackson and Barut and other standard texts, is not a complete
classical equation of motion for a charged particle interacting with its own
field.

So in conclusion, I have provided a covariant calculation of the classi-
cal Lamb shift and confirm that it agrees with the nonrelativistic calcula-
tion of Sipe and co-worker( 9) and not the calculation of Jackson.(2) Since
the Sipe calculation was published as an aside in a larger work on cavity-
induced Lamb shifts, I felt it was important to give a covariant account of
the calculation standing on its own to double-check this important founda-
tional result. It is important in that it explicitly refutes the conventional
wisdom, supported by Jackson, that vacuum fluctuations are required to
get anything close to the physical Lamb shift. It is also important in that
it indicates that the covariant ALD equation of motion is not a complete
description of the physics of point classical charge± ± even within ordinary,
relativistic, classical electrodynamics. I should also point out that, while
there is some debate on whether the quantum version of the Barut self-
field approach to QED is equivalent to the traditional second-quantized
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formalism, it can be shown that the covariant classical version of Barut’s
self-field formalism is fully equivalent to covariant, relativistic classical elec-
trodynamics. (6 ) As a final point, one might ask why this relativistic but
classical treatment does not give a result that is better than the non-
relativistic but quantum treatment of Bethe. In other words, why does my
covariant classical account not give something closer to the finite result of
fully second-quantized and covariant relativistic QED? Here I think the
answer lies in the nature of the electron’s self-field. The self-field is present
in much the same form in nonrelativistic classical electrodynamics,
relativistic classical electrodynamics, nonrelativistic quantum electrody-
namics, and fully relativistic and covariant QED. This is why the free-space
spontaneous emission rate is the same in all these theories, as this arises the
same way as the residue of a simple pole for a contour integral. In addition,
the Bethe logarithm shows up in all these calculations of the Lamb shift in
much the same way as the principle part of these integrals, but only in the
fully QED calculation does the cut-off arise as a natural part of the theory
and is not added in ad hoc. It might be possible to make the introduction
of a cut-off in my classical calculation less ad hoc by splitting virtual
photon energies up into a relativistic and nonrelativistic regimes, as is done
in the full QED calculation, but it is not clear if it is worth the trouble to
do this. In the fully QED theory, logarithmic singularities± ± which give
infinite shifts to individual energy levels ± ± are rendered finite only when
energy-level differences are considered, as must be done in any quantum
theory. However, in a classical theory, there are no energy levels and hence
no level differences to compute. (Possibly, using the correspondence prin-
ciple, something could be learned by taking energy-level differences in the
fully QED calculation and then comparing them to the classical calculation
in the limit of large quantum numbers.) The total energy of oscillation is
fixed in a classical theory and assumed to be measurable± ± at least in prin-
ciple. In addition, some of these finite, cut-off independent contributions to
the fully relativistic QED Lamb shift arise from things such as vacuum-
polarization Feynman diagrams that have no obvious analog in a classical
theory. I am afraid that an entirely classical theory can do much better
than what Jackson claims, but I do not believe it can never compete with
a fully relativistic theory of QED.
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