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I. INTRODUCTION

The second quantization of the electromagnetic field was performed for one of the
first times in a seminal paper by Dirac in 1927:! this step is usually considered to
have been the dawn of QED. Although the second quantization hypothesis allowed
Dirac to derive the Einstein A coefficient of spontaneous emission—further results
were not forthcoming until approximately 20 years later when regularization and
renormalization schemes were invented to treat the various singular expressions which
arose in the theory.? One particular singularity, however, seems to resist being swept
under the rug and continually keeps crawling back out again. It is well known that

the second quantization procedure predicts that the electromagnetic vacuum contains
a zeropoint energy corresponding to %hwk per normal mode k of the field. This gives

rise to a divergent vacuum energy density,® which one may theoretically renormalize
away by demanding that the photon destruction and creation operators a and al
be normally ordered, i.e. with the destruction operators all to the right. From the
standpoint of general relativity this seems unsatisfactory, however. The stress energy
tensor T has a physical connection to the spacetime metric g"¥ via the Einstein
field equations. A divergent vacuum TH#Y would imply an infinite curvature for the
universe, and such a curvature can not be removed simply by performing some sort
of transfinite shift of the energy scale. An infinite vacuum energy corresponds to an
infinite cosmological constant Ay, = co. Yet observations of the motion of distant

galaxies puts an upper limit on the cosmological constant of Aexp < 10~°6 cm~1. This,

the famous Cosmological Constant Problem,* casts doubt on the physical reality of
vacuum field fluctuations. Nevertheless, many of us apparently would like to have
our vacuum and eat it too. There is a longstanding tradition in QED to take the
existence of the zeropoint fluctuations as real things, and to use them to carry out
calculations of radiative effects. By coupling an electron to the vacuum fluctuations
one may obtain a satisfactory account of the Lamb shift and spontaneous emission—
although one can not get easily a sensible value for g — 2 using this method.?—® This
process of coupling the electron to the zeropoint field as a method of calculation we
shall call nonrelativistic QED. Casimir forces and apparatus contributions to such
things as spontaneous emission, the Lamb shift, and ¢ — 2 can also be calculated

in this fashion.” 1! Can nonrelativistic QED be trusted? If taken seriously it gives
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good results for for spontaneous emission and the nonrelativistic Lamb shift, cryptic
or ambiguous results for ¢ — 2, and complete nonsense for the cosmological constant.

How can we be comfortable with any prediction of this theory in the absence of a
fully relativistic calculation to back it up? In standard QED one second quantizes
the free electromagnetic field separately from the electronic field, and only then does
one couple the two entities. Is this procedure valid? As Einstein has warned us:

I feel that it is a delusion to think of the electrons and the fields as
two physically different, independent entities. Since neither can exist
without the other, there is only one reality to be described, which hap-
pens to have two different aspects; and the theory ought to recognize
this from the start instead of doing things twice.!?

Perhaps the vacuum field is not physically real after all—in fact some argue that
it can not be—perhaps it 1s only a mathematical artifact of the second quantization
procedure.!?13 General relativity also presents us with a second troubling problem
inherit in the quantum field theoretic notion of the vacuum. The normal mode de-
composition of the electromagnetic field is unique only in Minkowski space. In curved
spacetime this i1s not so, and hence different observers will see different vacua. This
conclusion has as its consequence such phenomena as Hawking radiation from a black
hole, and the Unruh effect in which an accelerating detector registers a thermal bath
of photons. This is quite distressing—if an inertially moving detector and a uniformly
accelerating detector are near each other in spacetime, the inertial one sees nothing.
while the accelerating one sees a Planck distribution of photons. If these photons
are real, why doesn’t the inertial detector see them too? Such paradoxes have led
P. C. W. Davies to conclude that the concept of ‘particle’ (in this case ‘photon’)
breaks down in curved spacetime.!? This is pretty strong stuff! The acceptance of
standard quantum field theory implies that the particle notion is nonsense in curved
space. Can such a conclusion be avoided? Yes, it is possible to rescue the notion of
‘the photon’ if we abandon the quantum field notion of ‘the vacuum.’

It is standard folklore to believe that radiative effects such as spontaneous emis-
sion and the Lamb shift are caused by the interaction of the electron with zeropoint
fluctuations. If we dispose of the vacuum fluctuations, what then is the causative
agent behind these radiative corrections? There exist perfectly respectable classical
analogs of spontaneous emission and the Lamb shift. A harmonically bound charge
will exhibit a line broadening and a level shift if the equation of motion includes
radiation reaction—and no field fluctuations are needed to explain this result. Is it
somehow possible to take the classical theory of radiation reaction and generalize it to
a quantum mechanical setting? Schrodinger was one of the first to point out that the
back reaction of the electron’s own field on itself must be added to the Schrodinger
equation in order to have an equation of motion which could be considered complete.**
Fermi also tried something along this line.1® By inserting a classical-like radiation re-
action term into the Schrodinger equation, he arrived at what essentially was the
neoclassical theory of Crisp and Jaynes.!” This approach yields the correct Einstein
A coefficient—but a nonexponential “chirped” decay profile. (Recent work seems to
indicate that the nonphysical decay law of the neoclassical theory is a mathematical
error arising from an invalid application of the superposition principle in a nonlinear
theory.18) The neoclassical approach seems a bit ad hoc, and it turns out that there is
a more natural and complete way to include radiation reaction in quantum mechanics.

In 1938 Dirac was able to derive the classical, covariant Abraham-Lorentz equa-
tion of motion for a charge which includes radiation reaction.l? In particular, he had
to assume that the electromagnetic potential A, surrounding a charge i1s symmet-
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ric in the retarded and advanced fields to arrive at his result. In 1945, Wheeler
and Feynman elaborated on the work of Fokker, Tetrode, and Schwarzschild to pro-
duce the Absorber Theory or Action at a Distance Electrodynamics.?%—22 The idea
here 1s that one can produced all of electrodynamics—Maxwell’s equations and the

Abraham-Lorentz-Dirac (ALD) equation of motion—from a single action principle if
one assumes that the action density is symmetric with respect to future and past, or,
equivalently, in the retarded and advanced fields. It is well known that Wheeler and
Feynman never produce a quantum version of this theory. Siissman has produced a
fully second quantized version of action at a distance electrodynamics, from which
he was able to arrive at the A coefficient.?! Barut and his coworkers, however, have
gotten this coefficient—and more—with intermediate versions of the theory which
are not second quantized, but rather which extend the action principle of Wheeler
and Feynman to include Schrodinger, Pauli, and Dirac action principles, rather than
just the classical.1®23—2% The contention is that the covariant inclusion of radiation
reaction 1s to be done instead of-—not in addition to—second quantization. This
approach to QED has led to correct results for relativistic accounts of spontaneous
emission,2% the Lamb shift,?” the g — 2 anomaly,?8 and vacuum polarization.?® In the
nonrelativistic approximation, spontaneous emission and the Lamb shift,?® ¢ — 2 of
the electron,® cavity QED effects,30—32 and the Unruh effect33 have been calculated.
In this paper we shall summarize some of the cavity results as well as the Unruh
effect calculation. It should be mentioned that Casimir forces can be equally well
derived in the self-field approach, even though there are no vacuum fluctuations.31:34
All phenomena which hitherto were thought to be caused by zeropoint energy can
apparently be explained in terms of self-fields. In fact Jaynes has shown!? that the
radiation reaction spectrum over the linewidth of an atom is equal to the vacuum
fluctuation spectrum. In the self-field approach the vacuum field is assumed to be
zero for all moments of the correlation functions. For example, to trigger sponta-
neous emission, an atom produces a radiation reaction field on itself in just the right
amount to cause a decay. Compare this to the quantum field philosophy in which
one must fill the entire universe with an infinite density zeropoint energy in order to
get spontaneous emission for a single atom. Since in self-field QED the vacuum field
1s 1dentically zero, there is no longer a cosmological constant problem. Self-field the-
ory predicts a cosmological constant of zero—in excellent agreement with experiment.
The self-field approach also solves the paradox that usual QED leads to in curved
space. It has been shown that the Unruh effect can be calculated in self-field theory,
and the result is precisely the same as in standard QED.%3 An accelerating detector
responds as if bathed with thermal photons, whereas the inertially moving detector
sees nothing. But now the conclusion is different: The thermal photons are not real,
but rather the accelerating agent directly stimulates the self-field of the detector—the
causative agent of spontaneous emission—and forces the atom into a superposition
of states which corresponds to a thermal distribution. This neatly accounts for the
fact that a nearby inertial detector sees no photons, and hence rescues the concept of
photon as a particle. The cost of saving the photon is the loss of a dynamic, interac-
tive vacuum. Zeropoint fluctuations in empty space are perhaps only a useful fiction,
from the self-field frame of mind. Even the nonrelativistic calculation of ¢ — 2 in the
self-field calculation unambiguously gives the correct sign, in contradistinction to a

standard QED vacuum field calculation.? 8

It should be mentioned that in the context of standard QED there seems to be
a dual relation between the vacuum fluctuation and the radiation reaction interpre-
tations.%12:39=39 The consensus here appears to be that, within the framework of

standard QED, both interpretations are required for a cogent theory of spontaneous
emission. There remains the possiblity that a modified version of QED might not con-
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tain zeropoint fluctuations at all—that they might only be a mathematical subterfuge
introduced by the second quantization prescription. It is proposed that self-field QED,
so far at least to order «, is such a theory.

II. CAVITY EFFECTS IN QED

In fully relativistic QED, the freespace Feynman propagator is a globally defined
Green’s function for the electromagnetic field. As such, its structure will depend on
the environment and the external boundary conditions imposed on the field. Thus
the presence of conducting surfaces, for instance, in the neighborhood of an atom will
alter such radiative effects as spontaneous emission, the Lamb shift, g — 2, etc. whose
calculations depend explicitly on the form of the propagator. In nonrelativistic QED
one demands that the vacuum field obeys some appropriate boundary conditions, and
then one couples the atom to the modified vacuum in order to calculate for apparatus
induced changes to the usual freespace radiative corrections. In self-field QED the
self-field Af’flf of the electron is eliminated from the total action through use of the
same Feynman’s Green function used in standard QED. Hence, one expects similar
boundary corrections as in standard QED, but now the understanding is that it is the
radiation reaction field of the atom—and not the zeropoint field—which i1s adapting

itself to a new environment.

For example, it is experimentally well verified that the spontaneous emission
rate of an atom between parallel conducting plates can be suppressed nearly com-
pletely.40:4! In standard QED the interpretation goes something as follows. Consider
a two level atom of frequency wo. In freespace the atom finds all modes of the vac-
uum available to it, including that which also has frequency wo which is capable of
stimulating spontaneous emission. Suppose now the atom is placed between parallel
plates whose spacing L is too small to support the vacuum mode corresponding to
wo. This occurs when L < Ao/2 := m/wo. In this case, even the zeroth harmonic
corresponding to one half of a wavelength of a standing wave can not fit between
the plates, and so the wo mode of the vacuum vanishes and spontaneous emission
turns off. Those accustomed to this account of the phenomenon may find it difficult
to believe that a theory without zeropoint fluctuations can produce the same result.
Let us see how. Reconsider the two level atom in freespace. The atom is exposed to

its own radiation reaction field, which when Fourier analyzed, contains all the same
frequency components found in the vacuum field before. Hence there is a Fourier

component of the self-field of frequency wo at hand to trigger spontaneous emission
of our atom. Now between parallel mirrors, each Fourier component of the reaction

field must separately obey the new boundary conditions. The condition L < Ao/2
will completely wipe out all Fourier components of the self-field with frequency of we
or lower—and spontaneous emission will cease.

III. THE SELF-FIELD ACTION FORMALISM

In analogy to classical, action at a distance electrodynamics we wish to specify an
action W := [ dz w(z) which has as its Euler-Lagrange equations of motion Maxwell’s
equations for the electromagnetic (EM) field, and for the particle, an equation which
includes radiative effects. We assume that the action density w(z) consists of a free
particle term wo, a free field term w¢, and an interaction term w;. Hence, the general

form of w 1s, with the convention h = ¢ = 1,

1
W = Wo +CAI_‘]“+ ZprFuV
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This expression at first appears to be the usual semiclassical action density. In stan-
dard semiclassical quantum theory, however, it is assumed that the A, which appears
here is an external field from sources assumed to be at infinity. In particular A4,

would not include the self-field of the charge. But, according to Schrodinger,!® this
self-field must be included if one hopes to have a complete description of radiation
reaction. To account for the self-field in a covariant fashion we make the ansatz that

the EM potential surrounding the charge can be split into an external and self-field
contribution as

A, = AT g gt (2)

where AZXt and Afflf obey the homogeneous and inhomogeneous Maxwell’s equations,
respectively, in a localized interaction region surrounding the charge. These equations

are

Oy Fig)p = € 3" (3b)

The general solution to the nonhomogeneous equation (3b) can be written with a
Green’s function Dy (z — y) as?

45 (2) = ¢ [ dy Dyl - y) 3*(v) (4)

where z := zy, Yy := yu, and dy := d*y. Thus the integral is carried out over all
Minkowski space. Equation (4) is the single most important feature of the self-field
approach to QED, and hence bears a brief discussion. Expression (4) allows one
to eliminate the self-field from the action, and hence from the equations of motion,
in a covariant fashion. If we allowed our interaction region to include the entire
universe, then 4, = A?flf alone and there would no longer be any Af}‘t. Hence, as
1s apparent from the form of this equation, all electromagnetic potentials A, have
their origin in some source current. As a consequence, electromagnetic fields do not
exist independent of the sources that produce them. Considerations such as these
have led to revival of the Schrodinger Interpretation of Quantum Mechanics in which
the electron wave function is viewed as an actual distribution of electronic charge, as
opposed to the usual probabilistic interpretation.42—44 There is no such thing as a
‘free’ EM field, and consequently no such thing as a vacuum EM field. The self-field
approach predicts that the vacuum is empty of electromagnetic energy, and that the
EM vacuum contributes zero to the cosmological constant. A common criticism of self-
field QED is that since the EM field is treated classically, one can not hope to obtain
a complete theory of QED, since the field is not quantized. But from equation (4) it is

clear that Aff’lf will be classical only if the source current j, is classical. On the other

hand, if j, corresponds to a Schrodinger, Pauli, or Dirac current, then clearly A;’flf
will have quantum mechanical properties also, which it inherits from the quantum
mechanical source. It is our position that the second quantization of the EM field is
perhaps an unnecessary duplication of what is already contained in this expression (4).
Maybe one does not have to second quantize A, if it is already quantized, inasmuch
as 1t always exhibits quantum properties due to the quantized source which produced
it. As a longstanding critic of the second quantization procedure, E. T. Jaynes tells

us.

One can hardly imagine a better way to generate infinites in physical
predictions than by having a mathematical formalism with (c0)? more

degrees of freedom than are actually used by Nature.1?

In the action density w of equation (1) we have not specified the form of w, or j,.
Actually, after specifying wo, the requirement that the variation of the total action
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W with respect to A, yields an extremum give us Maxwell’s equations and identifies
the form of j,. The four cases of interest to us here are

1. Classical Action Density and Current

w; = mz% — eAy ¥ (5a)
e /d‘r ezt §(z — 2(7)) (5b)
2. Schrodinger Action Density and Current

Lo i~ T .0
w; = P [2—m-(V +12eA)-(V —ieA)+ edo — zb?]z,b (6a)

j”=¢*[1, ; .V—%A]zp (65)

2ma

3. Pauli Action Density and Current

1 | . .0

w; = ¢*{2—n—z'[((?—7 + zeA)-a] [a-(v — zeA)] + eAo — z-a—t}qb (7a)

1 l < €

¥ RS Y = e "
7 0 [1,2m2,‘<’7‘+ 2m(V X o axv) mA]¢ (76)

4. Dirac Action Density and Current

w; = T[y#(i0y — eAy) — m| ¥ (8a)
j# = vy (85)

Variation of W with respect to zu, ¥, ¢, or ¥ yields, respectively, the ALD,
Schrodinger, Pauli, or Dirac equations of motion. The classical version is essentially
the absorber theory of Wheeler and Feynman. The Schrodinger and Pauli actions
produce nonrelativistic versions of self-field QED—without and with spin respectively
Finally, in the Dirac case, we have a fully covariant theory of electronic motion whick
includes radiation reaction. One can then treat this final relativistic version as &
possible candidate for a complete theory of QED—perhaps equivalent or dual to the

usual second quantized version.

IV. SPONTANEOUS EMISSION BETWEEN MIRRORS

To illustrate the self-field methodology, we now sketch a calculation of how the
Einstein A coefficient for spontaneous emission changes between parallel, perfectiy
conducting mirrors. For this problem it is sufficient to consider the Schrodinger actios
density and corresponding current found in equation (6). The total action density =

of equation (1) then reduces to

0 =¢*[(2_}n_vz L % +eA) + ( _2% A%ILY) + (_;_ Agelf)]¢
= (1) + (Hp) + (Hy)|
=:w] + wg + w3 (%

To arrive at this relation we have used the Coulomb gauge V- A = 0 and the weak
field approximation |A®*%| ~ 0. We have also neglected terms of order a? or highe
where the fine structure constant a := e? /47 in our units. Finally, to reproduce &

hydrogen-like atom we took A®t = 0 and ASX* = —Ze/r. If we were to set Afflf =
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in equation (9) we would arrive at just the usual Schrodinger equation for hydrogen.

However, since Afflf is proportional to the electron current via equation (4), we can
not consistently set it equal to zero unless j, = 0 over all spacetime—in which case
we have no electron! Hence, by reductio ad absurdum it is clear that the inclusion of
Afflf in the Schrodinger equation is required. Consequently, the Schrodinger action

contains nonlinear, nonlocal terms of the generic form

el
weell = = [ [ dz dy j#(2) Dyl - y) *(y) (10

implying a nonlinear, nonlocal, integro-differential Schrodinger equation. In freespace,
the Green’s function Dy in the Coulomb gauge has the form.

—ik-(z—y)

1 N
D;i(z —y) = (o) /dk e—kzﬁ (5ij 5 k‘ikj) (11a)
1 —tk-(z—y)
Doo(= —v) = 55 |/ % oy S
Dio(z — y) = Dpi(z —y) = 0 (11¢)

where \ := |k|?, k2 := k¥#k,, and the +z¢ in the denominator insures that the cor-
rect symmetry between retarded and advanced solutions to Maxwell’s equations are
obtained—a choice which is required if the action is to have an extremum.42—20 With
this choice of Green’s function, equation (4) can be written as

e e_ik'(z_ ) G0
Ali(@) = S [ [y ak S [3w) - k(i) (12a)
e e—z’k~(z— ) |
Agelf(x) — (27r)4 //dy dk —/\2 +i6y p(y) (12b)

where p and j are the time and space components of the current ; u as given in equation

(60). In our notation above we use dy := d%y, dk := d*k, and k := k/|k|. If this

expression for A%! is inserted into the action density w as given in expression (9),
one can extract from the H; term a complex energy shift to level n which is given by

n)
g(") =l Wl(
l 2T
et 20 3 9 fO9 d\ 2000 3 9
37 ;wnmlrnml /0 Wnm — A 3 Zn: wnmlrnml
m<n
L= 6En = ZAn (13)
where wpm := Ep — Ey, and the rpm, are the usual matrix elements of the atomic

position operator r. This result is just Bethe’s nonrelativistic Lamb shift formula, and
also the Einstein A coefficient, which appears here as a damping term. A complex
energy shift is interpreted as a line broadening in the usual fashion, giving rise to
spontaneous emission. 1829

The self-field Afflf we see 1s a globally defined quantity whose form depends on the
Green’s function which in turn depends on the environment. Clearly, if the Green’s
function is changed, the Lamb shift and spontaneous emission rates—and in fact
all radiative corrections—must change. The self-field must meet the newly imposed
boundary conditions. It is easy to show that the Green’s function between parallel
mirrors can be constructed by the method of images. Suppose we place two perfectly
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2=Lf2

Fig. 1. A unit charge between parallel plates, located at zo, and the resultant series of
image charges of charge (—1)P located a zp := pL + (—1)Pzo, for p=+1,42,%3...

conducting, plane mirrors normal to the z axis at z = £L/2. A unit charge placed
on the axis at z = 2z, will have image charges located at zp := pL + (—1)Pzo, where
p=+1,42,... (See Fig. 1) The total Green’s function is then seen to be the infinite

sum of translated freespace Green’s functions, and it has the form

§ o0
DRz —y)= Y D™ (z—yp—2) (14)

p=—00

where |
B {(yo,yl,yz,ys), if p even

3 S (yo,yl,yz,—%), lprdd

and zp := z,’,‘ := (2p,0,0, 2p) is the image location in Minkowski space evaluated at
the retarded time ¢t = zp/c.

After some work, we can show that the use of this Green’s function gives rise to a
complex energy shift similar to that seen in expression (13), but now in the limit that
the plate spacing L < ¢ {3640 -where A, is the freespace value the A coefficient becomes

the following expression

(0] y
Ap =a ) w122m|rnm|2 Z {[(1 + Cnm) + (1 = 3Cﬂm)( : ) }

o
el p=1 nm
2
P 220
— [(1 — 3Cnm) + (1 + Cnm)( ) ]cos [ﬂ'p(— — 1)] } (15)
Onm L
where opm := Lwpm/7™ and (pm = |znm|2 / |rnm|2. The notation [[z]] stands for the

‘greatest integer less than z’ function. This formula (15) agrees with the standard
QED calculations of Barton,*® Milonni and Knight,46 Philpott,47 and an experiment
done by Hulet, Hilfer and Kleppner.4! In particular—if we average formula (14) over
the plate separation, assuming a uniform distribution of atoms between the plates,
we obtain the A coefficient as a function of the plate spacing L as indicated in Fig. 2.
As was mentioned earlier in this paper, for a plate spacing of L < Ao/2, where Ao is
the wavelength of a particular two level transition we wish to suppress, spontaneous
decay does not occur. This is because a Fourier component of Afflf with frequency

less than wo can not meet the parallel mirror boundary conditions and hence it is
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20 longer available in the radiation reaction field surrounding the atom to trigger
spontaneous decay. The qualitative structure of the graph is in good agreement with
a similar experimental graph,?! even up to the prediction of an enhancement factor
of 3A°/2 when L = Ao/2. This enhanced spontaneous emission rate can be viewed as
a cooperative Dicke superradiance phenomenon between the atom and its images.

AlA,

3/2

e — r — 2L/Ao

172 1 3/2

#ig. 2. The Einstein A coefficient between parallel mirrors as a function of the plate
spacing L. The freespace value i3 Ao and \o 1s the wavelength of the emitted photon.
Jelow the critical plate separation L = \o/2 spontaneous emission is suppressed. At

e criticla separation, the rate is enhanced by a factor of 3/2, but then approaches
ssymptotically the freespace value as L — oo.

V. LAMB SHIFT NEAR A SINGLE PLATE

Just as the imaginary energy shift found in equation (13) changes with changing
Soundary conditions—so does the real part of this shift. Hence one would expect a
Soundary induced change in the Lamb shift as well as the spontaneous emission rate.
Here we give the results of a sample calculation for the apparatus correction to the
energy level n of a hydrogen atom which is located a distance R from a single con-
ducting plane. Only one image is needed to construct the necessary Green’s function
Qere, in contrast to the double mirror case.

Schematically, the Green’s function construction can be viewed as the sum of
two Green’s functions, where the image Green’s function is evaluated at a retarded
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image wall atom field point

[t.x]

lu-2R] [u-2R,y] ‘
y-2R

Fig. 3. The value of the eleciromagnetic Green’s function at the point (t,x) is
termined by the current at the source point at (u,y) and by the image current
the z'mage source point (u — 2R,y' — 2R, where we define y = (y1,¥2,—Y3) &

= (0,0, R). Notice that the image source point is retarded in both space and ti

spacetime point. (See Fig. 3.) The energy shift turns out to be given by31

1 COS
AEn, = Z“’nmlrnml2{(1 o Cnm)[ f(linm) + mOnm £arh
”nm Iinm [Jnm
sin cos
2 (1 = Cnm) [g(#nm) f(llnm) A @nm( ;‘nm i gnm)]} ( r-
e fam Hnm Hnm

where (nm 1s defined as before, and ppm = 2wnmB. We have also defined a ste
function as Opm := O(n — m) which turns on only if the level n is an excited sta

380



The functions f and ¢ are defined as
o0 sint o0 cost
£ d o / dt
f@)i= [~ oodt  and  g(a):= [
The expression (16) has two limiting cases of interest. For an atom far from the plate

we have (R — 0)

4
AEn Ng Z wgmlrnmlz{ ] +7T@nm
T "m Hnm
m#En
COS Sin COS
X [(1—Cnm) ”““—‘—(1+Cnm)( é‘“m+ ff“m)]} (17)
Hnm Fnm Fnm

The first term in the curly braces of (17) is the usual Casimir-Polder, long range, Van
der Waals energy between the atom and its image in the wall. From this energy one

obtains the a force via

d(AE)
OR

The additional terms proportional to ©,,, are corrections for excited states. These
terms have also been found by Barton.#® In the opposite extreme of the limit R — oo

we have

F=—

- 2 2 & 2 2 2
2a¢ 9 9 o'
T3 Em:(lrnml — 2|Cnm]| )ln 2R|wnm| + PRy (18)

The first term is the standard London energy for an atom interacting nonretardedly
with its image in the wall. The second term, since it contains components of p?,
corresponds to an anisotropic change in the electron mass. In general, the mass of
an electron in a cavity is a tensor quantity; the inertial response of an electron to a
given force will depend on the direction of the force. (One way to visualize this is to
consider that the electromagnetic part of the electron’s mass is bound up in the electric
field lines, and that some of these lines are now cut short by the conductor, hence
changing the mass.) The third term in equation (18) is something like an anisotropic
contribution to the Lamb shift, and the final term is a level independent contribution
to the Van der Waals energy. These results also agree with those of Barton,*8 and

the reader is refered thither for more detailed discussion of these terms.

VI. ¢ —2 OF AN ELECTRON NEAR A MIRROR

In 1989, Hans Dehmelt shared the Nobel Prize in physics for his work with the
Penning trap. His group has made to-date the most accurate measurements of the

electron g factor, by comparing the cyclotron and spin precession frequencies, weyec
and wgpiy respectively, of an electron electromagnetically bond in such a trap. The

electron anomaly factor a can be written as

azzg‘zzf‘l.z“’spi@_“"% (19)
2 1 wcyc

so long as one is in freespace. Dehmelt’s result is?
dexp = 1 159 652 193 (4) x 10712 (20)

Unfortunately the experiment is not carried out in freespace, but rather inside a
conducting cavity whose dimension is of the order of 1cm in diameter. Since Qexp 1S
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compared to a theoretical calculation of ayp,, using freespace Feynman integrals—it
becomes of crucial importance to know at what stage of accuracy does the apparatus
introduce a systematic error into aexp. The trap alters the radiation reaction field, in
the self-field picture, and so we would expect both wg,i, and weyc to change, altering
the value of aexp. There has been quite a confusion in the literature over whether or

not there was a first order correction to wgp;, as well as wcyc.32’45’49—58 The consensus
seems to now be that there is a correction to wcyc but no first order boundary induced

change in wgpiy. This fact is due to a subtle cancellation between apparatus corrections

to the electron magnetic moment and to those of the mass.??°% To see how this
occurs, let us take the simple case of an electron undergoing a cyclotron orbit in a
plane parallel to, and a distance R from, a plane conducting mirror. Instead of the
Schrodinger action of equation (6) we now use the Pauli action of (7) so that we may
include the electron spin in an elementary fashion. With the same approximations as
we made in the Schrodinger action to arrive at the action density (9), we now obtain
from the Pauli action density (7) the simplified density

1 J e e
S PR, o B R il ext
w =¢ [ 5 2 3 .+ A Vv e B
€yself | € ,self o € nself
+ 2Ao - 5 AV o B ]gb (21)

where we have now set ASX* = 0 but A®** = (B®*!xr)/2. Without the terms labeled

with the superscript self, equation (21) would be the usual semiclassical expression
for an electron with spin, executing Landau orbits in a homogeneous magnetic field.
The A%t and Aself.y terms, similar as to before, give rise to mass renormalization.

Lamb shift and spontaneous emission effects, while that proportional to o - Bs¢l is
responsible for the nonzero value of g — 2 in freespace.’28 Apparatus dependent shifts
in the o - B% energy would alter wgpin and hence g — 2. Changes in the cyclotron

frequency come about through changes in the A%f.V term.
The boundary condition that E| and B vanish identically on the surface of a

conductor S can be covariantly written as®®—98

pr Ny eﬂVaﬂls = 0, Vﬂ (22)

where nq := (0,01) and n is everywhere normal to the surface S in the restframe of
the conductor. This constraint (22) can be met by the axial gauge condition

ny AF|g =0 (23)
which gives rise to the Green’s function:

1 Czk(z—y) n# ky + ny kl‘ n2 k” ky
Duy(z —y) = —(27)4'/0”6 72 +g(g;w =Sy i (n_k)2) (24)

Of course the choice of the Green’s function can not affect our answer, since the theory
1s gauge invariant, but it can greatly simplify our calculations—which is why we use
this special Green’s function here. Restricting ourselves to the case where we have a
single plane surface, we can set n := z and write equation (4) with the help of (24) as

. e ek ==y [ k-))z+((Z-)k  (k-jk
A(e) = 5 | v S i) - VPRI G s
2 - cik-(z—y) 43
0 =i [ [ - g e
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where p and j are the space and time components of the Pauli current j,, which

are given in (7b). Using the fact that B%! = V x A%l we may now compute the

boundary induced effect on the o - B%! energy term using the method of images as
before. After isolating the the electron’s magnetic moment y we can extract the plate

correction Ay as

e (26)

However, there is a plate induced mass correction similar to the tensorial mass change

we saw before in the apparatus dependent Lamb shift expression (18). So long as the

electron is constrained to move in a plane parallel to the conducting mirror, this mass
correction i1s given by

TP

m  4Rm

(Since translation invariance is broken in the Z direction, momentum of the electron
1s not conserved in this direction—which is part of the reason we restrict the motion
to a plane parallel to the conductor. The breaking of translation invariance in the
z direction also manifests itself in the tensorial character of the electron mass.) The
total correction to the magnetic spin energy is, to first order in the unitless parameter
a/Rm, given by

(27)

AESPIn _ _ _© _ pext (1 + éﬁ)
2m 7
— £ U.BeXt(l__A_m_'_%)
2mo m !
e
e : Bext
2moa (28)

where the first order correction vanishes if we express the mass m near the plate in
terms of the observed freespace mass mo. Hence there is not first order change of the
spin precession frequency wgp,in. One can now calculate the cyclotron frequency shift.
This turns out to be essentially a classical effect, and it does remain intact at order
a/Rm, and hence is the dominant effect:

8
Weye ~ B (29)

For the presently used cavities, the systematic error introduced by the cavity wall is
about 1 part in 1012, which is precisely the accuracy of the current ¢ — 2 experiments.
It would seem that apparatus contributions to weye are now a limiting factor on the
accuracy of this type of measurement of g — 2.

VII. THE UNRUH EFFECT AND HAWKING RADIATION

We now move along to a more arcane boundary condition in QED which gives
rise to the Unruh and the related Hawking radiation. Consider a general quantum
mechanical detector. For our purposes, we demand that the detector have a complete
set of energy levels, and that it couple to the electromagnetic field. (A hydrogen atom
would serve quite well.) At a temperature of T'= 0°K an inertially moving detector
sees no photons—although some might argue that the detector ‘sees’ the vacuum
fluctuations since they trigger such effects as the freespace spontaneous emission and
Lamb shift. From the self-field point of view, however, such radiative effects are
an integral part of a complete Dirac equation, say, which incorporates the radiation

reaction field. So from our point of view an inertially moving detector registers no
photons in a vacuum.
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Shortly after Hawking showed that the event horizon of a black hole appears to
emit thermal radiation,®® Unruh proved that a uniformly accelerating detector 1n a

vacuum appears to register a thermal bath of photons at a temperature proportional
to the acceleration.%? It turns out that the two phenomena are related via a conformal

transformation. The Unruh radiation can be thought of as being emitted from the
event horizon of Rindler space. (Rindler space is a coordinate system used to describe
a uniformly accelerating reference frame.) In particular, a detector accelerating uni-
formly through a vacuum with a constant acceleration a responds as if it is immersed

in a Planckian distribution of photons at a temperature T' given by

ha

s 30
2wkc (9

i

where k is Boltzmann’s constant.

This result leads to a rather paradoxical conclusion: An inertial detector near an
accelerating detector will see nothing, while the other sees a thermal flux of photons.

If the photons are really real and exist as physical entities in the surrounding space—
then how come the inertial detector can’t see them? To understand this, let’s consides
the quantum field theoretic, plane wave mode decomposition of the electromagnetic

potential, namely

Ay(z) = (217r) /dk [au(k) Sl h.c.] (31}

This decomposition is unique only in Minkowski space—hence only in Minkowsks
space is ‘the vacuum’ uniquely defined. In curved spacetime this decomposition 1s not
unique and in general different observers will see different vacua. Considerations sucs
as these have lead P. C. W. Davies to conclude that the notion of particle—‘'photc
in this case—breaks down in curved spa\,cetime,.14 From the self-field point of view, the
problem is not with the notion of ‘particle’, but rather with the quantum field notic
of ‘vacuum’. Here is just one more example of how the idea of a dynamic, fluctuatis
zeropoint field leads to extreme difficulties and apparent contradictions in other areas

of physics.

The Unruh effect can also be calculated from the self-field point of view, &
now the interpretation is entirely different. The detector, by the very fact that 3
is assumed to couple to the EM field, must contain a self-field of its own, given £
equation (4). This self-field becomes modified by an accelerating agent in such
way so that it acts back on the detector and drives it into a superposition of excite
states. When thermodynamically analyzed, an accelerating detector appears as &3
is subjected to a bath of thermal photons. But this is just an illusion. The radiati
reaction field of the detector is merely being perturbed by the acceleration. Thems
are no real photons surrounding the detector, and hence the concept of ‘phote
can be saved, since there is nothing for a neighboring inertial detector to detee

There is no paradox. In general relativity, as Davies has repeatedly emphasized, ¢
may not discuss ‘the vacuum’ independent of the worldline of the detector which

being used to observe deviations away from this vacuum. This point highlights 1
differing detectors apparently see different vacua. In self-field theory all the
are identical and empty; the differing detectors are only responding to themselves
differing fashions.

.
Fal

To carry out the calculation of the Uhruh effect®? we use the fully covariant vers
of the self-field theory embodied in the Dirac action of equation (8). The self-5e
contribution to the total action is then given exactly by equation (10). We use
usual QED causal Green’s function Dyy = —nuy D in the Feynman gauge, wies
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D(z — y) can be written in any of the equivalent forms
2 1 : 9
D(z —y) = m{m — iné|(z —y) ]}
) 1
472 (z — y)? + i€
1 e_ik'(x-y)
-~ (2n)4 k2 + i€
We wish now to boost this Green’s function into the accelerating frame of Rindler

coordinates. If we take the acceleration vector a := (0,0, a) in the 2z direction, then
in the 2t plane, these coordinates can be written as:

Zo = sinh(T)  yo = sinh(7') (33a)
z3 = cosh(t)  y3 = cosh(7') (33b)

with all other components zero. Here 7 and 7/ are the propertimes associated with the

source point z, and the field point y,, respectively, of the Green’s function D(z, —yu)
which is comoving with the detector. We have set h = ¢ = a = 1. In these coordinates

the Green’s function (32) becomes, in the dipole approximation where x ~ y,

(32)

D(z —y) = 1 csch(zA—T + ie)

1672 2
i : :
= oy 3 (A'r + 2mip + ze) (34)
p=—00
where AT := 7 — 7/, and we have expanded the hyperbolic cosecant in an infinite
partial fraction expansion. If one now makes the Fourier expansion
$(2) = 3 ton(x) e (35)
n

for each 1 appearing in equation (10), one arrives at an expression for the self-field
contribution to the total action, given by

self a u = ,
Wl = — = 3 (nly#im)(mlyuln) Y- [ [ drdr o
n,m p=—00 (AT - 27rz'p)

ez’wnm AT

This may be converted to a transition probability G per unit time by replacing the
double integral with a single integral via the prescription [ [drdr’ — [d(AT). Car-
rying out the integration, and then summing a remaining geometric series yields

h hw
P AT [ =L LIS _z;c:m—] (37)
27T ‘n<z 2 exp(__aM) — ]_

From the form of this equation, we see that by taking a — 0 we recover only the
term hwnpm /2 in the curly braces. This is suggestive of the zeropoint field of standard
QED, but here we have only the radiation reaction field of an inertial detector. This
observation supports the suggestion of Jaynes, Milonni and others that the zeropoint
fluctuations are perhaps a mathematical subterfuge which mimic the physical radi-
ation reaction field.1%13 When a > 0 we see that there is a Planckian contribution
to the transition rate, which corresponds precisely to the Unruh temperature given
in equation (30). But there are no real thermal photons—just as in the inertial case
the detector is merely responding to itself. Only now this self-response has been

modified by the force required to maintain the detector in an accelerating frame. As
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we mentioned earlier, a detector outside of a black hole sees a similar thermal ra-
diation. Indeed, a detector accelerating at a rate a is by the equivalence principle
indistinguishable from a detector at rest in a grawtatlonal field g of strength ¢ = a.
From the self-field view, then, Hawking radiation is in some sense just as fictitious as
the Unruh radiation. It would be our contention that the black hole is not emitting
radiation in the usual sense, but rather it is perturbing the metric around itself such
that a nearby detector responds to the curvature as if it were bathed with thermal

photons.

VIII. CONCLUSION

We have summarized here how the self-field theory of QED can be used to account
satisfactorily, at least to order a, for an array of boundary induced changes in the
radiative corrections found in QED. We have emphasized that it i1s not necessary to
invoke the notion of zeropoint fluctuations to construct an interpretive framework of
a boundary modified radiative effects. One can view the whole process for the point
of view of a quantum analog to classical radiation reaction theory. This is consistent
with the self-field point of view, which looks upon all radiative effects as arising from
the correct inclusion of the back reaction upon a charge of its own self field. It is our
position that an electromagnetic field does not exist independent of the source whics

produced it—in the spirit of the quote from Einstein which appeared at the beginning
of this work.
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