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We have calculated analytically by a new Mellin transform method the vacuum-polarization con- 
tribution to the energy shift in a Coulomb field. Our method gives afinite answer which to lowest 
order in (Za) for S states is A E V P = - ( 4 a / 3 n ) [ ( ~ a ) 4 / N 3 ] g .  The method further allows a high- 
Z approximation. A magnetic contribution to the vacuum polarization is also indicated. 

Vacuum polarization is an important effect in quantum 
electrodynamics (QED), both in practice (Coulomb ener- 
gy shifts, heavy ions, mesic atoms, . . . )  and conceptually, 
because it represents the most divergent term in pertur- 
bation theory and enters significantly in renormalization 
methods and in the idea of a "running coupling" con- 
stant. In a Coulomb field one first calculates the 
modification of the potential due to the charge density of 
the vacuum polarization (Uehling potential) and then 
evaluates its expectation value to obtain the energy shifts 
due to vacuum polarization. Calculations with relativis- 
tic Coulomb wave functions were first carried out in a 
classic paper by Wichmann and   roll.' They were fur- 
ther studied by a number of  author^,^-^ also numerical- 

ly,6-8 with a view of extending the result to high-Z 
values and to include the charge distribution of the nu- 
c l e ~ s . ~  

We present here an entirely new analytical calculation 
of the vacuum-polarization energy shifts in a Coulomb 
field. We calculate directly the energy shifts. A method 
based on Mellin transformations and specifying the poles 
in the inverse transform provides automatically a finite 
regularized result. 

Vacuum polarization is a part of the general energy 
shift AE, of a level n of a quantum system due to radia- 
tive self-energy effects which is given bylo (in units 
c = f i = l )  

Here $, is a fixed level and we sum on the right-hand side over all levels $,, discrete and continuous. The first term is 
the contribution of the vacuum polarization, the second that of self-energy (or Lamb shift proper), and the third term is 
the spontaneous emission. The third term has been exactly and analytically evaluated recently for relativistic Coulomb 
wave functions." Here we shall evaluate the first term 

We summarize first the spin algebra and angular integrations. 
The relativistic Coulomb functions are written as 

where f, are the "large" and g, the "small" components. The product of the two currents in (2) is 

We shall refer to the first term as the "electric" part, and the second as the "magnetic" part. We next use the expansion 
into spherical harmonics 

J d k e l k . ( r - r ' i -  - ( 4 r 2 )  2 jl(kr)jl(kr')YI,(3)Y,,(3') (4) 

1, m 
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to perform the angular integrations 

2j, + 1 
J a $ ; ( r ~ * ~ ( r ) = -  

dG 
[If +." ( ' ) I 2 +  g + K n ( r ) 1 2 +  I f  - , n ( r ) 1 2 + l g - K n ( r ) 1 2 1 ~ ~ Y  , ( 5 )  

w h e r e ~ , = l j , + ; ,  and 

and similarly for the integral Jd? '. The magnetic part gives 

The expression for K is long and is given elsewhere;" we shall not need it in this paper. In  w:: and K;: we can read 
off the selection rules. For j, = f ,  for example, only the 1 =O term in w::, and only the 1 = 1 term in K;; contribute- 
hence the names "electric" and "magnetic." 

For small Za ,  because g, are Z a  times smaller than fn , the electric part of the vacuum polarization involving 1 fn 1 '  
is Z a  times larger than the magnetic part involving ( f ,Kgn ). Wichmann and ~ r o l l l  and others have only calculated 
the electric part. For comparison we also discuss this term here: 

where we have introduced a potential Vl (  r, r '  ) by 

We shall evaluate the sum over discrete and continuous states. 
The discrete radial functions are 

where 

We expand the confluent hypergeometric functions 4 into power series 

where 



Thus 

Ifn 1 2 +  ign 1 2 =  x a n l n 2 h n l ( ~ ~ r ) h n 2 ( ~ ~ r )  
l"2 

where 

and 

y , + n , - l e  -p.vr, i = 1,2 hni (pNr  ) = ( ~ P N  ) 3 / 2 ( 2 ~ . w r )  

Now we come to the evaluation of the sum e x s [ I  f S ( r ' ) l 2 +  I g s ( r ' ) ( 2 ]  W ,  over both discrete and continuum positive- 
energy states, which is the most difficult part of the calculation. The calculation of the sum becomes simpler if we use 
the technique of the Green's function of Coulomb wave functions initiated by Wichmann and   roll.' Because of com- 
pleteness relations the Green's functions necessarily involve both positive- and negative-energy solutions. But the 
negative-energy solutions are equivalent to positive-energy solutions with the sign of the charge reversed.'' Conse- 
quently, we can extend our sum over states s to negative energy (with e - +  - e  ) and take half of it. Thus, 

This sum can now be written as a contour integral in terms of the Green's function K ( r , , r , , z )  of the radial Coulomb 
problem: 

The contours C i ( z )  are shown in Fig. 1, together with the modified contours ( C ,  C 2 C j C , I  ): 

Poles of T ( -v )  

r Poles of T ( v + 2 y + 3 )  

O Poles of 1 
2 

( a +  v+p) Il (u'+v+J) 
1-0 

FIG. 1. Contours of z integrations C+ and deformed con- 
tours C, , I. FIG. 2. Contours of v integrations. 
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Evaluating K ( r , r l ; z  ), and inserting everything into (8) we obtain (with e2/4.rr=a) 

where we have set 

Here we have used the symmetry of 1 fs l 2  + /gs / with respect to the sign i ~ ,  of the quantum number K, over which we 
sum. The variable v for continuum states is v = ( a z ) E / p ,  z is the energy variable measured in units of the electron 
mass. The Kroenecker 6's just tell the values of a and a'. 

The radial integrations can be performed exactly: 

where 

We still have to perform the integrations over dt and dt' and the contour integration over dz in Eq. (16). Functions of 
the type R  in (17) are properly defined by specifying their contours in the Mellin transform plane (they are of the class 
of Fox functions1*). The Mellin transform M [ R ]  of R in the energy variable y, 

3 ( w ) = ~ [ f ] ~ ~ ~ d x x ~ - ~ f ( x )  o , (23) 

t e r m  out to be rather simple: 

where we have dropped here the subscript s on y .  In order to obtain (24) we have used a series representation of ,F1, 
transformed the series term by term and then resumed it. Thus R is well defined as an inverse transform of (24) when a 
contour is specified. Now Eq. (18) becomes 



where we have introduced the symbol 

J , , , (~ )=  J Idt J m d t ~ t a 1 ( 1 - t ) 2 ~ - ~ t t ~ ' - 1 ( l + t ~ ) 2 ~ - a 8 ( l - t + t ~ ) - ( 2 ~ - w ~  , 
0 0 

which after t' integration is 

where the hypergeometric function ,Fl is convergent for positive values of Re( w). In  the w plane we have the poles at  
w = b - 2y +r  with r  =0,1,2, . . . and this gives a (Za ) expansion of AE;'. The first pole is at 

I t  is obtained for n =n2 =O and y ,  = 1 which corresponds to j, = f .  Thus the coefficient of the lowest-order vacuum 
polarization is proportional to a ( z a I 4 .  Here we calculate J,,,( w) only for j, =f and I ,  =O or  S waves. In  this case 1 is 
zero or  one. 

In  w:: ( K;: ) it is zero (one) and 

Then Jam,( wo ) is 

In the v integration we choose the contour such that the power of ( - 11, or a + v + p  will be non-negative. The poles 
and the integration contours are shown in Fig. 2. 

The results of the v integrations are 
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Here $ ( z )  is the logarithmic derivative of the r function and comes from the Cauchy formula for second-order poles. 
Then we substitute J y - i v , y  - i v J y +  l-i,,,y + J y  -,,,, + -,,,, and J y + ,  - , ,  ,,-,, into Eq. (25) .  The result is 

( 3 3 )  

In  Eq. ( 3 3 )  we have only a z  integration and a K summation. All r and $ functions are analytic functions of iv. So 
the integrand is analytic except the branch cuts at  / z /  1 1. We deform the contour of z  integration as in Fig. 1. Then 

where C1, C2, C3, and C,  are segments of the circle with the radius R and I is from --iR to + i R .  When R goes to 
infinity the contribution of C , ,  C,, C,, and C, to the integral is zero and I gives a finite contribution. 

To  do the z  integration and K summation we assume Z a  to be small. Then we expand all the r and $ functions into 
the series of Z a  or v and take only the terms up to Z a  in the large square brackets of Eq. (33) .  We also approximate y 
to ~ K I .  Then we get the lowest-order contribution in ( Z a )  to the vacuum polarization of the S waves. I t  is 

., 



The K summation and z integration are done as follows: 

Then we substitute all these values into Eq. ( 3 5 ) .  It gives 
3 

4a 29 
A E ; ~ =  - --(za) for the S states 

317 144 

In the standard QED, the energy shift is calculated as the expectation value of the Uehling potential between the S 
states7 and it is given by 

3 

AE,VP= - -----(za). 4a 29 [ y  -- ] for the s states . 
317 145 

The difference between these two results vs = f is of order a(za ) 5 .  To this order there are many other contri- 
butions which we have listed during various steps in the calculation. Our method now allows, in principle, to calculate 
in the same way all the next-order terms, including the magnetic term proportional to x, Eq. (71, which has never been 
calculated before. The Mellin transform method has another advantage: namely, to study the vacuum polarization in 
the important high-Z region by taking the poles in the right-hand w plane. 
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