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The program of selffield approach to Quantumelectrodynamics and radiative
orocesses is almost completed. We give here the main principles of this theory which is
conceptually much simpler than the standard perturbative QED. In this formulation
the electromagnetic and the electron fields are not quantized; it is a classical field
theory. A complete relativistic dynamics of two or more particles interacting via
e electromagnetic field is developed by virtue of the new approach. We review
sumerical results obtained.

INTRODUCTION

There are many approaches to radiative processes, or more generally, to elec-
romagnetic interactions of charged particles. We should welcome this multitude
secause different ways of looking at the same physical phenomena can only bring
zarity and hopefully enlightenment. I list those different formulations which are
sefinite and more or less complete:

(i) Second quantized quantum field theory, or the perturbative QED?.

(ii The S matrix theory of electromagnetic interactions, either from unitarity,

analyticity and successive pole approximation?, or from regularization of the

product of distributions®. Both of these lead to the renormalized perturbation
theory with particles on the mass shell.

(iii) Path integral method. Either path integrals of Maxwell-Dirac fields*, or path
integrals directly from the classical particle trajectories®.

(iv) Source theory?®.
(v) Selffield quantumelectrodynamics.

Of these only the selffield approach is in the long tradition of classical radiation
theory and classical electrodynamics and is the subject of these lectures.

It is often stated that a large number of radiative phenomena conclusively
now that the electromagnetic field, and further the electron’s field, is quantized as
= system of infinitely many oscillators with their zero point energies. The radiative
shenomena are listed in Table I. We shall show that all these processes can also be
understood and calculated in the selffield approach which does not quantize the fields.
2 he quantum properties of the electromagnetic field are reduced here to the quantum
sroperties of the source. One avoids thereby some of the difficulties of the quantized
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fields, such as the infinite zero point energy and other infinities of the perturbative

QED.

TABLE I. RADIATIVE PROCESSES

Spontaneous emission
Lamb shift
Anomalous magnetic moment
Vacuum polarization
Casimir effect between parallel plates
Casimir Polder potentials
Planck-distribution law for blackbody radiation
Unruh effect
QED in cavities
eT— e~ system:
positronium spectrum
positronium annihilation
pair production and annihilation
eT- e~ scattering
Relativistic many body problem with retardation
Electron - photon system:
photoelectric effect
Compton effect

Bremsstrahlung

This lecture tells the story of the developments of selffield QED and it is goos
to begin from the beginning, namely the classical electrodynamics.

II. CLASSICAL ELECTRODYNAMICS

The selfconsistent treatment of coupled matter and electromagnetic field gos

back to H.A. Lorentz’. The electromagnetic field has as its source all the cha
particles which in turn move in this total electromagnetic field. We have thus

Maxwell’s equations coupled to the equations for matter:
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These equations, both, can be derived from a single action principle. It has the
general from

W = / [Kinetic energy of matter — j,A* —1/4 F,, F**] (2)
The last term is the action density of the field and the middle term represents the

“=teraction of the matter current with the field.

We shall keep this general framework throughout also for quantum electrody-
amics. The only change will be in the specific form of the current or how we describe

he matter, the electron.

Classical electrodynamics per se is usually associated with the current of point
icles moving along wordlines. But we can have more general extended sources of
ents, as we shall see. For a number of point particles the current is given by

ju(z) =) e / dsiZiy(s:)6 (2 — zi(s:)) (3)
Hence the fundamental equations are

B =—in==Y e [ dsibls)8 (e - 2i(s0) (4)

Here s; are invariant time-parameters on the worldlines of the particles, and dots
sepresent differentiation with respect to these times.

The equations of motions of the worldlines are
Mz =eiEnt: st =1,2,3,... (5)
It is essential for the selfconsistency of our system that the field F entering the last

equation is the field produced by all the particles including the particle 1, namely the
elffield. Hence we divide F into two parts

miiip — eiF‘(;ther partxcles)i:{ 1 e,’F::’,lf:ér (6)

‘The selffield can be obtained from the Lienard-Wiechert potential

4(2) = [d2(6)D (2~ 2(e)) = ¢ [ daip()D (2 ~ 2(5) (7)

‘but is formally infinite at the position of the particle. It must be treated properly,
for example, by analytic continuation onto the world line®. This leads to the final
Lorentz-Dirac equation for each particle (in natural units c = h = 1)

25 agrs e,
mz, = eFS5'a” + 3 e? (z, +(2)°2,) (8)

This is the basic nonperturbative equation of classical electrodynamics. Here m 1s
now the renormalized mass. Furthermore we must find solutions of this equation
which have the property that whenever the external force is zero the electron moves
like a free particle, m&, = 0, that is the second term must vanish together with the
_external field. This is part of the renormalization program. The important feature of
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this equation is that all radiative effects are now expressed in a closed, we repeat, non-

perturbative way. The price we pay for this is that the equation is not only nonlinear

but also contains the third derivatives. The selffield approach to quantumelectrody-

namics has the goal of finding the analogous nonlinear, nonperturbative equation in
the case of quantum currents. It is clear that radiative effects like the Lamb shift,

anomalous magnetic moment, spontaneous emission, etc. have their counterparts also

in classical electrodynamics.

As a second example of a classical current we consider the classical model of
the Dirac electron which describes a spinning and charged relativistic point particle.
In this model the worldline of the point particle is a helix, called zitterbewegung, and
the orbital angular momentum of the helix in the rest frame of the center of mass
accounts for the spin and the magnetic moment of the particle. The generalization

of the Lorentz-Dirac equation for this case has recently been given®:

Oy s ext v 2
W#—eruv + € (qu—

v,,'v,,) [2 v _ 9 (v-v)” (9)

v2 3v2 4

where
7, = p, — eA,, v =2 and v* # 1 due to spin.

There are other classical models of the electron. A remarkable one is due to
Lees!? amd Dirac!? in which a charged shell is held stable with a surface tension. In
the equilibrium position the surface tension can be expressed in terms of the mass of
the electron so that this model has exactly again two parameters, mass and charge.
like the point worldline. The Lorentz-Dirac equation for this model to my knowledge
has not been worked out yet.

1

III. SCHRODINGER AND DIRAC CURRENTS QUANTUMELECTRODYNA-

MICS

Quantumelectrodynamics has the same two basic equations (1). Only the
form of the current j is different. According to Schrédinger and Dirac the electroz
is described not by a worldline but by a field ¥(z,t) and the basic coupled equations

(1) become |
F;ﬁw =0 Fu.v — Av,u == Ap,u
and | |
(7#10u — m)¥(z) = ev*¥(z)A (=) (10}
for the relativistic Dirac case, and

% = (~5m [(F-edy] + o) ¥ (11}

for the nonrelativistic Schrodinger case. The currents for a number of electrons is

e =) eifﬁi(z)(;)uﬁbi(m) (

(]
with a similar expression for the Schrodinger current.

Again the field 4, is the sum of an external and a selffield parts:

Au = Azxt it Azelf (
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With the choice of gauge A% = 0 the Maxwell equations become

D4, = ju(2) = Y edi(2) 7 ybu(z) (14)

1

so that the selffield can be expressed in terms of the current as

Ay(z) = / dyD(® - 3)ja(=) (15)

where D(z — y) is the appropriate Green’s function corresponding to initial and
boundary conditions. Equation (15) is our generalized Lienard-Wiechert potential.
Thus the light emitted by a source depends on the nature and preparation of the
current, and also on the nature of the environment determining the Green’s function.
Furthermore the whole light cone where % is different from zero contributes to the

fSeld at the field point and not just a single intersection of the worldline with the light
cone, as in the case of a point particle.

Thus the selffield can be eliminated from the coupled Maxwell-Dirac equations.
Inserting A, into the equation of motion we obtain

{y* (10, — exAS™) — mi} vi(z) = exy () / dyD(z—y) Z ei¥i(y)7u¥i(y) (16)

1

Here A*' is a fixed external field whose sources are far away and not dynamically
relevant. In the next Section we shall treat two or many body systems in which
we shall eliminate completely all the fields in favor of the currents. Eq. (16) is a
nonlinear integral equation for % analogous to the nonlinear equation of the classical
electrodynamics. The corresponding equation for the Schrodinger case is (h = 1)

0V 1 =4 1ex 1S : ex se
i = [___ (p— e A — A df) +e (A5 + A3 ‘f)] P (17)

2m
where the selfpotentials are

A = / dyD(z —y) Y _ ex¥i(y)ve(y), 4 (z) = / dyD(z —y) ) ¢;:(y)§wk(y)
k

k
(18)

In writing these equations we have assumed that the %-current is an actual
material charge current, and not just a probability current. Thus we are inevitably
led to contemplate the interpretation and foundations of quantum theory. The foun-
dations of quantumelectrodynamics and that of quantum theory must be the same,
for quantum mechanics was invented to understand the interactions between light and
matter. Not surprisingly, it was Schréodinger who first formulated the selfconsistent
coupled Maxwell and matter field equations, i.e., the program of Lorentz, for the new
wave mechanics and insisted that for the selfconsistency of the theory the self field of
the electron must be included as a nonlinear term. Schrodinger however calculated
only the static part of the selfenergy and obtained unacceptable large selfenergies.
Subsequently quantum electrodynamics went into a different direction. The selffield
was dropped completely. Instead, one introduced a separate quantized radiation field
with its own new degrees of freedom and coupled this to the quantized matter field.
In the selffield approach the electromagnetic field has no separate degrees of freedom,
they are determined by the source’s degrees of freedom, but then we must include the
full nonlinear selffield term. We shall come to this duality between the two approaches
and to the questions of interpretation of quantum theory after the developments of

the selffield QED.
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IV. RADIATIVE PROCESSES IN AN EXTERNAL (COULOMB) FIELD

The basis of selffield quantumelectrodynamics is conceptually very simple and
1s completely expressed by the single equation (16). All QED processes in an external
field listed in Table I should be derived from this single equation. To perform actual
calculations it is much simpler and more direct to work with the action rather than
with the equations of motion. The action W can, up to an overall é-function, be
related to the energies of the system for bound state problems, and to the scattering
amplitude for scattering problems.

The action for the system (10) is

W= / dz [J(m)(v"z’a,. — m)b(z) - eB(2)y*$(2)Au(z) — sFuF* | (19)

Here we shall express A,(z) in terms of ¥ using (15). For bound state problems the
action of the electromagnetic field can be reexpressed by a partial integration, using

(10), as

2 / daFy " = 42 / deju(2)4* (z) (20)

Putting all together we have the action underlying our nonlinear equation (16),
namely

W = /dm [1/7(2:) (v (10, — eAS*") — m) 9(z)

2 (21)
= 52. / dy(z)v* (2 )¥(z)D(z — y)zﬁ(y)vurﬁ(y)]

We shall consider now the single electron problem in an external field.

We expand the classical field % into a Fourier series
P(z) = ixbn(i‘)e-w"t (22)

and shall try to determine the expansion coefficients %,(Z) and the spectrum E, -
discrete and continous. This expansion is quite different than the one used in standard
QED and quantumoptics, namely the Coulomb series expansion, for example, in the

Coulomb field,

¥(z) = Yen(5 (@)

n

Here one derives equations for the time-dependent coefficients ¢,(t). The idea be-
hind is that the system has definite levels and the perturbation will cause transitions
between these levels. In our formulation, due to selfenergy, there are no definite (dis-
crete) levels as exact eigenstates of the system to begin with, but the equations will
determine the spectrum. In fact it will turn out that only the ground state of the sys-
tem will be a stable eigenstate followed by a continuum with spectral concentrations
around the unperturbed spectrum.
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If we insert the Fourier expansion into the action we obtain

W = ;/ d:c{{b_n(i:')e':E“’o [7“ (10, — eAZ’“) - m] z/)m(:i')e"iE'“”o—

2 : 0 = . 0
-5 [ Wha@ Ym @ EE Do — )5, (G, () E }

(23)
Time integrations can be performed using
1 e—ik(z-y)
D(:B — y) = —(2‘”)4 /dk 52 (24)

and we can write the interaction part of the action entirely in terms of the Fourier
components of the current

e? =
I;Vint = T ':.2‘ $5(En = Em = Er = E,) / ¢n(5)7“¢m(5)

ik (Z—7)

X (B — B )2 _;zg‘b-,(ﬂ‘)')'u‘lﬁ.(i)dfdfdg

(25)

For the exact solutions of our equations the action W will vanish identically.
We will now solve the system iteratively.

To lowest order of iteration we take the field to be given by the solutions of the

external field problem without the selfenergy terms, and the energies to be shifted by
a small amount:
¥a(z) = ¥ (2)

En,= E** + AE,
The first term in (22) therefore gives simply, using the orthonormality of ¥,

W= | di';f&n (1ESt =7 5= m — eA*) $b(En — Enn)

(26)

= Y AEn§(En — En)énm

In the second term we separate the terms according to E, = E,,, E, = E, and
according to E, = E,, E,, = E,, the two ways of satisfying the overall é-function.
And since W = 0 to this order of iteration we can solve for AE,. The action and
the total energy of the system are related by a é-function. Cancelling this é-function
and also the sum over n to obtain the energy shift of a fixed level n, we obtain

2 Syt . die _etk (-9 =
AE, = %/dz¢n(z)7“¢n(z)P/ (271.)3 /dye lo2 y 'i.‘/’a(ﬂ')’""pa(g)
‘ﬁ?f / dEdhn ()7uts (%) e DG ()7 ¥a(9):
700 (27)3

. bl oo e il (27)
E,—FEn,—k E,—En+k

5§, siemsd) [ et

(s<n

1T
¢ ommm— 8 —En e k
57, (B )
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This can be written in the form

___¥ dk_ jhal JL""‘

dk. (B);™

(k)5 (~ E)iz’Ia(Em —E )

- 1
i (= k)Zk [Em—En—k En=F. 1k

(28)
Thus the energy shifts are entirely expressed in terms of the integrals over the Fourier
spectra of currents of all states. The first term corresponds to vacuum polarization,
the second to spontaneous emission, and the third term to the Lamb shift proper. In
arriving at these results we have used the causal Green’s function and separated the
integrals into a principal and a imaginary part according to the formula

e Pl + iwé(z) (29)

Z &

All the main QED effects are obtained here from a single expression. In fact one can
also read off the anomalous magnetic moment (g — 2) from this expression as we shall
show in Section VI.

The evaluation of these expressions is a rather laborious technical problem.
We have to use relativistic Coulomb wave functions for both the discrete and conti-
nous spectrum and integrate the products of such functions and sum over the whole
spectrum. We shall indicate some of these calculations and give results in Section
VIII. The most important feature of the present formulation is that there are no
infrared nor ultraviolet divergences.

The spontaneous emission term in Eq. (27) has been exactly evaluated!?. We

have now complete relativistic spontaneous decay rates for all hydrogenic states!®.
Table II shows some of these results.

TABLEIL Decay rates (s~*) in hydrogen and muonium

Transition yvdrogen Muonium

251/2 — 131/2 2.4964 x 10~ 2.3997 x 10~°®
28172 = 1Py, 5194 x 10710 5172 x 10-10
2P1/2 = 151/2 2.0883 x 108 2.0794 x 108
2P3; — 187/, 4.1766 x 10° 4.1587 x 108
2P — 15/, 6.2649 x 108  6.2382 x 108

PR AR Y N e

o LYY Y

The vacuum polarization term has also been evaluated analytically'* to lowest

order term in a(Za)*. This is the most divergent term in perturbative QED ar
vanishes in the nonrelativistic limit.

“.

The Lamb shift term which correctly reduces to the standard expressions i
the dipole approximation has also been shown to be finite and will be evaluated i

closed form?°.

In all these calcuations, since we are using Coulomb wave fuctions instead ¢
the plane waves, the individual integrals are all finite. The summation over all the
discrete and continous levels are done by means of the relativistic Coulomb Green
functions.
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' QUANTUMELECTRODYNAMICS OF THE RELATIVISTIC TWO-BODY SYS-
=M

One of the most important and perhaps unexpected features of the selffield
Brmulation of quantumelectrodynamics turned out to be a nonperturbative treat-

snt of two and many body systems in closed from. It is well known that bound
ate problems cannot be treated in perturbative QED starting from first principles.
stead one begins from a Schrodinger or Dirac-like equation obtained from some
Sproximation to the Bethe- Salpeter relations and then calculates the perturbation
grams to the bound state solutions of these equations. What one really needs is a
g=nuine two-body relativistic equation which includes all the radiative terms as well
= all the recoil corrections at once. We shall now discuss the principles of this theory.

In nonrelativistic quantum theory the many body problem is formulated in
snfiguration space by a wave equation with pair potentials v;;(z; — z;) of the form

2 2 0
(pl : P2 +...V12+V13+V23+-.->1/’(31,---a'~'=m )-zh_w-

2m1 2m2 at

This a priori not obvious. We may also think that each particle has its own field ¥(z)
nd satisfy a wave equation with a potential coming from the charge distribution
of the other particles. For two particles, for example, we would have the coupled
Sartree-type equations

6¢1(31a ) - (__A ¢2 m2’ ¢2 mz’t)d52> lbl(fl’t)

Ot 2m i32 = 331'
. 6¢2(527t) — (_ / d’l 317 1/)1 mlvt) )
L T 2, — o] i

These two formulations are closely related but not identical. We shall see that they
correspond to two different types of variational principles and actually describe two
different types of physical situations. Quantum theory has a separate new postulate
for two or more particles, namely that the state space is the tensor product of one
particle state spaces. This leads immediately to the first formulation in configura-
tion space. Such combined systems are called in the axiomatic of quantum theory
“nonseparated” systems with all the nonlocal properties of quantum theory. But this
postulate does not apply universally. There are other systems, namely the “sepa-
rated” systems, which are described by the second type of equations. For example,
for the system hydrogen molecule the two protons are separated, whereas the two
electrons are nonseparated. The superposition principle holds for the nonseparated
systems only. We shall now see how all this comes about from two different basic
variational princples in the relativistic case (the nonrelativistic case is similar).

Consider a number of matter fields ¥;(z),%2(z)... The action of these fields
interacting via the electromagnetic field is

- : : 1
W= /d"’ {ZW (Y#20 — mi) ¥r — ju(z)A% (2) — gFqu‘”} (30)
k
where the current 7# is the sum of Dirac currents for each field

() = ¥ exBr(@)r (=) (31)

k
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Again in the gauge A*,, = 0 we obtain the equations for the electromagnetic field as
DA, =ju=) i (32)
k

with the solution

4,() = [ dyD(z ~ y)iue). (33)

If we insert this into the action both in the j# . 4, term as well as in the term
—(1/4)F,, F*¥, and using the identity (20), we obtain

W = / dz Y Py (418, — my) vy — Z% / dzdyj;*(z)D(z — y)ify(y)  (34)
k k£

The interaction action is a sum of current-current interactions containing both the
mutual interaction terms, e.g.

€1€2

——5— [ dzdydi(z)r*$1(2)D(z — y)db2(y)1uv2(y) — (1 < 2)

and the self interaction terms like

_e_j /da:dy‘qzl(:c)‘r"?/u(z)D(?’ -y)‘ﬁz’-l(yhuﬁbl(y)

If we vary this action with respect to each field 1) separately we obtain coupled
nonlinear equations. For example for two particles

€1€2

(14i8, = ma) s = L2y [ dyD(z - »ha() ey

e? 7
- -57“1#1 /dyD(-'c — ¥)¥1(¥)u¥1(y)

€1€2

: (35)
(14i8, = ma) s = L2y [ Dz — DB nuhi(v)

2
+ Somy, / dyD(z — y)Pa (y) 2 (v)

Next let us define a composite field ® by

®(z1,22) = ¥1(21)2(22) (36}

This is a 16-component spinor field. We can rewrite our action (34) entirely in terms
of the composite field. This is straightforward in the mutual interaction terms. I=
the kinetic energy and selfinteraction terms we multiply suitable by normalizatios
factors. For example for the first kinetic energy term we get

/ dz1 1 (21) (140, — ma) 1 (21) - / dosba(2)y - nepa(2a)
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where doan* = do, is a 3-dimensional volume element perpendicular to the normal

n#. Similarly for the other kinetic energy term. The selfenergy terms need two such
normalization factors. The resultant action in terms of the composite field is then

p—

W = /d:clda'g ®(z125) (YFm, —my) @7 - n®(z125)

-

— /dmzddl 6(2‘3231)7 'n Q@ (7“772“ g m2) @(2‘222:1) (37)

-

— €1€9 /dzl dz, ®(2; z2)7* @ vuD(21 — 22)®(2122)

J

The generalized canonical momenta 7;, are given further below. Here and through
the rest of the paper we shall write spin matrices in the form of tensor products ®,
the first factor always referring to the spin space of particle 1, the second to particle
2. We shall give the selfenergy terms explicitely below.

Now our second variational principle is that the action be stationary not with
respect to the variations of the individual fields but with respect to the total composite
field only. This is a weaker condition than before and leads to an equation for @ in
configuration space. For bound state problems only the symmetric Green’s function

contributes and it contains a §(z?)-function which we decompose relative to the space-
like surface with normal n* as follows

5[(r-n)—r_L)::6[(r~7})+rJ_)
27'_L

§(r?) = , r1=[(r n)® - r2)2/2 (38)

where 7, is a relativistic three dimensional distance which for n = (1000) reduces to
the ordinary distance r. All the integrals in the action (37) are 7-dimensional. For
covariance purposes it is necessary to have the vector n¥. It tells us how to choose the
time axis. The vector n is also present, in principle, in the one-body Dirac equation
but we usally do not write it when discussing the solutions, but automatically choose

it to be n = (1000), i.e., the rest frame. The final form of our two-body equation is
then

"
{(7“11'{‘—m1)®7~n+7-n®(7“7r5‘—m2)—elez7 T®7"}<I>(zl:cz) =10-" (39)
1)

where now the selfpotentials are inside the generalized momenta

wl = pl — e AF — e AL (40)
with
3 =
A;e’llf(z) = —21- /dzda'uD(:c — 2)®(2,u)y, @7 - n®(z,u)
(41)
A% (z) = 6—22 /dazduD(z —u)®(z,u)y - n ®7,8(z,u)
We note that the last term in (39) can also be put into the potential 4,, one half for
each particle; %62-18%‘1 and %el 7“—?1, respectively.

The self potentials are nonlinear integral expressions. The arguments of &
consist of seven variables because ®(z,,2;) is different from zero only if (2; — ;) is
lightlike; only then there is a communication between the particles. This means that
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we have one time-variable and three space variables for each particle. We see this
more cleary if we introduce center of mass and relative variables according to

=M +M2, T=TT — M (42)
T=21—23, X =2+ 2
Then equation (39), without the selffield terms for simplicity, becomes
{F“ “+k“7r“—e71‘62 (ool N : m27-n®f}<1>=0 (43)
oL
where we have introduced
1
eshierinty .m0y
and .
k=50 @yn =g 087" (44)

We see now that k - n = 0, i.e., the component of k* parallel to n* vanishes which
means that the component of the relative momentum 7, parallel to n, drops out of

the equation automatically. For n = (1000), in particular, we have

€1€2

{r°rzo-7. T P

Y @Y —mil @ o — m27o®I}<I>=0 (45)

Thus we have only one time variable conjugate to the center of mass energy Iy anc

three degrees of freedom for the center of mass momentum II and three degrees of
freedom for the relative momentum 7°; my; does not enter, as it should be so o=
physical grounds. In contrast the Bethe-Salpeter equation has two time coordinates.
Since IIg is the “Hamiltonian” of the system we obtain, by multiplying (45) by I';"

the Hamiltonian form of the two-body equation

'

L & 5 - € -’ s
Ho® = « a-ﬂ+(a1 —0.2)°7r+ elr2(1 — Q1 °az)+m1ﬁ1 -I+m2I-ﬂ2}(I>
\
where we have defined
S T S 5 o o :
a = '5(01 +@3); @ =% ¥, Pi = Y0i, 1 = 1,2 (46§

Our two-body equation has the form of a generalized Dirac equation, now a 1
component wave equation. In fact it reduces to the one-body Dirac equation in
limit when one of the particles is heavy.

The above developments are completely relativistic and covariant. The ph:
ical results are independent of the vector n although a vector n must appear fas
manifest covariance. Thus recoil corrections are included to all orders. Further inte
esting properties of the equation, beside being a one-time relativistic equation,
that relative and center of mass terms in the Hamiltonian are additive, and racs
and angular parts of the relative equation are exactly separable. It has also a nos-
relativistic limit to the two-body Schrédinger equation. We shall discuss numeric
results in Section VIII.
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VI. THE INTERPRETATION OF NEGATIVE ENERGY STATES

It is often stated that only in second quantized field theory can one have an
adequate description of antiparticles and negative energy solutions where one changes
the roles of the creation and annihilation operators for the negative energy solutions.
We shall now show that there is also a consistent way of dealing with the negative

energy solutions and antiparticles in the Dirac equation as a classical field theory and
elaborate how we obtain the annihilation potential in positronium, for example.

There are actually not one but two Diract equations

(yp—m)Yr=0

(v p+m)brr =0 (47)

obtained from the factorization of the Klein-Gordon operator, for example. By con-
vention we just peak one and work with the complete set of solutions of this equation.
Now the negative energy solutions of 7y coincide with the positive energy solutions of

vrr. Furthermore in the presence of the electromagnetic field with minimal coupling
we have the two equations

(v:(p—ed) —m)yr =0

i (g anlhyy =0 (48)

and we can easily prove that

‘Q/)I(“‘P,"e) == '/’If(pa e) (49)

that is the negative energy momentum solutions of %y coincide with the positive

energy solutions of ¥y of opposite charge. Therefore we should consider positive
energy solutions of both equations as physical particles. The total number of such
physical solutions is the same as the total number of both positive and negative energy
solutions of a single Dirac equation.

With this interpretation we obtain quite naturally the annihilation diagrams

and annihilation potentials between particles and antiparticles. Consider our inter-
action action

/dzdyzzl(z)'y“%(z)D(z — Y)¥2(¥)vu2 (v)

Here the classical fields 9;(z) contain all positive and negative energy solutions accord-
ing to our general expansion (22). Separating positive and negative energy solutions

as
Yn(z) = YExy >0 + YExy<o =V + ¥~

and inserting it into the action we get 16 terms. In the limiting case of the lowest order

scattering, where we replace the fields by plane wave solutions, we have essentially
two distinct types of vertices at each point z or y, namely

T (2)7.% " (2) s
and (50)

¥ (2)787 (=) NA

X
In the second case we have used our interpretation of the negative energy solutions

as the antiparticles with reversed energy-momentum p,. The complete interaction
action to this order consists of all combinations of these two vertices located at z and
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y for particles 1 and 2 multiplied with the Green’s function D(z — y). Of these 16

terms some cannot be realized because of the overall energy-momentum conserving
6-function, 6(p; + p2 — ps — ps), and we are left with two disctinct types of terms

> < \}n/ (1)
A

plus the same terms with particles and antiparticles interchanged. This result agrees
with the standard QED. But we shall go a bit further and apply it to bound state
problems in Section VII after a discussion of the case of identical particles.

Identical Particles

For two identical particles we use the postulate of the first quantized quantum
theory that the field is symmetric or antisymmetric under the interchange of all
dynamical variables of identical particles. In our formulation we go back to the
original action principle and assume that the current j, is antisymmetric in the twe

fields 1
Ju = 53 (151%1/)2 E 152%1/’1) 3 =C1 =NET =6 (52

This implies in the interaction action

1 ™~
Wins = Zez

/ dadydy (2)7,%2(2) D(z — ¥} (v)7" %2 (v)
_ : (53)
B / dzdyd1v,¥2 D(z — y)ay 1 + (1 < 2)

-

and again when the fields are expanded we see that identical particles with exactls
the same wave functions i.e., the same quantum numbers or the same state, will net
interact and that in the lowest approximation we will get besides the direct interactic
also an exchange term as shown in the following diagrams

HX

Finally we combine the two effects, identical particles and particle-antipartic
properties, to discuss systems like electron-positron complex and positronium.
cording to our discussion this system is just a part of the larger electron-elect

system taking into account the interpretation of the negative energy levels and
identicity of the particles.
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VI. CALCULATION OF THE ANOMALOUS MAGNETIC MOMENT (g — 2)

We show now that our basic interaction action also contains besides Lamb shift,
spontaneous emission and vacuum polarization also the anomalous magnetic moment
in the same single expression. We shall also introduce at this occasion the more
general four-dimensional energy-momentum Fourier expansion instead of the energy
Fourier expansion (22) which was appropriate for the fixed external field problem.

The interaction action is given by

Wi = =5 [ deduj#(@)D(e - )iu(v (54)

We expand the fields as four dimensional Fourier integrals

ww=/@fmwm (55)

and insert it into the action

e—ik(z—y) N

¢ 1
: i P () 1(s)

Wise = =5 3 | dadyddpdgirdsi(p)y*(s)

x ei(P—gq)z+(r—s)y

which can be written as

2

int = — 5 (2n)" [ dpdgdrds;* (p,q) —

(r —8)? + ¢

Ju(r,8)6(p—gq+r—35) (56)

where j#(p, g) stand for the double Fourier transform

*(,9) = (2n)* [ dodyd(ahyp(y)e e (57)

The é-function arises from the z,y and k-integrations. We separate the action into
two terms to satisfy the é-function

(i) p=gq, hencer = s (58)

() p=s, hence g =17

Again as before the first corresponds to vacuum polarization; the second term con-
tains Lamb shift and spontaneous emission as real and imaginary parts of the energy
shift AE. It also contains the anomalous magnetic moment as the coefficient of the
magnetic part of the Lamb shift for any external field. For the calculation of (g —2)

1t 1s thus not necessary to solve a problem with an external magnetic field or to solve
any external problem for that matter.

The second term with (ii) can be written as

i e? - - ipz _i(y—=z
W) = =5 / dzdydpdqD(z — y)j*(q,p)j.(g,p)eP=e’¥~2)g (59)
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ere we recognize the c-number electron propagator-function S(z — y)

[ dav(@¥a)e s = S(z - v) (60)
which satisfy the inhomogeneous wave equation
[Y(pu — eAy) —m] =ié(z — y) (61)
Let us also take the Fourier transform of §
1 .
A —ip(z—y)
S(z —y) L / dpe S(p) (62)
Then the action (59) becomes
h 2. _ uS( )
()i o & Y O\P)Yu

It is related to the energy, more precisely to a mass shift by an overall é-function and
we can write

W(ii) .
AE = Gt = [ awbip)AME)s(r) (64)
where we have introduced an effective mass matriz by
e? i *S(p— s)y
AM(p) = d = 65
() 2(27r)4/ " 82 _ie (65)

It remains now to evaluate the mass matrix AM. First we expand the Green’s
function or propagator in an external field as follows

1 _pP—e+m 5P A(p +m) —ie( + m)y*y ' Fyy |
~u(p, —ed,) —m p? — m? iE (p? — m2)? (p2 — m2)? U-oiky
where
P=7'Pu, 4 =7"A,, p- A=p"4,. (66)

It turns out that only the third term which is gauge invariant gives a nonvanishing
contribution to lowest order in a: the terms containing A, give vanishing contribu-
tions. The mass operator becomes

i oy [ 4,20 (p—8) — m)7 P Frea -
B )/ 52 ((p — 8)? —m?)’ 5

The integrals can be performed giving!®

e 1 P JBsL v
AM(p) = (2,;)4(_“); ; dy(1 — y)o"* Fy,
and finally
a e a e S
A — 7 - x - E 68
AM(p) = — 2 20 Py = a5 (7 - B+ - E) (68)
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Thus we recognize the anomalous magnetic moment to this order in front of the - B
term for any field as we have mentioned.

If we insert the mass operator into the energy shift formula (64) we can evaluate

it as the expectation value of the operator & B + 1@ - E. For relativistic Coulomb
problem for example the magnetic part of the Lamb shift can be analytically evaluated

exactly.!”

This way of calculating the anomalous magnetic moment also shows now how
to calculate higher order terms. We must take more terms in the Green’s function
expansion (66). This may be much simpler than the diagrammatic method of per-

turbative QED where there are already 891 Feynman diagrams in the order (a/7 ).

g’II. COVéARIANT ANALYSIS OF RADIATIVE PROCESSES FOR TWO-BODY
YSTEM

In this section we discuss how to treat radiative processes, like Lamb shift, etc.,
for a system like positronium or muonium beyond the naive reduced mass method.
As mentioned above the action formalism is more convenient than the equations of
motion.

We go back to our covariant 2-body action (37) and separate center of mass
and relative coordinates and momenta according to

1
T=21 — 22 231=R+§7' P=P1+P2
1 1 1
R = 5(21 + 22) gy =R ot p=z(nr=m)
(69)
=z—u z=Q+lq p1=lP+p
4 2 2
1 1 1
Q=3(z+u) u=Q -3¢ pi=5F =1
All quantities here are four-vectors. Then the action becomes
' 1 1
W=/deq<T>(R,r)< [‘7- <§P+p) —ml] Y n+yn® [‘y- (EP—p) —mz]
\
e? 1 .
~eieaD(r) - 5 [ dQdgy. @710 (R-Q+ 5 - 0)) &(Q. 01" 87 -n(Q,0)
e2 1 =
-5 [ 4y ne D (R-Q-50-0) #Qaky e 7“‘1>(Q,q)}<1>(R,r)

70
In the absence of a fixed external field the system is translationally invariant and(thg
generalization of the Fourier expansion (22) is the four dimensional Fourier transform
of the composite field ®(R,r) which has actually one time variable, ®(R,r 1), the
relative coordinates is a 3-vector 7, perpendicular to n.

¥(Riri) = [ G P Ru(PrL)

361




We insert this expansion everywhere in our action and obtain

r

i dPn de - —iP. R m iPm R
W—/der_L/(21)7*-(2#)41/;(Pn,r¢)e ¢ [CuP¥ + Lrei(ryr,p) e

\

1 P, dP, 2 g=th[R—-Q+4(rs—q.)] 2 .
PR p— “ . | \ —zPrQ
Ty Qe |5 1" 8 7 m(Pr 1) O,
& neiP'Q¢’(Pn Q.L)
2 ¢—tk[R-Q—3(TL—gq.L)] ,
3 k2 71 @1*P(PrygL)e” "%y n @ 7,e?

X Kb(Pch.L] }’Sb(PmaT.J.)

(71)
where L,.; is the Lagrangian of the relative motion and is given by
€1 €2
Lre(r1,p) = (7Pu —m1) @7 m+7-n @ (=7"pu = ma) = — =7 (72)
and )
Tu=5(1®7 ' n+7:n@7.) (73)
The result of performing the R and @-integrations, letting
ky =7, @7 n—7-nQ7, (74)
1S
dP, €1€2 |
VV=/ dPpdr  Y(pn,r: ) [T P* ~k*p, —miI@®@y -n—mpy - n@® I — —4* ®"g,]
(27)* e |
1 dP dk L N g - 2 —iik(f;-q :
% 8(Pn = Pm) - 5 / e (%)4@@5(& P,, — k)6(P, — P, k)[ele :

X Y4 @7 - np(Pr,qL)y, ®7 -1+ €3 1H 7000y . n @ 4 (Pr g L)y n @ 7“]1!’(Ps,9¢}

d’(Pm’r_i.)
(73

Introducing the form factors
(1) = i
T“nm(k) = /dr.l."p(Pnsr.L)e’kr'L'Y“ Xy - n¢(Pmarl)
and (7€ }
(2)
Thom = [ drif(Payri)e™ 445y 1 @ 7*$(Pmyra)

for the two particles, we can write the action in the compact form

W = dTJ.'.b(Pm"‘J.) [Eu P Lret) $( B, J6( Pn — P

r

-

de 1 (IL (1) (2) (2)
2 Z:i 271' 4 k2 T an",, St ezT“an" 5(Pn = Fyat k)5(Pr — Py S
(
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where el
Lret(r1) =ktpy —miI@y -n—mpy - n@®I—

n
o Y@ Yu

Note that k#n, = 0.

Now we can perform the k’-integration, and without loss of generality set

= (1000), and obtain

W = ;5(En — Em)5(P )dmbn( n,'l.")[ro = r P ﬁrel]d’m( maf‘)

1 d’: 1 (1) 7 Qr): 7
_5252:(2#)4 2 _Ez[ T“ﬂm(“’nm’k)T u(@rs, k)

(2) (2) s -t b ty
+ 2T pon(Wrims B)T™ u (W k)] §lisnm i) B(Bo = P 4.8

)a(ﬁr P ﬁ: - E)
(78)

Now we look at the selfinteraction terms only and expand the denominator

- (3) = (2) - (32)

(1) 7
Wlelf ¥$(2 [efT nm wnma k)T"“(—wnma -k) + €s T nm(wnm, k)TN“("wnm’ —k)]
77

271 1 1 1
wnm o wra {(5(“’1-: = k) oo 6((-0" -+ k) % - P-Jc- ( o )}

§(P, — P + k)6(P, — P + P, — P,)
(79)

where P stands for the principal value of the integral and Y/ means a summation over

discrete states and an integration over the continuum states. As in the case of the

Coulomb problem and (g — 2)-calculation, we separate the two terms corresponding
to

(2) n =m, hence r = s

and
(b) n =5, hence m=r

and dictated by the é-functions and obtain finally

(1) (2) (2)

I dE [ a8 o - -
Wt = Z:m )4{21*#“(0 BT ,.(0, k)-;-ezT“nn(O,k)T”“(O,—k)}

L 2 — - o — — —
{T ))-*--z—kp( k)}5(Pn—Pm-rk)5(Pn—Pm-r » — P,)
1 2 1) o (), , 2) = 3) =
= § ¥(2T’)4 T nm(wnma k)T p(‘wnma k) Tt 82T nm(wnma k)T u(-wnma —k)}

1 1
x{6(wnm—k) eS(w,m-z-lc)-7c----lec (w ) +k)}

We recognize again the following.terms:

(80)
(i) Term containing 8(k)+é(—k). The contribution of this term to the dk-integral

vanishes.

(ii) The term P1/k: This term corresponds to vacuum polarization.
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(iii) The term with (27/k)[é(wnm—k)+6(wnm—+k)]. This term gives the spontaneous
emission or absorption from level n to m or vice versa.

(iv) The term with P ( : L — ) gives the Lamb shift.

m= Wnm—Kk

These are our formulas for the radiative processes of the two-fermion system?®.
In the limit they go over to the fixed center Coulomb problem on the one hand, and
for free particles to perturbative QED results.

Foridentical particles and particle-antiparticle system like positronium we have
to antisymmetrize our currents as discussed in Sec. VI. Thus the mutual interaction
action has two terms. The first is the usual direct interaction term

2 =, = (2
Wt (1) = —e /dwdy‘l’f(z)‘r“%bz(z)D(z —y)rr(z)yuvrr(y)

(1) (2) 9
= —e? / dedyor(z,y)y" D(z — y)y.9(z,y)

corresponding to the potential

The second term is

rint 2 7% (li
Welet(2) =¢ /d:z:dygb(z:, y)7*D(z — y)7.9(y; =)

5 g (83
e2 w (1) ezk-r (2) dk

= 5= [ droe(po, —7)1" TuPE(Pos =T
o ( 0 ") (po +p0) k2 H ( 0 -)( )

where po and p; are the initial and final state energies and FE is total conserved cente
of mass energy of the whole system. In the positronium the relative momentum
approximately zero so that we can set

Pu= (m,5')
and the action becomes
bt S 2 (2) .
Win,. (annibilation) = 22 [ arg(rya(e)Le(~7) 8

Now we show that this term gives correctly the annihilation contribution te %
hyperfine splitting in the n = 1 state of positronium, for example. The effects
potential above (84), when inserted into our wave equations gives an energy s

only for thelevels j =l =0and forj—1=1=0.

4

: _ ma
6E(j =£=0)= 53
and ”
: _ ma
6E(1 —1=£=0)= e
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1e difference is the annihilation contribution in the hyperfinesplitting

6 Ep ss(annihilation) = (85)

1o this order it agrees with perturbative QED. It is however obtained here in first

1antized QED with selffields.

WIII. FURTHER RESULTS

There are still discrepancies between theory and experiment in almost all tests
i QED. The Table III summarizes all measured levels in positronium, muonium
2nd Hydrogen, positronium lifetimes, the anomalous magnetic moments a. and a,,
1d some theoretical values in parenthesis. In reviewing some of these discrepancies,

W -Lichten'® writes “It seems likely that the problem lies in the difficulty of QED
calculations which have not been carried out to a high order enough, perhaps a
totally new type of calculation is needed”. The self field approach to QED provides
2 new type of calculation. It’s important to have a complementary or alternate
method to perturbative QED, for a theory is tested not only against experiment but
also against other theories in order to clarify the basic assumptions and concepts,
specially in view of recent results that perturbative QED might be inconsistent or
2 trivial theory. Selffield QED modifies our notion of the quantized radiation field
and the interpretation of quantum theory. The emphasis is shifted from the field
1o the source of radiation, an electronic charge distribution which objectively and
deterministically evolves as a classical field and produces a selffield which acts back
on the charge itself. Quantized properties of the light reflect the discrete frequencies
of the oscillating charge distribution.

The two-body relativistic equation discussed in Sections V and VII gives us a
possibility to make improved calculations for positronium and muonium, in particular.
In positronium, the experiments seem to be more accurate than the theory and the
perturbative calculations remain incomplete!®. Considerable analytical work has been
done on the study of the two-body equation (39)ff: separation of radial and angular
parts and further reduction of the radial equations??. It turns out that the two-body

equation, when the electromagnetic potentials are kept to order a*, is exactly soluble
with an energy spectrum

M? + Am?2 M? — Am? a? =
E? =
e [1 g 3)2] (86)

with M = m; + my, Am = m; — m,, generalizing the Dirac spectrum. We have
treated the remaining potentials of order a® and higher as perturbations. But having
tested the equation in this way, one can now make direct nonperturbative numerical
calculations. The treatment of the negative energy states and the covariance of the
equation has also been discussed®? according to the methods outlined in Section VI.
We give here some of the results??.

1) For parapositronium, eq. (86), is exact including terms of the order a* since

normal and anomalous magnetic moment terms do not contribute to this order.
It gives

ma? ma? 11 ma

4n2  2n3(25 + 1) ) 64 nt

4
EPara Ps _ o

-0(a®) (87)
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TABLE III. BOUND STATE TESTS OF QED

POSITRONIUM
35
: <«— 8619.6(2.7) MHz
3p, (8 625.2 - theory)
n=2 Ip 13 001.3(3.9) MHz
3p (13010.9 - theory)
- 18 504.1(10) MHz
P, (18 496.1 - theory)
lso
1233 607 218.9 + 10 MHz
24308 ¥~ (1233607202 - theory)
~5.1eV

38 j{
1 203 389.1 (0.7) MHz
=l YL . r (203.399.1 - theory)
0

T 35—~ 3Y=7.0514 s 3
(7.0383 - theory) a, =1159652188.4(4.3)x 10
T 1g9— 2Y =7.994 ns-! (1159 652 192 (108)) - thec

(7.9866 - theory)
MUONIUM (AND H)
F=2
2p3/2 ,/‘_ 74 MHz
F=1
10 900 MHz

Y I I ’/———187MHZ

(H: 1057.845(9) MHz
10.1 eV, (1057.875 - theory

~122
122TA 1.2 446 062 413.70(41) MHz)
M

A [ I F=1 4 463.302 88 (16) MHz
n=1 2 510 Y > 4 463.303.6 - theory)
F=0

o (H: 1 420 405 751 766 7 (9) MHz)
a; =11659110(110) x 10° (1420402 308 - theory)
(1165 920 3 (20) - theory)
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2) Introducing the anomalous magnetic moments a;, az, which are in the selfen-
ergy term, as a Pauli-coupling we obtain the ground-state hyperfine splitting

Hfs_8 ¢ 4 L aq e - %
FENE T ey b Ry (=P

with ¢ = my/ma. Numerically this gives 1420.348 MHz for H, and 4.463.060
MHz for muonium, compared to the experimental values 1420.405752 and
4,463302, respectively.

3
/02 - —a
s &y 4

=] o

3) Positronium hypofinesplitting including the annihilation term, eq. (85), gives

7 ) (83
His __ 4 4

This “Lambshift” term —-2 (32 +£n2)ma* has to be added perturbatively, but

we hope to calculate these terms and more eventually numerically.

4) Positronium (n = 2,n = 1) splitting, including annihilation and anomalous
magnetic moment contributions

a’® Ry 35
or 96

AE;; = %Ry — 0.468098a’Ry —

5) Positronioum fine structure

AE(2351 - 23P2) = —1—];?-02Ry -+ 4—78a2Ry ==

7 2 5
-4—860 Ry+0(o. )

al -
(recoil) (annihilation) (normmorr;i:ngtnenc)

23 5
= Ry + 0(a”)

6) H or muonium (n = 2, n = 1) splitting

PO T S SR SO

8 128" T 1284 1+ ¢
e 1 i —2
16" ( (PRI = 4y
7 2
12’;4a4(1 +a; + ay +aja;z)

where M = m; + ma, ( = my/ma, p = T572.

For other details and applications of self-field QED we refer to the literature
listed in the Appendix.
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