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ABSTRACT

It is shown that QED radiative processes of an atom, like Lamb shift and spontaneous

emission, arc modified i rt the presence of a one-dimensional "minor" at a distance R by an amount

proportional tol/R2, compared to a 2-dimensional mirror where it is proportional to 1 / R ? .
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I. Introduct ion

The modification of the QED radiative processes (spontaneous emission, Lamb-shift,

g - 2, vacuum polarization) in cavities of different geometries is being actively studied at

present, both theoretically and experimentally [lj. In addition to these the Casimir force

between two neutral atoms (or between an atom and a conductor) have been treated as

manifestations of field quantization (zero point fluctuations) [2J. We can further add to

this list, the effect of the microwave background radiation on the QED-processes [3], and

the change of the properties of the atom due to the acceleration of the atom (e.g. the

Unruh "effect") [4].

All these effects have also been discussed recently in a unified form from an alternate

point of view, namely from the modification of the Green's function, hence of self-energy,

of the wave equation by the boundary conditions. In the general formulas for the radiative

effects due to self energy all we have to do is to replace the Green's function D(x — y) of the

free space by the Green's function of the cavity, D"*"*(x — y) ,or b3r the Green's function

of the temperature bath, or that of an accelerated detector, etc. This is the method we

shall adopt in this work.

We shall consider here even a simpler nontrival geometry than any considered before.

This is & multiply connected space which is obtained by excluding the zj-axil. Such a

space can be realised by placing an "impenetrable conducting wire", or an "Aharonov-

Bohm solenoid" parallel to the i3-axis. When two inpenetr&ble parallel lines are placed

in the space, they attract each other by a Casimir force per unit length which is given by

F/L = -nJnjy^Tr1/?.* with nj , n^ are the quantized fluxes confined to the lines and R is

the distance between them [5]. This force can be compared to the inverse fourth power

Casimir force between two parallel plates. It is an interesting question to study the power

law with respect to the distance R of the Casimir or Casimir-Polder forces as a function

of the dimensions of the conductors (wires, plates, balls, . . .) .



In the present work we calculate the change occuring in the radiative processes of the

H-atom in the above mentioned space. This study is also important for the experimental

investigation of the Casimir force between parallel lines, since it is in general easier to

measure the Casimir forces indirectly, that is, by observing the shifts in the atomic energy

levels caused by the presence of the boundaries.

II . Green's Functions in Non-trivial Geometries

We use the self-field approach to QED which turns out to be the most direct method

to deal with the boundary conditions of the surrounding space of the physical system.

The system we are considering is a bound or trapped electron near one (or more) one-

dimensional conductors. We start from the (general) Maxwell-Dirac action

W = Jdx^l (7* {id, - tA?) - m) • -

where A"' is a fixed external field to biad the electron. We eliminate A^ using one of the

field equations, namely Q-4^ = e $ 7 ^ * in the covariant gauge A",,, = 0, by

where D(x — x') is the symmetric (Causal) Green's function of space-time in the presence

of the boundaries or cavity. Boundary effects in QED as compared to free space QED

comes here only in the choice of the appropriate Green's function. The modification of the

atomic "fr itself due to boundaries is very small and will be neglected.

If we insert eq. (2) into eq. (1), and because the surface terms do not contribute for

bound state problems, we obtain a new action written in terms of the *-field alone [6]

W =

(3}

The interaction action

i«. = -j J dBdt'ty

has been shown to contain all the radiative processes. One can read from this term spon-

taneous emission [7], the Lamb shift [8], vacuum polarizaton [9], [g - 2) [10], as well as the

modification of all these results in the presence of cavities [11] and Unruh effect [12].

To study the radiation reactions in the multiply connected space of one-dimensional

lines we first review the calculation of the appropriate Green's function [5]. For that

purpose it is convenient to realize first the multiply connected character of the space by an

Aharanov-Bohm solenoid. We place an infinitely long and tightly wound solenoid parallel

to i 3 axis with its center at i i = -R, i 2 = 0 . We choose the center of mass of

the H-atom to be the origin of our coordinate system and assume the distance R between

the atom and the solenoid to be fixed. The potential of the solenoid in the outside region

is given by

A = — - (sin/3*! - eos0i2) (5)

where "the flux centered polar coordinates" ( and /3 are given by

(6)

The symmetric Green's function D(x,x') can be obtained from the propagator

G(x,x') of a massless charged relativistic particle moving in the presence of the external

field ~A:

(7)lD{x,x') = 1(G(x,x') + G(x
l,x))

and the propagator can be represented as a covariant path-integral

/~ f ft fW ( - 1 \
G(x, x')= dW D*xexp - / dw l-i2 + i + 4eA • z I (8)

Jo J 4 Jo \ /



Here overdots stand for the derivative with respect to the invariant time parameter w. We

do not need in the following the explicit form of the above path integral which can be

found in the literature [13].

Inserting the potential (5) into (8) we observe that the interaction terra can be

integrated explicitly

2ir " " 2 j r ' (9)

with ${u = 0) = H', 0(u> - W) = 0. The integer A is the winding number which

distinguishes the different homotopy classes. In order to take into account all the paths

connecting x to *' we have to sum over all winding numbers A, which by virtue of the

Poisson formula

£
A=-o

implies the flux quantization:

(10)

Thus the interaction part of the propagator factorizes from the free part and we obtain

the final form of the Green's function

(11)

where D{x,x') is the free space Green's function

/

OO .00 J

d*k e -

J4L

e

(12)

The result in (11) can easily be generalized to more than one solenoids- Equation (11)

will also apply to a conducting wire in the absence of currents instead of a solenoid. This

is because the potential A is a way to characterize the field free space except the one-

dimensional cut of space (E = 0, B = 0, except the line x3 = 0). In this case * expresses

a property of the conductor and the integer A again the winding number of paths.

III. QED - Effects

Having obtained the appropriate Green's function we go back to our electromagnetic

interactional to calculate the interaction action of eq. (4): We expand the field 'P(z) into

a Fourier series

^ ( J ) e - E - « (13)

where {*n(x)} is a set to be determined indexed by the oscillatory t-dependence. Note

that this is distinct from the Coulomb series expansion *( i ) = ^ C n W ^ n f 1 ) ! where

*JL(i) is the complete set of solutions of the external field (Coulomb) problem. Inserting

(13) and the Fourier transform (12) into (4) we obtain after t, t' and ^-integrations

Wmt=-~Tdxdxldk S{En -
nmr*

r - E.)

(14)

Here each of the numbers n, m,... stand for the set of discrete and continuous quantum

numbers. The standard form factors

are now modified by the presence of the cosA(/J — (}') factor due to the one-dimensional

cavity.



Since, as we have mentioned, all the QBD-radiative processes are contained in (14 ) ,

and have been evaluated before in free space and in the presence of boundaries, it is

sufficient to calculate the change of the products of two form factors in Eq. (14), i.e. the

integral

l[k)=
(15)

This expression can be evaluated in principle for Dirac wave functions in full generality.

But to see the essence of the effect and its magnitude, it is sufficient to calculate the

nonrelativistic limit of / ( i t ) in the dipole approximation, i.e. e1*'* 2: 1. The important

term in the nonrelativistic limit (NR) in eq. (15) for the H-atom is

( )

(16)

Here nlm are the usual quantum numbers of the H-atom and m is the reduced mass. We

shall evaluate this integral in the limit fl 3> [ i | or | x' |, i.e. when the distance of the

atom from the solenoid is large compared to the atomic Bohr radius. In this limit (with

i. = (r,8,fp)} we have

(n)

Hence

cos A(/9 - 0') = 1 - y {0* - 200' + 0")

(18)

— 2rr' cos8cos (? sin <p sin <p'

For bound states we employ the usual wave functions in polar coordinates

n ) Snn (I + \m\)\ [(«+ /)!]
(19)

while for continuum levels we use the wave function in parabolic coordinates

V 4TT (l+\m\)l (20)

with p0 = Me1 fi\ where M , u , ( + i / j " « the Whittaker functions.

When the expressions of Eqs. (18), (19) and (20) are inserted into (16), and because

the ^-dependence of the wave functions are always in the form of e'mv> we have the integrals

Jo ¥ > < * i in V» - ""I mm- - / I m,m'-I

^ dipt ve vstnipj d<pe*e " s i n ^ =
o Jt

(21)

(22)

Inspecting the remaining integrals over <iS, <fr we observe that their values are almost

equal for Sm,mi, im,m' -2 °r ^m,m'+i [14j. Thus the contributions coming from the terms

involving integrals of type (21) are negligible compared to the ones involving (22); i.e., the

largest contribution comes from the third terra of Eq. (18). Thus the energy shift of the

atom due to self energy in the presence of the solenoid is

d k

(E-JE)2- it

Here

(23)

(24)
nlm



and

„,,.

Where fln[(r) is the radial part of the wave function and A' is the normalization constant

given by eqs. (19) and (20). After integrating over d k, eq. (23) gives the change to the

Lambshift due to "cavity"

n>m'+l + *m,m'-l nn' nn' (26)

where n, n' stand for (nlm) and (n'i'm1), and ionn ' = En — E'n.

Equation has to be compared to the energy change in the vicinity of a. conducting

plate at a distance R from the atom. There the factor ir'A*/flJ is replaced by 1/87T.R*

(for R 3> Bohr radius)11. Thus for a typical distance of R - 5 x 10"8 cm, the shift due to

solenoid, taking A = 1, is about 107 times smaller than the parallel mirror case.
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