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A recently advanced theory of quantum electrodynamics which is not second quantized, but 

rather based on self-fields is adopted to a relativistic calculation of (<7-2). In analogy to classical 
electrodynamics, radiative corrections are seen as arising from the back reaction of the self-field upon 
the source. Vacuum field fluctuations, assumed to be the physical cause of radiative correction in 
standard QED. are absent in the present self-field approach, which recently has been applied to 
calculate spontaneous emission, Lamb shift, vacuum polarization, and to a non-relativistic calcula­
tion of {g-2), all in free space as well as in cavities. We conclude that the self-field of the electron can 
be consistently considered to be the physical origin of all radiative processes, as an alternative picture 
to hypothetical vacuum fluctuations.
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I. Introduction

In quantum electrodynamics (QED) the second 
quantization of the electromagnetic (EM) field neces­
sarily implies the existence of zeropoint fluctuations of 
electric and magnetic field strengths in the vacuum. 
These fluctuations are interpreted as being the physical 
origin of such radiative effects as Casimir effect, spon­
taneous emission, Lamb shift and the nonzero value of 
g-2 in freespace. The scale of these zeropoint fluctua­
tions is set by the constant he, and consequently they 
vanish in the limit h —► 0, yielding the truly empty 
classical vacuum. In this scenario one would expect 
that such phenomena as spontaneous emission and 
Lamb shift would also disappear in this limit h —► 0, 
since their physical cause -  the vacuum field -  is no 
longer present. However this is not the case. Sponta­
neous emission and the Lamb shift have perfectly re­
spectable classical analogues in the occurrence of line 
broadening and level shifts which are predicted by the 
classical theory of radiation reaction [1], Hence it ap­
pears that the standard interpretation of radiative cor­
rections on QED does not meet with the spirit of the 
correspondence principle.

In the classical theory, line broadening and level 
shifts occur in a system such as a harmonically bound 
charge when the back reaction of the self-field of the 
charge is included in the equations of motion -  as is 
required by the self-consistency of the theory. One
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might expect that it should be possible to construct a 
complete theory of QED in direct analogy to classical 
radiation reaction theory; whereby one adds to the 
Dirac equation of motion a term which includes in a 
self-consistent manner the self-field generated by the 
electron's fourcurrent itself. In such a theory the back 
reaction of the self-field upon the fourcurrent would 
be viewed as the physical origin of spontaneous emis­
sion, the Lamb shift, and g-2, and other radiative pro­
cesses with a direct classical correspondence to similar 
effects.

Early in the history of QED precisely such a self- 
field approach was attempted by Schrödinger [2] and 
also by Fermi [3]. Schrödinger insisted that the self- 
consistency of the theory required the addition of a 
self-field term to the quantum mechanical (QM) equa­
tion of motion -  just as such a term is required for the 
consistency of the Abraham-Lorentz-Dirac equation 
of motion for a point charge. In the Schrödinger inter­
pretation of QM, revived recently [4], the field e f  is 
a measure for the actual physical distribution of the 
electron charge and not just a probability amplitude; 
hence the inclusion of the self-field is seen as a neces­
sary requirement. By including a classically modelled 
radiation reaction term in the Schrödinger equation, 
Fermi was able to derive the Einstein A coefficient for 
spontaneous emission. Fermi's calculation was car­
ried out in 1927; the same year as when Dirac derived 
the A coefficient by second quantizing the EM field 
[5]. The self-field approach to QED was taken up by 
Jaynes and his collaborators [6] as the neoclassical 
theory of radiation. The theory in its original form
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proved to be at most a semiclassical approximation to 
a full theory of QED. but nevertheless Jaynes was able 
to show that one could go quite far in accounting for 
radiative effects without having to resort to the second 
quantizing of the radiation field.

More recently Barut and his collaborators [7] have 
proposed a complete self-consistent self-field approach 
to QED in which the EM self-field potential A pro­
duced by the fourcurrent ej ß is added to the minimal­
ly coupled equation of motion for a point charge. 
Through the use of an EM Green's function one may 
eliminate totally A from the equation of motion leav­
ing a nonlinear, nonlocal interaction term which when 
properly analyzed yields radiative corrections to the 
original energy spectrum and other radiative pro­
cesses.

In the approach of Barut et al. neither the matter 
nor the EM fields are second quantized. In the fully 
relativistic version of the theory, Barut and Salamin 
[8] have given very precise formulae for the relativistic 
spontaneous emission rates and the Lamb shift in 
freespace. In the nonrelativistic (NR) approximation 
of the theory Barut and van Huele [9] have given 
derivations of the Einstein A coefficient and the NR 
Bethe formula for the Lamb shift. Barut, Dowling, and 
van Huele [10] have given a NR derivation of the 
freespace value of g-2 which is in many ways superior 
to similar NR calculations made in standard QED 
[11]. In a series of papers Barut and Dowling have 
shown how the self-field approach can satisfactorily 
account for apparatus dependent contributions to 
spontaneous emission rates, to the Lamb shift, Casimir 
and Casimir-Polder effects, and to g-2 [12].

The electron's anomaly (g-2) was first calculated by 
Schwinger [13] in quantumelectrodynamics in the 
form of an additional mass matrix in the Dirac equa­
tion resulting from the quantized radiation field; it is 
equivalent to a lowest order Feynman graph calcula­
tion. A different perturbative calculation was given in 
S-matrix formulation [14]. Babiker [15] calculated 
(g-2) in the semi-classical radiation theory by treating 
the field classically but the electron in a second quan­
tized theory. Later Schwinger gave another calcula­
tion of (g-2) in his source theory [16]. Our calculation 
turns out the be very close to Babiker's and we shall 
make use of some of his integrals.

In the present work we give a fully relativistic 
derivation of the first order correction to g-2 in free- 
space in the self-field approach to QED by Barut and 
his coworkers thereby developing this formalism to­

wards a more complete and self-consistent theory. 
Here we obtain g-2 in a theory where both the matter 
and EM fields are c-numbers. We further indicate 
higher order terms for (g-2) in the present approach.

II. The Self-Field Approach to QED

In the self-field approach to qunatum electrodynam­
ics (which we shall abreviate self field electrodynamics 
(SED)) the fundamental starting point of view is that 
electromagnetic fields do not exist independently of 
the currents which produce them. In a region of space 
outside the light cone of any relevant electromagnetic 
sources the vacuum field strengths of the electric and 
magnetic fields are assumed to be identically zero -  
just as in classical electrodynamics (CED). In SED the 
vacuum does not fluctuate.

It is assumed in practical calculations that the total 
electromagnetic field potential Aß surrounding a 
charge can be conceptually separated into superposi­
tion of a self-field A*[ originating in the charge itself, 
and an external field A£ originating from sources far 
removed from the original charge. For instance, Aeß 
might be the Coulomb potential of an infinitely massive 
nucleous, or the potential of an externally imposed 
homogeneous magnetic field.

We define as usual the electromagnetic field tensor as

Fßv:= -<4[V, 5 (1)
where [v,//] indicates antisymmetrization with respect 
to the indices v and jx. Due to the linearity of (1) the 
total Fß v may also be written as the sum of a self-field 
and an external field tensor. The self-field tensor obeys 
Maxwell's inhomogeneous equation

F r .v  = e j \  (2)
where

e ;v:=e«Pyv«P (3)

is the usual Dirac fourcurrent (e > 0). In order to work 
in a theory which is manifestly covariant we choose 
the Lorentz gauge condition

A ^  = 0. (4)

Once the choice of gauge is made (2) may be solved for 
Asß with the aid of an electromagnetic Green's function 
D(x-y)

Asll(x) = e $ d y D (x -y ) jfl(y), (5)
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where dy := t/4v, x xM, etc. If one makes use of the 
conservation of current equation kßj ß = 0 one can 
easily show that the gauge condition (4) is automati­
cally satisfied if one chooses the Green's function

D (x-y) =
1

(2 7t)'

, — i k ■ (x — y)
dk

k2 + i (6)

where the is insures that we have chosen D(x-y) to 
correspond to the usual Stueckelberg-Feynman 
Greens function appropriate for the Dirac equation 
with antiparticles.

III. Action Formalism

In the theory of SED as proposed by Barut and his 
coworkers, radiative corrections to energy levels of 
isolated quantum systems are most easily computed 
directly from the action integral without solving the 
equations of motion. Let a lower case w represent an 
action density and an uppercase W the total action. 
One then defines

W:= jd x  w[x,/4(x), f(x)], (7)

where dx = d4x, x = x", etc. For a Dirac particle we 
separate the action density into the sum of a free 
matter field density wfp (free particle), an inter­
action term and a free EM field contribution wf;
w = w f -P Wj + wf, which are given as

wpf := *P [iyß d  ̂— m} T =  f  {y^P^-m} W, 

w, :=<F{ey»All}V = ej»Aß, (8)

Wf

where we recall that Â  = Aen + Asß and Fu v = + F*v.
Variation of the total action yields the Euler- 

Lagrange equations. Variation with respect to the 
Dirac field yields

SW SW
{y"Pu + ey"Au}'F = 0, (9)

SV S*P

the Dirac equation of motion. Variation with respect 
to the EM self-field gives

SW
Ja* - a .

SW
SA*. „ = - e y  + F r . ß = 0, (10)

which is just the inhomogeneous Maxwell equation (2) 
with the current j v defined as in (3).

For a scattering problem let us call the scattering 
amplitude per unit spacetime V -  and for a bound- 
state problem the total invariant energy of the sys­
tem S. The action IT can then be related to these two 
directly measurable quantities via

Wfi = (2ft)4 <54(/f — 70^ , (Ha)
W(i = (2 n) S(Ef — E{) $ ,  (lib )

where f and i stand for the final and initial values of the 
fourmomentum P or the total energy level E.

By linearity, the EM field action density wf of (8) can 
be written as

Wr - 1 {F;v F r  + F;X F r  + F;V F ^  + F;V F /v} . (12)

The two middle terms may be converted to surface 
integrals whih vanish for bound state problems, i.e. if 
it is presupposed that vanishes sufficiently fast
at infinity in Minkowski space. One keeps the surface 
terms for the radiation going to infinity. (Throughout 
this paper action densities w(x) will be considered 
equal so long as they are equal modulo integration by 
parts and possible surface terms when they vanish as 
| jc | and | x01 tend to infinity.) The last term in (11) is the 
usual field invariant

1 pe rt>v _  _  I (£2 _  4 1 1e 2 * e u e) ■> (13)

which we shall henceforth drop from the total action 
as it is a nondynamical constant. Only the first term 
of (11) remains, and it may be transformed via integra­
tion by parts as

I ps P^v = 1 AS p/xv4 fiv s 4. [fi. v] s
— l\A s pw I _  i  AS ptiv - 4 H » rs 4 [v s,/ (14)
____ as ;v-  '

where we have dropped a surface term and used the 
inhomogeneous Maxwell equation (2). Equation (14) 
allows us to combine W; and wf of (8) to get for the 
total action density

w := h'0 + w ,

w0 := f{y"P ,~m } W + e j'A l, 

w' : = ^ r A l .

(15)

Here w0 will give rise to the action and equations of 
motion of a Dirac electron interacting with an exter­
nal potential Aeß, and w' will be responsible for intro­
ducing radiative corrections arising from the inter­
action of the electron with its own field.



IV. Elimination of the Self-Field

We may now use (5), which gives Asß in terms of j ß, 
to eliminate Asn altogether from the total action. Defin­
ing W' = J dx w'(vv), where w'(x) is given in (15), we 
have

W '= Jdx w'(.x)

= J d x | | j " ( x ) ^ ( x ) j  (16)

e2
= — U d x d y j* (x )D (x -y )jß(y),

where D(x — y) is given in (6). The self-field contribu­
tion to the total action W' given in (16) is nonlinear 
and nonlocal; in SED all quantum electrodynamical 
effects arise from this piece of the action.

To proceed with the analysis of W' we perform a 
Fourier expansion of the Dirac field,

«F(.x) = Jdpe~ ip x T(p). (17)

This expansion has to be understood in a general 
sense to include, in general, the discrete spectrum in 
the external field: j dp0 may contain a sum as well as
an integration.

Let us now expand the WJ which appear in (16) to 
obtain

W '= y  ^ r  JJJJJJJ dx dy dk dp dq dr ds

x V(p)y"V(q)e ( . "  y(r)ygy(s) (18) 
k + is

x exp i{(p-q) • x + (r-s )  ■ y} .

If we now carry out the dx, dy and dk integrations, 
the exponential factor gives rise to a delta function, 
vis.

e2
W' = — (2nf JjXf dp dq dr ds *P(p) y" V(q)

-----V(r)yß V(s)öA(p -q  + r - r ) .  (19)
(r — s)~ + ie

The delta function is satisfied by the two distinct 
censervation of energy-momentum conditions

p = q, r — s, (I)
p = s, q — r . (II)

Condition (I) and the corresponding action W{ lead to 
an effect similar to "vacuum polarization" in standard
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QED. Here we shall concentrate on condition (II), 
which leads to the self-energy correction responsible 
for g-2 *  0.

Now that we have shown that the term (II) is re­
quired. we may go back and separate it retroactively 
to expression (18) before carrying out the dx, dy and 
dk integrations. Hence (18) with the additional condi­
tion (II) can be written

e2
Wu = — { dp ff dx dy D(x- y) f(p) eip x (20)

x yß {j dq <F(q) T(q) e ^ '* '" }  yßV(p) e~ip y .

The integral j dq which appears in the curly brackets 
of (20) is over both positive and negative energy states. 
However we must impose the additional boundary 
condition that positive energy solutions evolve for­
ward in time and negative energy solutions backward. 
To insure this we demand the condition 
fd  q {F(q)T(q)eiiy- x)q

= 0 (y o- x o) f dqT (q )f(q )e i{y~x)"

- 0 (x0- y 0) f dq<F(q)<?(q)eily- x)-« 

=: S(x —y), (21)

where [ dq stands for an integral over positive or
(±)

negative energy states, and 0  is the usual step func­
tion. If the f  are taken as exact solutions which min­
imize the action W0:= j dx w0(x), with w0(.x) given in 
(15), then —iS{x—y) is the usual Feynman Green's 
function for the Dirac eqution of an electron in what­
ever external EM field we have:

[y»p^-ey^A^-m ] S(x-y) = iö (x -y ) . (22)

We should remark that there is a consistent treat­
ment of antiparticles in the first quantized Dirac theory. 
One can use two Dirac equations, (y p — m)lP = 0 
and its mass conjugate, (y ■ p + m) *F = 0. The negative 
energy solutions of the first equation correspond to 
the positive energy solutions of the second equation. 
In the presence of the minimal coupling the second 
equation couples with ( — e) and ( — pß) relative to the 
first, leading to the Stuckelberg-Feynman rule of 
propagation backwards in time of negative energy 
states used in (21).

In momentum space we may define implicitly S(p), 
as usual, as

S(x-y)= : t t V  f dp S(p). (23)(27t)
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The operator S (q) may be obtained by inverting the 
Dirac operator ŷ  n  ̂— m where y" n  ̂:= y" pß — eyß Aß. 
This is mostly easily done through the use of the Heavi- 
side operator calculus. To order e2 one obtains

1

y " v
y '^ - e y "Aß + m , „ P • A(yß P +m) —--------\- 2e

P —nv (P2 — m2)2

i e
(y" Pß + m) y» yv F„v_ _  ^  y" Aß(P • A)

(P —m ) (P —m'

+ e2 A2 Pß+ m , . y'1 yv t mv
(P —m~

+ le'

-I- 4e
2 (y" Pß + m)(P ■ A)2

(P2 — m2)2

+ 0(e3). (24)
(P2- m 2)3

Keeping this expansion in mind, we write (20) as

W' = -
te

dpdPV(p) yMS(P)yM
(p — P)2 + i e ^(P)- (25)

By the prescription of (11a) we may convent this 
contribution to the total action W' into an energy shift 
via

SE = (2ti)4 
ie2 1
2 (2 n)4 

= Jdp<P(p) SM(p)V(p), 

where

yf SIP) y
d p d p y (p ) /_/ v(p)(p -P )z + ie

(26)

<5M(p) := -
2 (2 71)-"

dP y" S(P) y

2 (2n)A

(p -P )2 + ie / s = p _ p  

d s----- j — ----fL, (27)
S + 1 £

which is identical to the operator AM obtained by 
Babiker [15].

V. Evaluation of {g-2) and Energy Shifts

It remains now to evalute the mass-shift operator 
SM(p) in (27) and with it SE in (26). In the absence of 
a closed formula for the propagator 5 {p) in an exter­
nal field we shall use the power series expansion of it 
in e given in (24). As Babiker has shown, the insertion 
of (24) into (27) leads to standard four-dimensional 
Feynman integrals. Aside from a (5-function potential

(which Babiker dboes not include), which is not rele­
vant for the (g-2) (but is of course very important for 
the S-wave Lamb shift), the lowest non-vanishing con­
tribution comes from the third term in (24), namely

ie
(y"P„ + m ) y y  F,v 

(P2- m 2)2

We note that this term is gauge-invariant. All other 
gauge-noninvariant terms involving Aß give automat­
ically vanishing contributions. The free particle prop­
agator which corresponds to renormalization terms 
(or to regularization procedures) is subtracted. The 
result of (27) to lowest order in e in the propagator is 
thus

SM(p) = —L - ( - i e )  — j d y (l-y ) <7«* F 
2 (2 ti) m o

= - —- —-  <x"v F2 7i 2 m

= B + iz  E),
2 7T 2m

(28)

4 7T
We thus read off (g-2) to lowest order in the Green's 
function as a/2 n. The matrix element of (28), when 
inserted into (26), gives the Lamb shift SE. It is well- 
known that, again to this lowest order, the Lamb shift 
is given by this matrix element, apart from the «5-func­
tion potential mentioned above.

IV. Discussion and Conclusions

Equation (26) is in fact a general formula for the 
Lamb shift in any external field. Thus, in principle, 
(g-2) can be read of in any external field problem, not 
necessarily an external magnetic field. For example, in 
the Coulomb-field of the H-atom there is a magnetic 
part of the Lamb shift due to a term in SM propor­
tional to a B whose coefficient gives us the (g-2) fac­
tor immediately even before evaluating the energy 
shift SE itself.

The full evaluation of SE according to (26) requires 
the knowledge of the Green's function S(P) in the 
external field, which is in general difficult and un­
known. The direct calculation of SE by summing over 
| dq in (20) is in fact equivalent to a determination of 
the Green's function. For the relativistic Coulomb 
problem this problem has been considerably ad­
vanced up to some final numerical integrations [17].
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However, in an iterative calculation, the expansion of 
S(P) in powers of E yields, as we have seen, in a 
relatively simple way a calculation of ($-2) to order a. 
The next order terms will come from the higher order 
terms in the propagator as well as from the change d f

of the (Coulomb) wave functions due to self-energy. We 
have a well defined problem so that a nonpertubative 
numerical calculation of (g-2) is in principle possible, 
which seems to be far simpler than the thousands of 
graphs of standard perturbation theory.
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