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An essay on the syw~etries of the Maxwell-Dirac system and on all the 
symmetries that follow from it. 

I. The Importance of Electromagnetism 

It can be said that perhaps 99.9% of all everyday physical phenomena 
concerning the constitution of matter and radiation in physics, chemistry 
and biology, can in principle be explained by a single simple theoretical 
system, namely the coupled Maxwell-Dirac equations (or their limiting 
cases, the Maxwell-Schrodinger, or the Maxwell-Lorentz equations). This 
is a tremendous achievement of the last hundred years of theoretical 
physics. This system describes phenomena at distances from about 10-lG cm 
(electron positron scattering at high energies) to radar probing of astro­
nomical distances and energies from 10- 5 ev (Lamb shift) to 40 12 eV (e+e­
accelerators). 

The remaining .1% of the phenomena (nature leaves always a small door 
open to deeper levels) concern the rare events in radioactivity and cosmic 
rays, which led to the introduction of new particles, at first seemingly 
outside the Maxwell-Dirac system, beginning in 1932, namely the neutron 
and the neutrino. With this date the particle physics begins and with it 
we have the new phenomenon of forceful production in the laboratory of all 
sorts of new particles, some of which already occur in cosmic rays, some 
perhaps produced for the first time by man. Gravitation presumably plays 
little role in the formation of nuclei, atoms and molecules, but is, of 
course, dominant in the formation of celestial bodies. 

Because the electromagnetic theory, and its extension after Maxwell­
Lorentz, to include positron, electron spin and the wave properties of 
the electron, hence quantumelectrodynamics, works so well and so univer­
sally, we must first see if it can also account for these remaining phen­
omena of radioactivity, the properties of the nucleus and its disintegra­
tion products, before introducing completely new theories, new forces and 
new particles. This expectation is based on the realization that, as we 
shall see it in more detail, quantumelectrodynamics that we practice it 
today is in fact incomplete and does not give us the full information 
about the electromagnetic behavior at short distances or high energies, 
in fact an unknown territory--terra incognita--that must be explored. 
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We have divided physical phenomena according to their energetic 
appearances into weak, strong, electromagnetic and gravitational. They 
also differ in their range (short-ranged or long-ranged interactions) or 
in being microscopic or macroscopic. However, electromagnetism can and 
does manifest itself in widely different strengths. For example, the 
"chemical force" between two neutral atoms is very weak compared to Coulomb 
force, is charge independent, hence seemingly non-electromagnetic, but has 
revealed itself, after quantum mechanics, to be a residual weak manifesta­
tion of electromagnetism when atomic structure is taken into account. This 
small residual force is of course of vital importance for the whole of 
chemistry and biophysics. Another example is the ~-radioactivity, which 
is also very weak in general, and has also revealed itself not as a new force, 
but a largely electromagnetic and quantum phenomenon due to the tunneling 
of the a-particle through the electromagnetic barrier of the a-nucleus 
system. In both these instances we can describe the process as a new 
interaction vertex with appropriate new coupling constants: For a-decay, 
the interaction g ~~~ repres~n~ing the vertex A--+B +~. For chemical 
force the interac~~on a gchem ~1~2~3~4 representing the reaction 
H + H --H + H, for example. 

These are examples of a true unification in which the new coupling 
constants ga' gchem are completely eliminated in terms of the underlying 
electromagnetic coupling constant e. We could have put these interactions 
together with the electromagnetism into a larger system, and construct a 
gauge field theory with a broken symmetry. There is in fact a gauge 
theory of chemical forces plus electromagnetic forces. Instead gchem and 
ga are calculated in terms of e. Coming back to the four fundamental 
interactions of physics, weak, electromagnetic, strong and gravitational, 
the unification attempts of the recent decades have concentrated on put­
ting all these separate forces side by side into a larger system and 
attribute the differences to symmetry breaking. The alternative that we 
wish to explore is to derive and calculate these interactions from electro­
magnetism which would be an already unified theory with possibly a single 
coupling constant e. We should remember that Newton's unification of 
terrestrial and celestial gravity, and Maxwell's unification of electri­
city and magnetism have a single coupling constant; the magnetic coupling 
constant is calculated in terms of e and c, gmagn .. e/c, and C 'is known 
by independent measurements. These are true unifications. 

Wit~ these remarks on the fundamental significance and possible uni­
versal role of electromagnetism I sha·11 discuss the following topics in 
symmetry: 

1) Symmetries of and from the Maxwell-Dirac System 
2) Symmetries of electromagnetic matter: Two or many body systems 

that bind electromagnetically, and lead eventually to macroscopic 
symmetries 

3) Symmetries of particle physics. The extrapolation of QED to 
short distances and a possible phase transition of QED at short 
distances to strong interactions. 

4) Symmetries of the electron itself, the most basic of all particles. 

II. Symmetries We Have Learned from Electrodynamics 

Space-Time Symmetries. Maxwell's equations gave us the notion of 
the invariance under Lorentz transformations (Wa1demer Voigt (1887) and 
Hendrik A. Lorentz), this in turn the relativistic particle equations 
(H. Poincare (1904), and finally the physical interpretation of simultan­
eity and a new definition of inertial frames (A. Einstain (1905». Thus 
the special relativistic symmetries of space-time originate from electro­
dynamics. 
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The electromagnetic field concept is in fact intimately related with 
the structure of space and time. The electromagnetic fields were origin­
ally thought to be, like in any other wave phenomena, waves in a medium, 
in an aether which fills and defines the whole space. This cannot be a 
rigid aether (Michelson-Morley experiment), but a deformable aether is 
perfectly relativistic. After the special relativity, we have gotten used 
to talk about waves without a medium (like ocean waves without the ocean) 
at the expense of introducing new physical quantities, e.g. potentials 
A~(X), whereas in a medium A~(X) would be simply the displacement of the 
aether from its equilibrium position. Either way, it is the wave operator, 
c=J, that makes the space-time of particle physics as we know it now. 

Discrete Symmetries. The wave equation, or more generally the 
Maxwell's equations define also invariance under space-reflection (Parity 
P), and invariance under time reflection (time reversal T). There is 
ode other important discrete symmetry, particle-antiparticle conjugation C 
which comes from the properties of the Dirac current j~(x) on the right 
hand side of the Maxwell's equations: 

.~ - ~ 
- j ==-e.1jJy 1jJ 

o ( 1) 

Without introducing any new coupling constants we can work with an 
electric charge - magnetic charge symmetry by replacing the second equa­
tion in (1) by 

(2) 

where ~~ is the current of magnetic monopoles. The coupling constant g 
in ~~ is determined by e. by the charge quantization relation e.g = 
n/2; n = 0, 1, 2 • •• Since no free magnetic monopoles have been 
discovered, we work usually in the sector n = O. 

Currents. The left hand side of Maxwell's equations have not changed 
since Maxwell even in quantum electrogynamics. The right hand side, the 
form of the current j~, describing the matter, has undergone considerable 
change, however, from the macroscopic currents of Maxwell, to the current 
of classical point charges of Lorentz, to the distributed currents of 
Schrodinger, and finally to the currents of spinning electrons of Dirac. 
The Dirac current describes both electrons and positrons, and to every 
motion of an electron there is another symmetric motion of the positron 
(particle-antiparticle symmetry C). 

The electrodynamics gives us thus the full relativistic invariance 
(Poincare symmetry with space and time reflections, P and T) as well as 
particle-antiparticle conjugation C due to the properties of the elect­
ronic current. 

There is no indication anywhere else that the proper relativistic 
invariance is broken. As to the discrete symmetries P, C and T their 
apparent violation in some processes is best understood from the peculiar 
structure of the underlying particles, like neutrino and Ko- mesons. 

Conformal Symmetry. Electrodynamics gave us also the conformal 
symmetry, a symmetry which contains in addition to the Poincare Symmetry 
of Lorentz transformations and translations, also the dilations and 
inversions of coordinates. This IS-parameter symmetry group is first a 
property of the free electromagnetic field, but can be- expanded to full 
electromagnetism if the current j~ has special transformation properties. 
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The additional symmetry operations can be interpreted as the change of 
scales from point to point. 

Self Consistent Coupling Between Field and Matter. Eq's. (1) are 
only one-half of electrodynamics. The other half describes the dynamics 
of the source-current, the Dirac equation 

° , (3) 

or, a classical equation for particles, if the source is a point charge. 

As H.A. Lorentz taught us, the electromagnetic field F~v is produced 
by the source, which in turn is driven by the field, hence both must be 
treated self-consistently. The way to guarantee this self-consistency is 
to derive both equations (1) and (3) from a single variational principle:, 
The action of electrodynamics is 

(4) 

where the first term is the kinetic energy of the source, the last the 
kinetic energy of the field, and the middle term the interaction between 
the field and matter. According to Leibnitz we live in the best of all 
possible worlds, and the extremum of the action W gives us not' only both 
equations (1) and (3), but also the conservation laws and symmetries of 
electrodynamics that we talked about, and the consistency of these con­
servation laws with the time-evolution of the system. 

III. Symmetries of the Electromagnetic Matter 

Electromagnetic matter consists of the bound states and other clusters 
of basic particles formed solely by their electromagnetic interactions. 
Thus starting with electrons, muons and protons we have the formation of 
positronium, muonium, H-atoms, as well as, of course, other atoms, mole­
cules, biological molecules, up to crystals and condensed matter. The 
structure of proton and nuclei plays a very little role (e.g., hyper-
find structure). 

I shall first show how the symmetry and dynamical groups of the two­
body problem follows from the basic action of electrodynamics, and how 
we obtain in the limit the dynamical groups of the one-body problem in a 
potential--a problem that has been widely studied since the 1960s. In 
particular, the postulated infinite-component wave equations can now be 
given a field theoretic derivation based on electrodynamics. In order to 
derive the equations and symmetries of the two-body system from field 
theory we consider two matter fields ~l and ~2 as the source of the 
current and the action (4) becomes 

If we choose a gauge such that A].l, ].l = 0, then the first Maxwell eq. (1) 
becomes OA].l j~ and can be solved for A].l 

where D(X-Y) is the Green's function of the wave operator c=J. The poten­
tial ~ in (6) -- it is the Lienard-Wiechert potential--can be called the 
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self-field of the electron: The Dirac current, e~y~w, is assumed to pro­
duce a fiel~ like any other current, which acts not only on the other 
particles, but also on itself. 

Inserting A~ of (6) into W (also in the term F~vF~\!) we obtain a 
total interaction action (kinetic parts being unchanged) 

(7) 

representing two mutual interactions and two self-interactions of currents. 
There are two variational principles for our action (5)-(7). 

If we vary W with respect to Wi and W2 separately, we obtain 
coupled nonlinear Hartree-type equations. I call such a system 
a "separated two-body quantum system" 
We can vary W with respect to the composite field 

(8) 

only. We now get a linear equation for <i> only (plus some extra-terms 
coming from self-interactions). This is the quantum mechanical two-body 
equation in configuration space, well-known in the standard nonrelativistic 
many-body problem. Once such a wave equation for <i>(XiX2) is written, the 
solution is no longer factorizable. I call such a system a "nonseparated 
quantum 2-body system." The peculiar long-range correlations of quantum 
2-body systems (e.g. Einstein-Podolsky-Rosen problem) are due to this con­
figuration space wave functions. 

I think both types of systems, separated and nonseparated, occur in 
quantum systems. For example, in the H2-molecules, the two electrons are 
not separated, their wave functions are in the tensor product space and 
must be anti symmetrized with output to the exchange of the two electrons; 
they mix. But the two protons are separated. We do not antisymmetrize 
the wave function with respect to the protons. The Born-Oppenheimer 
method treats protons and electrons on different footing. I think this 
is also physically so: an H2-molecule is an individual single system 
defined by the positions of the nuclei; we may use the probabilities for 
the distribution of the two electrons. 

The two-body relativistic equation for the composite field <i>(XiX2) 
is obtained as follows. We first express the mutual interaction action 
in (7) in terms of <i>: 

(9) 

<i> is a l6-component spinor with two spinor indices <i>ac('so this equation 
has to be understood in the tensor product space of two Dirac Spin 
algebra, i.e. 

- ~ <i> .. y lV'Iy .... <i> .. aa aS~ ~a S Be 

The self-energy terms are a bit complicated; we shall indicate them 
separately at the end. 

In order to write the two kinetic energy terms in eq. (5) in terms 
of <i>, we multiply the first term in W with the normalization integral 
fdx 2 lf2 y • I1.W 2 and the second term with the integral fdxl 'Fl y. 11. Il'l 
In this way also the kinetic energy terms can be written in terms of 
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~ and~. We now vary the action with respect to ~ and obtain the two­
body equation: 

{(yll..i.Cl -ml)@y·/t + y.n®(yll..i.Cl -m2)-e.l~ yll x Yll + Vse1f} ~ = 0 (10) 
II ll.l(.l.. 

Here we always write in the tensor product the spin matrices and indices 
of the particle 1 first, those of the second particle second, e.g. 
y x yll. Further, nll is a time-like four-vector and ~~ = [«XI-X2)·n)2 -
(~1~X2)2] is the relativistic distance. We can choose nll = (1000), then 
~l =~'. Self energy terms Vse1f we shall explain later. Equation (10) 
is fully covariant, and more importantly contains a single time. In 
order to see this we introduce center of mass and relative coordinates by 
the usual transformations. 

and obtain the equation 

where rll = ayll @y • n + (l-a)y. n ®yll 

gll = yll@y. n _ y. n@ryll 

R 

o (11) 

Now we see indeed that component of gll parallel to nll vanishes identi­
cally. In fact separating all four-vectors into a component parallel to 
n~ and another perpendicular to nll, e.g. 

+ V self} ~ = 0 (12) 

~I is the Hamiltonian 

Or, for nll = (1000), 

o 

(13) 

For Coulomb problem the operator 

8 = ~ Eo 

has a simpler spectrum than Po = H itself: 

(15) 
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~namical Symmetries. For a fixed center of mass momentum E(e.g. 
E = 0), the operators ~, ~p are in the Lie algebra of SO(4,2), the well­
known dynamical group of the H-atom without spins. The coefficients 
a·E, g, (m1 i3 1 +mzi32), a 1 • a 2 , ••• are in the Lie algebra of the tensor 
product of two Dirac representations of SO(4,2). Thus, the full dynamical 
group of the two-body problem with spins is, as expected, SO(4;2)orbital 

G0 SO(4,2)Dirac ® SO(4,2)Dirac • 

Neglecting self-energy terms Vself which for atoms contains small 
terms like Lamb-shift and spontaneous emission, we can pass easily to 
the limits of first to one-body Dirac equation, then to spinless case, 
and finally to nonrelativistic Kepler problems. 

If one of the particles 
the Hamtltonian of the first 
Po = Po 1) + m2 

. (2) (~) m1 
1S heavy, m2 + co, Yo - 1, Y + 0, a= /M+O, 
particle in the center of mass frame with 

(15) 

i.e. the one-body Dirac Hamiltonian. 

Furthermore, eq. (11) written concisely as 

° (16) 

~'ihere i~ is a matrix, is an infinite-component wave equation which, as is 
also well-known, describe composite systems realistically. 

To summarize, the dynamical group approach to quantum systems, in 
particular the infinite component wave equation, can be derived from 
first principles from an underlying electron dynamics field theory. In 
this way the parameters of the infinite component wave equations are 
determined in terms of the masses and coupling constants of the basic 
constituents. 

Finally we remark that the full dynamical algebra of our system (13) 
or (16), when the generators of the Poincare group PO'P1 ••• are 
included, will be an infinite-dimensional algebra of the Kac-Moody type. 
This is because, for a composite system we have a highly reducible repre­
sentation of the Poincare group representing the infinitely many mass 
and spin states, and the generators of the dynamical group connect these 
different mass states. 

From Microscopic Symmetry t~ Macroscopic Symmetry 

The previous method of deriving equations for 2-body system from 
field theory can be extended to 3 or more particles. But which many 
body systems do actually lead to stable (or nearly stable) bound states 
is a question of the sizes of the parameters; the stability of atoms 
depends on the nuclear charge Z, for example. 

But a new situation occurs when we go from atoms to molecules. Con­
sider the simplest molecule H2 consisting of two hydrogen atoms. It does 
not seem to be possible to understand H2 starting from a 4-body Schrodinger 
equation representing two protons and two electrons. Rather, as we have 
already mentioned, we have spontaneously broken the permutation symmetry 
for the two-protons, that is "separate" the two protons and apply quantum 
mechanics only to the electrons. The Born-Oppenheimer method fixes the 
positions of the protons, treats the two electrons quantum mechanically, 

9 



and then considers the small oscillations of the two protons separately. 
In doing this we take into account that a molecule is a definite single 
objective quantum system, and not a probability distribution. The 
individuality of quantum systems is established, I think, at this level. 
Another way of expressing the Born-Oppenheimer procedure is to say that 
the distance R between the protons obeys at first a superse1ection 
rule, i.e. it is not quantized. After solving the problem with fixed R 
we allow for oscillations of the protons around their center of mass 
but without mixing. In fact it is possible to treat the two-body problem 
in quantum mechanics without quantizing the center of mass: only relative 
coordinates are quantized; one obtains the same result as the usual theory. 
Super-selection rules are the proper way to deal with nonquantized 
dynamic variables. 

Continuing further from molecules to more complex systems, I have 
discussed in "Symmetry in Science II" the question whether we can derive 
crystal symmetry from first principles, i.e. from an N-body Schrodinger 
equation for ~(Xl ••• XN,Rl ••• R ) for N electrons and M nuclei. The answer, 
I believe, is no. The positi~ns of the nuclei, i.e. the crystal symmetry, 
h are determined by essentially classical equilibrium or group theoretical 
arguments. The large permutation and rotation symmetries of nuclei is 
broken down to a smaller crystal symmetry. But once crystal symmetry is 
given, we can then quantize the electrons in this given environment in 
which the electron clouds spread and mix. 

These are, I think, limitations to the unquestioned use of quantum 
rules to the structure of matter. 

IV. The Extrapolation of Electrodynamics to Short Distances 

We have discussed the formation of two- or more-body bound states 
in electrodynamics corresponding to atomic and molecular structure. In 
these instances the dominant force is the mutual interaction between the 
particles; the self-fields give for these states only small corrections 
(Lamb shift, spontaneous emission). The size of the atomic structures 
are determined by the constants: m(mass of the electron), a(fine structure 
constant), c: and IT , and nuclear charge ~. 

There is, however, a second regime where the self potentials dominate 
and the mutual forces between the particles are small corrections. To 
see this we go back to the general action (7). The self-interaction terms 
are: 

self 
W 
int 

e~ fdxdy ~l(X)Y~~l(X) V(X-Y)~l(Y)Y~~l(Y) 

+ e; fdxdY~2(X)Y~~2 (X)V(X-Y)~2 (Y)Yjj1/!2 (y) (17) 

When we pass to the composite field ¢(X1X1) defined by eq. (8), we can 
evaluate the self potential Vse1f in eq. (10) and rewrite eq. (10) now 
completely as 

where the self-potentials are given by 
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(2) self d d - rY\ A (Xz) = J Z 11. V(Xz-u)¢(z,u)Y'n~y ¢(z,u) 
]J 

In the center of mass frame, the Hamiltonian form of (18) is 

{ + + + + + + } Ul'(Pl-elAl)+Slml+aZ'(pz-ezAz)+S2m2+elVl+e2V2 ¢(Xl,X2) 

E¢(Xl,X2) (19) 

where 

+ e2 d z e1. + + 
Al =:z )[ - :z J dzdu V(xl-z)¢ (Z,U)Ul¢(Z,U) 

+ J dzdu V(X2-Z)¢ (Z,U)d2¢(Z,U) 

+ J dzdu V(XI-Z)¢ (z,u) ¢ (z,u) 

+ J dzdu V(x 2 -z)¢ (z,u) ¢ (z,u) 

Equation (18) is exact from the point of view of our classical 
relativistic self consistent field theory, and from the point of view of 
interpreting W as an objective representation of electronic matter. But 
equation (18)-(19) are rather complicated. We write it for the case when 
one of the particles is very heavy. as in H-atom, and its field is repre­
sented by a fixed external Coulomb potential. 

This is now a single nonlinear integrodifferential equation for a single 
particle in an external field. If the self-energy term on the right hand 
side of this equation is treated iteratively, around the stationary 
solutions of the external field problem, then it is possible to obtain 
all the radiative corrections of quantum electrodynamics, i.e. 

(~) spontaneous emission 
(li) Lamb shift 
(~) vacuum polarization 
(~v) anomalous magnetic moment. 

without second quantization of fields. Thus quantized electromagnetic 
field on the one hand, and self-field on the other hand are two dual ways 
of dealing with radiative processes. But now we can extrapolate eq. (20) 
to short distances, whereas we cannot do this in the perturbative QED-­
it would mean to be able to sum infinitely many Feynman diagrams. 

Nonlinear equations of the type (20) have another regime in which 
the nonlinearity dominates over the external field; we may get new type 
of solutions corresponding to a self-focusing, or self-organization of 
the system. Such localized solutions are known for equations having 
soliton solutions. It has then been conjectured that electrodynamics 
should exhibit a phase transition at short distances to new ~el!-organized 
states. To be more specific the elect:ron-positron system (e ,e ), for 
example, which we know to form the atomic positronium at large distances 
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due to mutual interaction, should also form new states at short distances 
due to their own self fields. Now one of the effects of self energy is 
to give to the particles an anomalous magnetic moment whose value depends 
on the external field itself, self-consistently. In many models with an 
anomalous magnetic moment it is possible, in fact to show that new states 
of (e+e-) occur at distances of the order of the classical electron 
radius (aim), which is also the typical lEdronic distance. The masses of 
such states are multiples of 2mla - 140 MeV. 

This basic idea of a phase transition in QED at short distances gives 
us a possibility to re-examine the new particles, heavy leptons, mesons 
and baryons, as new composite states of electromagnetism. Although the 
dynamics is difficult and not completely solved, it is possible to 
completely understand the kinematics, that is the classification of 
particles and their quantum numbers on the basis of two fundamental 
absolutely stable particles only, the electron and its neutrino. All 
other particles, according to this view, are composite and unstab1e--but 
two of them apparently with an extremely long life-time, proton and 
muon-neutrino. 

V. The Symmetries of the Electron 

Finally, I discuss some new results concerning the structure of the 
electron itself, the most fundamental of all particles (see Sect. IV). 
It is in the structure of the electron that we must look for the origin 
of the many rather mysterious qualities of the electron; the spin, the 
charge, P;mli exclusion principle, the existence of antiparticles, and the 
existence of its partners, electron neutrino on the one hand and heavy 
leptons (]1,T) on the other hand. The electron, for all these properties, 
is more than just a point particle, or an irreducible representation of 
the Poincare group. Most importantly, the symmetry between heavy leptons, 
that is the identical behavior of e, ]1, T leptons excepting their 
mass, seems to defy any explanation so far. This problem is known as 
the existence of three families of leptons each with their own neutrinos. 
In standard models all these leptons are assumed to be elementary. The 
structure of the electron and its self field may give us a possibility 
that these heavy leptons are in fact in some sense "excited states" 
of the electron itself. 

An intuitive picture of the Dirac electron can be obtained by a 
classical model which gives us very naturally the origin of spin and 
antiparticles; it may also lead to "excited" states. This classical, but 
of course covariant, model is most simply described in terms of an in­
variant time parameter T by two pairs of conjugate variables: (X]1'~~' 
the usual coordinates and momenta, and the internal_spin+variab1es (2, z), 
where 2 (T) are classical 4-component spinors with Z = Z yO its injugate. 
The thegry is defined by the action 

(21) 

up to a total time derivative. It is thus formulated on a larger phase­
space but it is a symplectic Hamiltonian system. The two fundamental 
constants are A, with the dimension of action, and e • (c=1). The mass 
enters later as the value of the integral of motion H = zy]1Z(p -eAv) , the 
"Hamiltonian with respect to T" (or the mass). When this thegry is 
quantized--either canonically by replacing Poisson-brackets with commu­
tators, or by a Schrodinger quantization, or by a path integral quantiza­
tion--one obtains the Dirac equation. But the concepts of spin and anti­
particles are already present in the theory (21) as follows. If we solve 
the equations of motion resulting from (21) for a free particle, we find 
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that the natural motion of the particle in space time is a helix, around 
a fictitious center of mass which moves linearly like a relativistic par­
ticle. The frequency and radius of the helical motion are 2m and y,m, 
respectively. Now the spin of the particle turns out to be simply the 
orbital angular momentum of the helical motion with respect to the center 
of mass. Furthermore, particles and antiparticles correspond to the 
positive and negative frequencies of helical motion, or right and left 
helical motions. 

We thus see that such a microscopic dynamical system as described 
by eq. (21) has many remarkable symmetry properties which are then trans­
formed to complex systems that they form. We should like to emphasize 
that no "force" is necessary to keep the particle in a helical path. The 
existence of internal variables does it automatically. This is a beautiful 
example of Heinrich Hertz's "forceless mechanics," where a geometry in a 
higher dimensional space implies forces in ordinary space-time. Another 
way to put this is to say that electron has other coordinates than just 
position and momenta. 

It remains to be seen whether the internal structure of the electron 
can give us a deeper understanding of the existence of the heavy leptons, 
and why every lepton comes with its own neutrino. 

CONCLUSIONS 

The electrodynamics has been, since its conception over a hundred 
years ago, a most enduring theory. It has unified an enormous range of 
phenomena under one simple set of laws. These are the hallmarks of 
true scientific knowledge: general validity, extreme simplicity, freedom 
from arbitrary parameters. Quantumelectrodynamics is rightly called the 
best theory that physicists have ever built. In contrast the current 
formulations of the physics of nuclei and particles have shown such as 
complexity, hundreds of fundamental objects, many new forces and models 
with dozens of parameters, that we are undoubtedly far from a basic 
understanding of these phenomena. It is generally believed that these 
phenomena have nothing to do with electromagnetism. 

In this essay I have tried to show not only the central role of 
electromagnetism in our understanding of the structure of all ordinary 
matter, but also the exciting possibility that the behavior of electro­
magnetic interactions at short distances is very likely to be quite 
different than at large distances, and that they undergo a phase trans­
ition and might very well explain the occurrence of multiples of new 
particle states at high energies. Simplicity may again be restored as the 
most important feature of the scientific endeavour. 
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