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Abstract 

We review the basic principles and results of a formulation of quantum- 
electrodynamics based on the'self-energy of the electron, rather than quan- 
tized fields. The applications include relativistic spontaneous emission rates, 
the effect of cavities on Lamb-shift. spontaneous emission and Casimir- 
Polder forces. We also review the relativistic two-body equations including 
radiative processes with applications to hydrogen, muonium and posi- 
tronium spectra. 

1. New approach towards testing radiative processes 

The traditional way of testing QED-effects (Lamb-shift, 
anomalous magnetic moment, etc.) consists in calculating 
higher and higher order Feynman graphs for an isolated 
quantum system (H-atom, electron) and compare the results, 
after renormalization, with experiments. We seem to have 
reached the limits of such a procedure, because the effects of 
the apparatus, the change of the properties of the system in 
the external field of the measuring apparatus, and the errors 
in the calculations in the nth order, say, are all bigger than the 
whole (n + 1)th order to be calculated. There seems to be no 
reason therefore to go on with perturbation theory. On the 
other hand, discrepancies still exist between the theory and 
the experiment in almost all the tests of QED. It is therefore 
appropriate to try to take into account these effects and 
others in a non-perturbative way. 

In the (g - 2)-experiment for the electron, for example, 
the effect of the cavity surrounding the single electron may 
have already been seen [I].  Furthermore, the anomalous 
magnetic moment (g - 2) for the electron is not a constant, 
intrinsic property of the electron, but a quantity which 
depends self-consistently on the state of the electron, hence 
on the external field itself. Moreover, the quantum systems, 
like an atom, do not have, strictly speaking, a discrete spec- 
trum, due to centre of mass motion and due to radiative 
processes. The incoming and outgoing fields used to make 
measurments are not necessarily plane waves. All these effects 
can be taken into account fully in a natural way in the 
quantum-electrodynamics based on self-energy. This for- 
mulation of quantum-electrodynamics parallels the classical 
radiation theory, and makes fewer assumptions than QED. 

2. The hasic ideas 

Here D ( x  - y )  is the Green's function of d'Alembartian 0 
in the environment of a cavity, free space, or a temperature 
bath, etc. satisfying appropriate boundary conditions (see 
below). If there are external fields whose sources are far away 
or whose sources are not dynamical variables, they may be 
introduced as given non-dynamical external fields A;' in 
eq. ( I )  in the form of an homogeneous term. 

The next step is to insert eq. (1) into the Dirac (or 
Schrodinger) equation and study the resultant non-linear- 
integro-differential equation 

(-$' i8, - m)$(x)  = ey,AT'(x)$(x) 

+ e ? ~ w x )  j d . w  - . v ) $ ( Y ) Y ~ w ) ,  (2) 

where A;;' is a given function as we noted. 
We introduced $(x) as a "classical" field, but of course it 

is a complex field and the Dirac equation contains h already, 
so that "classical" here means, not second quantized, not an 
operator-valued field. In fact, we shall see that i t  is not 
necessary to quantize the $-field, nor, because we have elim- 
inated it, the A,-field, at least for one or few-body problems. 
For genuinly infinitely many particles, it is convenient to use 
the formalism of second quantization. 

The important thing about the "classical" electronic field 
$(x) is not so much its value at a point x, but its frequency 
content, that is its Fourier transform. We already know from 
the theory of the H-atom that the $-field, due to the natural 
boundary conditions in the atom, contains discrete and con- 
tinuous frequencies, although it is a classical continuum field, 
like a classical membrane or shell. Furthermore, atomic tran- 
sitions with external fields are resonance phenomena of these 
natural frequencies of $, with the frequencies contained in the 
external fields. We therefore look now at these natural 
frequencies in the presence of the self-energy by performing 
a Fourier analysis of $: 

$(x, t )  = 2 i n ( x )  (3) 
n 

Here the sum may also contain an integral over continuous 
frequencies. 

We insert eq. (3) into ( 2 )  and carry time-integrations. We 
further multiply the resultant from the left by I,!I~(x) and 
integrate. The result is 

We start from the coupled Maxwell and Dirac (or Schrodin- 
ger) equations and treat $(x) as a classical field describing the 
electronic matter. We next eliminate the electromagnetic field 
A,, replacing it by the matter current j , , (x )  = e$y,$, that 
produces it, using the equation 

. ! d3x q n ( x )  (r0& - ? * P - eAE;" - m>$,(x)  

= 1 d3 ~ 1 7 / , ~  @ ) ; ~ f i  $,pz (x)A;;"'(x, E,, - E,,,) ,,, 
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3. Results 
3.1. Spontaneous emission 
The rate r,, of the spontaneous emission of a level in) is 
related to the imaginary part of the energy shift AE,, by 
r = - 21m (AE,).  From the third term in eq. (4) we obtain 
immediately 

r = -e2 g j d3.4n(x)Y"s(4 j d3Y$,(Y)?&(Y) 
s < n  

x - [6(E, - E,, + k) + 6(Es - E,, - k)] {k 
- 1 

Here Ay' (x ,  E,, - E,) is the Fourier transform of a time- 
dependent external field with frequencies U,,, = E, - E,,,,,, 
We have further used the causal Green function 

to take into account the proper propagation of antiparticles 
and particles in a relativistic theory. 

In the absence of the external field and self-energy, the 
right-hand side of eq. (4) would be zero and then the Fourier 
coefficients $,,(x) in eq. (3) would be the eigensolutions of 
$(x) in a fixed time independent external potential A y t .  How- 
ever, I),(x) are not the exact stationary solutions of the 
system. The first term on the right in eq. (4) tells us which 
states i n ' s  are coupled together by the Fourier components of 
the external field. Then we have the self-energy terms. The 
three self-energy terms on the right of eq. (4) proportional to 
e2,  can be interpreted as the energy shifts due to vacuum 
polarization, spontaneous emission and the proper real Lamb 
shifts, respectively. We expect that their observable contribu- 
tions will be small, if e and nz already describe the physical 
values of the charge and the mass of the electron. So the sums 
and integrals here must be properly defined or regularized as 
we shall see. We also expect that only those terms in the 
self-energy sum can contribute to observable effects which 
couple diferent states I),, # I)m or I)s, as in the case of the 
external field. The terms with I),, = I)s or I),, = I )m, respec- 
tively, are the diagonal terms in the {I)n)-basis, and can be 
absorbed in the definition of m. 

The system (4) can be solved by iteration for the self- 
energy shifts. We now set A y ' ( x ,  E,, - E,,,) = 0. In the first 
iteration, we take I),l = to be the solutions of the external 
field A;;"-problem, and E,, = ELo) + AE,. Then the left-hand 
side of eq. (4) is just AEn, the shift of energy from E:'' which 
is then given by the three last terms on the right-hand side of 
eq. (4) with $,'s replaced everywhere by I)$'. If there is need 
the iteration procedure can be repeated. 

This completes the calculation of all radiative processes in 
the case of a single electron in a time-independent external 
field, e.g., the H-atom. All processes, spontaneous emission, 
vacuum polarization, Lamb shift, anomalous magnetic 
moment, are calculated within a single equation together. 
Non-trivial properties of the cavity and the external varying 
fields are all implicitly contained in the basic equation (4) as 
we shall see. 

The sum here goes over all states which lie lower than the 
state In). It follows that only ground state of the system is 
stable; all others must decay spontaneously. 

We have evaluated eq. (6) exactly for relativistic Coulomb 
problem [3]. The spontaneous emission in H-like system is 
not yet among the precision tests of QED, which may be due 
to experimental difficulties or due to the lack of precise 
theoretical numbers. Up to now only the non-relativistic 
dipole approximation seems to be used. We have now precise 
relativistic numbers which, although do not differ much in the 
case of H from non-relativistic values, could be very different 
for other relativistic systems, like high Z ions, or (e-p+ ), or 
mesonic atoms. Table I shows some decay rates for hydrogen 
and muonium (ecp+) .  

3.2. Vacuum polarization and self-energy contributions to 
the Lamb-shgt 
For the Lamb shifts the second and the fourth terms on the 
right-hand side of eq. (4) have been studied to all orders in 
(Za )  using relativistic Coulomb wave functions and without 
the dipole approximation [4,5]. The new feature here is a sum 
over the infinitely many continuous Coulomb states I),. This 
is the source of the ultraviolet divergence of quantum- 
electrodynamics. In the limit to free particles (when $, are 
plane wave free particle Dirac wave functions) the sum 
corresponds to the loop integral. The infrared divergence 
does not occur in our case, since we are using localized 
Coulomb wave functions and there are no virtual photons 
present in our calculation. If we analyze carefully the sum 
over the continuum by a method using a Mellin transform in 
the energy plane we can naturally separate and regularize the 
poles which give spurious infinites to our sum. When this is 
done, the energy shift can be expressed as a sum of residues 
of physical poles in the Mellin transform plane. The contribu- 
tion of the first pole is proportional to ( Z X ) ~  multiplied with 
a finite integral which has to be evaluated numerically. 

3.3 Cavity quantum-electrodynamics 
The effect of cavities on the radiative processes can be con- 
siderable and is now accessible to exeriments. In fact, many 

Table 1. Spontaneous decay rates r 
Hydrogen Muonium ( e - p ' )  

W P ,  2 + 1s' 2 )  2.0883 x loas- '  2.0794 x lo's-' 
r(2P32 + Is1 2) 4.1766 x lo's- '  4.1587 x lo's- '  
W P  --t 1SI2)  6 2649 x lo's-' 6 2382 x lo's- '  
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interesting recent experiments have demonstrated these 
effects. As mentioned in the introduction, our formalism 
contains these effects implicitly from the beginning by simply 
inserting for the Green function D(x - y )  in eq. (2) the 
Green function appropriate for the cavity in the experiment. 
The cavity Green functions in simple cases (parallel plates, 
sphere) can be constructed by the method of image charges, 
for example. 

The rate of spontaneous emission in cavities can be 
enhanced or inhibited depending on geometry. We have given 
the general formulas for various geometries elsewhere [6] .  For 
example, between two parallel plates of spacing L, the rate of 
spontaneous emission is zero for L between L = 0 and 
L = 3,,/2 = half the transition wavelength; at L = i0/12, the 
rate A jumps to 3/2A0, where A ,  is the free space rae, and then 
decreases to the value A ,  as L --t CO. This behavior is in 
agreement with experiments [7]. 

Using the same procedure we have also calculated the 
effect of cavities on the Lamb-shift and on long-range 
Casimir-Polder forces [8] in agreement with other calculations. 

The new features of the present approach are that the final 
formulas, eqs. (4) essentially, are the same for relativistic or 
non-relativistic calculations (only the appropriate form 
factors for the atoms are different) and the calculations are 
performed on the basis of self-energy alone, without vacuum 
fluctuations or field quantizations. 

4. Relativistic two-body quantum-electrodynamics 

The accuracy of experimental tests of QED is such that 
relativistic and recoil corrections are important even in such 
a system as H-atom with ( = m, These 
corrections become more important for muonium (e -  p+ ), 
whereas a system like positronium must be treated fully 
relativistically. At present recoil corrections in hydrogen and 
muonium are taken into account perturbatively in the ratio 

While the application of QED perturbation theory to a 
problem like (g - 2) is purely mechanical, the test of QED 
for bound state problems requires an initial wave equation 
with some potential, and the choice of such a starting 
equation has been more or less an “art” [9] up to now. We will 
now show that the method of elimination of the electromag- 
netic potential A,, provides a closed covariant two-body 
equation. The method can be further generalized to more 
than two particles. 

and $2 coupled together by the 
Maxwell-Dirac action, 

= 5.446 x 

mi 1 4 .  

We start with two fields 

- iFilvF”’ - ( e l $ l ~ p $ l  + e 2 $ 2 ~ p $ d A , }  (7) 
The potentials A,, can again be eliminated by eq. (l), except 
that the current j ,  is now the sum of the currents of the two 
fields 

I p ( X )  = ~l$l(X)Y’$1(4 + e2$2(x)”y‘Am) (8) 

- ( dxF,,, F,’ = + i dxA,(x)j”(X) (9) 

Furthermore, by a partial integration, we can also express the 
third term in eq. (7) as 

Whence the action (7) can be written in an “action-at-a- 
distance” form 

W = ( d x  {$i(yi‘i8p - ml)$,  t $2(“Yid, - n ~ , ) $ ~  

We must now specify a variational principle. We could vary 
the action W with respect to individual fields $, and $2 

separately. This results in non-linear coupled Hartree-type 
equations for these fields. Instead, we propose a relativistic 
configuration space formalism [IO]  to take into account 
the long-range quantum correlations. We introduce the 
16-component composite field 

@(XI, X2) = $,(Xi>$*(-??). (1 1) 

The action can be written in terms of the composite field 0. 
In order to do this we multiply the kinetic energy terms with 
the normalization integrals f $T$2 dy. We have to do this 
twice also on the self-energy terms (terms with ei = e j ) .  
Having expressed W as a functional of 0, we vary it with 
respect to 6. The result is a wave equation for CD of the form 

((“r’fLPlp - m , )  0 ?”% + ?‘n,, 0 (Y”2, - m*> 

0 y”Af’f(2)) O(X, y )  = 0 (12) 

The notation is as follows. In the spinor direct products, like 
7 ,  0 y’, the first factor always refers to particle 1, the second 
to particle 2 .  The vector n is a unit normal vector perpen- 
dicular to a space-like surface and d is the relativistic distance 
d = ((n - (x - Y ) ) ~  - (x - y)*)>’ 2 .  The physical results are 
independent of the choice of n. For n = (1000) we get d = r 
and 7 n = y o .  The radiative self-energy potentials are given 

A;lr(l) = / dz du D(x - Z)$(Z, U)?, @ jl’n,@(z, U) 

Ai,!‘(2) = [dz  du D ( y  - z)@(z, u)y’n, 0 y,@(z, U) (13) 

They represent the spontaneous emission, Lamb-shift, etc. 
corrections to the relativistic two-body problem. Equation 
(12) is a one-time equation. 

The Hamiltonian form of eq. (12), after we introduce the 
centre of mass and relative coordinates, is 

Po = H = r - P + H,,, - +e:(ATI‘(I) - al  A”“((1)) 

by 

-+e:(~r“(2) - a2 * ASelf(2)) (14) 

where r - Pcorresponds to the kinetic energy of the centre of 
mass with 

r = aaI + (1 - a)a,, a = ml/(ml + m z )  (15) 
and 

(P = PI - P 2 )  (16) 
is the relative Hamiltonian with mutual interactions of par- 
ticles 1 and 2. The relative time automatically drops out in 
eqs. (12) or (14). The total Hamiltonian also contains the 
self-energy terms which we have written separately. These 
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latters involve however non-local and non-linear potentials Muonium Hfs z AEHfs = 
given in eq. (13). 

We have thus succeeded to have a closed covariant two- 
body equation that even includes the radiative effects in a 
non-perturbative way. The recoil effects thus are included to 

Positronium n = 2, : AE21 = 
= transition 

all oiders, as well as all the binding effects to all orders of 
(Za) .  The covariance properties of eq. (12) have been dis- 
cussed elsewhere [ I l l .  In the Hamiltonian form (14), the 
centre of the mass kinetic energy and the relative energy are 
simply additive. This is a property of the spinor Dirac parti- 
cles; for scalar particles such a neat separation is not possible. 
Equation (12) has two important limiting cases. When one of 
the particles is heavy, m2 + E, we may recover eqs. (2) and 
(4) of a single particle m, in the Coulomb field of the other. 
When we treat, in the other extreme, the mutual potential 
perturbatively, i.e., when we replace everywhere and I)~ by 
plane waves, we recover the Feynman diagrams with self- 

4463.0601 MHz 
(exp. 4463.302) 

2Ry - 0.468093 a2Ry. 

The self-energy effects we propose to evaluate by iteration: 
the first order wave function CD will be put in eq. (1 3) and the 
resultant potentials A r t r  evaluated; we then use these poten- 
tials as perturbation to the energy levels. 

Up to the order calculated so far our results agree with 
perturbation theory. But everything is obtained from a one- 
time relativistic wave equation which in closed form contains 
all radiative effects as well. 
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