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The formulation of a fully reiativistic, in fact covariant, two and many-body

equations, in quantum electrodynamics, and in general, is still an important and

open problem, it is also a nueeasary Liisk if wish to describe the interactions and

self energies of fully rc-lnt.i viatic ay it emu such as positronium. For example, we

do not have at prcsenl, Lo my knuwl>M;;e, an adequate formulation of Lamb-shift, in

positroniuua using positronium wave functions, that is to all orders In i'/a).
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ABSTRACT

The covat-iance properties of a two (or raore)-body equation which has

been recently derived from field theory and applied to the precision tests of

QED-bound state problems are established.

MIBAHAEE - TRIESTE

July 1986

There exists a global covari ;iu i. approach to relativistic dynamics in the form of

infinite component wave equations, as has been used extensively to describe

relativistic H-atom and ha-ir;>nj. These equations are in the simplest cuse of the

form

(r"p = 0

where P is the total momentum of the sy.-;tea, and f and K are operators if.

the internal coordinates of tint system, e.g. differential operators with respect to

the relative coordinates r, or infinite-dimensional matrices in the case of a

discrete basis for the internal degrees of freedom, hence the name "infinite-

component wave equations" [l], However, when such equations are postulated, we

would like, in addition^ to connect them with the microscopic properties of two or

more physical, particles that we think are the constituents of the system. It is

known that given an equation of this ty.-n {"&•) leading to a certain mass spectrum,

the introduction of internal coordinates is not unique [2], Hence, equations of

this type should be complemented by a direct microscopic approach which takes

fully into account the spin properties of the constituents. Furthermore, in a

precise theory like quantum electrodynamics, whsre we know the minute details of

the interactions involving fine-, hyperfine structures, Lamb shift and vacuum

polarization, it is very difficult to guess the form of the operator K. which

would include all those effects, although a large part of it has been accomplished [3]
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i'lil1:-. •"' iuVinLl r:-.vi;;)lion._-nt wrJi: L-qmlt 1 on:. havi: nice covariance p rope r t i e s , simple

rtConiL:!,--!-- Interpretat ion: ; , and uru easy to work v l t h , i t it; important to obtain

llicin from a f ield theory or' ini croacopic i n t e r ac t ions , and to be able to t r ans l a t e

both theor ies into O;IC:J other,.

There arc many approaches to the microscopic r e l a t i v i s t i c two-body problem as seen

from the contr ibutions to t h i s con^eronOG. I sha l l describe an approach which i s

based on the f i r s t quant; zed quantum electrodynamics, tha t i s on coupled Maxwell-

Dirac equations. A -uvariant. tvo-body equation can be derived from such a f ie ld

theory by a va r ia t iona l pr inciple which has many nice proper t ies tha t we generally

require from a wave equation, and which, moreover, i s qui te accurate in i t s

appl icat ion t o tiKD-bound s t a t e problem.-.;, such as the positronium. The theory can

be f^cneraliaed to three or more pa r t i c l e s a

The wave etjuut it::i is

(i)
( 1 )

( 1 )

\{ y P-. - m, ) (J) v • !• + T • n (x) ( y p,j lu 1 ^ ' \j» • T t ̂

( 1 )

a e i^
Ik r

v
mag

V
rad

xn ,xj
1 2

= 0 ( 1 )

CD (2)
The notation is as follows: are the Dirac spinors for each particle,

a unit vector which vi; shall discuss below and y
P 1/2
x"]

n n ; t h e
2 P 1/2 •

Invariant distance r = [(x-n) - x"] = ^x^, (length of the component of the

re la t ive coordinate x = x - x. perpendicular to n) c The f i r s t r e l a t i v i s t i c
1 '

potent ia l s c

equations, V
mas

comt's from the minimal coupling in the Maxwell-Dirac

comes from the Paul i. coupling in the Maxwell-Dirac equations,

and V comes from the self-energy terras also present in the Maxwell-Dirac
rad

equations, as we shal l indicate . The wave function $(x ,x ) i s the analogue of

tlie nonre la t iv i s t ic conf i-^i.jration :->paee wave-function. Eqo ( l ) is actually a

one-tima equation, since i t turns out automatically tha t * does not depend on the

para l le l component of the re la t ive coordinate x^ = (x*n)n. We shal l always

write in the direut product of spin tensors pa r t i c l e 1 f i r s t , pa r t i c l e 2 second;

© Y „ = Y * T u ' Ii'"!-lr-e U i - o m . i t t h o s u p e r s c r i p t s ( l ) a n d ( 2 ) .

Eq. (1) is moat directly derived from the action of quantum electrodynamics for two

Dirac fields ^-.(x) and tK-,(x) (I4) , [ 'j 1 „ In the derivation below I shall give and

emphasize the relat i vi:-.Li:; c.y/nri.'mef'. The action W in

H
(O (:>)

•* M V J
(2)

We eliminate A and Y from this action usinf, the solutions of the Maxwell
u uu

equations

dy Div(x-y)j
V(y) - (3)

The argument of the S-function in D(x-y) car be decomposed in a general way as

<5(x-n) - r, ) ± i(x.n) + r. )
(x-n)' - x^

This is one instance where a vector n enters, namely when "time" is measured in

the direction of n , the distance from the light source is measured by r. . There

is a second, related, place where a vector n will enter into the theory, namely,

in the normalization of the wave functions,

I1 —
do n ipy ̂  - 1

Here do is the volume element on the space-like surface perpendicular to n^.

We need such a vector n in these two places (3) and (It), although its choice
(11 (2)

is arbitrary. 3ote further that we can choose the Dirac matrices ylJ Y also
' P

arbitrarily.

It is important, in the discussion of the covai-iance of quantum equations, to

emphasize that the Hilbert space of states i:; defined by a foliation of the

Minkowski-space into space-like surfaces I for each invariant time parameter T.

On the other hand,Lorentz. transformations map solutions of the wave function

i|i(t,x) into other solutions /( t ' . x 1 ) , but not in general a state into another

state. Transformations in the space of solutions in the Minkowski space are not

the same as the transformations of one state into another on a space-like surface

£ . The occurrence of n in Eq. (l) tells us how vt: normalize our states, Eq.(lt),

and how we calculate the field produced by the current of the particle in a

definite state, Eq. (l) is covariant in the sense that for a different observer

we have also to transform n like a It-vector, so that we have the same form of

the equations as seen from a. different frame. Since observed quantities are

independent of the choice of n in EqsL (3) and (It) ve expect also the observable

quantities following from Eq.. (1) to be independent of n, such as the spectrum

of bound states and transition probabilities Let me first Indicate how Kq. (l)

is derived from the action {?). Ve insert the solution (3), and the corresponding

V , into Kqo (2) and multiply each kinetic energy term in {?) with the normalization



condition (li) of the other particle, and obtain Cor the ktn.vt.ii- anerrj •uid mutual

interaction terms

f - !1) _ (2) - (1) - ̂
W = dx do

i

The terms i ̂  J and i = J will bo treated separately.

I'he interaction term:; in (5) are such that two states i|/. (x ) and ifi.(x )

contribute to the action only if x and x^ are l ight-l ike separated:

(x - x )^ = 0. Similarly, ue can arrange the kinetic terms such that x and

x are also li ; ;ht-like separated. At each point x , the f i rs t term in (2) is

multiplied with a suitable normalization integral of part icle 2 depending on

x . In this way, and with suitable change of variables, W is a seven-dimensional

integral.

We now define the configuration space wave-functions

(6)

I t will turn out that the equation for 4>(x ,x ) automatic ally reflects that the

configuration space is actually seven-dimensional and not eight. Our functions

4\ (x ) , 'i (x ) are a l l c-numbers, hence we can write the action M in terms of

•t and <t;

W = X \,

°1H2 ' r± J * U V

Now the variation of this action with respect to

wrote at the beginning.

(7)

* givea the equation (l) that we

The significance of this variational principle should be stated. Whereas the

variation of the action W with respect to individual fields if, (x ), i/Ar )

leads to coupled nonlinear equations of the Hartree-type, the variation of W with

respect to 4> lejids to a. linear equation. After the variational principle the

solution of the configuration space equation (l) for <t is no longer factorizable

into a product (iji (x)'i(i (x)} although to derive it -we have started from the

product form (6K This is because the latter variational principle is weaker than

the I'irjt, and reflects the nonlocality of the quantum two-body configuration space

equation. This in the :;ami; situation as in nonrelativistic quantum mechanics.

- 5 -

T . h e d i f f e r e n c e h e t w e e n H a r t r e e - e q u a t i o n s a n d i ' o u I ' l ^ u r n t . i o n r . p . - i r i > <- - . j u n t i o i v : L . ;

experimentally observable. Hence i t seems that we must take the variational

principle for * as one of the additional basic postulates of Quantum Theory when

going from a single particle to two, or more, part icles .

For identical particles we shall proceed again as in non-relativistic quantum

mechanics, namely choose solutions which are antisymmetric under the exchange of

two part ic les .

The treatment of the Pauli-coupling term in the action is slightly more involved

but is essentially similar[5],[6] and we do not need to go into it here. But the

treatment of the self-energy terms is more subtle, interesting, and for many reasons

essential for the whole theory. Consider one of the terms

xdyijj (x)v i>, (x) D(x-y)ijj (y)y 4\ (y)
1 1 1 u 1

We multiply this expression twice with the normalization (k) of the second field

and change variables such that it becomes

\ el dxdydzdu v iji (z )

Or, in terras of t he composite f i e ld t , Eq. ( 6 ) ,

1 = C dzdu D ( X - Z ) * ( Z , U ) Y <&yn*U,u) •

Thus, the v a r i a t i o n of the ac t ion W with respec t t o $ gives f i n a l l y t he

nonlocal or nonl inear term in Eq. ( l ) ,

Vrad
d z l i u

"n © dzdu , u ) "JJ -n (8)

Self energy terms therefore Introduce self-consistent nonlocal potentials Into our

equation as ve expect. These terms have been treated for Lamb-shift and spontaneous

emission in the Coulomb field [7],[8],[9], and In the above covariant form will be

applied to the Lamb-shift problem for positronium.

We now introduce the relative and center of mass coordinates and momenta by

p. = aP + p , p.. = (l-a)P - p
1 vi p 2 u ' |i

(a = m /(m + m )̂

- a p , n — ax
2 1

x = (l-a)r + R

!„ = -ar + R



:~o that l>|. ( J ) bt'tomi.-:-

r'Ktf.r) = 0 (9)

We separate the components of the relative momentum with respect to n and

perpendicular to it

P = P + l> + p

Then in the second term (9), the contribution of p vanishes

Hence * depends only on E and r,, t(R, r ) , as it should be according to

our general discussion above, because the potentials V also depend only on r .

The coordinates (P , l1 )̂ and (H, r) are conjugate pairs satisfying canonical

commutation relations. '1'he perpendicular components of coordinates and momenta

satisfy

which means that the internal motion takes place indeed on a three-dimensional

hypersurface perpendicular to n .

We can also decompose y into its parallel and transverse components:

u = (yn)n + y , ny^ = 0, The set (y and yV) play the role of y and

Y for an arbitrary n with

{ v <} = °. lv \] = 2(«uu - M •

Finally we can decompose the total momentum P into its parallel and

perpendicular components in the same way so that our basic EqB (9) "becomes

~ ̂ Y, © ̂ n "
 yn® Ti ̂ Fi "

or multiplying all terms with ^ (y$ y ;

P,, + (aa*l + (1-aH-ot )P

rlM

= 0 (10)

- 7 -

vliert* wo b'lvt^i ;.1|1J''

in analogy to the B; r;.i..:':; a - Y' y ' , and

(11)

(IS)

in tho dyadic notation.

Now the vector n ha;; disappeared in liq. (10) with proper labelling of

coordinates and momenta. Here P., is the totfd energy (or Hamiltoniaii) of the

system and the second terra in (.10) represents the tota l kinetic energy of the center

of raasG, while the remaining tenn:*. refer to the relative or internal motion..

On the hypcrsuri'ace u.ith norma] n1 we can now choose, if we l ike , three-dimen-iional

coordinates and Dirac niit.rices su.-.-li th.'it, i'iq, (10) ho somes

Jp - (aa + (l-a)ao)-P - (a - a,J-'p
If 1 2 I •'.

or

= 0

H* = t(aa.1

(13)

(13 ' )

In the rest frame, V = 0, and we are left with II . and we 3ee that center of mass

and relative coordinate:; arc completely separable. The internal Hamiltonian is

It = (u^- a r J)-p V(r)

For the minimal cou]jling, the potential V

1 +
v = e i-

1"2

The rest frame Eq. (10) has been extensively studied and analyzed [l0],[lU]. It

works very well when appljed to realistic systems like positronium, muonium and

hydrogen, including the magnetic potentifi.1 comini; from a Pauli coupling. The

agreement with perturbative QED is up to order a , because at order a. there

are also self energy term:', f̂ iven in Ivi. (8) which have not yet been fully analyzed.

We shou.ld rmp>iaai?,e that these results are now obtained from a 'bons.-fida two-body

wave equation t and not by perturbative -̂.]D graphs.

To conclude T riuirunarize the salient features of the w;*ve equation (l) :

i) i l is fully re la t iv i s t i c and covariant;

i i ) I t takes full account of the spine and recoil of both constituents;

i t is a iG x 1.6 spinor equation; i t can ho generalized to a 6h y, 6h three-body
equation, etc;

-8-



i i i) It can lie1 Cully just i Tied and derived from first quantized QED (coupled

Maxuell-Dirac fields) by a variation*!! principle. The existence of the Green

function D(x-y), hence the exchange of massless photons is essential in the

derivation;

iv) It is a one-time equation, the relative time automatically drops out. There

are no retardation problems;

v) Center oi' mass and relative coordinates are exactly separable [5],[10].

Center of mass itself is described by a soluble 16 or 61* component spinnr

equation (lit);

vi) Angular and radial parts of the relative motion are exactly separable [10]J

vii) Radiative corrections can be included by additional anomalous magnetic moment

and self-energy potentials,'

viii) for QED, the relativistic potentials up to order a turn out to be exactly

soluble 111]. The exactly soluble genuinly two-body problem provides

relativistic quantum numbers for a system like positronium (where L and G

are not good quantum numbers) and can be used as a basis for a Furry-picture

radiative corrections, and for a nonperturbative scattering theory. The

remaining terms in the potentials have been treated perturbatively.

ix) Applications to (e e ), (u IJ ) and H give results in agreement with

perturbativc QED [12], [13].
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