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International Atomic Energy Agency The formulation of & tuily relativistic, in fact covariant, two and many ~body
and equations, in quantum electrodyuamics,and in general, is still an  importsnt and
Unitea Hations Yducational Scientific and Cultural Organization open problem. 1% is also o necessary Lask 19 wish to describe the interactions and
ST 00 5 = ies of fully relativistic Systems suc sit i .
[NTERNATIONAL CENTRE FOR THEORETICAL PHYSICS elf energies of fully rclativistic systems such as positronium. For exsmple, we

do not have at present, Lo my knowledme, an adequate formulation of Lamb-shift in

pesitronium using posivroniwm wave tunctions, that is to all orders in (Fa).

Therc exists a plobal covarian approach to relativistic dynamiecs in Lhe Torm of
infini . ent wave equations, as has bhee sed i deseri

THE COVARIAUCE OF TWO-FRRMION ZQUATION FOR QUANTUM ELECTRUDYMAMICS * infinite COmpEREnE wive cauntions. & has been used extensively to describe
O THE COVARLANCE OF - relativistic H-atom and hadrons. These cqualions are in the simplest casc of the

form

(r“PLL + Ke(Pr =0
A.0O. Barut *¥
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R . . . where P i1s the total momentuws of the system, and T
Internalional Gentre for Theoretical Physics, Trieste, Italy. " O i iy

and K are operators in
the internal coordinates of the system, e.g, difterential operuators with respect La

. the relative coordinates F, or infinite-dimensional matrices in the case of
discrete basis for the iaternal degrees of f{reedom, hence the name "infinite-
component wave squations' [l], ilowever, when such eguations are postulated, we

would like, in additien to connect them with the microscopic properties of two or

ABSTRACT more physical particles that we think are Lhe constituents of the system. It is

The covariance properties of a two {or more)-body equation which has known thet given an equation of this tyre () leading to a certain mass spectrum,

been recently derived from field theory and applied to the preclsion tests of the introduction of internal coordinates is not unique [2]. Hence, equations of
QED-bound state problems are established. this type should be complemented by » direct microscopic approach which takes

fully into account the spin properties of the constituents, Furthermore, in o
rrecise theory like quantum clectrodynamics, whare we know the minute detzils of
the interactions involving fine-, hyperfine structures, Lamd shif't and vacuum

polarization, it is very dirficull to guess the form of the operator K which
MIRAMARE - TRIESTE
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would include all thoses effects, although a large part of it has been uccomplished [3)

* o be published in the Proceedings of the Workshop “Constraing Theory and
Relativisbic Dynamics”, Florence, 28 May-3 June 1986 (to ue publiched by
Gprinper-Yerlws, 1886, Ed. 1. Lugsanna).

%% Vermancnt address: Physies Department, The University af Colovado, Boulder,
oo 80309, USAL
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She iutinlle—camponent wave cquations bave nice covariance properties, simple
peomet e Ly interprotations, and aro easy to work with, it is impertant to obtain
them from a ricld theory of wmicroscopic lpteractions, and to be able to translate

bolh theories into cach other,

There zre many approaches Lo bthe mnicroscopic relativistic two-body problem as seen
from the coutrilbutions to this conference, I shall deseribe an approach which is
based on the Tirst gquantized quantum electrodynamics, that is on coupled Maxwell-
Dirac equations, A coviriant two-hody equation can be derived from such a field
theory by a variational prinelple which has many nice properties that we generally
require from a wave cguation, and which, moreover, is quite accurate in its
application to QD-bound state problems, such as the positronium. The theory can

be generalized Lo three or more purticles.

The wave cyguaticon is
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The notation 1s as Tollows: y Yu are the Dirac spinors for each particle,

nu a unit vector which we shall discuss below, and y « n = y”np; T is the
. X . 2 2.1/2 f2
invariant distance r = [{x-n)}" - %3 2 fxi, {length of the component of the
relative coordinate x = xl - X, berpendicular to n)., The first relativistic
(13 (¢} )
Y@
& C H
12 r
comes from the Pauli coupling in the Maxwell-TDirac equations,

potential comes {rom the minimal coupling in the Maxwell-Dirac

equations, V

magn
and Vrad comes from Lhe self-energy terms also present in the Maxwell-Dirac
equations, as we shall indicate. The wave function ¢(xl,x2) is the analogie of
the nonrelativistic configuration space wave-function. Eq. {1) is actually a

gne~time eguation, since il turns cut automatically that ¢ does not depend on the

parallel companent of the relsbive coordinste x = (x*n)n. We shall always

write in the direct product of spin tensors particle 1 first, particle 2 second;
) @ "

Y@ Y, = Y0¥, . henee we can onit the superseripts {1} and (2).

Eg. {1} is most directly derived from the aclion ol quantum elcctrodynamics for two
Dirac fields wl(x) and  ¥,(x) {b},.[5]. In the derivation below I shall give and

emphasize the relativicliz covarisuce. 'The action W o ius

(1) (o) o {)
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We eliminate Au and Fuv fram this action using the solutions of the Maxwell

equations

a0 = [y b ") ()

The argument of the §-fTunction in D{x-y) can be decomposed in a general way as

2 o o §(x+m) - Il) * S{xen) + rL)
8(x") = sl{x-n) - x|} =
L I
L
This is one instance where a vector n" enters, namely when "time” is measured in

W

the direction of n", Lhe distance from the light source is measured by r,. There

1
; + . .
is a second, related, place where a vector ”1 will enter into the theory, namely,

in the normalizsztion of the wave functions,

Lo - -
Jd x 6{x.n - r)wyun”w = J do o” by e L (L)

L

Here do is the volume element on the space-~like surface perpendicular to "

We need such a vector n" in these two places, (3} and (L)}, although its choice

(1Y {2)

is arbitrary. Y¥ote further that We can choose the Dirac metrices y“’ ¥ also

arbitrarily.

It is important, in the discussion of the covariance of quantum eguations, to
emphasize that the Hilbert space of states is defined by a foliation of the
Minkowski-space into space-like surtaces ZT for cach invariant time parsmeter T.
On the other hand, lorentz transformations map solutions of the wave function
w(t,x) into other solutions #'{t',x'), but not in general a state into another
state. Transformations in the space of solutions in the Minkowski space are not
the same as the transformations of cne state inte another on a space-like surface
Er‘ The oceurrence of n° inm Eq. (1)} tells us how we normalize our states, Bq.{L),
and how we calculate the field preduced by the current of tle particle in a
definite state, FEg. (1) is covariant in the sense that for a different obaerver
we have also to transfeorm 1'1"'l like a b-vector, so that we have the same form of
the equations as seen from = different {rame. Since observed quantities are
independent of the choice of a  in Fgs. (3) and {4) we expect also the observable
guantities following from REq. (1) to be independent of n, such as the spectrum

of bound states and transition probabilities. Let me first lodicate how Eq. (1)
is derived from the action (2). We insert Lhe solution (3), und the corresponding

F“V, into Fq. (2) and multiply each kinetic enerpy term in {2) with the novmalization



condition (k) or the othier particle, and obtain for the kinetic eoerry and mutual

interuction terms
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The terms 1 # ) and 1 = 3 will be treated separately.

The interaction terms in (5} ure such that twe states wi(xl) and w.(XE)
J

contribute to the action only if X and x, are light-like separated:

(xl - xg)b = 0. Similarly, we can arrange the kinetic terms such that x  and
2
multiplied with a suitable normalization integral of particle 2 depending on

X are also light-like separated. At each point xl, the Tirst term In {(2) i=

X . In this way, and with suitable change of variables, W is a seven-dimensional

integral.

We now define the configuration space wave—functions

¢(xl,x2) = wl(xl)wg(xg) : (&)
It will turn out that the equaiion for @(xl,xz) automatically reflects that the
configuration spuce is aectually seven-dimensional and not eight. Our functions
wl(xl), we(xej are all c-numbers, hence we can write the action W in terms of
2 and 3
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Now the variation of this action with respect to & gives the eguatlon (1) that we

wrote at the beginning.

The sipgunificance of t£his variational principle should be stated. Whereas the
variation of the action W with respect to individual fields wl(xl), ¢2(x2)
leads to coupled nonlinear equations of the Hartree-type, the variation of W with
respect to ¢ leads to a linear equation. After the variatlonal principle the
solution of the configuration space equation {1} for ¢ is no longer factorizable
into a product (wl(x)-weﬁx)} although to derive it we have started from the
product form {6). This is because the latter variational principle ls weaker than
the first, and reflects the noplocality of the guantum two-body confipguration space

coustion, This is the same situation as in ponrclativistic quantum mechanics.

The difference between Huabtree—equations apd conliguration space equation: i
experimentally observable, Hence it seems Lhat we must take the variational
principle for ¢ as one of the additional basic postulates of Quantum Theory when

going from a single particle to two, or more, particles.

For identical partiecles we shall proceed again as in non-relativistic quantum
mechanics, namely cheose solutions which are antisymmetric under the exchange of

two particles.

The treatment of the lauli-coupling term in the action is slightly more involved,
but is essentially similar{5],[6] and we do not need to go into it here. But the
treatment of the self-energy terms 1s more subtle, interesting, and for many reasons,

essential for the whole theory. Consider one of the terms
1 .2 - n -
I == d. -
5 e J xdy$ (x)y ) (x) Dlx y)wl(y)vuwl(y)

We multiply this expression twice with the normalization (4) of the second field

and change variables such that it bocomes

—
i
el o

2 - - -
&) J dxdydzdu wl(x)y“wl{x)wz(y)y-nwg(y) Dlx-a)py (2)y b, (2)
x Wyludyenp,fu)

Or, in terms of the composite field ¢, Eq. {6),

H
I
ST
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Thus, the variation of the action W wiith respect to & gives Tinally the

nonlocal or nonlinear term in Eq. (1),

2 —
Vrad =+ % eI v @)y-nJ dzdu D(xmz)¢(z,u)vu @ yone{zu)
1 2 , =
+ 3 e Y.D®YHJ dzdu Diy-w)¥{z,u) ¥ 0 ® YU‘P(z,u) . (8)

Self energy terms therefore Introduce self-consistent nonlocal potentials into our
equation as we expect. These terms have been ireated for Lamb-shift and spontaneous
emission in the Coulomb field [7]1,{8],[9], and in the above covariant form will be

applied to the Lamb-shift problem for positronium.

We now introduce the relative and center of mass coordinates and momenta by

Pu =P + p2u’ X, TR, T Ko P = (l—u)pl - 8D, R = ax) * (l—a}xz
= aP + AP - = -
Py al pp, Py {1 4)1u P, x5 (1-a)r + R
(a = m /lm+ ) Xp T oar R
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We separate the components of the relutive momentum with respect to nu and

perpendlicular to it

p=p, +p ={p-nln+p
H i L

Then in the second term (9}, the contribution of p vanishes

Vv — a eyt P .
{y Yn oY )p“ by Yn WY )Piu

L
our general discussion above, because the potentials V  also depend only on

Hence ¢ depends only on Ru and T, ¢(R, r ),

The coordinates (Pu’ P ) oand (K, r)

v
commutation relations.

satisfy

85 1t should be according to

T

are conjugate pairs satisfying canonical

The perpendicular components of coordinates and momenta

which means that the internal moticn takes place indeed on a three-dimensional

hypersurface perpendicular to nu.

We can also decompose yu into its parallel and transverse components:

Yy = (Y-n)n]J + Y“L’ nyi = 0. The set (Yn and Ti) play the role of ¥
Y;L for an arbitrary nLl with

H oo Y H_v
{yn, Y_L}=O, {YJ_, YL}=c(g -nn ‘

Finally we can decompose the total momentum 1"u inte its parallel and

perpendicular components in the same way so that our basic Egq. (9) becomes
{(Yn@)yn)(f’n) + (avﬂ\_®yn + (1-a) ¥ @ YL)PJ_
- (Y_,_@Yn - Yn®YL)PL - m Doy = myy 0T - V(rl)}tb =0
or,multiplying all terms with YnC@ 1
{P“ + (uotl'l + (]-a‘)'l-aL)PL

- {“L.l - I'uL)pJ‘_ mlGIL - mEBQL - V(FL}} ¢ =4a ,

and

(5}

(10}

where wo have o,

o =y )y (11}
in analogy to the Diracts ui = y”yi, and

V= Yn@)vk@yn (12}

in the dyadic notation.
Now the vector nLi has disappearcd in kg, {(10) with proper labelling of
coordinates and momenba. Here ?ﬂ is the totsd epnergy {or Hamiltonien) of the
system and the second term in {10) represents the total kinetic energy of the center
of mass, while the remaining terms rofer to the relative or internal motion.

i

On the hypcrsurface with noymal n we gan now choose, if we like, three-dimensional

coordinates and Dirac natrices suoh vhat wg. (10} hecomes

- > - -> . B
o ~ | {1 L S (. .
{}” (1&1 + (1 1)u2) t \uL a, ) p

-
-m B —m B, - V(r)L $ =0 {13)
or !
g = {{an, + (Q-ada )P s 3o (13)
1 o rel
In the rest frame, P = O, and we oare left with 11 and we see Lhat center of mass

rel

and relative coordinates are complotely separable.  The internal Hamiltonian is

>

0 = (uim 32)-[; + B.lml + f;s:'_,m:W + ;.;(;) . {1k}

For the minimal couplimg, the potential Vois

u > -
1+ W a - .
Ve PRy, e A
12 I‘l :> 1P -

The rest frame Eq. (10} has been extensively studied and analyzed {10],{1h]. 1t
works very well when applied to reallatic systems like positroninm, muonlum and
hydrogen, including the mugncetic potential coming from a Pauli coupling. The
agreement with perturbative QED is up Lo order us, because at order as there

are also self enerpy terms piven in Fg. (B) which have not yet been fully anslyzed.
We shou’d emphasize that these results are now obtained from a bona-fida two-body

vave eqguation, and not by perturbative QoD graphs,

To conclude T summarize the salient features of the wave equation (1):

i) it is fully relativistic and covariant;
ii} It takes full asccount of the sping and rocoil of both constituentsg
it is a 16 x 16 spinor equation; iL can be gencralized to a 64 x 64 three-body

equation, etej
,8_



iii) 1t can be fully justified and derived from rirst quantized QED (coupled

iv)

v}

vi

vii

viii

ix

)

Maxwell-Dirac fields) Ly o variational vrinciple. The existence of the Green
function D{x-y), hence the exchanpe of massless photons is essential in the
derivalion;

It is a one-time equation, the relstive time automatically drops out. There
are no reltardation preoblems;

Center of mass and relative coordinates are exactly separable [5],{107.
Center of mass itself is described by a soluble 16 or 64 compenent spinor
cquation (1k);

Angular and radial parts of the relative motion are exactly separable [lO];
Radiative corrections can be included by additional anomalous magnetic moment
and self-energy potentialsg

For QEI, the relativistic potentials up to order uh turn cut Lo be exactly
soluble {11]. The exactly soluble genuinly two-body problem provides
relativistic guantum numbers for a system like positronium (where I, and §
are not goud gquantum numbers) and can be used as a basis for a Furry-picture
radiative corrections, and for & nonperturbative scattering theory. The
remaining terms in the potentials have been treated perfurbatively.
Applications to (e+e_), (u—u+) and H give results in agreement with

perturbative QFD [12},(13].
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