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Abstract The separation of four vectors into their parallel and 
perpendicular components is Lorentz invariant. We can 
choose co-ordinates and Dirac matrices such that eq. (1) is of 

A consistent non-perturbative treatment of the relativistic Moller potential 
is proposed and the application of a covariant two-body equation derived . .  .. . .  

from field theory to the spectra of positronium and muonium is discussed. the form 

{Po - (aa, + (1 - a)a2) * P - ( a ,  - 6,) * P  1. Introduction 

Many authors have discussed the difficulties with the Breit or - mlBl - m,P, - V(r)}@ = 0 ( 2 )  

Moller-type of relativistic two-body potentials. Some of these 
difficulties stem from an additional external potential to the 
two-body problem. We shall discuss here the relativistic two- 
body problem only; systems like hydrogen, muonium and 
positronium. The purpose of this report is to show how a 
fully covariant two- (and many) body wave equation can be 
derived from field theory, how it can be solved and how it can 
be applied sucessfully to the description of precision spectra 
in relativistic systems. We shall explain a method of treatment 
of negative energy states in the Moller type relativistic 
potentials. Finally, we give a summary of numerical results 
obtained so far. 

2. Covariant equations 

In the rest frame P = 0, one obtains then a familiar two- 
body Hamiltonian. 

Eq. (1) can be derived from the coupled Maxwell-Dirac 
equations for two fields (x), $,(x) by a variational principle 
which also gives us the form of the relativistic potentials [2] .  
For the minimal coupling of $i (x) to the electromagnetic 
potential A, (x )  we obtain for the relativistic potential 

The potentials arising from a Pauli coupling of the spinors $, , 
$, to the electromagnetic field FPy have also been studied in 
detail [Refs. 2 and 31. 

Let P, be the total momentum of the two-body system, and 
p ,  = (1 - a )  p , ,  - up,,, the relative momentum of the two 3. Mass conjugate equations 
particles with a = m, / (m,  + m,), for example. The COvariant In this Section I discuss the negative energy solutions in the 
two-body equation is [l] two-body rest frame Hamiltonian 

- m,yl - m2‘r’f - V ( d } q x l ,  x,) = 0. (1) 
The notation is as follows. P I  and P, are the parallel and 
perpendicular components of P, relative to the normal n, to 
a space-like surface E: P, = (P- n)n, + P,, = Plln,  +P,,. 
Note that for n, = (lOOO), Pll is just Po = H, the total 
Hamiltonian and P,, = (0, P). Further, a: = (y - n)y: 
where y, = (y * n)n, + yl,, = yl,n, + y,,,. The relativistic 
potentials V are functions of the relative distance r ,  only, 
where r,  = x l r  - x2, = ( r  - n)n, + rip, hence the magnitude 
r ,  = ( ( r  n)’ - r‘,)”’. Only the perpendicular component of 
the relative momentum enters into the equation,- hence it is a 
one-time equation, i.e., @(x,, x,) is independent of the relative 
time, or (D = @(PI, P , ; p , )  or @(R,, r l )  where R, = ax,, + 
(1 - a)x,, is the centre-of-mass co-ordinate. 

__ 
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1 - a I * a 2  
K e a ,  = (a1 - az) ‘P + Plml + m2P2 + e1e2 

(4) 

The negative energy states of the single particle Dirac equation, 
in the first quantized theory, can be interpreted as follows. 
The negative energy states of the Hamiltonian HD = a p + 
Pm + (e ,  e 2 ) / r  are identical with the positive energy states of 
the mass conjugate equation HI; = a - p  - Pm - (ele2/r) 
(change m + - m).  We can therefore consider only positive 
energy solutions of HD and HA and interpret them as elec- 
tron and positron motion in the field of another charge 
e,; electron and positron thus differ by an “internal” quantum 
number [4]. The spectrum consists of discrete and continuum 
positive energy levels of HD and positive continuum levels of 
HI; (HI; has no discrete spectrum) and these are all the 
physically interpretable states of the problem. For the two- 
body case, eq. (4), we have also two distinct mass conjugate 
Hamiltonian, eq. (4) and 
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where we have changed the sign of m2.  The case when the 
signs of both masses m, and m2 are changed is equivalent to 
(4), and the case with (- m,),  (+ m’) is equivalent to (5). The 
negative energy solutions of (4) are identical to the positive 
energy solutions of (5). We shall now study the solutions of 
H and H‘. 

4. Solutions 

We have analyzed the 16-component equation (4) or (5) by 
separating the angular part [ 3 ] .  The 16 first order radial 
equations split into two groups of eight. There is a discrete 
symmetry transformation that does this splitting. In the set of 
eight equations four are algebraic so that four of the eight 
components of the wave functions can be eliminated. We can 
further reduce the remaining four first order equations into 
two coupled second-order Schrodinger type equations. We 
do the same procedure in the second set of eight equations. 

For applications to atomic physics we expand the poten- 
tials as a power series in ctjr. The major part of the coupled 
second-order equations turns out to be exactly soluble. 
The remaining potentials of order u5 (in units of mc’) we 
shall treat it as far as QED applications are concerned, as 
a perturbation. The exactly soluble equations are [5] for the 
first set ( M  = m ,  + m,,  Am = m, - m z )  

and for the second set 

Am’ + M’ M’Am’ 
E2 + ~ E4 6, = 

and 3P, ,  3D2, ’F3, . . .) .  The discrete spectrum of eqs. (6) is 
given by [59 

(8) 
M 2  + Am2 M 2  - Am2 + $ ] - I 2  

2 f 2 E,’ = 

where n = n, + I with n, = relativistic radial quantum 
number and 

1(1 + 1) = j ( j  + 1) - r2 (9) 
(the non-relativistic label I,, is equal to ( j  - 1) or ( j  + l), for 
the two states in eq. (6)). The physically acceptable discrete 
solutions correspond to (+) sign in (8) with energy valuesjust 
below the positive continuum E < M .  

The second set of equations, (7), have also the same discrete 
spectrum (8), but now in the second equation of (7) we have 

l(1 + 1) = j ( ]  + 1) - a26, (10) 
For physical solutions near the positive continuum, E z M ,  
6, is close to - 1 (for Am - 0) and (10) gives l ( 1  + 1 )  = 
j ( j  + 1) + a’. This results in a wrong mass spectrum, for 
example, for parapositronium, already in terms of the order x4. 
The inadequacy of the Breit interaction for parapositronium 
has been discussed by many authors [6]. We therefore use the 
mass conjugate, eq. ( 5 ) ,  for the second set. Under the change 
m2 -+ - m 2 ,  we have M = m, + m2 -+ Am = m ,  - m2 
and the first set of equations is invariant. In the second set, 
the only change is 6, -+ 2(M2Am2)/E4 - 6,, hence for 
solutions near the positive continuum again we now get 
6, z + 1 .  We propose therefore to use eq. (6) and eq. (7) 
with 

(1 1) 
M 2  - Am2 M’Am’ +- 

The eigenfunctions of eqs. (6) or (7) are the same as the 
one-body Coulomb-Dirac functions with the appropriate 
kinematical change of the parameters. But eqs. (6) and (7) 
contain full recoil of both particles and correct spin properties 
so that they can be used as a two-body starting point to make 
calculations in the Furry-picture of the two-body problems 

E* E4 ‘ 

6, -+ 6;: = 

r-7 

(6) 1’1. 
The remaining part of the potentials up to order as for the 

coupled set (6) are given by 

1 1 2u/r’ - 8 j ( j  + l ) /Er3  
r ( E  - Am2/E)  + -  

1 1 4c(/r2 - 2aAm2/r2E2 - 8 j ( j  + l ) /Er3 + -  (7 )  r ( E  - Am2/E)  

(4 + ;) Here (U‘, vo) and (U,, voo) are certain components of the 
wave function. Equations (7) of the second set are uncoupled. 
The first set (6) corresponds to states I = j T 1, S = 1 
(3P,, ’D,, 3F2, . . . and 3S,, ’PZ, 3D2, in nonrelativistic notation) 
and the second set (7 )  to 1 = j ,  S = 0,  1 ( ‘So ,  ‘PI, ID,, . . . 

2 4 2  - Am’lE2)/r2 - 8 j ( j  + l ) /Er3  
( E  - Am’iE) “22 = 

(12)  
A coupled channel perturbation theory in E’ leads to the 
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following energy shifts [8] Pa4 
( 3 )  EWO = E+ - 4n3(j + + ) ( j  + 1) 

2a4(M2 - Am2)/2M AE(n, lo = j + 1, S = 1) = - 
16n3(j  + l ) ( j  + 3) 

- x4(M2 - AmZ),/2M3 
16n3(j + + ) ( j  + 3) 

2a, + 2a,tZ - 2a,a,5 
(1 + 0’ 

(p2’M)a4 ( 1  + a ,  + a2 + a la2  

a l a *  ); j # 0 

x (1 + 
- 

2a4(M2 - Am2)/2M 2n3(j + +)z 
AE(n, 10 = j - 1, S = 1) = 

16n3( j  - + ) j  

(1 + 0’ - (a: + 
( I S O ,  IPI, ID,, . . . I  

a4(M2 - Am2)2/2M3 
16n3(j - + ) ( j  + +) 

+ 
The perturbations in the second set (7) are 

d 
d 

- (1 + 2ci/Er - Am2/E2) dr 
(1 + 2alEr - Am2/E2) dr A V l  = 

Am 
E 

- dldr (1 + 2a/Er - Am2/E2) 
r(l  + 2cilEr - Amz/E2)  A V z  = - , /‘ j( j  + 1 )  

A&, = A V , / ( l  + 2a/Er) 
A K Z  = 0 

and these give the following energy shifts: ( 3 P I ,  ‘D2,  3F3, . . . )  
a4(M2 - Am2)i2M 

m l m 2  , 5 m,/m, .  AE(n, lo = j ,  S = 0) = - 
16n3j(j  + ) ) ( j  + 1 )  A- p =  m, + m2 

Here E+ is the spectrum independent of normal and anomal- 
ous magnetic moments, from (8) 

a4(M2 - Am2)/2M 
16n3j( j  + + ) ( j  + 1) AE(n, io = j ,  S = 1) = - A+ 

3 pci4 + -4 Pa2 Pa4 E+ (m, + m2) - - - 
ij # 0) (15) 

where 2n2 2n3(l + )) 8 n 

(18) 
1 p*x4 + O ( d )  1 + 4 j ( j  + 1 ) T  - _ -  
8 n4m2 M 

For positronium, in particular, we find 

A- = 0 
5. Applications 
5.1. Positronium 

( 1 6 )  
It is also possible to study the anomalous magnetic moment 

potentials coming from a Pauli coupling in eq. (4). Let the 
anomalous magnetic moments of the particle be a, and a2.  

For parapositronium ( S  = 0, 1 = j )  there are no normal or 
anomalous magnetic spin-orbit and spin-spin interactions 
UP to order as and a6,  respectively, and we obtain the formula 

E = 2m - - - 

except for Lamb shift contributions. There are only three 
measured positronium intervals: 

(a) For the positronium hyperfine splitting we obtain from 
eqs. (17) 

A+ = 2. 

ma2 ma4 11 mx4 
4n’ 2n ( j 

We then obtain to order a5 the following mass formulae [8]: 3 2 + 1) + 64 7 + 0 ( a 6 )  
Pa4 

4 n 3 ( j  + l ) ( j  + 3) (1) En,,+,,, E+ - 

2(a1 + 
( 1  + (1 + - 2a laz  

AEHf,  = +ma2 - +cc4(a/2x) + ’ . . + &ma4(r/2n) 

The third term comes from the anomalous magnetic moment. 
- (p2’M)a4 (1 + a, + a, + alaz> 

2n3(j + + ) ( j  + $1 
(3P0, 3D, ,  3F2, . . . )  To this we must add the annihilation contribution. Thus in 

total 

AEHfs = &ma4 + &ma4((a/2n) + . . . 
The self-energy corrections (Lamb shift) will be treated 
separately [ 101. 

(b) For the positronium n = 2, n = 1 transition which 
has recently been measured we find 

- PE4 (2)  Efi,,-l,l - E+ + 4 n 3 ( j  - + ) j  

- 2a,a2 - 
l + t  x ( 1  + 2(;; 1 $ 2 )  0 

+ (p2’M)a4 (1 + a,  + a, + ala2> 
2n3(j - + ) ( j  + $1 35 a3R 

(3S,, 3P2, ’4, . . . )  96 2x AEI, = $ R, - 0.468093R, - - 2 

Physica Scripta 36 



496 A .  0.  Barut 

(c) For the positronium p3S, - 2’PJ fine splitting 

AE = &a2R, 

These results agree with those of Fulton et al. [9] .  

5.2. Hydrogen and muonium 
(i) Ground state hyperfine splitting 

(ii) n = 1, n = 2 splitting 

7 P 2  - - - a4(1 + a, + a, + a,a,) 12 M 

(iii) 2P3,, - 2PII, splitting 

(1 + a, + a2 + q a , )  
a2R,  5 +-- 

9 (1 + 5 )  

6. Conclusions 

The purpose of our work is to develop non-perturbative and 
covariant equations with relativistic potentials for two and 
many-body problems in quantum electrodynamics including 
radiative corrections. Here we discussed the two-body problem 

with the mutual Moller and anomalous magnetic moment 
potentials. The self energy terms will be given elsewhere [lo]. 
In particular, we addressed ourselves to the question of 
negative energy states in the solutions of the bound state 
equations. We found an exactly soluble genuine relativistic 
two-body potential and have treated the small remaining 
potentials up to order a5 by perturbation. Having shown that 
the equations are tractable, they can now be solved completely 
numerically. When the self energy terms are included it should 
be possible to obtain precise tests of QED in positronium, 
muonium and hydrogen to order a6 (and more) directly from 
a wave equation instead of calculating separate Feynman 
diagrams of each radiative correction. 

Most of this lecture is based on Refs. [5 ]  and [8], work 
done in collaboration with N. Unal whom I thank for many 
fruitful discussions. 
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