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The solutions of a covariant two-body equation are applied to the spectra of H, muonium and 
positronium. In order to compare with the standard results we have expanded the potentials, the 
recoil terms and the perturbation calculations up to order c~ 5. The best known intervals, namely 
Hfs of H, muonium and positronium and the 23S1-13St interval of positronium are obtained to this 
order in agreement with standard results and experiments. Having thus verified the nonperturba- 
tive equation to order a s, the recoil and normal and anomalous magnetic moment terms can now 
be evaluated numerically to all orders. 

One  can divide the precision tests of  quan tum elec t rodynamics  into three 

groups.  First we have the high energy  experiments ,  accurate  to a few percent ,  

but  which test the e lectron and pho ton  propaga tors  and fo rm factors at very 
high m o m e n t u m  transfers l ) ,  and involve only few higher order  diagrams in 

per tu rba t ion  theory.  In the second group  we may  put the (g-2) exper iments  
which involve at the m o m e n t  diagrams up to eight order2).  The  theory  is again 

pure per turba t ion  theory  a l though the n u m b e r  of  graphs,  the renormal iza t ion 

procedures ,  over lapping and nested divergences become  considerably more  
difficult. In contrast ,  the third g roup  of  tests all involve nonper turba t ive  bound  
state problems in hydrogen ,  pos i t ronium,  muon ium . . . . .  namely  the L a m b  

shifts, hyperf ine splittings and decay rates. The  nonper turba t ive  starting point  

for this third type of  calculations has been  described as an "ar t  ' '3) in contrast  to 
the well-defined mechanical  rules of  per tu rba t ion  theory.  More  and more  

accurate  relativistic bound  state wavefunct ions  are necessary to pe r fo rm fur ther  
per turbat ions  on them. The  deve lopment  of  the various starting points for  
Q E D - b o u n d  state problems has been reviewed recently by Bodwin,  Yennie 

- 3 

and Gregorlo-  ). In the most  recent  works  the starting point  for the nonper tur -  
bative bound  state problems has been a one-part icle  Dirac equat ion.  In this 
work  we take a recently discussed genuinely relativistic 2-body equat ion  4'5) as 
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a starting point for bound state problems. This equation has the following 

properties: 
i) It is relativistic and covariant; 
ii) it takes full account of spin and recoil of both particles (it is a 16 × 16 

spinor equation); 
iii) it is a one-time equation with relativistic potentials; relative coordinates 

are 3-dimensional (r). Since Poincar6 invariance is built in, there is no 

retardation problem; 
iv) it is derived from the QED action by a variational principle on the 

configuration space wave function and the exchange of a massless particle is 

essential in the derivation; 
v) center of mass and relative coordinates are exactly separable; 
vi) angular and radial parts are exactly separable; 
vii) it provides relativistic good quantum numbers for positronium instead of 

L and S. Vertex radiative corrections are included partly by an anomalous 
magnetic moment  Pauli coupling; 

viii) the potentials up to order  4 are exactly soluble. This soluble part may 
be taken to be the basis for a Furry-picture perturbation theory both for 

scattering and bound state problems. 
We believe this approach brings a conceptual and practical simplicity to 

relativistic bound state problems. The equation is 

(1)p.  (2) (1) (2)t* 
( T  P i t * -  m l ) ~ )  "Y . n  + 2/ . n ® (  v P2t* 

Jr- Vrad/(D(X1, X2) = O.  ) 

- - m 2 )  + e l e  2 - -  

{1). (2) 

'Y '~ "Y t* 71- "mVagn 
r± 

( t )  

(1) (2) 
Here  3 ' .  and 3 ' .  are the Dirac matrices for each particle, nu a unit vector in 
the direction of the total momentum Pt* = p~t* + Pet* and r± = [(x, n )  2 --  X2] 1/2 is 
the relativistic distance perpendicular to n. For nt* = (1000), r .  = r, the ordi- 
nary radial distance. It follows that the equation is independent of the " t ime"  

component  of the relative momentum PlI, where p,, = [ m g / ( m  1 + m 2 ) ] p l ~  . + 

[ml / (m  1 + me)]P2t *. In the center of mass frame Pt* = (M000), the mass 

operator  becomes 

= (oq - a2) "p +/31m I + / 3 2 m  2 + ele 2 
1 - a l  " a 2  

-]- Umag n Jr- Ura d , (2) 

where the potential due to anomalous magnetic moment,  Umagn, has been 
given elsewhere4-S). The potentials due to other radiative processes, Ur~ d, 
including the Uehling and self-energy potentials which we have treated 
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separately9 11), will be  included per turba t ive ly .  In previous  papers  we discus- 
sed in detail  the explicit separa t ion  of  the radial  equat ions  in (1) and (2) 6), the 
exact ly  soluble par t  of  (2 )7 )  and the calculat ion of pe r tu rba t ions  due to 
Umag n S). The  main  exact ly  soluble  spec t rum for  a rb i t ra ry  masses  rni ,  m 2 is 6) 

E 2 M 2 + A m  2 M 2 _ A m  2 [ 0/2 ]--1/2 
± -  2 -+ -2 1 +  (rtr ~ l)2 ] , M = m l + m 2 ,  

Am = m I -- m 2 , (3) 

where  _+ refer  to levels just  be low the  posi t ive con t inuum,  and just above  the 
negat ive  con t inuum,  respect ively;  the t r e a t m e n t  and in te rpre ta t ion  of  the lat ter  
solut ions are given in ref. 8. 

We pass to the principle q u a n t u m  n u m b e r  n and total  angular  m o m e n t u m ;  
by using l(1 + 1) = j ( j  + 1) - 0 /2 ,  ( j  _ 1 ) ( j )  - 0 / 2  ( j  + l ) ( j  + 1)0/2, respect ive ly  
and set t ing n r + I = n - 0/2/2(j + ½) + ~(0/4), etc. 

Eq.  (3),  when  expanded ,  gives then  for  small  m l / m 2 ,  

2 4 
ml0/ ml0/ 

E+(n,  l ) = ( m ,  + m2) - 2n2( 1 + m l / m 2 )  - 2n3( 1 + m l / m 2 ) ( l +  ½) 

4 2 4 
3 ml0/ 1 m1/m20/ 6) 

+ - + G(o~ 
8 ( l + m l / m 2 ) n  4 8 ( l + m l / m 2 ) 2 n  4 

(1 = j-+ 1, j ) .  (4) 

It  will turn  out ,  as we shall see,  tha t  eq. (3) is exact  for  pa ra -pos i t ron ium up to 
o rder  OI 4 because  the no rma l  and a n o m a l o u s  spin te rms  will be  zero for  this 

case; and we obta in  in this case 

2 4 4 too/ m a  11 m0/ 
EParaps. = 2m + 4 + 0'(0/5) • (5) 

(l=j) 4n 2 2n3(2j + 1) 64 n 

Eq.  (4) should be c o m p a r e d  with Lepage l2) .  The re  the third t e rm  is wri t ten as 
[ml0/4/(1 + m l / m 2 ) n 3 ] / 2 ( j  + ½). The  reason  for this d i f ference is that  in ref. 
12, j is half  in teger  because  a o n e - b o d y  equa t ion  is used for  the e lectron.  In our  
case,  we shall use j for  the total  angular  m o m e n t u m  of the two-body  system: 
our  j is in teger ,  but  l ~ j ,  j -  1, j + 1 to o rder  0/2, so that  both  results are 
numer ica l ly  the same.  The  ene rgy  shifts due to fine and hyperf ine  splittings 
bo th  for  no rma l  and a n o m a l o u s  magne t ic  m o m e n t  in teract ions  calculated as 
pe r tu rba t ions  to the exact  par t  (3) to o rder  0/5 and 0/6 are 8) 
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1) 
E l ( n , l = j + l  S = I ) = -  2 °¢4 (M2-AmZ) /2M - °¢4(Me-Am2)2/2M3 

, 42n3(j+l)(j+ 3) 42n3(j + ~ ) ( j +  3) 

x (1 + (4j + 3)AM-rAm) 

(M 2 -- Am2)3 a3/2M3 
-- dla 2 2 . 4 n 3 ( j  + ½)(j + 1)( j  + 3) ' 

2) 

and 

E l ( n , l = j _ l  S=1)={  2a4(M2-Am2)/2M a4(M2-Am2)2/2M3 
, 42n---~(-~_--½)----j- + 42n3( j_  ½)(J+ ~) 

x ( l +  (4j+l) AM+rAm) 
2ja 

o ~ 3 ( M  2 --  AmZ)3/2M 3 "~ 
- -  d1¢i2 - -  ~ - ' ~ - - -  1-~_'¢ 7 -  T J (1 - aj~) ; 

2 -4  n ( l -  ~)j(] + ~) 

(6) 

3) 
a 4 ( M  2 - -  Am2)/2M 

El(n, l=j, S = 0 )  = - 42n3j(j + ½ ) ( j +  l )  A ; 

4) 
EX(n, l = j ,  S = 1) = - a 4 ( M 2  - Am2)/2M 

42nBj(j + ½ ) ( j +  1) A+ , ( j # 0 ) ;  

where 

A+ ~ A + [A 2 + 4j(j + 1 ) B 2 1  ' / 2  , 

A - = l +  
AM + r A m  ( M  2 - Am 2) 

2a M 2 

Am r(M 2 - -  A m  2)  

B==-~-+ aM 

a l a 2  2M2---- ~ (M 2 - Am2) 2 ' 

For positronium, in particular, we find 

( AM dld2 M2] A = 0  (7) 
A + = 2  1+  2 ~  2a  / '  - " 

Here  dl, d 2 a r e  the anomalous magnetic moments  and we shall put d 1 = 

(el/2m1)al, a2 = (e2/2m2)a2, 
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A =  e ld  ~ + eedl , 7 =  e jd  2 -  e2d I . (8) 

Taking the recoil and the spin parts together the final results are 

1) 
[ 2 1 4 2(a, + ~ a2) 

tza 1 + 2ala 2 En'Y+"I = E ( + ) -  4 n 3 ( j  + l ) ( j  + 3 ) ( 1 + ~ : )  2 

( ~ 2 / M ) a 4  

1 2n3(j + 2 ) ( j +  ~-) [1 + a I + a 2 + ata2] ; 

(3p0, 3 D I ,  F 2 . . . .  ) 

2) [ 2 4 2(al + ~: a2 ) 
tza 1 + )2 2ala2 En.j l,l = E(+) + 4n3i } -  ½)j (1 + 

+ 
( t z2 /M)  a 4 

2n3(j - ½)(j + ½) [1 + a~ + a 2 + a~a~] ; 

(3S1 ' 3p,~ 3 D 
3 ~ • * - ) (9) 

3) 
#a4 [ 2al + 2a2~ c2 - 2a,aesC] 

E,,4. o : E,+) - 4n3( / + ~ ) ( j  + 1) 1 + -(- i -+~Ti j 

(P '2 /M)  ce 4 ( ~ ala2 
- 2 n 3 ( j +  ~)2 l + a  l + a  2 + a l a  2 - ~ a  2+ (1+~:)~ ' 

(lso, lPl, 1 D 2 , . . .  ) 

( j#0);  

4) 

En, j, I 
/za4 ( 2al2a2sC2 - 2a,a2~ ] 

= E ( + ) - 8 n 3 j ( j + ½ ) ( j + l )  1 +  ( I + ~ T  / 

(/x2/M) °z4 ( 2 a_La2 ) 
+ 2 n 3 ( j +  ½)2 l + a  1 + a  2 + a l a  2 - s e a 2 +  ( 1 + ~ ) 2 / '  

m l m 2  m 1 ) 
P ' = ~ M - ' ~ -  m~ " 

(3pl 3 3 
,- D e , F3 . . . .  ) 

We now apply these results to the following important special intervals: 
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1. Hydrogen and muonium ground-state hyperfine splitting 

This is the interval be tween  the n = 1, F = 0 and F = 1 levels, or  

AE Hf~ = E(n = 1, l =  j -  1 = O, S = 1 ) -  E(n = 1, l = j  = 0 ,  S = 0 ) .  

All terms in our  expansions cancel except  for  the last one  in eqs. (9) and we 

obtain  

A E  Hfs = 
( / z 2 / M )  ot 4 

2n3( j  - ½)(j + ½) ( 1 +  a l + a  2 +  a l a 2 )  1 =1 

+ 
(/-~2/M)°t4 ( ala2) 

2n3(]+ 1)2 l + a l + a 2 + a l a 2 - ~ a ~ +  ( 1 + ~ ) ~  j=o 

which gives finally with £ = m l / m  2 

AEHf~ 8 ~: 4 [ 
- 3 (1 + ~)3 m~c~ (1 

3 ~ 3 a 2 ] 
+ a t ) (1  + a 2 ) -  ~ ~a~ + ~ a~ (1 +-~)2 , 

(lO) 

where  a 2 is the anomalous  magnet ic  m o m e n t  of  the p ro ton  or  moun .  It is 
interesting to note  that  Fermi ' s  effective d ipo le -d ipo le  interact ion formula  

emerges  at the end with p roper  recoil  correc t ion and a sum of  bo th  normal  and 
anomalous  magnet ic  m o m e n t  contr ibut ions.  Numer ica l  values ob ta ined  f rom 

eq. (8) are 

Hydrogen: (1 + ap)  = 2.7928456,  (1 + ac) = 1.001159652 

= 5.446174 × 10 -4 

AEHf S = 1 4 2 0 . 3 4 8 . . .  M H z  

(AEex p = 1420.405752) 

Muonium: (1 + a~)  = 1.001165924,  

~: = 10 -3 × 4.8363305 

AEnf  S = 4.463.0601 M H z  

(AEex p = 4463.302) 

(1 + ae) = 1.001165652 
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2. H y d r o g e n  an d  m u o n i u m  n = 1, n = 2 spli t t ing 

From eqs. (9) and (4) we have 

&E(23S~- 13S1) = 
? 

mla- ( 1 
2 ~ - 7  ~:) n I 2(1 + ~:)(l q- 11 n2 

3 minx 4 ( 1 1 m i ~:ol 4 _14) 1 ) 8 (~_7~;2  ( 1 4 4 
nl n 2 F/1 

+ 4(]--- ~)j 1 
2(a~+ ~2a2) 2ala2 ~ )(  13 l )  

+ (1 + s¢:) 2 (1 ~ - ~  n~ fi31 

+ 
(/,,2/M) a 4 

2 ( j -  ½) ( j+  ½) 
(] + al + a2 + ala2) ( 1 13 

n2 nl j=l 

or 

3 2 7 4 15 4 

7 4 ( 2(a, + sC2a2) 
16 p~a 1+  ( l+sC)  2 

7 /2  
12 M 0¢4(1 + al + a2 + ala2)  " 

1 + ~  

2aia2 1--~ ) 

nl=l,n2=2 

(11) 

3. P o s i t r o n i u m  hyper f ine  spl i t t ing 

Since in this case A = 0  in eqs. (6), there is no spin shift in 1S0-1evel 
(para-positronium) to order a 4. Hence the Hfs-splitting is 

4 [  2 1 _ / x a  2 ( a  1 + ~ a2 )  _ 2ala2 
A E m s  4 n 3 j ( j _  21_) 1+  ( l+sC)  2 ( 1 + ~ )  

+ 
(p~2/M)ot 4 

2n3(j - ½)(j + 21) (1 + a 1 + a 2 + a la2)  i=1 

which gives 
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( )  (°)2 
4 2 + 5 4 a 1 4 (12) 

AEnfs = 1-2 m a  ~ m a  ~ - -~ m a  ~ . 

To this we must add the annihilation contribution, evaluated by a function 
potential both for normal and anomalous magnetic moments.  For these we 
take the standard results 13) namely 3 m o ~  4 and ( - ( a / 2 7 r ) ( ~  + l n 2 ) m a 4 ) ,  

respectively. Thus in total 

7 4 5 4 ( ~ )  o£ ( ~ )  
AEHfs = "i2 m a  + - ~  m a  -- ~ + In 2 m a  4 + " ' ' .  (12') 

4. P o s i t r o n i u m  n = 2 ,  n = 1 t r a n s i t i o n  

This is the newly measured 14) interval 

AE12 = E(2, j = l + 1 = 1, S = 1) - E(1, ] = l + 1 = 1, S = 1) .  

In this energy shift we have 
a) a recoil part 

4 (;~ 1) (1 1 ) 1 1  4 ( 1  1 )  A~wrecoi I _ _  m a  1 m ° 1 4  - + m o t  4 

----12 4 n 1 -- - ~ -  n 2 n 1 ~ n3 

= ~ R y +  Ry - 8- 64 ; 
0.875 0.3222656 

b) the normal magnetic moment  term does not contribute because of the 
6jcterms in eqs. (6); 

c) the annihilation part gives 

(n32 n~) = 4849 
A ~rT.annih 2 7 1 1 - -a  2 Ry 
---12 = a Ry ~ - -  . 

1.020833 

Thus up to order a 4 in total 

is 

3 
AE2, = g Ry - 0.468093a 2 Ry ; (13) 

d) anomalous magnetic moment  contribution form eq. (10) to order a 3 Ry 

3 
A E ~ ) _  a Ry 35 

27r 96 " 
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5. Hydrogen and positronium fine splittings 

Finally we give the hydrogen fine structure splitting 

AE(2P3/2 - 2P,/2)) - 
0/2Ry 1 ( 2al + 2a1~ :2 s c ) 

16 (1 + ~:) 1 + (1 Jr ~)2 gala2 

+ 
0/2Ry 

9 (1 + g) (1 + a I + a 2 + a l aa ) ,  (14) 

and the measured 15) positronium splitting 

A E p s ( 2 3 S |  _ 7 2 - 23p2) = - 1120/2 Ry + 70/2 Ry 4~0/ Ry + 0'(0/5) 
(recoil) (annihilation) (normal magn. 

moment) 

23 2 - ~ 0 /  R y +  0'(0/5). (15) 

Eqs. (13) and (14) agree with the result of Fulton and Martin ~6) and Fulton'7),  
but now are obtained from a 2-body one-time wave equation. 

Our results agree with the standard ones to order  0/4 and to order 0/5 for 
terms coming from the anomalous magnetic moment~8). There are however 
other self energy terms to order 0/5 which for the moment  we take over from 
standard results, but which eventually may be included dynamically as a 
potential in eq. (2) as we have indicated. 

There are a large number of terms to order 0/6 _ 0/2Ry: 

i) those coming from the expansion of the recoil term (3); 
ii) those coming from the expansion potentials; 

iii) those coming from the evaluation of the perturbation averages. We have 
taken here, in order to compare with standard results terms up to order 0/s 
(and some up to order  0/0). But,  now that we know that the wave equation is 
correct up to order o/s, it is of course more appropriate to evaluate the 0/6 te rm 
nonperturbatively and directly by numerical methods. 
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