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The solutions of a covariant two-body equation are applied to the spectra of H, muonium and
positronium. In order to compare with the standard results we have expanded the potentials, the
recoil terms and the perturbation calculations up to order a”. The best known intervals, namely
Hfs of H, muonium and positronium and the 2°S,-1°S, interval of positronium are obtained to this
order in agreement with standard results and experiments. Having thus verified the nonperturba-
tive equation to order a”, the recoil and normal and anomalous magnetic moment terms can now
be evaluated numerically to all orders.

One can divide the precision tests of quantum electrodynamics into three
groups. First we have the high energy experiments, accurate to a few percent,
but which test the electron and photon propagators and form factors at very
high momentum transfers'), and involve only few higher order diagrams in
perturbation theory. In the second group we may put the (g-2) experiments
which involve at the moment diagrams up to eight order?). The theory is again
pure perturbation theory although the number of graphs, the renormalization
procedures, overlapping and nested divergences become considerably more
difficult. In contrast, the third group of tests all involve nonperturbative bound
state problems in hydrogen, positronium, muonium, ..., namely the Lamb
shifts, hyperfine splittings and decay rates. The nonperturbative starting point
for this third type of calculations has been described as an ““art”’) in contrast to
the well-defined mechanical rules of perturbation theory. More and more
accurate relativistic bound state wavefunctions are necessary to perform further
perturbations on them. The development of the various starting points for
QED-bound state problems has been reviewed recently by Bodwin, Yennie
and Gregorio). In the most recent works the starting point for the nonpertur-
bative bound state problems has been a one-particle Dirac equation. In this
work we take a recently discussed genuinely relativistic 2-body equation“) as
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a starting point for bound state problems. This equation has the following
properties:

i) It is relativistic and covariant;

ii) it takes full account of spin and recoil of both particles (it is a 16 X 16
spinor equation);

iii) it is a one-time equation with relativistic potentials; relative coordinates
are 3-dimensional (r). Since Poincaré invariance is built in, there is no
retardation problem;

iv) it is derived from the QED action by a variational principle on the
configuration space wave function and the exchange of a massless particle is
essential in the derivation;

v) center of mass and relative coordinates are exactly separable;

vi) angular and radial parts are exactly separable;

vii) it provides relativistic good quantum numbers for positronium instead of
L and S. Vertex radiative corrections are included partly by an anomalous
magnetic moment Pauli coupling;

viii) the potentials up to order a” are exactly soluble. This soluble part may
be taken to be the basis for a Furry-picture perturbation theory both for
scattering and bound state problems.

We believe this approach brings a conceptual and practical simplicity to
relativistic bound state problems. The equation is

(1) (2)
Y Y.

+V

magn

(1) (2) (1) (2)
{(‘yﬂplp. _rnl)® Y ‘n+ Y .n®(‘yﬂp2p. _m2)+elez

€L

VB, 1) =0 M

Here (y) and y are the Dirac matrices for each particle, n, a unit vector in
the direction of the total momentum P, = p,, +p,, andr = [(x n)* — x’1"%is
the relativistic distance perpendicular to n. For n, = (1000) r, =r, the ordi-
nary radial distance. It follows that the equation is independent of the “time”
component of the relative momentum p, where p, =[m,/(m, + m,)|p,, +
[m,/(m, + m,)]p,,. In the center of mass frame P, = (M000), the mass
operator becomes

l—ara,
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where the potential due to anomalous magnetic moment, U,,,,., has been
given elsewhere’ ™). The potentials due to other radiative processes, U,,,,

including the Uehling and self-energy potentials which we have treated
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separately’ "), will be included perturbatively. In previous papers we discus-
sed in detail the explicit separation of the radial equations in (1) and (2) ®), the
exactly soluble part of (2)’) and the calculation of perturbations due to
U agn *). The main exactly soluble spectrum for arbitrary masses m,, m, is")

, M +Am® M*—-Am’ P
E> = + t— , M
2 2 (n,+1)

where + refer to levels just below the positive continuum, and just above the
negative continuum, respectively; the treatment and interpretation of the latter
solutions are given in ref. 8.

We pass to the principle quantum number n and total angular momentum;
by using I(/ + 1) =j(j + 1) — &, (j —1)(j) = o, (j+ 1)(j + 1)a’, respectively
and setting n, + I =n—a’/2(j + 3) + O(a*), etc.

Eq. (3), when expanded, gives then for small m,/m,,

m1a2 _ mla4
2n°(L+ m/my) 2’1+ m,imy)(I + 1)

E (n, )= (m, +m;)—

-3 myat 1 miim,a’
P g 5 + 0(a”)
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It will turn out, as we shall see, that eq. (3) is exact for para-positronium up to
order a* because the normal and anomalous spin terms will be zero for this
case; and we obtain in this case
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Eq. (4) should be compared with Lepage'’). There the third term is written as
[mya’/(1+ m,/m,)n’]/2(j + }). The reason for this difference is that in ref.
12, j is half integer because a one-body equation is used for the electron. In our
case, we shall use j for the total angular momentum of the two-body system:
our j is integer, but I=j, j—1, j+1 to order a’, so that both results are
numerically the same. The energy shifts due to fine and hyperfine splittings
both for normal and anomalous magnetic moment interactions calculated as
perturbations to the exact part (3) to order a’ and a® are®)
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For positronium, in particular, we find

_ AM dldzMz) B
A+_2<1+2a 2a » 4-=0. )

Here a,,4, are the anomalous magnetic moments and we shall put 4, =
(e,/2my)ay, a, = (e,/2m;)a,,
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Taking the recoil and the spin parts together the final results are
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We now apply these results to the following important special intervals:



BOUND-STATE QUANTUM ELECTRODYNAMICS II 493
1. Hydrogen and muonium ground-state hyperfine splitting
This is the interval between the n=1, F=0 and F=1 levels, or
AE" =E(n=1,1=j-1=0,S=1)—E(n=1,1=j=0,5=0).

All terms in our expansions cancel except for the last one in eqgs. (9) and we
obtain

(Mo’
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2 HGrh et et e,
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W+ 1) 1+a,+a,+aa, §a2+_—(1+§)2 o
which gives finally with ¢ = m,/m,
e _ 8 & 4[ 3., 3 a, ]
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AE 3+ ey m.a [(1+a,)(1+a,) 2 ta, 7 % 1+ )
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where a, is the anomalous magnetic moment of the proton or moun. It is
interesting to note that Fermi’s effective dipole—dipole interaction formula
emerges at the end with proper recoil correction and a sum of both normal and
anomalous magnetic moment contributions. Numerical values obtained from
eq. (8) are

Hydrogen: (1+a,)=2.7928456, (1+ a,)=1.001159652
£=5.446174x 107"
AE, =1420.348 .. . MHz
(AE,,, = 1420.405752)

Muonium: (1+a,)=1.001165924, (1+ a.)=1.001165652
£=10"" X 4.8363305
AE,, = 4.463.0601 MHz
(AE,,, = 4463.302)
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2. Hydrogen and muonium n =1, n =2 splitting
From egs. (9) and (4) we have

AE(2’S,-1°S)) =
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3. Positronium hyperfine splitting

Since in this case A_ =0 in eqs. (6), there is no spin shift in 1S -level
(para-positronium) to order o’ Hence the Hfs-splitting is
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which gives
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To this we must add the annihilation contribution, evaluated by a function
potential both for normal and anomalous magnetic moments. For these we
take the standard results’’) namely Zma* and (—(a/2m)(% +In2)ma’),
respectively. Thus in total

_ T a3 4<“> i(E > T :
AEHfS_ 12 ma + 12 mao oy 27\ +In2) ma + . (12)

4. Positronium n =2, n =1 transition
This is the newly measured'*) interval
AE,=EQ2,j=I1+1=1,5=1)—-E(1,j=1+1=1,85=1).

In this energy shift we have
a) a recoil part

4 4
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3
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b) the normal magnetic moment term does not contribute because of the
8,-terms in egs. (6);
c) the annihilation part gives

o 7/1 1 4
AET?"'h=azRy—<—3——z>=—a2Ry -

6 n 48
2 1.020833
Thus up to order a* in total
3 2
AE, = 3 Ry — 0.468093a" Ry ; (13)

d) anomalous magnetic moment contribution form eq. (10) to order a’ Ry
is
a’Ry 35

@ _ _
AE3 27 96 °
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5. Hydrogen and positronium fine splittings

Finally we give the hydrogen fine structure splitting

B a’ Ry 1 2a, +2a, ¢’ B ¢
AE(2P3/2 _zpl/z))_ - 16 (1 + §) < (1 + 6)2 a1a2 1+ é—)
a’Ry ¢
9 ) (1+a,+a,+aa,), (14)

and the measured'’) positronium splitting

AEP(2'S, ~2°P) = — ha’ Ry + La’Ry - ha’ Ry + 0(a”)
(recoil) (annihilation)  (normal magn.

moment)

=Za’Ry+ 0(a’). (15)

Egs. (13) and (14) agree with the result of Fulton and Martin'®) and Fulton'’),
but now are obtained from a 2-body one-time wave equation.

Our results agree with the standard ones to order a* and to order a«” for
terms coming from the anomalous magnetic moment'®). There are however
other self energy terms to order «’ which for the moment we take over from
standard results, but which eventually may be included dynamically as a
potential in eq. (2) as we have indicated.

There are a large number of terms to order a® ~ a’Ry:

i) those coming from the expansion of the recoil term (3);

ii) those coming from the expansion potentials;

iii) those coming from the evaluation of the perturbation averages. We have
taken here, in order to compare with standard results terms up to order «’
(and some up to order a°). But, now that we know that the wave equation is
correct up to order a”, it is of course more appropriate to evaluate the a® term
nonperturbatively and directly by numerical methods.
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