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A fully covariant two-body equation is applied to the theory of hydrogen, muonium, and 
positronium spectra. Both particles are treated fully relativistically and complete spin algebras for 
both particles are taken into account. The major part of the 16 × 16 wave equation is exactly 
soluble including recoil of both particles to all orders. The terms of order 0/5, o/6 are treated 
perturbatively (although the equation is in principle numerically solvable to all orders). Self-energy 
(loop) effects are partly considered by an (effective) anomalous magnetic moment, but in a 
dynamical way using a Pauli coupling from the beginning. The theory simplifies and improves the 
bound-state QED problems in a number of ways. 

I. Introduct ion 

Relativistic dynamics  o f  two (or more)  interact ing fermions  is the basic 

p rob lem of  the tests of  q u a n t u m  e lec t rodymanics  in low energy  bound  state 
problems (hydrogen ,  m u o n i u m ,  posi t ronium-fine and hyperf ine structures and 

spectra) as well as for composi te  models  of  hadrons  and leptons.  The  Q E D  
bound  state theory  is a very old but  fundamenta l  p rob lem and has been  
reviewed periodical ly many  times1'2). 

A l though  the B e t h e - S a l p e t e r  formal ism 3) provides  an approach  to the 

bound-s ta te  problems f rom first principles of  field theory ,  it has been  recog- 
nized quite early by Salpeter  4) and by m a n y  o ther  authors  later, that  one  needs  
an appropr ia te  3-dimensional  exactly soluble wave equa t ion  as a starting point .  
This equa t ion  is general ly a one -body  equat ion  of  the S c h r 6 d i n g e r - C o u l o m b  
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type with relativistic kinematics, or more recently of the Dirac-Coulomb type 
which takes into account some aspects of the behavior of the second particleS). 
The recoil and radiative corrections are then performed at various stages, and 
spin magnetic moment  structure of the particles are introduced gradually. 

As the accuracy of the tests of QED in bound state problems is steadily 
improving, the relativistic treatment of recoil and other radiative processes 
become very crucial even for these low energy processes. There are at the 
present time still important differences between theory and experiment in 
many of such tests~'). 

In the present work we have studied a genuinely 2-body, 16-component 
spinor equation obtained from the Maxwell-Dirac Lagrangian which treats 
fully the spin and recoil properties of both of the particles. We have introduced 
the anomalous magnetic moment  in a dynamic way, in the Lagrangian instead 
of adding it simply as a correction to the normal magnetic moment  in the 
nonrelativistic approximation. The major part of the interaction in the 2-body 
Hamiltonian is exactly soluble, thus taking into account the recoil corrections 
to all order.  The remaining spin-orbit ,  spin-spin and anomalous magnetic 
moment  interactions, although in principle soluble also to all orders (for 
example numerically), are treated here, in order to compare it with the other 
work, as a perturbation to the exactly soluble part. 

We show that we obtain agreement with QED up to order a5 for hydrogen 
and muonium spectra. At order  a-s there is in principle a small difference with 
the currently quoted results which become rather important in the case of 

positronium. 
In the case of positronium, the advantages of the fully relativistic treatment 

shows itself clearly by the fact that l is not a good quantum number. There is a 
mixing of the j = l+-1 levels at the aS-order in the anomalous magnetic 

moment  terms. 
But we must await the inclusion of all other radiative terms of order a5 for 

positronium in order to be able to make a fuller comparision with experiments. 

2. Review of  the basic equations 

The starting point is the coupled Maxwell-Dirac action for two fermion 
fields ~b~(x) and ~b2(x ) interacting via the electromagnetic field A , 

I _(j), 
W = ~  d4x {t~j((~)" i O. mj)tpj-ejqJjy'qJiA 

j = l -  

- (J ) . .  ! F F~-~ --ajffl]o*'" f f / j F ~ -  4 p.. 1 ,  ( 1 )  
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where we have also introduced a Pauli-coupling representing the anomalous 
magnetic moments.  From this action we obtain a relativistic 2-body wave 
equation in the following way7'8). We define a 16-component composite field 

* ( x , ,  x2)  = q , , (x , )q ,2(x: )  , 

eliminate in (1) A~, and Fu, using the equations of motion and rewrite W in 
terms of ~ and qb. The (new) variational principle of W with respect to q) then 
gives the following equation: 

[((y)~'i0, m , ) @  (~)0 + (~)o® (2)~,. - ( y  l O . - m z ) + V ] c l g ( X l , X e ) = O ,  (2) 

where V is a relativistic potential which we shall specify below. Eq. (2) can be 
written in a fully covariant way but we took a space like surface with normal 
n ~" = (1000). For massless exchanged particles, like in electrodynamics, V is a 
function of r = Ix I - x21 only. Then the spinor equation (2) is exactly separable 
into center-of-mass and relative variables; 

® + U _ a)?O ® IP - ® (2)0  _ ? 0 ®  

(1) (2)0 (~)0 (2) 
- [ 1 0  y m l +  @ I m 2 ] + V } c I ) ( R ~ . , r ~ , ) = O ,  (3) 

where r = xl~ , - x2~ , and R = axl~ + (1 - a)x2,(e.g,  a = m l / ( m  I + m2) ). We 
see that actually the p0-dependence drops out, hence • is a one-time equation 

and depends only on the 3-vector relative coordinate r: q~ = qb(R~,, r). 
The vector n ~" comes in necessarily via the normalization of the Dirac wave 

function on a space-like surface with normal n and via the directional 6- 
function in the Green 's  function D ( x -  y).  

We shall write in the tensor product ® of spinors always particle 1 first and 
particle 2 second then we can omit the superscripts 1 and 2. 

The mass operator  P0 for our  system is 

P o = M = ( a , ® I - I ® o t z ) ' p + ( ~ , ® I m , + I ® ~ z m z ) + ~ y ~ 2  . (4) 

The 16-component equation (4) can be fully separated into radial and 
angular parts 9) for potentials coming from the minimal and Pauli-couplings in 
eq. (1), 

(~) (2) 1 
gelectric = ele2 ~" ® Y~" r 

and 
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o t . r  ~ × r  l Vmag.etic = - 2ela2 iY ° ® - - 7  + "Y ® 
r - - 7 -  

[ o,'r , ,Xr ] 
+ 2ale2 i -73-3 + ~ - 3  ® Y  

I 3~r . r ®  ~r . r 3 a  . r ®  ~ . r 
- 4a~a 2 ~ r s 

8~r 4~r 1 
[- T O'l "0"2 6(r )  - ~ -  oz 1 • ~ 2 ~ ( r )  . 

° r l  " 0"2 19l'1 ° °~2 
3 -1- 3 

r r 

We then obtain 16 radial equations which separate into two groups of eightg). 
The purpose of the present  work is to study and solve these radial equations. 

3. The first set of eight coupled equations 

The first set of the 8 radial equations that follow from eq. (4) a r C )  

2 a  4 a l a 2 ~  
E + --r + ~ X - - ]  r z '  + A m  ry 1 - 2 Or(rb l2)  + 

2 ~ +  1) A 
ru  o - ~ ro  2 = 0 , 

r r 

(Sa) 
T 

E - ~ ) r z o o  + A m r y o o  - ~ r v  = 0, (5b) 
r 

E 2 a  4 a l a 2 ~  r + 
- -  7 r y l  , r r 3 ] rlt2 + M r v 2  + 2 0 ~ ( r z , )  - = 0 (5c) 

2 ~  1) A 
E r o  2 + M r u  2 ryoo - -~ rz  1 = 0 ,  

r r 

T 
E r y  1 + A m  rz~ - - ~  r u  2 = 0 , 

r 

(5d) 

(5e) 

4 o /  2 ~ +  1) 

3A 
× rv 2 + ~ ru  o = 0 ,  (5g) 

r 

E r r  o + M r u  o (5h) 

Here  a = - e  le 2 is the minimal electromagnetic coupling coefficient (c = h = 

- r y o o  ) r 2  r Z o o  = 0 , 

8 a l a 2 \  
E +  2 a  + - -  M r v o  + 

7 r 3 ) r u ° +  

2 ~  1) 3A 
rz~ + ~ ryoo = 0 ,  (5f) 

r r 
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1); The coefficients 

A =  e l a  2 + e2a 1 , 

"r = e l a  2 - e2a I , (6) 

measure the sp in-orbi t  coupling due to anomalous  magnetic moment ,  and a l a  2 

is the corresponding spin-spin  coupling where a is measured in units of e / 2 m .  

Total angular m o m e n t u m  is denoted by j, and 

M = m I + m 2 , Am = m 1 -- m 2 . (7) 

The indices on the wave functions components  z l ,  y~, Y00, u2 . . . .  etc. denote  
spin components  (S = 1; S z = 1, 0, - 1  and S = 0, S z = 0) . . . .  Four of these 8 
equations are algebraic. 

We eliminate the functions rUo, rv2 ,  ry  I and rZoo using the four algebraic 
equations (5b, d, e and f) and obtain the following set of four first order  
differential equations: 

2 M ~ +  1) 
V l ( r u 2 )  + 2 0 + r z  1 + E r  ryoo = 0 ,  (8a) 

2 M V ~ ( j  + 1) 
V2rz  1 - 2 0 ru  2 r V  5 rv  o r -  -E + ryoo = O ,  

(8b) 

2 M / V ~ +  1) 
V3ryoo + 2 O+ rv  o + E r  ru2 

V4rv  o - 2 0 ryoo - 
2 M / V ~ +  1) 

r5 ~ + r z  I = O ,  

(8c) 

r z  l = 0 .  (8d) 

Here  we have used the following abbreviations: 

V l ( r  ) ~ E + 

V 2 ( r  ) ~ E + 

V3(r ) ~ E + 

2 a  M 2 4 a l a  2 T 2 

r E r 3 E r  4 ' 

2 a  A m  2 4 ] ( ]  + 1 ) / r  2 4 a l a  2 A 2 

r E V5 + 3 r g r  4 ' 

4 a  A m  2 4j ( ]  + 1) 9A 2 

r E - 2 a / r  E r  2 r4V5 ' 

(9a) 

(9b) 

(9c) 
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M 2 2 T 
V4(r ) =- E V~ r4(E - 2a/r) ' (9d) 

2c~ 8ala 2 
G ( r ) = - E + - - +  3 , (9e) 

r r 

for potentials, and for derivatives we have set 

AM + r Am 
O+ -= O r -+ (10a) 2Er 2 

1 (3AM/2r 2 
~+~Orq----~- r V, 

r Am/2r2~ (10b) 
/ ~  2 -~ r  / " 

In the nest step we eliminate (ryoo) and (rzl) between eqs. (8a, b, c and d). 
The result finally is the following set of two coupled second order equations: 

I VIV 6 V 6 V 3 2AMj(j + 1) 1 
4V 3 + [ ~ O +  V 6 +  Er4V3 (-E 

- Ev~ o+ ~ + 

+ M  V°a+ V~r~E + 

- V2_ +~_  O+ ~ +~  O~ (rvo)=O, (11) 

V4V [g6 ~ g 2 2 x m j ( j + l )  l 3 ) ]  
4V2 + V22 - K -t- r4V2Vs (-~ q- ~ O+ 

2AMj(j+ 1)V6~ 1 (1 3) M ) ( j +  1) } 
-- V2 V6~5 ? g -}-. ~ V2V 5 V3 (rv°) 

V 6 V 2 2AMj(j + 1) ( ~  + 
- M ~  - ~ O_ rV 6 ErSV2V s V55 

[ V 3 2A V6b 1 ( 1  3 ) 1  } 
+ ~+M- E - r-~6 E+V5 0 ( r u 2 ) = O ,  

+ 0 

l'  2}(ru2' E2r2V3 

2 A M y ( j + I ) ( 1  3 )  

ErSV3 w -E + 

where we have introduced a further abbreviation V 6, 

V ~ VzV _ 4A2J(/6+ I ) (1  3 2 ~ + , (12)  

Two limiting cases of eqs. (11) are exactly soluble and have been treated 
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elsewhere1°). One is the free particle limit, the other case is when we keep the 
potentials up to order a5 in a power series expansion. The exactly soluble part 
of eqs. (11) are 

[-I( o( ] E -  T E E + --r E ~ '£  / r2 +0~ (ru2) 

2 V ~ +  1) 
2 

r 
rvo(r ) = O, 

I ( E  M e Am2~ 

2 ] ( ~ - 7  1) 
2 

r 
ruz(r ) = O, 

(13) 
M 2 + Am 2 2 ] j ( j + l ) + 2 - a  2 

2 + 0r J (rVo) g£ / r 

The spectrum and the solutions of (13), upon which we shall treat the 
remaining term as perturbations, are 1°) 

and 

Pu2(P) = A o R . j  (p) + A2R.,t+ (p) , 

p V o ( p ) = _ ~ /  j j[]-+, l ] ~  AoR .a  (P) + ~ --7-- A2R,,a+ (p ) , 

(14) 

E 2 _ M 2 + A m  2 M2Am2[ 02 ]-1/2 
- 2 -+ 2 [1 + ( n f ~ l )  2 , (15)  

where 

/ (l_ + 1) + c~ ~ = j ( j  - 1 ) ,  

Z+(Z+ + 1) + o~ 2 = ( j  q'- 1)(j  + 2) ,  

R.a = e-Pnp~+',F~(-n + l + 1,2l + 2; p ) ,  

p ~ [ ( M  2 - E 2 ) ( E 2 - A m 2 ) ]  1/2 
E 2 r .  

(16) 

The remaining terms in eqs. (11) are, to order a 5, 

r Er 3 

AM+ r A m  + gg3 

Am2~] ala 2 M e - A m  e 
E ] ] 0 r  r 3 E 

(17a) 
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AH12 

2o~ 8 j ( j  + 1))  
- -  - - ~ -  + 

4a  1 r ~ Er 3 

Er  3 r E - 2~m2/E 

7 
2__ff_~ + Er  3 l + Er 3 

J 

-40~/r2  + 2 E ~ + 
2 E - M 1 r Er  3 

A H 2 1 =  ~ r 2 M r E -  Am2/E  

2AM]  

+ Er  3 J ' 

2~{2  _ a m  2 ] 8 j ( j  + 1) 
a H 2 = r 2 \ - - Z - /  E r ~ (  1)  3 A M - r A m  

E Am2/E  0 ~ + -  + 2  " - r Er  3 

2ala 2 M 2 -  A m  2 M e 
+ 3 

r E E 2 "  

(17b) 

(17c) 

(17d) 

Here all the E's refer to the unperturbed spectrum given in eq. (14). There are 
two methods of calculating the expectation values of AHij. One way is to 
calculate them directly between the basis states (15). The second way is to 
transform AH into a new basis of wave functions R,,~ and R,,j+. In this basis 
the unperturbed, exactly soluble part of the Hamiltonian is diagonal, so that 
the expectation values of the transformed AH can be calculated in diagonal 
form. 

The transformation between the states with angular momentum l+ and the 
states pu  2 and pvo is given by 

( R n ' i * ( P ) ]  ~ [ p u 2 ( p ) )  (18) 
R,,,, ( p ) / =  D ~ p v o ( p  ) ' 

where S is the following matrix: 

cos 0 sin 0 )  (19) 
S =  - s i n 0  cos0  

and sin 0 and cos 0 are given by 

•/ j ~/ j+l  (20) s i n 0 =  2 j + l  ' c o s 0 =  2 j + l  " 
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Then the transformed Hamiltonian is 

151 = S H S  - 1  . (21) 

The transformed perturbations are obtained from the expressions given in eqs. 
(17a-d)  by the transformation (21). The result is 

_ 4j ( j  + 1) E -  M + !r4.(j 
A / ~ l l  + 1) 

2j + 1 Mr 2 Er3t 
j( AM + r A m )  + 2(j  + 1 ) ( 3 A M -  r Am) + 4AMj( j  + 1) ] 

2j + 1 + 2j + 1 

+ 2 a ( j  + 2) 4j ( j  + 1)(2j + 5) 
(E - Am2/E)r  3 (E 2 - Am2)r 4 

(M 2 - Am2)( j  + 2) 
+ ala2 Mr3(2j + 1) 

~ [ [  2 ( E -  M)  4o~j 
A / ~ 1 2  = 2 -1- - -  Jr- - -  

r E Er 3 

24 (3 - AmZ/E 2) 

Er 2 1 - -  A m 2 / E  2 

AM - r Am 
Er 3 

16j( j  + 1) 
(2j + 1)E2r3(1 - Am2/E 2) Or + 

+ 3ala 2 q 
(M e - Am2)] , 

Er3(2j + 1) J 

at:I21 = A I : I , 2  , 

AI:I22 -- 4j ( j  + 1) E -  M + o~ L[-4aJ 
2j + 1 Mr 2 Er 3 

Or 

(22) 

(23) 

(24) 

( j  + 1)(AM + r Am) + 2 j ( 3 A M -  r A m ) -  4Aj( j  + 1 ) M ]  + 
(2j + 1) ] 

2 a ( j  - 1) 4j(j + 1)(2j - 3) -- + 
Er3(1 - AmZ/E 2) E2r4(1 - Am2/E 2) 

ala2(M 2 - A m 2 ) ( j  - 1) 
+ Mr3(2j + 1) (25) 

It is seen easily that A/~22 can be obtained from m/'~ll by the following 
substitution: 

j ~  - ( j  + 1). (26) 
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The matrix elements of A/112 and A/421 between the states R,.z and R~.t+ are 

(n, /+[Afl t2ln,  1 ) = f dr R,*.,+ (r) Al~tl2gn,, (r'), (27) 
0 

(n, llalgI21ln,l+) = 1 >*  (28) 

These can be calculated easily and the result is zero ~ ). The expectation value 
of A/-)I~ between the states In, l+) is 

+ 1 A 
(AH,,) . , ,~ 2 j +  1 n 

2o~(j + 2) j 1 
+ ( E T - A m ~ o ) ( 1 ) . , z -  4 j ( + 1 ) ( 2 j + 5 )  

ala2(M 2 -  AmZ)(j  + 2) ( 1 } (29) 
+ 7 

where 

A / =  4 ~ ( j  + 1) + ( j (AM + r Am) + 2(j  + 1 ) ( 3 A M -  r Am) 

+ 4j( j  + 1)AM}/(2] + 1). 

---2 3 - 4  We can use the expectation values of r , r and r given by ~2) 

2 
__ Z 

( r -2) , , J  n3(l + ½) 

F - - 3 ) n , l  

3 
Z 

n3(l+ 1)( /+  ½)l 

½z4(3n 2 - l(l + 1)) 
( r  4)n,/ = g /5( l+  3)(1+1)(l_]_ ~ ) l ( l -  I) " 

(30) 

(31) 

(32) 

Here l is given by eq. (16) [it is not an integer] and 

og OL z = ~-~ (2E 2 - (M 2 + Am2)) --~ ~ -~  ( m  2 - Am 2) + •(a2).  (33) 

We take also the zeroth order terms of the expression defining l, namely 

l_+ ~ 1~ ~) = (]-+ 1) + G(a2) .  (34) 
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Then using eqs. (30)-(34),  we calculate eq. (29). The result is 

= 

20t 4(M 2 - Am2)2/M 2 o t 4 ( M  2 - Am2)3/M 4 
43n3( j+ l ) ( j+  3) + 43n3(j + 1 ) ( j +  3) 

( ( 4 j +  3)AM ~zXm ] 
x 1+  2( j+1)c~  2( j+ l )o~ /  

a l a 2 o t 3 ( M  2 -- A m 2 ) 4 / M 4  
+ 

43(2j + 1)(j + 1)( j  + 3) (35) 

In the same way, we calculate the expectation value (A/~22)n,j_l which gives 

(A/Qz2)n,i_ l = _ 2a4(M 2 - AmZ)Z/M 2 _ a4(M 2 _ Am2)3/M 4 
42n3j ( j -  ½) 42n3( j -  ½)(j + ½) 

x ( l +  ( 4 j + I ) A M + ~ - A m )  
2jo~ 

a l a z ( M  2 - AmZ)%e 3/M4 

+ 2"43n3j(j - ½)(J+ I)  (36) 

It is shown in appendix A, how to obtain the energy shifts of states In, j + 1) 
and Jn, j - 1 )  from (A/41,),,j+, and (A/)22),4_1, respectively. Using these 
procedures we obtain the following perturbative shifts to Ez: 

~E~l = 
20~4(M 2 - A m  2) 

42n3(j + 1 ) ( j +  3) 
ce4(M 2 _ A m 2 ) 2 / M  2 

42n3(j + I ) ( ]  + 3) 

2c~4(M2 - Am2) a4(M2 - Am2)Z/M2 {1 
8E222 = --Y2TS, :--  7- 42n3( j -  I ) ]  + 4Zn3( j -  ~)(1 + ~) 

+ 

ala2a3(M 2 - AmZ)3/M2 

2 . 4 3 n 3 ( j - 1 ) j ( j +  ½). 

1 + (4j + 3)AM - r Am ] ala2(M 2 -- Am2)3ce 31M2 
2-~ 7 i)-(~ / - 2 • 42n3(-~ + ~)(--~ + 1)(~ + 3) ' 

(37) 

(4j + 1)AM + r A m )  
2]a / 

(38) 

Eqs. (15) and (37) give the expression of E 2 for the In, l+ = j  + 1) state and 
(15) and (38) give E 2 for In, l_ ~-- j -  1) state. 

Next we pass to AE by 

1 
E = E 0 + ~ff -~E 2 + . . . ,  (39) 

1-' "-'o 
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or  

A E  = ~ l )  ~E2 + ' ' "  2M ~E2 q- e(O/6) ' (40) 

so that the final energy shifts are given by eqs. (37) and (38) divided by 1/2M. 

4, The second set of eight equations 

The second set of the 8 radial equations is 

2a 4ala2) 2 ~ +  1) r 
E + r u l  d r  r r ~ ' r 7 + M r v i  + 2 d  (rz2) r z °  - ~ ry2 = 0 

(41a) 
2a 4ala2~ _ 2  d A 

E + - -  + r z  2 + A m  r y  2 ( r u  1 ) -- ~ r v  1 = 0 (41b) 
r r 3 / d r  r ' 

( 4 a )  ( d  ! ) (  2~/j(j + 1) 3r 
E + - -  m o o  + M r u o o  - 2 + r y o )  + - ry 2 + - - ;  r z  o = 0 ,  

r r r -  
(41c) 

E r y  o + A m r z  o + 2 - -  ( r v o o ) - - ~  r u o o = O ,  (41d) 
r r 

2 V ~ j  + 1) r 
E r y  2 + A m  r z  2 + rVoo - -~  r u  1 = 0 , (41e) 

r r 

A 
E r u  I + M r u  I - ~ r z  2 = 0 , (41f) 

r 

( 25) 
E - rUoo + M r v o o  - - 5  ryo  = 0,  (41g) 

r 

2 ~  8 a l a 2 ~  2 ~  + 1) 37 
E + ~ I r z  o + A m  r y  o r u ,  + ~ rVoo = 0. (41h) 

r r -  / r r 

We solve (rol) from (41f) and substitute it into (41a, b) then solve (rUoo)  

from (41g) and insert it to (41c, d). We have two more algebraic equations. 
Next we solve (ry2) and (rz2) from (41b and e) and ( r y o )  and ( r Z o )  from (41d 
and h). By inserting these into (41a and b) we have again two coupled second 
order equations: 

1 1 r 2 g s  

V7Vs + V s V ( + )  Vss V{_)- 4 E r 4  

{ 1 
+ A m ~  VsV ~+) E r V s  

j ( j  + 1) V8(1 + A m Z / V g )  

J r u l  
r -  VI  1 

7½ 
m +  

2 A m  E r  3 
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V8 ( 3"rV9 ]~ro 
r V  9 V(_) 2 Am r2Vll/J 00 = 0,  

1 VgVlo 
4 V,~ 

V9 VIi 9"r 2V9 
- - -  + ~11 V(+) ~ V(_) 4r4Vll 

J(J + I)Vg( E + 2ar ~A2 )} 
VsVII r2 rVoo 

(42a) 

{v~ 1 
+ A m ~  ~ V(+) ~99 + 

3~v~ 
3 2 

2 A m  r Vii  

ErVsV11 O~ 2Er2 2 A m  r ~ ru 1 = 0 ,  (42b) 

where 

1 AM 3 r A m ~  
V(+) = 0 r "-I- ; 2rZ(E - 2 a / r )  + 2r2V1------~l/ " 

and the following abbreviations have been used: 

2a  M 2 4ala  2 
V7 = E +  3 , 

r E r 

2a  4a~a 2 A 2 A m  2 
V8 = E +  - - +  3 - -  , 

r r Er  a E 

V 9 = ( E +  2a gala2) ( /~2 ) 
r r3 E r4(E 5 - 2 a / r  ) - Am 2 , 

4a  M 2 
VlO = E +  

r E - 2 a / r  ' 

2a  8 a l a  2 
V ~ I = E  + 3 

F F 

The free particle solutions of these equations are 9'1°) 

(43) 

(44) 

PUl(p )  = A p j j ( p ) ,  PVoo(P ) = B p j j ( p ) .  (45) 



480 A.O. BARUT AND N. UNAL 

Again taking the potentials up to ~5, we have the main part of the equations 

j ( j  + 1) 
2 r 

ala2Er 3 ( M2 -- Am2) l  

2rE 
+ - -  (rv00)=0.  A m r  3 

4a M 2 M 2 2c~ 

r E E r 

[~ M2)( 1 2c~ 2or A m  2 ~ 2 
E +  E +  "+Or 

r -E r E /  d( ~o ~2) 
drr E +  r E A M + r A m  

+ Or+ Er 3 ( E +  2°e Am2) 
r E 

[d( +2~ ~m2~ 

+ ~ - E -  A m 2 ]  

E 2 / 

[~( ~m ~- ~m~ 2o ~m~4o2~C~ 
E - ~ - + - - E 2  r ~ 7  / \  + 

M 2 4o~2) . j ( j + l ) ]  
E E 2 r : / +  O~ r2 (rVoo) 

( r .1 )  

(46a) 

A m  1 dr  . . . . . .  ~1+ r / + 2 r E  l ( r u , ) = O .  

+ ~ ~  ( l+~r)rI~+~ ~mr~ ~46b~ 
The exactly soluble part of these equations are, in this case, the following two 
uncoupled equations: 

j(j + l ) -  ~ ~] 
2 +O (rut) = 0,  (47a) r 

m t ~ _ ~ t i  ~ ~_2~ ~12~ ~2+~ ~ 
j ( j  + 1) 2 ~] --Ol ~E 

- 2 + O (rvoo) = 0 .  (47b) 
r 

Note the appearance of the factor 6 E in the second equation by 

A m  e M 2 M e Am 2 
~E -- E 2 + E4 (48) 
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The solutions of (47a and b) can be written down immediately in terms of the 
hydrogenic wave functions 

PUl(P) = A e P/zD'+11F1(-n + l + 1, 2l + 2, p ) ,  (49a) 

pVoo(P ) = B e -P /2p t+ l iF l ( -n  + 1 + 1 , 2 l +  2, p ) .  (49b) 

The spectrum is given by 

E 2 M 2 + A m  2 M 2 - A m 2  ( 0 /2 )  -1/2 
2 + ~, 1 + (nr + l) 2 (50) 

For eq. (47a) the angular momentum l is given by 

l(1 + 1 ) = j ( j  + 1 ) -  a 2 , (51) 

but for (47b) we have 

l ( l + l ) = j ( j + l ) -  2 Ol ~E " (52) 

We see from eq. (48) that 6 e = +1 for E = Am, and 6 E = - 1  for E = M. 
Hence for the same physical /-values as in eq. (51) (that is for 6E = +1)  the 
solutions of eq. (47b) lie near the "negat ive" continuum, thus belong to the 
( - )  sign in eq. (50). Since these values are unphysical energies, the solutions 
must be correctly interpreted. This can be done if we change the sign of the 
mass of one of the constituents, say, m2-----)-m 2. This means a change of 
Am ~, M, which brings the spectrum back near the "posit ive" continuum at 
E 2 == (m I + m2) 2. The remaining terms of equations (47a), (47b) are invariant 
under Am (--) M. 

The difficulties with the M¢ller (and Breit) potential of the form ( 1 -  
a 1 • a 2 ) / r  have been continuously discussed in the last thirty years by many 
authors. In the light of the above results, an answer to this problem is to 
consider from the beginning two equations of the type (4), one as it stands and 
the other with one of the masses of opposite sign, say m2---~ - m 2 ,  and to take 
only the positive or physical solutions from both sets. 

This procedure is in fact used in the one-particle Di rac-Coulomb problem: 
When the first order  equations are reduced to second order equations, one 
component  of the wave function gives the correct physical spectrum, the other 
does not. However ,  the change m - - > - m  maps the second equation into first, 
hence the second spectrum can be mapped again into the physical spectrum. In 
this case the --_ signs in front of the Dirac spectrum E = -+m[1 + aZ/n 2] 1/2 are 
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trivially adjusted. In our two-body case, the-+ signs occur in the middle, see 
eq. (50), hence the adjustment is more crucial. The change of the sign of the 
mass in the Dirac equation has been called "mass conjugation" and is another 
way of treating the negative energy solutions or the antiparticles in the first 
quantized Dirac theoryl3). 

The perturbations are given by 

d (  2o~ Am2~ 
dr 1+ Er E 2 / d A M + r A m  ala2 

AH'I = 2~ Am 2,] dr + gr 3 Er 3 ( M 2 -  Am2)' 

1 + Er E 2 / 
(53a) 

[ d(l 2o 7 
Am ~ + + -- Er ~ / 2rE 

: = + (53b) AHI E 2o~ Am 2 ~ 5 r 3 |  ' 

L r ( l + E r  E2 ) J 

I d 2o~ Am2] J dr( l+ ] j + Er E 2 ! 2rE (53c) 
AH21= E ( 2ce)( 2~ Am2~ + Amr3 ' 

r l + ~ r  1+ Er E 2 ! 

AH22 = 0. (53d) 

In appendix B we discuss the relation between the expectation values of 
these 2 x 2 matrices and the expectation values of the diagonal system. This 
relation is 

1 
(AH), , j  : ~ [(A Hll)n.l + (AH22),,, l 

v ] 1/2 
--+ [ ((AH'l)nd +4 (AH22)nd)- + (AH12)n't(AH2l)n't " 

(54) 

Up to order 5 the perturbations are simply 

AH22 = 0,  

AH,2=AH21 - 2V~(j+3 1) Am ( a r E )  
r E E - ~ m 2 / E  + ~  ' (55) 
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A H I  1 - 

2 a  d 

Er  2 dr  A M  + r A m  ala  2 

1 - A m 2 / E  2 + Er  3 Er  3 ( M2 - Am 2) 

and we obtain the energy shifts 

o~4(M 2 -- Am 2) A ? )  
8E2 = - 42n3j( j  + ½)( j  + 1) 

where 

A~ j) = 1 + 
A M + T A m  (1- A m 2 ]  

7d - ~ - /  ala2 (M 2 _ A m 2 )  2 
2 M 2oe 

~ -  1 -  M2 / 2 M 2 a  ( M  2 -  A m 2 )  2 

+ 4j(j + 1) + 5-M-Ma 1 - - - ~ - / 1  ] . 

or  

A M  a l a  2 ) 
A ~  ) = 2 1 + 2 a  2 a  M 2  

A (j) = 0  

for Am = 0 .  

Inserting the values of A and r and with 

A = e l a  2 + e2a 1 = ~ 1 2 \ m  1 

7" = e l a  2 --  e 2 a  1 = ~ e l e  2 m l  

we have 

A [ + _ ) = A + ~ + B ,  

2 2 2 
A = 1 + ~ - ~ ( m l g  2 + m 2 g  I - m l m 2 g a g 2 ) ,  

B - 4 j ( j  + 1) 
M 2 (ml -- m 2 + 2(mag 2 - m 2 g l ) )  2 . 

(56) 

(57) 

(5s) 

(59) 

which gives for the energy shift 
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m l m  2 o~ • 
A E + = -  - -  m , + m  2 8 n 3 j ( j +  ½ ) ( j + l )  A[±). (60) 

For positronium (Am = 0), the results are 

2mea4( l  + g _ g2) 
1 AE+ 16n3j(j+ ~ ) ( j + l )  

AE = 0 .  

(60a) 

The applications of the recoil energies (15) and the spin perturbations (37)-  
(39) for the l = j -+ 1 levels, and (56)-(57)  for l = j levels, together with the 
Lamb-shift and annihilation corrections are given explicitly in a separate part 
I114) of this paper for hydrogen, muonium and positronium. 

Acknowledgements 

This work was supported in part by the Alexander v. Humbolt  Foundation, a 
NATO Research Grant,  NSF International SDC Programs, and by the Scien- 
tific and Technical Research Council of Turkey. 

Appendix A 

Calculation of perturbations for energy-dependent squared hamiltonians 

We have two problems. The first one is the calculation of 8 E  2 from AH(E). 
The second is the calculation of {AH)  when AH is not a diagonal matrix. Note 
that here AH is not energy, but energy squared (E2). We shall write the 
counterpart  of the equation ( H - E ) 1 4 , ) = 0  from now on as H(E)ItO ) =0 .  
Suppose H(E) has two parts 

H = H~°)(E 2) + A A H ( E 2 )  , (A.1) 

where H ° ( E  2) is exactly soluble 

o 
= o .  (A.2) 

In the equation 

(H(°~(E 2) + A AH(E2))IqJ) = O. (A.3) 



BOUND-STATE QUANTUM ELECTRODYNAMICS I 485 

we expand  as usual  

0 

]q~} = Irk> + AI~b> " (A.4)  

H e n c e  eq. (A.3)  gives, using (A.2)  to lowest  o rder  in A: 

0 0 0 0 

(~IH°(E2)I~) + (@IAH(E2)I¢*) + (aO[H(°)(E2)]¢,) + <01H(°)(U)I~0) 

= 0 .  (A.5)  

E z = E 2 + A a E  2 . (A.6)  

we get 

0 0 
( ~,°lH(°)(E2 + AaE2)I0) + A< ~b[AH(E 2 + AaE2)l~bo> 

0 0 
+ A(~q,  I H ( ° ) ( E  2 + A~E2)]4,) + A( ¢,lH(°)(E 2 + A~E2)I~4,) = O, (A.7)  

or 

0 

( OlH(°)(Eo ~ + A~E ~) + AAH(E~)I~o> + A(50IH(°)(E~)10o> 
0 

+ A ( ~ r H ( ° ) ( E ~ ) ] ~ >  = O. (A.8)  

F r o m  (A.2)  

0 

( aq, IH(°)( E~o)[ ¢,) = o . (A.9)  

H e n c e  

~1  0 0 0 

( H ( ° ) ( E ~  + aE2)lO) + A(~0IAH(Eo~)I~0) -- 0 .  (A.10)  

In our  case 

(o) 2 1 ( E  2 - A m 2 ) ( M  2 - E  2) 
( H  (Eo)  o - 4 EZo 

2 ( 2 E  2 M 2 Am2) 2 a - -  - -  

+ 4n 2 4E~ = 0 ,  
(A.11)  

so that  
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(H’“‘(E; + ,i6E2)),, = ; GE2 M’Mfm2 . (A.12) 

Inserting this into (A.lO) we have 

; A6E2 
M’- Am2 

M2 
+ (AWE;)),, = 0, 

so finally 

4M’ 
A& = - cM2 _ Am2j (WE;)),, . 

Appendix B 

Matrix perturbation theory 

Consider a matrix differential eigenvalue problem 

H,,(E) ff12(W 

H,,(E) ff22C-V 

(A.13) 

(A. 14) 

(B.1) 

It can be converted into an algebraic eigenvalue equation by expanding I,!I and x 

into a set of eigenfunctions 

cp = C C,R,(r) , x = C D,R,(r) . 
rr n (B.2) 

Inserting these into (B.l) and taking the scalar products we get a set of 

algebraic equations in terms of expectation values 

Eq 

WA W12L 

(H,,),t (ff22), 

(B.3) has nontrivial solutions only if the determinant is zero, 

W,,LW22L - (ff,,).(ff,,), =o. 

(B.3) 

(B.4) 

Again if H consists of two parts, an exactly soluble part H” and a perturbation 

part AH. In our case 

W”), + WM,, (AH,,), 

(AH21 L (ff”), + (AH,,), 
(B.5) 



BOUND-STATE QUANTUM ELECTRODYNAMICS | 

I n s e r t i n g  ( B . 5 )  i n t o  ( B . 4 )  we  h a v e  

( H ( ° ) > .  + ½ ( < AHII >n H- <AH22>. ) +_ [¼ ( < AHll > H- (AH22>)  2 

+ <AH12> <AH21 >]1/2 = 0 ,  

or  

<H(°)> + <AH> = 0 ,  

h e n c e  

<AS> = ½ ( < A H i l  > + <AS22>)  -+ [1 ( < A H l l  > + <AH22>)2 

+ <AH12><AH21>] 1/2. 
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(B.6) 

(B.7) 

References 

1) B.E. Lautrup et al., Phys. Rep. 3 (1972) 193. 
'r. Kinoshita, Proc. XIX Conf. High Energy Physics, Tokyo (1978). 

2) M.A. Stroscio, Phys. Rep. 22 (1975) 215. 
A. Rich, Rev. Mod. Phys. 53 (1981) 127. 
V.W. Hughes, in Exotic Atoms 79, K. Crowe et al., eds. (Plenum, New York, 1980). 

3) J. Schwinger, Proc. Nat. Acad. Sci. 37 (1951) 452, 455. 
E. Salpeter and H. Bethe, Phys. Rev. 84 (1951) 1232. 

4) E.E. Salpeter, Phys. Rev. 87 (1952) 328. 
5) G.P. Lepage, Phys. Rev. A 16 (1977) 863. 

G.T. Bodwin, D.R. Yennie and M.A. Gregoria, Rev. Mod. Phys. 57 (1985) 723; and 
references to earlier three-dimensional formalisms therein. 

6) For the latest numbers see, for example, D.R. Yennie, in: AIP Conference Proceedings, No. 
123, R.E. Mischke, ed. (Am. Inst. of Physics, New York, 1984) p. 468. 
T. Kinoshita and J. Sapirstein, Proc. Ninth Int. Conf. Atomic Physics, Seattle, WA (Plenum, 
New York, 1984). 

7) A.O. Barut, in Lecture Notes in Physics, Vol. 180 (Springer, Berlin, 1983) p. 332. 
8) A.O. Barut and S. Komy, Fortschritte der Physik 33 (1985) 309. 
9) A.O. Barut and N. Onal, Fortschritte der Physik 33 (1985) 319. 

10) A.O. Barut and N. Onal, J. Math. Phys. 27 (1986) 3055. 
11) W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorem for the Special Functions 

of Mathematical Physics (Springer, Berlin 1966) p. 280. 
12) H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, 

New York, 1977) p. 17. 
13) A.O. Barut, Phys. Rev. Lett. 20 (1968) 893. 
14) A.O. Barut and N. Onal, Physiea 142A (1987) 488, part II, see following paper, this volume. 


