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The two-fermion problem of quantum electrodynamics in which both particles are treated 
relativistically and full spin degrees of freedom are taken into account is shown to be exactly 
soluble when potentials up to order a4 are kept. It is therefore a good starting point for 
radiative corrections of higher order for the precision tests of QED in bound-state problems. 
Recoil corrections are included to all orders. 

I. INTRODUCTION 
There are, to our knowledge, no examples of exactly 

soluble realistic spino! two-body problems in which both 
particles are treated relativistically. We present here a case 
that has been extracted from a fully covariant two-body 
equation in quantum electrodynamics. It is realistic in the 
sense that it gives a spectrum for the H or positronium atoms 
correct up to order a 4 and contains moreover the recoil cor-
rections to all orders. It can therefore be used as a good 
starting point for radiative corrections in the precision tests 
of quantum electrodynamics for the remaining terms of the 
order of as and higher. 

We shall also compare this system with the covariant 
infinite-component wave equation with exactly the same 
spectrum. In the latter case the composite structure of the 
system is characterized algebraically by a dynamical group 
rather than in terms of the parameters of the constituents as 
a dynamical bound state of two particles. 

II. COVARIANT TWO-BODY EQUATION 
The starting point is the covariant two-body equation 

[ 

(I) (2) 

( rl' . PII' - ml) ® r • n 

(I) (2) ] + r . n ® ( r . P2 - m2 ) + V(d) 4» = ° , (1) 

derived directly from the coupled Maxwell-Dirac equations 
in a nonperturbative way by a variational principle. 1-3 

(I) (2) 

Here r I' and r I' are the Dirac algebras for both particles 

so that Eq. (1) is a (16X 16)-spinor equation. Further nl' is 
a four-vector normal to the spacelike surface associated with 
the relative coordinate and r . n == -y'nl" The relativistic po-
tential V( d) is a function of the covariant relative distance of 
the two particles d = (x· n)Z - Xl. For the explicit solu-
tions in this paper we shall from now on choose 
nl' = (1,0,0,0), whence r • n = Y' and d = r, the magnitude 
of the relative three-vector r. The spin matrices we write 
always as the direct products A ® B, where A refers to parti-
cle 1 and B to particle 2. 

Equation (1) has many remarkable properties, among 
them the exact separability of the center of mass and relative 
coordinates. One then sees that it is actually a one-time equa-
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tion. The dependence on the relative time drops out automat-
ically. The equation for the center of mass is2 

«m1/M)al + (m2/M)a2) . P;(R) = (Eo - E);(R) , 
(2) 

whereas the relative motion is given by 

[(al . p + {31m1 + {32m 2 +{31 ® V®{32]"'(r) 
= E"'(r) , (3) 

where E is the energy in the center of mass frame (total mass 
ofthe system) and Eo the total energy of the moving system 
so that the ditference (Eo - E) in (2) is the relative kinetic 
energy of the center of mass: M = m I + m2• 

For the coupling of the spinor fields to a vector field AI' 
of the form and for an effective anomalous magnet-
ic moment coupling ofthe form the form ofthe 
relativistic potential has been derived. The first coupling 
gives 

(I) (2) 

VCr) = (e 1e2/r)-y' ® rl' . (4) 

The second potential coming from the Pauli coupling is rath-
er lengthy and since it has been given elsewhere,2,3 we do not 
write it here but shall give its radial form later. 

In the derivation of Eq. (3) from field theory there are 
also self-energy terms corresponding to Lamb shift and 
spontaneous emission. These are of order of a(Za)4 and 
higher and will be taken into account separately. 

III. RADIAL EQUATIONS 
For Eq. (3) we can also separate completely the radial 

and angular parts.3 This results in two sets of eight first-
order radial wave equations. In each set four of the eight 
equations are algebraic and the other four are first-order 
ditferential equations. Eliminating some of the components 
of the wave functions we arrive/or the first set at the follow-
ing two coupled second-order equations (including Pauli 
terms): 

{ VIV6 + [ V6 a+.!l.. + UMj(j + I) (.!. + .2..)]a_ 
4V3 V3 V6 Er4V3 E Vs 

_ UMj(j+ I)V6a 
EV3 + 

x_l_ (.!. +.2..) _ M2 j(j + 1) v.} (ru ) 
r4V6 E Vs E2rV3 2 2 

l){ V6 
V3 VeVs 
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+ UMj(j+ 1) 
ErV3VS E Vs 

- + a+ v:r (! + :J ]a+ } (TVo) 
= 0, (5) 

{ V4V6 + UMj(j+ 1) 
4V2 V2 V6 ,A V2 Vs E Vs 

_ UMj(j + 1) V6 a _ _ 1_ (..!.. 
V2 V6VS,A E Vs 

_M
2
j(j+1) V}(ro )-M ,.( ·+1) 

rV2V; 3 0 V] ] 

EV2 rV6 ErV2VS E Vs 

[ V3 U V6 a- 1 (1 3 )]a } + --+-- --- -+- _ (ro2 ) 
rVSV2 M V2 rV6 E Vs 

= 0, (6) 
where the following abbreviations have been used: 

VI(r) E+ 2a _M2 _ 40102 
r E r Er4 

V2(r)=E + 2a _ ll.m
2 _ 4j(j + 1) + 40102 _ 

r E rVS r E,A 
V3(r) E + 4a _ ll.m2 4j(j + 1) 9A 2 

r E-2a/r Er - ,AVs ' 
M2 r 

V4(r) E - V; - ,A(E _ 2a/r) , 
(7) 

VS(r) E + 2a + Sa l 0 2 , 
r r 

V6(r)=V2V3 - 4A 2 + 1) (! + :J, 
and 

a =a ± AM + rll.m 
± - , 2Er' (8) 

a =a ..!.. (3AM _ rll.m ) 
± - , ± r += 2rVs 2r(E - 2a/r) . 

Further 
(9) 

Weare interested in the solutions ofEq. (5). They are rather 
complicated. However, if we consider some of the small 
terms (which are, in the electromagnetic problem, of order 
as and smaller) as perturbations, we have found that these 
coupled equations are exactly soluble. 

In order to motivate the method of solution and to inter-
pret the angular momentum quantum numbers, we begin 
with a much simpler case, namely the radial equations of two 
relativistic free particles in the center of mass frame. Even 
this case is not trivial in this form3 and provides us actually 
the tools to solve the case with interactions. 

IV. SOLUTIONS OF THE RADIAL EQUATIONS FOR TWO 
RELATIVISTIC FREE PARTICLES 

First we set all the coupling constants equal to zero: 
a=O, A=O, r=O, 0102=0. ( 10) 
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(11 ) 

(12) 

The only difference between Eqs. (11) and (12) is the term 
( - (2/ r) (roo) ) in the first part of the second equation. The 
other terms are completely symmetrical. In the dimension-
less units these equations can be written as 

{
a2 + 1- j(j+ 1) _ 2j(j+ 1)/p3 a ll"(p) 

p p2 _ j(j + 1 )/p2 P Y' 
2a/p3 

1)/p2 g(p) =0, (13) 

{
a2 + 1 _j(j + 1) + 2 _ 2j(j + 1)/p3 a }g( p) 

P p2 c-j(j+ 1)/p2 P 

2a/p3 f() - 0 (14) 
- j(j + l)/p2 P - , 

with 
p=kr, 
4k 2= (E 2 _ M2) (E 2 _ll.m2)/E2, 

where k has the meaning of momentum in the center of mass 
frame when E is the center of mass energy 

--'- E2 -ll.m2 = E2 e ---::---"7", /E, 4k2 E2_M2 
f(p)=pu2(p) , g(p)=pvo(p)· 

We note the fonowing. 
(i) Except the coupling terms and the 

- 2j(j + l)/p3 a 
1)/p2 P 

terms these are the equations for the spherical Bessel func-
tions (pjl (p»). 

(ii) Although the Bessel differential equations have sin-
gularities atp = 0 andp = 00, Eqs. (13) and (14) have thus 
more singularities at p = ± E/ .Jj (j + 1). These additional 
singularities are artificial, since the original first-order equa-
tions have only the two singularities at p 0 and p = 00. 

The additional singularities have been introduced in the pro-
cess of going from the first-order differential equations to 
second-order differential equations. For this reason we 
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search a regular solution of Eqs. (13) and (14) 
at p = ± + 1). Now we try a solution of Eqs. (13) 
and (14) in the form of a series of spherical Bessel functions 
(times p). These are 

00 

!(p) = p L A"jn+s(p) , 
,,=0 

(15) 

00 

g(p) = L B"j,,+s(p)· a;!(p) = p f A,,(-1 + (n +s)(n2+s+ 1»)j,,+s, 
,,=0 p ,,=0 

The first and second derivations of!( p) and g( p) are 

a,f(p) = A,,[j,,+s(P) 

(16) 

and similar expressions for g( p). Inserting these relations 
into Eqs. (13) and (14) we obtain 

{[ _ j(j + 1) (n + s + l)(n + s + 2) - j(j + 1) . + (n + s)(n + s - 1) - j(j + 1) . \" ] 
"L:o p3 2(n+s)+1 J,,+s-l 2(n+s)+1 J"+S+lr" 

+ :2 [c(n + s)(n + s + 1) - j(j + 1))A" - 2aB" ]j,,+s} = 0, (17) 

(n+s+l)(n+s+2)-j(j+1). + (n+s)(n+s-l)-j(j+l). )B] 
"L:o p3 2(n+s)+1 J,,+s-l 2(n+s)+1 J"+s+l" 

+ :2 [c«n +s)(n +s+ 1) -j(j + 1) - 2)B" - 2aA" ]j,,+s} = O. (18) 

For n = 0, these equations give the following condition: 

_j(j+ 1) (s+ l)(s+2) -j(j+ 1). {Ao} =0. (19) 
p3 13+ 1 Js-l Bo 

The solutiuon of these individual equations gives 

s = J - 1 or s = j , (20) 
with Ao:fO; Bo:fO. We choose the positive one: s = J - 1. In order to get the recursion relations for the coefficients we 
eliminate the ( 1/ P ) -term in the first part ofEqs. (17) and ( 18). This can be done by using the following functional relations of 
spherical Bessel functions 

;J/-dP) = 1 [J/-2(P) +}/(p)]. (21) 

By inserting this into Eqs. (17) and (18) we find the following recursion relations: 

_.(. 1)[ (n+4)(n+s+2j) ]A + 1 (n+2)(n+3+2 j ) 
J J+ (2(n+4+})-I)(2(n+}+4)-3) ,,+4 2(n+}+2)-1 2(n+}+2)-3 

+ n(n+2}+ 1) \" + (n-2)(n+2}-1) A] 
2(n+}+2)+lrn+2 2(n+j+l)(2(n+j)-I) " 

+ [c(n +j+ 1)(n +}+2) -}(j+ 1»)A,,+2 -2aB"+2] =0, (22) 

-'('+1)[ (n+4)(n+2}+5) B]+ 1 (n+2)(n+2}+3)+n(n+2}+1))B 
J J (2(n+j)+7)(2(n+j) +5) ,,+4 2(n+})+3 2(n+})+1 2(n+})+5 ,,+2 

+ (n 2)(n + 2) -.1) B,,] + [ _ 2aAn+2 + c(n +} + l)(n +} + 2) -}(j + 1) - 2)Bn+2] = O. 
(2(n + J) + 1)(2(n + J) - 1) 

Starting from n = - 2, with A -2 = B_2 = 0, we then ob-
tain the following relations between A2, B2, Ao, and Bo: 

} + 1 A + (c _ ) + 1 \" + aBo = 0 (24a) 
2} + 1 2 2} + 1 po } , 

(23) 

(24c) 

(24d) 

__ J_' _t. __ a_ B +_J_' -A -0 (24b) 
2j + lr2 j + 1 2 2) + 1 0 - , 

The determinant of the coefficients of Eq. (24) is zero. So it 
has a nontrivial solution given by 
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A - [(1 e2j + l' A 2j + 1 B ] 
2 - - j + 1 ro - j(j + 1) a 0' (25) 

B = [- 2j + 1 aA + (1 _ £l2j + 1 )B ] . 
2 j(j + 1) 0 j 0 

Going back to the recursion relations (22) and (24) 
with n = 0 and the solution given by (25) we get 

A4=B4=0. 
Next for n = 2 we obtain 

A6=B6=0. 
This means that 

A211 + 4 =B211 + 4 , for all n>O. 
Hence the solutions of the coupled differential Eqs. (13) and 
(14) are 

f( p) = AojJ - d p) + A2jj+ 1 ( p) , 
g( p) = Boii - 1 ( p) + B2jj+ 1 ( p) , 

(26) 
(27) 

where the relation betweenA2, B2 andAo, Bo is given in Eq. 
(25). 

Physically we see thatthecomponents (PU2) and (pvo) 
of our wave functions in Eqs. (11) and ( 12) represent states 
that are superpositions of two angular momenta 1 = j + 1 
and/=i-l. 

The spectrum is given by 

E2 = 2k4 +mi 

v. INTERACnNQ PARTICLES 
In this section we discuss a second limit of Eqs. (5) and 

( 6 ). This limit is obtained by expanding the potentials as a 
power series of air and taking the terms up to the fifth power 
of a. In the power counting 1 Ir is counted as a. This process 
gives the following set of coupled second-order differential 
equations: 

[! (E- (E- a;2) +-;-(E- M2 am2
) 

_i(j+ _a
2 

+a:](ru2) _ 1) rvo(r) 

=0, (28) 

(E- a;2) + 

-j(j+ 1)r+ 2 - a2 + a:] (rvo) 

_ + 1) ru2(r) = 0 . r (29) 

Here again, the only difference between Eqs. (28) and (29) 
is the term - (2!r)(rvo) inEq. (29). The remaining terms 
are symmetrical in both equations. In the dimensionless 
units these equations are 

[ _..!.-+ 2Z _1(1+ 1) +a2]f(p) 
4 p p2 P 
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_ + 1) g( p) = 0 , 
p2 

[ _..!.-+ 2Z _1(1+ 1) +2 +a 2]g(p) 
4 p p2 P 

_ 1) f(p) =0, 
p2 

where 
p=u'r, 
4,t 2 = (M 2 _ E2)(E2 _ am2)IE2, 

M
2
+am

2
) u, 2E' 

1(1 + 1) = j(j + 1) - a2 . 

(30) 

(31) 

(32a) 
(32b) 

(32c) 

(32d) 
These equations have two singular points, p = 0 and p = 00. 

The point r = 0 is a regular singularity, while p = 00 is an 
irregular singularity. At p = 00 the equations simplify 

(33) 
4 dp2 g(p) 

so that the regular solution at infinity is 

( f( P»)-e - (i/2)p • (34) 
g(p) 

At P':::1.0 the equations are 

(:;2 _1(1; 1))f(p) - 1) g(p) =0, (35) 

1) +2) ( ) _ 1) ji( ) =0 
d 2 2 gp 2 P . P P P 

(36) 
We assume a powerlike behavior of the solution at the origin 

(f(P»)_fAo' '. 
g(p) \.sJP (37) 

Insertion of this ansatz into Eqs. (35) and (36) gives the 
following relation: 

(s(s - 1) -1(1 + 1))Ao - + 1)Bo = 0, 

- + 1)Ao + (s(s - 1) -1(1 + 1) - 2)Bo = 0 . 
(38) 

Hence the condition for the existence of a nontrivial solution 
is 

s(s - 1) = j(j - 1) - a 2 (39) 
or 

s = ! + ! + j(j - 1) - a2 

= j + fj _ ..!.-) [ 11 _ a
2 

_ 1] 
2 -V (j- p2 

a 2 
... j - + O(a4 ) • (40) 

2(j -!> 
This s-value is in agreement with the s-value in Eq. (17) for 
a = 0 case. In order to find a regular solution for all p's we 
writef( p) and g( p) in the form 

f(p) =e-pl'p'y(p) , (41) 

g( p) = e - pI2p'Z ( p) . (42) 
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Now instead of searching a power series solution for y( p) 
and g( p) we assume a solution that is a series of confluent 
hypergeometric functions. In the free-particle case we al-
ready obtained in the previous section such a two-term series 
with orbital angular momentum I = j - 1 and I = j + 1. Ex-
cept fQr the term - 2/rg( p) and the coupling terms Eqs. 
(30) and (31) are the same as the SchrOdinger equation for 
the hydrogen atom. The Coulomb problem has the following 
solutions: 

Rn.1 ( p) = e - p/2 pi + , ,F, ( - n + 1,21 + 2; p) , ( 43) 

where F, is the confluent hypergeometric function. 
For Eqs. (30) and (31) we try again a two-term solution 

with I = s and I = s' ofthe form 

I( p) = e-p/l[Aop' ,F,( - n + s,2s;p) 

+ A2 p" + 2 ,F, ( - n + s' + 2,2s' + 4; p)], (44) 

g( p) = e- p/2[Bop' ,F,( - n + s,2s;p) 

+ B2 ps' + 2 ,F, ( - n + s' + 2,2s' + 4; p)]. ( 45) 

We shall make use of the following property of the func-
tions R nl that can be proved by using the functional relations 
of confluent hypergeometric functions: 

d 2 

dp2 Rnl(p) 

= [e- p/2 pl+' ,F, ( - n + 1+ 1,21 + 2;p)] dp2 

= + 1(1 + I))Rnl . (46) 
4 P p2 

We insert (44) and (45) into (30) and (31), and, by using 
( 46), we obtain the following relations 

[ 2Zp- n + s(s - I) ;,1(1 + 1) ]AoRn. 

+ [ 2Z - n + (s' + 2)(s' + I) -1(1 + I)]A R 
2 2 n.s'+2 p p 

2,J'( . + I) 
- J 12 [BoRn .• +B2Rn.s'+2] =0, (47) 

p 

[2Zp-n +s(s-l) -;?+ 1) -2]BoRn,s 

+ [2Z - n + (s' + l)(s' + 2) - 1(1 + 1) - 2] 
p p2 

+ 1) [AoRn,s + A2Rn .• , + 2 ] = o. (48) p2 
If we choose 

2Z=n, (49) 

then the lip-terms drop out, and we get relations between 
the coefficient of Rn,s and Rn.s" The relation betweenAo and 
Bo are the same as Eq. (38). The relation between A2 and B2 
are 

«s' + l)(s' + 2) -1(1 + 1)),4.2 - + I)B2 = 0, 

- + I)A2 
+ (s' + l)(s' + 2) - 1(1 + 1) - 2)B2 = O. (50) 
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For the existence of a nontrivial solution ofEq. (50), s' must 
satisfy the following condition 

(s' + l)(s' + 2) = (j + l)(j + 2) - a2. (51) 

Hence the relation between A2 and B2, and Ao and Bo are 

A2 = j + IB2 . (52) 
Equation (38) gives also the following solution: 

Ao = - + lIjBo· (53) 

Thus the final solutions of our problem are 

I( p) = PU2( p) 

= + 1 p'- ,F,( - n +L;2s_;p) 

+A2..[}p'+ ,F,( -n +s+;2s+;p)], (54) 
g( p) =p vo( p) 

= e- p/2[Ao..[}p'- ,F,( - n +L;2s_;p) 

(55) 

where Land s + are the obtained from Eqs. (39) and (51), 
respectively. Finally the quantization condition (49) gives 
using Eq. (32) the following energy or mass spectrum: 

E2= ± 1+-M2 + 11m2 M2 -11m2 [ a2] - 112 
2 2 n2 

( 
a2) -112 =mf ± 2m,m2 1 + n2 . (56) 

Here the principal quantum number n is related to the radial 
quantum number n, by 

n=n,+/o , (57) 

where 10 (the nonrelativistic label of the angular momen-
tum) is equal to 10 = j - 1 or 10 = j + 1, for the two states we 
have discus$ed. 

The bound states in E 2 are slightly below the continuum 
E 2>(m, + m2)2forthe (+) sign in the spectrum (57) and 
for the ( - ) sign, slightly above the negative continuum 
E 2«m, - m2)2. If we expand Eq. (56) in powers ofa and 
pass to from E 2 to E we obtain 

m a 2 
E(n,/) = m, + m2 - 2 ' 

2n (1 + m,/m2) 

4n3
( 1 + m/m2 ) (I +!) 

1 (mf!m2)a4 
m,a4 

8 n4
( 1 + m,/m2) 8 n4(1 + (m,/m2W 

+O(a6 ) , 

1= _! + (j + !)2 _ a2 

et.j - a2/(2j + I) + O(a4
) , (58) 

which shows that the mass spectrum agrees with the usual 
QED up to order a4• But the exact expression (56) should be 
used for recoil correction to all orders in a. Usually the non-
relativistic quantum number n :sn, + j is used. But it is bet-
ter to keep n, andj separately for really relativistic systems, 
e.g., positronium, in which 1 is not quite an integer. In fact 
one of the interesting problems of relativistic two-body dy-
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namics is to find exact quantum numbers, besides energy and 
total angular momentum J, to label the states. The usual 
nonrelativistic labeling of positronium states, for example, 
as ISO' 3SI, ... means only that these states have these corre-
sponding values in the nonrelativistic limit. 

VI. THE SECOND SET. TOTAL SPIN S=O AND S= 1 
EQUATIONS 

In a similar manner we treat the second set of eight radi-
allinear equations arising from Eq. (3). We eliminate half of 
the components using the algebraic equations and obtain 
two coupled second-order equations, namely the counter 
parts of Eqs. (5) and (6). The exactly soluble part of these 
equations, up to order a4

, are the following two uncoupled 
equations: 

The free-particle solution of (59a) and (59b) are simpler 
than in the first set, Eqs. (26) and (27), namely 

pu2 ( p) = A pjj( p) , 
pVoo(p) =Bpj/p). (60) 

In Eq. (59b) the factor 6 E is given by 
Am2 _ M2 M2Am2 

6E = E2 + E4 (61) 

The solutions of (59a) and (59b), because they are uncou-
pled, can be written down immediately in terms of hydro-
genic wave functions 
pu I ( p) = Ae - pl2pl + I IFI ( - n + 1 + 1 ;21 + 2; p) , 

(62a) 

pvoo( p) = Be- p/2/ o + I IFI ( - n + 10 + 1;2/0 + 2;p) , 
(62b) 

and the spectrum has the same general form as in Eq. (56), 

E2= + M2+Am M2_Am2 ( a 2 )-112 
2 - 2 (n, + /)2 

(63) 
But the range of the angular momentum 1 is now given by 

1(1+ 1) =j(j+ 1) _a2, for Eq. (59a) (64) 
and 

1(1 + 1) = j(j + 1) - a 26E , for Eq. (59b). (65) 

VII. COMPARISON WITH THE EXACTLY SOLUBLE 
INFINITE-COMPONENT WAVE EQUATIONS 

Infinite-component wave equations appropriate for 
two-body Coulomb systems are generalizations of the origi-
nal infinite component Majorana equation.4 They make use 
of the dynamical group SO(4,2) rather than the Lorentz 
group of the Majorana equation and account for the correct 
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degeneracy of states. They have been used to describe the 
relativistic H-atom and hadrons, and to describe many prop-
erties of these composite systems in a relativistic way, such as 
form factors and transition amplitudes in external fields. S It 
is interesting that our exactly soluble models give precisely 
the same spectrum as the infinite-composite wave equation 
for the relativistic Coulomb problem. We thus have in the 
one hand the group structure of our model, and on the other 
hand, the infinite-component wave equation acquires an ex-
plicit dynamical realization in terms of constituents. 

The wave equation is a generalized Dirac equation 

(JI"PI' + K)f/J(P) = 0, (66) 

where PI' is the total momentum of the composite system, 
and the current and mass operators are given by 

JI' =a1rl' +a2PI' +a3Pl'r4 , 

K={3r4 +r· 
(67) 

Here r I' and r 4 are the generators of the dynamical group 
SO( 4,2); PI' the total momentum of the atom. The choice of 
the constants6 

a l = 1, a 2 = a/2m2' a 3 = 1/2m2' (68) 
{3 = - mi )/2m2' r = - a(mi + )/2m 

gives the spectrum 

M';=' = mi + ± 2m 1m 2(1 + a 2/n2)-1/2 (69) 

which coincides with (56) or (63). 
In fact the form of infinite-component wave equation 

( 66) can be inferred directly from our basic equation (1), 
but the operatorsJI' and K have a more complicated form for 
Eq. (1); the simpler forms given in (67) and (68) corre-
spond to the exactly soluble part of our equation. The infi-
nite-component equation is very useful in treating further 
the external interactions of our composite atom because it 
treats the whole atom now as a single relativistic "particle." 

The discussion of the perturbations of order as is given 
elsewhere. 7 
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A comment is made on the separability of the center of mass and relative coordinates in the 
exact solution of a covariant two-body equation for two spin-! particles. 

I. INTRODUCTION 
In a recent paperl a covariant two-body equation for 

two spin-! particles was considered and an exact solution 
was presented in the center of mass system. Although this 
solution is correct, it was incorrectly stated at the beginning 
of the paper that the center of mass and relative coordinates 
are exactly separable. We wish to correct this statement and 
indicate the proper treatment of the equation in an arbitrary 
frame. 

II. THEORY 
With a choice of the spacelike surface perpendicular to 

nil = (1000), the covariant equation can be written in the 
Hamiltonian form as 
{(lIM)(mlal + m2a2)·P + [(al - a2)·P 

131ml - 132m2 - V(r)]}et> = Eet>, (1) 

where P is the total momentum and p and r are the relative 
coordinates. Thus the Hamiltonian separates into a sum of 
two terms, one depending on the center of mass momentum, 
the other on the relative coordinates. However, the coeffi-
cients in these two terms depending on the spin matrices do 
not commute, hence the solution cannot be written as a 
product of two functions, one depending on the center of 
mass coordinates and one on the relative coordinates. Since 

a) Permanent address: Physics Department, University of Colorado, 
Boulder, Colorado 80309. 

R does not appear, we have always a factor eiP•R so that we 
can treat P as a number in the momentum representation. 

Equation (1) is a specific case of an infinite component 
wave equation generally written as 

{JI" P" - K)et> = 0, 
or, with 10 diagonal and equal to 1 as in our case, 

(J.p - K)et> = Eet>, (2) 
where J and K (which is a function of relative coordinates or 
internal degrees of freedom) do not commute. There is a 
general procedure to solve Eq. (2) in an arbitrary frame2 and 
it was an oversight not to connectEq. (1) withEq. (2). The 
method consists in finding the appropriate boost operators 
M, solving the equation in the rest frame (P = 0), and then 
boosting the result to an arbitrary frame: et>(P) 
= e,s·Met> (0). 

Another procedure in the present case is to separate the 
radial and angular part ofEq. (1) for a general P. Since in 
the momentum representation the coefficient of P is a finite 
matrix, the method of separation used in Ref. 3 can easily be 
extended. 

lAo O. Barut and N. Unal, J. Math. Phys. 27, 3055 (1986). 
2 A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum 
Theory (University of Canterbury Press, Christchurch, New Zealand, 
1972); A. O. Barut and R. Theory of Group Representations and 
Applications (World Scientific, Singapore, 1986), 2nd ed., and references 
therein. 

3A. O. Barnt and N. Unal, Fortschr. Phys. 33,319 (1985). 
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