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Nonperturbative Quantum Electrodynamics: 
The Lamb Shift 

A.  O. Barut 1 and J. Kraus  1 

Received September 15, 1982 

The nonlinear integro-dlfferential equation, obtained from the coupled Maxwell- 
Dirac equations by eliminating the potential Au, is solved by iteration rather 
than perturbation. The energy shift is complex, the imaginary part giving the 
spontaneous emission. Both self-energy and vacuum polarization terms are 
obtained. All results, including renormalization terms, are finite. 

Dirac has insisted for a long time that the perturbation theory of quantum 
electrodynamics (QED) with quantized electromagnetic field is a "bad 
theory"(1): ". . .  it was shown by Lamb that the infinities (of perturbation 
theory) could be removed by a process of renormalization . . . .  The general 
idea of renormalization is quite sensible physically, but the way it is applied 
here is not sensible, because the factor connecting the original parameters 
with the new (renormalized) ones is infinitely great." Further problems with 
renormalization procedures, their limitations and generalizations have been 
reviewed recently. (2'3) 

As a method of avoiding the perturbation theory with quantized electro- 
magnetic field we have proposed some time ago ~4) that electrodynamics 
could be based on the spinor field ~, alone by eliminating A,  from the 
coupled Maxwell-Dirac equations and solving the resultant equation for the 
localized wave function ~,, never using plane-wave expansions. 

We carry now this program for the calculation of the Lamb shift and 
also show how to obtain the spontaneous emission and the anomalous 
magnetic moment. All integrals, including the renormalization integral, are 
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finite, and closed expressions can be obtained for the above quantum 
phenomena to all orders of a. 

It may come as a surprise that the three major QED effects, namely the 
Lamb shift, the spontaneous emmission, and the ( g -  2) can be calculated 
without explicit use of a quantized A.-field, and all within a single equation. 
The present formulation of QED is conceptually along the same lines as 
classical electrodynamics, ~3'5) where also the self-energy effects can be 
treated in a closed nonperturbative way, and brings a definite simplicity, 
compactness, and completeness to quantum radiation theory. 

Nonperturbative quantum electrodynamics is based on the following 
equation, obtained by eliminating Au from the coupled Maxwell-Dirac 
equations~4): 

(p  - ed ,'~xt - m)q/= ed/Selfq/ (1) 

where 

A self- ~ f . [ x ) = e  d x ' O ( x - x ' ) t ~ ( x ' ) y . ~ ( x ' )  

Here ~(~ 7UP., etc., and D ( x  - y )  is the Green's function of ElAn, as usual. 
Eq. (1) is a nonlinear integro-differential equation. In this paper we shall take 
A ext to be the Coulomb field, but our formalism can be generalized to two 
(or more) relativistic particles (e.g., positronium) by taking two coupled 
fields gt 1 and I//2, in which case A TM is the field produced by the second 
particle. (5) 

We look for a solution of Eq. (1) by expanding ~(x) in a complete set 
of solutions of the full problem 

~'(x) = ~. g,.(r)e -'E"t (2) 

If this expansion is inserted into (1), using 

1 ( e iq(x-x'~ 
D ( x  -- x '  ) = (27r ) ' )d 'q  q2 

we have 

(E, yo _ p .  y _ ed/ext _ m) ~G(r) e-ie"t 

-e2 e-iq'"-9 ~(r') e"~'-~-°°"~" 
---~ ~r,s,m (27C) 4 f d4q q2 @r(rf) Yu 

× e -i(e'~-q°)t ~m(r) dar .  dt'  
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or, after the t '  and q°-integration, 

~n(E.y° - p .  y -- e4t/e×t -- m) q/n(r) e -~e"t 

e2 ~t" ( d3qe- iq . t . -  r,) 
y~ V.,(r) qTr(r') yu ~ts(r') 

(2: 0 '  e'J~.s,m.J ( E ~ - - E ~ ) Z - - q  2 

X e -i(Em+E*-er)t d3r ' (3) 

Comparing the coefficients of both sides, we see that for each n, the sum on 
the right-hand side goes over those values of r, s, m such that 

Em+Es-Er=E,, (4) 

Thus, 

(E. yo _ p .  y _ e0/ext _ m) ~,.(r) 

a d3q e =~'v ( ' -  '') d2r, 
: - -  2-~-~2 ~,s,  . f (-E-7-r---~s)2 --~q = 'U~m(r) Or(r')YugXs(r') 

Em+Es--Er=En 

(a = e2/47c) (5) 

This is an infinite set of coupled equations. Now if we write for the energy 
shift in the state n: 

_ Coulomb E .  -- En + A E .  (6) 

multiply from the left with -Coulomb ~ ,  , and integrate, we get, using 

V V ~ ( E n ? - p .  r - e #  " ~ - m ) = 0  

J" V~ + ~(r) V/,(r) dZr AE n 

Era+ Es--Er--EC + AEn 

× Y. ~Us(r') d3r d3r , 

Two immediate solutions of  Eq. (4) are: 

E s = Er,  hence 

E r a = E . ,  hence 

. d a q e - i q . t , - ,  ') 

(7) 

E. =E~ (8) 

E, =E~ (9) 
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There are other solutions to Eq. (4), with three or all four E's being different. 
We shall see that the case (8) corresponds to a sum of vacuum polarization 
terms and (9) to self energy terms. For the case (8), we obtain 

AE(a) j c+ ---n ~.  ~n d3r 

a ~ " d 3 q e  - iq ' ( t - r ' )  

and, in the second case (9), 

~,~(r) y~%,.(r) ~(r ' )  ?u~s(r') d 3 r d 3 r  ' 

(10) 

AE(f~ f +~ 3 ~t n ty n d r 

_ a X-~ d3qe  - iq '(r-r ' )  

-- -- ~ 7 f (E--ram : E, )  2 + q2 qT~(r) yUq/m(r ) VTm(r' ) y, qG(r') d3r dar ' 

(11) 

The remaining values of energies fulfilling condition (4) seem to lie all in the 
continuum. 

The form of the contributions of (10) and (11) are still exact. 
If we replace now all ~'. by ~ ,  Eqs. (10) and (11) become 

A E ~ =  a ~ f d3q 2zc2 ~ T~n(q ) Ts~(-q) . (12) 

d3q ( 
AE~ ) = - 2 z.. J 2~r m (Em _ En)2 _ q2 TnUm(q) Tmn(-q). (13) 

where 

e - iq .  rd3 ~ (14) 

If in (13) we factorize the denominator and take the contribution of one of 
the poles, we obtain 

........ TnUm(q) Tmn(--q). AE~ ~= a ~ d3qv '  (13a) 
4~z 2 J q Z~m -E-~ ~-~m ~ q 

The expressions (12) and (13a) agree with the standard formulas ~'v) 
except that here the ~,'s are relativistic Coulomb wave functions (and not 
plane-waves) and all integrals converge. In fact, the integrals can be carried 
out exactly, ca) 
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But we have still to perform a finite renormalization. Since the obser- 
vable effect of the self energy term on the right-hand side of Eq. (1) is to 
change the energy, the only measurable contributions in (12) and (13) will 
come from s :~ n and m 4: n, respectively. The terms s = n and m = n are 
already counted in the mass and charge of the electron, and in the definition 
of E n. Furthermore, we extract in the integral (13a) only the term propor- 
tional to ( E n - E m )  according to the expansion q / ( E n - - E m - q ) = - I  + 
( E ,  - E m ) / ( E  n --  E m --  q). There is one renormalization term for both (12) 
and (13), namely 

(AE.) ren°r -- ~ ( d3q Tn~.(q) r ~ . ( - q ) .  (15) 
--  2n~ j q2 

Note also that in the vacuum polarization term, the wave functions of the 
"virtual pairs" are the relativistic Coulomb wave functions and not plane- 
waves, which contain negative energy solution when expanded into plane- 
waves. 

It is easy to see the approach of our Eqs. (12) and (13) to their usual 
form in standard practical calculations. In particular, (13a) goes over into 
Bethe's formulas in the dipole and nonrelativistic approximation of T~m in 
(14). 

Coming back to our general formulas (12) and (13), we find that the 
energy shifts are complex. The imaginary part of the shift must be identified 
with the spontaneous emission of the excited states due to self-energy. It is 
thus gratifying that, in this formulation, Lamb energy and spontaneous 
emission occur together as they are both due to a self-energy effect. We can 
furthermore calculate the anomalous magnetic moment-form factor of the 
electron in the same external field. For this purpose, we go to Eq. (5) and 

• ~ s e l f ( i . e . , m = n , r = s  n). The radial evaluate the self-potential term e G ~,,,~,, = 
effective potential goes like f ( r )  1/r  2. The coefficient of 1/r~-potential is the 
anomalous magnetic moment. (4'9) 

As we have noted, the problem of quantization of the electromagnetic 
field A,  never arises, since it has been eliminated. The theory sofar behaves 
like a e-number theory with respect to ~t, because we never had to commute 
the W-fields. However, second quantization of ~'-field wilt come in if we use 
identical particles and in processes involving real pair production. Having 
shown that the standard energy-shift terms are contained in the solution of 
the fundamental equation (1), one may attempt to solve directly this integro- 
differential equation, with finite renormalization term (15) subtracted, 
without making the expansion (2). This would provide indeed a one-shot 
final solution to the complete Coulomb problem with all relativistic and 
radiative effects already included. 
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