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We have evaluated analytically the vacuum polarization in a Coulomb field using
the relativistic Dirac ± Coulomb wave functions by a new method . The result is
made finite by an appropriate choice of contour integrations and gives the
standard result in the lowest order of iteration. We used the formalism of self - field
quantum electrodynamics in the evaluation of the vacuum polarization which needs
neither field quantization nor renormalization . There are no infrared or ultraviolet
divergences.

1. INTRODUCTION

One of the most important effects in quantum electrodynamics is the
vacuum polarization (VP). It is important both practically and concep-
tually, because it represents the most divergent term in perturbation theory
and enters significantly in the idea of a `̀ running coupling constant’’ and
`̀ renormalization group.’’ In the standard treatment of VP we evaluate the
photon propagator in perturbation theory by renormalizing the charge,
getting an effective potential by taking the Fourier transform of it and then
taking the matrix elements of the potential between Coulomb wave functions.

Schwinger gave the field theoretical formulation of VP. ( 1) Wichmann
and Kroll performed calculations of the VP with relativistic Coulomb wave
functions first, ( 2) and others studied it further, also numerically.( 3 ± 11) The
work started by Wichmann and Kroll has not been finished.

Barut developed a new formulation of QED for the bound states of
the electron, based on the self-energy. (12) This new approach has been
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applied to VP problem recently (13) as well as to Lamb shift, ( 14) spon-
taneous emission, ( 15) and (g-2)calculations.( 16) In Ref. 13, a closed expres-
sion and a finite result has been obtained for VP.

Since this study contains the sum over infinitely many bound and con-
tinuum Coulomb wave functions, which is very complex and intricate, we
present a new method. Furthermore, the finite part of the lowest-order con-
tribution of VP has been rederived by using this new method with a
regularization and without any renormalization. This result is presented in
a short paper elsewhere. ( 17)

In Ref. 17 we presented the unambigous definition of all the integrals
by their Mellin ± Barnes transform.( 18) This is the new regularization method
and we obtain a finite result by using this method without any renor-
malization procedure. The aim of this paper is to present the details of the
sum over infinitely many wave functions in Ref. 17, derive the regularized
form of the integrals, and show that the physical contribution of the
divergent terms are zero, because of the sum over all energy values. The
derivation of the finite part of VP without any renormalization procedure
is very important for the proof of the fundamental question of the finiteness
of the theory.

2. THE NEW ANALYTIC CALCULATION OF VACUUM

POLARIZATION

In the present picture all the QED effects come from a single expres-
sion without going into the separate Feynman diagrams, such as a loop
diagram. To first order of iteration one obtains a general expression for the
energy shift of a level n directly from the actions: ( 13, 19 )

DE n=
e2

2 & d x Y
±

n(x ) cm Y n(x ) P & dk

(2p ) 3 & d y
e i k ´ ( x { y )

k2 +
s

Y
±

s(y ) c
m
Y s(y )

2
e2

2
+
S
& dx dy Y

±
n(x ) cm Y s(x ) & dk

( 2p ) 3 e i k ´ ( x { y )Y
±

s(y ) c
m
Y n(y )

3 9 1
E s 2 En 2 k

2
1

E s 2 En+ k :
2

e2

2
+

s < n
& dx dy Y

±
n(x ) c m Y s(x ) & dk
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Y
±

s(y ) c
m
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3
ip
2k

d(E s 2 En 2 k ) (2.1)
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where Y n is a fixed level, and we sum over all levels Y s of the external field,
i.e., Coulomb field. The first term is the contribution of vacuum polariza-
tion, the second that of self-energy (or proper Lamb shift including the
contribution of ( g-2) ), and the third term gives the spontaneous emission
rate which has been evaluated exactly and analytically.

We are going to evaluate the first term in Eq. (2.1) , vacuum polariza-
tion. This term can be interpreted as the interaction energy of two current
distributions. If we use the relativistic Coulomb wave functions and per-
form the spin algebra because of the spherical symmetry we obtain( 16)

DE VP= 4a( 2 jn + 1) +
l, m

& ( 2 js+ 1) & dr dr ¢ V l (r, r ¢ )

3 ( | f ( r) |2+ | g( r) | 2 )( | f ( r¢ ) |2+ | g(r ¢ ) |2 ) (2.2)

where we have introduced a potential V l ( r ¢ , r ) by

V l ( r ¢ , r) =
2
p

r2r ¢ 2 &
`

0
j l (kr ¢ ) j l (kr ) dk=

r2r ¢ 2r l

<

( 2l + 1) r l + 1
>

(2.3)

and f n(r) and gn(r) the radial Dirac wave functions. The most difficult part
of the calculations is the sum over all discrete and continuous states. Here
we use the method of Green’s functions initiated by Wichmann and
Kroll.( 2)

Since the completeness of Green’s function we have

e +
s

( | f s | 2+ |gs |2 )=
e
2

+
Es > 0

( | f s |2+ |gs |2 ) 2
e
2

+
E s < 0

( | f s |2+ |gs | 2) (2.4)

The Green’s function involves both negative and positive energy solu-
tions and the negative-energy solutions correspond to positive-energy solu-
tions with the sign of charge reversed. Then the above sum can be repre-
sented as a well-known contour integral around the positive and negative
energy spectrum in the z ( energy)-plane (Fig. 1)

e +
s

( | f s | 2+ |gs | 2) =
e

4pi 9 & C+
+ & C { : dz Tr K(r, r ¢ ; z) (2.5)

where K(r, r¢ ; z) is the energy-dependent Green’s function of the radial
Coulomb problem which is known.
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Fig. 1. C 6 contours and the deformed contours for the z-integration.

In the terms of the regular solutions of the Coulomb problem at the
origin W ( r< ; r) and at infinity W ( r> ; z) the Green’s function is given as
follows:

K( r, r ¢ ; z) =
1

k(z) 9 W ( 2)
1

W ( 2)
2

( r> ; z)
(r> ; z) : [W ( 1)

1 ( r< ; z ) , W ( 1)
2 ( r< ; z )] (2.6)

where

W ( 1)
1
2

( r) = (2r Ï z2 2 1) c exp[ ir Ï z2 2 1]
r 9 0 k 2

iZa

Ï z2 2 1 1
3 0 i Ï z+ 1

Ï z 2 1 1 W( c 2 in, 2c+ 1; 2 2 ir Ï z2 2 1)

+ 0 i Ï z+ 1

2 Ï z 2 1 1 (c 2 in) W(c+ in2 1, 2c+ 1; 2 2 ir Ï z2 2 1) :
W ( 2)

1
2

( r) = (2r Ï z2 2 1) c exp[ ir Ï z2 2 1]
r 9 0 k 2 i

Za

Ï z2 2 1 1
3 0 i Ï z+ 1

Ï z 2 1 1 x( c 2 in, 2c+ 1; 2 2 ir Ï z2 2 1)

+ 0 i Ï z+ 1

2 Ï z 2 1 1 (c 2 in) x(c 2 in+ 1, 2c+ 1; 2 2 ir Ï z2 2 1) :
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and

k(z) = 2 2 Ï z2 2 1 0 k 2 i
Za

Ï z2 2 1 1
C ( 2 c 2 in) C (2c+ 1)

C ( 2 2 c ) C ( c 2 in)
exp 9 ip

2
(2c+ 1) :

with

c= [k2 2 (Za) 2] 1 / 2 and n=
Za

Ï z2 2 1
z

The functions W(a, c; z) and x(a, c; z) are the regular solutions of the
confluent hypergeometric equation at the origin and infinity respectively.
They are given by

W= 1 F1(a, c; z )

and

x(a, c; z)=
C (1 2 c)

C (a 2 c+ 1) 1F1(a, c; z) +
C (c 2 1)

C (a) 1F1(a 2 c+ 1, 2 2 c; z)

The discrete radial wave functions are

9 f n(r )
gn(r) : = ( C (2c n+ nr+ 1)

4Nn(Nn 2 Kn) nr ! *
1 / 2 ( 2PN) 3 / 2 ( 2PNr ) cn { 1 e { PNr

C ( 2c n+ 1)

3 9 ( 1+ En) Fn(r)
(1 2 En ) Gn(r) : (2.7)

where

Fn(r )= nr W( 1 2 nr , 2c n+ 1; 2PNr)

and

Gn( r)= (Nn 2 kn ) W( 2 nr , 2c n+ 1; 2PN r)

with

c n= [k
2
n 2 (Za) 2] 1 / 2

and

kn = 6 ( jn+ 1/2)
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After substituting the required expressions and definitions into
Eq. (2.2) we obtain

DE VP
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a
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+ & C { : dz

2pi
4i
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3 +
`
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0
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`

0
dt ¢ t¢ a9 { 1(1+ t ¢ ) 2c { a9 &
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0
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0
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3
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3 e2i( 1 { t+ t 9 ) r 9 Ï z2 { 1 rl

<
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>
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(2.8)

where we have set

T aa9 =
iZa

Ï z2 2 1 9 da, c { in da9 , c { in+ da, c + 1 { in da9 , c + 1 { in

C (a) C ( 2c+ 1 2 a¢ ) :
2 z 9 da, c { in da9 , c + 1 { in

C (a) C (2c+ 1 2 a¢ )
2

da, c + 1 { in da9 , c { in

C (a¢ ) C ( 2c+ 1 2 a) : * (2.9)

and

An1 , n2
= 0

C (2c n+ nr+ 1) C (n1 2 nr) C (n2 2 nr)
3 [ (Nn 2 kn) 2+ (n1 2 nr)(n2 2 nr)+ 2En(Nn 2 kn)(n1 2 nr)]

2Nn(Nn 2 kn) C
2( 2 nr) C (2c n+ n1+ 1) C (2cn+ n2+ 1) n1 ! n2 ! nr ! 1

and c n , n1 , n2 and nr are quantum numbers.
The radials integrals

R= &
`

0
dr e { 2 PNrr { l + 1( 2PNr) 2cn+ n1+ n2 { 2 &

r

0
dr ¢ r ¢ 2c+ le2ir 9 ( 1 { t+ t 9 ) Ï z2 { 1

+ &
`

0
dr e { 2 PNrrl (2PNr) 2cn+ n1+ n2 { 2 &

`

r
dr ¢ r ¢ 2c { l { 1e2ir 9 ( 1 { t+ t 9 ) Ï z2 { 1

(2.10)
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can be exactly evaluated by converting them into the Mellin transforms of
hypergeometric functions or using the integral representations of the hyper-
geometric functions in the complex plane and carefully analyzing the poles
in the Mellin plane. Then we have

R= (2PN) { 2 c { 3 9 &
1 `

{ 1 `

dv
2pi

C (2c+ 2c n + n1+ n2+ 1+ v )
2c+ l + 1+ v 0 a

2PN 1
v

+ 0 2PN

a 1
2c + 2c + n1+ n2+ 1

3 &
l `

{ l `

dv
2pi

C (2c n+ n1+ n2+ 2c+ 1+ v)
2c n + l + 1+ n1+ n2+ v 0

a
2PN 1

{ v

: (2.11)

where a= 2i Ï z2 2 1 (1 2 t+ t ¢ ).
We do the contour integrals in Eq. (2.11). Because of the asymptotic

reasons we close the contour in the first integral from the right- and in the
second integral from the left-hand side of the complex v-plane. Then the
contributions of the terms are equal. In the first term the poles of

C ( 2c+ 2c n+ n1+ n2+ 1+ v)

are at

vr= 2 ( 2c+ 2c n+ n1+ n2+ 1+ r)

where

r= 0, 1, 2,...

If we take c n @ 1, n1= n2= 0 (for the s-waves), then we obtain
vr= 2 2 c 2 3 2 r.

These poles give the power series expansion of DE n in terms of (Za) .
If we evaluate the Eq. ( 2.11) at the first pole, we obtain

R= 2
C (2c+ 3)

2a2c + 3 (2.12)

Then we are left with

DE n= aA00 +
`

k = 1

|k | 9 & C +
+ & C { : dz

2pi
(2PN ) 3

(z2 2 1) 2 T aa9 &
1

0
dt ta { 1( 1 2 t ) 2k { a

3 &
`

0
dt ¢ t ¢ a9 { 1( 1+ t ¢ ) 2k { a9 C ( 2k+ 3)

( 2 2 )( 1 2 t+ t¢ ) 2k+ 3 (2.13)
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where we approximated cf |k | for Za<< 1. For s-waves (n1= n2= 0,
nr= n 2 1, kn= 2 1 , l= 0) we find A00= 1/2 independent of n.

In the previous paper( 16) the t- and t ¢ -integrals were done first and
k-summation afterwards. The main point here is to do the reverse. The
k-summation can be reduced to hypergeometric functions. If these hyper-
geometric functions are expanded into power series we are left with the
following expressions containing t- and t¢ -integrations:

(K, L , M ) a , a 9

= &
1

0
dt &

`

0
dt ¢

ta ( 1 2 t) 1 { a t ¢ a 9 ( 1+ t ¢ ) 1 { a 9

( 1 2 t+ t ¢ ) 5 0 1 2 t+ t ¢

1 2 t+ t ¢ 2 2tt¢ 1
5, 7, 9

( 2.14a)

(N, P, R) a , a 9

= &
1

0
dt &

`

0
dt ¢

t1+ a ( 1 2 t ) 2 { a t ¢ 1+ a 9 (1+ t ¢ ) 2 { a 9

(1 2 t+ t ¢ ) 7 0 1 2 t+ t ¢

1 2 t+ t ¢ 2 2tt¢ 1
7, 9, 11

(2.14b)

where a and a ¢ are the new indices which are defined in the following way.
If in Eq. (2.13) a or a¢ is c 2 in, then a or a¢ is ( 2 in) respectively. If a or
a¢ is c+ 1 2 in then a or a ¢ is ( 1 2 in) .

In Eqs. (2.14a) and (2.14b) the t-integration can be performed by
using the hypergeometric functions. The remaining t ¢ -integration formally
diverges at the lower limit t¢ = 0. In order to regularize the integrals we
change the lower limit to e and represent the result of t ¢ -integration as
Mellin ± Barnes type complex integrals. Then, in these complex integrals we
choose the integration contour such that they contain only the nonnegative
powers of e. The details of calculation are given in the Appendix. The
results are

Ka = a 9 = { in=
13
24+ 2

3 ln e

L a = a 9 = { in=
5
24+ 1

5 ln e

Ma = a 9 = { in=
37
280+ 4

35 ln e

Ka = a 9 = 1 { in=
7
24 2 2

3 ln e

L a = a 9 = 1 { in= 2 7
120 2 1

5 ln e

Ma= a 9 = 1 { in= 2 49
1960 2 4

35 ln e

Ka = a 9 { 1= in= ( 2 1 ) in [ 2 5
12 2 17

72 in2 1
3 ln e]

L a = a 9 { 1= in= ( 2 1 ) in [ 491
1260 2 11

72 in+ 1
3 ln e]

822 AcË ikgoÈ z and UÈ nal



Ma= a 9 { 1= { in= ( 2 1 ) in [ 2 73
420 2 263

2520 in 2 1
35 ln e]

Na= a 9 { 1= { in= ( 2 1 ) in [ 7
90+ 5

216 in+ 1
15 ln e]

Pa= a 9 { 1= { in= ( 2 1 ) in [ 4
315+ 37

3780 in+ 1
105 ln e]

Ra= a 9 { 1= { in= ( 2 1 ) in [ 1
210+ 2021

7560 in+ 113
315 ln e]

Ka= a 9 + 1= 1 { in= ( 2 1 ) in [ 1
12+ 1

24 in+ 1
3 ln e]

L a= a 9 + 1= 1 { in= ( 2 1 ) in [ 1
60+ 7

360 in+ 1
15 ln e]

M a= a 9 + 1= 1 { in= ( 2 1 ) in [ 17
20+ 29

2520 in 2 11
15 ln e]

Na= a 9 + 1= 1 { in= ( 2 1 ) in [ 2 1
60 2 1

80 in2 1
15 ln e]

Pa= a 9 + 1= 1 { in= ( 2 1 ) in ( 17
840 2

1
504 in2 1

105 ln e)

R a= a 9 + 1= 1 { in= ( 2 1 ) in ( 173
1890 2

1
1050 in+ 89

630 ln e) (2.15)

where we take n= 0 in the terms (K, L , M ) a= a 9 and expand all the gamma
functions in the other terms in power series of n and take the first-order
terms in n only (n= Zaz/(z2 2 1) 1 / 2) .

Then we substitute these results into Eq. ( 2.13). For the s-waves we
obtain

DE VP
n = 2 2 a 0 Za

Nn 1
3

&
i `

{ i `

dz
2pi

z
(z2 2 1) 2 9 2

(Za) 2

(z2 2 1)
z 0 11

3
+ 4 ln e 1

+
2(Za)
z2 2 1

z3 0 22+
4
3

ln e 1 + i
Za

Ï z2 2 1
z2 0

2
5 1 : 0 1 2 p

Za

Ï z2 2 1
z 1

(2.16)

For the lowest order of (Za) , i.e., (Za) 4, we find that the following
term will contribute:

DE VP
n = 2 2 a 0 Za

Nn 1
3 2

5 &
i `

{ i `

dz
2pi

z2

(z2 2 1) 2 i
Zaz2

(z2 2 1) 1 / 2+ O( (Za) 5 ) (2.17)

Finally using

&
i `

{ i `

dz
2pi

z2

(z2 2 1) 5 / 2= 2 i/3p (2.18)
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we are left with a finite result for the vacuum polarization energy shift

DE VP
n = 2

4a

3p 0
1
5 1 Za 0

Za

Nn 1
3

+ O ( (Za) 5 )

We conclude that the divergences in QED are due to the use of plane
waves in the intermediate states in the loop diagrams. With the use of
Coulomb waves as intermediate states in the loop diagrams, a prescription
has been found for the choice of contour integrations such that divergent
integrals cancel, leaving a finite residual piece which is correct to lowest
nonvanishing order. Further work remains to be done to establish whether
or not the technique can be extended to higher-order terms.
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APPENDIX: t 2 t $ INTEGRALS

We have the following t and t¢ integrals:

(K, L , M ) a , a 9 = &
1

0
dt &

`

0
dt ¢

ta (1 2 t) 1 { a t¢ a 9 ( 1+ t ¢ ) 1 { a 9

(1 2 t+ t ¢ ) 5 0 ( 1 2 t+ t¢ )
p( t, t¢ ) 1

5, 7, 9

(A.1)

and

(N, P, R) a , a 9

= &
1

0
dt &

`

0
dt ¢

t1+ a ( 1 2 t ) 2 { a t ¢ 1+ a 9 (1+ t ¢ ) 2 { a 9

(1 2 t+ t ¢ ) 7 0
(1 2 t+ t ¢ )

p( t, t ¢ ) 1
7, 9, 11

(A.2)

where

p( t, t ¢ ) = 1 2 t+ t ¢ 2 2tt ¢ (A.3)
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In order to regularize these integrals we take the lower limit of
t¢ -integration as e. Then we perform t-integration. We can represent them
in the following form:

(K, L , M ) a , a 9 = ( 2 1 ) { a C (2 2 a)

3 ( 2 Aaa 9
C (1+ a)

C (3) 2 F1( 2 2 / 2 4/ 2 6, 1+ a; 3; 2)

+ 2Baa 9
C ( 2+ a)

C ( 4) 2 F1( 2 1 / 2 3/ 2 5, 2+ a; 4; 2) 2 C aa 9

3
C ( 3+ a)

C ( 5) 2 F1(0/ 2 2/ 2 4, 3+ a; 5; 2) * (A.4)

and

(N, P, R) a , a 9

= ( 2 1 ) { a
C (3 2 a) ( Aaa 9

C ( 2+ a)
C (5) 2 F1( 2 2 / 2 4/ 2 6, 2+ a; 5; 2) 2 2B aa 9

3
C (3+ a)

C (6) 2 F1( 2 1 / 2 3/ 2 5, 3+ a; 6; 2)

+ Caa 9
C (1+ a)

C (7 ) 2F1( 0/ 2 2, 2 4 , 4+ a; 7; 2) * (A.5)

where (A, B, C ) aa 9 are

0
A
B
C 1 = &

`

e

dt ¢
t¢ a 9 { a

(1+ t ¢ ) a 9 { a+ 3 0
t¢ { 1

t ¢ { 2

t ¢ { 3 1 (A.6)

We do the t ¢ -integration in Eq. (A.5) by using the hypergeometric
functions. The result is

1
3e

3 2F1 0 a ¢ 2 a+ 3, 3; 4; 2
1
e 1

0
A
B
C 1 aa 9

= 0 1
4e4 2 F1 0 a ¢ 2 a+ 3, 4; 5; 2

1
e 1 1 (A.7)

1
5e5 2F1 0 a ¢ 2 a+ 3, 5; 6; 2

1
e 1
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The Mellin ± Barnes type integral representation of (A.6) is

1
(3+ v) e3+ v

0
A
B
C 1 aa ¢

= &
c+ ¥

c 2 i ¥

dv
2pi

C ( 2 v)
C (a¢ 2 a+ 3+ v )

C (a ¢ 2 a+ 3) 0 1
(4+ v) e

4+ v 1 (A.8)

1
(5+ v) e

5+ v

where c defines the contour of the v integration. The result depends on
a 2 a ¢ . In our calculation there are three values of a 2 a ¢ : 0 and 6 1. Then
we rewrite, for example, Aaa ¢ in Eq. (A.8) as

Aaa ¢ = daa ¢ &
c+ i ¥

c 2 i ¥

dv
2pi

C ( 2 v )
C (3+ v)

C (3) (3+ v ) e
3+ v+ da , a ¢ 2 1

3 &
c+ i ¥

c 2 i ¥

dv
2pi

C ( 2 v )
C ( 2+ v )

C ( 2)( 3+ v) e3+ v

+ da , a ¢ + 1 &
c+ i ¥

c 2 i ¥

dv
2pi

C ( 2 v ) C (4+ v)
C ( 4) (4+ v) e

3+ v (A.9)

Figure 2 shows the poles of A aa ¢ , where the pole at v= 2 3 is a double
pole. The others are single poles. The poles at v= 0, 1, 2,... give the
asymptotic expansion of Aaa ¢ in terms of e. Contributions of the single poles

Fig. 2. The poles of Aa , a ¢ .
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at v= 2 4 , 2 5 ,... are proportional to the positive powers of e and when e

goes to zero, their contributions also go to zero. But v= 2 3 is a double
pole and gives a constant term and a logaritmic term in e. We choose the
contour as shown in the Fig. 2. Then

Aa , a=
1

C (3)
Re s ( C ( 2 v ) C (4+ v)

( 3+ v) 2
e

3+ v , v= 2 3 * = 2
3
2

2 ln e (A.10)

Figure 3 shows the poles of Aa , a 2 1 . There is a double pole at v= 2 3.
All the others are single poles. All the poles at the right-hand side of
v= 2 3 are contributing to the asymptotic expansion of Aa , a 2 1 . For this
reason, we choose the contour such that the series expansion of Aa , a 2 1

does not include the negative powers of e. Then, for the small values of e

we get a contribution only from the double pole at v= 2 3 , when we close
the contour from the left-hand side of the u-plane. It is

Aa , a 2 1=
1

C (2)
Re s ( C ( 2 v) C ( 4+ v)

( 2+ v) (3+ v) 2 e3+ v , v= 2 3 * = 1+ 2 ln e (A.11)

In the same way we calculate Aa, a+ 1 . It is

Aa , a + 1=
1

C (4)
Re s ( C ( 2 v ) C (4+ v)

(3+ v ) e
3+ v , v= 2 3 * =

1
3

(A.12)

Fig. 3. The poles of Aa, a 2 1 .

827Vacuum Polarization in Self-Field Quantum Electrodynamics



The results of the other integrals are obtained by the same procedure. They
are

Ba , a= 5
2+ 3 ln e, Ca , a = 2 7

2 2 6 ln e

Ba , a+ 1= 11
6 2 ln e, Ca , a+ 1= 2 13

3 + 4 ln e (A.13)

Ba , a 2 1= 2 1 2 3 ln e, Ca , a 2 1= 1+ 4 ln e

We substitute the results of Eqs. (A.10) ± (A.13) into (A.4) and (A.5).
Then we find the values of (K, L , M ) aa ¢ and (N, P, R) aa ¢ as in Eq. ( 2.15).
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