EE 2198 LOGIC SYNTHESIS, MAY 2000

Software Optimizaion Using Hardware
Synthesis Tedhniques

Bret Victor, bret@eecs.berkeley.edu

Abstract— Although a myriad of techniques exist
in the hardware design domain for manipulation and
simplification of control logic, a typical software optimizer
does very little control restructuring. As a result, there are
missed opportunities for optimization in control-heavy
applications. This paper explores how various hardware
design techniques, including logic network manipulation,
can be applied to optimizing control structuresin software.

|. INTRODUCTION

OFTWARE running in an embedded system must often

examine and respond to a large number of input stimuli
from many different sources. Becaise aprocesr is atime-
multi plexed resource, it cannot processthese input signalsin
paralel as a hardware-based design can. Thus, a significant
percentage of computing time is gent traversing control
structures, determining how to respond to the given set of
inputs. It is possble that an espedally control-heavy
embedded application might spend more time figuring out
what to dothan adualy doingit!

However, the optimization phase of a typicd
compiler is primarily direded at data flow, with the intention
of spealing up data-processng applications and loop-based
structures. And while “code motion” is certainly a valid and
utili zed concept in software optimization, nowhere do we see
the sort of radicd control restructuring that a typicd
hardware optimizer performs. A logic manipulation padkage
intended for hardware design wil | rewrite logic equations and
crede and merge nodes with wild abandon, whereas the
output of a software compiler is generally true to the antrol
structuresin the original source @de.

This paper discuses various ways in which
techniques from the redm of hardware design can be gplied
to the optimizaion of control structures in software. First,
two locd optimizaion techniques, the Software PLA and
Switch Encoding, are presented. These dlow for a more
efficient evaluation of complex logic equations and large
if/else structures respedively. Then, a genera method for
restructuring a software routine using logic networks is
introduced, along with a discussion of the software padkage
that has been developed as an implementation.

Il. LocAL HARDWARE-INSPIRED TRANSFORMS

Logic Minimization
Consider the expression
statement:

if (a&&c)||(b&&(c||d))||(d&&a)

in the following if

A compiler would parse this into an expresson tree and
generate de that would dredly traverse the tree ad
evaluate the expresson as given. “Short-circuit” branching
might be used, but no inspedion and modification of the
bodean expresson itself would typicdly take place’

However, no hardware compiler would implement
this expresson without first running it through a logic
minimizer. If we give this expresson to ESPRESSO and
fador the result with a fadorizaion algorithm, we see that
the &ove can be rewritten equivalently as

if ((al[b)&&(c||d))

This new expression takes half as many bodean operations
to evaluate as the previous one. While simple logic
minimization may seem like an obvious technique, neither
compilers nor programmers generaly do it. It should be
noted that expression simplification should only be atempted
on expressons where evaluation of the operands causes no
side dfeds, such as function cdls. Otherwise, the
programmer may be relying on the short-circuit semantics of
C sbodean operators to conditionally modify the state of the
system.

Software PLA

In evaluating the @ove expression, ead variable is
treded as bodean, representing either a true or false value.
It may seem wasteful that on a machine with a 32-bit (or
even 8-bit) data word, only one bit is being wsed at a time.
The Software PLA is a method for evaluating logic
expresgons that attempts to use more of the data word width,
and effedively evaluate parts of the expression in paralel. It

1 Short-circuit boolean evaluation is less useful in embedded applications
than in general-purpose computing. An embedded application typicaly has
to med a set of realtime constraints, and additional performance past these
constraintsis not beneficial. Thus, the speead of embedded software must be
measured with the worst case performance, which is not affected by short-
circuit operators.

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

is modeled after a PLA (programmeble logic aray), a
hardware structure which bregks an expression into a sum-of-
products form, cdculates al the product terms in paralel,
and then ORs them together. Consider this bodean
expresson, in sum-of-products form:

abc +acd +bc

Thefirst step isto crede atable of “bit masks’. Thereisone
row for ead urique literal that appeas the expression, and
the wlumns of the table arrespond to the product terms. A
row has a 0 in a particular column if that product term
contains that literal, and a 1 if it does not. The bit masks for
this example ae shown in Figure 1.

We asame that all of the bits of an input variable
are a@ther 0 or 1, depending on that variable' svalue. If thisis
not the cae, they can be trivialy transformed into such a
representation. The evaluation procedure begins with
initializing an evaluation valuableto all 1's. Thisvariableis
then ANDed with an input value ORed with its bit mask.
Thisis done for ead input variable, in both the positive and
inverted sense if necessary. At the end of this process if the
evaluation variable is al 0’'s, the expresson evaluates to G
otherwise it evaluatesto 1L This last step, equivalent to the
OR stage in a PLA, can be implemented with a simple test
for equality to zero. The first few steps of an example
procedure ae shown in Figure 1. Note that this same
technique, with dight modificaions, can be used to evaluate
an expression in product-of-sums form, in cese that is
handier for the particular expression.

Evaluation of a Software PLA requires two
instruction for inputs used in the positive sense and three
instructions for inverted inputs. Evaluation of an expression
in the cnventional manner requires one instruction per
bodean operation, which includes ANDs, ORs, and
inverting. If we have an sum-of-products expresson with n
literals and m product terms, and assume half the literals are
inverted inputs and ead product term contains haf the
literals, we find:

0OpSp x =2.5n+1
OPSgyp = (0.75n —1)m+ (m—l)
0PSp x <OPSg Whenm>4

Thus, the Software PLA is better than a dired evaluation of a

s=111 ;init ialize s
abc acd bc
a 0 1 1 x=aOR 011 ; mask for a
a 1 0 1 s =s AND x ; apply mask
b 0 1 0 x=aXOR 111 ;inverta
c 0 0 1 x=xOR 101 : mask for a
c 1 1 0 s =s AND x ; apply mask
d 1 0 1 x=b OR 010 ; mask for b
s =s AND x ; apply mask

FIGURE 1: BIT MASKSAND EVALUATION CODE

sum-of-products expression when there ae alarge number of
product terms. How it compares to the best factored form of
agiven expression cannot be determined in general, but there
are caes when it does provide an improvement, espedally
for expresgons that do not fador well. For example, a four-
input XOR, implemented with ANDs and ORs, requires

e 47 operations in sum-of-products form

e 32 orerationsin factored form

e 21 orerations as a Software PLA.

Switch Encoding
Consider the following software structure:

if (X) {func_0(); }
else if (Y) {func_1();}
else if (2) {func_2();}
else {func_3(); }

where X, Y, and Z are expressons using some set of input
variables. The function cdl statements are mutually
exclusive — only one will be exeasted. The worst-case
evaluation time of this gructure is dow, becaise X, Y, and Z,
potentially complicaed expressons, al have to be evaluated
in order to exeaute func_3 ().

A switch structure is another mechanism for
exeauting one of a set of mutually exclusive statements.

switch (i) {
case 0: func_0 (); break;
case 1: func_1 (); break;
case 2: func_2 (); break;
default: func_3 (); break;
}

This gructure, at leasst when switching on close-to-
conseautive values, executes much faster than an else chain
becaise it is implemented with a table lookup. However, it
requires an integer operand to switch on. If we think of this
integer as smply an array of bits, then we can generateiit in
much the same way that a hardware designer implements a
state machine. In this four-case example, i is effedively two
bitswide. Bit Oishighwheniis1 or 3, which correspond to
func_1 () and func_3 () respedively, and hit 1 is high when i
is2 or 3. The mnditions when each statement should be
exeauted can be derived from X, Y, and Z, and bodean
equations for ead bit can be generated:

i_bit 0=XY+XYZ
i_bit 1= XY
These guations can be minimized with alogic minimization

todl in terms of the primary inputs, and implemented simply
as:

i=(i_bit 0);

It is important to note that when constructing the switch
structure, the statements need not be numbered
conseadtively. Any distinct value of i can be assigned to any
statement, or equivalently, the statements can be reordered

i bit 1<<1)|(

arbitrarily. Thus, we an attempt to find a numbering that
minimizes the logic required to generate i. This is exadly
what hardware designers do when devising a state encoding
based on a set of next-state equations. Thus, any algorithms
that addressthe state encoding problem can also be gplied
to this 2ort of software optimization.

11l . PROCEDURE OPTIMIZATIONBY LOGIC
NETWORK SIMPLIFICATION

In the design phase, a digital circuit is generally
represented as a network of nodes, eat of which performs a
particular logic function. These nodes can be manipulated
with CAD tods until a representation of the drcuit that is
optimal in some sense is reated. The nodes can then be
mapped into dgital gates, and a drcuit that performs the
desired logic function is thus implemented.

Wheress hardware can be eaily viewed as a
network of nodes, the mnnedion between a software
program and a logic network is lessapparent. Nevertheless,
if software could somehow be put into this representation,
there is the potential to leverage the large amount of
reseach, not to mention CAD todls, in the aea of logic
network optimization.

For this purpose, a tod named BRO was
developed? BRO attempts to decompose the ontrol
structure in a software procedure into logic network,
optimize it, and then rebuild the procedure using the new
control structure. It uses the excellent SUIF compiler and
intermediate representation format®, and is partialy
implemented as modules that run within the SUIF
environment. The following process is used when
optimizing a software program using BRO:

e Csource mdeis compiled to SUIF format

e The BRO frontend credes a logic network from the
SUIFfile

e The SIS padkageis used to simplify the network

e The BRO badkend remnstructs the SUIF code using
the new network

 SUIF outputs the new program as C source’

BRO Frontend

The task of the BRO frontend is, given a software
procedure with a possbly hierarchicd colledion of
ifthen/else structures, to extrad a logic network that
completely captures the mntrol flow and is flexible enough
to alow for optimization.

2 This tod, which uses logic networks to optimize software, was e as
somewhat of aduel to SIS, which uses logic networks to ogtimize hardware.
Hence, the name.

3 Seehttp://suif.stanford.edu for information an SUIF.

* The standard SUIF distribution does not come with an asembly language
backend.

EE 2198 LOGIC SYNTHESIS, MAY 2000

The inputs to the logic network are the ntrol
variables in the procedure, that is, al variables that are used
within the ndition expresdon of an if statement. The
outputs of the logic network correspond to bocks of nor-
control statements in the mde. An output evaluates to 1 if
the block of code that it represents should be executed, given
the aurrent set of input values.

It may be helpful to refer to Figure 2 throughout the
following discussion. BRO's network generation process
begins at the top o the procedure. When it encounters an if
statement, it generates two nodes, a then node and an else
node. These ae named node_n_t and node n_erespedively,
where n is a number that is incremented with ead if
statement. These nodes represent whether the if statement’s
then or else clause should be exeauted, and consist of the
condition expression and its inverse, ANDed with the parent
node if this if statement is nested within the then or else
clause of another if statement. When BRO comes to a non-if
statement, it gathers as many conseautive such instructions as
possble into a block, and generates an output node. The
output represents whether this block should be exeauted, and
its node eyuation is smply the parent node if the block is
within a then or else clause, or a mnstant 1 aherwise.
Outputs are named output_n, where n is again incremented
conseautively. When BRO has finished traversing the
procedure, it has generated a set of node eguations that
represents alogic network.

Using these equations, it is posgble to determine the
set of input values for which any given statement in the
procedure will be exeauted. The network is thus a complete
representation of the procedure’s control structure, and
together with the statement blocks associated with eadh
output, contains enough information to construct a software
procedure with functionality identical to the original.

Control Variable Modification

Due to the sequential nature of software execution
however, a complicaion arises. Consider the ade in Figure
3. The variable b is used in the wnditions of two if
statements, but it is modified between them. If BRO ignored
this, it would generate anetwork that assumed that both uses
of b had the same value, which is not necessarily true. This
could leal to incorred behavior after the network had been
manipulated and then transformed badk into software.

Although it would be nvenient to assume that

if (a&&b){ node 1 t=a&b, node 2 e=!(a& b)
if (c) node 2 t=c& node 1 t,
node 2 e=!c& node 1 t
x=1; output_1=node 2 t
else
X=2; output 2=node 2 e
}
else
x=3; output 3=node 1 e

FIGURE 2: CODE EXAMPLE AND GENERATED NODES

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

if (a && 'b)
b=1;
if (a && 'b) else {
x=1; if (b)
b = new_b(); z=3;
if ('b && c) b = new_b();
X=2; if (b)
y=T1,
}
FIGURE 3 FIGURE 4

control variables are never modified in the body of a
procedure, this is certainly not the cae, and such an
assumption would place @ unfair restriction on the
programmer.®> The solution lies in redizing that athough
both condition expressions refer to a variable b, the value
used in one expression has no connedion to the value used in
the other, and thus they are dfedively independent inputs to
the network. BRO makes aire that they go by different
names by labeling each input with the output number in
which its variable was last modified. The variable starts with
the name b_0, which is used in the nodes generated by the
first if statement. When the statement that modifies b is
encountered, the nameis st to b_2, becaise that statement is
part of output_2. The nodes generated by the second if refer
to the variable by its new name.

Now, consider the mde in Figure 4. In the then
clause, the input’'s nameis et to b_1. In the else clause, the
input starts out as b_0 (becaise what occurs in the then
clause annot affed it), and beacomesb_3. Thus, the question
arises of what the name should be dter the if statement ends.
If the then clause were exeauted, the name should be b_1; if
the else clause were exeauted, the name should be b 3.
Fortunately, BRO has that information available in the form
of node 1 tand node 1 e, and it generates anode:

node b 1=(b 1& node 1 t)+(b_3& node 1 €)

This node is then used as the new name for the variable b.
Thus, whenever BRO leaves an if statement where avariable
was modified in one or both of the dauses, it generates a
node that consolidates the two passble names for the
variable & that point. This technique dlows the network
inputs to be tradked as they go through the control structure,
and gives the network minimizer enough information to
successfully simplify the network.

Integer Control Variables

So far, al control variables have been bodean. But
it is certainly desirable in many applicaions to use integer
variablesinside if conditions. For example:

f(i<a)|==7){...}

There ae three ways of deding with the issue of integer
control variables. Thefirst isto simply disallow them. This

5 State-based languages, such as Egterdl, indeel force this restriction in
some cases. C programmers, however, are not used to being restricted.

places no restriction upon the range of programs that can be
implemented, because the programmer can always rewrite
the dovelineas:

templ=(i<4);

temp2 =(i==7);

if (templ || temp2) {...}

That is, temporary bodean variables can be aeded with the
results of the comparisons and used in the @ndition
expresson. However, thisis undesirable for severa reasons.
First of al, we @n clealy seethat templ and temp2 cannot
both be true ssimultaneoudly, because i cannot be both less
than four and equal to seven. However, for BRO to
determine this from the @ove wde, it would have to have
overly extensive dataflow analysis cgpabilities. So this
simple information, which is vital for network simplification,
islost. Seaondly, it is $mply inefficient and tedious for the
programmer to have to write mde in thisform.

A posshility that would allow for integer control
variables would be to use amulti-valued (MV) network. All
integer comparisons then could be expressed in terms of MV
literals. For instance, the example @ove would generate the
following node:

node 1t =i 01023 4+j o?

This approach hes the advantage that all information about
the use of the integer variable is cegptured within the
representation, so an optimal network simplification is
possble. There ae pradicd downsides, however. It would
be necessary to explicitly spedfy a range for every integer
variable so an MV input of the gpropriate width could be
constructed. Thisisnot easy in C, and would require dther a
mechanism external to the language or an awkward
substitution of enums for ints with al control variables.
Again, this would entail a tedious modificaion of existing
source @de. Another disadvantage of using a MV network
is that it requires the use of a MV network manipulation
padkage.

The solution that is implemented in BRO is
“comparison inputs’. When BRO encounters our example
line @ove, it generates the following node:

node 1 t=i O compare It 4+i 0 compare eq 7

That is, it credestwo new bodean inputs to the network, and
names them acaording to the required comparison. However,
BRO can examine the comparisons (or even just the names
of these inputs) and seethat they cannot both be true because
of a satisfiability constraint. It then is able to express this
information to the network minimizer through the use of a
don’t care network. It simply adds the aube:

i_0_compare It 4& i_0 compare eq 7

to the network’s external don't care set, and the minimizer
can then optimally simplify the network. For example, if we
have the code in Figure 5, the generated dorit care between

EE 2198 LOGIC SYNTHESIS, MAY 2000

if(i<3) output_1 node_1=a&&b;
if (i<3) x=1; node_2 =c || node_1;
x=1; elseif (i==3) ‘ output_1 = node_2;
elseif (i>=3) X =2; if (output_1) {
X =2; elseif (i>3) c ° /* statements */
X =3; b s }
FIGURE 5 FIGURE 6 FIGURE 7: CODE PRODUCED BY SIMPLE BACKEND

the two comparisons would allow the (i >= 3) condition to
be removed, because it isimplicit with the else.

If there ae more than two dstinct comparisons
computed for a particular integer variable, BRO generates
the don't care aubes for every pair of comparison inputs in
the set. Unfortunately, this implies that in a mde sequence
such as Figure 6, the (i > 3) condition, even though it is
redundant, would not be removed. The reason is that such a
removal would require adon’t care aube

i_0_compare It 3& i_0_compare eq 3 & i_0_compare gt_3

which is not in the set because the dont cares are only
generated pairwise. It is certainly posdble to generate the
complete set of dont cares for every combination of
comparison inputs. However, the dgorithm to doso is much
more complicaed, so only pairwise don't cares are airrently
implemented in BRO. Here, the advantage of using a MV
network is evident, as it expresses such relations
automaticdly without the need to generate don’t cares.

The BRO Backend

After the logic network has been constructed, it is
given to SIS, a network manipulation package. SIS performs
the task of removing redundancies, extrading common sub-
expressons, and in general, massaging the network into
something more dficient. But exadly what sort of network
SIS should output depends drongly on what the BRO
badkend is expeding, so it can properly perform the
transformation badk to software.

The simplest badkend that can be mnceived is one
that simply generates statements to reaursively evaluate the
fanins from an output node in topdogicd order, and then
perform a onditional branch, to exeaute the statements
asociated with each output only if that output node evaluates
to 1 This is done for ead output node, skipping shared
intermediate nodes that have drealy been computed. This
produces code such as that in Figure 7.

This badkend, assuming a reasonable SIS script,
effectively performs expression minimizaion and common
sub-expression extradion on the original program. However,
it has the dfed of flattening the entire @ntrol structure. In
particular, the badkend will never generate elses or nested ifs,

6 Actually, the BRO frontend expresses all comparisons in terms of “equal-
to” or “greater-than”. This is possble because the inverted sense of the
input can be used. Thus, (i < 3) actualy refersto !li_0_compare gt 2. As
long as the proper don’t cares are generated, this makes no difference to the
network optimizer. However, it is somewhat easier for the BRO badend to
deal with.

and these hierarchicd elements are essential in most cases to
producing efficient code.

Fortunately, it is possble to devise dgorithms to
determine when it is possble to insert elses and nested ifs.
Else generation is based on the observation that two
expressons are mutually exclusive if their onsets do not
intersed. Thus, BRO could crege anode which ANDs an
output node with the subsegquent output:

node_test = output_1 & output_2

and request that SIS simplify this node. If the node
simplifiesto zero, then the second output will never be true if
thefirst oneis. The evaluation of the second output node, its
conditional branch, and the statements asociated with that
output can be placed inside an else clause of the first output’s
conditional branch. This has two benefits. At runtime, if the
first output is true, then the second output will not even be
evaluated, which improves performance. Also, the logic to
evaluate the second output can be minimized using the first
output’s onset as a don't care space This leals to a faster
evaluation of the second output when the first output is false.
Nested if generation follows a similar procedure.
One epression is sid to completely contain another when
the offset of the first and the onset of the second do not
intersed. Again, anode can be aeaed to compute this:

node test ='output_1 & output 2

If this node simplifies to zero, then the second output can
only be true when the first oneis. Thus, the evaluation of the
seoond output and its associated statements can be placel
within the then clause of the first output’s conditional
branch, after the first output’s datements. This has gmilar
benefits — the seacond output need not be evaluated if the
first is fase, and the logic for the second output can be
minimized using the first output’s offset as a don't care
space

BRO currently only implements the simple
badkend, but it is expeded that the use of these alvanced
techniques could produce dficient, hierarchicd control
structures. However, it could still fall short of handwritten
code (including the original source being optimized) because
it would only generate ifs and elses at output nodes. That is,
every then and else clause would have to begin with a
statement block. This does not in general lead to the most
efficient code. Thus, it is necessary to perform else and
nested if generation at intermediate nodes as well as output
nodes. This in turn requires SIS to produce intermediate

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

nodes that are meaningful for this purpase. The methods for
going about thisare arrently unclea.

IV. CONCLUSION

Various techniques from the aea of hardware
synthesis can be used to optimize ®ntrol flow in software.
Thisidea ca be gplied at the locd level, with methods such
as the Software PLA and Switch Encoding. Or, it can be
applied globaly, through the process of demmpaosing a
procedure into a logic network, manipulating the network,
and transforming it bad into software in an optimal manner.
A tod has been developed to acamplish this, and athough
much further work is required, it shows promise for
optimizing control-heavy software gplications.

REFERENCES AND RELATED RESEARCH

[1] E. M. Sentovich, et a., “SIS: A System for Sequential
Circuit Synthesis’. Technical Report of the UC Berkeley
Electronics Research Lab, May 1992

[2] F. Baarin, et a., “Synthesis of Software Programs for
Embedded Control Applicaions’. IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, vol 18, pp. 834-849

[3] G. Berry, et al., “Esterel: a Formal Method Applied to
Avionic Software Development”. Science of Computer
Programming, vol 36, pp. 5-25

