
EE 219B LOGIC SYNTHESIS, MAY 2000

S

Software Optimization Using Hardware
Synthesis Techniques

Bret Victor, bret@eecs.berkeley.edu

Abstract— Although a myriad of techniques exist
in the hardware design domain for manipulation and
simplification of control logic, a typical software optimizer
does very little control restructuring. As a result, there are
missed opportunities for optimization in control-heavy
applications. This paper explores how various hardware
design techniques, including logic network manipulation,
can be applied to optimizing control structures in software.

I. INTRODUCTION

OFTWARE running in an embedded system must often
examine and respond to a large number of input stimuli

from many different sources. Because a processor is a time-
multiplexed resource, it cannot process these input signals in
parallel as a hardware-based design can. Thus, a significant
percentage of computing time is spent traversing control
structures, determining how to respond to the given set of
inputs. It is possible that an especially control-heavy
embedded application might spend more time figuring out
what to do than actually doing it!

However, the optimization phase of a typical
compiler is primarily directed at data flow, with the intention
of speeding up data-processing applications and loop-based
structures. And while “code motion” is certainly a valid and
utili zed concept in software optimization, nowhere do we see
the sort of radical control restructuring that a typical
hardware optimizer performs. A logic manipulation package
intended for hardware design wil l rewrite logic equations and
create and merge nodes with wild abandon, whereas the
output of a software compiler is generall y true to the control
structures in the original source code.

This paper discusses various ways in which
techniques from the realm of hardware design can be applied
to the optimization of control structures in software. First,
two local optimization techniques, the Software PLA and
Switch Encoding, are presented. These allow for a more
efficient evaluation of complex logic equations and large
if/else structures respectively. Then, a general method for
restructuring a software routine using logic networks is
introduced, along with a discussion of the software package
that has been developed as an implementation.

II . LOCAL HARDWARE-INSPIRED TRANSFORMS

Logic Minimization
Consider the expression in the following if

statement:

if ((a&&c)||(b&&(c||d))||(d&&a))

A compiler would parse this into an expression tree, and
generate code that would directly traverse the tree and
evaluate the expression as given. “Short-circuit” branching
might be used, but no inspection and modification of the
boolean expression itself would typicall y take place.1

However, no hardware compiler would implement
this expression without first running it through a logic
minimizer. If we give this expression to ESPRESSO and
factor the result with a factorization algorithm, we see that
the above can be rewritten equivalently as

if ((a||b)&&(c||d))

This new expression takes half as many boolean operations
to evaluate as the previous one. While simple logic
minimization may seem like an obvious technique, neither
compilers nor programmers generally do it. It should be
noted that expression simplification should only be attempted
on expressions where evaluation of the operands causes no
side effects, such as function calls. Otherwise, the
programmer may be relying on the short-circuit semantics of
C’s boolean operators to conditionally modify the state of the
system.

Software PLA
In evaluating the above expression, each variable is

treated as boolean, representing either a true or false value.
It may seem wasteful that on a machine with a 32-bit (or
even 8-bit) data word, only one bit is being used at a time.
The Software PLA is a method for evaluating logic
expressions that attempts to use more of the data word width,
and effectively evaluate parts of the expression in parallel. It

1 Short-circuit boolean evaluation is less useful in embedded applications
than in general-purpose computing. An embedded application typically has
to meet a set of realtime constraints, and additional performance past these
constraints is not beneficial. Thus, the speed of embedded software must be
measured with the worst case performance, which is not affected by short-
circuit operators.

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

is modeled after a PLA (programmable logic array), a
hardware structure which breaks an expression into a sum-of-
products form, calculates all the product terms in parallel,
and then ORs them together. Consider this boolean
expression, in sum-of-products form:

cbcdaabc ++

The first step is to create a table of “bit masks” . There is one
row for each unique literal that appears the expression, and
the columns of the table correspond to the product terms. A
row has a 0 in a particular column if that product term
contains that literal, and a 1 if it does not. The bit masks for
this example are shown in Figure 1.

We assume that all of the bits of an input variable
are either 0 or 1, depending on that variable’s value. If this is
not the case, they can be triviall y transformed into such a
representation. The evaluation procedure begins with
initializing an evaluation valuable to all 1’s. This variable is
then ANDed with an input value ORed with its bit mask.
This is done for each input variable, in both the positive and
inverted sense if necessary. At the end of this process, if the
evaluation variable is all 0’s, the expression evaluates to 0;
otherwise it evaluates to 1. This last step, equivalent to the
OR stage in a PLA, can be implemented with a simple test
for equali ty to zero. The first few steps of an example
procedure are shown in Figure 1. Note that this same
technique, with slight modifications, can be used to evaluate
an expression in product-of-sums form, in case that is
handier for the particular expression.

Evaluation of a Software PLA requires two
instruction for inputs used in the positive sense and three
instructions for inverted inputs. Evaluation of an expression
in the conventional manner requires one instruction per
boolean operation, which includes ANDs, ORs, and
inverting. If we have an sum-of-products expression with n
literals and m product terms, and assume half the literals are
inverted inputs and each product term contains half the
literals, we find:

() ()
4 when

1175.0

15.2

><
−+−=

+=

mopsops

mmnops

nops

SOPPLA

SOP

PLA

Thus, the Software PLA is better than a direct evaluation of a

sum-of-products expression when there are a large number of
product terms. How it compares to the best factored form of
a given expression cannot be determined in general, but there
are cases when it does provide an improvement, especially
for expressions that do not factor well. For example, a four-
input XOR, implemented with ANDs and ORs, requires

• 47 operations in sum-of-products form
• 32 operations in factored form
• 21 operations as a Software PLA.

Switch Encoding
Consider the following software structure:

if (X) { func_0 (); }
else if (Y) { func_1 (); }
else if (Z) { func_2 (); }
else { func_3 (); }

where X, Y, and Z are expressions using some set of input
variables. The function call statements are mutually
exclusive — only one will be executed. The worst-case
evaluation time of this structure is slow, because X, Y, and Z,
potentially complicated expressions, all have to be evaluated
in order to execute func_3 ().

A switch structure is another mechanism for
executing one of a set of mutually exclusive statements.

switch (i) {
case 0: func_0 (); break;
case 1: func_1 (); break;
case 2: func_2 (); break;
default: func_3 (); break;

}

This structure, at least when switching on close-to-
consecutive values, executes much faster than an else chain
because it is implemented with a table lookup. However, it
requires an integer operand to switch on. If we think of this
integer as simply an array of bits, then we can generate it in
much the same way that a hardware designer implements a
state machine. In this four-case example, i is effectively two
bits wide. Bit 0 is high when i is 1 or 3, which correspond to
func_1 () and func_3 () respectively, and bit 1 is high when i
is 2 or 3. The conditions when each statement should be
executed can be derived from X, Y, and Z, and boolean
equations for each bit can be generated:

YXi_bit_1

ZYXYXi_bit_0

=

+=

These equations can be minimized with a logic minimization
tool in terms of the primary inputs, and implemented simply
as:

i = (i_bit_1 << 1) | (i_bit_0);

It is important to note that when constructing the switch
structure, the statements need not be numbered
consecutively. Any distinct value of i can be assigned to any
statement, or equivalently, the statements can be reordered

a b c a’ c d b c’
a 0 1 1
a’ 1 0 1
b 0 1 0
c 0 0 1
c’ 1 1 0
d 1 0 1

s = 111 ; init ialize s

x = a OR 011 ; mask for a
s = s AND x ; apply mask

x = a XOR 111 ; invert a
x = x OR 101 ; mask for a ’
s = s AND x ; apply mask

x = b OR 010 ; mask for b
s = s AND x ; apply mask

FIGURE 1: BIT MASKS AND EVALUATION CODE

EE 219B LOGIC SYNTHESIS, MAY 2000

arbitrarily. Thus, we can attempt to find a numbering that
minimizes the logic required to generate i. This is exactly
what hardware designers do when devising a state encoding
based on a set of next-state equations. Thus, any algorithms
that address the state encoding problem can also be applied
to this sort of software optimization.

III . PROCEDURE OPTIMIZATION BY LOGIC

NETWORK SIMPLIFICATION

In the design phase, a digital circuit is generally
represented as a network of nodes, each of which performs a
particular logic function. These nodes can be manipulated
with CAD tools until a representation of the circuit that is
optimal in some sense is reached. The nodes can then be
mapped into digital gates, and a circuit that performs the
desired logic function is thus implemented.

Whereas hardware can be easily viewed as a
network of nodes, the connection between a software
program and a logic network is less apparent. Nevertheless,
if software could somehow be put into this representation,
there is the potential to leverage the large amount of
research, not to mention CAD tools, in the area of logic
network optimization.

For this purpose, a tool named BRO was
developed.2 BRO attempts to decompose the control
structure in a software procedure into logic network,
optimize it, and then rebuild the procedure using the new
control structure. It uses the excellent SUIF compiler and
intermediate representation format3, and is partially
implemented as modules that run within the SUIF
environment. The following process is used when
optimizing a software program using BRO:

• C source code is compiled to SUIF format
• The BRO frontend creates a logic network from the

SUIF file
• The SIS package is used to simplify the network
• The BRO backend reconstructs the SUIF code using

the new network
• SUIF outputs the new program as C source4

BRO Frontend
The task of the BRO frontend is, given a software

procedure with a possibly hierarchical collection of
if/then/else structures, to extract a logic network that
completely captures the control flow and is flexible enough
to allow for optimization.

2 This tool, which uses logic networks to optimize software, was seen as
somewhat of a duel to SIS, which uses logic networks to optimize hardware.
Hence, the name.
3 See http://suif.stanford.edu for information on SUIF.
4 The standard SUIF distribution does not come with an assembly language
backend.

The inputs to the logic network are the control
variables in the procedure, that is, all variables that are used
within the condition expression of an if statement. The
outputs of the logic network correspond to blocks of non-
control statements in the code. An output evaluates to 1 if
the block of code that it represents should be executed, given
the current set of input values.

It may be helpful to refer to Figure 2 throughout the
following discussion. BRO’s network generation process
begins at the top of the procedure. When it encounters an if
statement, it generates two nodes, a then node and an else
node. These are named node_n_t and node_n_e respectively,
where n is a number that is incremented with each if
statement. These nodes represent whether the if statement’s
then or else clause should be executed, and consist of the
condition expression and its inverse, ANDed with the parent
node if this if statement is nested within the then or else
clause of another if statement. When BRO comes to a non-if
statement, it gathers as many consecutive such instructions as
possible into a block, and generates an output node. The
output represents whether this block should be executed, and
its node equation is simply the parent node if the block is
within a then or else clause, or a constant 1 otherwise.
Outputs are named output_n, where n is again incremented
consecutively. When BRO has finished traversing the
procedure, it has generated a set of node equations that
represents a logic network.

Using these equations, it is possible to determine the
set of input values for which any given statement in the
procedure will be executed. The network is thus a complete
representation of the procedure’s control structure, and
together with the statement blocks associated with each
output, contains enough information to construct a software
procedure with functionali ty identical to the original.

Control Variable Modification
Due to the sequential nature of software execution

however, a complication arises. Consider the code in Figure
3. The variable b is used in the conditions of two if
statements, but it is modified between them. If BRO ignored
this, it would generate a network that assumed that both uses
of b had the same value, which is not necessarily true. This
could lead to incorrect behavior after the network had been
manipulated and then transformed back into software.

Although it would be convenient to assume that

if (a && b) { node_1_t = a & b, node_2_e = !(a & b)
 if (c) node_2_t = c & node_1_t,

node_2_e = !c & node_1_t
 x = 1; output_1 = node_2_t
 else
 x = 2; output_2 = node_2_e
}
else
 x = 3; output_3 = node_1_e

FIGURE 2: CODE EXAMPLE AND GENERATED NODES

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

control variables are never modified in the body of a
procedure, this is certainly not the case, and such an
assumption would place an unfair restriction on the
programmer.5 The solution lies in realizing that although
both condition expressions refer to a variable b, the value
used in one expression has no connection to the value used in
the other, and thus they are effectively independent inputs to
the network. BRO makes sure that they go by different
names by labeling each input with the output number in
which its variable was last modified. The variable starts with
the name b_0, which is used in the nodes generated by the
first if statement. When the statement that modifies b is
encountered, the name is set to b_2, because that statement is
part of output_2. The nodes generated by the second if refer
to the variable by its new name.

Now, consider the code in Figure 4. In the then
clause, the input’s name is set to b_1. In the else clause, the
input starts out as b_0 (because what occurs in the then
clause cannot affect it), and becomes b_3. Thus, the question
arises of what the name should be after the if statement ends.
If the then clause were executed, the name should be b_1; if
the else clause were executed, the name should be b_3.
Fortunately, BRO has that information available in the form
of node_1_t and node_1_e, and it generates a node:

node_b_1 = (b_1 & node_1_t) + (b_3 & node_1_e)

This node is then used as the new name for the variable b.
Thus, whenever BRO leaves an if statement where a variable
was modified in one or both of the clauses, it generates a
node that consolidates the two possible names for the
variable at that point. This technique allows the network
inputs to be tracked as they go through the control structure,
and gives the network minimizer enough information to
successfully simplify the network.

Integer Control Variables
So far, all control variables have been boolean. But

it is certainly desirable in many applications to use integer
variables inside if conditions. For example:

if ((i < 4) || (i == 7)) { … }

There are three ways of dealing with the issue of integer
control variables. The first is to simply disallow them. This

5 State-based languages, such as Esterel, indeed force this restriction in
some cases. C programmers, however, are not used to being restricted.

places no restriction upon the range of programs that can be
implemented, because the programmer can always rewrite
the above line as:

temp1 = (i < 4);
temp2 = (i == 7);
if (temp1 || temp2) { … }

That is, temporary boolean variables can be created with the
results of the comparisons and used in the condition
expression. However, this is undesirable for several reasons.
First of all , we can clearly see that temp1 and temp2 cannot
both be true simultaneously, because i cannot be both less
than four and equal to seven. However, for BRO to
determine this from the above code, it would have to have
overly extensive dataflow analysis capabiliti es. So this
simple information, which is vital for network simplification,
is lost. Secondly, it is simply inefficient and tedious for the
programmer to have to write code in this form.

A possibility that would allow for integer control
variables would be to use a multi-valued (MV) network. All
integer comparisons then could be expressed in terms of MV
literals. For instance, the example above would generate the
following node:

node_1_t = i_0 {0,1,2,3} + i_0 {7}

This approach has the advantage that all information about
the use of the integer variable is captured within the
representation, so an optimal network simplification is
possible. There are practical downsides, however. It would
be necessary to explicitly specify a range for every integer
variable so an MV input of the appropriate width could be
constructed. This is not easy in C, and would require either a
mechanism external to the language or an awkward
substitution of enums for ints with all control variables.
Again, this would entail a tedious modification of existing
source code. Another disadvantage of using a MV network
is that it requires the use of a MV network manipulation
package.

The solution that is implemented in BRO is
“comparison inputs” . When BRO encounters our example
line above, it generates the following node:

node_1_t = i_0_compare_lt_4 + i_0_compare_eq_7

That is, it creates two new boolean inputs to the network, and
names them according to the required comparison. However,
BRO can examine the comparisons (or even just the names
of these inputs) and see that they cannot both be true because
of a satisfiabili ty constraint. It then is able to express this
information to the network minimizer through the use of a
don’ t care network. It simply adds the cube:

i_0_compare_lt_4 & i_0_compare_eq_7

to the network’s external don’ t care set, and the minimizer
can then optimall y simplify the network. For example, if we
have the code in Figure 5, the generated don’ t care between

if (a && !b)
 x = 1;
b = new_b();
if (!b && c)
 x = 2;

if (a && !b)
 b = 1;
else {
 if (b)
 z = 3;
 b = new_b();
 if (b)
 y = 7;
}

FIGURE 3 FIGURE 4

EE 219B LOGIC SYNTHESIS, MAY 2000

the two comparisons would allow the (i >= 3) condition to
be removed, because it is implicit with the else.6

If there are more than two distinct comparisons
computed for a particular integer variable, BRO generates
the don’ t care cubes for every pair of comparison inputs in
the set. Unfortunately, this implies that in a code sequence
such as Figure 6, the (i > 3) condition, even though it is
redundant, would not be removed. The reason is that such a
removal would require a don’ t care cube

i_0_compare_lt_3 & i_0_compare_eq_3 & i_0_compare_gt_3

which is not in the set because the don’ t cares are only
generated pairwise. It is certainly possible to generate the
complete set of don’ t cares for every combination of
comparison inputs. However, the algorithm to do so is much
more complicated, so only pairwise don’ t cares are currently
implemented in BRO. Here, the advantage of using a MV
network is evident, as it expresses such relations
automatically without the need to generate don’ t cares.

The BRO Backend
After the logic network has been constructed, it is

given to SIS, a network manipulation package. SIS performs
the task of removing redundancies, extracting common sub-
expressions, and in general, massaging the network into
something more efficient. But exactly what sort of network
SIS should output depends strongly on what the BRO
backend is expecting, so it can properly perform the
transformation back to software.

The simplest backend that can be conceived is one
that simply generates statements to recursively evaluate the
fanins from an output node in topological order, and then
perform a conditional branch, to execute the statements
associated with each output only if that output node evaluates
to 1. This is done for each output node, skipping shared
intermediate nodes that have already been computed. This
produces code such as that in Figure 7.

This backend, assuming a reasonable SIS script,
effectively performs expression minimization and common
sub-expression extraction on the original program. However,
it has the effect of flattening the entire control structure. In
particular, the backend will never generate elses or nested ifs,

6 Actually, the BRO frontend expresses all comparisons in terms of “equal-
to” or “greater-than”. This is possible because the inverted sense of the
input can be used. Thus, (i < 3) actually refers to !i_0_compare_gt_2. As
long as the proper don’ t cares are generated, this makes no difference to the
network optimizer. However, it is somewhat easier for the BRO backend to
deal with.

and these hierarchical elements are essential in most cases to
producing efficient code.

Fortunately, it is possible to devise algorithms to
determine when it is possible to insert elses and nested ifs.
Else generation is based on the observation that two
expressions are mutually exclusive if their onsets do not
intersect. Thus, BRO could create a node which ANDs an
output node with the subsequent output:

node_test = output_1 & output_2

and request that SIS simplify this node. If the node
simplifies to zero, then the second output will never be true if
the first one is. The evaluation of the second output node, its
conditional branch, and the statements associated with that
output can be placed inside an else clause of the first output’s
conditional branch. This has two benefits. At runtime, if the
first output is true, then the second output will not even be
evaluated, which improves performance. Also, the logic to
evaluate the second output can be minimized using the first
output’s onset as a don’ t care space. This leads to a faster
evaluation of the second output when the first output is false.

Nested if generation follows a similar procedure.
One expression is said to completely contain another when
the offset of the first and the onset of the second do not
intersect. Again, a node can be created to compute this:

node_test = !output_1 & output_2

If this node simplifies to zero, then the second output can
only be true when the first one is. Thus, the evaluation of the
second output and its associated statements can be placed
within the then clause of the first output’s conditional
branch, after the first output’s statements. This has similar
benefits — the second output need not be evaluated if the
first is false, and the logic for the second output can be
minimized using the first output’s offset as a don’ t care
space.

BRO currently only implements the simple
backend, but it is expected that the use of these advanced
techniques could produce eff icient, hierarchical control
structures. However, it could still fall short of handwritten
code (including the original source being optimized) because
it would only generate ifs and elses at output nodes. That is,
every then and else clause would have to begin with a
statement block. This does not in general lead to the most
efficient code. Thus, it is necessary to perform else and
nested if generation at intermediate nodes as well as output
nodes. This in turn requires SIS to produce intermediate

node_1 = a && b;
node_2 = c || node_1;
output_1 = node_2;
if (output_1) {
 /* statements */
}

if (i < 3)
 x = 1;
else if (i >= 3)
 x = 2;

if (i < 3)
 x = 1;
else if (i == 3)
 x = 2;
else if (i > 3)
 x = 3;

FIGURE 5 FIGURE 6

 &

+

ab

c

output_1

FIGURE 7: CODE PRODUCED BY SIMPLE BACKEND

VICTOR: SOFTWARE OPTIMIZATION USING HARDWARE SYNTHESIS

nodes that are meaningful for this purpose. The methods for
going about this are currently unclear.

IV. CONCLUSION

Various techniques from the area of hardware
synthesis can be used to optimize control flow in software.
This idea can be applied at the local level, with methods such
as the Software PLA and Switch Encoding. Or, it can be
applied globally, through the process of decomposing a
procedure into a logic network, manipulating the network,
and transforming it back into software in an optimal manner.
A tool has been developed to accomplish this, and although
much further work is required, it shows promise for
optimizing control-heavy software applications.

REFERENCES AND RELATED RESEARCH

[1] E. M. Sentovich, et al., “SIS: A System for Sequential
Circuit Synthesis” . Technical Report of the UC Berkeley
Electronics Research Lab, May 1992

[2] F. Balarin, et al., “Synthesis of Software Programs for
Embedded Control Applications” . IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, vol 18, pp. 834–849

[3] G. Berry, et al., “Esterel: a Formal Method Applied to
Avionic Software Development” . Science of Computer
Programming, vol 36, pp. 5-25

