
is	more	keen	to	find	suitable	esthetical	approaches	for	each	category.	
In	Borgmannian	terms,	demoscene	practices	are	more	focal.	

Demoscene-inspired	practices	may	not	be	the	wisest	choice	for	
pragmatic	software	development.	However,	they	can	be	
recommended	for	the	development	of	a	deeper	relationship	with	
technology	and	for	diminishing	the	alienating	effects	of	our	growth-
obsessed	civilization.	

What	to	do?	

I	am	convinced	that	our	civilization	is	already	falling	and	this	fall	
cannot	be	prevented.	What	we	can	do,	however,	is	create	seeds	for	
something	better.	Now	is	the	best	time	for	doing	this,	as	we	still	have	
plenty	of	spare	time	and	resources	especially	in	rich	countries.	We	
especially	need	to	propagate	the	seeds	towards	laypeople	who	are	
already	suffering	from	increasing	alienation	because	of	the	ever	more	
computerized	technological	culture.	The	masses	must	realize	that	
alternatives	are	possible.	

A	lot	of	our	current	civilization	is	constructed	around	the	resource	
leak	bug.	We	must	therefore	deconstruct	the	civilization	down	to	its	
elementary	philosophies	and	develop	new	alternatives.	Countercultural	
insights	may	be	useful	here.	And	since	hacker	subcultures	have	been	
forced	to	deal	with	the	resource	leak	bug	in	its	most	extreme	
manifestation	for	some	time	already,	their	input	can	be	particularly	
valuable.	

http://viznut.fi/texts-en/resource_leak_bug_of_our_civilization.html

8

The	resource	leak	bug	of	our	civilization	
Viznut	/	Ville-Matias	Heikkilä	
5	aug	2014	

A	couple	of	months	ago,	Trixter	of	Hornet	released	a	demo	called	
"8088	Domination",	which	shows	off	real-time	video	and	audio	
playback	on	the	original	1981	IBM	PC.	This	demo,	among	many	others,	
contrasts	favorably	against	today's	wasteful	use	of	computing	
resources.	

When	people	try	to	explain	the	wastefulness	of	today's	computing,	
they	commonly	offer	something	I	call	"tradeoff	hypothesis".	According	
to	this	hypothesis,	the	wastefulness	of	software	would	be	
compensated	by	flexibility,	reliability,	maintainability,	and	perhaps	
most	importantly,	cheap	programming	work.	Even	Trixter	himself	
favors	this	explanation.	

I	used	to	believe	in	the	tradeoff	hypothesis	as	well.	I	saw	demo	art	
on	extreme	platforms	as	a	careful	craft	that	attains	incredible	feats	
while	sacrificing	generality	and	development	speed.	However,	during	
recent	years,	I	have	become	increasingly	convinced	that	the	portion	of	
true	tradeoff	is	quite	marginal.	An	ever-increasing	portion	of	the	waste	
comes	from	abstraction	clutter	that	serves	no	purpose	in	final	runtime	
code.	Most	of	this	clutter	could	be	eliminated	with	more	thoughtful	
tools	and	methods	without	any	sacrifices.	What	we	have	been	
witnessing	in	computing	world	is	nothing	utilitarian	but	a	reflection	of	a	
more	general,	inherent	wastefulness,	that	stems	from	the	internal	
issues	of	contemporary	human	civilization.	

1

is	more	keen	to	find	suitable	esthetical	approaches	for	each	category.	
In	Borgmannian	terms,	demoscene	practices	are	more	focal.	

Demoscene-inspired	practices	may	not	be	the	wisest	choice	for	
pragmatic	software	development.	However,	they	can	be	
recommended	for	the	development	of	a	deeper	relationship	with	
technology	and	for	diminishing	the	alienating	effects	of	our	growth-
obsessed	civilization.	

What	to	do?	

I	am	convinced	that	our	civilization	is	already	falling	and	this	fall	
cannot	be	prevented.	What	we	can	do,	however,	is	create	seeds	for	
something	better.	Now	is	the	best	time	for	doing	this,	as	we	still	have	
plenty	of	spare	time	and	resources	especially	in	rich	countries.	We	
especially	need	to	propagate	the	seeds	towards	laypeople	who	are	
already	suffering	from	increasing	alienation	because	of	the	ever	more	
computerized	technological	culture.	The	masses	must	realize	that	
alternatives	are	possible.	

A	lot	of	our	current	civilization	is	constructed	around	the	resource	
leak	bug.	We	must	therefore	deconstruct	the	civilization	down	to	its	
elementary	philosophies	and	develop	new	alternatives.	Countercultural	
insights	may	be	useful	here.	And	since	hacker	subcultures	have	been	
forced	to	deal	with	the	resource	leak	bug	in	its	most	extreme	
manifestation	for	some	time	already,	their	input	can	be	particularly	
valuable.	

http://viznut.fi/texts-en/resource_leak_bug_of_our_civilization.html

8

The	resource	leak	bug	of	our	civilization	
Viznut	/	Ville-Matias	Heikkilä	
5	aug	2014	

A	couple	of	months	ago,	Trixter	of	Hornet	released	a	demo	called	
"8088	Domination",	which	shows	off	real-time	video	and	audio	
playback	on	the	original	1981	IBM	PC.	This	demo,	among	many	others,	
contrasts	favorably	against	today's	wasteful	use	of	computing	
resources.	

When	people	try	to	explain	the	wastefulness	of	today's	computing,	
they	commonly	offer	something	I	call	"tradeoff	hypothesis".	According	
to	this	hypothesis,	the	wastefulness	of	software	would	be	
compensated	by	flexibility,	reliability,	maintainability,	and	perhaps	
most	importantly,	cheap	programming	work.	Even	Trixter	himself	
favors	this	explanation.	

I	used	to	believe	in	the	tradeoff	hypothesis	as	well.	I	saw	demo	art	
on	extreme	platforms	as	a	careful	craft	that	attains	incredible	feats	
while	sacrificing	generality	and	development	speed.	However,	during	
recent	years,	I	have	become	increasingly	convinced	that	the	portion	of	
true	tradeoff	is	quite	marginal.	An	ever-increasing	portion	of	the	waste	
comes	from	abstraction	clutter	that	serves	no	purpose	in	final	runtime	
code.	Most	of	this	clutter	could	be	eliminated	with	more	thoughtful	
tools	and	methods	without	any	sacrifices.	What	we	have	been	
witnessing	in	computing	world	is	nothing	utilitarian	but	a	reflection	of	a	
more	general,	inherent	wastefulness,	that	stems	from	the	internal	
issues	of	contemporary	human	civilization.	

1



The	bug	

Our	mainstream	economic	system	is	oriented	towards	maximal	
production	and	growth.	This	effectively	means	that	participants	are	
forced	to	maximize	their	portions	of	the	cake	in	order	to	stay	in	the	
game.	It	is	therefore	necessary	to	insert	useless	and	even	harmful	
"tumor	material"	in	one's	own	economical	portion	in	order	to	avoid	
losing	one's	position.	This	produces	an	ever-growing	global	parasite	
fungus	that	manifests	as	things	like	black	boxes,	planned	obsolescence	
and	artificial	creation	of	needs.	

Using	a	software	development	metaphor,	it	can	be	said	that	our	
economic	system	has	a	fatal	bug.	A	bug	that	continuously	spawns	new	
processes	that	allocate	more	and	more	resources	without	releasing	
them	afterwards,	eventually	stopping	the	whole	system	from	
functioning.	Of	course,	"bug"	is	a	somewhat	normative	term,	and	many	
bugs	can	actually	be	reappropriated	as	useful	features.	However,	
resource	leak	bugs	are	very	seldom	useful	for	anything	else	than	
attacking	the	system	from	the	outside.	

Bugs	are	often	regarded	as	necessary	features	by	end-users	who	are	
not	familiar	with	alternatives	that	lack	the	bug.	This	also	applies	to	
our	society.	Even	if	we	realize	the	existence	of	the	bug,	we	may	regard	
it	as	a	necessary	evil	because	we	don't	know	about	anything	else.	
Serious	politicians	rarely	talk	about	trying	to	fix	the	bug.	On	the	
contrary,	it	is	actually	getting	more	common	to	embrace	it	instead.	A	
group	that	calls	itself	"Libertarians"	even	builds	their	ethics	on	it.	
Another	group	called	"Extropians"	takes	the	maximization	idea	to	the	
extreme	by	advocating	an	explosive	expansion	of	humankind	into	
outer	space.	In	the	so-called	Kardashev	scale,	the	developmental	stage	

2

countercultural	mirror	that	contrasts	against	the	trends	of	industrial	
software	development	and	helps	grasp	its	inherent	problems.	

Other	subcultures	have	been	far	less	useful	for	me	in	this	endeavour.	
The	mainstream	of	open	source	/	free	software,	for	example,	is	a	
copycat	culture,	despite	its	strong	ideological	dimension.	It	does	not	
actively	question	the	philosophies	and	methodologies	of	the	growth-
obsessed	industry	but	actually	embraces	them	when	creating	duplicate	
implementations	of	growth-obsessed	software	ideas.	

Perhaps	the	strongest	countercultural	trend	within	the	demoscene	is	
the	move	of	focus	towards	ever	tighter	size	limitations,	or	as	they	say,	
"4k	is	the	new	64k".	This	trend	is	diagonally	opposite	to	what	the	
growth-oriented	society	is	doing,	and	forces	to	rethink	even	the	
deepest	"best	practices"	of	industrial	software	development.	
Encapsulation,	for	example,	is	still	quite	prominent	in	the	4k	category	
(4klang	is	a	monolith),	but	in	1k	and	smaller	categories,	finer	methods	
are	needed.	When	going	downwards	in	size,	paths	considered	dirty	by	
the	mainstream	need	to	be	embraced.	Efficient	exploration	and	taming	
of	chaotic	systems	needs	tools	that	are	deeply	different	from	what	
have	been	used	before.	Stephen	Wolfram's	ideas	presented	in	"A	New	
Kind	of	Science"	can	perhaps	provide	useful	insight	for	this	endeavour.	

Another	important	countercultural	aspect	of	the	demoscene	is	
the	relationship	with	computing	platforms.	The	mainstream	regards	
platforms	as	neutral	devices	that	can	be	used	to	reach	a	predefined	
result,	while	the	demoscene	regards	them	as	a	kind	of	raw	material	
that	has	a	specific	essence	of	its	own.	Size	categories	may	also	split	
platforms	into	subplatforms,	each	of	which	has	its	own	essence.	The	
mainstream	wants	to	hide	platform-specific	characteristics	by	
encapsulating	them	into	uniform	straightjackets,	while	the	demoscene	

7

The	bug	

Our	mainstream	economic	system	is	oriented	towards	maximal	
production	and	growth.	This	effectively	means	that	participants	are	
forced	to	maximize	their	portions	of	the	cake	in	order	to	stay	in	the	
game.	It	is	therefore	necessary	to	insert	useless	and	even	harmful	
"tumor	material"	in	one's	own	economical	portion	in	order	to	avoid	
losing	one's	position.	This	produces	an	ever-growing	global	parasite	
fungus	that	manifests	as	things	like	black	boxes,	planned	obsolescence	
and	artificial	creation	of	needs.	

Using	a	software	development	metaphor,	it	can	be	said	that	our	
economic	system	has	a	fatal	bug.	A	bug	that	continuously	spawns	new	
processes	that	allocate	more	and	more	resources	without	releasing	
them	afterwards,	eventually	stopping	the	whole	system	from	
functioning.	Of	course,	"bug"	is	a	somewhat	normative	term,	and	many	
bugs	can	actually	be	reappropriated	as	useful	features.	However,	
resource	leak	bugs	are	very	seldom	useful	for	anything	else	than	
attacking	the	system	from	the	outside.	

Bugs	are	often	regarded	as	necessary	features	by	end-users	who	are	
not	familiar	with	alternatives	that	lack	the	bug.	This	also	applies	to	
our	society.	Even	if	we	realize	the	existence	of	the	bug,	we	may	regard	
it	as	a	necessary	evil	because	we	don't	know	about	anything	else.	
Serious	politicians	rarely	talk	about	trying	to	fix	the	bug.	On	the	
contrary,	it	is	actually	getting	more	common	to	embrace	it	instead.	A	
group	that	calls	itself	"Libertarians"	even	builds	their	ethics	on	it.	
Another	group	called	"Extropians"	takes	the	maximization	idea	to	the	
extreme	by	advocating	an	explosive	expansion	of	humankind	into	
outer	space.	In	the	so-called	Kardashev	scale,	the	developmental	stage	

2

countercultural	mirror	that	contrasts	against	the	trends	of	industrial	
software	development	and	helps	grasp	its	inherent	problems.	

Other	subcultures	have	been	far	less	useful	for	me	in	this	endeavour.	
The	mainstream	of	open	source	/	free	software,	for	example,	is	a	
copycat	culture,	despite	its	strong	ideological	dimension.	It	does	not	
actively	question	the	philosophies	and	methodologies	of	the	growth-
obsessed	industry	but	actually	embraces	them	when	creating	duplicate	
implementations	of	growth-obsessed	software	ideas.	

Perhaps	the	strongest	countercultural	trend	within	the	demoscene	is	
the	move	of	focus	towards	ever	tighter	size	limitations,	or	as	they	say,	
"4k	is	the	new	64k".	This	trend	is	diagonally	opposite	to	what	the	
growth-oriented	society	is	doing,	and	forces	to	rethink	even	the	
deepest	"best	practices"	of	industrial	software	development.	
Encapsulation,	for	example,	is	still	quite	prominent	in	the	4k	category	
(4klang	is	a	monolith),	but	in	1k	and	smaller	categories,	finer	methods	
are	needed.	When	going	downwards	in	size,	paths	considered	dirty	by	
the	mainstream	need	to	be	embraced.	Efficient	exploration	and	taming	
of	chaotic	systems	needs	tools	that	are	deeply	different	from	what	
have	been	used	before.	Stephen	Wolfram's	ideas	presented	in	"A	New	
Kind	of	Science"	can	perhaps	provide	useful	insight	for	this	endeavour.	

Another	important	countercultural	aspect	of	the	demoscene	is	
the	relationship	with	computing	platforms.	The	mainstream	regards	
platforms	as	neutral	devices	that	can	be	used	to	reach	a	predefined	
result,	while	the	demoscene	regards	them	as	a	kind	of	raw	material	
that	has	a	specific	essence	of	its	own.	Size	categories	may	also	split	
platforms	into	subplatforms,	each	of	which	has	its	own	essence.	The	
mainstream	wants	to	hide	platform-specific	characteristics	by	
encapsulating	them	into	uniform	straightjackets,	while	the	demoscene	

7



current	for	very	long.	If	you	modify	it,	subsequent	software	updates	
will	break	it.	It	is	extremely	difficult	to	develop	a	focal	relationship	with	
a	modern	technological	system.	Even	hard-core	technology	enthusiasts	
tend	to	ignore	most	aspects	of	the	systems	they	are	interested	in.	
When	ever-complexifying	computer	systems	grow	ever	deeper	
ingrained	into	our	society,	it	becomes	increasingly	difficult	to	grasp	
even	for	those	who	are	dedicated	to	understand	it.	Eventually	
even	they	will	give	up.	

Chopping	one's	own	wood	may	be	a	useful	way	to	counteract	the	
alienation	of	the	classic	industrial	society,	as	oldschool	factories	and	
heating	stoves	still	have	some	basics	in	common.	In	order	to	
counteract	the	alienation	caused	by	computer	technology,	however,	
we	need	to	find	new	kind	of	focal	things	and	practices	that	are	more	
computerish.	If	they	cannot	be	found,	they	need	to	be	created.	Crafting	
with	low-complexity	computer	and	electronic	systems,	including	the	
creation	of	art	based	on	them	is	my	strongest	candidate	for	such	a	
focal	practice	among	those	practices	that	already	exist	in	subcultural	
form.	

The	demoscene	insight	

I	have	been	programming	since	my	childhood,	for	nearly	thirty	years.	I	
have	been	involved	with	the	demoscene	for	nearly	twenty	years.	
During	this	time,	I	have	grown	a	lot	of	angst	towards	various	trends	of	
computing.	

Extreme	categories	of	the	demoscene	--	namely,	eight-bit	democoding	
and	extremely	short	programs	--	have	been	helpful	for	me	in	managing	
this	angst.	These	branches	of	the	demoscene	are	a	useful,	

6

of	a	civilization	is	straightforwardly	equated	with	how	much	stellar	
energy	it	can	harness	for	production-for-its-own-sake.	

How	the	bug	manifests	in	computing	

What	happens	if	you	give	this	buggy	civilization	a	virtual	world	where	
the	abundance	of	resources	grows	exponentially,	as	in	Moore's	law?	
Exactly:	it	adopts	the	extropian	attitude,	aggressively	harnessing	as	
much	resources	as	it	can.	Since	the	computing	world	is	virtually	
limitless,	it	can	serve	as	an	interesting	laboratory	example	where	the	
growth-for-its-own-sake	ideology	takes	a	rather	pure	and	extreme	
form.	Nearly	every	methodology,	language	and	tool	used	in	the	virtual	
world	focuses	on	cumulative	growth	while	neglecting	many	other	
aspects.	

To	concretize,	consider	web	applications.	There	is	a	plethora	of	
different	browser	versions	and	hardware	configurations.	It	is	difficult	
for	developers	to	take	all	the	diversity	in	account,	so	the	problem	has	
been	solved	by	encapsulation:	monolithic	libraries	(such	as	Jquery)	that	
provide	cross-browser-compatible	utility	blocks	for	client-side	scripting.	
Also,	many	websites	share	similar	basic	functionality,	so	it	would	be	a	
waste	of	labor	time	to	implement	everything	specifically	for	each	
application.	This	problem	has	also	been	solved	with	encapsulation:	
huge	frameworks	and	engines	that	can	be	customized	for	specific	
needs.	These	masses	of	code	have	usually	been	built	upon	previous	
masses	of	code	(such	as	PHP)	that	have	been	designed	for	the	exactly	
same	purpose.	Frameworks	encapsulate	legacy	frameworks,	and	
eventually,	most	of	the	computing	resources	are	wasted	by	the	
intermediate	bloat.	Accumulation	of	unnecessary	code	dependencies	

3

current	for	very	long.	If	you	modify	it,	subsequent	software	updates	
will	break	it.	It	is	extremely	difficult	to	develop	a	focal	relationship	with	
a	modern	technological	system.	Even	hard-core	technology	enthusiasts	
tend	to	ignore	most	aspects	of	the	systems	they	are	interested	in.	
When	ever-complexifying	computer	systems	grow	ever	deeper	
ingrained	into	our	society,	it	becomes	increasingly	difficult	to	grasp	
even	for	those	who	are	dedicated	to	understand	it.	Eventually	
even	they	will	give	up.	

Chopping	one's	own	wood	may	be	a	useful	way	to	counteract	the	
alienation	of	the	classic	industrial	society,	as	oldschool	factories	and	
heating	stoves	still	have	some	basics	in	common.	In	order	to	
counteract	the	alienation	caused	by	computer	technology,	however,	
we	need	to	find	new	kind	of	focal	things	and	practices	that	are	more	
computerish.	If	they	cannot	be	found,	they	need	to	be	created.	Crafting	
with	low-complexity	computer	and	electronic	systems,	including	the	
creation	of	art	based	on	them	is	my	strongest	candidate	for	such	a	
focal	practice	among	those	practices	that	already	exist	in	subcultural	
form.	

The	demoscene	insight	

I	have	been	programming	since	my	childhood,	for	nearly	thirty	years.	I	
have	been	involved	with	the	demoscene	for	nearly	twenty	years.	
During	this	time,	I	have	grown	a	lot	of	angst	towards	various	trends	of	
computing.	

Extreme	categories	of	the	demoscene	--	namely,	eight-bit	democoding	
and	extremely	short	programs	--	have	been	helpful	for	me	in	managing	
this	angst.	These	branches	of	the	demoscene	are	a	useful,	

6

of	a	civilization	is	straightforwardly	equated	with	how	much	stellar	
energy	it	can	harness	for	production-for-its-own-sake.	

How	the	bug	manifests	in	computing	

What	happens	if	you	give	this	buggy	civilization	a	virtual	world	where	
the	abundance	of	resources	grows	exponentially,	as	in	Moore's	law?	
Exactly:	it	adopts	the	extropian	attitude,	aggressively	harnessing	as	
much	resources	as	it	can.	Since	the	computing	world	is	virtually	
limitless,	it	can	serve	as	an	interesting	laboratory	example	where	the	
growth-for-its-own-sake	ideology	takes	a	rather	pure	and	extreme	
form.	Nearly	every	methodology,	language	and	tool	used	in	the	virtual	
world	focuses	on	cumulative	growth	while	neglecting	many	other	
aspects.	

To	concretize,	consider	web	applications.	There	is	a	plethora	of	
different	browser	versions	and	hardware	configurations.	It	is	difficult	
for	developers	to	take	all	the	diversity	in	account,	so	the	problem	has	
been	solved	by	encapsulation:	monolithic	libraries	(such	as	Jquery)	that	
provide	cross-browser-compatible	utility	blocks	for	client-side	scripting.	
Also,	many	websites	share	similar	basic	functionality,	so	it	would	be	a	
waste	of	labor	time	to	implement	everything	specifically	for	each	
application.	This	problem	has	also	been	solved	with	encapsulation:	
huge	frameworks	and	engines	that	can	be	customized	for	specific	
needs.	These	masses	of	code	have	usually	been	built	upon	previous	
masses	of	code	(such	as	PHP)	that	have	been	designed	for	the	exactly	
same	purpose.	Frameworks	encapsulate	legacy	frameworks,	and	
eventually,	most	of	the	computing	resources	are	wasted	by	the	
intermediate	bloat.	Accumulation	of	unnecessary	code	dependencies	

3



also	makes	software	more	bug-prone,	and	debugging	becomes	
increasingly	difficult	because	of	the	ever-growing	pile	of	potentially	
buggy	intermediate	layers.		

Software	developers	tend	to	use	encapsulation	as	the	default	strategy	
for	just	about	everything.	It	may	feel	like	a	simple,	pragmatic	and	
universal	choice,	but	this	feeling	is	mainly	due	to	the	tools	and	the	
philosophies	they	stem	from.	The	tools	make	it	simple	to	encapsulate	
and	accumulate,	and	the	industrial	processes	of	software	engineering	
emphasize	these	ideas.	Alternatives	remain	underdeveloped.	
Mainstream	tools	make	it	far	more	cumbersome	to	do	things	like	
metacoding,	static	analysis	and	automatic	code	transformations,	which	
would	be	far	more	relevant	than	static	frameworks	for	problems	such	
as	cross-browser	compatibility.	

Tell	a	bunch	of	average	software	developers	to	design	a	sailship.	They	
will	do	a	web	search	for	available	modules.	They	will	pick	a	wind	power	
module	and	an	electric	engine	module,	which	will	be	attached	to	some	
kind	of	a	floating	module.	When	someone	mentions	aero-	or	
hydrodynamics,	the	group	will	respond	by	saying	that	elementary	
physics	is	a	far	too	specialized	area,	and	it	is	cheaper	and	more	straight-
forward	to	just	combine	pre-existing	modules	and	pray	that	the	
combination	will	work	sufficiently	well.	

Result:	alienation	

The	way	of	building	complex	systems	from	more-or-less	black	boxes	is	
also	the	way	how	our	industrial	society	is	constructed.	Computing	just	
takes	it	more	extreme.	Modularity	in	computing	therefore	relates	very	

4

well	to	the	technology	criticism	of	philosophers	such	as	Albert	
Borgmann.	

In	his	1984	book,	Borgmann	uses	the	term	"service	interface",	which	
even	sounds	like	software	development	terminology.	Service	
interfaces	often	involve	money.	People	who	have	a	paid	job,	for	
example,	can	be	regarded	as	modules	that	try	to	fulfill	a	set	of	
requirements	in	order	to	remain	acceptable	pieces	of	the	system.	
When	using	the	money,	they	can	be	regarded	as	modules	that	consume	
services	produced	by	other	modules.	What	happens	beyond	the	
interface	is	considered	irrelevant,	and	this	irrelevance	is	a	major	source	
of	alienation.	Compare	someone	who	grows	and	chops	their	
own	wood	for	heating	to	someone	who	works	in	forest	industry	and	
buys	burnwood	with	the	paycheck.	In	the	former	case,	it	is	easier	to	get	
genuinely	interested	by	all	the	aspects	of	forests	and	wood	because	
they	directly	affect	one's	life.	In	the	latter	case,	fulfilling	the	unit	
requirements	is	enough.	

The	way	of	perceiving	the	world	as	modules	or	devices	operated	via	
service	interfaces	is	called	"device	paradigm"	in	Borgmann's	work.	This	
is	contrasted	against	"focal	things	and	practices"	which	tend	to	have	a	
wider,	non-encapsulated	significance	to	one's	life.	Heating	one's	house	
with	self-chopped	wood	is	focal.	Also	arts	and	crafts	have	a	lot	of	
examples	of	focality.	Borgmann	urges	a	restoration	of	focal	things	and	
practices	in	order	to	counteract	the	alienating	effects	of	the	device	
paradigm.	

It	is	increasingly	difficult	for	computer	users	to	avoid	
technological	alienation.	Systems	become	increasingly	complex	and	
genuine	interest	towards	their	inner	workings	may	be	discouraging.	If	
you	learn	something	from	it,	the	information	probably	won't	stay	

5

also	makes	software	more	bug-prone,	and	debugging	becomes	
increasingly	difficult	because	of	the	ever-growing	pile	of	potentially	
buggy	intermediate	layers.		

Software	developers	tend	to	use	encapsulation	as	the	default	strategy	
for	just	about	everything.	It	may	feel	like	a	simple,	pragmatic	and	
universal	choice,	but	this	feeling	is	mainly	due	to	the	tools	and	the	
philosophies	they	stem	from.	The	tools	make	it	simple	to	encapsulate	
and	accumulate,	and	the	industrial	processes	of	software	engineering	
emphasize	these	ideas.	Alternatives	remain	underdeveloped.	
Mainstream	tools	make	it	far	more	cumbersome	to	do	things	like	
metacoding,	static	analysis	and	automatic	code	transformations,	which	
would	be	far	more	relevant	than	static	frameworks	for	problems	such	
as	cross-browser	compatibility.	

Tell	a	bunch	of	average	software	developers	to	design	a	sailship.	They	
will	do	a	web	search	for	available	modules.	They	will	pick	a	wind	power	
module	and	an	electric	engine	module,	which	will	be	attached	to	some	
kind	of	a	floating	module.	When	someone	mentions	aero-	or	
hydrodynamics,	the	group	will	respond	by	saying	that	elementary	
physics	is	a	far	too	specialized	area,	and	it	is	cheaper	and	more	straight-
forward	to	just	combine	pre-existing	modules	and	pray	that	the	
combination	will	work	sufficiently	well.	

Result:	alienation	

The	way	of	building	complex	systems	from	more-or-less	black	boxes	is	
also	the	way	how	our	industrial	society	is	constructed.	Computing	just	
takes	it	more	extreme.	Modularity	in	computing	therefore	relates	very	

4

well	to	the	technology	criticism	of	philosophers	such	as	Albert	
Borgmann.	

In	his	1984	book,	Borgmann	uses	the	term	"service	interface",	which	
even	sounds	like	software	development	terminology.	Service	
interfaces	often	involve	money.	People	who	have	a	paid	job,	for	
example,	can	be	regarded	as	modules	that	try	to	fulfill	a	set	of	
requirements	in	order	to	remain	acceptable	pieces	of	the	system.	
When	using	the	money,	they	can	be	regarded	as	modules	that	consume	
services	produced	by	other	modules.	What	happens	beyond	the	
interface	is	considered	irrelevant,	and	this	irrelevance	is	a	major	source	
of	alienation.	Compare	someone	who	grows	and	chops	their	
own	wood	for	heating	to	someone	who	works	in	forest	industry	and	
buys	burnwood	with	the	paycheck.	In	the	former	case,	it	is	easier	to	get	
genuinely	interested	by	all	the	aspects	of	forests	and	wood	because	
they	directly	affect	one's	life.	In	the	latter	case,	fulfilling	the	unit	
requirements	is	enough.	

The	way	of	perceiving	the	world	as	modules	or	devices	operated	via	
service	interfaces	is	called	"device	paradigm"	in	Borgmann's	work.	This	
is	contrasted	against	"focal	things	and	practices"	which	tend	to	have	a	
wider,	non-encapsulated	significance	to	one's	life.	Heating	one's	house	
with	self-chopped	wood	is	focal.	Also	arts	and	crafts	have	a	lot	of	
examples	of	focality.	Borgmann	urges	a	restoration	of	focal	things	and	
practices	in	order	to	counteract	the	alienating	effects	of	the	device	
paradigm.	

It	is	increasingly	difficult	for	computer	users	to	avoid	
technological	alienation.	Systems	become	increasingly	complex	and	
genuine	interest	towards	their	inner	workings	may	be	discouraging.	If	
you	learn	something	from	it,	the	information	probably	won't	stay	

5


