Growth Rate Required in Energy Storage

Hi Bret,

This is a simple model that allows you to get a sense for just how fast we need to grow energy storage, renew-
able energy (solar / wind).

First, let’s calibrate around the magnitude of climate change we’re talking about. Randall Munroe puts it nicely.
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Second, let’s take a look at emissions scenarios. The ‘business as usual scenario’ is a huge problem barring
radical free market innovation or exogenous climate change.

http://ig.ft.com/sites/climate-change-calculator/
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The folks at FT have done us a favor by allocating the emissions reduction required for each country. You can

see every country is supposed to evenly start cutting emissions, starting right away.
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Personally | think it's more challenging than that. Since there’s a lot of built infrastructure, it's difficult to make it
obsolete with either policy or new technology, since it’s still producing electricity, a valued commodity. It's easier
to limit the *increase™ of emissions, which primarily effects developing economies. Also, automobiles and lighting
and computers keep improving in efficiency, and possibly electrify. So my own guesses as to the emissions
reduction possible with technical improvements and free market improvements, but only limited government
intervention and policy support, are below.
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You'll note in my scenario above, the delta between the 6° C pathway and my pathway is about 50 - 60 giga-
tonnes of CO2 per year in 2050. That's approximately 125% - 150% of today’s emissions, representing about as
much energy displacement.

Let’s take 2050 as a make it or break it date, and investigate a little further just how much storage we need if we
want to simply avoid an increase in emissions from the increase in our primary energy needs.

Let’s figure out how much solar / wind we need.

There’s a more detailed ‘global calculator’ that allows you to assign ambitious or extremely ambitious projects to
various areas -- renewables, efficiency, diet, and so on.

Their baseline scenario is here:

http://tool.globalcalculator.org/globcalc.html?levers=22rfoe2e13be1111c2c2c1n31hfidcef222hp233f211111fn2211
111111/dashboard/en
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EMISSIONS AFTER 2050

By using the Global Calculator you are agreeing to be bound to its conditions of use. Based on spreadsheet v.3.99.0.

A scenario | created with fairly minimal abatement is here:
http://tool.globalcalculator.org/globcalc.html?levers=1111111111111111111111121111111122221221111111121
2211111111/dashboard/en

OVERVIEW | LIFESTYLE | TECHNOLOGY AND FUELS | LAND AND FOOD | CLIMATE | COSTS
The Global Calculator vz3

Summary | Energy | Emissions Ar| Ba| #X| En| Fr| Hi| Po| Ru| Sp

Cumulative CO2
emissions to 2100
17475 GtCO2

Global mean temperature
change in 2100 (in°C)

Primary energy Global GHG emissions per year
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Final energy

obsenved | projefied

2050 © How is the temperature

change estimated?

2050 2100

© Choose an example pathway or create your own pathway by selecting effort level 1 to 4 for each lever. Example pathways-—- B9 selected pathway: user specified

TECHNOLOGY AND FUELS.

FOOD

Crop yields®

Livestock (grains/residues fed) ®
Livestock (pasture fed) @

Wastes & residues @

“TRAVEL TRANSPORT ==
Transport efficiency © Il
Electric & hydrogen © Il

BIOENERGY

Bioenergy yields © Il
Solid or liquid © Il

Passenger distance ©
Freight distance @
Mode @
Occupancy & load ®

Car own or hire ® Il BUILDINGS FOSSIL FUEL

HOMES
Building size ® [l
Temperature & hot water use ®
Lighting & appliance use ®
Product lifespan & demand ©

DIET

Calories consumed ©
Quantity of meat ®
Type of meat © [Nl I

The purpose of this is to figure out just how much primary energy we need. The delta between 2011 and 2050 is

Building insulation @
Temperature and cooking technology @
Appliance efficiency © Il

Coal / oil / gas®
Fossil fuel efficiency ®

NUCLEAR

MANUFACTURING

Design, materials & recycling © Il
Iron, steel & aluminium ©

Chemicals © Il

Paper & other © Il

Cement© Il

CARBON CAPTURE AND STORAGE (CCS)

CCS (manufacturing) ®
CCS (electricity) © Il

Based on spreadsheet v.3.99.0.

between 500 and ~ 1000 exajoules, in these two cases.

In[27]:= E Convert 1000 * 10718 Joule / (1 Year) to Watt

L» WolframAlphaClient Private podTitle

[{titte - Result}, {1, 1, Output }]

RENEWABLES

Wind ©

Hydroelectric ®

Geothermal ©
Storage & demand shifting © Il

Nuclear @ Il

LAND USE

Surplus land (forest & bioenergy) © Il
Land-use efficiency ©

DEMOGRAPHICS AND LONGTERM —
DEMOGRAPHICS

EMISSIONS AFTER 2050

WolframAlphaClient Private queryBlobMathematicaForm [3 .171° x 10%3 W]

oue7= 3.171x 1083w

So that’s between 32 TW and 15 TW averaged. The trouble is that solar projects and wind projects typically
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generate only 20% of their peak power aver'aged throughout the year, be.caL—lse the sun is n-ot élways: ét its '
strongest. Hence, we need around 5x this as peak power -- between 160 TW and 75 TW of added solar or wind.
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The current historical installation of solar is 65 GW. There was a huge breakthrough in the 2005 - 2009 period,
when true cost competitiveness in many markets came into being.
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GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1997-2014
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Source: GWEC

The current installed wind capacity is about 370 GW. So, wind power is currently in the lead. However, both need
to grow exponentially. And the solar growth rate is higher, at about 30% annually, with wind at only about 15%
annually. The biggest reason for this is that wind is much less geographically well distributed. It is the most
economic form of power in places with lots of wind -- costal regions, flat regions near lakes, mountain passes,
and at high altitudes. But these places are increasingly taken up. It is possible to repurpose land at wind farms
with newer and taller towers and turbines but this is a slower route. Conversely, solar is easier to deploy -- it is a
much more disruptive innovation at the distributed scale. In this analysis, then, it is probably best and simplest to
bet on the fastest growing exponential -- solar -- unless wind can catch up with a similar growth rate. Makani
Power or deployment optimization might help.

Now, how much storage do you need? Typically, the capacity factor of the electrical grid is about 60%. This
means that you need dispatchable power (or demand you can easily shed or relocate) equal to about 1/0.6 =
167% of the average power usage.
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Nearly Half of the Electric Grid Capacity is Underused

Inefficient diesel and gas peaker plants supply electricity during the times of greatest
demand. The grid resources (wires, transformers, etc.) required to transport this peak power
are left underutilized during non-peak times. Low-cost storage can increase grid utilization

without adding more wires.
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Now, we're adding 15 - 32 TW of new average demand. This implies that to meet that, you need 25 - 563.3 TW of
peak energy storage power dispatchability to provide the power. Additionally, you need have enough hours of
duration to store it. The excess supply of solar and wind: {75 TW of supply} - {15 - 25 TW of demand} or {160 TW
of supply} - {32 - 53.3 TW of demand} is your fuel. If you’re lucky, the wind and solar and baseload generation
and demand peaks match up so that you don’t need much more than the 25 - 53.3 TW of storage / (or demand
shifting), but on the upper end of possibility we may need to have storing rates of nearly 100 TW to supply the
~50 TW of demand. Luckily, LightSail's tech does have this capability.

Now, Amory believes we’ll be able to find this much demand shifting. Personally, | think it will be difficult to find,
for example, 16 TW, which is equal to the entire current peak electricity demand on the planet! But let's assume
on the ambitious side that Amory can find it.

We thus have our range. It’s pretty big: we need between 10 TW and 100 TW of energy storage capability by
2050, just to avoid emissions increases from the energy sector.

If we want to follow the 2° C curve, the supposed international target, instead, we instead need this range of
energy storage by 2030 - 2035
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How fast is that scale up, in historical terms? Here are a bunch of views into technology adoption data.

The technology adoption curves are S-curves -- the annual growth rate usually starts modestly at product introduc-
tion, and as it makes breakthroughs in attractiveness accelerates. Finally, once it reaches mainstream adoption,

the growth rate slows, as there simply aren’t as many new customers.
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This one has a bit more data and views on how long it took to get from 10% to 90%.

Years to grow 10%t090%  Adoption Rates of Consumer Technologies in the US (10% to 90% penetration) @ Asymco
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http://image.slidesharecdn.com/061121twilc-140805103706-phpapp01/95/innovation-life-
cycle-4-638.jpg?cb=1407235176

This is perhaps a better representation of the same data, showing household usage vs introduction rates.
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This one has a lot more data than the others, but is barely readable (maybe you can find the original).
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Mobilization in World War Il (from https://www.ibiblio.org/hyperwar/USA/BigL/BigL-1.html)

In the years 1940 - 1942, war production represented a tripling each year. In 1943 and 1944 the growth rate
slowed to approximately 30% and about 0%, hitting obvious limits as half of all production was now geared to
wartime usage.
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Source: Wartime Production Achievements, 28

Let’'s compare energy storage and solar for the 4 ° C and 2 ° C cases, and to these wartime mobilization rates.
Note, we start at a mere 10 MW -- this is the expected LightSail internal production in our first commercial year,
2017. There’'s more energy storage out there of course, but in our estimation it has less scaling potential.

2= Manipulate [
Grid [
{
{

LogPlot[

{

StorageStartingPoint * (StorageAGR + 1.0) (F-Storagestartbate)
StorageNeeded,
SolarStartingPoint * (SolarAGR + 1.0) (t-SolarStartdate)
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SolarNeeded

}l

{t, 2015, 2100},

AxesLabel -» {"Year", "Power (W)"},
PlotRange - {{2015, 2050}, {10°, 10"°}},
PlotLabel » LogPlotLabel,

ImageSize » {640, 400},

PlotLegends - Placed|
{"Energy Storage", "Storage Required", "Solar Power", "Solar Required"}, Below]

}
{
Text [StringForm|["

Storage Annual Growth Rate: ~ %

Storage Doubling Time: ~~ Years (~~ Months)

Solar Annual Growth Rate: ~ %

Solar Doubling Time: ~~ Years (°~ Months) ",
NumberForm|[ (100 * StorageAGR) , 3],
NumberForm[Log[2] / Log[StorageAGR +1.0], 3],
NumberForm[1l2 » Log[2] / Log[StorageAGR+1.0], 3],
NumberForm|[ (100 * SolarAGR ), 3],
NumberForm[Log[2] / Log[SolarAGR+1.0], 3],
NumberForm[1l2 * Log[2] / Log[SolarAGR +1.0], 3]

11
}

}
’
1{LogP10tLabel, "Growth Rates Required to Reach 4 degrees C AT"}},
Row | {
Column[{
Item["Storage Inputs", Alignment - Center],
Control [{{StorageStartingPoint, 10}, 10°, 10°}],
Control [ {{StorageStartDate, 2017}, 2015, 2050}],
Control[{{StorageNeeded, 40 * 1012}, 1 *» 10'2, 100*1012}] ,
Control [ {{StorageAGR, 2.00}, 0, 5.0}]
Hemoo
Column|{
Item["Solar Inputs", Alignment - Center],
Control [{{SolarStartingPoint, 65 * 109} ’ 106, 100 * 109}] ’
Control[{{SolarStartDate, 2015}, 2015, 2050}],
Control[{{SolarNeeded, 75 * 1012}, 1 1012, 200*1012}],
Control[{{SolarAGR, 0.30}, 0, 5.0}]

H
Ho

ControlPlacement -» Bottom]
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First, below, the 4 ° C AT case (about 1 ice age unit!). This doesn’t have complete electricification of vehicles, but
at least the electricity sector doesn’'t have a dramatic increase in emissions. Storage needs to double in capacity
in 13 months, faster than Moore’s law.

Growth Rates Required to Reach 4 degrees C AT
Power (W)

10" — /

10"

1011
10°
Out[52]= 107
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Year
2015 2020 2025 2030 2035 2040 2045 2050
—— Energy Storage Storage Required
Solar Power —— Solar Required

Storage Annual Growth Rate: 86.%

Storage Doubling Time: 1.12 Years (13.4 Months)
Solar Annual Growth Rate: 30.%

Solar Doubling Time: 2.64 Years (31.7 Months)

LogPlotLabel | "Growth Rates Required
to Reach 4 degrees C AT"

Storage Inputs Solar Inputs
StorageStartingPoint :D SolarStartingPoint O
StorageStartDate :D SolarStartDate CG
StorageNeeded M SolarNeeded (M
9 U U

StorageAGR D SolarAGR :D
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Second, below, the 2 ° C AT case. You really need to scale to 10 - 50 TW of storage and solar around 2030-2035
barring revolutions in energy efficiency elsewhere. It’s tricky. You have to scale solar and storage much faster

Growth Rates Required to Reach 2 degrees C AT

Power (W)
10" - /
F 7
/

1013 -

1011 -

109 -
Out[52]= 107 —

L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 L L ] Year
2015 2020 2025 2030 2035 2040 2045 2050
—— Energy Storage Storage Required
Solar Power —— Solar Required

Storage Annual Growth Rate: 200.%

Storage Doubling Time: 0.631 Years (7.57 Months)
Solar Annual Growth Rate: 57.%

Solar Doubling Time: 1.54 Years (18.4 Months)

LogPlotLabel | "Growth Rates Required
to Reach 2 degrees C AT"

Storage Inputs Solar Inputs
StorageStartingPoint :D SolarStartingPoint O
StorageStartDate :D SolarStartDate CG
StorageNeeded M SolarNeeded (M
9 U U

StorageAGR D SolarAGR :D

The rates required roughly match, for storage, the wartime mobilization rates (tripling every year) for the years
1940 - 1942, but instead of doing it for three years, you need to do it for 15. You also need to nearly double the
solar growth rate from 30% to 60%. Although this may be doable, it is certainly still a tall order.

Finally, let's compare to *batteries* and current / projected growth rates, and solar and current growth rates. You
could use two baselines: the global power storage market using battery storage and their anticipated growth
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rates, or the general batter ménufac'turing markét and their actl]al grthh rate's.
First the power storage market and the projected growth rates.

(From http.//storage.pv-tech.org/guest-blog/global-market-surpasses-1gwh-milestone-in-a-landmark-year-for-grid-
storage)

We’ll kick off this blog with some headline findings

. As of October 2015, 1,788MW and 3,460MWh of grid storage has been deployed
globally on a cumulative basis, representing more than 841 installing and operating projects

. Since 2011, the global market for grid storage has shown a combined annual
growth rate (CAGR) of 33% when rated by power capacity and 20% when rated by energy
capacity, while Li-ion has grown much faster than the global market with CAGRs of 48%
and 62% by power and energy, respectively

. Lithium ion (Li-ion) batteries have captured the majority of the annual market on an
energy basis since 2011, and cumulatively account for 70% of the market by power and
39% by energy
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We have about 1788 MW of battery storage existing in stationary grid storage today. Historical trends show a
annual growth rate of about 33% by power, although for lithium ion, a lead contender, the growth rate is faster,
48% by power. Let’s use this number and just use 1788 MW * 70% = 1251 MW as a base, and let’s use the
lithium ion growth rate.

Historical Stationary Storage Growth Rates on Track to meet solar for 4 degrees C AT
Power (W)
1015 —

10"

10"

10°

out[52]= 107
L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 L L ] Year
2015 2020 2025 2030 2035 2040 2045 2050
—— Energy Storage Storage Required
Solar Power —— Solar Required
Storage Annual Growth Rate: 48.%
Storage Doubling Time: 1.77 Years (21.2 Months)
Solar Annual Growth Rate: 30.%
Solar Doubling Time: 2.64 Years (31.7 Months)
LogPlotLabel | "Historical Stationary Storage

Growth Rates on Track to
meet solar for 4 degrees C AT"

Storage Inputs Solar Inputs

StorageStartingPoint

StorageStartDate :D

StorageNeeded

(]

StorageAGR :D

SolarStartingPoint

CJ

SolarStartDate :D

SolarNeeded

(]

SolarAGR :D

The above scenario does balance out and provides the storage necessary for solar to support a roughly 4 ° C
scenario -- one ice age unit. It's still a huge growth rate -- nearly the rate of Moore’s law, and faster than almost

all of the previously shown adoption curves.
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But now let’s take a look at the actual current and anticipated battery supply.

Lux anticipates given the overall battery supply a annual growth rate of 8%, and a roughly 100 GWh (perhaps 50
GW) existing supply. (source: http://www.luxresearchinc.com/news-and-events/press-releases/read/energy-
storage-market-rises-50-billion-2020-amid-dra-

matic)-
The Energy Storage Market Will Grow From $32 Billion in 2014 to $50 Billion in 2020
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The below scenario shows that it’s not even close. What this says is that when the grid energy storage supply
using batteries is low, you can make use of the existing supply base -- for a while. But by about 2025 you're using
up almost all existing supply -- necessitating a huge manufacturing scale up effort.

Historical Battery Growth Rates Fails to Meet Solar for 4 degrees C AT

Power (W)

1015 —

1013 I

1011 I

109 -

out[52]= 107 -
L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 L L ] Year
2015 2020 2025 2030 2035 2040 2045 2050
—— Energy Storage Storage Required
Solar Power —— Solar Required
Storage Annual Growth Rate: 8.%
Storage Doubling Time: 9.01 Years (108. Months)
Solar Annual Growth Rate: 30.%
Solar Doubling Time: 2.64 Years (31.7 Months)
LogPlotLabel | "Historical Battery Growth

Rates Fails to Meet Solar
for 4 degrees C AT"

Storage Inputs Solar Inputs
StorageStartingPoint OD SolarStartingPoint G
StorageStartDate :D SolarStartDate :D
StorageNeeded m SolarNeeded m
g U J

StorageAGR «:D

SolarAGR :B

And keep in mind, this still isn’t the scenario we’re aiming for. We want 1/2 an ice age unit of change.

At least with LightSail, we can, mostly, use existing manufacturing capacity. Even then we're likely to run into
limiting factors -- especially on the 2 ° C scenario. And to reach that we at least need to be aware of how tall an
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order |'t is!

Cloud Deployment Beta

4= CloudDeploy [Manipulate [
Grid|
{
{

LogPlot [

{

StorageStartingPoint * (StorageAGR + 1.0) (t- StoragesStartbate)
StorageNeeded,
SolarStartingPoint * (SolarAGR + 1.0Q) (t-SolarsStartbate)
SolarNeeded

}

{t, 2015, 2100},

AxesLabel - {"Year", "Power (W)"},

PlotRange - {{2015, 2050}, {10°, 10'°}},

PlotLabel » LogPlotLabel,

ImageSize -» {640, 400},

PlotLegends - Placed|
{"Energy Storage", "Storage Required", "Solar Power", "Solar Required"}, Below]

}
{
Text [StringForm["

Storage Annual Growth Rate: ~°%

Storage Doubling Time: ~~ Years (~~ Months)

Solar Annual Growth Rate: ~ %

Solar Doubling Time: ~~ Years (°~ Months) ",
NumberForm|[ (100 » StorageAGR) , 3],
NumberForm[Log[2] / Log[StorageAGR +1.0], 3],
NumberForm[1l2 x* Log[2] / Log[StorageAGR +1.0], 3],
NumberForm|[ (100 * SolarAGR ), 3],
NumberForm[Log[2] / Log[SolarAGR+1.0], 3],
NumberForm[12 * Log[2] / Log[SolarAGR + 1.0], 3]
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}

}
]

{{LogPlotLabel, "Growth Rates Required to Reach 4 degrees C AT"}},
Row [ {
Column|{
Item["Storage Inputs", Alignment - Center],
Control[{{StorageStartingPoint, 107}, 108, 109}] ’
Control [ { {StorageStartDate, 2017}, 2015, 2050}],
Control[{{StorageNeeded, 40 * 10'?}, 1 » 10'?, 100« 10%}],
Control[{{StorageAGR, 2.00}, 0, 5.0}]
New o
Column[{
Item["Solar Inputs", Alignment - Center],
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Control[{{SolarStartingPoint, 65 * 109} , 10°%, 100« 109}] ’
Control[{{SolarStartDate, 2015}, 2015, 2050}],
Control[{{SolarNeeded, 75  10'?}, 1 x 10'%, 200« 10'}],
Control[{{SolarAGR, 0.30}, 0, 5.0}]

H
Ho

ControlPlacement -» Bottom] ’

Permissions -» "Public"” ]

outs4= CloudObject [https ://www.wolframcloud.com/objects/0268a0e7-c414-41be-8b9b-dafbc41l8ccd2 ]



