
SPECIAL SECTION

BOXER: A RECONSTRUCTIBLE
COMPUTATIONAL MEDIUM

Programming is most often viewed as a way for experts to get computers to
perform complex tasks efficiently and reliably. Boxer presents an alternative
image-programming as a way for nonexperts to control a reconstructible
medium, much like written language, but with dramatically extended
interactive capabilities.

ANDREA A. diSESSA and HAROLD ABELSON

Writing is an everyday activity for most people in
our society-whether it be in the form of a list, a
letter, or a scribbled note in the margin of a book-
even though few possess expert writing skills.
Within a generation, programming will also be a part
of the everyday lives of many people who do not
have expert programming skills. Naturally, popular
programming languages will differ from current
general-purpose computer languages, which are de-
signed primarily for programming professionals. In-
deed, the very idea of what it means to “program”
will change as we come to recognize that, as with
writing, the significance of programming derives not
only from the carefully crafted works of a few
professionals, but also from the casual jottings of
“ordinary” people.

This article presents a view of what programming
could be like as a common everyday activity for
most people. The central image is that of controlling
a reconstructible medium, much like written lan-
guage, but with dramatically extended interactive
capabilities. We begin with some general observa-
tions about programming in this context and con-
tinue with a description of Boxer, a reconstructible
medium that we are designing for particular applica-
tions in education.

Boxer development is supported by the National Science Foundation un-
der Grant MDR-85.96025 and Grant MDR-86-42177. and by the Defense
Advanced Research Projects Agency of the Department of Defense. and
monitored by the Office of Naval Research under Contract N00014.83-
K-0125.

0 1986 ACM OOOl-0782/86/0900-0859 750

RECONSTRUCTIBLE MEDIA
Computers are commonly used for text processing,
although most text written using computers is still
intended to be ultimately printed on paper. As more
and more people have access to computers, it be-
comes increasingly worthwhile to exploit the possi-
bilities of the computer screen itself as an expressive
medium. It is easy to imagine interactive books with
elaborately structured text, moving illustrations,
built-in simulations, and special-purpose dynamic
tools whose interactive capabilities go far beyond
canned presentations. For instance, a science text-
book on optics could include text with multiple or-
ganizations and multiple means of access; moving
illustrations of the wave properties of light; simula-
tions that perform ray tracing through lenses and
mirrors; databases of optical properties of various
substances; and graphing and analysis tools for pro-
cessing experimental data gathered through photo-
electric sensors.

A computer-based medium for constructing such
a book may seem like a great advance over present-
day printed media. Yet, if viewed only as a way to
produce fancy books, it lacks an essential quality
necessary for a truly popular medium: the possibility
for personal construction by users at all levels of
competence, The optics book represents the “grand
image” of the medium, such as one would see in
commercially produced textbooks or in a finished
novel. A popular medium of expression, however,
must also be usable in ways that might suit the

September 1986 Volume 29 Number 9 Communications of the ACM

Special Section

personal needs of children, teachers, or other
noncomputer specialists.

In particular, a popular computational medium
must be easy to program. In the hypothetical optics
book, for example, all elements of the book, beyond
simply entering the text, would be created through
some sort of programming. We would like everyone
to have access to the same kinds of tools used for
constructing the book. The medium should also
serve beginners and casual users, even if they never
reach the stage of producing an exemplar of the
grand image.

One major benefit of programmability is that even
professionally produced items become changeable,
adaptable, fragmentable, and quotable in ways that
present software is not. Not only would professionals
be able to construct grand images, but others would
be able to reconstruct personalized versions of these
same images. Giving all users access to the behind-
the-scenes organization of an interactive book means
that new ideas-the dynamic equivalent of famous
quotations-can enter the culture with the medium.

Beyond interactive books, a reconstructible me-
dium should allow people to build personalized
computational tools and easily modify tools they
have gotten from others. This concept is in strong
contrast to the current situation in applications
software-professionals are designing tools only for
large populations with a common need. Since only
experts can craft such systems or tune them to par-
ticular purposes, designers must predict every possi-
ble variation that users might need, and supply often
ad hoc methods of selecting among options. With a
reconstructible medium, there is no need to play
guessing games to this extent, and changes to any
application tool can be made uniformly-through
programming.

PROGRAMMING LANGUAGES REVISITED
Most research into the design of programming lan-
guages has been in the tradition of programming as a
way for experts to get comput.ers to perform complex
tasks efficiently and reliably. Programming as a
means of controlling an interactive medium sets
very different needs and constraints on languages.
Here are some traditional desiderata for program-
ming languages that ultimately are not of major im-
portance in creating a popular medium:

l Formal simplicity-a computer scientist’s or a
mathematician’s measures of simplicity are simply
not at issue. A better criterion is accessibility to a
seven-year-old child.

l Efficiency-there are so many other important at-
tributes of a language for controlling an interactive
medium that efficiency must take a backseat. If

860 Communicatiolzs of the ACM

present-generation machines are not powerful
enough, we can wait for the next.

l Verifiability-rigor is not a primary requirement
of an expressive medium. Much more important is
the ability to accommodate a wide variety of ex-
pressive styles.

l Uniformity-the demands of multifunctionality
are great, and it is likely that some degree of uni-
formity will have to be sacrificed.

More telling is what emerges as important to a
broadly based computational medium:

l Understandability-this is a primary and unavoid-
able goal if nonexperts are to successfully use this
new medium.

l Tuned toward common, directly useful functional-
ities-if the medium is to be useful and widely
used, it will have to seem more “familiar”; for ex-
ample, basing data structures on text and pictures
rather than on abstract, though perhaps more gen-
eral objects such as arrays or lists.

l Tuned toward small tasks-the ability to imple-
ment simple ideas easily is much more important
in this context than the ability to do complex tasks
efficiently.

l Interaction-user interfaces are often considered
to be separable from programming language se-
mantics and almost an afterthought in language
design. Worse, most present languages assume
only character-stream input and output. A useful
medium must be much more flexibly interactive.

BOXER
Much of Boxer’s character is determined by two key
principles-the spatial metaphor and naive realism.

People have a great deal of commonsense knowl-
edge about space that can be used to make com-
puters more comprehensible. The spatial metaphor
encourages people to interpret the organization of
the computational system in terms of spatial rela-
tionships.’ Using a Boxer system is like moving
around in a large two-dimensional space. All compu-
tational objects are represented in terms of boxes,
which are regions on the screen that contain text,
graphics, or other boxes. Boxes within boxes repre-
sent hierarchical structures. For example, (1) a vari-
able is a box containing the variable’s value; for a
compound data structure (such as a record with
named fields) the variable contains other variables;
(2) a program is a box containing the program text;
internal subprocedures and variables (as in block-
structured programs) are represented as subboxes.
When you enter a box (by moving the cursor into it),

’ Boxer’s use of the spatial metaphor was encouraged by work on spatial
data management systems at the MIT Department of Architecture [Z].

September 1986 Volume 29 Number 9

Special Sectior7

you gain access to its contents. Thus, any box can be
a special-purpose environment with its own data
and behavior (programs).

Naive realism is an extension of the “what you see
is what you have” idea that has become common-
place in the design of text editors and spreadsheets,
but not for programming languages. The point is that
users should be able to pretend that what they see
on the screen is their computational world in its
entirety. For example, (1) any text that appears on
the screen-whether typed by the system, entered
by the user, or constructed by a program-can be
moved, copied, modified, or (if it is program text)
evaluated; (2) you can change the value of a variable
simply by altering the contents of the variable box
on the screen. If a program modifies the value of a
variable, the contents of the box will be automati-
cally updated on the screen. In general, there is no
need to query the system to display its state, nor any
need to invoke a state-change operation to affect the
system indirectly.

portant features. Our aim is to suggest how users can
move smoothly from simple text and data manipula-
tion, through modifying and producing personal
computational tools, to dealing with larger systetns
such as interactive books. Of key interest is the way
in which the basic box structure is elaborated tb

support many important functions of a reconstructi-
ble medium. (Additional examples and discussion of
the theoretical and empirical motivations for specific
choices in Boxer’s design can be found in [3] and

[4lJ
Boxer currently exists as a prototype, including all

of the features described below, implemented on
Symbolics and Texas Instruments Lisp machines.
We are about to start implementation on a more
modest machine so that we can begin testing the
system extensively in a variety of settings.

Boxes and Text
The text shown in Figure 1 is part of a tutdrial on
Boxer, organized using boxes. Note particularlv the

Following are-some highlights of Boxer’s most im- way in which, by shrinking and expanding boxes,

I :.I I

7

Welcome to Boxer

Boxes come in three sizes -- tin as his as necessary to show
contents, and full screen. Use t e mouse to move around in the Kg
Boxer world. The left button shrinks boxes and the right button
expands them.
mouse button.

Point to the shrunken box below and press the right

1 ook
You should see the box expand, and then it will

‘ust 1 ike the box next to it .
and t e box ui 11 expand to full screen. A

Press the right button again,

pressing the left button.
Then shrink the box by

his box is just a copy o
he one next to it.

m You can make a box by pressing the MflKE-BOX key. Why don’t you B ill.

make a box nou, here in this text somewhere, and expand it and
shrink it. Move the cursor into it and type anythin you want.
In fact, you may want to type notes to yourself ins1 3
add to this tutorial

e boxes you
That’s the kind of flexibility you get with

a reconstructible medium!

By entering the first box belok you can learn more text-editin
commands so you can move and delete whole sections of text and % oxes
at once.
Boxer.

The second box tells you a little about programming in
The third box contains some Boxer-built toys you can

play with. Pick a box, expand it to full screen, and get started.

A mouse is used as a pointing device to move around the system and to shrink and expand boxes.

FIGURE 1. A “Page” from a Boxer Tutorial

September 1986 Volume 29 Number 9 Communications of the ACM 661

Special Secfiorl

detail can be hidden or shown for brief inspection.
By expanding a box to full screen, the user effec-
tively enters a subenvironment (box). Figure 1
shows how essentially all of the mechanics of mak-
ing, inspecting, and modifying boxes can be learned
and used without knowing anything at all about
programming.

At first glance, boxes may seem to be nothing

more than a variant on the windows used in many
display-oriented systems. Windows, however, have
no computational semantics except as places to dis-
play interaction with a program or application-a
window’s position on the screen and its relation to
other windows do not generally reflect any informa-
tion about the objects in the computational system.
Boxes, in contrast, are the system’s computational

you can make arcs with the procedures FlRCRldHT and ARCLEFT.

Heie are some procedures %I&! draw pictures using arcs:

Try running some af 4% followib~g commands to draq pictures
in the graphics bdx atWe. f

Graphics appear inside regions of the screen called graphics
boxes. The box labeled SUN defines the procedure that drew
the design in the graphics box above. Definitions (boxes with
name tabs on them) can be invoked anywhere within the box
in which they appear. This scoping rule provides a general
blockstructuring capability that has been used here to in-
clude RAY as an internal subprocedure of SUN. The bottom
line of the screen is a menu from which the user can select

commands to be run. Here, as indicated by the small arrow
(mouse cursor), the user has selected SUN with an input of
0.7. The letter R followed by a colon is a prompt generated
by the system to indicate that the SUN procedure requires
one argument, named R. Such prompts are generated auto-
matically whenever users type the name of a defined proce-
dure and press a help key. In general, any text on the screen
can be modified or run.

662 Communications of fhe ACM

FIGURE 2. Turtle Graphics in Boxer

September 1986 Volume 29 Number 9

Special Sectior~

B for- x in list I

if x.name = name
I change number x . number 1

If you put a name in the NAME box and press the FUNCTION-l
key the phone number .will appear in the NUMBER box.

This box is a utility for finding phone numbers. Its local data- standard format. The procedure named FUNCTION _ 1 -KEY
base is a box called LIST that contains subboxes with a will be run whenever the FUNCTION- 1 key is pressed.

FlGURE3. The PHONE-BOOKBOX

objects, and box containment reflects meanings such
as subprocedures as parts of procedures and records
as parts of databases. The part-whole relation im-
plied by box containment is fully operational, and
the box structure can be traversed, inspected, and
changed by programs as well as manually. Boxer’s
spatial metaphor is a recognition that spatial rela-
tions are extraordinarily expressive and should not
be wasted by being used only for transient needs
(where there is space to pop up a windowj or by
divorcing spatial relations from fundamental seman-
tics. Similarly, the concept of naive realism dictates
that one should see computational objects, not just
interfaces to them.

Simple Programming
Figure 2 shows some simple Boxer programs that
draw designs using the turtle graphics commands
introduced in the educational computer language
Logo.’ It is important to observe how text, programs,
and graphics have been intermixed to produce a tu-
torial about drawing using arcs; note in particular
that the bottom line of the figure is a menu of com-
mands for the user to try. This menu was created

2Boxsr is in many ways an extension of Logo. Simple Boxer procedures-
especially those for graphics--resemble Logo procedures. Our work in
Boxer has been motivated largely by a desire to extend Logo-style activi-
ties to a much broader range of possibilities. Although Logo took very
seriously the benefits of making programming a popular activity. it did
not begin with the image of a medium encompassing written language.
hierarchical structures. databases. and interactive graphical tools. (See [6]
for an overview of Logo. and [‘] for a development of geometry based on
turtle graphics.)

simply by typing the commands in place and leaving
them on the screen to be run or modified-the prin-
ciple of naive realism dictates that anything that ap-
pears on the screen should be manipulable in this
way. Here, as indicated by the mouse cursor, the
user has selected to run the command SUN with an
input of 0.7. The graphics output appears in a graph-
ics box. Graphics boxes can also be named, copied,
and moved using Boxer’s editor interface.

Two of the procedure boxes in Figure 2,
ARCLEFT and SUN, have been expanded to illustrate
the form of Boxer procedures. Note that SUN con-
tains an internal procedure RAY; box containment is
being used here to implement block structuring of
procedures. In general, the scoping rules of Boxer-
definitions are accessible inside a box, but not out-
side of it-allow for boxes to be used as environ-
ments that users enter to gain access to procedures
and data defined inside. Assimilating the computa-
tional idea of scoping into the intuitive notion of
“inside” is central to the spatial metaphor.

A Simple Database Tool
The box named PHONE-BOOK, shown in Figure 3,
is a simple utility for storing and retrieving phone
numbers. When a user types a name in the box
marked NAME and presses the FUNCTION - 1 key, the
corresponding phone number will appear in the box
marked NUMBER. PHONE -BOOK contains a database
called LIST, which is a box containing other boxes
with a standard format: subboxes NAME, ADDRESS,

September 1986 Volume 29 Number 9 Communications of the ACM 863

Special Section

, I
, -

When the FUNCTLON - 2 key is pressed, 6~~~~~jl~~~,~a~~~,’ ” ::, the template and tabal it $th the name FUNCTXON 2 -KEY.
the cursor a template for a record with add&X: ~~rXg$$+’
fields partially filled in that can be added t~~he~~Srn~:IP~ *

(The template st+v ha@& especiqlly useful if you happen
:

order to make this extension, the user needed br%yIttl &pc$

FIGURE 4. Extension to the PHONE-BOOK

and PHONE. The boxes in the database, as well as
the NAME and NUMBER boxes, are data boxes. Mark-
ing a box as data indicates that, when the box is
used by a program, the contents are to be inter-
preted as literal text rather than as a program to be
executed. (This is similar to the use of QUOTE in
Lisp.) Named data boxes are variables.

The FUNCTION- 1 -KEY is a procedure that looks
up the designated name and supplies the corre-
sponding phone number.3 Boxer contains pattern-
matching capabilities that make the lookup opera-
tion trivial, but we have written the procedure here
in a way that illustrates some more basic Boxer ca-
pabilities: A FOR loop steps through the LIST,
searching for a box whose NAME field matches
the designated NAME. When the box is found, the
NUMBER box is changed to the corresponding
PHONE field. (There are obvious improvements to
be made here, such as stopping the iteration when
a match is found, and using an ordered database,
but we have chosen to show only the very sim-
plest procedure.) Note the use of the dot syntax
<box - name> . tsubbox - name> for specify-
ing named subboxes of a box.

Boxer’s naive realism automatically supplies an
input/output mechanism for the procedure. The
boxes NAME and NUMBER are ordinary variables.

3The we of KEY as a suffix automaticallv hinds the operation to the
specified key. Any key can he hound in this way.

Typing something in the NAME box automatically
sets the variable NAME that is referenced by the pro-
cedure. Similarly, when the procedure changes the
variable NUMBER, the new contents will automati-
cally appear on the screen in the NUMBER box.

In a user’s overall Boxer environment, PHONE -
BOOK is a special-purpose subenvironment. Boxer’s
scoping rules dictate that the binding of the function
key to the lookup procedure will be active only
when the user enters the PHONE - BOOK box. Other
boxes in the system are free to bind this function
key (or any other key) for their own purposes.

Extending the Database Tool
It is easy to make personalized extensions to the
PHONE-BOOK as illustrated in Figure 4. The point of
the phone-book example is not that everyone should
write a phone-number-fetching procedure from
scratch; rather, we want to illustrate how Boxer en-
ables people to build or modify their own little tools
of whatever idiosyncratic sort. Boxer is an environ-
ment designed for invention and functionality in lit-
tle pieces, where understanding the system better in
any particular context results in more power gener-
ally. For example, learning how to change the value
of a variable is far more than a trick for the PHONE -
BOOK program; it is an essential feature that allows
users to modify any piece of Boxer.

a64 Communiations of fhc ACM September 1986 Volume 29 Number 9

Special Sectiorl

Objects and Message Passing
The graphics box in Figure 5a is the home of two
graphical objects (known in Boxer as sprites) named
Minnie and Mickey. Also shown is the STAR proce-
dure, which takes two parameters, SIZE and
ANGLE, and draws a symmetric shape by repeating
360/ANGLE times the following sequence: Call the
procedure STEP with an input of SIZE, and then
the procedure RIGHT with an input of ANGLE. In
the figure, Minnie and Mickey have each been told
to perform STAR with a SIZE of 40 and an ANGLE of
60. Observe that the two sprites draw different de-
signs. This is because, as we shall see below, Minnie
and Mickey use different STEP procedures when
executing STAR.

Turtle graphics, and the sprite extensions that
appear in some versions of Logo, are known to be
congenial forms of interaction for simple graphics
programming. But the fact that the state of these
graphical objects cannot be seen and directly manip-
ulated violates the naive realism principle. Boxer is
therefore arranged so that a graphics box is only an
alternate form for an ordinary box structure that
includes sprites as subboxes. Attributes of sprites-
their position, heading, speed (if in motion), and
shape (expressed as the procedure that draws the
shape) are visible and manipulable as ordinary vari-
ables. Changes to these variables, whether by direct
editing or under program control, automatically
affect the graphical representation.

Figure 6b shows the nongraphical (data) version of
the same graphics box with its resident sprites
Minnie and Mickey. Minnie and Mickey each have
their own version of the procedure STEP, which

IGraohics Data,

qGraphics1

tell minnie star SIZE:40 fiNGLE:60

tell mickey star SIZE:40 ANGLE:60

This graphics box contains two sprites-Minnie (the small
triangle) and Mickey (the small five-pointed star). Each sprite
has been told to run the procedure called STAR. The designs
drawn are different, because each sprite has its own defini-
tion of the STEP procedure when executing STAR.

FIGURE 5a. A Graphics Box

Here is the graphics box of Figure 5a, shown in data form so ing of each sprite. In addition, Mickey has a SHAPE proce-
that all of its computational structure is visible, changeable, dure that makes him appear as a five-pointed star; Minnie
and extendable in ordinary Boxer textual format. The XPOS, has no SHAPE procedure and hence appears in the default
YPOS, and HEADING variables show the position and head- shape, a triangle.

FIGURE 5b. The Data Form of a Graphics Box

September 1986 Volume 29 Number 9 Communications of the ACM 885

Special Section

they use when they perform STAR. Naturally, addi-
tional local procedures or variables can be added at
any time simply by entering the sprite box and typ-
ing the definition in place.

Packaging local data and procedures together and
organizing computations by sending messages to
these packages via TELL are paradigms of object-
oriented programming, popularized by the language
Smalltalk [5]. Boxer’s spatial metaphor assimilates
such packaging to box containment, thereby making
the object structure visible and concrete. Object-
oriented programming in Boxer is not limited to
sprites and graphics. Any box can be told remotely
to execute any command tha.t might ordinarily be
locally executed from within that box.

Point-and-Poke Interaction
Figure 6b also reveals that Minnie contains a proce-
dure named M - CLICK. A sprite’s M - CLICK proce-
dure is automatically executed whenever the middle
mouse button is clicked over the sprite in graphics
presentation. In this case, pointing at Minnie with

the mouse and clicking the button will make her go
forward.

A simple game that could be constructed by a
child using a few lines of code and the above inter-
active capabilities is shown in Figure 6. The graphics
box contains five sprites: a planet, a rocket, two ar-
rows, and a BOOST ! icon. Because sprites have
touch-sensing capabilities, it is easy to include obsta-
cles, such as the planet, that the rocket must avoid
in order not to crash.

Ports and Sharing
Boxer’s spatial metaphor should prove to be an
important factor in helping people deal with com-
putational structures. It does, however, impose a
significant constraint on the structures that can be
represented-box containment is a strictly hierar-
chical relation. Using containment only, shared data
structures could not be represented, nor could two
widely separated boxes be viewed at the same time
without moving one of them and thus changing the
state of the system.

N-4
BOOST!

A graphics box with five sprites includes a control panel for rocket a little thrust; a click on the arrows rotates the rocket
piloting a rocket. A click on the BOOST ! sprite gives ihe to the right or left.

FIGURE 6. Interaction with Sprites

888 Communications of t/w ACM September 1986 Volume 29 Number 9

Special Secti

-This is a port to the box named SHARE.
Zhanqinq either box wi 11 automati call y
change the other one.

pPorti I

This is a port to the box named SHARE.
Chanqinq either box will automatically
change the other one. L 1

\

J I

The second box is a port to (the alternate view of) the box
named SHARE above it. Text typed into the port at the arrow
cursor has also automatically appeared in the SHARE box.

The two lower boxes illustrate how ports can be used to
implement shared data: Any change to the ADDRESS or
PHONE fields in either box will also appear in the other box.

FIGURE 7. Examples of Port Structure in Boxer

In order to overcome this limitation, Boxer in- such as compact disks that would appear to users as
cludes a structure called a port, which is simply a parts of their personally changeable Boxer systems.
view of a box at some other place in the system. A We would also love to extend Boxer to incorporate
port behaves in most respects identically to the box sound and high-quality moving pictures in graphics
it views-any change in one will automatically boxes. This is, however, the grand image of the me-
cause the same change in the other. Figure 7 shows dium, and most users’ time will be spent in far more
a typical application of ports. Ports can also be used modest pursuits than constructing such books. The
to provide cross-referencing in interactive books or important point is that we can imagine a progression
databases, to obtain multiple views of computational from the equivalent of scribbling in this new me-
objects (e.g., to view a sprite in its graphics and data dium, as children scribble with pencil and paper, to
form at the same time), to share combinations of the profound “scribblings” of experts-a path in
local data and procedure among objects, and to im- which each new stage of understanding and com-
plement various nonstandard scoping disciplines for petence is rewarded with new opportunities for
procedures. personal expression.

THE GRAND IMAGE CONCLUSION
As a final example, Figure a, page 868, shows a page
from the interactive book on optics proposed earlier.
It should be clear how such a book can be con-
structed in Boxer as a natural evolution of text edit-
ing combined with writing simple procedures. It
should also be apparent that, once produced, such a
book can be readily modified and reconstructed by its
users-both in small ways, as by adding marginal
notes, and more extensively, as by modifying the
simulations and tools included in the book.

It is exciting to contemplate the possibilities of
interactive books, published on high-density media,

Boxer challenges, in a small way, the current view
of programming languages. More significantly, it
challenges the current view of what programming
might be like, and for whom and for what purposes
programming languages should be created. We have
argued that some computer languages should be de-
signed for laypeople, and have presented an image of
how computation could be used as the basis for a
popular, expressive, and reconstructible medium.
Computers will become substantially more powerful
instruments of educational and social change to the
extent that such an image can be realized.

September 1986 Volume 29 Number 9 Communications of the ACM 867

jhoot Ray Shoot Penci 1

Acknowledgments. We gratefully acknowledge the
efforts of all those members of the Boxer Groups at
MIT and Berkeley who have helped to make Boxer
(almost) a reality. Special thanks to Michael
Eisenberg, Gregor Kiczales, Leigh Klotz, Ed Lay,
and Jeremy Roschelle.

CR Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Tools and Techniques--user interfaces: D.2.6 (Software Engineer-
ing]: Programming Environments--Boxer; D.3.0 (Programming Lan-
guages]: General--Boxer: H.1.2 [Models and Principles]: User/Machine
Systems--huntarr facfors; K.3.0 [Computers and Education]: General

General Terms: Human Factors, Languages
Additional Key Words and Phrases: computational media

REFERENCES
1. Abelson. H.. and disessa, A.A. Turtle Geomelry: The Computer as a

Medium for Exploring Mathematics. MIT Press, Cambridge, Mass.,
1981.

2. Bolt, R.A. Spatial data-management. Rep., Dept. of Architecture.
MIT. Cambridge. Mass.. 1979.

3. diSessa. A.A. A principled design for an integrated computational
environment. Hum.-Compui. Interaction I, 1 (1985). l-47.

4. disessa. A.A. Notes on the future of programming: Breaking the
utility barrier. In User-Centered Systems Design, D. Norman and
S. Draper. Eds. Lawrence Erlbaum. Hillsdale, N.J., 1986.

5. Goldberg. A.. and Robson. D. Smalltalk-80: The Language and Its Im-
plementafion. Addison-Wesley. Reading. Mass., 1983.

6. Papert, S. Mindstorms: Computers, Children and Powerful Ideas. Basic
Books, New York. 1980.

Authors’ Present Address: Andrea A. disessa. School of Education. Uni-
versity of California. Berkeley, CA 94720: Harold Abelson. Laboratory
for Computer Science. M.I.T.. Cambridge. MA 02139.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

666 Communications of the ACM September 1986 Volume 29 Number 9

