
Abstract

Korz is a new computational model that provides for con-
text-oriented programming by combining implicit argu-
ments and multiple dispatch in a slot-based model. This
synthesis enables the writing of software that supports con-
textual variation along multiple dimensions, and graceful
evolution of that software to support new, unexpected di-
mensions of variability, without the need for additional
mechanism such as layers or aspects. With Korz, a system
consists of a sea of method and data slots in a multidimen-
sional space. There is no fixed organization of slots into
objects – a slot pertains to a number of objects instead of
being contained by a single object – and slots can come
together according to the implicit context in any given situ-
ation, yielding subjective objects. There is no dominant
decomposition, and no dimension holds sway over any oth-
er. IDE support is essential for managing complexity when
working with the slot space and with subjectivity, allowing
the task at hand to dictate what subspaces to isolate and
what dominance of dimensions to use when presenting
nested views to the user. We have implemented a prototype
interpreter and IDE, and used it on several examples. This
early experience has revealed much that needs to be done,
but has also shown considerable promise. It seems that
Korz's particular combination of concepts, each well-known
from the past, is indeed more powerful than the sum of its
parts. !
Categories and Subject Descriptors D3.3 [Programming
Languages]: Language Constructs and Features – Classes
and objects !
Keywords Subjectivity; Context; Multidimensionality; Pro-
gramming

1. Introduction
Newtonian mechanics did a great job for terrestrial speeds,
but when it turned out that light from a moving headlight
traveled just as fast as light from a streetlight, a new physics
was required to think effectively about fast-moving objects
and electromagnetic radiation. Object-oriented program-
ming does a great job for ontologies with a single dimen-
sion of variation, but creaks and groans when a second di-
mension enters the picture. The object-oriented programmer
can easily model a system with one dimension of variation
using inheritance, but when faced with a second dimension
has to resort to the visitor pattern, strategy pattern, or an
aspect-oriented methodology [Elra01]. Any of these can
help, but only at the expense of weighing down the ele-
gance of objects with additional concepts, and often at the
expense of a potentially cumbersome and tricky refactoring
of the code. Context-oriented programming offers a way out
by adding implicit context to the state of a computation and
using it to select from among behavioral variations
[Hirs08]. The variations are usually reified as layers, how-
ever – an additional concept. Korz provides context-orient-
ed programming, but by viewing the system as a uniform
sea of slots, rather than objects and layers.

Just as Self reformulated the Smalltalk model of object-
oriented computation in terms of a smaller, more-primitive
set of concepts [US87], the Korz work described herein
attempts to reformulate context-oriented computation in
terms of a smaller, more primitive set of concepts that are
simpler to work with yet more flexible and powerful. When
moving from Smalltalk to Self, some of the language con-
cepts, such as classes, became organizational patterns, such
as traits. Likewise, when moving from some other context-
oriented language to Korz, some of the language concepts,
such as objects and layers, become organizational patterns.

With the Korz computational model, a system consists of
a sea of slots (containing data values or methods), orga-
nized in a multidimensional slot space. Computation occurs
in a context, which is also multidimensional, binding specif-
ic values to some or all of the dimensions in the slot space.
At each computation step, a slot is selected from the space,
using multiple dispatch that is based on the context, a selec-
tor, and explicit arguments, and then that slot is evaluated.
The context is implicitly passed along to this evaluation,
and hence serves as a set of implicit arguments.

Korz reduces to procedural programming in the zero-
dimensional case, and object-oriented programming in the
one-dimensional case (the single, implicit context element

Korz: Simple, Symmetric, Subjective,  
Context-Oriented Programming

David Ungar Harold Ossher Doug Kimelman
IBM Research

Yorktown Heights, NY, USA  
{davidungar,ossher,dnk}@us.ibm.com

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Per-
missions@acm.org.
Onward! 2014, October 20 - 24 2014, Portland, OR, USA
Copyright 2014 ACM 978-1-4503-3210-1/14/10…$15.00.
http://dx.doi.org/10.1145/2661136.2661147

being the “self” or “this” object). We believe Korz to be
simpler, more flexible, more dynamic, and more expressive
than previous approaches, particularly for evolving a pro-
gram when additional kinds of variation are needed.

Multiple dispatch, implicit named arguments, and slot (or
generic function) based models have each been around for a
long time. Korz’s contribution lies in their combination,
which yields more than the sum of the parts. Multiple dis-
patch supports multiple dimensions of variation, implicit
arguments support evolution and contextual programming,
and the slot-based metaphor allows for subjective gathering
of slots into different “objects” for different situations. To-
gether, they allow a program to be easily extended to ac-
commodate new kinds of variation and new perspectives.

We have built and exercised a prototype Korz implemen-
tation using the Self language, virtual machine and envi-
ronment. Our Korz prototype includes an interpreter, de-
bugger, and a partial interactive development environment
(IDE). The syntax used in the prototype is based on Self
syntax; however, to enhance the readability of examples in
this paper, we present them in a Java(Script)-like syntax.

This paper describes the Korz model, discusses the prin-
ciples behind it, and shows how it eases program construc-
tion and evolution. Section 2 gives an overview of Korz
concepts, using a simple example. Section 3 provides a
Korz language definition. Section 4 provides a more com-
prehensive Korz programming example, illustrating some
of the power and benefits of the Korz approach. Section 5
discusses some issues arising out of the example, briefly
illustrating our prototype Korz IDE. Section 6 discusses the
programmer’s conceptual model of a Korz system. Subse-
quent sections describe related and potential future work,
and the appendices explore more deeply some interesting
issues arising out of the present work.

2. Overview of Korz Concepts
This section introduces basic Korz concepts and terminolo-
gy using a simple stack example shown in Figures 1
through 3. The stack implementation evolves to include a
variant with assertion checking, and the particular collec-
tion of slots seen by any given caller depends on its particu-
lar implicit context. This brief example illustrates funda-
mental Korz mechanisms, rather than exemplifying realistic
Korz usage; the example is too simple to actually warrant
use of Korz, or other advanced formalisms, in actual prac-
tice. Section 4 will provide a more comprehensive example,
after Section 3 defines the language.

Korz adopts the radical stance of altering the fundamen-
tal language-level notion of object. In place of an object
that constitutes identity as well as a set of slots, Korz has a
coordinate that is solely a value that constitutes an identity;
and instead of being contained by a single object, a slot
pertains to a number of coordinates, as indicated by part of
its slot guard (the slot guard also includes a selector and a
list of explicit positional parameters). In the simple stack
example shown in Figures 1 through 3, examples of coordi-
nates include: that referred to by the literal 0, the contents
of the constant slots true and stackParent, and the contents
of the variable slot stack1.

In Korz, a message send occurs in a context consisting of
a number of coordinates, each in a particular role (or “along
a dimension”). The context, selector, and explicit positional
arguments of the message send determine the slot to be
evaluated. In Figure 2, {rcvr: stack1}.push(100) is an exam-
ple of a message send. The context for the message send
will include the coordinate stack1 in the rcvr dimension,
and, depending on the chain of sends leading up to this
send, the context might also implicitly include a coordinate
in the assertions dimension: true or possibly false. In some
circumstances (discussed in subsequent sections), syntactic
sugar can reduce the code for this message send to
stack1.push(100).

The code in Figure 1 is structured using a pattern pio-
neered in Self, in which prototype objects define data slots,
and new objects are created by copying prototypes, which
gives them their own data slots. Method slots are defined in
the parent of the prototype, which also becomes the parent
of the new objects when the prototype is copied. The meth-
ods are thus inherited by all the copies.

// (coord for) prototype parent, with method slots
def {} stackParent = newCoord;
method { rcvr ≤ stackParent } pop() {  
 sp = sp - 1; 
 return contents[sp]; 
}
method { rcvr ≤ stackParent } push(x) {  
 contents[sp] = x; 
 sp = sp + 1; 
}
method { rcvr ≤ stackParent } copy() {  
 ...  
}
// (coord for) prototype, with data slots 
def {} stack = newCoord extending stackParent;
var { rcvr ≤ stack } sp = 0;  
var { rcvr ≤ stack } contents = array.copy();

Figure 1. Simple stack example – stack definition.

method {} main() {  
 var stack1 = stack.copy(); 
 var stack2 = stack.copy(); 
 
 stack1.push(100); 
 // -same as- {rcvr: stack1}.push(100); 
 
 stack2.push(200); 
 var sum = stack1.pop() + stack1.pop(); // Oops! 
}

main(); // Results in negative sp! !
Figure 2. Simple stack example – stack usage.

The code in Figure 1 begins by creating a coordinate for
method slots that will be inherited by the stack prototype
and by all stacks copied from that prototype. The coordinate
is contained in the constant slot stackParent, and because
the braces in the slot guard ‘{} stackParent’, are empty, that
slot is globally accessible; i.e., the stackParent slot is not
constrained at all with respect to the contexts from which it
is accessible, so it is accessible from any context. Pop,
push, and copy methods are then defined, and placed in
slots with corresponding selectors, with slot guards that
indicate that they pertain to stackParent, which we say is
“in the role of” rcvr, or “along the dimension” rcvr. That is,
messages sent with a context that includes the coordinate
stackParent in the rcvr dimension, or any coordinate de-
scended from stackParent, as well as an appropriate selector
and argument list, will match these methods (regardless of
any additional dimension-coordinate pairs in the context).
Dimensions other than rcvr can be used, but rcvr is analo-
gous to the ‘receiver’ or ‘this’ object of object-oriented lan-
guages, and is thus familiar (see Appendix C.2 for discus-
sion). In keeping with the JavaScript-like syntax, the exam-
ples include ‘()’ after invocations of methods like pop and
copy that have no explicit arguments, even though Korz
unifies state and behavior so that even variables are subjec-
tive, and such empty parentheses are optional.

The code in Figure 1 then creates a coordinate for data
slots that constitute the prototype stack. That coordinate is
contained in the constant slot stack, with an empty slot
guard. Finally, Figure 1 defines sp and contents data slots
pertaining to stack in the rcvr dimension. The ‘0’ used as
the initial value of sp is a literal that denotes a coordinate
representing the number zero.

Figure 2 contains a globally-accessible main() method,
and its invocation. main() begins by copying the stack pro-
totype twice, and storing the resulting new coordinates in
the variable slots stack1 and stack2, which are local to the
main() method. The code in Figure 2 then sends a message
with a context that includes stack1 in the rcvr dimension.
The message also includes the selector push, and the argu-
ment 100. The context, selector and explicit arguments of
the message send are all used to find an appropriate slot in
the slot space – the slot whose slot guard best matches the
components of the message send (the dispatch algorithm is
discussed in detail in the next section). That slot is then
evaluated, and a coordinate is returned. Thus, the message
send {rcvr: stack1}.push(100) results in the push method
slot of Figure 1 being evaluated, because rcvr: stack1
matches rcvr ≤ stackParent from the slot guard by virtue of
the fact that stack1 extends stackParent (it was created by
copying stack), as well as the fact that the selectors are the
same and the arguments (100) match the parameters (x).

In the body of an invoked method, a coordinate from the
context can be accessed using its role (dimension) name.
Thus, during the execution of the push method that arises
out of the message send discussed above, rcvr is bound to
the coordinate contained in stack1, just as x is bound to the
coordinate represented by the literal 100 (standard parame-
ter binding). The context thus constitutes a set of implicit
arguments. By virtue of syntactic sugar involving the rcvr
dimension being implicit, references such as sp and con-

tents in fact access the data slots pertaining to stack1. E.g.,
sp = sp + 1 in this invocation of push is equivalent to {rcvr:
stack1}.sp = {rcvr: stack1}.sp + 1.

The second push in Figure 2 proceeds similarly, but for
stack2. The final line of the main() method erroneously
pops stack1 twice; and popping an empty stack leads to a
negative stack pointer and program failure.

Figure 3 shows code that could simply be added to the

existing application to evolve it by defining an assertion-
checking variant of the pop method. The slot guard for this
method slot is: {rcvr ≤ stackParent, assertions ≤ true} pop(),
which indicates that the method being defined is contained
in a slot with selector pop, has no explicit positional para-
meters, and pertains to coordinate stackParent (along the
rcvr dimension) and to coordinate true (along the assertions
dimension); that is, the slot is constrained to only be acces-
sible from contexts in which the coordinate in the rcvr di-
mension is stackParent, or a descendant thereof, and the
coordinate in the assertions dimension is true, or a descen-
dant thereof (and any other dimensions of the context are
irrelevant to the accessibility of this slot). This slot guard is
more specific than that of the pop method in Figure 1 be-
cause it has the extra assertions dimension, but is the same
in other respects (specificity is defined in Section 3). The
body of this method either detects a violation and issues an
error message, or alters the context to instead include the
coordinate false in the assertions dimension (or this could
have been written to remove the the assertions dimension
entirely) and then sends a pop() message, resulting in the
original pop method in Figure 1 being invoked.

The code at the end of Figure 3 invokes the existing main
method, but now in the context assertions: true so that the
assertion-checking variant of pop is used instead of the
original pop method. This results in the attempted invariant
violation being detected and prevented, and an error mes-
sage being issued. The key to this example is that message
sends for which the context does not include a coordinate
for the assertions dimension, or includes the coordinate
false for the assertions dimension, will see the original pop
method; whereas message sends in which the context in-
cludes the coordinate true for the assertions dimension will
see the assertion-checking pop method. Two facts are par-
ticularly noteworthy: (1) The binding assertions: true in the
context of the send of the main message is implicitly carried
through the main method; methods like main do not even
need to be aware of new dimensions like assertions, and
certainly don’t need to deal with them in any explicit way.

method { rcvr ≤ stackParent, assertions ≤ true } pop() { 
 if (sp ≤ 0) 
 error("Invariant violated: sp must be > 0"); 
 else  
 return {assertions: false}.pop(); 
 // -or- return {-assertions}.pop(); 
}  !
{assertions: true}.main(); // Results in error msg !
Figure 3. Code to add assertion checking.

(2) A pop message send with assertions: true in the context
matches both pop slots, but the assertion-checking pop is
used because it is more specific than the other.

This section concludes by contrasting Korz with existing
(prototype-based) object-oriented languages such as Self
and JavaScript. In such languages, the notion of object can
be viewed as playing many roles: identity, context, refer-
ence, message destination, and set-of-slots. Computation
proceeds by sending a message to (a reference to) an object,
that reference often being the implicit context of the method
enclosing the send, e.g., self or this. The message’s target
object determines a set of slots (including via inheritance).
The message invokes the slot with the corresponding name,
and that slot runs and returns another reference to an object.
To create a new thing, one copies an old object to get a
(reference to a) new object.

Korz deconstructs the notion of object, and recasts pro-
gram structure within a multidimensional framework. Co-
ordinate hierarchies and inheritance along each of a number
of dimensions are supported. With Korz, the notion of a
single object as the receiver of a message is replaced with a
context for the message, consisting of zero or more dimen-
sion-coordinate pairs, which are used, together with the
selector and arguments, to determine the slot to be evaluat-
ed. A given dimension-coordinate pair may be specified
explicitly as part of the message send, or it may have been
previously set and implicitly carried along a sequence of
message sends / method invocations. A new thing can be
created by expanding the slot space, using a copy method
that creates a new coordinate and a number of slots pertain-
ing to it, and returns the new coordinate.

3. Language Definition
A body of Korz code is termed a slot space: a collection of
slots organized in a multidimensional space. Execution oc-
curs when an expression is evaluated relative to the slot
space. Expression evaluation usually involves sending mes-
sages. Each message send occurs in an implicit context
(comprised of implicit arguments) and specifies a selector
and explicit arguments. The context, selector and arguments
(three kinds of bindings) are all used to find an appropriate
slot in the slot space, by finding the slot whose slot guard
(consisting of corresponding constraints) best matches the
bindings. If a most-suitable slot is found, it is then evaluat-
ed to yield the result of the message send.

We first describe an abstract syntax for Korz slot spaces.
We then describe the semantics of the interpreter. Both de-
scriptions are semi-formal, with the intent of combining
precision and readability.

3.1 Abstract Syntax

The abstract syntax described here should be thought of as
the representation used by the interpreter rather than a rep-
resentation close to any concrete syntax. It is illustrated
using the simple stack example from Section 2, using the
concrete syntax from that section.

3.1.1 Slot Space
A Korz slot space is a tuple SS = (C, p, D, L, S) where:
• C is a set of coordinates,
• p is a parent relation on coordinates,
• D is a set of dimension names,
• L is a set of selectors,
• S is a set of slots.
Each slot consists of:

• A slot guard, sg = (dcs, l, pct), where:
- dcs is a dimension constraint set, made up of di-

mension constraints (which are context/implicit
parameter constraints)

- l is a selector
- pct is a parameter constraint tuple, made up of pa-

rameter constraints
• Contents, which can be:

- A coordinate, or
- The special assignment primitive, or
- A method body, which consists of:

• 0 or more local variable declarations, and
• An expression, usually a sequence of sub-expres-

sions, which can be message sends or various
other forms.

In this exposition, whenever we have tuples in the ab-
stract syntax, we use the component names as the names of
functions providing access to the components. Thus for SS
above, C(SS) denotes the coordinate set of SS, p(SS) de-
notes its parent relation, etc.

Each of these elements, and their sub-elements, are now
described in more detail. The exposition is done mostly
bottom-up, so that we can keep building on known con-
cepts; the map above puts the elements in context.

3.1.2 Coordinates
C is a set of coordinates. A coordinate c ∈ C is an im-
mutable value that serves as an identity. Examples of coor-
dinates from Section 2 are: the literal 0, and the contents of
the constant slot true and of the variable slot stack1.

Given two coordinates, one can determine whether or not
they are in fact the same coordinate, i.e., whether c1 = c2.
Some coordinates may be numbers, characters or strings,
denoted by literals in the usual way. One special coordinate,
denoted here by any, is always in C. Any is never explicitly
written. We discuss any below. Other coordinates are creat-
ed on demand by the coordinate creation primitive (denoted
newCoord in the concrete syntax used in the stack
example). This primitive is an expression but not a literal.
Each time it is used, a new coordinate is created that is
guaranteed not to be the same as any other coordinate.

Coordinates are analogous to object IDs/pointers in pure
object-oriented languages (OOPLs): In an OOPL, every
value refers to some object; in Korz, every value is some
coordinate. In an OOPL, once an object is created, there
may be no textual expression denoting it; in Korz, once a
coordinate is created, there may be no textual expression
denoting it. In an OOPL, we write object1 or aCar when
writing about an object; the identifiers denote variables
containing object references. In Korz we write coordinate1

or aCar when writing about a coordinate; the identifiers
denote variables containing coordinates.

3.1.3 Parents and Ancestors
Korz supports inheritance through the parent relation on
coordinates, p: C x C → { T, F }, where T and F are the
Boolean values. If p(c1, c2) = T, then c2 is said to be a parent
of. c1. In Section 2, stackParent is the parent of stack. By
definition, any is the parent of exactly those coordinates
that have no other parents.

The reflexive, transitive closure of the parent relation
induces a partial order of generality/specificity:

c1 ≼ c2 ≡ c1 = c2 ∨ p(c1, c2) ∨
 ∃ c′ ∈ C such that c1 ≼ c′ ∧ c′ ≼ c2

The partial order relation ‘≼’ can be read ‘is at most as
general as’ or ‘is at least as specific as,’ and is analogous to
the subtyping relations found in many languages. Like a
subtyping relation, ‘≼’ is partial because two coordinates
may be unrelated by parentage, with neither being at least
as specific as the other. However, every coordinate is at
least as specific as any:

∀ c ∈ C: c ≼ any
The generality/specificity partial order relation will be

extended to composite structures involving coordinates. In
all cases, equality can be defined in the usual way:

x = y ≡ x ≼ y ∧ y ≼ x

3.1.4 Identifiers and Dimension Names
As is customary, an identifier is a sequence of a restricted
set of characters. Examples of identifiers from Section 2
are: sp, pop, push and x. Identifiers can be compared for
equality, and are used for variable and parameter names and
the like. A Korz slot space includes a set, D, of identifiers
used as dimension names, and hence defining the dimen-
sional structure of the slot space. Examples of dimension
names from Section 2 are: rcvr and assertions.

3.1.5 Selectors
L is a set of selectors. A selector is a sequence of characters
used in a message to indicate the desired action, including
method invocation, variable access, and variable assign-
ment. Selectors can be compared for equality.

Korz selectors are just like those in other languages. In
object-oriented languages in the C family, selectors are
method names (identifiers), and sometimes operator sym-
bols (C++). Smalltalk and Self use identifiers for unary
selectors, operator symbols for binary operators and se-
quences of one or more colon-terminated identifiers for
keyword selectors.

The precise syntax of Korz selectors is not material here.
In the simple stack example we used identifiers for selec-
tors. Examples from Section 2 are: pop and push.

3.1.6 Context: Dimension Binding Set
Each step of Korz execution consists of evaluating an ex-
pression in a context, which is a set of dimension bindings
that are passed implicitly with invocations. A dimension

binding is a pair, db = (dim, coord), where dim ∈ D is a
dimension name, and coord ∈ C is a coordinate. The coor-
dinate specifies a binding for that dimension: a particular
position on the dimension. A given coordinate can be used
in more than one dimension. For example, one can imagine
true being bound to a number of different dimensions.

 A dimension binding set, dbs = { db1, db2, …, dbn } is a
set of 0 or more dimension bindings, containing at most one
dimension binding per dimension of the slot space. Not all
dimensions in the slot space need be mentioned in dbs; any
dimension not mentioned is considered irrelevant. A context
is a dimension binding set.

3.1.7 Argument Tuple
In addition to implicitly-passed arguments as the values of
dimensions in the context, Korz supports explicitly-passed
positional arguments. An argument tuple, args = (arg1,
arg2, …,argn) is a tuple of 0 or more arguments, each ar-
gument being an expression (defined below).

3.1.8 Dimension Constraints
A slot space includes dimension constraints that will partic-
ipate in slot selection (below) by constraining the set of
acceptable coordinates that may be bound to a specific di-
mension. A dimension constraint is a pair, dc = (dim, co-
ord), where dim ∈ D is a dimension name and coord ∈ C is
a coordinate. The coordinate specifies a particular position
on the dimension. Examples of dimension constraints from
Section 2 are: rcvr ≤ stack and assertions ≤ true .

A dimension constraint means that the coordinate bound
to the dimension is constrained to be at least as specific as
the coordinate specified in the constraint (i.e., the same as
the coordinate in the constraint, or more specific than the
coordinate in the constraint). Wherever a dimension con-
straint is needed, a dimension name alone may be written,
omitting the coordinate. In that case the coordinate is un-
derstood to be any.

A dimension constraint can be tested to see if it is at least
as specific as another dimension constraint:

dc ≼ dc′ ≡ dim(dc) = dim(dc′) ∧
 coord(dc) ≼ coord(dc′)

A dimension constraint set, dcs = { dc1, dc2, …, dcn }, is
a set of 0 or more dimension constraints, containing at most
one dimension constraint per dimension of the slot space.
When we get informal, we may use context constraint as a
synonym for dimension constraint set.

A dimension binding (Section 3.1.6) can be tested to see
if it satisfies (‘⊑’)a dimension constraint:

db ⊑ dc ≡ dim(db) = dim(dc) ∧
 coord(db) ≼ coord(dc)

A dimension binding set satisfies a dimension constraint
set if every constraint is satisfied by one of the bindings:

dbs ⊑ dcs ≡ ∀ dc ∈ dcs ∃ db ∈ dbs such that db ⊑ dc
The binding set may include bindings for additional dimen-
sions; since these dimensions are absent from the constraint
set, they are considered unconstrained and hence irrelevant
to this satisfaction relation.

A dimension constraint set is at least as specific as an-
other dimension constraint set if it has extra dimensions or,
in the case of equal dimensions, its coordinates are at least
as specific. Inheritance in the matching dimensions does not
matter in the case where one dimension constraint set has
additional dimensions. In other words, additional dimen-
sions trump inheritance, which is why line 3 below does not
test for specificity:
dcs ≼ dcs′ ≡
1. | dcs | > | dcs′ | ∧
2. ∀ dc′ ∈ dcs′ ∃ dc ∈ dcs such that
3. dim(dc) = dim(dc′)
4. ∨
5. | dcs | = | dcs′ | ∧
6. ∀ dc′ ∈ dcs′ ∃ dc ∈ dcs such that dc ≼ dc′
The implications of having additional dimensions trump
inheritance are discussed further in Appendix B.

3.1.9 Parameter Constraints
A method slot that requires positional arguments will de-
clare (and optionally constrain) the corresponding formal
parameters with parameter constraints. A parameter con-
straint is a pair, pc = (param-name, coord), where param-
name is the parameter name, which is an identifier, and
coord ∈ C is a coordinate, which constrains the correspond-
ing argument to be at least as specific as coord. Coord may
be any, declaring but not constraining the parameter. In a
concrete syntax, the coordinate is likely to be omitted in
this unconstrained case, as was done in Section 2.

A parameter constraint is thus similar to a dimension
constraint, but constrains the value of an argument rather
than a dimension, and the declaration is used to declare an
explicitly-passed formal parameter, rather than an implicit-
ly-passed value for a dimension in the context.

A parameter constraint tuple pct = (pc1, pc2, …, pcm) is
an ordered tuple of 0 or more parameter constraints. The ith
parameter constraint of a parameter constraint tuple, pct, is
denoted by pci(pct). The arity of a parameter constraint tu-
ple pct, denoted by | pct |, is the number of parameter con-
straints in the parameter constraint tuple. Informally, we
may use ‘parameter guard’ for ‘parameter constraint tuple’.

For example, the method below includes a single para-
meter constraint, named x :
method {} push(x ≤ number); // x must be a number

Arguments may be tested for satisfaction against parame-
ter constraints. An argument tuple satisfies a parameter con-
straint tuple if they have equal arity and every argument is
at least as specific as the corresponding constraint:

args ⊑ pct ≡ | args | = | pct | ∧
 ∀ i ∈ [1, | args |]: argsi ≼ coord(pci(pct))

Parameter constraint tuples may be compared for speci-
ficity. They require equal arity to be comparable, since
methods with different numbers of parameters can never
match the same message:

pct ≼ pct′ ≡
1. | pct | = | pct′ | ∧
2. ∀ i ∈ [1, | pct |]:

3. coord(pci(pct)) ≼ coord(pci(pct′))
Since parameters are passed positionally, the param-names
play no part in specificity; as in many languages, they are
used only to provide access to the argument values within
the method body.

3.1.10 Slot Guards
A slot guard specifies the conditions for a slot to match a
specific message, and hence be a candidate for evaluation in
response to that message. The matching depends on three
factors: the implicit context in which the message is sent (a
dimension binding set), the selector used in the message,
which indicates the desired action, and the explicit argu-
ments (actual parameters) provided as part of the message.
Accordingly, a slot guard, sg = (dcs, l, pct), is a triple con-
sisting of a dimension constraint set dcs, a selector l ∈ L
and a parameter constraint tuple pct.

Slot guards may be compared for specificity:
sg ≼ sg′ ≡ dcs(sg) ≼ dcs(sg′) ∧
 l(sg) = l(sg′) ∧

 pct(sg) ≼ pct(sg′)
Slot guards with different selectors are incomparable.

Examples of slot guards from Section 2 are:
{ rcvr ≤ stackParent } push(x)
and
{ rcvr ≤ stackParent, assertions ≤ true } pop().

3.1.11 Slot
A slot is a pair, s = (sg, contents), where sg is a slot guard.
No two slots in a slot space may have equal slot guards
(i.e., slot guards all of whose components are equal, ignor-
ing parameter names). Contents may be one of:
• A coordinate, in which case the slot is a data slot.
• The assignment primitive, in which case the slot is an

assignment slot. In this case the parameter guard must
specify a single parameter (to hold the value to be as-
signed), and the assignment slot must be paired with a
data slot (thus forming a getter/setter pair). This pairing
might be done using selector conventions, such as ‘x’ for
a data slot and ‘x:’ or ‘setX’ for the corresponding as-
signment slot. A message sent to the assignment slot sets
the value of the corresponding data slot.

• A method body (defined below), in which case the slot is
a method slot.
Examples of slot declarations from Section 2 are:

 var {rcvr ≤ stack} sp = 0;
and
 method {rcvr ≤ stackParent} pop() { ... } .

The var in this syntax declares both sp as a data slot and
also a corresponding assignment slot that is invoked by
assignment expressions like ‘sp = 0.’ The method indi-
cates that pop is a method slot.

3.1.12 Method Body
A method body is a pair (vars, exp), where vars is a se-
quence of 0 or more local variable declarations, and exp is
an expression (usually consisting of a sequence of sub-ex-
pressions). A local variable declaration is a pair (name, val-
ue), where name is an identifier and value is an expression
specifying the initial value. In a concrete syntax, the value
can be omitted, and is then taken to be the literal nil.

3.1.13 Expression
An expression is a literal, the coordinate creation primitive,
a message send, a block declaration, or a sequence of (sub-)
expressions. A variable reference is written as an identifier,
which is actually a parameterless message send whose ef-
fect is to return the coordinate contained in the variable. As
in Self, this unification of variable access and message send
is important to achieving unification of state and behavior.
In Korz, it enables variable access and assignment to de-
pend on context in just the same way as method invocation.

3.1.14 Dimension Modifier Set
When the need arises to execute a sub-expression with a
different set of dimension bindings (i.e. in a different con-
text) than is used for its enclosing expression, a dimension
modifier set is used. A dimension modifier set, dms =
{ dm1, dm2, …, dmn } is a set of dimension modifiers, con-
taining at most one dimension modifier per dimension of
the slot space. A dimension modifier is a pair dm = (dim, e),
where dim ∈ D is a dimension name and e is either an ex-
pression, which evaluates to a coordinate; or the symbol
‘−’, which indicates that any existing binding to the associ-
ated dimension should be removed. Examples of dimension
modifier sets from Section 2 are: {assertions: true} and {-
assertions}.

A dimension modifier contains an expression, which is
evaluated when the modifier is used, whereas a dimension
binding or dimension constraint contains a coordinate,
which requires no evaluation.

3.1.15 Message Send
A message send is a triple m = (dms, l, args), where dms is
a dimension modifier set, l ∈ L is a selector, and args =
(arg1, arg2, ..., argn) is an argument tuple. A message send is
evaluated relative to a dimension binding set (i.e., in a con-
text). The dimension modifier set serves to specify how the
incoming dimension binding set (a.k.a. incoming context)
should be modified to obtain the evaluation dimension
binding set (a.k.a. evaluation context), which is used to find
and evaluate the appropriate slot. Examples of message
sends from Section 2 are:
 {-assertions}.pop()
and
 stack1.push(2)
which is syntactic sugar for
 {rcvr: stack1}.push(2).

In the former example, regardless of any binding for asser-
tions in the incoming dimension binding set, the evaluation
dimension binding set would include no binding for asser-
tions. Other bindings, e.g., of rcvr, are left unchanged.

3.1.16 Block Declaration
Blocks are interesting in Korz, and have been implemented
in our prototype. They have much in common with blocks
in Self, but must also deal with binding dimensions appro-
priately. Space precludes discussion of their details here.

3.2 Semantics

3.2.1 Execution
A Korz execution request is a triple (dbs, e, SS), where dbs
is a dimension binding set (a.k.a. a context), e is an expres-
sion and SS is a slot space. Such a request corresponds to a
top-level invocation, such as from a read-eval-print loop or
IDE. In response to the request, the expression e is evaluat-
ed in the context of dimension binding set dbs, using SS to
find any slots involved in the evaluation. The result of the
execution is the value of the expression e.

3.2.2 Expression Evaluation
Evaluation of an expression returns a value, which is a co-
ordinate. Since it always occurs relative to a dimension
binding set (i.e., in a context) and uses slots in a slot space,
expression evaluation is defined by the function val(dbs, e,
SS), where dbs is a dimension binding set, e an expression,
and SS a slot space.
- If e is a literal, val(dbs, e, SS) is the value of the coordi-

nate denoted by the literal; dbs and SS are irrelevant.
- If e is the coordinate creation primitive, val(dbs, e, SS)

is a new, unique coordinate, which is added to C(SS) as a
side-effect; the dimension binding set is irrelevant.

- If e is a sequence of expressions, (e1, e2, ..., en), each
expression is evaluated in sequence: vi = val(dbs, ei, SS).
The value of the expression as a whole is the value of the
last one, vn.

- If e is a message send m = (dms, l, args), then evaluation
involves finding an appropriate slot in SS, and evaluating
it, which is a four-step process:  
val(dbs, (dms, l, args), SS) = 
1. args′ = val(dbs, args, SS); 
2. dbs′ = modifyDimBindings(dbs, dms, SS); 
3. s = lookup(dbs′, l, args′, SS); 
4. return val(dbs′, args′, s, SS)
Step 1 evaluates each argument expression to produce a
tuple of coordinates. Step 2 applies the dimension bind-
ing modifier to the incoming dimension binding set to
obtain the evaluation dimension binding set (concepts
which were introduced above). Step 3 finds the unique
slot to evaluate; this might fail, in which case an error
occurs. The error can be handled in various ways, such
as bringing up the debugger. Step 4 evaluates the slot,
and returns the result as the value of the message send.

As mentioned earlier, details of blocks are not described.

3.2.3 Dimension Binding Modification

modifyDimBindings(dbs, dms, SS) =
1. dbs′ = dbs;
2. for each dimension modifier dm in dms:
3. if ∃ db ∈ dbs′ such that dim(db) = dim(dm),
4. remove db from dbs′;
5. if e(dm) is not ‘−’,
6. add db = (dim(dm), val(dbs, e(dm), SS)) to dbs′;
7. return dbs′

3.2.4 Slot Lookup
Slot lookup involves attempting to find a single, most spe-
cific slot whose guard matches the message:
lookup(dbs, l, args, SS) =
1. m = { s ∈ S(SS) | matches(sg(s), dbs, l, args, SS) };
2. removeLessSpecific(m, SS);
3. if | m | = 1, return the member of m;
4. if | m | = 0, error ‘Not understood’;
5. if | m | > 1, error ‘Ambiguous’

3.2.5 Slot Guard Matching
Slot guard matching requires matching of the selectors, and
satisfaction of the constraints:
matches(sg, dbs, l, args, SS) ≡
1. dbs ⊑ dcs(sg) ∧

2. l = l (sg) ∧
3. args ⊑ pcs(sg)

3.2.6 Slot Specificity
Once all matching slots have been found, we need to re-
move any that are less specific than other matching slots:
removeLessSpecific(m, SS) =
1. for each slot s ∈ m:
2. if ∃ s′ ≠ s ∈ m such that sg(s) ≼ sg(s′),
3. remove s′ from m
It is safe to use ‘≼’ without worrying about equality be-
tween slot guards because of the restriction that no two slots
in SS can have equal slot guards.

3.2.7 Slot Evaluation

If the contents of a slot is a coordinate, that is its value.
If the contents of a slot is the assignment primitive, the

contents of the corresponding data slot is replaced with the
value of the first and only argument, arg1, and the new con-
tents is the returned value.

If the contents of a slot is a method body, then an activa-
tion is created to constrain the scope of local variables, the
dimension binding set (context) is updated to record the
activation, and then the expression is evaluated:
val(dbs′, args′, s, SS) =
1. a = createActivation(dbs′, args′, s);
2. dbs′′ = activation-dbs(a, dbs′);
3. return val(dbs′′, expression(contents(s)), SS)

The createActivation function creates a coordinate to
represent the activation, and creates data slots associated

with it in the ‘activation’ dimension to enable variable ac-
cess. For each formal parameter, p, in the slot guard, a (con-
stant) data slot is created with selector param-name(p) and
value the positionally-corresponding argument value. For
each dimension constraint in the slot guard, a (constant)
data slot is created with selector the dimension name and
value taken from the dimension binding for that dimension.
This slot enables the value bound to a dimension in the con-
text to be accessed in the method body using the dimension
name. For each local variable declared in the method body,
a data slot pair (including an assignment slot) is created
with selector the variable name and value the value of the
initialization expression. The slot guards for all these data
slots include all of the dimension constraints for the method
slot plus a constraint pairing the activation dimension with
the activation coordinate.

In the activation-dbs function, the dimension binding
set, dbs′, is then enhanced with a binding of the activation
coordinate to the ‘activation’ dimension.

Finally, the expression in the method body is evaluated
to yield the value of the slot. This evaluation occurs with
the ‘activation’ dimension bound to the activation coordi-
nate above, so messages whose selectors are parameter,
dimension or local variable names will access slots set up
by createActivation, yielding the expected results.

3.2.8 Cloning
Since Korz is based on prototypes instead of classes it

creates new things by cloning rather than instantiation.
Korz provides the clone primitive for this purpose, invoked
via a message send. The semantics of clone are:
clone(c) =
1. c′ = a new coordinate via coordinate-creation primitive
2. for each s ∈ SS such that sg(s) contains c:

s′ = a new copy of s, with c′ replacing c in sg(s′)
3. add s′ to SS

4. Example

We now present a fuller example that illustrates how Korz
can support context dependence, evolution, symmetry and
subjectivity. The example is inspired by the colored-point
example that was a popular vehicle for discussing evolution
of object-oriented programs. Except for the actual display
of pixels on screens, the code in the figures below has been
written and tested on our prototype Korz interpreter and
IDE. To avoid confusion, the discussion below uses coordi-
nate only in its Korz language sense, and will use position
to talk about where things display on a screen.

4.1 Make a point

The starting point for this example is a cartesian, colored
point. First the program defines Korz coordinates for the
prototypical point (from which new points will be cloned)
and its parent (with which methods applicable to all points
will be associated).

To make the coordinates accessible, the program defines
them as the contents of slots. The code below therefore cre-

ates two slots, each containing a new coordinate. The point
coordinate is declared to have the pointParent coordinate as
its parent:
def {} pointParent = newCoord; 
def {} point = newCoord extending pointParent;
The empty slot guard “{}” for point means that, in any con-
text, the point message will result in evaluation of the slot
just defined and return of the point coordinate (provided
point is not overridden).

Now the program creates three assignable data slots as-
sociated with the prototypical point coordinate in the rcvr
dimension (in other words, the implicit argument named
rcvr; our reasons for using this particular dimension are
discussed in Appendix C.2.):
var {rcvr ≤ point} x; 
var {rcvr ≤ point} y; 
var {rcvr ≤ point} color;
The slot guards, {rcvr ≤ point}, specify that the slots are
accessible only in contexts in which the rcvr dimension is
bound to a point, i.e., to a coordinate that is at least as spe-
cific as the point coordinate. For example, the message
{rcvr: point}.color (which can be sugared as point.color)
will return the prototypical point’s color.

This example needs a method to make a point:
method {} makeAPoint(x, y, c) {  
	 var x, y, c, p; 
	 p = point.copy; 
	 p.x = x; p.y = y; p.color = c; 
	 return p; 
}
The point.copy method creates a new coordinate whose
parent is the same as point’s, i.e., pointParent. (Recall that
copy and copy() are equivalent.)

4.2 Add a method to display a point

This method declaration, consisting of slot guardand
method body, defines a method that displays a point:
method {  
	 rcvr ≤ pointParent,  
	 device //dimension required but can be anything}  
display {  
	 device.drawPixel(x, y, color)  
};
Its guard mentions the device dimension without specifying
a coordinate. This construct has two related effects:
• First, any dimension mentioned in the guard must be

present in the message context in order for the slot to be
found. In this case, if there is no such dimension in the
message context, this display slot will not be found.

• Second, as defined in Section 3.2.7, every dimension
occurring in a method slot’s guard is placed into the
scope of the method, so that the dimension identifier can
be used within the method as a reference to that dimen-
sion’s coordinate from the incoming context.

Consequently, if the message context has a dimension
named device, this slot can be found, and the coordinate
that is bound to the device dimension becomes bound to
‘device’ and will be used for displaying.

4.3 Add a screen object that can draw pixels

The example needs a screen object to use as the device co-
ordinate. The screen needs a drawPixel method:
def {} screenParent = newCoord; 
def {} screen = newCoord extending screenParent; 
 
method {rcvr ≤ screenParent} drawPixel(x, y, color) {  
	 	 // draw the pixel in the color  
}
Given these definitions, one would normally have con-
strained the device dimension in the display method earlier
to be at least as specific as screenParent (or, more likely, a
more general deviceParent coordinate). We left it uncon-
strained in this example to illustrate that capability.

4.4 Drawing a point and more complicated figures

If p1 is a point, and s is a screen (a coordinate at least as
specific as screenParent), the programmer can write:
	 {rcvr: p1, device: s}.display
That was a significant amount of setup for a simple exam-
ple, but we are now well positioned for more complex cases
and for evolution.

Consider figures that contain many (e.g. three) points:
def {} figureParent = newCoord 
def {} figure = newCoord extending figureParent; 
var {rcvr ≤ figure} point1; 
var {rcvr ≤ figure} point2; 
var {rcvr ≤ figure} point3; 
method {rcvr ≤ figureParent} display {  
	 point1.display; point2.display; point3.display  
}

If f1 is such a figure and s is a screen, this will work:  
{rcvr:f1, device:s}.display. The screen dimension is passed
down through the figure display method. That method
doesn’t have to care what device is being used. This is
analogous to COP [Hirs08].

4.5 Add a dimension

Now suppose that it is necessary to extend this code to ac-
commodate colorblind people. Realizing that colorblindness
is a separate dimension from the figure or the device (it
might apply to any figure and any device), the programmer
need only define a more specialized drawPixel method slot
to be used when a new isColorblind dimension is present
and bound to true:
method { rcvr ≤ screenParent, isColorblind ≤ true } 
drawPixel(x, y, c) {  
	 {isColorblind: false}  
	 	 .drawPixel(x, y, c.mapToGrayScale)  
}

This code reuses the existing true coordinate as a coordi-
nate in this new isColorblind dimension; such reuse is per-
fectly acceptable because the same coordinate can be used
in different dimensions. Whenever drawPixel is sent to a
context with a screen for the receiver and isColorblind
bound to true, the new method will run instead of the old
drawPixel method. It will map the color to grayscale, and
then call the old method. This call invokes the old method
because the original drawPixel slot’s guard omitted isCol-
orblind, which meant that it did not care about it, and would
accept any value. The code could have used {-isColorblind}
instead of {isColorblind: false} to remove the binding of that
dimension from the context instead of rebinding it to false.

The programmer can test the new capability by evaluat-
ing:
{ rcvr: f1, device: s, isColorblind: true }.display

In a complete system, isColorblind would probably not
be included explicitly in the context of this message that
calls display; isColorblind would probably have been added
to the context somewhere up the call stack, such as when a
colorblind user logs in, and then carried implicitly to this
point in the code and be included implicitly in the context
of this message.

4.6 Add another dimension

Now suppose that another (somewhat contrived) require-
ment comes up: the need to flip figures upside-down for
Australian users. This requirement is an example of another
common dimension, location, which can be a key factor in
mobile applications. To satisfy this requirement, the pro-
grammer could introduce another dimension with boolean
coordinates, such as isAussie, but it is better to generalize
somewhat and introduce a few coordinates to be used in a
new location dimension:
def {} locationParent = newCoord; 
def {} location = newCoord extending locationParent; 
def {} southernHemi = newCoord extending location; 
def {} australia = newCoord extending southernHemi; 
def {} antarctica = newCoord extending southernHemi;

Now the code uses the location dimension in the guard of
a new drawPixel slot, and applies the upside-down require-
ment to the entire southern hemisphere:
method { rcvr ≤ screenParent, location ≤ southernHemi }  
drawPixel(x, y, c) {  
	 { -location }.drawPixel(x, -y, c)  
}

This new code can be tested with:
{ rcvr: f1, device: s, location: australia }.display
and the y coordinate is negated just as desired.

Now suppose one tests support for colorblind Aus-
tralians:
{  
	 rcvr: f1, device: s,  
	 location: australia, isColorblind: true  
}.display

This test fails, with an ambiguous error because two
drawPixel slots match the message: the one for Australians
and the colorblind one, and neither is more specific than the
other. The fix is easy: a special-purpose slot whose guard is
more specific than both of the existing guards and that spec-
ifies how these cases are to be combined:
method {  
	 rcvr ≤ screenParent, 
	 isColorblind ≤ true,  
	 location ≤ southernHemi  
}  
drawPixel(x, y, c) {  
	 {-isColorblind}.drawPixel(x, y, c.mapToGrayScale); 
}

4.7 Add a specialization

As a final evolution example, consider specializing the
display for Antarctica; since it is so cold that people wear
goggles that may fog up, the image must be magnified by a
factor of 2, in addition to being inverted:
method { rcvr ≤ screenParent, location ≤ antarctica }  
drawPixel(x, y, c) {  
	 {-location}.drawPixel(2 * x, -2 * y, c); 
}
Then
{ rcvr: f1, device: s, location: antarctica }.display
ends up invoking this method. The message
{ rcvr: f1, device: s,
 isColorblind: true, location: antarctica }.display
illustrates the implications of our decision to allow matches
in extra dimensions to trump the specificity of the matches.
See Appendix B for further details.

5 Issues Raised by Multidimensional
Implicit Context

The move from single-dispatch object-oriented program-
ming to a multidimensional contextual paradigm raises
some interesting issues. Many of these will require further
research. Appendix C contains more material on this topic.

5.1 Symmetry and Subjectivity

The issues of symmetry and subjectivity in Korz can be
illustrated with portions of the code for the example in Sec-
tion 4 as shown in the Korz prototype IDE.

In Figure 4, the green box at the top shows the slot
method { rcvr ≤ screenParent, location ≤ southernHemi }  
 drawPixel(x, y, c) { ... }
The ellipses near the right of the slot represent the method
body, which can be viewed in detail by clicking the square
button beside them. In standard object-oriented languages,
this slot would be considered as belonging to screenParent.
Indeed, it does belong to screenParent in Korz too (in the
rcvr dimension), as shown in the blue box below and to the
left of it. But it equally-well belongs to southernHemi (in
the location dimension), as shown in the blue box below

and to the right of it. Whereas the green box shows an indi-
vidual slot, each blue box shows a collection of slots that
share a coordinate in one dimension, and can be regarded as
constituting an object in Korz. Each slot in each object
shows the other dimensions of variation. The buttons pro-
vided by the IDE for the coordinates in those dimensions
allow navigation to views of those coordinates as objects.
For example, pressing one of the buttons labeled ‘location
=> southernHemi’ on the left of Figure 4 would show a
view of southernHemi as an object, as at the middle right of
Figure 4 (the prototype IDE uses double arrows in dimen-
sion bindings, rather than ‘≤’ as used in this paper).

Thus, instead of an asymmetric organization with a dom-
inant decomposition, in which one of the dimensions (e.g.,
object or class) is primary and the others (e.g., layers, as-
pects or subjects) are secondary, Korz’s conceptual econo-
my (i.e. no objects, no layers, just slots and coordinates)
provides a symmetric organization, in which slots can be
grouped into objects based on any dimensions. This notion
of object is subjective. It allows slots to be gathered togeth-
er into objects in ways that provide different abstractions or
views, useful for different purposes. This applies to both
data slots and method slots. A data slot modified via one
view will manifest the new value in other views also.

6. Programming with Korz
In this section, we move from language and dispatch details
to consider how programmers think about their Korz pro-
grams. Appendix D provides more depth on these topics.

Slot space versus object model: Traditional object-ori-
ented programmers, when wanting an overall understanding
of a program, think in terms of an object model, in which
the inheritance hierarchy plays a key role in organization
and overall understanding. In Korz, the multidimensional
slot space assumes this role. Multidimensional spaces are
conceptually simple and regular, but quickly become large
and hence complex in detail. Sophisticated IDE support is
critical to working with them effectively. Since many ob-
ject-oriented programs actually deal with multiple dimen-
sions of variation, Korz’s paradigm, along with a suitable

environment, may well actually ease the task of working
with such programs.

Modularity: Dimensions provide a flexible and power-
ful modularization mechanism that can be used for program
organization and presentation. A module can be represented
by a specific dimension, or a coordinate within a specific
dimension. However, the global scope of dimension names
in Korz could present problems when merging two Korz
slot spaces that have some dimension names in common if
those names are used with different meanings in the two
spaces.

Static analysis and programmer assistance: The di-
mensions and coordinates in the slot space provide valuable
structural information to programmers, and can be used by
an IDE for intelligent code completion in slot guards and
dimension binding modifiers. Though Korz is not statically
typed, the constraints in slot guards provide a good deal of
information that might be used for type inferencing in the
same fashion as Agesen’s work for Self [AU94], and hence
for intelligent code completion as well.

7. Previous Work
7.1 Implicit Arguments

The utility of implicit arguments (or dynamic scoping) for
evolving programs to take additional aspects of context into
account has a long history [HP01, Lewi00]. These efforts
did not link implicit arguments to dynamic dispatch,
though. Such linkage is possible in CLOS (see below).

7.2 Multiple Dispatch

Likewise, multiple dispatch is nothing new, including the
in tegra t ion wi th ob jec t -or ien ted programming
[BG93, Cham92, Gabr91]. The Flavors paper explicitly
included the idea of dispatching on two arguments
[Moon86, page 4]. The Julia language dispatches methods
based on multiple, positional arguments, though not on the
keyword parameters [Beza14]. It does not include implicit
arguments as Korz does.

Heinlein has experimented with mulitple-dispatch Vir-
tual Functions in C++ [Hein05], but his dispatch mecha-

Figure 4: IDE views of a slot and the ‘objects’ it pertains to

nism chose the most-recently-executed definition, not the
most specific. Pirkelbauer et al have presented Open Mul-
ti-Methods for C++ and have shown them to be
efficient [Pirk07].

Delegation Layers [Oste02] is another close relative to
Korz: combining delegation with virtual classes, but retain-
ing the object as a fundamental entity.

Traits [Schä03] composed classes out of smaller units.
As with multiple dispatch, the resulting composite behavior
depends on multiple, independent factors. Unlike multiple
dispatch, this idea uses static composition, and remains
firmly in the object-oriented paradigm of a single runtime
entity determining the dispatched method.

7.3 Static Multidimensional Context

Subject-oriented programming (SOP) [HO93] pioneered
the notion of subjective objects, and modules called sub-
jects were the precursors of COP layers. The original SOP
paper [HO93] described dynamic activation and de-activa-
tion of subjects during execution, much like COP layers.
However, implementations of SOP all performed subject-
composition prior to execution. The same is true of most
aspected-oriented [Kicz97] approaches, in which aspects
are woven into classes before execution.

SOP was extended with multidimensional structure in
multidimensional separation of concerns (MDSOC) [Tar-
r99]. Whatever modules were used in a program, e.g.,
classes, or subjects, slots were considered to be arranged in
a multidimensional space, like that of Korz. MDSOC im-
plementations performed composition of collections of slots
into executable Java programs before execution. Korz adds
dynamicity and conceptual simplicity by embracing the
multidimensional space as the runtime program representa-
tion, and using multiple dispatch rather than a separate
composition step. However, as of now, it does not support
the richness of composition operators. Further details are
provided in Appendix D.

7.4 Dynamic Multidimensional Context

A modified form of Slate [SA05] provided multiple dis-
patch in a Self-like, prototype-based setting, and even pro-
vides a subjective dispatch with one additional implicit ar-
gument. It does not appear to have been generalized to the
extent of Korz, though.

With the notable exceptions of Us [SU96] and PyCon-
text [Löwi07], as far as we know multiple dispatch has not
usually been combined with implicit arguments. However,
there is a tantalizing hint that the CLOS creators were going
in that direction: “it might be useful to use exogenous fea-
tures for method selection. … one might include the process
in which the operation is being done” [Gabr91]. PyCon-
text [Löwi07] is notable because it does activate layers ac-
cording to implicit arguments, and those layers can contain
variables. It is one of the closest existing proposals to Korz,
differing principally in the layers vs. sea-of-slots formula-
tions. ContextJ [Hirs08] includes a “with” construct that
may yield a similar effect.

Korz follows in the grand tradition of Context-Oriented
Programming (COP) [Appe09, Hirs08, Löwi07], but de-

parts from the earlier notion of layers. (Hirschfeld et al’s
paper [Hirs08] has an especially good treatment of prior
work in this regard.) Earlier COP papers conceptualized the
context-dependent information as a layer of (usually behav-
ior, but state as well for Us and PyContext) slots overlay-
ing a more universal object. When more than one dimen-
sion of variability is required, the layer formulation requires
a concept of linearization, in order to select from competing
layers. Korz departs from this tradition by viewing the sys-
tem as a sea of slots, rather than objects and layers, more in
the tradition of CLOS and Cecil [BG93, Cham92, Gabr91].
Our multidimensional formulation may be more parsimo-
nious, in that it has only slots, not objects and layers. How-
ever, we have not yet addressed the “super” or “call-next-
method” issue, which is solved by the layer linearization
facility in these other languages. We believe the essential
contribution of COP is not the ability to refer to layers at
runtime, but rather the ability to vary behavior according to
multiple dimensions at runtime.

Also, one advantage cited for COP is that layers are first-
class entities that can be shown directly in source code. For
Korz, we would rely on the IDE to group slots as needed to
do the same thing. By not reifying groups of slots (layers) at
the fundamental language level, we allow the IDE to
present different groupings as they are needed by the user.
Korz, Us, and PyContext all allow state (i.e. data slots) to
be context-dependent, however only Korz goes so far as to
consider object identity to be subjective. Thus, we avoid the
dilemma of choosing layer-in-class vs class-in-layer, as
defined by the JOT paper [Hirs08]. In a way, atomizing
objects into slots, rather than retaining objects and adding
layers, is analogous to the simplification made by the origi-
nal Self paper: That paper showed how objects could play
the roles of both instance and class; this paper shows how
subjective collections of slots with multidimensional guards
and implicit arguments can play the role of both objects and
layers. In each case, IDE support restores the higher-level
abstractions, while, we believe,the simpler underlying mod-
el provides for greater malleability.

In this paper we use multidimensionality in a slightly
different sense than does Hirschfeld et al [Hirs08]: in our
formulation, since we don’t yet include the selector as a
dimension, zero dimensions equates to functions, one di-
mension equates to object-oriented programming, and more
than one dimension equates to dispatch by multiple implicit
parameters. To us, this seems more consistent (except
maybe for the selector bit) than their taxonomy in which
first the selector, then the receiver, then the sender, then
other parts of context are added to the dimensionality. Be-
cause object-oriented programming code typically uses
small methods to get the most out of inheritance and poly-
morphism, we believe that using the sender explicitly is less
useful than using a named implicit argument; there are like-
ly to be many intervening methods between the “sender” of
interest and the behavioral inflection point.

The idea of multidimensional implicit context was also
developed in the Lucid community [AW77, FJ93, PP96,
SG02, Wan05]. Both that work and ours were independent-
ly inspired by the role of implicit context in human com-
munication. As in Korz, this work adds user-defined dimen-

sions to expressions, with the coordinates determined by
implicit context. Just as Korz includes dimension modifiers,
this intensional programming work includes intensional
operators to navigate the context space. In Korz, context
propagates down the call chain; in at least some of this
work ([SG02]) it propagates along a data graph. Korz is an
imperative object-oriented language, while Lucid and its
descendants tend to employ variables and code and repre-
sent state as a time-series of immutable values.

There has even been a meld with Java [Wu09]. In this
OOIP system, Java classes may have Lucid members, and
Lucid expressions may refer to members of Java classes.
Korz integrates multidimensional context into an object-
oriented paradigm; in OOIP multidimensional context is
tied to a Lucid paradigm, although Lucid code can be
mixed with Java code.

Overall, the key distinguishing feature of Korz is that it
addresses the challenging conjunction of graceful evolution
and multidimensional variability with its small kernel of
concepts, without the need for a variety of module types
and their attendant operations, such as layer activation,
composition or weaving. We believe that the combination
of multidimensional dispatch and implicit context provides
a small, elegant and yet powerful basis for building and,
especially, evolving systems.

8. Future Work
To develop Korz further, we need to come up with a better
syntax, code up more examples in it, and figure out what to
do about super. We also want to push the slot name (selec-
tor) into just another dimension with, say, specificity (inher-
itance) based on pattern matching. With some way to limit
access to a slot, such as lexical scoping, a coordinate con-
tained in such a slot can be used to guard “private” slots,
providing a more flexible mechanism to enforce invariants,
even cross-cutting ones, than other schemes we are aware
of. We have also started to experiment with dimensions that
alter the behavior of the interpreter, such as handling failure
or ambiguity. This is the key to supporting method compo-
sition/combination. For example Korz could support En-
sembles [UA10] with a dimension that said: “run every slot
for this message.” But there is an even more tantalizing
prospect: if we can devise a suitable way to shift perspec-
tive so that the slot’s contents becomes one more compo-
nent of its guard, rather than a separate contents component,
then the guard becomes the entire slot, possibly leading to a
unification of the object and relational models.

The sea-of-slots, subjective object model of Korz poses
an interesting challenge for its environment, which will
have to tame its complexity. We believe it can do so by of-
fering progressive disclosure of dimensions; supporting
whatever view of the slot space is best suited for the task at
hand, be it symmetric, a slice, or a projection; and by pro-
viding the illusion of objects in a given perspective. Such a
perspective must be salient enough to be clear to a pro-
grammer without being constantly distracting.

9. Conclusion
Looking at programming through the lens of context, and
wishing to make it easier to build systems whose behavior
depends on multiple dimensions of context, we have pro-
posed and implemented a prototype system for Korz, a new
programming paradigm. Korz generalizes object-oriented
programming from one (usually implicit) receiver to many
(usually implicit) “receivers,” each playing a named role
when a slot is looked up for a message send. Consequently,
rather than a Korz system being a collection of objects, at
the most fundamental level it consists of a collection of
slots, each bound to some set of coordinates. Each slot,
rather than being included in an object, is linked to one or
more coordinates (each assigned to a named role or dimen-
sion), by its slot guard. Each coordinate, rather than con-
taining slots, is merely a point of identity with links to the
related slots in appropriate roles. When a message is sent, it
has a context consisting of a set of coordinates, each in a
named role. The dispatch mechanism selects the most spe-
cific slot and runs it.

Although Korz’s multidimensional collection of slots
captures more organizational information than a unidimen-
sional set of objects, it can often be helpful to view a sys-
tem as a simple set of objects. If one freezes all but one
dimension, thus allowing only one dimension to vary, the
collection of slots takes on the structure of an object-orient-
ed system, isomorphic to objects containing slots. However,
rebinding one of the frozen dimensions to a different coor-
dinate will change the contents and identities of the “ob-
jects” in the system. At this level, the system is subjective
and relative to a given perspective.

Often when programming in an object-oriented style, the
programmer creates an inheritance hierarchy along some
dimension of variation, only to get stuck when required to
add a second, orthogonal dimension of variation. Object-
oriented practice dictates that the classes or prototypes then
be split into a pluggable architecture, so that items varying
along the second dimension can be plugged into items vary-
ing along the first. But this transformation is often difficult.
Aspect-oriented, feature-oriented and related approaches
address this problem through additional modularity con-
structs to encapsulate concerns that do not align with the
dominant dimension, but this complicates the object model
with these additional kinds of modules and the means to
compose or weave them. Korz offers a better way: addi-
tional slots and dimensions can be added incrementally,
using only the core mechanism of Korz.

Korz’s contribution lies in combining a relatively small
number of pre-existing concepts: multiple dispatch, implic-
it, symmetric, named arguments, and slots with unified state
and behavior as the fundamental particle. This combination
yields more than the sum of the parts. Multiple dispatch
supports multiple dimensions of variation, implicit argu-
ments support evolution and contextual programming, and
the slot-based metaphor allows for subjective gathering of
slots into different “objects” for different situations. To-
gether, they allow a program to be easily extended to ac-
commodate new kinds of variation and new perspectives.

Acknowledgments
Sam Adams provided the impetus for us to explore contex-
tual programming, and helped us fit this work into our or-
ganization. We are also very grateful to Mark Wegman and
IBM Research, and to Suparna Bhattacharya and Sam
Adams for helping us to prepare this paper.

References
[AU94] Agesen, O. and Ungar, D. 1994. Sifting Out the

Gold. OOPSLA’94.
[Appe09] Appeltauer, M. et al. 2009. A Comparison of Con-

text-oriented Programming Languages. COP’09.
[AW77] Ashcroft, E. A. and Wadge, W. W. Lucid, a Non-

procedural Language with Iteration. 1977. CACM. 20, 7.
[Bato94] Batory, D. et al. 1994. The GenVoca Model of

Software-System Generators. IEEE Software. 11, 5.
[Beza14] Bezanson, J. et al. 2014. The Julia Manual. http://

docs.julialang.org/en/release-0.2/manual/ accessed
7/18/14.

[BG93] Bobrow, D. G. and Gabriel, R. P. 1993. CLOS in
Context: The Shape of the Design Space. CACM. May,
1993.

[Cham92] Chambers, C. 1992. Object-Oriented Multi-
Methods in Cecil. ECOOP’92.

[Chun05a] Chung, W. et al. 2005. The Concern Manipula-
tion Environment. ICSE’05.

[Chun05b] Chung, W. et al. 2005. Working with Implicit
Concerns in the Concern Manipulation Environment.
AOSD’05 Workshop on LATE.

[Elra01] Elrad, T. et al. (eds.), 2001. Special section on as-
pect-oriented programming. CACM. 44, 10.

[FJ93] Faustini, A. A. and Jagannathan, R. 1993. Multidi-
mensional Problem Solving in Lucid. SRI-CSL-93-03.
SRI International.

[Gabr91] Gabriel, R. et al. 1991. CLOS: Integrating object-
oriented and functional programming. CACM, 34, 9.

[Harr05] Harrison, W. et al. 2005. Supporting aspect-orient-
ed software development with the Concern Manipulation
Environment. IBM Systems Journal. 44, 2.

[Hein05] Heinlein, C. 2005. Global and Local Virtual Func-
tions in C++. JOT. 4, 10.

[Hirs08] Hirschfeld, R. et al. 2008. Context-oriented Pro-
gramming. JOT. 7, 3.

[HO93] Harrison, W. and Ossher, H. 1993. Subject-Orient-
ed Programming: A Critique of Pure Objects.
OOPSLA’93.

[HP01] Hanson, D. R. and Proegsting, T. A. 2001. Dynamic
Variables. PLDI’01.

[Kicz97] Kiczales, G. et al. 1997. Aspect-Oriented Pro-
gramming. ECOOP’97.

[Kicz01] Kiczales, G. et al. 2001. An Overview of AspectJ.
ECOOP’01.

[Löwi07] Löwis, M. et al. 2007. Context-Oriented Pro-
gramming: Beyond Layers. ICDL’07.

[Moon86] Moon, D. 1986. Object-Oriented Programming
with Flavors. OOPSLA’86.

[Lewi00] Lewis, J. R. et al. Implicit Parameters: Dynamic
Scoping with Static Types. POPL’00.

[Ossh96] Ossher, H. et al. 1996. Specifying subject-oriented
composition. TAPOS, 2, 3.

[Oste02] Ostermann, K. 2002. Dynamically Composable
Collaborations with Delegation Layers. ECOOP’02.

[OT00] Ossher, H. and Tarr, P. 2000. Hyper/J: multi-dimen-
sional separation of concerns for Java. ICSE’00.

[Pirk07] Pirkelbauer, P. et al. 2007. Open Multi-Methods
for C++. GIPCE’07.

[PP96] Plaice, J. and Paquet, J. 1996. Introduction to inten-
sional programming. Intensional Programming I. World
Scientific.

[Preh97] Prehofer, C. 1997. Feature-oriented programming:
A fresh look at objects. ECOOP’97.

[SA05] Salzman, L. and Aldrich, J. 2005. Prototypes with
multiple dispatch: An expressive and dynamic object
model. ECOOP’05.

[Schä03] Schärli, N. et al. Traits: Composable Units of Be-
havior. CSE 02-012, Dept. of Computer Science and En-
gineering, Oregon Health & Science University.

[SG02] Stavrakas, Y. and Gergatsoulis, M. 2002. Multidi-
mensional Semistructured Data: Representing Context-
Dependent Information on the Web. CAISE’02.

[SU96] Smith, R. B., Ungar, D. 1996. A Simple and Unify-
ing Approach to Subjective Objects. TAPOS, 18, 4.

[Tarr99] Tarr, P. et al. 1999. N degrees of separation: multi-
dimensional separation of concerns. ICSE’99.

[UA10] Ungar, D. and Adams, S. 2010. Harnessing Emer-
gence for Manycore Programming: Early Experience
Integrating Ensembles, Adverbs, and Object-based Inher-
itance. OOPSLA’10 Short Paper.

[US87] Ungar, D. and Smith, R. B. 1987. Self: The Power
of Simplicity. OOPSLA’87.

[Wan05] Wan, K. et al. 2005. A Context Theory for Inten-
sional Programming. CRR’05 Workshop on Context Rep-
resentation and Reasoning.

[Wu09] Wu, A. et al. 2009. Object-Oriented Intensional
Programming: Intensional Classes Using Java and Lucid.
Software Engineering Research & Applications’10.

Appendix A: The Name
The name “Korz” comes from Korzybski, whose Science
and Sanity (Korzybski 1933) explained how much one’s
perspective influences one’s perceptions and thinking.

Appendix B: Slot Lookup Specificity
The example in section 4.7 sheds light on an interesting
design issue for multidimensional languages such as Korz:

method { rcvr ≤ screenParent, location ≤ antarctica } (1)  
drawPixel(x, y, c) {  
	 { -location }.drawPixel(2 * x, -2 * y, c)  
}
Consider the following case of message lookup, which was
mentioned there, but not discussed:
{ rcvr: f1, device: s, isColorblind: true, location: antarctica
}.display
This will cause a message send with selector drawPixel and
context
{ rcvr: s, isColorblind: true, location: antarctica }
The slot guard of the drawPixel method introduced in sec-
tion 4.7 (and repeated above as (1)) is the most specific in
the location dimension, but it does not mention the isColor-
blind dimension. On the other hand, the drawPixel method
introduced at the end of section 4.6 has a guard constraining
all three dimensions, but the constraint on location is looser
(less specific):
method {	 	 	 	 	 (2) 
	 rcvr ≤ screenParent, 
	 isColorblind ≤ true,  
	 location ≤ southernHemi  
}  
drawPixel(x, y, c) {  
	 {-isColorblind}.drawPixel(x, y, c.mapToGrayScale); 
}
 The rule that additional dimensions trump inheritance, de-
fined in Section 3.1.8, means that method (2) will be in-
voked. Since it deals with the isColorblind dimension and
then removes it before calling drawPixel again, method (1)
will end up being called with the color mapped to
grayscale, yielding the correct overall result.

However, method (2) could have dealt with and removed
the location dimension instead:
method {	 	 	 	 	 (2a) 
	 rcvr ≤ screenParent, 
	 isColorblind ≤ true,  
	 location ≤ southernHemi  
}  
drawPixel(x, y, c) {  
	 {-location}.drawPixel(x, -y, c); 
}
In this case, the message above would not have worked as
intended.This drawPixel method would have been found as
the most specific and, since it removes the location dimen-
sion, the specialization for Antarctica would not be execut-
ed at all. A new, most-specific method would need to be
written:
 method {  
	 rcvr ≤ screenParent, 
	 isColorblind ≤ true,  
	 location ≤ antarctica 
}  
drawPixel(x, y, c) {  
	 {-location}.drawPixel(2*x, -2*y, c); 
}

It is possible that this problem could be solved by using a
construct like super or call-next-method instead of remov-
ing the location dimension. Defining such a construct for
the symmetric, multidimensional world of Korz, in which
dimensions are unordered and considered equal, is chal-
lenging, and remains an issue for future research.

The design decision for additional dimensions to trump
inheritance was made to facilitate a common and powerful
form of evolution in Korz, illustrated earlier in the colored
point example: the addition of dimensions. Our experience
early on suggested that this precedence allows such evolu-
tion to happen more gracefully in many cases, without the
need for writing additional, more-specific methods. This
rule works especially well when the approach used in this
example is followed: handling a new dimension by doing
something and then calling the method again without that
dimension. The effect of this approach is analogous to
around advice and proceed in AspectJ [Kicz01]. However,
our choice may not always do what might be desired.

The design decision also has the interesting effect that a
slot that is less specific in one context may not match at all
in another. Referring back to the formal definition in Sec-
tion 3.1.8, for dimension binding set dbs and dimension
constraint sets dcs and dcs',
dbs ⊑ dcs ∧ dcs ≼ dcs' � dbs ⊑ dcs'
because dcs' could have fewer dimensions but tighter con-
straints on some of the dimensions it does have, tight
enough that dbs does not satisfy it. This might be confusing
to programmers when they take a global view of slot speci-
ficity, independent of any specific message send, and then
consider a particular message with the global view in mind.
The confusion is removed if one focuses on a particular
message, considering only slots that match that message.

To avoid these possibilities of confusion, it might be pos-
sible and desirable to change the rule so that specificity of
shared dimensions is always considered for dimension con-
straint set specificity, even in the case that extra dimensions
are present. We expect that this would introduce many more
ambiguity errors, each requiring a more-specific method to
be written. This can be annoying, but does help to highlight
situations where the programmer’s intuition, based on expe-
rience with other languages, may not match the semantics
of Korz. More research and experience are needed.

Appendix C: More on Multidimensional
Context Issues

The incorporation of symmetric, multidimensional, implicit
context into Korz raises issues which we explore in more
depth here.

C.1 Symmetry and Subjectivity

The issues of symmetry and subjectivity become clearer
when one thinks in terms of the multidimensional slot
space. Figure 5 shows three dimensions of the slot space for
the color point example of Section 4. Each dimension
shows the coordinates that are appropriate to it, as well as a
special don't-care indicator ("-"). Each slot is positioned in

this space based on the coordinates specified in the dimen-
sion binding set of its slot guard. For any dimension not
mentioned or not constrained in the slot guard, the don't-
care position is used. The figure shows the position of the
first slot in Figure 4, whose dimension constraint set is:

 { rcvr ≤ screenParent, location ≤ southernHemi }
Since isColorblind is not included in the constraint set, this
slot is shown in the don’t-care position for this dimension.

The space is symmetrical in that there is no dominant
dimension that determines the program structure. Instead,
the developer can have the IDE present a variety of asym-
metrical, subjective views of this space that are appropriate
for different purposes. For example, for working on screen
display issues in general, the view in Figure 6 presenting
screenParent as an object with all relevant slots is best; for
focussing on support for location, views like Figure 7 pre-
senting southernHemi and other locations as an object is
best; and for working on accessibility and ensuring that
colorblind users are well supported, a view presenting true
as an object is best, ideally filtered to focus on the isColor-
blind dimension (since true is likely to be widely used as a
coordinate). Each of these views is obtained by cutting
through the slot space a different way, restricting one's view
to a plane (or, in general, a region) that is relevant to one's
current task. They can even be combined as in Figure 4,
which shows both hierarchies and reifies the slots.

C.2 Thorny issue: ‘rcvr’ in Korz

Korz’s use of the dimension rcvr is at odds with two Korz
principles: that a single receiver is replaced by a multi-di-
mensional context, and that all dimensions are treated
equally. Let’s use the example in section 4.1 to examine this
issue.

It might seem better in the example to have chosen some
other dimension name, perhaps graphic to indicate that it
deals with a graphic object. Then the x slot, for example,
would have been defined as
var {graphic ≤ point} x;
There are two problems, however: The first has to do with
methods like copy, built-in or library methods that apply
broadly. Such a method must use some dimension for the
implicit parameter it operates on (such a parameter would
be the receiver in object-oriented languages), and since the
possibilities for such a parameter are so broad and generic,
a domain-specific dimension name like graphic would not
suit. We could use a dimension name such as object, entity,
thing or the like, but wanted to avoid confusion between
coordinates and objects, and also avoid the implication that
objects occur in only one particular dimension. Another
possibility might be id or identity, but all coordinates in all
dimensions are identities. So we chose rcvr, to be sugges-
tive of the object-oriented receiver and ugly enough that we
will keep thinking about this issue until we solve it more
satisfactorily.

One possible solution would be to define methods like
copy as global methods that take an explicit parameter:
Instead of
method { rcvr } copy() { ... }

define
method {} copy(x) { ... }
This approach breaks down, however, for methods associat-
ed with abstractions like collections, where the use of ex-
plicit parameters becomes clumsy and counter to expecta-
tions of object-oriented programmers. In such cases we
could possibly use other appropriate dimensions, like col-
lection, rather than rcvr.

That leads to the second problem: the need to switch
between dimensions, and its impact on syntactic sugaring.
Suppose we had used the graphic dimension as suggested
earlier. The makeAPoint method would now have to be
written:
method {} makeAPoint(x, y, c) {  
	 var x, y, c, p; 
	 p = point.copy; 
	 {graphic: p}.x = x; {graphic: p}.y = y; 
	 {graphic: p }.color = c; 
	 return p; 
}
This is clumsy, and it gets much worse in the case of cas-
caded expressions. The syntactic sugaring allows one to
write p.x = x and so on instead, which is much clearer, and
does exactly what an object-oriented programmer would
expect. This sugaring, of course, relies on its being clear
what dimension is involved. In our current implementation,
that dimension is always assumed to be rcvr, and this is the
one respect in which rcvr is treated specially. We have be-
gun considering a construct that would allow the program-
mer to specify the dimension to use, which would allow
makeAPoint to be written something like:

Figure 5: Three dimensions of the slot
space for the color point example

false

location

rcvr

isColorblind

screenParent
figureParent
pointParent

–

–

true

antarctica

australia
southernH

em
i–

method {
rcvr ≤ screenParent,
location ≤ southernHemi}

drawPixel(x, y, c) { … }

with implied dimension = graphic {  
	 method {} makeAPoint(x, y, c) {  
	 	 var x, y, c, p; 
	 	 p = {rcvr: point}.copy; 
	 	 p.x = x; p.y = y; p.color = c; 
	 	 return p; 
	 }  
}
Now, unfortunately, the copy message can no longer be
sugared, because it uses a different dimension (whether rcvr
or something else), but, on balance, this might be a better
way to write this particular method. We are also interested
in IDE support that allows the same code to be viewed in

different ways, including with different choices of implied
dimension and consequent sugaring. This viewpoint depen-
dence is within the spirit of the Korz IDE supporting sub-
jectivity.

In short, there is much interesting research yet to be done
towards providing true symmetry of dimensions and also
convenience and familiarity for programmers, especially
those with backgrounds in object-oriented languages. For
the present, we reluctantly use rcvr, which provides the fa-
miliarity and convenience, allows 1-dimensional Korz pro-
grams to look exactly like object-oriented programs, and
supports convenient addition of “ancillary” dimensions.

Figure 6: IDE view of screenParent as an object

Figure 7: IDE view of locations as objects

Appendix D: Speculating on Modeling
and Programming Issues

Korz’s expressive power comes at a price: the need for
more help from the IDE.

D.1 Slot space versus object model

Traditional object-oriented programmers, when wanting an
overall understanding of a program, think in terms of an
object model, in which the inheritance hierarchy plays a key
role in organization and overall understanding. In Korz, the
multidimensional slot space assumes this role. To have an
overall understanding of a program, a developer needs to
understand what the dimensions are, and what coordinates
are appropriate on each. Coordinates can have parents, so
each dimension effectively has an inheritance hierarchy.
This overall view, which is imparted by visualizations such
as the one shown in Figure 5, identifies the important con-
cepts in the domain of the program, and indicates what
combinations of cases are being considered. To some ex-
tent, it serves as an interface. When writing code, one of the
key issues is what options are available for use in a message
context, the analogy of what operations are supported by an
object in an object-oriented language. For example, when
coding a drawPixel(x, y, color) message send, what options
are available for the rcvr dimension, and is it sensitive to
different choices for location or isColorBlind? The structure
of the space indicates what options are potentially available,
and views that show how the space is populated indicate
what options are actually available. Such views can be dy-
namically produced by the IDE.

The space can also be a useful guide to implementers.
What cases must be considered and implemented? Suppose,
for example, that one is working to ensure proper support
for colorblind users across an application. One can then
focus on the isColorBlind dimension. Any slot whose coor-
dinate in this dimension is true already supports color
blindness, and any slot whose coordinate is explicitly false
presumably provides behavior suitable for people who can
distinguish colors. The slots in the don't-care position in this
dimension are worthy of examination. The developer can
look at each and decide whether color blindness is relevant
or not, and act accordingly. Analysis performed by the IDE
could help, for example to identify selectors that have no
methods with isColorBlind ≤ true yet are related, according
to some metric, to slots that do. The fact that the slot space
makes these choices manifest leads to thoughts of such
analyses, and can be expected to facilitate their implemen-
tation.

Multidimensional spaces are conceptually simple and
regular, but quickly become large and hence complex in
detail. This leads to concern that they will confuse rather
than help programmers. Certainly sophisticated IDE sup-
port is critical to working with them effectively. However, it
is important to note that they do not introduce complexity;
rather, they manifest inherent complexity. A simple program
that does not deal with many areas of variation will have a
simple space with few dimensions, perhaps even none. As
areas of variation arise, as they invariably do in real-life

programming (and real life in general), more complex
structures and dependencies are inevitable, and often the
dependencies are somewhat ad hoc, because only immedi-
ately-needed cases are considered. In most programs, these
dependencies are hidden in the code and are easy to miss, or
worse, hidden in requirements or design documentation and
never explicitly referenced in the code. This makes it diffi-
cult to amass the knowledge of the program needed for evo-
lution tasks, and makes all but the simplest evolution tasks
dangerous, because it is easy to miss something. The multi-
dimensional structure of Korz make more of the inherent
structural complexity and dependencies manifest, and en-
courages regularity (or at least can highlight irregularity).
Hence we believe it has the potential to reduce the effort
and the risks in evolution tasks. More research is needed to
test this belief.

D.2 Modularity

The issue of modularity in Korz is especially interesting.
More research is needed, but this section gives some brief,
informal thoughts.

On one hand, dimensions provide a flexible and powerful
modularization mechanism, that can be used for program
organization and presentation, as described above, and also
has presence at runtime. A module can be represented by a
specific dimension, or a coordinate within a specific dimen-
sion. In the first case, the slots to be encapsulated must
mention that dimension in their guards. In the second case,
the guards must constrain the dimension to the appropriate
coordinate. If either of these approaches is followed, slots
will be modularized and be inaccessible from other modules
unless the context is explicitly set up to have the appropri-
ate dimension bindings.

On the other hand, the dimension names in Korz are
global. This presents problems if one needs to merge two
Korz slot spaces that have some dimension names in com-
mon, especially if those names are used with different
meanings in the two spaces. IDE support can help here,
providing for renaming of dimensions that should be differ-
ent, and handling mapping of coordinates in dimensions
that should be merged. However, it is an open question as to
whether this sort of approach is adequate, or whether Korz
should provide additional mechanism, such as encapsula-
tion of entire slot spaces, or namespaces for dimension
names.

D.3 Static analysis and programmer assistance

The fact that Korz programs consist of large numbers of
small pieces (slots) means that the programmer is likely to
need help finding things when needed, and avoiding mis-
takes. At the same time, the dynamic nature of Korz sug-
gests that there are limits to how much help can be provided
statically.

The dimensions provide valuable structural information
to programmers, and identify immediately key areas of
variability. A simple analysis of the slot space can reveal the
dimension names, and the sets of coordinates actually used
in each dimension at any point in time. The results of this

analysis can be used to provide intelligent code completion
in slot guards and message sends.

Though Korz is not statically typed, the constraints in
slot guards do provide a good deal of information that can
be used for type inferencing. In addition, Agesen demon-
strated that it is possible to analyze Self programs so as to
provide the programmer with assistance and checking such
as is normally expected only in statically-typed languages
[AU94], and we believe the approach can be extended to
Korz.

These and related issues require further research.

Appendix E: Relationship to SOP, MD-
SOC and AOP
This section explores in more detail the relationship of Korz
to subject-oriented programming (SOP), multidimensional
separation of concerns (MDSOC) and aspect-oriented pro-
gramming (AOP).

Subject-oriented programming (SOP) [HO93] pioneered
the notion of subjective objects, and modules called sub-
jects were the precursors of COP layers. Any given object
had fixed identity across a system. Different subjects could
associate slots, both data and methods, with objects. Overall
behavior was determined by composing subjects according
to programmer-specified composition rules [Ossh96]. This
composition resulted in instantiation of composed objects at
runtime, embodying the combined state and behavior of the
composed subjects, but each subject had its own, restricted,
subjective view of these objects. The original SOP
paper [HO93] described dynamic activation and de-activa-
tion of subjects during execution, much like COP layers.
However, implementations of SOP all performed subject-
composition prior to execution.

SOP was extended with multidimensional structure in
multidimensional separation of concerns (MDSOC) [Tar-
r99]. The paper observed that programs typically suffer
from the tyranny of the dominant decomposition, where the
programming language supports one particular way of
modularizing programs, such as by object or class. Con-
cerns that align with the dominant decomposition are well
modularized, but other concerns (such as features in object-
oriented languages) cannot be; their code ends up being
scattered across many modules. SOP, aspect-oriented pro-
gramming (AOP) [Kicz97] and related approaches [Elra01],
and feature-oriented approaches (FOP) [Bato94, Preh97]
had improved the situation by introducing a second form of
module (subject, aspect, etc.) that allowed additional kinds
of concerns to be modularized. MDSOC went beyond two
dimensions. Whatever modules were used in a program,
e.g., classes, subjects or aspects, slots were considered to be
arranged in a multidimensional space, like that of Korz. The
space was called a hyperspace, and hyperplanes in this
space, called hyperslices, could be extracted at will, and
composed into hypermodules by means of composition re-
lationships, analogous to the composition rules of SOP.
Hypermodules were themselves composable (in fact, hyper-
slices were just primitive hypermodules). This broke the
tyranny of the dominant decomposition, allowing on-de-
mand remodularization: flexible configuration and recon-

figuration of software to satisfy new requirements or to
support new evolution tasks, irrespective of the original
modularization.

MDSOC was implemented in Hyper/J [OT00] and the
Concern Manipulation Environment (CME) [Chun05a,
Chun05b, Harr05], both of which performed the remodular-
ization and composition before execution. Korz adds dy-
namicity and conceptual simplicity by embracing the multi-
dimensional space as the runtime program representation,
and using multiple dispatch rather than a separate composi-
tion step. However, as of now, it does not support the rich-
ness of composition operators, such as the ability to to exe-
cute multiple methods, each contributed by a different hy-
perslice, in response to a single message. Another limitation
relative to MDSOC, and especially AOP, is that its support
for pointcuts (specifying in one place code that is to be exe-
cuted at multiple sites, or join points) is limited to what can
be done with inheritance. Multidimensional inheritance
with dynamic parents is powerful, but does not cover the
case of selector-based patterns. In section 8 we briefly dis-
cussed how small extensions to the Korz model which, we
believe, make sense in general, have the potential to over-
come the limitations with respect to method composition/
combination and selector-based patterns.

