
Abstract 

Korz is a new computational model that provides for con-
text-oriented programming by combining implicit argu-
ments and multiple dispatch in a slot-based model. This 
synthesis enables the writing of software that supports con-
textual variation along multiple dimensions, and graceful 
evolution of that software to support new, unexpected di-
mensions of variability, without the need for additional 
mechanism such as layers or aspects. With Korz, a system 
consists of a sea of method and data slots in a multidimen-
sional space. There is no fixed organization of slots into 
objects – a slot pertains to a number of objects instead of 
being contained by a single object – and slots can come 
together according to the implicit context in any given situ-
ation, yielding subjective objects. There is no dominant 
decomposition, and no dimension holds sway over any oth-
er. IDE support is essential for managing complexity when 
working with the slot space and with subjectivity, allowing 
the task at hand to dictate what subspaces to isolate and 
what dominance of dimensions to use when presenting 
nested views to the user. We have implemented a prototype 
interpreter and IDE, and used it on several examples. This 
early experience has revealed much that needs to be done, 
but has also shown considerable promise. It seems that 
Korz's particular combination of concepts, each well-known 
from the past, is indeed more powerful than the sum of its 
parts. !
Categories and Subject Descriptors D3.3 [Programming 
Languages]: Language Constructs and Features – Classes 
and objects !
Keywords Subjectivity; Context; Multidimensionality; Pro-
gramming 

1. Introduction 
Newtonian mechanics did a great job for terrestrial speeds, 
but when it turned out that light from a moving headlight 
traveled just as fast as light from a streetlight, a new physics 
was required to think effectively about fast-moving objects 
and electromagnetic radiation. Object-oriented program-
ming does a great job for ontologies with a single dimen-
sion of variation, but creaks and groans when a second di-
mension enters the picture. The object-oriented programmer 
can easily model a system with one dimension of variation 
using inheritance, but when faced with a second dimension 
has to resort to the visitor pattern, strategy pattern, or an 
aspect-oriented methodology [Elra01]. Any of these can 
help, but only at the expense of weighing down the ele-
gance of objects with additional concepts, and often at the 
expense of a potentially cumbersome and tricky refactoring 
of the code. Context-oriented programming offers a way out 
by adding implicit context to the state of a computation and 
using it to select from among behavioral  variations 
[Hirs08]. The variations are usually reified as layers, how-
ever – an additional concept. Korz provides context-orient-
ed programming, but by viewing the system as a uniform 
sea of slots, rather than objects and layers. 

Just as Self reformulated the Smalltalk model of object-
oriented computation in terms of a smaller, more-primitive 
set of concepts [US87], the Korz work described herein 
attempts to reformulate context-oriented computation in 
terms of a smaller, more primitive set of concepts that are 
simpler to work with yet more flexible and powerful. When 
moving from Smalltalk to Self, some of the language con-
cepts, such as classes, became organizational patterns, such 
as traits. Likewise, when moving from some other context-
oriented language to Korz, some of the language concepts, 
such as objects and layers, become organizational patterns.  

With the Korz computational model, a system consists of 
a sea of slots (containing data values or methods), orga-
nized in a multidimensional slot space. Computation occurs 
in a context, which is also multidimensional, binding specif-
ic values to some or all of the dimensions in the slot space. 
At each computation step, a slot is selected from the space, 
using multiple dispatch that is based on the context, a selec-
tor, and explicit arguments, and then that slot is evaluated. 
The context is implicitly passed along to this evaluation, 
and hence serves as a set of implicit arguments. 

Korz reduces to procedural programming in the zero-
dimensional case, and object-oriented programming in the 
one-dimensional case (the single, implicit context element 
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being the “self” or “this” object). We believe Korz to be 
simpler, more flexible, more dynamic, and more expressive 
than previous approaches, particularly for evolving a pro-
gram when additional kinds of variation are needed.  

Multiple dispatch, implicit named arguments, and slot (or 
generic function) based models have each been around for a 
long time. Korz’s contribution lies in their combination, 
which yields more than the sum of the parts. Multiple dis-
patch supports multiple dimensions of variation, implicit 
arguments support evolution and contextual programming, 
and the slot-based metaphor allows for subjective gathering 
of slots into different “objects” for different situations. To-
gether, they allow a program to be easily extended to ac-
commodate new kinds of variation and new perspectives.  

We have built and exercised a prototype Korz implemen-
tation using the Self language, virtual machine and envi-
ronment. Our Korz prototype includes an interpreter, de-
bugger, and a partial interactive development environment 
(IDE). The syntax used in the prototype is based on Self 
syntax; however, to enhance the readability of examples in 
this paper, we present them in a Java(Script)-like syntax. 

This paper describes the Korz model, discusses the prin-
ciples behind it, and shows how it eases program construc-
tion and evolution. Section 2 gives an overview of Korz 
concepts, using a simple example. Section 3 provides a 
Korz language definition. Section 4 provides a more com-
prehensive Korz programming example, illustrating some 
of the power and benefits of the Korz approach. Section 5 
discusses some issues arising out of the example, briefly 
illustrating our prototype Korz IDE. Section 6 discusses the 
programmer’s conceptual model of a Korz system. Subse-
quent sections describe related and potential future work,  
and the appendices explore more deeply some interesting 
issues arising out of the present work. 

2. Overview of Korz Concepts 
This section introduces basic Korz concepts and terminolo-
gy using a simple stack example shown in Figures 1 
through 3. The stack implementation evolves to include a 
variant with assertion checking, and the particular collec-
tion of slots seen by any given caller depends on its particu-
lar implicit context. This brief example illustrates funda-
mental Korz mechanisms, rather than exemplifying realistic 
Korz usage; the example is too simple to actually warrant 
use of Korz, or other advanced formalisms, in actual prac-
tice. Section 4 will provide a more comprehensive example, 
after Section 3 defines the language. 

Korz adopts the radical stance of altering the fundamen-
tal language-level notion of object. In place of an object 
that constitutes identity as well as a set of slots, Korz has a 
coordinate that is solely a value that constitutes an identity; 
and instead of being contained by a single object, a slot 
pertains to a number of coordinates, as indicated by part of 
its slot guard (the slot guard also includes a selector and a 
list of explicit positional parameters). In the simple stack 
example shown in Figures 1 through 3, examples of coordi-
nates include: that referred to by the literal 0, the contents 
of the constant slots true and stackParent, and the contents 
of the variable slot stack1. 

In Korz, a message send occurs in a context consisting of 
a number of coordinates, each in a particular role (or “along 
a dimension”). The context, selector, and explicit positional 
arguments of the message send determine the slot to be 
evaluated. In Figure 2, {rcvr: stack1}.push(100) is an exam-
ple of a message send. The context for the message send 
will include the coordinate stack1 in the rcvr dimension, 
and, depending on the chain of sends leading up to this 
send, the context might also implicitly include a coordinate 
in the assertions dimension: true or possibly false. In some 
circumstances (discussed in subsequent sections), syntactic 
sugar can reduce the code for this message send to 
stack1.push(100). 

The code in Figure 1 is structured using a pattern pio-
neered in Self, in which prototype objects define data slots, 
and new objects are created by copying prototypes, which 
gives them their own data slots. Method slots are defined in 
the parent of the prototype, which also becomes the parent 
of the new objects when the prototype is copied. The meth-
ods are thus inherited by all the copies. 

// (coord for) prototype parent, with method slots 
def  {}  stackParent = newCoord; 
method  { rcvr ≤ stackParent }  pop() {  
    sp = sp - 1; 
    return contents[sp]; 
} 
method  { rcvr ≤ stackParent }  push(x) {  
    contents[sp] = x; 
    sp = sp + 1; 
} 
method  { rcvr ≤ stackParent }  copy() {  
    ...  
} 
// (coord for) prototype, with data slots 
def  {}  stack = newCoord extending stackParent; 
var  { rcvr ≤ stack }  sp = 0;  
var  { rcvr ≤ stack }  contents = array.copy(); 

Figure 1. Simple stack example – stack definition.

method  {}  main() {  
    var  stack1 = stack.copy(); 
    var  stack2 = stack.copy(); 
 
    stack1.push(100); 
        // -same as- {rcvr: stack1}.push(100); 
 
    stack2.push(200); 
    var  sum  =  stack1.pop() + stack1.pop(); // Oops! 
} 

main(); // Results in negative sp! !
Figure 2. Simple stack example – stack usage.



The code in Figure 1 begins by creating a coordinate for 
method slots that will be inherited by the stack prototype 
and by all stacks copied from that prototype. The coordinate 
is contained in the constant slot stackParent, and because 
the braces in the slot guard ‘{} stackParent’, are empty, that 
slot is globally accessible; i.e., the stackParent slot is not 
constrained at all with respect to the contexts from which it 
is accessible, so it is accessible from any context. Pop, 
push, and copy methods are then defined, and placed in 
slots with corresponding selectors, with slot guards that 
indicate that they pertain to stackParent, which we say is 
“in the role of” rcvr, or “along the dimension” rcvr. That is, 
messages sent with a context that includes the coordinate 
stackParent in the rcvr dimension, or any coordinate de-
scended from stackParent, as well as an appropriate selector 
and argument list, will match these methods (regardless of 
any additional dimension-coordinate pairs in the context). 
Dimensions other than rcvr can be used, but rcvr is analo-
gous to the ‘receiver’ or ‘this’ object of object-oriented lan-
guages, and is thus familiar (see Appendix C.2 for discus-
sion). In keeping with the JavaScript-like syntax, the exam-
ples include ‘()’ after invocations of methods like pop and 
copy that have no explicit arguments, even though Korz 
unifies state and behavior so that even variables are subjec-
tive, and such empty parentheses are optional. 

The code in Figure 1 then creates a coordinate for data 
slots that constitute the prototype stack. That coordinate is 
contained in the constant slot stack, with an empty slot 
guard. Finally, Figure 1 defines sp and contents data slots 
pertaining to stack in the rcvr dimension. The ‘0’ used as 
the initial value of sp is a literal that denotes a coordinate 
representing the number zero. 

Figure 2 contains a globally-accessible main() method, 
and its invocation. main() begins by copying the stack pro-
totype twice, and storing the resulting new coordinates in 
the variable slots stack1 and stack2, which are local to the 
main() method. The code in Figure 2 then sends a message 
with a context that includes stack1 in the rcvr dimension. 
The message also includes the selector push, and the argu-
ment 100. The context, selector and explicit arguments of 
the message send are all used to find an appropriate slot in 
the slot space – the slot whose slot guard best matches the 
components of the message send (the dispatch algorithm is 
discussed in detail in the next section). That slot is then 
evaluated, and a coordinate is returned. Thus, the message 
send {rcvr: stack1}.push(100) results in the push method 
slot of Figure 1 being evaluated, because rcvr: stack1 
matches rcvr ≤ stackParent from the slot guard by virtue of 
the fact that stack1 extends stackParent (it was created by 
copying stack), as well as the fact that the selectors are the 
same and the arguments (100) match the parameters (x). 

In the body of an invoked method, a coordinate from the 
context can be accessed using its role (dimension) name. 
Thus, during the execution of the push method that arises 
out of the message send discussed above, rcvr is bound to 
the coordinate contained in stack1, just as x is bound to the 
coordinate represented by the literal 100 (standard parame-
ter binding). The context thus constitutes a set of implicit 
arguments. By virtue of syntactic sugar involving the rcvr 
dimension being implicit, references such as sp and con-

tents in fact access the data slots pertaining to stack1. E.g., 
sp = sp + 1 in this invocation of push is equivalent to {rcvr: 
stack1}.sp = {rcvr: stack1}.sp + 1.  

The second push in Figure 2 proceeds similarly, but for 
stack2. The final line of the main() method erroneously 
pops stack1 twice; and popping an empty stack leads to a 
negative stack pointer and program failure. 

Figure 3 shows code that could simply be added to the 

existing application to evolve it by defining an assertion-
checking variant of the pop method. The slot guard for this 
method slot is: {rcvr ≤ stackParent, assertions ≤ true} pop(), 
which indicates that the method being defined is contained 
in a slot with selector pop, has no explicit positional para-
meters, and pertains to coordinate stackParent (along the 
rcvr dimension) and to coordinate true (along the assertions 
dimension); that is, the slot is constrained to only be acces-
sible from contexts in which the coordinate in the rcvr di-
mension is stackParent, or a descendant thereof, and the 
coordinate in the assertions dimension is true, or a descen-
dant thereof (and any other dimensions of the context are 
irrelevant to the accessibility of this slot). This slot guard is 
more specific than that of the pop method in Figure 1 be-
cause it has the extra assertions dimension, but is the same 
in other respects (specificity is defined in Section 3). The 
body of this method either detects a violation and issues an 
error message, or alters the context to instead include the 
coordinate false in the assertions dimension (or this could 
have been written to remove the the assertions dimension 
entirely) and then sends a pop() message, resulting in the 
original pop method in Figure 1 being invoked. 

The code at the end of Figure 3 invokes the existing main 
method, but now in the context assertions: true so that the 
assertion-checking variant of pop is used instead of the 
original pop method. This results in the attempted invariant 
violation being detected and prevented, and an error mes-
sage being issued. The key to this example is that message 
sends for which the context does not include a coordinate 
for the assertions dimension, or includes the coordinate 
false for the assertions dimension, will see the original pop 
method; whereas message sends in which the context in-
cludes the coordinate true for the assertions dimension will 
see the assertion-checking pop method. Two facts are par-
ticularly noteworthy: (1) The binding assertions: true in the 
context of the send of the main message is implicitly carried 
through the main method; methods like main do not even 
need to be aware of new dimensions like assertions, and 
certainly don’t need to deal with them in any explicit way. 

method { rcvr ≤ stackParent, assertions ≤ true }  pop() { 
    if  ( sp ≤ 0 ) 
        error("Invariant violated: sp must be > 0"); 
    else  
        return {assertions: false}.pop(); 
            // -or- return {-assertions}.pop(); 
}  !
{assertions: true}.main(); // Results in error msg !
Figure 3. Code to add assertion checking.



(2) A pop message send with assertions: true in the context 
matches both pop slots, but the assertion-checking pop is 
used because it is more specific than the other. 

This section concludes by contrasting Korz with existing 
(prototype-based) object-oriented languages such as Self 
and JavaScript. In such languages, the notion of object can 
be viewed as playing many roles: identity, context, refer-
ence, message destination, and set-of-slots. Computation 
proceeds by sending a message to (a reference to) an object, 
that reference often being the implicit context of the method 
enclosing the send, e.g., self or this. The message’s target 
object determines a set of slots (including via inheritance). 
The message invokes the slot with the corresponding name, 
and that slot runs and returns another reference to an object. 
To create a new thing, one copies an old object to get a 
(reference to a) new object. 

Korz deconstructs the notion of object, and recasts pro-
gram structure within a multidimensional framework. Co-
ordinate hierarchies and inheritance along each of a number 
of dimensions are supported. With Korz, the notion of a 
single object as the receiver of a message is replaced with a 
context for the message, consisting of zero or more dimen-
sion-coordinate pairs, which are used, together with the 
selector and arguments, to determine the slot to be evaluat-
ed. A given dimension-coordinate pair may be specified 
explicitly as part of the message send, or it may have been 
previously set and implicitly carried along a sequence of 
message sends / method invocations. A new thing can be 
created by expanding the slot space, using a copy method 
that creates a new coordinate and a number of slots pertain-
ing to it, and returns the new coordinate. 

3. Language Definition 
A body of Korz code is termed a slot space: a collection of 
slots organized in a multidimensional space. Execution oc-
curs when an expression is evaluated relative to the slot 
space. Expression evaluation usually involves sending mes-
sages. Each message send occurs in an implicit context 
(comprised of implicit arguments) and specifies a selector 
and explicit arguments. The context, selector and arguments 
(three kinds of bindings) are all used to find an appropriate 
slot in the slot space, by finding the slot whose slot guard 
(consisting of corresponding constraints) best matches the 
bindings. If a most-suitable slot is found, it is then evaluat-
ed to yield the result of the message send. 

We first describe an abstract syntax for Korz slot spaces.  
We then describe the semantics of the interpreter. Both de-
scriptions are semi-formal, with the intent of combining 
precision and readability.  

3.1 Abstract Syntax 

The abstract syntax described here should be thought of as 
the representation used by the interpreter rather than a rep-
resentation close to any concrete syntax. It is illustrated 
using the simple stack example from Section 2, using the 
concrete syntax from that section. 

3.1.1 Slot Space 
A Korz slot space is a tuple SS = (C, p, D, L, S) where: 
• C is a set of coordinates,  
• p is a parent relation on coordinates,  
• D is a set of dimension names, 
• L is a set of selectors, 
• S is a set of slots. 
Each slot consists of: 

• A slot guard, sg = (dcs, l, pct), where: 
- dcs is a dimension constraint set, made up of di-

mension constraints (which are context/implicit 
parameter constraints) 

- l is a selector 
- pct is a parameter constraint tuple, made up of pa-

rameter constraints 
• Contents, which can be: 

- A coordinate, or 
- The special assignment primitive, or 
- A method body, which consists of: 

• 0 or more local variable declarations, and 
• An expression, usually a sequence of sub-expres-

sions, which can be message sends or various 
other forms. 

In this exposition, whenever we have tuples in the ab-
stract syntax, we use the component names as the names of 
functions providing access to the components. Thus for SS 
above, C(SS) denotes the coordinate set of SS, p(SS) de-
notes its parent relation, etc. 

Each of these elements, and their sub-elements, are now 
described in more detail. The exposition is done mostly 
bottom-up, so that we can keep building on known con-
cepts; the map above puts the elements in context. 

3.1.2 Coordinates 
C is a set of coordinates. A coordinate c ∈ C is an im-
mutable value that serves as an identity. Examples of coor-
dinates from Section 2 are: the literal 0, and the contents of 
the constant slot true and of the variable slot stack1. 

Given two coordinates, one can determine whether or not 
they are in fact the same coordinate, i.e., whether c1 = c2. 
Some coordinates may be numbers, characters or strings, 
denoted by literals in the usual way. One special coordinate, 
denoted here by any, is always in C. Any is never explicitly 
written. We discuss any below. Other coordinates are creat-
ed on demand by the coordinate creation primitive (denoted 
newCoord in the concrete syntax used in the stack 
example). This primitive is an expression but not a literal. 
Each time it is used, a new coordinate is created that is 
guaranteed not to be the same as any other coordinate.  

Coordinates are analogous to object IDs/pointers in pure 
object-oriented languages (OOPLs): In an OOPL, every 
value refers to some object; in Korz, every value is some 
coordinate. In an OOPL, once an object is created, there 
may be no textual expression denoting it; in Korz, once a 
coordinate is created, there may be no textual expression 
denoting it. In an OOPL, we write object1 or aCar when 
writing about an object; the identifiers denote variables 
containing object references. In Korz we write coordinate1 



or aCar when writing about a coordinate; the identifiers 
denote variables containing coordinates. 

3.1.3 Parents and Ancestors 
Korz supports inheritance through the parent relation on 
coordinates, p: C x C → { T, F }, where T and F are the 
Boolean values. If p(c1, c2) = T, then c2 is said to be a parent 
of. c1. In Section 2, stackParent is the parent of stack. By 
definition, any is the parent of exactly those coordinates 
that have no other parents. 

The reflexive, transitive closure of the parent relation 
induces a partial order of generality/specificity:  

c1 ≼ c2    ≡   c1 = c2   ∨  p(c1, c2)  ∨ 
  ∃ c′ ∈ C such that c1 ≼ c′ ∧ c′ ≼ c2 

The partial order relation ‘≼’ can be read ‘is at most as 
general as’ or ‘is at least as specific as,’ and is analogous to 
the subtyping relations found in many languages. Like a 
subtyping relation, ‘≼’ is partial because two coordinates 
may be unrelated by parentage, with neither being at least 
as specific as the other. However, every coordinate is at 
least as specific as any: 

∀ c ∈ C: c ≼ any 
The generality/specificity partial order relation will be 

extended to composite structures involving coordinates. In 
all cases, equality can be defined in the usual way: 

x = y   ≡   x ≼ y  ∧  y ≼ x 

3.1.4 Identifiers and Dimension Names 
As is customary, an identifier is a sequence of a restricted 
set of characters. Examples of identifiers from Section 2 
are: sp, pop, push and x. Identifiers can be compared for 
equality, and are used for variable and parameter names and 
the like. A Korz slot space includes a set, D, of identifiers 
used as dimension names, and hence defining the dimen-
sional structure of the slot space. Examples of dimension 
names from Section 2 are: rcvr and assertions. 

3.1.5 Selectors 
L is a set of selectors. A selector is a sequence of characters 
used in a message to indicate the desired action, including 
method invocation, variable access, and variable assign-
ment. Selectors can be compared for equality. 

Korz selectors are just like those in other languages. In 
object-oriented languages in the C family, selectors are 
method names (identifiers), and sometimes operator sym-
bols (C++). Smalltalk and Self use identifiers for unary 
selectors, operator symbols for binary operators and se-
quences of one or more colon-terminated identifiers for 
keyword selectors.  

The precise syntax of Korz selectors is not material here. 
In the simple stack example we used identifiers for selec-
tors. Examples from Section 2 are: pop and push. 

3.1.6 Context: Dimension Binding Set 
Each step of Korz execution consists of evaluating an ex-
pression in a context, which is a set of dimension bindings 
that are passed implicitly with invocations. A dimension 

binding is a pair, db = (dim, coord), where dim ∈ D is a 
dimension name, and coord ∈ C is a coordinate. The coor-
dinate specifies a binding for that dimension: a particular 
position on the dimension. A given coordinate can be used 
in more than one dimension. For example, one can imagine 
true being bound to a number of different dimensions. 

 A dimension binding set, dbs = { db1, db2, …, dbn } is a 
set of 0 or more dimension bindings, containing at most one 
dimension binding per dimension of the slot space. Not all 
dimensions in the slot space need be mentioned in dbs; any 
dimension not mentioned is considered irrelevant. A context 
is a dimension binding set. 

3.1.7 Argument Tuple 
In addition to implicitly-passed arguments as the values of 
dimensions in the context, Korz supports explicitly-passed 
positional arguments. An argument tuple, args = ( arg1, 
arg2, …,argn ) is a tuple of 0 or more arguments, each ar-
gument being an expression (defined below).  

3.1.8 Dimension Constraints 
A slot space includes dimension constraints that will partic-
ipate in slot selection (below) by constraining the set of 
acceptable coordinates that may be bound to a specific di-
mension. A dimension constraint is a pair, dc = (dim, co-
ord), where dim ∈ D is a dimension name and coord ∈ C is 
a coordinate. The coordinate specifies a particular position 
on the dimension. Examples of dimension constraints from 
Section 2 are: rcvr ≤ stack and assertions ≤ true . 

A dimension constraint means that the coordinate bound 
to the dimension is constrained to be at least as specific as 
the coordinate specified in the constraint (i.e., the same as 
the coordinate in the constraint, or more specific than the 
coordinate in the constraint). Wherever a dimension con-
straint is needed, a dimension name alone may be written, 
omitting the coordinate. In that case the coordinate is un-
derstood to be any. 

A dimension constraint can be tested to see if it is at least 
as specific as another dimension constraint: 

dc ≼ dc′ ≡ dim(dc)  = dim(dc′) ∧  
 coord(dc)  ≼ coord(dc′) 

A dimension constraint set, dcs = { dc1, dc2, …, dcn }, is 
a set of 0 or more dimension constraints, containing at most 
one dimension constraint per dimension of the slot space. 
When we get informal, we may use context constraint as a 
synonym for dimension constraint set. 

A dimension binding (Section 3.1.6) can be tested to see 
if it satisfies (‘⊑’)a dimension constraint: 

db ⊑ dc ≡  dim(db)  = dim(dc) ∧  
 coord(db)  ≼ coord(dc) 

A dimension binding set satisfies a dimension constraint 
set if every constraint is satisfied by one of the bindings: 

dbs ⊑ dcs  ≡  ∀ dc ∈ dcs  ∃ db ∈ dbs such that db ⊑ dc 
The binding set may include bindings for additional dimen-
sions; since these dimensions are absent from the constraint 
set, they are considered unconstrained and hence irrelevant 
to this satisfaction relation. 



A dimension constraint set is at least as specific as an-
other dimension constraint set if it has extra dimensions or, 
in the case of equal dimensions, its coordinates are at least 
as specific. Inheritance in the matching dimensions does not 
matter in the case where one dimension constraint set has 
additional dimensions. In other words, additional dimen-
sions trump inheritance, which is why line 3 below does not 
test for specificity: 
dcs ≼ dcs′ ≡  
1. | dcs |  >  | dcs′ |  ∧ 
2. ∀ dc′ ∈ dcs′ ∃ dc ∈ dcs such that 
3. dim(dc) = dim(dc′) 
4. ∨ 
5. | dcs |  =  | dcs′ | ∧ 
6. ∀ dc′ ∈ dcs′ ∃ dc ∈ dcs such that  dc ≼ dc′ 
The implications of having additional dimensions trump 
inheritance are discussed further in Appendix B. 

3.1.9 Parameter Constraints 
A method slot that requires positional arguments will de-
clare (and optionally constrain) the corresponding formal 
parameters with parameter constraints. A parameter con-
straint is a pair, pc = (param-name, coord), where param-
name is the parameter name, which is an identifier, and 
coord ∈ C is a coordinate, which constrains the correspond-
ing argument to be at least as specific as coord. Coord may 
be any, declaring but not constraining the parameter. In a 
concrete syntax, the coordinate is likely to be omitted in 
this unconstrained case, as was done in Section 2.  

A parameter constraint is thus similar to a dimension 
constraint, but constrains the value of an argument rather 
than a dimension, and the declaration is used to declare an 
explicitly-passed formal parameter, rather than an implicit-
ly-passed value for a dimension in the context.  

A parameter constraint tuple pct = (pc1, pc2, …, pcm) is 
an ordered tuple of 0 or more parameter constraints. The ith 
parameter constraint of a parameter constraint tuple, pct, is 
denoted by pci(pct). The arity of a parameter constraint tu-
ple pct, denoted by | pct |, is the number of parameter con-
straints in the parameter constraint tuple. Informally, we 
may use ‘parameter guard’ for ‘parameter constraint tuple’. 

For example, the method below includes a single para-
meter constraint, named x : 
method  {}  push( x ≤ number ); // x must be a number 

Arguments may be tested for satisfaction against parame-
ter constraints. An argument tuple satisfies a parameter con-
straint tuple if they have equal arity and every argument is 
at least as specific as the corresponding constraint: 

args ⊑ pct ≡  | args | = | pct |  ∧  
      ∀ i ∈  [ 1,  | args | ]:  argsi ≼ coord(pci(pct)) 

Parameter constraint tuples may be compared for speci-
ficity. They require equal arity to be comparable, since 
methods with different numbers of parameters can never 
match the same message: 

pct ≼ pct′  ≡ 
1. | pct |  =  | pct′ |  ∧ 
2. ∀ i ∈ [ 1,  | pct | ]: 

3. coord(pci(pct))  ≼  coord(pci(pct′)) 
Since parameters are passed positionally, the param-names 
play no part in specificity; as in many languages, they are 
used only to provide access to the argument values within 
the method body. 

3.1.10 Slot Guards 
A slot guard specifies the conditions for a slot to match a 
specific message, and hence be a candidate for evaluation in 
response to that message. The matching depends on three 
factors: the implicit context in which the message is sent (a 
dimension binding set), the selector used in the message, 
which indicates the desired action, and the explicit argu-
ments (actual parameters) provided as part of the message. 
Accordingly, a slot guard, sg = (dcs, l, pct), is a triple con-
sisting of a dimension constraint set dcs, a selector l ∈ L 
and a parameter constraint tuple pct. 

Slot guards may be compared for specificity: 
sg ≼ sg′  ≡ dcs(sg) ≼ dcs(sg′) ∧  
 l(sg) = l(sg′) ∧  

 pct(sg) ≼ pct(sg′) 
Slot guards with different selectors are incomparable. 

Examples of slot guards from Section 2 are:  
{ rcvr ≤ stackParent } push(x) 
and 
{ rcvr ≤ stackParent, assertions ≤ true } pop().  

3.1.11 Slot 
A slot is a pair, s = (sg, contents), where sg is a slot guard. 
No two slots in a slot space may have equal slot guards 
(i.e., slot guards all of whose components are equal, ignor-
ing parameter names). Contents may be one of: 
•  A coordinate, in which case the slot is a data slot. 
• The assignment primitive, in which case the slot is an 

assignment slot. In this case the parameter guard must 
specify a single parameter (to hold the value to be as-
signed), and the assignment slot must be paired with a 
data slot (thus forming a getter/setter pair). This pairing 
might be done using selector conventions, such as ‘x’ for 
a data slot and ‘x:’ or ‘setX’ for the corresponding as-
signment slot. A message sent to the assignment slot sets 
the value of the corresponding data slot. 

• A method body (defined below), in which case the slot is 
a method slot.  
Examples of slot declarations from Section 2 are: 

    var {rcvr ≤ stack} sp = 0; 
and 
    method {rcvr ≤ stackParent} pop()  { ... } . 

The var in this syntax declares both sp as a data slot and 
also a corresponding assignment slot that is invoked by 
assignment expressions like ‘sp = 0.’ The method indi-
cates that pop is a method slot. 



3.1.12 Method Body 
A method body is a pair (vars, exp), where vars is a se-
quence of 0 or more local variable declarations, and exp is 
an expression (usually consisting of a sequence of sub-ex-
pressions). A local variable declaration is a pair (name, val-
ue), where name is an identifier and value is an expression 
specifying the initial value. In a concrete syntax, the value 
can be omitted, and is then taken to be the literal nil. 

3.1.13 Expression 
An expression is a literal, the coordinate creation primitive, 
a message send, a block declaration, or a sequence of (sub-) 
expressions. A variable reference is written as an identifier, 
which is actually a parameterless message send whose ef-
fect is to return the coordinate contained in the variable. As 
in Self, this unification of variable access and message send 
is important to achieving unification of state and behavior. 
In Korz, it enables variable access and assignment to de-
pend on context in just the same way as method invocation. 

3.1.14 Dimension Modifier Set 
When the need arises to execute a sub-expression with a 
different set of dimension bindings (i.e. in a different con-
text) than is used for its enclosing expression, a dimension 
modifier set is used. A dimension modifier set, dms = 
{ dm1, dm2, …, dmn } is a set of dimension modifiers, con-
taining at most one dimension modifier per dimension of 
the slot space. A dimension modifier is a pair dm = (dim, e), 
where dim ∈ D is a dimension name and e is either an ex-
pression, which evaluates to a coordinate; or the symbol 
‘−’, which indicates that any existing binding to the associ-
ated dimension should be removed. Examples of dimension 
modifier sets from Section 2 are: {assertions: true} and {-
assertions}.  

A dimension modifier contains an expression, which is 
evaluated when the modifier is used, whereas a dimension 
binding or dimension constraint contains a coordinate, 
which requires no evaluation. 

3.1.15 Message Send 
A message send is a triple m = (dms, l, args), where dms is 
a dimension modifier set, l ∈ L is a selector, and args = 
(arg1, arg2, ..., argn) is an argument tuple. A message send is 
evaluated relative to a dimension binding set (i.e., in a con-
text). The dimension modifier set serves to specify how the 
incoming dimension binding set (a.k.a. incoming context) 
should be modified to obtain the evaluation dimension 
binding set (a.k.a. evaluation context), which is used to find 
and evaluate the appropriate slot. Examples of message 
sends from Section 2 are: 
   {-assertions}.pop() 
and 
    stack1.push(2)  
which is syntactic sugar for  
    {rcvr: stack1}.push(2). 

In the former example, regardless of any binding for asser-
tions in the incoming dimension binding set, the evaluation 
dimension binding set would include no binding for asser-
tions. Other bindings, e.g., of rcvr, are left unchanged. 

3.1.16 Block Declaration 
Blocks are interesting in Korz, and have been implemented 
in our prototype. They have much in common with blocks 
in Self, but must also deal with binding dimensions appro-
priately. Space precludes discussion of their details here. 

3.2 Semantics 

3.2.1 Execution 
A Korz execution request is a triple (dbs, e, SS), where dbs 
is a dimension binding set (a.k.a. a context), e is an expres-
sion and SS is a slot space. Such a request corresponds to a 
top-level invocation, such as from a read-eval-print loop or 
IDE. In response to the request, the expression e is evaluat-
ed in the context of dimension binding set dbs, using SS to 
find any slots involved in the evaluation. The result of the 
execution is the value of the expression e. 

3.2.2 Expression Evaluation 
Evaluation of an expression returns a value, which is a co-
ordinate. Since it always occurs relative to a dimension 
binding set (i.e., in a context) and uses slots in a slot space, 
expression evaluation is defined by the function val(dbs, e, 
SS), where dbs is a dimension binding set, e an expression, 
and SS a slot space. 
- If e is a literal, val(dbs, e, SS) is the value of the coordi-

nate denoted by the literal; dbs and SS are irrelevant.  
- If e is the coordinate creation primitive, val(dbs, e, SS) 

is a new, unique coordinate, which is added to C(SS) as a 
side-effect; the dimension binding set is irrelevant. 

- If e is a sequence of expressions, (e1, e2, ..., en), each 
expression is evaluated in sequence: vi = val(dbs, ei, SS). 
The value of the expression as a whole is the value of the 
last one, vn. 

- If e is a message send m = (dms, l, args), then evaluation 
involves finding an appropriate slot in SS, and evaluating 
it, which is a four-step process:  
val(dbs, (dms, l, args), SS) = 
1.  args′ = val(dbs, args, SS); 
2.  dbs′ = modifyDimBindings(dbs, dms, SS); 
3.  s = lookup(dbs′, l, args′, SS); 
4.  return val(dbs′, args′, s, SS) 
Step 1 evaluates each argument expression to produce a 
tuple of coordinates. Step 2 applies the dimension bind-
ing modifier to the incoming dimension binding set to 
obtain the evaluation dimension binding set (concepts 
which were introduced above). Step 3 finds the unique 
slot to evaluate; this might fail, in which case an error 
occurs. The error can be handled in various ways, such 
as bringing up the debugger. Step 4 evaluates the slot, 
and returns the result as the value of the message send. 

As mentioned earlier, details of blocks are not described. 



3.2.3 Dimension Binding Modification 

modifyDimBindings(dbs, dms, SS) =  
1. dbs′ = dbs; 
2. for each dimension modifier dm in dms: 
3. if ∃ db ∈ dbs′ such that dim(db) = dim(dm), 
4. remove db from dbs′; 
5. if e(dm) is not ‘−’,  
6. add db = ( dim(dm), val(dbs, e(dm), SS) ) to dbs′; 
7. return dbs′ 

3.2.4 Slot Lookup 
Slot lookup involves attempting to find a single, most spe-
cific slot whose guard matches the message: 
lookup(dbs, l, args, SS) =  
1. m  =  { s ∈ S(SS) | matches(sg(s), dbs, l, args, SS) }; 
2. removeLessSpecific(m, SS); 
3. if | m | = 1, return the member of m; 
4. if | m | = 0, error ‘Not understood’; 
5. if | m | > 1, error ‘Ambiguous’ 

3.2.5 Slot Guard Matching 
Slot guard matching requires matching of the selectors, and 
satisfaction of the constraints: 
matches(sg, dbs, l, args, SS) ≡ 
1. dbs ⊑  dcs(sg) ∧ 

2. l = l (sg) ∧ 
3. args ⊑ pcs(sg) 

3.2.6 Slot Specificity 
Once all matching slots have been found, we need to re-
move any that are less specific than other matching slots: 
removeLessSpecific(m, SS) = 
1. for each slot s ∈ m: 
2. if ∃ s′ ≠ s ∈ m such that sg(s) ≼ sg(s′),  
3. remove s′ from m 
It is safe to use ‘≼’ without worrying about equality be-
tween slot guards because of the restriction that no two slots 
in SS can have equal slot guards. 

3.2.7 Slot Evaluation 

If the contents of a slot is a coordinate, that is its value. 
If the contents of a slot is the assignment primitive, the 

contents of the corresponding data slot is replaced with the 
value of the first and only argument, arg1, and the new con-
tents is the returned value. 

If the contents of a slot is a method body, then an activa-
tion is created to constrain the scope of local variables, the 
dimension binding set (context) is updated to record the 
activation, and then the expression is evaluated: 
val(dbs′, args′, s, SS) = 
1. a = createActivation(dbs′, args′, s); 
2. dbs′′ = activation-dbs(a, dbs′); 
3. return val(dbs′′, expression(contents(s)), SS) 

The createActivation function creates a coordinate to 
represent the activation, and creates data slots associated 

with it in the ‘activation’ dimension to enable variable ac-
cess. For each formal parameter, p, in the slot guard, a (con-
stant) data slot is created with selector param-name(p) and 
value the positionally-corresponding argument value. For 
each dimension constraint in the slot guard, a (constant) 
data slot is created with selector the dimension name and 
value taken from the dimension binding for that dimension. 
This slot enables the value bound to a dimension in the con-
text to be accessed in the method body using the dimension 
name. For each local variable declared in the method body, 
a data slot pair (including an assignment slot) is created 
with selector the variable name and value the value of the 
initialization expression. The slot guards for all these data 
slots include all of the dimension constraints for the method 
slot plus a constraint pairing the activation dimension with 
the activation coordinate. 

In the activation-dbs function, the dimension binding 
set, dbs′, is then enhanced with a binding of the activation 
coordinate to the ‘activation’ dimension. 

Finally, the expression in the method body is evaluated 
to yield the value of the slot. This evaluation occurs with  
the ‘activation’ dimension bound to the activation coordi-
nate above, so messages whose selectors are parameter, 
dimension or local variable names will access slots set up 
by createActivation, yielding the expected results. 

3.2.8 Cloning 
Since Korz is based on prototypes instead of classes it 

creates new things by cloning rather than instantiation. 
Korz provides the clone primitive for this purpose, invoked 
via a message send. The semantics of clone are: 
clone(c) = 
1. c′ = a new coordinate via coordinate-creation primitive 
2. for each s ∈ SS such that sg(s) contains c: 

s′ = a new copy of s, with c′ replacing c in sg(s′) 
3. add s′ to SS 

4. Example 

We now present a fuller example that illustrates how Korz 
can support context dependence, evolution, symmetry and 
subjectivity. The example is inspired by the colored-point 
example that was a popular vehicle for discussing evolution 
of object-oriented programs. Except for the actual display 
of pixels on screens, the code in the figures below has been 
written and tested on our prototype Korz interpreter and 
IDE. To avoid confusion, the discussion below uses coordi-
nate only in its Korz language sense, and will use position 
to talk about where things display on a screen. 

4.1 Make a point 

The starting point for this example is a cartesian, colored 
point. First the program defines Korz coordinates for the 
prototypical point (from which new points will be cloned) 
and its parent (with which methods applicable to all points 
will be associated).  

To make the coordinates accessible, the program defines 
them as the contents of slots. The code below therefore cre-



ates two slots, each containing a new coordinate. The point 
coordinate is declared to have the pointParent coordinate as 
its parent: 
def  {}  pointParent = newCoord; 
def  {}  point = newCoord extending pointParent; 
The empty slot guard “{}” for point means that, in any con-
text, the point message will result in evaluation of the slot 
just defined and return of the point coordinate (provided 
point is not overridden).  

Now the program creates three assignable data slots as-
sociated with the prototypical point coordinate in the rcvr 
dimension (in other words, the implicit argument named 
rcvr; our reasons for using this particular dimension are 
discussed in Appendix C.2.): 
var  {rcvr ≤ point}  x; 
var  {rcvr ≤ point}  y; 
var  {rcvr ≤ point}  color; 
The slot guards, {rcvr ≤ point}, specify that the slots are 
accessible only in contexts in which the rcvr dimension is 
bound to a point, i.e., to a coordinate that is at least as spe-
cific as the point coordinate. For example, the message 
{rcvr:  point}.color (which can be sugared as point.color) 
will return the prototypical point’s color. 

This example needs a method to make a point: 
method  {}  makeAPoint(x, y, c)  {  
	 var x, y, c, p;    
	 p = point.copy;    
	 p.x = x;  p.y = y;  p.color = c;    
	 return p;    
} 
The point.copy method creates a new coordinate whose 
parent is the same as point’s, i.e., pointParent. (Recall that  
copy and copy() are equivalent.) 

4.2 Add a method to display a point 

This method declaration, consisting of slot guardand 
method body, defines a method that displays a point: 
method  {  
	 rcvr ≤ pointParent,     
	 device //dimension required but can be anything}     
display {  
	 device.drawPixel(x, y, color)     
};  
Its guard mentions the device dimension without specifying 
a coordinate. This construct has two related effects:  
• First, any dimension mentioned in the guard must be 

present in the message context in order for the slot to be 
found. In this case, if there is no such dimension in the 
message context, this display slot will not be found. 

• Second, as defined in Section 3.2.7, every dimension 
occurring in a method slot’s guard is placed into the 
scope of the method, so that the dimension identifier can 
be used within the method as a reference to that dimen-
sion’s coordinate from the incoming context.  

Consequently, if the message context has a dimension 
named device, this slot can be found, and the coordinate 
that is bound to the device dimension becomes bound to 
‘device’ and will be used for displaying. 

4.3 Add a screen object that can draw pixels 

The example needs a screen object to use as the device co-
ordinate. The screen needs a drawPixel method: 
def  {}  screenParent = newCoord; 
def  {}  screen = newCoord extending screenParent; 
 
method  {rcvr ≤ screenParent}  drawPixel(x, y, color)  {  
	 	 // draw the pixel in the color        
} 
Given these definitions, one would normally have con-
strained the device dimension in the display method earlier 
to be at least as specific as screenParent (or, more likely, a 
more general deviceParent coordinate). We left it uncon-
strained in this example to illustrate that capability. 

4.4 Drawing a point and more complicated figures 

If p1 is a point, and s is a screen (a coordinate at least as 
specific as screenParent), the programmer can write: 
	 {rcvr: p1, device: s}.display    
That was a significant amount of setup for a simple exam-
ple, but we are now well positioned for more complex cases 
and for evolution. 

Consider figures that contain many (e.g. three) points: 
def  {} figureParent = newCoord 
def  {} figure = newCoord extending figureParent; 
var  {rcvr ≤ figure}  point1; 
var  {rcvr ≤ figure}  point2; 
var  {rcvr ≤ figure}  point3; 
method  {rcvr ≤ figureParent}  display {  
	 point1.display;  point2.display;  point3.display     
} 

If f1 is such a figure and s is a screen, this will work:  
{rcvr:f1, device:s}.display. The screen dimension is passed 
down through the figure display method. That method 
doesn’t have to care what device is being used. This is 
analogous to COP [Hirs08]. 

4.5 Add a dimension 

Now suppose that it is necessary to extend this code to ac-
commodate colorblind people. Realizing that colorblindness 
is a separate dimension from the figure or the device (it 
might apply to any figure and any device), the programmer 
need only define a more specialized drawPixel method slot 
to be used when a new isColorblind dimension is present 
and bound to true: 
method  { rcvr ≤ screenParent, isColorblind ≤ true } 
drawPixel(x, y, c)  {  
	 {isColorblind: false}     
	 	 .drawPixel(x, y, c.mapToGrayScale)        
} 



This code reuses the existing true coordinate as a coordi-
nate in this new isColorblind dimension; such reuse is per-
fectly acceptable because the same coordinate can be used 
in different dimensions. Whenever drawPixel is sent to a 
context with a screen for the receiver and isColorblind 
bound to true, the new method will run instead of the old 
drawPixel method. It will map the color to grayscale, and 
then call the old method. This call invokes the old method 
because the original drawPixel slot’s guard omitted isCol-
orblind, which meant that it did not care about it, and would 
accept any value. The code could have used {-isColorblind} 
instead of {isColorblind: false} to remove the binding of that 
dimension from the context instead of rebinding it to false. 

The programmer can test the new capability by evaluat-
ing: 
{ rcvr: f1, device: s, isColorblind: true }.display 

In a complete system, isColorblind would probably not 
be included explicitly in the context of this message that 
calls display; isColorblind would probably have been added 
to the context somewhere up the call stack, such as when a  
colorblind user logs in, and then carried implicitly to this 
point in the code and be included implicitly in the context 
of this message. 

4.6 Add another dimension 

Now suppose that another (somewhat contrived) require-
ment comes up: the need to flip figures upside-down for 
Australian users. This requirement is an example of another 
common dimension, location, which can be a key factor in 
mobile applications. To satisfy this requirement, the pro-
grammer could introduce another dimension with boolean 
coordinates, such as isAussie, but it is better to generalize 
somewhat and introduce a few coordinates to be used in a 
new location dimension: 
def  {}  locationParent = newCoord; 
def  {}  location = newCoord extending locationParent; 
def  {}  southernHemi = newCoord extending location; 
def  {}  australia = newCoord extending southernHemi; 
def  {}  antarctica = newCoord extending southernHemi; 

Now the code uses the location dimension in the guard of 
a new drawPixel slot, and applies the upside-down require-
ment to the entire southern hemisphere: 
method  {  rcvr ≤ screenParent, location ≤ southernHemi  }  
drawPixel(x, y, c) {  
	 { -location }.drawPixel(x, -y, c)     
} 

This new code can be tested with: 
{ rcvr: f1, device: s, location: australia }.display 
and the y coordinate is negated just as desired. 

Now suppose one tests support for colorblind Aus-
tralians: 
{  
	  rcvr: f1,  device: s,      
	 location: australia,  isColorblind: true     
}.display 

This test fails, with an ambiguous error because two 
drawPixel slots match the message: the one for Australians 
and the colorblind one, and neither is more specific than the 
other. The fix is easy: a special-purpose slot whose guard is 
more specific than both of the existing guards and that spec-
ifies how these cases are to be combined: 
method  {  
	 rcvr ≤ screenParent,    
	 isColorblind ≤ true,     
	 location ≤ southernHemi     
}  
drawPixel(x, y, c)  {  
	 {-isColorblind}.drawPixel(x, y, c.mapToGrayScale);    
} 

4.7 Add a specialization 

As a final evolution example, consider specializing the  
display for Antarctica; since it is so cold that people wear 
goggles that may fog up, the image must be magnified by a 
factor of 2, in addition to being inverted: 
method  {  rcvr ≤ screenParent,  location ≤ antarctica  }  
drawPixel(x, y, c) {  
	 {-location}.drawPixel(2 * x,  -2 * y,  c);    
} 
Then 
{ rcvr: f1,  device: s,  location: antarctica }.display 
ends up invoking this method. The message 
{ rcvr: f1,  device: s,   
  isColorblind: true, location: antarctica }.display  
illustrates the implications of our decision to allow matches 
in extra dimensions to trump the specificity of the matches. 
See Appendix B for further details. 

5 Issues Raised by Multidimensional 
Implicit Context 

The move from single-dispatch object-oriented program-
ming to a multidimensional contextual paradigm raises 
some interesting issues. Many of these will require further 
research. Appendix C contains more material on this topic. 

5.1 Symmetry and Subjectivity  

The issues of symmetry and subjectivity in Korz can be 
illustrated with portions of the code for the example in Sec-
tion 4 as shown in the Korz prototype IDE.  

In Figure 4, the green box at the top shows the slot  
method  { rcvr ≤ screenParent,  location ≤ southernHemi }  
  drawPixel(x, y, c) { ... } 
The ellipses near the right of the slot represent the method 
body, which can be viewed in detail by clicking the square 
button beside them. In standard object-oriented languages, 
this slot would be considered as belonging to screenParent. 
Indeed, it does belong to screenParent in Korz too (in the 
rcvr dimension), as shown in the blue box below and to the 
left of it. But it equally-well belongs to southernHemi (in 
the location dimension), as shown in the blue box below 



and to the right of it. Whereas the green box shows an indi-
vidual slot, each blue box shows a collection of slots that 
share a coordinate in one dimension, and can be regarded as 
constituting an object in Korz. Each slot in each object 
shows the other dimensions of variation. The buttons pro-
vided by the IDE for the coordinates in those dimensions 
allow navigation to views of those coordinates as objects. 
For example, pressing one of the buttons labeled ‘location 
=> southernHemi’ on the left of Figure 4 would show a 
view of southernHemi as an object, as at the middle right of 
Figure 4 (the prototype IDE uses double arrows in dimen-
sion bindings, rather than ‘≤’ as used in this paper). 

Thus, instead of an asymmetric organization with a dom-
inant decomposition, in which one of the dimensions (e.g., 
object or class) is primary and the others (e.g., layers, as-
pects or subjects) are secondary, Korz’s conceptual econo-
my (i.e. no objects, no layers, just slots and coordinates) 
provides a symmetric organization, in which slots can be 
grouped into objects based on any dimensions. This notion 
of object is subjective. It allows slots to be gathered togeth-
er into objects in ways that provide different abstractions or 
views, useful for different purposes. This applies to both 
data slots and method slots. A data slot modified via one 
view will manifest the new value in other views also.  

6. Programming with Korz 
In this section, we move from language and dispatch details 
to consider how programmers think about their Korz pro-
grams. Appendix D provides more depth on these topics. 

Slot space versus object model: Traditional object-ori-
ented programmers, when wanting an overall understanding 
of a program, think in terms of an object model, in which 
the inheritance hierarchy plays a key role in organization 
and overall understanding. In Korz, the multidimensional 
slot space assumes this role. Multidimensional spaces are 
conceptually simple and regular, but quickly become large 
and hence complex in detail. Sophisticated IDE support is 
critical to working with them effectively. Since many ob-
ject-oriented programs actually deal with multiple dimen-
sions of variation, Korz’s paradigm, along with a suitable 

environment, may well actually ease the task of working 
with such programs. 

Modularity: Dimensions provide a flexible and power-
ful modularization mechanism that can be used for program 
organization and presentation. A module can be represented 
by a specific dimension, or a coordinate within a specific 
dimension. However, the global scope of dimension names 
in Korz could present problems when merging two Korz 
slot spaces that have some dimension names in common if 
those names are used with different meanings in the two 
spaces. 

Static analysis and programmer assistance: The di-
mensions and coordinates in the slot space provide valuable 
structural information to programmers, and can be used by 
an IDE for intelligent code completion in slot guards and 
dimension binding modifiers. Though Korz is not statically 
typed, the constraints in slot guards provide a good deal of 
information that might be used for type inferencing in the 
same fashion as Agesen’s work for Self [AU94], and hence 
for intelligent code completion as well. 

7. Previous Work 
7.1 Implicit Arguments 

The utility of implicit arguments (or dynamic scoping) for 
evolving programs to take additional aspects of context into 
account has a long history [HP01, Lewi00]. These efforts 
did not link implicit arguments to dynamic dispatch, 
though. Such linkage is possible in CLOS (see below). 

7.2 Multiple Dispatch 

Likewise, multiple dispatch is nothing new, including the 
in tegra t ion wi th ob jec t -or ien ted programming  
[BG93, Cham92, Gabr91]. The Flavors paper explicitly 
included the idea of dispatching on two arguments 
[Moon86, page 4]. The Julia language dispatches methods 
based on multiple, positional arguments, though not on the 
keyword parameters [Beza14]. It does not include implicit 
arguments as Korz does. 

Heinlein has experimented with mulitple-dispatch Vir-
tual Functions in C++ [Hein05], but his dispatch mecha-

Figure 4: IDE views of a slot and the ‘objects’ it pertains to



nism chose the most-recently-executed definition, not the 
most specific. Pirkelbauer et al have presented Open Mul-
ti-Methods for C++ and have shown them to be 
efficient [Pirk07]. 

Delegation Layers [Oste02] is another close relative to 
Korz: combining delegation with virtual classes, but retain-
ing the object as a fundamental entity. 

Traits [Schä03] composed classes out of smaller units. 
As with multiple dispatch, the resulting composite behavior 
depends on multiple, independent factors. Unlike multiple 
dispatch, this idea uses static composition, and remains 
firmly in the object-oriented paradigm of a single runtime 
entity determining the dispatched method. 

7.3 Static Multidimensional Context 

Subject-oriented programming (SOP) [HO93] pioneered 
the notion of subjective objects, and modules called sub-
jects were the precursors of COP layers. The original SOP 
paper [HO93] described dynamic activation and de-activa-
tion of subjects during execution, much like COP layers. 
However, implementations of SOP all performed subject-
composition prior to execution. The same is true of most 
aspected-oriented [Kicz97] approaches, in which aspects 
are woven into classes before execution. 

SOP was extended with multidimensional structure in 
multidimensional separation of concerns (MDSOC) [Tar-
r99]. Whatever modules were used in a program, e.g., 
classes, or subjects, slots were considered to be arranged in 
a multidimensional space, like that of Korz. MDSOC im-
plementations performed composition of collections of slots 
into executable Java programs before execution. Korz adds 
dynamicity and conceptual simplicity by embracing the 
multidimensional space as the runtime program representa-
tion, and using multiple dispatch rather than a separate 
composition step. However, as of now, it does not support 
the richness of composition operators. Further details are 
provided in Appendix D. 

7.4 Dynamic Multidimensional Context 

A modified form of Slate [SA05] provided multiple dis-
patch in a Self-like, prototype-based setting, and even pro-
vides a subjective dispatch with one additional implicit ar-
gument. It does not appear to have been generalized to the 
extent of Korz, though.  

With the notable exceptions of Us [SU96] and PyCon-
text [Löwi07], as far as we know multiple dispatch has not 
usually been combined with implicit arguments. However, 
there is a tantalizing hint that the CLOS creators were going 
in that direction: “it might be useful to use exogenous fea-
tures for method selection. … one might include the process 
in which the operation is being done”  [Gabr91]. PyCon-
text [Löwi07] is notable because it does activate layers ac-
cording to implicit arguments, and those layers can contain 
variables. It is one of the closest existing proposals to Korz, 
differing principally in the layers vs. sea-of-slots formula-
tions. ContextJ [Hirs08] includes a “with” construct that 
may yield a similar effect.  

Korz follows in the grand tradition of Context-Oriented 
Programming (COP) [Appe09, Hirs08, Löwi07], but de-

parts from the earlier notion of layers. (Hirschfeld et al’s 
paper [Hirs08] has an especially good treatment of prior 
work in this regard.) Earlier COP papers conceptualized the 
context-dependent information as a layer of (usually behav-
ior, but state as well for Us and PyContext) slots overlay-
ing a more universal object. When more than one dimen-
sion of variability is required, the layer formulation requires 
a concept of linearization, in order to select from competing 
layers. Korz departs from this tradition by viewing the sys-
tem as a sea of slots, rather than objects and layers, more in 
the tradition of CLOS and Cecil [BG93, Cham92, Gabr91]. 
Our multidimensional formulation may be more parsimo-
nious, in that it has only slots, not objects and layers. How-
ever, we have not yet addressed the “super” or “call-next-
method” issue, which is solved by the layer linearization 
facility in these other languages. We believe the essential 
contribution of COP is not the ability to refer to layers at 
runtime, but rather the ability to vary behavior according to 
multiple dimensions at runtime. 

Also, one advantage cited for COP is that layers are first-
class entities that can be shown directly in source code. For 
Korz, we would rely on the IDE to group slots as needed to 
do the same thing. By not reifying groups of slots (layers) at 
the fundamental language level, we allow the IDE to 
present different groupings as they are needed by the user. 
Korz, Us, and PyContext all allow state (i.e. data slots) to 
be context-dependent, however only Korz goes so far as to 
consider object identity to be subjective. Thus, we avoid the 
dilemma of choosing layer-in-class vs class-in-layer, as 
defined by the JOT paper [Hirs08]. In a way, atomizing 
objects into slots, rather than retaining objects and adding 
layers, is analogous to the simplification made by the origi-
nal Self paper: That paper showed how objects could play 
the roles of both instance and class; this paper shows how 
subjective collections of slots with multidimensional guards 
and implicit arguments can play the role of both objects and 
layers. In each case, IDE support restores the higher-level 
abstractions, while, we believe,the simpler underlying mod-
el provides for greater malleability. 

In this paper we use multidimensionality in a slightly 
different sense than does Hirschfeld et al [Hirs08]: in our 
formulation, since we don’t yet include the selector as a 
dimension, zero dimensions equates to functions, one di-
mension equates to object-oriented programming, and more 
than one dimension equates to dispatch by multiple implicit 
parameters. To us, this seems more consistent (except 
maybe for the selector bit) than their taxonomy in which 
first the selector, then the receiver, then the sender, then 
other parts of context are added to the dimensionality. Be-
cause object-oriented programming code typically uses 
small methods to get the most out of inheritance and poly-
morphism, we believe that using the sender explicitly is less 
useful than using a named implicit argument; there are like-
ly to be many intervening methods between the “sender” of 
interest and the behavioral inflection point. 

The idea of multidimensional implicit context was also 
developed in the Lucid community [AW77, FJ93, PP96, 
SG02, Wan05]. Both that work and ours were independent-
ly inspired by the role of implicit context in human com-
munication. As in Korz, this work adds user-defined dimen-



sions to expressions, with the coordinates determined by 
implicit context. Just as Korz includes dimension modifiers, 
this intensional programming work includes intensional 
operators to navigate the context space. In Korz, context 
propagates down the call chain; in at least some of this 
work ([SG02]) it propagates along a data graph. Korz is an 
imperative object-oriented language, while Lucid and its 
descendants tend to employ variables and code and repre-
sent state as a time-series of immutable values.  

There has even been a meld with Java [Wu09]. In this 
OOIP system, Java classes may have Lucid members, and 
Lucid expressions may refer to members of Java classes. 
Korz integrates multidimensional context into an object-
oriented paradigm; in OOIP multidimensional context is 
tied to a Lucid paradigm, although Lucid code can be 
mixed with Java code. 

Overall, the key distinguishing feature of Korz is that it 
addresses the challenging conjunction of graceful evolution 
and multidimensional variability with its small kernel of 
concepts, without the need for a variety of module types 
and their attendant operations, such as layer activation, 
composition or weaving. We believe that the combination 
of multidimensional dispatch and implicit context provides 
a small, elegant and yet powerful basis for building and, 
especially, evolving systems. 

8. Future Work 
To develop Korz further, we need to come up with a better 
syntax, code up more examples in it, and figure out what to 
do about super. We also want to push the slot name (selec-
tor) into just another dimension with, say, specificity (inher-
itance) based on pattern matching. With some way to limit 
access to a slot, such as lexical scoping, a coordinate con-
tained in such a slot can be used to guard “private” slots, 
providing a more flexible mechanism to enforce invariants, 
even cross-cutting ones, than other schemes we are aware 
of. We have also started to experiment with dimensions that 
alter the behavior of the interpreter, such as handling failure 
or ambiguity. This is the key to supporting method compo-
sition/combination. For example Korz could support En-
sembles [UA10] with a dimension that said: “run every slot 
for this message.” But there is an even more tantalizing 
prospect: if we can devise a suitable way to shift perspec-
tive so that the slot’s contents becomes one more compo-
nent of its guard, rather than a separate contents component, 
then the guard becomes the entire slot, possibly leading to a 
unification of the object and relational models. 

The sea-of-slots, subjective object model of Korz poses 
an interesting challenge for its environment, which will 
have to tame its complexity. We believe it can do so by of-
fering progressive disclosure of dimensions; supporting 
whatever view of the slot space is best suited for the task at 
hand, be it symmetric, a slice, or a projection; and by pro-
viding the illusion of objects in a given perspective. Such a 
perspective must be salient enough to be clear to a pro-
grammer without being constantly distracting. 

9. Conclusion 
Looking at programming through the lens of context, and 
wishing to make it easier to build systems whose behavior 
depends on multiple dimensions of context, we have pro-
posed and implemented a prototype system for Korz, a new 
programming paradigm. Korz generalizes object-oriented 
programming from one (usually implicit) receiver to many 
(usually implicit) “receivers,” each playing a named role 
when a slot is looked up for a message send. Consequently, 
rather than a Korz system being a collection of objects, at 
the most fundamental level it consists of a collection of 
slots, each bound to some set of coordinates. Each slot, 
rather than being included in an object, is linked to one or 
more coordinates (each assigned to a named role or dimen-
sion), by its slot guard. Each coordinate, rather than con-
taining slots, is merely a point of identity with links to the 
related slots in appropriate roles. When a message is sent, it 
has a context consisting of a set of coordinates, each in a 
named role. The dispatch mechanism selects the most spe-
cific slot and runs it. 

Although Korz’s multidimensional collection of slots 
captures more organizational information than a unidimen-
sional set of objects, it can often be helpful to view a sys-
tem as a simple set of objects. If one freezes all but one 
dimension, thus allowing only one dimension to vary, the 
collection of slots takes on the structure of an object-orient-
ed system, isomorphic to objects containing slots. However, 
rebinding one of the frozen dimensions to a different coor-
dinate will change the contents and identities of the “ob-
jects” in the system. At this level, the system is subjective 
and relative to a given perspective. 

Often when programming in an object-oriented style, the 
programmer creates an inheritance hierarchy along some 
dimension of variation, only to get stuck when required to 
add a second, orthogonal dimension of variation. Object-
oriented practice dictates that the classes or prototypes then 
be split into a pluggable architecture, so that items varying 
along the second dimension can be plugged into items vary-
ing along the first. But this transformation is often difficult. 
Aspect-oriented, feature-oriented and related approaches 
address this problem through additional modularity con-
structs to encapsulate concerns that do not align with the 
dominant dimension, but this complicates the object model 
with these additional kinds of modules and the means to 
compose or weave them. Korz offers a better way: addi-
tional slots and dimensions can be added incrementally, 
using only the core mechanism of Korz. 

Korz’s contribution lies in combining a relatively small 
number of pre-existing concepts: multiple dispatch, implic-
it, symmetric, named arguments, and slots with unified state 
and behavior as the fundamental particle. This combination 
yields more than the sum of the parts. Multiple dispatch 
supports multiple dimensions of variation, implicit argu-
ments support evolution and contextual programming, and 
the slot-based metaphor allows for subjective gathering of 
slots into different “objects” for different situations. To-
gether, they allow a program to be easily extended to ac-
commodate new kinds of variation and new perspectives. 
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Appendix A: The Name 
The name “Korz” comes from Korzybski, whose Science 
and Sanity (Korzybski 1933) explained how much one’s 
perspective influences one’s perceptions and thinking. 

Appendix B: Slot Lookup Specificity 
The example in section 4.7 sheds light on an interesting 
design issue for multidimensional languages such as Korz:  



method  { rcvr ≤ screenParent,  location ≤ antarctica }   (1)  
drawPixel(x, y, c)  {  
	 { -location }.drawPixel(2 * x,  -2 * y,  c)     
} 
Consider the following case of message lookup, which was 
mentioned there, but not discussed:  
{ rcvr: f1,  device: s,  isColorblind: true, location: antarctica 
}.display 
This will cause a message send with selector drawPixel and  
context  
{ rcvr: s,  isColorblind: true,  location: antarctica } 
The slot guard of the drawPixel method introduced in sec-
tion 4.7 (and repeated above as (1)) is the most specific in 
the location dimension, but it does not mention the isColor-
blind dimension. On the other hand, the drawPixel method 
introduced at the end of section 4.6 has a guard constraining 
all three dimensions, but the constraint on location is looser 
(less specific): 
method  {	 	 	 	 	    (2) 
	 rcvr ≤  screenParent,    
	 isColorblind ≤ true,     
	 location ≤ southernHemi     
}  
drawPixel(x, y, c)  {  
	 {-isColorblind}.drawPixel(x, y, c.mapToGrayScale);    
} 
 The rule that additional dimensions trump inheritance, de-
fined in Section 3.1.8, means that method (2) will be in-
voked. Since it deals with the isColorblind dimension and 
then removes it before calling drawPixel again, method (1) 
will end up being called with the color mapped to 
grayscale, yielding the correct overall result.  

However, method (2) could have dealt with and removed 
the location dimension instead: 
method  {	 	 	 	 	   (2a) 
	 rcvr ≤ screenParent,    
	 isColorblind ≤ true,     
	 location ≤ southernHemi     
}  
drawPixel(x, y, c)  {  
	 {-location}.drawPixel(x, -y, c);    
} 
In this case, the message above would not have worked as 
intended.This drawPixel method would have been found as 
the most specific and, since it removes the location dimen-
sion, the specialization for Antarctica would not be execut-
ed at all. A new, most-specific method would need to be 
written: 
 method  {  
	 rcvr ≤ screenParent, 
	 isColorblind ≤ true,  
	 location ≤ antarctica 
}  
drawPixel(x, y, c)  {  
	 {-location}.drawPixel(2*x, -2*y, c); 
} 

It is possible that this problem could be solved by using a 
construct like super or call-next-method instead of remov-
ing the location dimension. Defining such a construct for 
the symmetric, multidimensional world of Korz, in which 
dimensions are unordered and considered equal, is chal-
lenging, and remains an issue for future research. 

The design decision for additional dimensions to trump 
inheritance was made to facilitate a common and powerful 
form of evolution in Korz, illustrated earlier in the colored 
point example: the addition of dimensions. Our experience 
early on suggested that this precedence allows such evolu-
tion to happen more gracefully in many cases, without the 
need for writing additional, more-specific methods. This 
rule works especially well when the approach used in this 
example is followed: handling a new dimension by doing 
something and then calling the method again without that 
dimension. The effect of this approach is analogous to 
around advice and proceed in AspectJ [Kicz01]. However, 
our choice may not always do what might be desired.  

The design decision also has the interesting effect that a 
slot that is less specific in one context may not match at all 
in another. Referring back to the formal definition in Sec-
tion 3.1.8, for dimension binding set dbs and dimension 
constraint sets dcs and dcs', 
dbs ⊑ dcs ∧ dcs ≼ dcs' � dbs ⊑ dcs' 
because dcs' could have fewer dimensions but tighter con-
straints on some of the dimensions it does have, tight 
enough that dbs does not satisfy it. This might be confusing 
to programmers when they take a global view of slot speci-
ficity, independent of any specific message send, and then 
consider a particular message with the global view in mind. 
The confusion is removed if one focuses on a particular 
message, considering only slots that match that message. 

To avoid these possibilities of confusion, it might be pos-
sible and desirable to change the rule so that specificity of 
shared dimensions is always considered for dimension con-
straint set specificity, even in the case that extra dimensions 
are present. We expect that this would introduce many more 
ambiguity errors, each requiring a more-specific method to 
be written. This can be annoying, but does help to highlight 
situations where the programmer’s intuition, based on expe-
rience with other languages, may not match the semantics 
of Korz. More research and experience are needed. 

Appendix C: More on Multidimensional 
Context Issues 

The incorporation of symmetric, multidimensional, implicit 
context into Korz raises issues which we explore in more 
depth here. 

C.1 Symmetry and Subjectivity 

The issues of symmetry and subjectivity become clearer 
when one thinks in terms of the multidimensional slot 
space. Figure 5 shows three dimensions of the slot space for 
the color point example of Section 4. Each dimension 
shows the coordinates that are appropriate to it, as well as a 
special don't-care indicator ("-"). Each slot is positioned in 



this space based on the coordinates specified in the dimen-
sion binding set of its slot guard. For any dimension not 
mentioned or not constrained in the slot guard, the don't-
care position is used. The figure shows the position of the 
first slot in Figure 4, whose dimension constraint set is: 

 { rcvr ≤ screenParent, location ≤ southernHemi } 
Since isColorblind is not included in the constraint set, this 
slot is shown in the don’t-care position for this dimension. 

The space is symmetrical in that there is no dominant 
dimension that determines the program structure. Instead, 
the developer can have the IDE present a variety of asym-
metrical, subjective views of this space that are appropriate 
for different purposes. For example, for working on screen 
display issues in general, the view in Figure 6 presenting 
screenParent as an object with all relevant slots is best; for 
focussing on support for location, views like Figure 7 pre-
senting southernHemi and other locations as an object is 
best; and for working on accessibility and ensuring that 
colorblind users are well supported, a view presenting true 
as an object is best, ideally filtered to focus on the isColor-
blind dimension (since true is likely to be widely used as a 
coordinate). Each of these views is obtained by cutting 
through the slot space a different way, restricting one's view 
to a plane (or, in general, a region) that is relevant to one's 
current task. They can even be combined as in Figure 4, 
which shows both hierarchies and reifies the slots. 

C.2 Thorny issue: ‘rcvr’ in Korz 

Korz’s use of the dimension rcvr is at odds with two Korz 
principles: that a single receiver is replaced by a multi-di-
mensional context, and that all dimensions are treated 
equally. Let’s use the example in section 4.1 to examine this 
issue. 

It might seem better in the example to have chosen some 
other dimension name, perhaps graphic to indicate that it 
deals with a graphic object. Then the x slot, for example, 
would have been defined as 
var {graphic ≤ point} x; 
There are two problems, however: The first has to do with 
methods like copy, built-in or library methods that apply 
broadly. Such a method must use some dimension for the 
implicit parameter it operates on (such a parameter would 
be the receiver in object-oriented languages), and since the 
possibilities for such a parameter are so broad and generic, 
a domain-specific dimension name like graphic would not 
suit. We could use a dimension name such as object, entity, 
thing or the like, but wanted to avoid confusion between 
coordinates and objects, and also avoid the implication that 
objects occur in only one particular dimension. Another 
possibility might be id or identity, but all coordinates in all 
dimensions are identities. So we chose rcvr, to be sugges-
tive of the object-oriented receiver and ugly enough that we 
will keep thinking about this issue until we solve it more 
satisfactorily.  

One possible solution would be to define methods like 
copy as global methods that take an explicit parameter: 
Instead of  
method  { rcvr }  copy() { ... } 

define 
method  {}  copy(x) { ... } 
This approach breaks down, however, for methods associat-
ed with abstractions like collections, where the use of ex-
plicit parameters becomes clumsy and counter to expecta-
tions of object-oriented programmers. In such cases we 
could possibly use other appropriate dimensions, like col-
lection, rather than rcvr. 

That leads to the second problem: the need to switch 
between dimensions, and its impact on syntactic sugaring. 
Suppose we had used the graphic dimension as suggested 
earlier. The makeAPoint method would now have to be 
written: 
method  {}  makeAPoint(x, y, c)  {  
	 var x, y, c, p;    
	 p = point.copy;    
	 {graphic: p}.x = x;  {graphic: p}.y = y;    
	 {graphic: p }.color = c;    
	 return p;    
} 
This is clumsy, and it gets much worse in the case of cas-
caded expressions. The syntactic sugaring allows one to 
write p.x = x and so on instead, which is much clearer, and 
does exactly what an object-oriented programmer would 
expect. This sugaring, of course, relies on its being clear 
what dimension is involved. In our current implementation, 
that dimension is always assumed to be rcvr, and this is the 
one respect in which rcvr is treated specially. We have be-
gun considering a construct that would allow the program-
mer to specify the dimension to use, which would allow 
makeAPoint to be written something like: 

Figure 5: Three dimensions of the slot 
space for the color point example
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drawPixel(x, y, c) { … }



with implied dimension = graphic {  
	 method  {}  makeAPoint(x, y, c)  {     
	 	 var x, y, c, p;       
	 	 p = {rcvr: point}.copy;       
	 	 p.x = x;  p.y = y;  p.color = c;       
	 	 return p;       
	 }     
} 
Now, unfortunately, the copy message can no longer be 
sugared, because it uses a different dimension (whether rcvr 
or something else), but, on balance, this might be a better 
way to write this particular method. We are also interested 
in IDE support that allows the same code to be viewed in 

different ways, including with different choices of implied 
dimension and consequent sugaring. This viewpoint depen-
dence is within the spirit of the Korz IDE supporting sub-
jectivity. 

In short, there is much interesting research yet to be done 
towards providing true symmetry of dimensions and also 
convenience and familiarity for programmers, especially 
those with backgrounds in object-oriented languages. For 
the present, we reluctantly use rcvr, which provides the fa-
miliarity and convenience, allows 1-dimensional Korz  pro-
grams to look exactly like object-oriented programs, and 
supports convenient addition of “ancillary” dimensions. 

Figure 6: IDE view of screenParent as an object

Figure 7: IDE view of locations as objects



Appendix D: Speculating on Modeling 
and Programming Issues 

Korz’s expressive power comes at a price: the need for 
more help from the IDE. 

D.1 Slot space versus object model 

Traditional object-oriented programmers, when wanting an 
overall understanding of a program, think in terms of an 
object model, in which the inheritance hierarchy plays a key 
role in organization and overall understanding. In Korz, the 
multidimensional slot space assumes this role. To have an 
overall understanding of a program, a developer needs to 
understand what the dimensions are, and what coordinates 
are appropriate on each. Coordinates can have parents, so 
each dimension effectively has an inheritance hierarchy. 
This overall view, which is imparted by visualizations such 
as the one shown in Figure 5, identifies the important con-
cepts in the domain of the program, and indicates what 
combinations of cases are being considered. To some ex-
tent, it serves as an interface. When writing code, one of the 
key issues is what options are available for use in a message 
context, the analogy of what operations are supported by an 
object in an object-oriented language. For example, when 
coding a drawPixel(x, y, color) message send, what options 
are available for the rcvr dimension, and is it sensitive to 
different choices for location or isColorBlind? The structure 
of the space indicates what options are potentially available, 
and views that show how the space is populated indicate 
what options are actually available. Such views can be dy-
namically produced by the IDE. 

The space can also be a useful guide to implementers. 
What cases must be considered and implemented? Suppose, 
for example, that one is working to ensure proper support 
for colorblind users across an application. One can then 
focus on the isColorBlind dimension. Any slot whose coor-
dinate in this dimension is true already supports color 
blindness, and any slot whose coordinate is explicitly false 
presumably provides behavior suitable for people who can 
distinguish colors. The slots in the don't-care position in this 
dimension are worthy of examination. The developer can 
look at each and decide whether color blindness is relevant 
or not, and act accordingly. Analysis performed by the IDE 
could help, for example to identify selectors that have no 
methods with isColorBlind ≤ true yet are related, according 
to some metric, to slots that do. The fact that the slot space 
makes these choices manifest leads to thoughts of such 
analyses, and can be expected to facilitate their implemen-
tation. 

Multidimensional spaces are conceptually simple and 
regular, but quickly become large and hence complex in 
detail. This leads to concern that they will confuse rather 
than help programmers. Certainly sophisticated IDE sup-
port is critical to working with them effectively. However, it 
is important to note that they do not introduce complexity; 
rather, they manifest inherent complexity. A simple program 
that does not deal with many areas of variation will have a 
simple space with few dimensions, perhaps even none. As 
areas of variation arise, as they invariably do in real-life 

programming (and real life in general), more complex 
structures and dependencies are inevitable, and often the 
dependencies are somewhat ad hoc, because only immedi-
ately-needed cases are considered. In most programs, these 
dependencies are hidden in the code and are easy to miss, or 
worse, hidden in requirements or design documentation and 
never explicitly referenced in the code. This makes it diffi-
cult to amass the knowledge of the program needed for evo-
lution tasks, and makes all but the simplest evolution tasks 
dangerous, because it is easy to miss something. The multi-
dimensional structure of Korz make more of the inherent 
structural complexity and dependencies manifest, and en-
courages regularity (or at least can highlight irregularity). 
Hence we believe it has the potential to reduce the effort 
and the risks in evolution tasks. More research is needed to 
test this belief.  

D.2 Modularity 

The issue of modularity in Korz is especially interesting.  
More research is needed, but this section gives some brief,  
informal thoughts. 

On one hand, dimensions provide a flexible and powerful 
modularization mechanism, that can be used for program 
organization and presentation, as described above, and also 
has presence at runtime. A module can be represented by a 
specific dimension, or a coordinate within a specific dimen-
sion. In the first case, the slots to be encapsulated must 
mention that dimension in their guards. In the second case, 
the guards must constrain the dimension to the appropriate 
coordinate. If either of these approaches is followed, slots 
will be modularized and be inaccessible from other modules 
unless the context is explicitly set up to have the appropri-
ate dimension bindings. 

On the other hand, the dimension names in Korz are 
global. This presents problems if one needs to merge two 
Korz slot spaces that have some dimension names in com-
mon, especially if those names are used with different 
meanings in the two spaces. IDE support can help here, 
providing for renaming of dimensions that should be differ-
ent, and handling mapping of coordinates in dimensions 
that should be merged. However, it is an open question as to 
whether this sort of approach is adequate, or whether Korz 
should provide additional mechanism, such as encapsula-
tion of entire slot spaces, or namespaces for dimension 
names. 

D.3 Static analysis and programmer assistance 

The fact that Korz programs consist of large numbers of 
small pieces (slots) means that the programmer is likely to 
need help finding things when needed, and avoiding mis-
takes. At the same time, the dynamic nature of Korz sug-
gests that there are limits to how much help can be provided 
statically.  

The dimensions provide valuable structural information 
to programmers, and identify immediately key areas of 
variability. A simple analysis of the slot space can reveal the 
dimension names, and the sets of coordinates actually used 
in each dimension at any point in time. The results of this 



analysis can be used to provide intelligent code completion 
in slot guards and message sends. 

Though Korz is not statically typed, the constraints in 
slot guards do provide a good deal of information that can 
be used for type inferencing. In addition, Agesen demon-
strated that it is possible to analyze Self programs so as to 
provide the programmer with assistance and checking such 
as is normally expected only in statically-typed languages 
[AU94], and we believe the approach can be extended to 
Korz. 

These and related issues require further research. 

Appendix E: Relationship to SOP, MD-
SOC and AOP 
This section explores in more detail the relationship of Korz 
to subject-oriented programming (SOP), multidimensional 
separation of concerns (MDSOC) and aspect-oriented pro-
gramming (AOP). 

Subject-oriented programming (SOP) [HO93] pioneered 
the notion of subjective objects, and modules called sub-
jects were the precursors of COP layers. Any given object 
had fixed identity across a system. Different subjects could 
associate slots, both data and methods, with objects. Overall 
behavior was determined by composing subjects according 
to programmer-specified composition rules [Ossh96]. This 
composition resulted in instantiation of composed objects at 
runtime, embodying the combined state and behavior of the 
composed subjects, but each subject had its own, restricted, 
subjective view of these objects. The original SOP 
paper [HO93] described dynamic activation and de-activa-
tion of subjects during execution, much like COP layers. 
However, implementations of SOP all performed subject-
composition prior to execution. 

SOP was extended with multidimensional structure in 
multidimensional separation of concerns (MDSOC) [Tar-
r99]. The paper observed that programs typically suffer 
from the tyranny of the dominant decomposition, where the 
programming language supports one particular way of 
modularizing programs, such as by object or class. Con-
cerns that align with the dominant decomposition are well 
modularized, but other concerns (such as features in object-
oriented languages) cannot be; their code ends up being 
scattered across many modules. SOP, aspect-oriented pro-
gramming (AOP) [Kicz97] and related approaches [Elra01], 
and feature-oriented approaches (FOP) [Bato94, Preh97] 
had improved the situation by introducing a second form of 
module (subject, aspect, etc.) that allowed additional kinds 
of concerns to be modularized. MDSOC went beyond two 
dimensions. Whatever modules were used in a program, 
e.g., classes, subjects or aspects, slots were considered to be 
arranged in a multidimensional space, like that of Korz. The 
space was called a hyperspace, and hyperplanes in this 
space, called hyperslices, could be extracted at will, and 
composed into hypermodules by means of composition re-
lationships, analogous to the composition rules of SOP. 
Hypermodules were themselves composable (in fact, hyper-
slices were just primitive hypermodules). This broke the 
tyranny of the dominant decomposition, allowing on-de-
mand remodularization: flexible configuration and recon-

figuration of software to satisfy new requirements or to 
support new evolution tasks, irrespective of the original 
modularization. 

MDSOC was implemented in Hyper/J [OT00] and the 
Concern Manipulation Environment (CME) [Chun05a, 
Chun05b, Harr05], both of which performed the remodular-
ization and composition before execution. Korz adds dy-
namicity and conceptual simplicity by embracing the multi-
dimensional space as the runtime program representation, 
and using multiple dispatch rather than a separate composi-
tion step. However, as of now, it does not support the rich-
ness of composition operators, such as the ability to to exe-
cute multiple methods, each contributed by a different hy-
perslice, in response to a single message. Another limitation 
relative to MDSOC, and especially AOP, is that its support 
for pointcuts (specifying in one place code that is to be exe-
cuted at multiple sites, or join points) is limited to what can 
be done with inheritance. Multidimensional inheritance 
with dynamic parents is powerful, but does not cover the 
case of selector-based patterns. In section 8 we briefly dis-
cussed how small extensions to the Korz model which, we 
believe, make sense in general, have the potential to over-
come the limitations with respect to method composition/
combination and selector-based patterns. 


