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Abstract

Computer programming environments for learning should make it easy to create worlds of
responsive and autonomous objects, such as video games or simulations of animal behavior.
But building such worlds remains difficult, partly because the models and metaphors underlying
traditional programming languages are not particularly suited to the task. This dissertation
investigates new metaphors, environments, and languages that make possible new ways to
create programs -- and, more broadly, new ways to think about programs. In particular, it
introduces the idea of programming with “agents” as a means to help people create worlds
involving responsive, interacting objects. In this context, an agent is a simple mechanism
intended to be understood through anthropomorphic metaphors and endowed with certain
lifelike properties such as autonomy, purposefulness, and emotional state. Complex behavior is
achieved by combining simple agents into more complex structures. While the agent metaphor
enables new ways of thinking about programming, it also raises new problems such as inter-
agent conflict and new tasks such as making the activity of a complex society of agents
understandable to the user. To explore these ideas, a visual programming environment called
LiveWorld has been developed that supports the creation of agent-based models, along with a
series of agent languages that operate in this world.
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Chapter 1 Introduction
We propose to teach AI to children so that they, too,

can think more concretely about mental processes.

 — Seymour Papert (Papert 1980)

The computer is a new medium for thought and expression, radically different from
traditional media in its dynamism, interactivity, and flexibility. A universal device, the computer
can be used to create dynamic interactive models of any conceivable process, mathematical,
biological, or wholly imaginary. If we learn the world by constructing it, now we have at hand a
medium that enables world-building as an everyday learning activity. Theories about how the
world works—say, the laws of physics, or the behavioral patterns of animals—will no longer be
mere dry abstractions but instead form the basis for concrete, visible simulations that can be
observed, tinkered with, and inhabited. Computational environments that permit this sort of
activity ought to be extraordinarily powerful mental tools, with the potential to transform how
we think and learn.

But expressing ideas in this new medium is difficult, and its potential as a learning tool still
largely unrealized. The fundamental skill needed to express dynamic ideas in the interactive
medium is programming—the ability to tell the computer what to do and how to do it. What you
can express (and, more subtly, what you can conceive of wanting to express) depends upon
the tools available. The problem is that current programming tools are rather limited in what
they offer in the way of expressive capabilities. While the computer can be made to do just
about anything, given enough time and expertise, what can be done readily depends upon the
languages and tools offered by the programming environment. This is especially true for young
or novice programmers, who have a limited ability to build up their own abstractions and tools,
and so must depend on those that the environment already supplies.

Computers were first developed to solve mathematical problems and still bear the marks of
their history. Certain modes of thought and ways of structuring activity are woven into the way
we think about computers, modes which are not necessarily the only or best ways of coming
to grips with the potential of this new domain. The name “computer” itself reflects this—
computation is only a part of what computers do now, and they might better be called
“information manipulators” or “dynamic media machines”. Indeed, at the consumer level, this is
what computers have become. People are now accustomed to devices that while labeled
computers are really video games or virtual reality engines or simulations of cities.

But programming, which is the only level of use in which the full power of computation as
an intellectual tool can be realized, is still centered around traditional models of computation. At
this level, a computer is seen as a device for performing mathematical calculations, or executing
a sequence of rote operations—not as a dynamic world in which lifelike activity can take place.
While the computer itself has gone through radical transformations as it penetrates into society
at large, the languages, tools, and concepts used to program them have stayed pretty much the
same.



As a result, a young programmer who might imagine building a dynamic world of interacting
objects (say, a video game or a simulation of an ant colony), will be faced with numerous
obstacles that stand in the way of bringing the vision into reality. Some of these will be inherent
in the complexity of the task, and may not be possible to eliminate, but others will be due to the
lack of proper expressive tools. For instance, few extant programming environments for
novices support even so basic a facility as the ability to create multiple graphic objects that can
move simultaneously and independently while interacting with each other. More fundamentally,
the languages that the environments provide are often not suited to such tasks, because they
rely on models of computation that are not particularly suited to the control of dynamic
behavior.

I have coined the term “animate system” to describe these sorts of dynamic worlds that
involve multiple active and interactive objects. Animate systems are simulated dynamic worlds
that contain multiple independent but interacting graphic actors. I chose the term because its
connotations include animals, animation, and the mind or soul (or anima). This thesis describes
a search for a programming paradigm suitable to the control of behavior in animate systems.

The languages used for programming are defined, enabled, and limited by their underlying
models and metaphors. While computer science strives towards formal definitions of its subject
matter, the practical task of understanding computational entities relies on the informal
technique of borrowing terminology and structure from more familiar domains via metaphoric
mappings. Metaphorically-structured models are so pervasive that sometimes they are hard to
see. Consider the notion of a computational “object”, an understanding of some structure
inside the computer that relies, in subtle ways, upon our existing knowledge of physical
objects. Two examples of more obvious metaphors are the program-as-a-recipe metaphor that
is often used to convey to beginning programmers the idea that the computer is following a
sequential list of instructions, and the spreadsheet metaphor that allows business people to fit a
form of functional programming into a familiar medium. These metaphors provide powerful
frameworks for the understanding and construction of complex systems.

Unfortunately, many if not most real-world tasks do not easily fit into the conceptual
frameworks supplied by these common metaphors. This is true both for the tasks faced by
professional programmers (who more often than not are faced with the task of designing a
program that will function as part of a larger mechanical system, and thus must spend most of
its time reacting to and controlling events in a world outside the formal domain of the
programming language) and the programs that children would like to create if only they could
(for instance, video games with interacting objects). Few languages make tasks like these easy,
because the most important aspects of the task—such as multiple autonomous objects,
reactivity, and goal-directed behavior—have no direct representation in the underlying
metaphor. This is not to say that such systems cannot be built using existing tools, only that
building them requires a good deal of mental contortion that may be beyond the abilities of
novice programmers.

So we seek new models and metaphors for computat ion that  can enable novice
programmers to build dynamic models of behavior. If our interest is in supporting animate
systems, the thought that the programs to build such systems can be based on metaphors of
life and motion is particularly attractive. Anthropomorphic metaphors are used for teaching
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novices how to visualize the operation of a computer, and they are common in the informal
discourse of programmers. But such usages are restricted to the margins of the field, and are
considered somewhat disreputable. Is it possible or desirable to bring the metaphor of a
program as a living thing back into the foreground, and to make greater use of it? What qualities
of programming will change if we try to look at it in animate terms?

There are many aspects of the animate domain that can be usefully mapped onto
computational activity. The human ability to sequentially follow simple instructions was used as
the basis for the Turing’s theoretical machine. More recently, the object-oriented programming
paradigm makes use of the metaphor of “message-passing” as the basis for structuring the
activity of programs that are divided up into a collection of communicating objects. As we shall
see, a degree of animism, explicit or implicit, is present in almost all ways of organizing
computational activity.

Agent-based programming is my term for programming languages and environments that
are explicitly grounded in animate metaphors. An agent,  as we shall  use the term, is any
component of a program or system that is designed to be seen as animate. The term “agent”
suggests a variety of attributes that have not generally been built into the underlying metaphors
of programming; attributes such as purposefulness, autonomy, and the ability to react to
outside stimuli. In other words, agent-based programming builds upon and extends the implicit
animism of computation. Instead of the standard metaphor of the computer as an animate yet
mechanical instruction follower, we substitute the metaphor of the agent that can initiate action
autonomously in order to achieve a goal. Collections of agents work together to create complex
behavior. The general idea of an agent as a component of a larger system is inspired by Marvin
Minsky’s Society of Mind theory (Minsky 1987), although the purposes to which agent-based
programming puts them is different.

Thinking of program components in animate terms suggests a variety of new techniques for
describing program activity to a user. If an agent has an explicit goal, the state of the agent can
now be made available to the user in a meaningful way, through anthropomorphic interfaces.
Goals and satisfaction provide the conceptual tools for thinking about inter-agent conflict, an
important issue in a system with distributed control. A world of autonomous agents pursuing
goals and coming into conflict with one another suggests that program activity can be
represented in the form of narrative, which traditionally deals with motivated actors, their
efforts to realize their goals, and their successes, failures, and conflicts.

Agent-based programming is an attempt to design tools and find new conceptual
foundations for programming that are more suitable to the task of constructing animate
systems. Programming has been said to provide us with an entirely new way of thinking,
sometimes called procedural epistemology—“the structure of knowledge from an imperative
point of view” (Abelson and Sussman 1985). One goal of this thesis is to provide a friendly
critique of the existing forms of procedural epistemology, and an attempt to improve upon
them. Call it an investigation into animate epistemology—an examination of the way we think
about the animate world, how computation makes use of this way of thinking, how it fails to,
and how it might do better.
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1.1 LiveWorld: an Animate Programming Environment

 Any programming environment designed to support the construction of animate systems
has to offer some basic world-modeling capabilities, and offer them in a readily accessible form.
It must support the simultaneous animation of multiple objects. It must support object
autonomy; in that objects can be seen as operating under their own control rather than under
the control of a central program. The objects must be able to sense their environment, which
will consist mostly of other animate objects.

LiveWorld (see figure 1.1) is a programming environment designed to support the
construction of animate systems. While LiveWorld itself is not based on agents, it is a tool that
facilitated the development of the agent-based programming techniques, and as its name implies,
was designed to support a feeling of “liveness”, a quality difficult to define but a crucial part of
establishing the context for agent-based programming. A live environment is one in which there
are a lot of simultaneous activities going on, both at the direct command of the user and as a
result of autonomous agent activity. Users can interact with autonomous objects, and change
their agents while they are running. The feel of LiveWorld sets the stage for agents, by
providing a world in which they can act.

One goal of LiveWorld is to provide a world where computational objects of all kinds can
be readily manipulated. Animate systems are built out of a diverse set of components, and it is
important to have relatively easy-to-use tools that support creation and combination of a
variety of object types. LiveWorld is built around a prototype-inheritance object system which
allows objects to be easily cloned (copied) and modified. Objects are represented as
hierarchically nested boxes, allowing structures of varying degrees of complexity to be
manipulated as single units. Complex objects can be assembled by cloning simpler objects and
dropping them into a container object: for instance, a sensor or behavior can be added to an
animal body in this way. The system is intended to be a construction kit for animate systems,
allowing simulations to be built out of components from libraries.
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Figure 1.1: The LiveWorld environment.
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1.2 Examples of Animate Systems

The idea of animate systems has its origins in the Vivarium project, initiated by Alan Kay
with the mission of developing environments for simulating animal behavior. My work on this
project led to a number of systems for modeling animal behavior in software. One goal of the
present work is to extend some of the ideas developed for simulating animals into new
application domains. Each of these domains involves actors animated by agents, but each
generates a somewhat different intuitive idea about what an agent is and how they should work
together. My own implicit purpose in designing LiveWorld’s agent systems was to see if I could
find an agent-based programming framework that could subsume and unify these divergent
notions of agent.

1.2.1 Video Games and Animation

These tasks provide basic tests of the interactive graphic environment. None of them
require very complicated agent systems. Video games require that objects be able to sense each
other and trigger actions appropriately; this can be done by relatively simple forms of agents.
Objects must be able to be created and deleted, and the user must be able to interact with
objects while they are active. Simple video games don’t require goal-driven agents, although
more complex ones might include characters that pursue goals, which brings them into the
realm of animal behavior.

1.2.2 Animal Behavior Models

Tinbergen’s drive-centered model of animal behavior (Tinbergen 1951), in which a
hierarchical network of drives constituted the control system of an animal, was one of the
ancestors of the Society of Mind theory and provided a basis for LiveWorld’s predecessor, the
Agar animal behavior simulation environment (Travers 1988). LiveWorld’s agent systems
provide a similar level of functionality in a more flexible, general and coherent framework.

In animal behavior models, agents correspond to basic drives, both general and specific.
Some examples of animal tasks are: “survive”, “find-food”, “orient-away-from-predator“ or
“run”. Drives are at best temporarily satisfied and are always in some degree of conflict. That
is, an animal might have multiple top-level drives such as eating, cleaning, and mating, all of
which are to some degree unsatisfied at any one time, and they cannot in general be pursued
simultaneously. Even the top-level goals of survival and reproduction, dictated by evolution,
will be in tension with each other. The satisfaction condition or goal of a drive cannot be easily
modeled as a Boolean predicate, since it may be satisfied to various degrees (i.e. there is a
continuum of levels of hunger-satisfaction between starving and satiated). Animal goals will
usually not be satisfied by a single operation, but will require an iterated effort to achieve a final
state. For instance, the goal “be at the watering hole” will require a series of movement
operations to be achieved.

1.2.3 Graphic Layout and Interactive Constraints
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Another domain usefully viewed in animate terms is that of graphic layout problems, or
more broadly the task of maintaining relationships among graphic objects under change.
Interactive constraint systems have been applied to such problems in the past. As discussed in
section 2.2.3.5, constraints may be usefully viewed as an amalgam of declarative and
procedural information: a constraint both states a condition that should be held true, and
contains procedures for changing the world to make it true. This provides yet another model
for agents. One goal of the LiveWorld agent system, therefore, is to show that agent-based
programming is a useful technique for building interactive graphic constraint systems.
LiveWorld is particularly suited to exploration in this domain because of its integration of
graphic objects and agents.

Agents in constraint problems take a different form than those in animal behavior domains.
In a constraint problem, goals are expected to be satisfied simultaneously rather than
sequentially. Goals are expressions of allowable final states rather than ongoing needs. Even if
constraints are implemented as agents, the role of action is less dominant—whereas the actions
of animals are necessarily limited by their physical constraints, the actions of a constraint agent
can be essentially arbitrary.

The ability to solve graphic layout problems opens up the potential for LiveWorld to define
its own interface behavior using agents. For instance, the constraint that a box be big enough
to display its annotations could be realized by means of appropriate agents and goals, rather
than special purpose internal code. This sort of “interface metacircularity” could serve to make
a more integrated and flexible environment (see 4.2.7).

1.2.4 Blocks World

The blocks world is a classic artificial intelligence microworld domain, and one used in
Society of Mind to illustrate agent operations. While little AI is required to implement these
examples, they do require one capability that has been absent from some of the earlier efforts
at agent-based programming. In particular, tower-building requires the sequential achievement
of goals, a requirement which is not found in constraint problems nor in most simple animal
behavior problems. The precursors to LiveWorld’s agent systems, such as Agar (Travers
1988) and Playground (Fenton and Beck 1989), did not have any real support for sequencing,
which led to some frustration. The blocks world provides a test of the ability of the agent
system to handle sequential tasks that require control state.

1.2.5 Putting it All Together

The problem domains mentioned pose a diverse set of tasks, but the real challenge is to
develop an agent-based programming system that allows simple solutions to the problems using
a single paradigm. To do so, we have to extract the common elements from these diverse
problems and use them as the basis for the design of the system. The common element we seek
is, of course, the agent. All the problems above suggest solutions expressed as collections of
simple, cooperating, task-based, goal-directed modules. The challenge is to design a single agent
system that can express these solutions.
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1.3 Influences and Inspirations

A number of powerful ideas have informed this research and the designs that grew out of
it. This section sketches out this background of ideas and situates the present work in relation
to them.

1.3.1 Society of Mind

The concept of agent used here derives from Marvin Minsky’s Society of Mind (SOM)
theory (Minsky 1987). SOM pictures a mind as a collection of interacting agents, which are
defined operationally as “any part or process of the mind that by itself is simple enough to
understand”. The mind is thus seen as a collection of simple entities, each with their own goals
but somehow connected so that their actions are coordinated. The word “agent” has obvious
animate connotations. While agents are seen as mechanisms, they are mechanisms that are
seen in loosely anthropomorphic terms, having a purpose and (perhaps) a degree of
autonomy.

Agents serve many different purposes: some have representational or perceptual functions
(such as apple o r  red), others are procedural (build,  find-place). Still others are based on a
wide variety of AI methodologies including neural nets, frame-based representations, and GPS-
style goal followers. Because agent is defined so loosely, and there are many different kinds, it
is probably unwise to say much about agents in general. For our purposes, procedural agents
are of the greatest interest. These, more so than others, are described in highly animate terms:
“Your grasping agents want to keep hold”; “add  must call for other agents’ help” (SOM, p20-
21). The idea of procedural agents clearly derives from the computational notion of a
procedure, and like procedure invocations can be seen as hierarchical bureaucracies that
perform complex tasks by parceling them out from top to bottom. But unlike procedures, they
also can have desires and are otherwise anthropomorphized.

In  Minsky’s  te rminology,  “agent”  has  a  dual  te rm:  “agency”.  I f  “agent”  i s  any
understandable part of the mind, then “agency” is “any assembly of parts considered in terms
of what it can accomplish as a unit, without regard to what each of its parts does by itself.”
With these definitions, “agent” and “agency” are to be seen as dual terms for the same thing,
“agent” meaning a mechanism simple enough to be understood in mechanical terms, while
“agency” indicates the same mechanism but viewed in functional or intentional terms.

I recycled the old words “agent” and “agency” because English lacks any standardized way to
distinguish between viewing the activity of an “agent” or piece of machinery as a single process as
seen from outside, and analyzing how that behavior functions inside the structure or “agency” that
produces it (Minsky 1991).

The distinction between these two views or levels of analysis is crucial to Minsky’s attempt
to build a new metaphor system for describing minds. However, the metaphoric mapping is
somewhat unclear. In other domains of research, “agent” has come to mean the very opposite
of what Minsky intends: that is, “agent” (rather than “agency”) now usually means a semi-
intelligent program as seen from the outside. This terminological confusion is unfortunate. Here,
we will use “agent” to mean any process or component that is intended to be understood from
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an animistic perspective. What it means to understand something in this way is discussed in
Chapter 3.

The animate systems that LiveWorld can build are much simpler than human minds, and
incorporate only the most basic parts of SOM. For instance, none of the representational ideas
are implemented, other than a weak version of K-lines (see section 4.6.6). Nonetheless SOM
has functioned as a key stylistic inspiration for agent-based programming. I view LiveWorld as a
step towards building implementations of SOM, if only in that the availability of agent-based
programming environments for children might encourage the development of appropriate styles
of thinking and programming.

1.3.2 Cybernetics, Ethology, Situated Action

The task of simulating animal behavior was the goal of my first efforts in agent-based
programming. Modeling animals led to a new set of perspectives about the nature of intelligence.
The intelligence of animals necessarily manifests itself in the form of behavior and interaction
with their environments, rather than the ability to solve symbolic problems. At the time this
project began, the main stream of artificial intelligence research had rather little to say about
these issues. Instead I was inspired by works from cyberneticists, especially Valentino
Braitenberg’s book Vehicles (Braitenberg 1984), which illustrated a series of ideas about control
by encapsulating them in simple creatures made up of sensors, motors, and neuron-like
components. My first effort at an environment for animate systems, BrainWorks (Travers
1988), was based on this book.

Another source of inspiration was the work of ethologists, scientists who studied animal
behavior in the world. Niko Tinbergen, one of the founders of this field, developed a general
theory of behavioral control (Tinbergen 1951) that formed the basis of my second system,
Agar (Travers 1988), which was based upon an idea of agent derived from Tinbergen’s drive
centers and was more oriented towards producing simulations of actual behavior.

At this time, several groups within the AI community were becoming dissatisfied with the
standard approaches to controlling action and developing alternatives very much along these
lines. In particular, Rod Brooks’ work with robots (Brooks 1986) (Brooks 1991) and the work
of Phil Agre and David Chapman (Agre and Chapman 1987) (Chapman 1991) were influences
on my own work. This school of thought, which has been labeled the “situated action”
movement, is still controversial within AI. This movement has generated a good deal of critical
reflection within AI, which can only be to the good. From a constructive standpoint, however,
the techniques of situated action have had demonstrated successes only in limited domains. It
is not clear how to extend these approaches, which rely on highly specialized control
mechanisms, to the kinds of general capabilities that AI has striven for. However, for the
purposes of this thesis, that is enabling the construction of autonomous and reactive creatures
in interactive environments, they have a clear utility.

Uniting these three strands of research is the idea that understanding intelligence requires
taking into account the relationship between an intelligent creature and its environment.
Intelligence, then, is located not so much in the head, but in the relationship between the mind
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and the world. I’ve found this simple idea intriguing if not absolutely convincing. It has value as
an alternative perspective on thinking about mental processes (some of the epistemological
implications are discussed further in section 2.1.4). However, this approach to thinking about
intelligence is quite appropriate for the task at hand, that is, designing animate environments and
programming systems for them. This task requires that the environment and the minds and
agents be co-designed and work together. The lesson for programming environments is that
what you want your programming language to do depends on the environment in which it will
operate.

1.3.3 Constructivism and Constructionism

The constructionist approach to learning (Papert 1991) underlies the design of LiveWorld
and the general framework of my research. Constructionism derives its name as a variant of the
kindred psychological school of constructivism. The constructivist view of learning and
development (Piaget 1970) presents an image of these processes as both active and creative. It
is active in that it is primarily a process of spontaneous development, in which the learner must
discover knowledge rather than having it delivered from the outside by a teacher. It is creative
in that the process of learning involves building structures of knowledge within the mind,
structures which are original creations, at least relative to the learner. Constructionism shares
the spirit of constructivism, but extends it by emphasizing that learning can be aided by building
actual material objects in the world. The process of construction then takes place in both the
mind and the external shared world. Both approaches to learning encourage the learner to
assume an active and creative role rather than be a passive recipient of information, and both
are opposed to the more prevalent educational philosophy which they label instructionism, in
which learning is seen as a process in which students passively receive information from
teachers.1

Constructionism applied to the use of computers in education results in the idea that
students should be able to use the computer as a construction medium. The implications are
that the computational medium should be flexible: like a piece of paper, it ought to support a
number of different modes of use, levels of skill, and target domains. It also implies that the
locus of control should be the student rather than the computer, as opposed to the more
instructionist versions of educational computer use, in which the model is for the computer to
present the student with a structured series of lessons and quizzes.

The constructionist philosophy underlies the development of Logo, Smalltalk, Boxer and
related programming environments for learning. The LiveWorld environment too is
constructionist in orientation—it provides a computational medium that makes a variety of
computational objects available to novice programmers, and encourages experimentation and
improvisation. One important aspect of the design is to make all aspects of LiveWorld’s
operation and all relevant computational objects accessible to the user through a direct-

1 See section 2.1.1.1. The distinction between instructionism and constructionism directly parallels the
distinction between the conduit and toolmaker images of language use.
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manipulation interface. This also allows some elements of the construction process to take place
through spatial manipulation of parts. Beginning programmers in LiveWorld can build systems
simply by copying, dragging, and combining parts via direct manipulation.

Constructionism has sometimes been overinterpreted to mean that the computational
environment should initially be a completely blank slate, empty so that it eventually be
populated solely by the creations of the user.  LiveWorld takes a looser approach to
constructionism, providing kits of parts and examples that can be copied and modified. Indeed
its prototype-based object system emphasizes this mode of use (see section 4.2.10). This form
of constructionism more realistically reflects how real-world learning takes place, and makes it
possible for students to tinker with complex systems that they could not easily build from
scratch.

A constructivist philosophy also underlies the study of metaphors for computation
presented in Chapters 2 and 3. This method of thinking about how people think about
computation is based upon the view that the knowledge of both experts and novices is
individually constructed, with metaphor being a fundamental construction technique. The fact
that our models of computation are constructed leads to the possibility that there could be
different ways of understanding computing that would provide powerful alternative points of
view. This premise underlies the attempt to construct an approach to programming centered
around the idea of agents. By explicitly designing a language around a powerful metaphor, the
activity of programs can be viewed from a new and useful perspective.

Constructivism and constructionism are radical ideas. Constructivism forces us to
acknowledge that learning is a creative process and that knowledge is constructed rather than
received. Constructionism suggests that this process takes place not only inside the heads of
individuals, but involves interaction with the material and social worlds. Both imply a great deal
of freedom and the possibility of alternative epistemologies. This thesis is an attempt to explore
some of these possibilities for the domain of programming.

1.3.4 Interactive Construction Environments

If constructionism is a philosophy of learning, interactive computer environments provide
both the worlds and raw material where construction can take place. A few programming
environments that were designed to support construction have already been mentioned. But
there are other examples of interactive software that, while not providing as powerful general-
purpose programming tools as Logo (Papert 1980) or Smalltalk (Goldberg and Robson 1983),
succeed in creating highly interactive virtual worlds which are constructionist in their own
fashion. These include interactive constraint systems such as Sketchpad (Sutherland 1963) and
ThingLab (Borning 1979), spreadsheet programs (in terms of widespread adoption, the most
successful variety of constructivist computational media), and some visual construction kits
such as Hookup (see section 2.2.3.2).

What distinguishes these systems is their ability to create a virtual world of reactive objects
that operate autonomously according to rules that the user can construct and control. An
important goal of LiveWorld was to enable this sort of construction. The “liveness” of
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LiveWorld extends not only to being able to build simulations of living animals, but to having
the computational medium itself be lively and reactive.

There is now a large body of software, mostly aimed at children, that presents worlds in
which limited forms of construction take place. Examples are mostly in the form of games such
as SimCity, Pinball Construction Kit, and The Incredible Machine. These systems generally
present a fixed set of objects that operate according to fixed rules, with the user given the
ability to arrange the objects into new configurations. As such, they are not as general or
flexible as the other environments mentioned, but provide inspiration due to their high degree
of liveliness and their ability to provide rich and habitable worlds.

1.4 Overview of the Thesis

The body of this thesis is in four chapters. The first two are primarily conceptual and
analytical, while the last two are more technical and describe implemented software.

1.4.1 Analysis of Metaphors for Programming

Chapter 2 is an analysis of how metaphor systems are used in the understanding and
construction of computation and programming languages. The object of the chapter is to find a
way of thinking about the informal conceptual underpinnings of a field whose knowledge is
more commonly described in mathematical formalisms. It first gives a brief overview of
contemporary metaphor theory, then applies the theory to the analysis of a number of different
models or paradigms for programming. By means of this analysis we can reveal some of the
hidden assumptions that underlie the concept of computation and the languages with which we
approach it.

1.4.2 Agents and Animacy

Chapter 3 continues the task of the previous chapter by exploring a particular type of
metaphor that employs some form of anthropomorphism or animism. Animacy is seen to be, in
itself, a basic category for dealing with the world, with roots deep in innate perceptual
processes. Three relevant characteristics of the animate realm are selected for attention,
because of their centrality to the concept and because of their relevance to computation:
purposefulness, reactivity, and autonomy in the sense of being able to initiate action. Animism
is seen to be central to understanding action, and thus also central to understanding
computational activity.

The chapter examines the use of animism in programming languages, as well as the more
explicitly anthropomorphic constructs found in interface agents and artificial intelligence. We
find that most programming languages involve implicit animate metaphors, but an animacy of a
particularly limited sort that derives from the original conception of the computer as a device for
following instructions.
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At this point, it is possible to more precisely define agent-based programming as an attempt
to construct a new paradigm for programming that makes computational animism explicit and
attempts to extend it beyond the instruction-following metaphor to include the central
properties of animism revealed by our analysis, such as autonomy and goal-directedness.
Various methods for realizing an animism with these properties in computational forms are
explored. Some previous attempts to construct programming systems that operate in this style
are examined and critiqued.

1.4.3 The LiveWorld Programming Environment

Chapter 4 describes the LiveWorld system in more detail. LiveWorld is a visual object-
oriented programming environment that supports the research into agent-based programming
techniques. LiveWorld provides the necessary substrates for this work, including a flexible
prototype-based object system, a simple two-dimensional world for computational actors to
perform in, and a graphical interface that makes the computational objects tangible and
accessible to manipulation. While LiveWorld is primarily a tool to support the main object of
research, it is of some interest in its own right and a necessary step on the road to developing
an environment for agent-based programming. Some of the more innovative features of
LiveWorld are sensors that allow objects to be aware of each other, and the integration of a
spreadsheet-like interface with animated graphic objects.

1.4.4 Agent-Based Programming

Chapter 5 presents a series of agent-based programming systems implemented using
LiveWorld. The first two, Simple Agents and Goal Agents, are computationally fairly trivial but
serve to illustrate some of the key concepts underlying agent-based programming. These
include the idea of agents as separate objects that can be independently manipulated and
integrated into a computational actor, the need to handle concurrency and conflict, the idea of
using goals as a method to organize agent activity, and the use of anthropomorphic icons to
convey agent state and activity to the user. The final agent system, Dynamic Agents, illustrates
how these ideas can function as part of a more powerful and general programming system. A
series of examples shows how the agent systems can implement systems for the selected
problem domains.
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Chapter 2 Metaphors and Models
for Computation

It may be that universal history is the history of a
handful of metaphors.

— Jorge Luis Borges, “The Fearful Sphere of Pascal” (Borges
1962)

We have defined agent-based programming as a method of thinking about computational
activity that is explicitly organized around animate metaphors. This chapter and the next are
attempts to expand this definition by looking closely at both metaphor and animacy and the
roles they play in structuring the computational domain. We will see that computation, like
almost all specialized domains of knowledge, is founded on a variety of metaphors that relate its
structures to those of other domains. The domain of animate behavior is a particularly
important source of  concepts and vocabulary for computation, for reasons to be explored.
Examining the role of metaphor and animacy in detail will both lay the groundwork for designing
agent-based programming systems and provide some insight into the epistemology of
computation and programming in general.

Our understanding of a subject as abstruse as programming is necessarily grounded in
other things we know. A novice learning to program must construct understandings by
bootstrapping them from existing bodies of knowledge and skills. Suitable bases on which to
build include experientially grounded systems of knowledge about the physical and social
worlds, or more abstract bodies of knowledge such as mathematics or economics. Ultimately
abstract knowledge must be grounded in either innate structures or basic experience. While this
process of grounding out knowledge takes many forms, the role of metaphor—the overt or
implicit description of one thing in terms of another—is one of the most important.

The discourse of programming and programmers is heavily metaphorical, yet the role of
metaphor in computer science is often ignored or even vilified. The formal presentation of
computer languages tends to hide the necessarily informal methods that we use to understand
them. Thus the purpose of this chapter is to lay an analytical framework for thinking about the
ways in which people come to understand computers and programs, and to argue for
metaphor as a legitimate and necessary tool for this process. This will provide background for
the following chapter, which takes a look at one particular metaphor or way of thinking that is of
particular importance to computation, that of animate or anthropomorphic metaphor.

In the present chapter, I will first outline some general theories of metaphor and particular
ideas from these theories that will be useful, then move on to look at the role of metaphor in
scientific discourse and in computation in particular. A number of frameworks for programming
are analyzed in terms of the metaphoric structures they impose on their domain and on their
users.



Learning a new field involves learning a new language, or more precisely, new ways of
using language. Technical fields in particular deploy everyday terms and usages in new ways,
and the fact that words with everyday meanings suddenly take on new meanings that are
related but not identical to their old ones is a source of confusion for both the novice and the
professional. David Pimm (Pimm 1987) refers to the peculiar mannerisms of mathematical
discourse as the “mathematics register”, that is, a particular way of speaking which must be
learned and relies strongly on metaphorical constructs. Computation, being a relatively new and
diversified field, does not yet have a single “computational register”. By looking at some of the
metaphors employed in some parts of computational discourse, I hope to understand how the
discourse of computation is structured. This approach is somewhat contrarian, in the sense
that it deliberately emphasizes the non-mathematical, metaphorical, and informal aspects of a
field that has traditionally structured itself in terms of formal mathematics. By investigating the
informal conceptual foundations of computing, which I believe in some senses are deeper than
the mathematical foundations, I hope to be able to gain insights that will permit the design of
new languages and environments for programming.

2.1 Theories of Metaphor
...“metaphor” refers to all those processes in which the juxtaposition either of terms or of concrete
examples calls forth a network of similarities which help to determine the way in which language
attaches to the world.(Kuhn 1993, p539).

The term “metaphor” is used here not in a narrow linguistic sense, but in the sense of rich
and complex metaphoric models (Lakoff and Johnson 1980). A metaphoric model is a way to
structure the knowledge of one domain (the target) by mapping onto it concepts and relations
from an existing domain (the source) that is already familiar. Metaphor in this sense is not a
mere linguistic device used only for the figurative embellishment of otherwise straightforward
language, but a fundamental way of learning and structuring conceptual systems, a part of
everyday discourse.

Metaphors are so pervasive that they are sometimes hard to see. For instance, the common
model and terminology of the behavior of electrical circuits is based on a metaphoric mapping to
fluid flow in pipes, with voltage mapping to water pressure, batteries to pumps, current to flow,
and so forth. In a less technical and less obviously metaphorical example, the American
conception of anger is metaphorically derived from the image of a heated fluid in a container,
giving rise to expressions like “blowing off steam” and “containing his rage” (Lakoff and Kövecs
1987). The metaphoric structure underlying such common concepts indicates that metaphoric
models are not merely optional stylistic overlays to a fundamentally objective and literal mode of
representation. Rather, they are a fundamental mechanism for encoding knowledge. Much of
our common cultural knowledge is in terms of metaphoric models (Lakoff and Johnson 1980).

Since metaphoric processes are a fundamental part of how knowledge is structured, there
can be no hard line drawn between metaphoric thought and other kinds. From a certain point
of view, all thought is metaphoric:

No  two things or mental states ever are identical, so every psychological process must employ
one means or another to induce the illusion of sameness. Every thought is to some degree a
metaphor (Minsky 1987, p299).
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 If all thoughts are equally metaphorical, then metaphor is not a very useful analytic
category. However, some thoughts seem to be more metaphorical than others. There is a large
space of possibilities lying between the purely literal and the obviously metaphorical. Perhaps
the most interesting cases are those in which a phrase or thought appears initially to be literal,
but upon examination turns out to be based in metaphor after all. We will see that many
metaphors used in the discourse of mathematics, science, and technology are like this.

 It will be useful to distinguish the concept of a structuring metaphor from the closely
re la ted idea of  an analogy (Wins ton 1982)  (Gentner  1989) .  Both a im to  es tabl i sh
understandings by the creation of mappings between domains, but the two terms connote
different aspects of this cognitive process. Analogy usually refers to the construction of explicit
mappings between two well-established domains, whereas metaphor is more often implicit. The
linguistic form of analogy, the simile, keeps the two domains safely separated by using terms
such  a s  like (“l i fe is  like a bowl of cherries”), while metaphor draws a more immediate
connection (“life is a journey”). More importantly, metaphor often plays a foundational role in
the establishment of new, previously unstructured domains. The two terms really connote
different views of the same broad cognitive process, with the view through metaphor being
more oriented towards the foundations of cognition. Analogies can be powerful learning tools,
but if the thing learned is to become an important part of thinking, it must become integrated
into the structures of the mind—that is, it must become a structuring metaphor. One draws an
analogy, but one lives in metaphor.

2.1.1 The Contemporary Theory of Metaphor

My primary tool for thinking about metaphor will be the theory put forth by George Lakoff
and Mark Johnson (1980)(Lakoff and Johnson 1980) and developed further by them, Eve
Sweetser (1990)(Sweetser 1990), Mark Turner (1991)(Turner 1991) and others, and more
recently labeled “the contemporary theory of metaphor” (Lakoff 1993). In this theory,
metaphor is to be understood as any mapping between normally separate conceptual domains.
The purpose of this mapping is to structure an abstract, unfamiliar, or unstructured domain (the
target) in terms of one that is more concrete, familiar, or structured (the source).

Metaphor is viewed more as a basic tool of cognition rather than a special turn of language,
and most concepts are generated by metaphors. The exceptions are those concepts that are
thought to be perceptual or cognitive primitives, such as up or cat. Aside from these references
to concrete physical objects and experiences, metaphorical understanding is the rule. In
Lakoff’s words, “metaphor is the main mechanism through which we comprehend abstract
concepts and perform abstract reasoning” (Lakoff 1993). The more narrowly linguistic meaning
of metaphor is called a “metaphorical expression” to distinguish it from the broader view of
metaphor as a conceptual mapping.

2.1.1.1 The Conduit Metaphor

The contemporary theory has its roots in Michael Reddy’s work on what he called the
Conduit Metaphor (Reddy 1993), a detailed exposition of the system of ideas underlying the
concept of communication. Reddy found that there was a consistent metaphorical substrate
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underlying talk about communications and ideas. This metaphor was based on the idea that
ideas were like physical objects, and that the purpose of language was to package up ideas for
transfer between minds. This insight was illustrated by example sentences like:

1) He couldn’t put his thoughts across well.

2) Try to pack more thoughts into fewer words.

3) I gave him that idea.

4) We tossed the ideas back and forth.

The implications of this metaphor are that words function like packing crates for meanings,
and that writing or speaking is a process of packing, shipping, and unpacking. Language as a
whole is seen as a conduit for transferring meanings from mind to mind. The unstated
implication is that meaning is unproblematically conveyed by language. It further implies that the
listener is essentially a passive recipient of meanings generated by speakers.

These usages and their underlying metaphor are so commonplace that their contingent
nature might be hard to see. To better illustrate this, Reddy proposed an alternative metaphor
system which he called the Toolmakers Paradigm. This metaphor system posits listeners
isolated in cells, who transmit and receive crude instructions in the form of blueprints rather
than words between neighboring cells. To make any use of these transmissions, they must

instructions
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meanings5

meanings6

meanings1

meanings2

meaning

words

meaning

words

conduit: words contain
and convey meanings

toolmaker: words are
instructions for constructing
meanings

Figure 2.1: Comparing the conduit metaphor and the toolmakers paradigm (after Fig. 1 in
(Reddy 1993)).
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actively follow the instructions and construct the described object. Naturally transmission is
imperfect in this system, and each recreation of meaning is subject to the interpretation of the
hearer.

The Toolmakers Paradigm is intended to be a metaphorical representation of a constructivist
theory of language, in which listeners are active constructors of meanings rather than passive
recipients. The existence of an alternate metaphor is a powerful tool for thinking about alternate
theories of language. In the conduit metaphor, the sharing of meaning is assumed to be the
default case, and any divergence of interpretation is a problem to be explained by faults in the
transmission system. By contrast, the Toolmakers Paradigm emphasizes that shared meanings
are achievements, requiring careful coordination and interaction through limited channels of
communication.

Although the conduit/toolmakers example is a powerful dual metaphor for thinking about
constructivist theories of mind, Reddy’s main concern is to illustrate the pervasiveness of the
conduit metaphor and the way that it can place a strong bias on theories of language. The
conduit metaphor plays a dual role in the history of the contemporary theory of metaphor. It
stands as an example of a common metaphor worked out in detail, and as an illustration of how
linguistic theory itself can be built on and influenced by unquestioned metaphors.

Lakoff and Johnson, inspired by Reddy’s effort, embarked on a more comprehensive effort
to analyze the metaphor systems underlying everyday thought. They summarize their findings
by expressing the metaphors as short declarations of the mapping: LOVE IS A JOURNEY o r
EMOTIONS ARE SUBSTANCES. According to Lakoff:

Most people are not too surprised to discover that emotional concepts like love and anger are
understood metaphorically. What is more interesting, and I think more exciting, is the realization
that many of the most basic concepts in our conceptual system are also normally comprehended
via metaphor—concepts like time, quantity, state, change, action, cause, purpose, means, modality,
and even the concept of a category. These are concepts that enter normally into the grammars of
languages, and if they are indeed metaphorical in nature, then metaphor becomes central to
grammar (Lakoff 1993, p.212).

Since computer programming concerns itself with many of these same basic concepts, we
should not be surprised to find that metaphors underlie the discourse of computation, and that
these metaphors are variants of those found in ordinary discourse. To take one example,
Lakoff’s studies have revealed that the metaphorical representation of events in English involves
a basically spatial metaphor, with states being represented as locations, state-change as
movement, causes as forces, purposes as destinations, and so forth. This metaphor surfaces in
computation through such phrases as “the process is blocked” or “the machine went  into a
run state”. These usages are so much a part of everyday use that, like the conduit metaphor,
they hardly seem like metaphors at all.

The viewpoint of the contemporary theory of metaphor leaves us with two points that will
inform the rest of this analysis: first, that some of our most fundamental concepts are
structured metaphorically, and second, that it is possible (as the Toolmakers Paradigm shows)
to gain a new viewpoint on these concepts by proposing alternate metaphors.
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2.1.2 Dead Metaphors

We’ve seen that some metaphorical structures are so ingrained into our habits of thought
and language that they are very difficult to see as metaphors. They raise the question of
whether such usages are really metaphorical in any meaningful sense. A dead metaphor is one
that has become a conventional usage or phrase and so has (according to some theories of
metaphor) lost the live mapping between its domains. “Falling in love” is one example—the
phrase is so routinized that it does not recall any feelings of physical falling, although the
metaphoric mapping is easy enough to recreate. “Kick the bucket” is a better example, since its
live roots are even more distant

2
.

There is wide diversity of opinion on the question of dead metaphors. According to Black
(Black 1962), dead metaphors are not really metaphors at all, but should instead be considered
as separate vocabulary items. Lakoff is dubious about the utility of the concept—he believes
that most conventionalized phrases still retain traces of their origins in living metaphors (Lakoff
and Johnson 1980, p55). Gibbs (Gibbs 1993) points out that if a metaphor was truly dead it
would lose its compositional qualities, but in fact they still remain. You can understand
expressions like “falling head-over-heels in love” even if you had never heard that particular
variant of “falling in love”. Since the mapping between domains can be reactivated to
comprehend this sort of novel phrase, the metaphor lives on after all.

Metaphors used in technical discourse often appear to be dead. Since the technical
meanings of phrases like “a blocked process” or “pushing a value onto the stack”, are perfectly
clear to experts, their metaphorical origins are often dismissed and ignored. Nonetheless the
viewpoint of Lakoff and Gibbs is still useful and perhaps necessary to understanding the
conceptual bases of technical understanding. In this view, even when technical terms have
taken on what seems like an unproblematic formal meaning, they continue to maintain a link
back to their metaphor of origin, because the mechanisms for understanding are metaphorical at
their roots. Metaphors can differ in the degree to which they are taken for granted and kept out
of consciousness, but are rarely so dead as to completely detach themselves from their origins.

Another extremely conventionalized metaphor used in computation is the treatment of
memory as space and data as objects that are located and move within that space. The degree
of conventionalization of these usages is so high that some people get quite annoyed if attention
is drawn to their metaphorical underpinnings. The MEMORY IS  SPACE metaphor might be

considered dead since it is extremely conventionalized, but it is still alive in Lakoff’s sense — the
mapping between domains is still present and can be generative of new constructs, such as the
slangy term “bit bucket” (the mythical space where lost bits go) or the endless stream of
respectable technical terms that reflect the metaphor (“garbage collection”, “partition”,
“allocation”, “compacting”, and so forth).

Perhaps transparency is a better metaphor than death to describe the condition of the
metaphors underlying technical terminology. They do such a good job of structuring their target

2 Apparently the phrase derives from the actions of dying farm animals.
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domain that they seem to disappear, and the lens of metaphor becomes an invisible pane of
glass. The question remains as to what makes particular metaphors achieve transparency. I
speculate that metaphors become transparent when they impose a strong structure on a
domain that was previously unstructured. These metaphors essentially force one to think about
the target domain in their own terms, to the point where any alternative way of structuring the
domain becomes forgotten and almost unthinkable. At this point, the winning metaphor is ready
to be taken literally. Such metaphors have been labeled theory-consti tutive metaphors by some
philosophers of science. That is, rather than simply mapping between the concepts and
vocabulary of two existing domains, as conventional metaphors do, a theory-constitutive
metaphor can be said to create the structure of a new domain, based on the structure of an
existing one.

Where one theory-constitutive metaphor is dominant (for instance, the metaphor of
electricity as the flow of fluid, or of computer memory as a space), the terms that are brought to
the target domain tend to become conventionalized and transparent, such as the term current
in electrical theory. But not all theories and metaphors are as well established as these. Even
memory is sometimes viewed through alternate metaphors, i.e. as a functional mapping between
addresses and values. Computational discourse seems to have a particular need to mix
metaphors, as we shall see.

2.1.3 The Metaphorical Nature of Scientific Understanding

The place of metaphor in the discourse of science has always been problematic. The
distinction between literal and metaphorical meanings was first promulgated by Aristotle, who
grudgingly acknowledged the utility of metaphor in poetry but demanded that it be eliminated
from the discourse of natural science. Lloyd argues that this dichotomy was in fact necessary
for the creation of a new rhetorical territory in which metaphor would be banned and literalism
could flourish:

...the distinction between the literal and the metaphorical...was not just an innocent, neutral piece of
logical analysis, but a weapon forged to defend a territory, repel boarders, put down rivals (Lloyd
1989, p23).

So, the domain of science was in a sense brought into being by the very act of banishing
metaphor and other poetic forms of language. Scientific thought was to be of a form that dealt
only with literal truth.

Despite Aristotle, metaphors are commonly employed in scientific discourse, particularly in
informal and educational settings. While scientific rhetoric may aspire to the literal, it cannot
avoid the need to bootstrap new theories from old concepts using metaphor. Some theories of
metaphor in science relegate the use of metaphors for training to a separate category of
“exegetical metaphor”, but as Kuhn points out (Kuhn 1993), every scientist must be trained
and thus such metaphors are not at all marginal, but instead are a crucial part of the way in
which a scientific field reproduces itself. The question then becomes whether the exegetical
metaphors are like scaffolding, used to erect a formal structure in the mind but discardable
when the task of construction is completed, or whether the structure maintains a live, dynamic
relationship to the metaphors that allowed it to be built.
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Given that metaphor is a part of everyday scientific practice, why do most scientists act as
literalists, paying little or no attention to metaphor and occasionally expressing hostility to the
very idea of investigating them (Gross and Levitt 1994)? The roots of scientific rhetoric’s
adherence to literalism may be sought in the social practices of scientists. The practice of
science demands the use of a rhetoric that promotes literal rather than metaphoric construals of
language. Latour (Latour 1987) paints a picture of science as a contest to establish facts, a
contest that depends as much on rhetorical moves as it does on laboratories. Scientists jockey
to make their statements strong, so they will be taken as facts, while simultaneously working to
weaken the statements of rivals by painting them as constructions, hence questionable. The
rhetorical tools for making a statement factual Latour calls positive modalities (i.e., a bald
statement of fact) while the tools for doing the opposite are negative modalities (i.e., “Dr. X
claims that [statement of fact]). “It is around modalities that we will find the fiercest disputes”
[Latour, op. cit. , p25]. Here, since we are interested specifically in rhetoric rather than ongoing
controversies among philosophers of science, we need not trouble ourselves over whether
Latour’s model of science is complete. It does lead us to speculate that the competitive pressure
among scientists to establish facts will also contribute to their tendency to hide or strip the
metaphors from the language. A statement that contains obvious metaphors is weaker than one
that contains either no metaphors or only those so conventionalized as to be dead. Metaphor
use is not exactly a modality in Latour’s sense, but it can be seen that similar dynamics might
apply and tend to either strip metaphor out of scientific discourse, or disguise it as something
else.

However, not all science is sufficiently developed that it can maintain the pretense of
literalness. Metaphors are commonly used to introduce vocabulary and basic models into
scientific fields: “their function is a sort of catachresis—that is, they are used to introduce
theoretical terminology where none previously existed.” (Boyd 1993). The term catachresis
was introduced by Max Black in his influential early work on the interaction theory metaphor
(Black 1962). The interaction view posited a dynamic interaction between elements of the two
linked domains. But Black did not believe that metaphors used in science were still interactive,
since the meanings of the scientific terms were fixed, and that metaphoric vocabulary creation
was mere catachresis, rather than a proper metaphor. Boyd disagrees, holding instead that
scientific use of metaphor does double duty—it creates vocabulary to describe a new domain,
and at the same time makes this new domain interact with the other domain involved in the
metaphor.

Boyd terms metaphors that are essential in science theory-consti tutive metaphors. He
distinguishes these from metaphors used solely for pedagogic purposes, although these might
have been more important earlier in the science’s history. A good theory-constitutive metaphor
is a tool that lets a scientist do his job of “accommodating language to the causal structure of
the world” or “carving the world at its joints.”3 His primary example of a theory-constitutive

metaphor is the use of computation as a foundational metaphor for cognitive psychology.

3A metaphor introduced by Plato in Phaedrus.
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The use of metaphor in theory formation and change depends upon this open-endedness,
especially in young fields. However, the metaphor persists even as the scientific theory matures
and the particular points of analogy become explicit. Sometimes complete explication is
impossible, but this is not an indication that metaphor is too imprecise to serve as the basis of
scientific theorizing. Rather, it means that metaphors are tools among other tools that scientists
use to achieve their goals. Metaphoric interpretation remains open-ended as long as scientific
theories remain incomplete.

2.1.4 Formalization and Metaphor

Computer science contains a strong ideological bias against the recognition of metaphor. Its
emphasis on formalism might almost be seen as a technology for making metaphors seem as
dead as possible. Formalists naturally oppose metaphor as a particularly insidious form of non-
rigorous thinking. In computer science, Edsger Dijkstra has made his opinions of metaphor
widely known:

By means of metaphors and analogies, we try to link the new to the old, the novel to the familiar.
Under sufficiently slow and gradual change, it works reasonably well; in the case of a sharp
discontinuity, however, the method breaks down....Coping with radical novelty requires... [that]
one must consider one’s own past, the experiences collected, and the habits formed in it as an
unfortunate accident of history, and one has to approach the radical novelty with a blank mind,
consciously refusing to try to link history with what is already familiar, because the familiar is
hopelessly inadequate [emphasis added].

...both the number of symbols involved and the amount of manipulation performed [in complex
computations] are many orders of magnitude larger than we can envisage. They totally baffle our
imagination, and we must, therefore, not try to imagine them (Dijkstra 1989).

This view, while i t  seems wildly wrong to me, is  at  least  grounded in a defini te
epistemological theory. To Dijkstra, certain domains like computation (quantum mechanics is
another example) are so radically new that they must be approached with a totally blank mind.
This theory is basically the opposite of the one we are developing here, namely that
computation, like anything else, is understood in terms of structures defined by mappings from
other domains of knowledge. In place of metaphor and imagination, Dijkstra advocates the use
of formal mathematics and logic.

However, formalism does not really offer an escape from metaphor, for two separate
reasons. First, even formal mathematics is riddled with metaphorical terms and concepts, such
as the notion of a function having a slope

4
 (a physical metaphor) or being well-behaved (an

animate metaphor). Secondly, very few mathematicians would claim that the use of formal
methods exempts them from the need to use their imagination!

A more realistic viewpoint on the relationship between metaphor and formalism may be
found in Agre’s claim that the defining characteristic of technical language is that it links together
two separate domains of reference: the real-world domain being formalized and the “Platonic

4 These examples are taken from David Pimm’s analysis of mathematical language (Pimm 1987).
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realm of mathematics” (Agre 1992) (Agre 1996). This cross-domain mapping is essentially a
metaphorical process in which aspects of the real world target domain are understood in terms
of the formalized and well-understood source domain of mathematics.

Such a mapping will always emphasize certain parts of the world at the expense of others.
Aspects that are readily translated into mathematical terms will be preserved by the metaphor,
while other aspects will become marginalized. The concept of margins derives from Derrida’s
philosophical deconstructions, in particular the idea that metaphors or world-views can contain
“hierarchical oppositions” which classify phenomenon into central and marginal categories. The
phenomenon of marginalization will cause research programs to organize themselves around
particular central problems (those that the mathematics can describe) while pushing other
equally important problems out into subfields, into “areas for future work”, or out of
consideration entirely. Agre’s solution to this form of intellectual tunnel-vision is to deploy new
metaphors and more importantly to develop a “reflexive critical awareness” of the role of
metaphor in technical work.

Deconstruction is a set of techniques for achieving this sort of awareness by systematically
questioning the dominant oppositions and metaphors that structure a field of knowledge. One
of these techniques, inversion, is to construct an alternate system that inverts the center and
margins created by the dominant metaphor, thereby exposing the assumptions of the original
metaphor and bringing the previously marginalized aspects of the phenomenon to attention.
Reddy’s Conduit metaphor is a good example of such an inversion.

Agre’s project is to deconstruct what he sees as the dominant mentalistic metaphors within
AI and Cartesian-influenced views in general. Mentalism is a broad structuring metaphor that
posi ts  an internal  representat ional  space in both humans and computers ,  in which
representational objects dwell and mental processes take place. Mentalism, Agre argues,
emphasizes the internal mental processes that take place inside this space at the cost of
marginalizing the interactions between inside and outside. To counteract this, he offers the
alternative metaphor system of interactionism , which emphasizes precisely the opposite
phenomena. From the interactionist perspective, the dynamic relationship of an agent and its
environment is of central interest, while the machinery inside the agent that generates its
behavior is secondary.

My own project can be viewed, loosely, in deconstructive terms. In the next chapter, I
explore use of animism in describing the world in general and computation in particular. The
language of computation appears to involve both formal mathematical language and a more
informal use of various metaphors, particularly metaphors that map computation on to the
domain of animacy. While neither mode is completely dominant, the use of animism is generally
confined to pedagogic or informal contexts, and is in some sense marginalized by the strong
bias in favor of mathematical formalism that pervades academic discourse. By making animism
the central concept of my analysis of programming languages, and designing new agent-based
languages that incorporate the use of animate metaphors, I hope in some sense to deconstruct
the languages of computation.

The purpose of such deconstruction is to be critical, not destructive. Computation has
unquestionably provided powerful new conceptual tools for laying hold of the world. But
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computation has its limits, as its practitioners are constantly forced to acknowledge. Some of
these limitations manifest themselves in reliability problems, brittleness, and the difficulties
encountered by both novices and experts in expressing simple ideas in the form of programs.
Probing the conceptual underpinnings of the metaphors used to construct computation is one
way to try and understand, and possibly circumvent, these limitations.

2.2 Metaphors in Programming
Computers are useless; they can only give you answers.

—Pablo Picasso

Metaphor plays a key role in the discourse of science as a tool for constructing new
concepts and terminology. The utility of theory-constitutive metaphors depends upon how
accurately the concepts they generate actually do “carve the world at its natural joints”, in
Boyd’s terms. More radically constructivist writers have argued over the assumption that such
natural joints exist to be found (Kuhn 1993), but most are realists who believe at least that the
natural world exists and has structure independently of our metaphors. However, in the
discourse of computer science metaphor plays an even more central role. Here metaphors are
used not so much to carve up a pre-existing natural world, but to found artificial worlds whose
characteristics can then be explored. The metaphors create both the world and the joints along
which it can be carved.

Computer scientists thus live in metaphor the way fish live in water, and like fish rarely take
note of their medium. Their metaphors tend to become transparent, and so terms that start their
careers with clear metaphorical roots, such as “structures”, “objects”, or “stacks”, very
quickly gather formalized technical meanings that appear to be detached from their origins in the
source domain. This phenomenon exists in other fields but is particularly acute in computer
systems because the objects involved are so hidden from view that the only terms we have for
referring to them are metaphorical. This makes the metaphor dead on arrival—since there is no
truly literal way to refer to computational objects, the metaphorical terms soon take on a literal
quality.

But under our view of metaphor, technical terminology does not really ever become
completely detached from its metaphorical roots. In this section we’ll take a look at some of the
metaphors underlying computation and the diverse set of metaphorical models that underlie
programming languages. A theme of the discussion will be the idea that anthropomorphic
metaphors are often present in computation, in varying degrees of explicitness. This derives
from the fact that programs are often concerned with action and actors, and that our tools for
understanding this domain are grounded in our understanding of human action. This idea is
taken up in more detail in the next chapter.

2.2.1 The Idea of Computation

Computation itself is a structuring metaphor for certain kinds of activity in both people and
machines. Human behavior may be seen as a matter of “computing the answer to the problem
of getting along in the world”, although there are certainly other ways to look at human activity.
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Similarly, a computer (which from a more literal view might be seen as nothing more than a
complex electrical circuit) may be seen variously as solving problems, monitoring and
controlling external devices, servicing its users, simulating a collection of virtual machines, and
so forth. The use of the term “computation” to describe the activity of certain complex
electronic devices is itself metaphorical, a historical artifact of the computer’s origins. As an
organizing metaphor, it privileges certain aspects of the domain over others. In particular, like
the mentalistic view of the mind, it privileges the formal operations that take place inside the a
computer while marginalizing the interactions of the computer with the outside world.

Historically, computation grew up around the formal notion of a mechanical realization of a
mathematical function. A computer was seen as a device for accepting an input string,
generating an output, and then halting. This model was perfectly adequate for the tasks that
early computers were asked to perform (such as cryptography) but was stretched further by
later applications that could not be so readily cast as “problem solving”. In particular, the
problem-solving model lacked any notion of an ongoing relationship with the external world.
Cyberneticists such as Gregory Bateson were thus impelled to attack the computational model
for ignoring feedback relationships (Bateson 1972), and more recently a rebellious faction of the
artificial intelligence field has grown dissatisfied with the problem-solving model of controlling
autonomous agents and has proposed alternative models that emphasize interaction with the
world (Agre 1995).

Of course, despite the limitations of the formal model of computation, computing devices
have since been employed in a vast array of applications that involve this kind of ongoing, time-
embedded control. A great many more computers are employed as embedded control devices
in mechanisms such as cars, airplanes, or microwave ovens than as purely symbolic problem-
solvers. So the limitations of the metaphor have not, in this sense, proved to be a limitation on
practice. However, they have certainly had their affect on computational theory, which on the
whole has had little relevance to the design of embedded control systems.

2.2.2 Metaphors Make Computation Tangible

Explicit metaphors are often used to teach beginners how to program. One common
example, by now a cliché, is to describe the interpretation of a program as similar to following
the steps of a recipe. These instructional metaphors allow a student to understand the abstruse
operations of the computer in terms borrowed from more familiar domains. This is almost a
necessity for learning about the operations of a system that cannot be directly perceived. Since
the purpose of these metaphoric models is to describe something that is hidden in terms of
something visible, the source domains are often taken from the concrete5 physical world, such

as boxes containing pieces of paper as a metaphor for variables containing values.

5 I dislike the term “concrete” and its paired opposite “abstract” in this context, but since they are
generally accepted I will continue to use them. The reason for my dislike is that they are inaccurate. The
process of executing a MOVE instruction inside the computer is just as concrete as the act of moving a
block from one box to another: it is not an abstraction, but an actual physical change. The difference is not
one of concreteness but of familiarity and accessibility to the senses. I prefer the term tangible (from the
Latin tangere, to touch) as a replacement for concrete, because it better denotes the relevant feature of
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(Mayer 1989) showed that giving novices metaphorical models of computer language
interpreters resulted in improved learning compared to a more literal technical presentation.
Mayer used a variety of metaphorical models in his experiments. One such model included
mappings such as ticket windows for input and output ports, scoreboards for memory, and a
to-do list with an arrow marker for the interpreter’s program and program counter. This model
was presented both as a diagram and a textual description. Students who were presented with
the model did better on tests, particularly on problems requiring “transfer”—that is, problems
that involved concepts not presented directly in the original instructional materials. Further
studies showed that presenting the model before the main body of material resulted in students
who scored higher on tests than those who had the model presented to them afterwards. This
supports the idea that familiarity with the model aids in the assimilation of the technical content
by giving it a meaningful context.

Sometimes tangible metaphors can result in invalid inferences that bring over irrelevant
characteristics of the source domain. In one case, students who were told a variable was like a
box inferred that, like a physical box, it could hold more than one object (Boulay 1989). In a
similar vein, students shown the sequence of assignment statements LET A=2; LET B=A
interpreted them to mean (again using the container metaphor) that a single concrete object, 2,
is first placed into A, then taken out of  A and put into B, leaving A empty. In this case the
students were overapplying the object and containment metaphors, concluding that 2 had the
property of only being capable of being in one place at one time and thus having to leave A
before it could be in B. These sorts of overattribution errors indicate that learning to apply a
metaphor is not always a simple matter. In addition to the metaphoric mapping itself, one must
also know the limits of its application.

Of course an alternative to using concrete metaphors for computation is to change the
computer system itself so that its operations actually are concrete (that is, tangible). This
possibility is discussed in Chapter 4. Systems with tangible interfaces still might generate
problems of invalid inference from the physical domain, but provide an opportunity for users
to debug their metaphoric mapping through interaction with the objects of the target domain.

2.2.3 Metaphoric Models for Computation

In this section we examine some of the common models of programming and the metaphor
systems that underlie them. These include:

• the imperative model, in which the computer is cast in the role of a sequential instruction
follower;

• t h e  functional  model, which emphasizes the computation of values rather than the
sequential following of instructions;

being accessible to the senses. There is no such substitute for “abstract”, however. Abstruse o r  obscure,
both of which essentially mean “hidden from view”, are better, but they have an unfortunate connotation of
inherent difficulty or complexity.
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• t he  procedural model, which integrates the imperative and functional metaphors and
provides a powerful method of decomposing programs into parts;

• the object-oriented model, which reorganizes a program around the data that it manipulates,
and is deliberately founded on a metaphor of physical and social objects;

• the constraint model, which allows a programmer to combine procedures with declarative
information about what they do.

The analysis presented here is in terms of the broad metaphors used to explain and
understand programs, and will gloss over many of the more formal properties of programming
languages. For instance, (Steele and Sussman 1976) presents the fascinating result that many
imperative constructs, such as goto, can be easily simulated using only functional constructs
given a language that supports recursive high-order procedures. Despite this theoretical result,
and many other similar ones that demonstrate that different languages have equivalent formal
powers, the basic concepts used to make sense of imperative and functional programs remain
quite distinct.

The discussion here sets the stage for the next chapter, which explores one particular
aspect of metaphorical grounding in more detail (in particular, see section 3.3.2). This is the role
of anthropomorphic or animate metaphors in the description of computational activity. This
metaphor system is pervasive in computation for historical and practical reasons. In particular,
we will look at agent-based models of programming, which are explicitly organized around
anthropomorphic metaphors.

2.2.3.1 The Imperative Model

One of the fundamental metaphor systems used to describe computer processes is the
imperative model. This model underlies most discourse about the hardware levels of computer
systems,  and is  the source of  such terms as instruction a n d  command. The imperative
metaphor underlies most naive models of computing such as the transaction level model (Mayer
1979) and the descriptions of computation found in beginner’s texts. It also forms the
conceptual basis underlying popular early computer languages such as BASIC and FORTRAN.
But it may also be found in its earliest forms in Turing’s and von Neumann’s description of the
first theoretical computing machines, and so is really at the very root of the modern idea of
computation itself.

The imperative model captures the notion of the computer as a device capable of
sequentially executing simple instructions according to a stored program. The basic elements of
this metaphoric model are:

• a fixed set of primitive actions that the computer is capable of executing in a single step, that
perform operations on memory or on I/O devices;

• a single active instruction follower that reads a program a step at a time and takes an action
based on the current step;

• a program that controls the instruction follower, consisting of a sequence of steps that
either specify primitive actions or control-flow changes;

• a passive memory that the follower can read from and write to;
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• a set of input and output devices.

In the next chapter we will look at the anthropomorphic roots of the imperative metaphor.
Here we should just notice the emphasis on a single implicit agent, step-by-step activity, and the
mechanical nature of each step. In the imperative metaphor, the interpreter is visualized as a
sort of person, albeit a rather stupid or robotic person, reading instructions and following them
in a manner that could readily be duplicated by machinery. Each primitive action is simple
enough to be executed without any need of further interpretation; no intelligence or knowledge
is required of the instruction follower.

What sort of language is suitable for specifying the program for such a computer? This
model is called the imperative model because the elements of such languages are commands. If
such a statement were to be translated into English it would be in the imperative mode. They are
instructions to the implicit agent inside the computer. An imperative sentence (i.e., “Give me the
pipe!”) has an implied subject, namely the target of the command, which does not appear
explicitly as a word but is implied by the structure of the sentence. Similarly, in an imperative
language the subject of the instruction does not appear explicitly but is implied—the computer
itself, or the instruction follower within it, is the implied subject who will execute the command.

2.2.3.2 The Functional Model

If the imperative model emphasizes control of sequential operations, then the functional
model emphasizes values, expressions, and computation in the mathematical sense. In
functional languages (i.e. Haskell (Hudak, Jones et al. 1991)), the fundamental unit is not an
imperative command, but an expression that specifies a value. While most languages support
functional expressions to some extent, pure functional languages enforce the functional style
by having no support for state and no imperative constructs like assignment and sequencing.
Most functional languages support high-order functions, or functions that can accept other
functions as arguments and return them as values.

The functional model uses the concept of a mathematical function as its founding metaphor.
Like the imperative model, the functional model was present at the very start of the history of
computing. Whereas the imperative model emphasizes action, the functional model emphasizes
the results of action, expressed as a functional relation between input and output items. The
Turing machine computes a function using imperative operations. In some sense, the joining of
these two different ways of thinking in the Turing machine was the founding act of computer
science, and the two models continue to be interwoven in various ways as the field grows.

Functional languages are favored as a theoretical tool by computer scientists, because
functional programs are much easier to analyze than those that incorporate state and state
change. They also permit the use of a variety of powerful expressive techniques, such as lazy
evaluation, which are problematic in the presence of state change. Conversely, functional
languages do poorly at integrating imperative constructions and state, which in turn introduces
issues of time, control, and serialization. There have been quite a few efforts to graft imperative
capabilities onto purely functional languages, but as one paper on the subject put it, “fitting
action into the functional paradigm feels like fitting a square block into a round hole” (Jones and
Wadler 1993).
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One of the most successful end-user programming techniques ever invented, the
spreadsheet, uses what is essentially a functional model of programming. Each cell in a
spreadsheet contains a functional expression that specifies the value for the cell, based on
values in other cells. There are no imperative instructions, at least in the basic, original
spreadsheet model. In a sense each spreadsheet cell pulls in the outside values it needs to
compute its own value, as opposed to imperative systems where a central agent pushes values
into cells.6 In some sense each cell may be thought of as an agent that monitors its depended-

upon cells and updates itself when it needs to. As Nardi (1993)(Nardi 1993) points out, the
control constructs of imperative languages are one of the most difficult things for users to
grasp. Spreadsheets eliminate this barrier to end-user programming by dispensing with the need
for control constructs, replacing them with functional constructs.

Functional programming lends itself to metaphors of connection and flow. Functions can be
pictured as physical devices, akin to logic gates, with a number of input and output ports,
continuously computing the appropriate values for their outputs given their inputs. Functional
composition then is simply connecting up the input ports of one device to the output ports of
other devices. The network acts to continually maintain a relationship between inputs and
outputs.

Flow metaphors are straightforward to represent graphically, and there have been quite a
number of visual programming environments that make use of them, including Hookup (Sloane,
Levitt et al. 1986), VennLISP (Lakin 1986), Fabrik (Ingalls, Wallace et al. 1988) and Tinkertoy
(Edel 1986). Graphic dataflow languages like these are especially well-suited to building
programs that operate real-time devices or process streams of data. In this context, a program
essentially operates as a filter-like device, accepting a stream of data, processing it a single
element at a time, and producing a corresponding output stream. Hookup, for instance, was
designed to work in real time with streams of MIDI data to and from electronic musical
instruments, while LabView was designed to handle laboratory instrumentation tasks.

Figure 2.2 (after Hookup). A network for computing centigrade temperature from Fahrenheit. Data
flows left to right.

6 For a longer discussion of pushing/pulling metaphors in multiagent systems see (Travers 1988).
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Figure 2.2 shows an example of a graphic representation, modeled after the appearance of
Hookup, of a functional program to convert temperature from Fahrenheit to centigrade units
using the formula:

C = (F - 32) * 5/9

The flow of data is left to right. Functions are represented by graphical symbols akin to
those used to represent gates in digital logic. Input and output values are indicated in boxes
(input boxes are on the left and supply values, output boxes receive values). In Hookup, the
values of outputs are effectively being computed continuously, and so the value in centigrade
will update instantaneously whenever any of the inputs change. Note that this presents a
somewhat different environment than a standard functional language, in which the application
of a function to arguments must be done explicitly. In a Hookup-like language, function
application is performed automatically whenever an argument changes. Graphic data flow
languages thus take a step towards viewing functions as continuously maintained relations
rather than procedures.

Whereas regular functional languages do not deal well with input and output, the dataflow
variant is able to model these in the form of continuous streams of changing values. In this
model, input devices appear as sources for the flow of values through the networks, but
sources that change their values over time. Output devices correspondingly are sinks which
accept a stream of changing values. The mouse icon, highlighted at the center of figure 2.3, is
an example of an input device, with three separate output flows for X, Y , and BUTTON.

Hookup also extended the flow metaphor to deal with state. Its dataflow metaphor was
based loosely on digital logic, with functions represented as gates. In addition to stateless
devices such as gates, Hookup included devices with state that functioned in a manner
analogous to registers in digital logic. A register had a special clocking input that would cause
the current input value to become current and present on the output wire. This way of
handling state at least made sense within the dominant metaphor of the system. However, the
presence of state also introduces a requirement for sequential control, which was not readily
supported by the metaphor. Hookup included clocks and clockable sequence objects that
provided some ability to provide sequences of values, but using these to control sequences of
events was awkward.
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Figure 2.3 A Hookup network to control a bouncing animated figure. It incorporates input from the
mouse, output with sound and animation, and internal state registers.

The Playground environment (Fenton and Beck 1989) was another interactive system and
language that was organized around a functional model but ran into trouble when trying to deal
with tasks that were more naturally expressed using imperative constructs. Playground, like
LiveWorld, was designed to be a platform for modeling worlds in which graphic objects were
expected to perform actions. The basic unit of computation was an “agent” that functioned
more-or-less as a functional spreadsheet cell. Slots inside objects were agents, and each agent
was in charge of computing its own value in a functional style (specified by means of an
expression language with English-like syntax). This included slots specifying basic graphic
information such as x and y position and size. In essence the processing of the system
involved a parallel recomputation of all cells, with the new value specified as a functional
expression.

As might be expected, it was difficult to express actions using this model. For instance, you
could not easily say “go forward 10 steps”—instead, you had to specify separate functional
expressions for computing the next values of the x and y coordinates. It was possible to have a
rule for, say, the x cell that set its value to x + 10 continually, and this which would produce a
constant motion in the x direction, and this could even be made conditional, but essentially this
model forced the program to be organized around low-level concepts like position rather than
behavior. Eventually this spreadsheet-based programming model had to be augmented with
additional imperative constructs.

By dispensing with state and control issues, the functional metaphor presents a very simple
model of computation that can be made readily accessible to novices through a variety of
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interface metaphors. The lack of state and control drastically simplifies the language and makes
the system as a whole more transparent. But Playground shows that there are fundamental
problems with the use of the functional model as the sole or primary basis for programming
animate systems. The downside of eliminating control is that programs that need to take action
or exert sequential control are difficult7 or impossible to construct. For animate programming,

where action is foremost, functional programming seems unnatural in the extreme.

2.2.3.3 The Procedural Model

The procedural model of programming, which underlies modern languages like Lisp and
Pascal, combines elements of the imperative and functional metaphors within the more powerful
overarching framework of procedural abstraction. The procedural model thus is not founded
directly on a single metaphor, although it lends itself to new and powerful forms of description
based on anthropomorphic and social metaphors.

Under the procedural model, a program is constructed out of smaller programs or
procedures. A procedure can both carry out instructions (like an imperative program) and
return values (like a function). The procedural model introduces the notion that one procedure
can call another to perform some task or compute some value. The metaphoric and animate
suggestiveness of the term call indicates the beginnings of an anthropomorphic, multiagent view
of computation. A procedure, encapsulates as it does both the imperative and functional
aspects of the computer, is in essence a miniature image of the computer as a whole.

Of course, “procedures” in the loose sense of the word can be created in any language.
What procedural languages do is to reify the notion of procedure, so they become objects for
the user, that can be manipulated and combined into more complex arrangements. Some
beginner’s languages (i.e. Logo) have a distinct notion of procedure, while others (BASIC, at
least in its original form) do not. The availability of named procedures can have an effect on the
developing epistemology of the student:

In programming cultures like those of LISP, Pascal, and LOGO, in which procedures and
hierarchical structures have been given concrete identity, programmers find powerful metaphors in
tree searches and in recursive processes. There is a tendency to anthropomorphize, to look at
control mechanisms among procedures and within the flow of procedures in terms of actors or
demons, or other creatures resident in the computer capable of giving advice, passing data,
receiving data, activating procedures, changing procedures, etc. (Solomon 1986, p. 98).

Papert also emphasizes the importance of procedures as a thinking tool. They are a
computational realization of what he calls the principle of epistemological modularity, that is, the
idea that knowledge and procedures must be broken up into chunks that can be called up from
the outside without the caller having to know about the inside:

Everyone works with procedures in everyday life ... but in everyday life, procedures are lived and
used, they are not necessarily reflected on. In the LOGO environment, a procedure becomes a

7There are some tricky techniques that allow functional languages to express imperative constructs
(Henderson 1980) (Jones and Wadler 1993), for instance turning actions into representations of actions that
can then be manipulated through functions. These techniques are theoretically interesting but do not really
affect the arguments here.
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thing that is named, manipulated, and recognized as the children come to acquire the idea of
procedure (Papert 1980, p154).

In procedural languages, control is still essentially imperative, in that there is a single locus
of control serially executing commands, but instead of a program being an undifferentiated
mass of instructions, it is organized into a multiplicity of procedures. The locus of control
passes like a baton from procedure to procedure, with the result that one can see the operation
of a program in either single-actor or multiple-actor terms.

The procedural model lends itself to an animistic metaphor of “little people” who live in the
computer and can execute procedures and communicate among themselves (see section
3.3.2.1). The properties of the procedural model that lend itself to anthropomorphization
include the modularization of programs into small, task-based parts and the existence of a
simple yet powerful model for inter-procedure communication through calling and return
conventions. The procedural model, then, is the first step towards an agent-based model of
computation.

Procedures, like the computer itself, can be approached through any or all of the metaphor
systems mentioned thus far: imperative, functional, and anthropomorphic. Since a procedure is
as flexible and conceptually rich as the computer itself, it essentially permits recursive
application of the metaphorical tools of understanding. But the procedural world introduces
new powers and complications. Because there are multiple procedures, they need to have
ways to communicate and new metaphors to support communication. In languages that
support procedures as first-class objects, the metaphor is complicated by the fact that
procedures can create and act on other procedures, as well as communicate with them. Issues
of boundaries and modularity also arise in a world with multiple actors. Some of these issues
are treated by object-oriented models of programming.

Although procedures are anthropomorphized, they are in some sense more passive than
the metaphor suggests. They will only act when called from the outside. This, too, derives from
the formal Turing model of the computer as a whole, which treats it as a device for computing
the answer to a single input problem and then halting, with no interaction with the world other
than the original parameters of the problem and the final result. Real computers are much more
likely to be running a continual, steady-state, non-terminating process, constantly interacting
with external devices. The formal model does not adequately capture this aspect of
computation, and the procedural model too tends to marginalize it .  Real procedural
programming systems often, but not always, make up for this by extending the model to
include ways to interface with the outside world, for instance by being able to specify a
procedure that will execute whenever a particular kind of external event occurs. This is a useful
feature, but still leaves control, interaction, and autonomy as marginal concepts relative to the
basic procedural model. One purpose of agent-based models of programming is to bring these
issues to the center.

2.2.3.4 The Object Model

Object-oriented programming (OOP) is an interesting example of a programming
methodology explicitly organized around a powerful metaphor. In OOP, computational objects

48 Metaphor



are depicted metaphorically in terms of physical and social objects. Like physical objects, they
can have properties and state, and like social objects, they can communicate and respond to
communications.

Historically, OOP arose out of languages designed for simulation, particularly Simula (Dahl,
Myhrhaug et al. 1970) and for novice programming in graphic environments such as SmallTalk
(Goldberg and Kay 1976). In object-oriented simulations, the computational objects are not
only treated as real-world objects, but they also represent real-world objects. A standard
example is the spaceship, which is modeled by a computational object that has properties like
position,  orientation,  and mass ; and can perform actions like rotate a n d  accelerate.  The
object-oriented metaphor explicitly acknowledges the representational relationship between
computational structures and real-world objects, and encourages the development of such
representational relationships. But because computational objects have properties that are quite
different from spaceships and other real-world objects, the elements of the mapping must be
carefully selected so that, on one hand, the computational elements are both powerful and
parsimonious, and on the other, a sufficiently rich subset of real-world properties and
behaviors are encompassed. In most OOP languages, objects are organized into classes or
types that make up an inheritance hierarchy.

 OOP may be viewed as a paradigm for modularizing or reorganizing programs. Rather than
existing in an undifferentiated sea of code, parts of programs in OOP are associated with
particular objects. In some sense they are contained in the objects, part of them. Whereas the
procedural model offered communication from procedure to procedure, through the metaphor
of calling, in OOP, communication between procedures (methods) is mediated by the objects.

A variety of metaphors thus are used to represent the communication and containment
aspects of OOP. The earliest OOP languages used the metaphor of sending messages t o
objects to represent program invocation. Objects contain methods (or behaviors or  scripts in
some variants) for handling particular kinds of messages; these methods are procedures
themselves and carry out their tasks by sending further messages to other objects. OOP
languages use constructs like send ,  ask,  or <== to denote a message send operation. Objects
also contain slots that hold state. In general the slots of an object are only accessible to the
methods of that object—or in other words, the only way to access the internal state of the
object is by means of sending the object messages. Objects can have a tightly controlled
interface that hides its internal state from the outside world. The interface of an object thus acts
somewhat like the membrane of a cell.

These simple elements have given range to a wide variety of extensions to the basic
metaphor, and a correspondingly vast literature on object-oriented methodologies and more
recently, object-oriented “design patterns” (Gamma, Helm et al. 1994). The diversity of such
schemes indicates that while the basic mapping between computational and real-world objects
may be intuitive and straightforward, the ramifications of that mapping are not. In any real OOP
system, there are always hard design choices to make reflecting the fact that there will always
be more than one way to carve the world up into objects.

The history of object-oriented programming shows how technology that evolved around a
particular metaphor can be subject to forces that tend to stretch or violate that metaphor. The
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original simple idea behind OOP—objects receive messages and decide for themselves how to
respond to them—is complicated by many issues that come up when trying to realize the idea.
One complication is the related issues of object types, hierarchies, inheritance, and delegation.
Multiple inheritance, while a useful technique, involves quite complicated issues and does not
have a single natural formulation. The prototype-based, slot-level inheritance of Framer and
LiveWorld (see chapter 4) are attempts to deal with some of these problems in a more intuitive
way.

It is known that message-passing and procedure calling are formally equivalent (Steele
1976). Some OOP languages (like CLOS (Steele 1990) and Dylan (Apple Computer 1992)) try to
exploit this by getting rid of the message-passing metaphor and using regular procedure calling
to invoke object methods. This has the advantage that method selection can be specialized on
more than one object. This technique, while powerful, is somewhat at variance with the object-
oriented metaphor as previously understood. Because a method can be specialized on any
argument, the method can no longer be seen as associated with or contained inside a single
object or class. Here we have a case of two metaphors for communication clashing and
combining with each other. Proponents of the generic procedure approach point out that it is
more powerful, more elegant, and (in the case of CLOS) more integrated with the underlying
procedural language. Opponents decry the violation of the object metaphor and the increased
complexity of dispatching on multiple arguments.

The Actor model of computation (Hewitt 1976) was another important early influence in the
development of OOP, and deserves mention here. The name is obviously anthropomorphic,
and a variety of anthropomorphic metaphors influenced its development, including the little-
person metaphor (Smith and Hewitt 1975) and the scientific community metaphor (Kornfeld and
Hewitt 1981). The Actor model was explicitly designed to support concurrency and distributed
systems.

The object-oriented programming model is a natural outgrowth of the procedural model,
and shares a good many of its features. From a broad historical perspective, it can be seen as a
further step in the reification and anthropomorphization of parts of programs, necessitated by
the need to manage more complex programs and distributed systems. Rather than programs
and data existing in an undifferentiated mass, the various components are organized, managed,
and encapsulated. The emphasis as a result is on communication between the now separated
parts of the system.

2.2.3.5 The Constraint Model

The constraint model is something of a departure from the other programming models
considered so far. Despite their differing metaphoric bases, to program in all the previous
models is to provide the computer with a fully deterministic procedure for carrying out a
computation. Even functional languages generally have an imperative interpretation so that the
programmer will be aware of the sequence of events which will occur when the program is
executed. Constraint languages, in contrast, implement a form of declarative programming in
which only the relations between objects are specified by the programmer while leaving the
procedural details of how to enforce these relations up to the constraint-solving system. As a
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result, constraint languages require significantly more intelligence in their interpreter, whose
operation is thus harder to understand.

However, from the metaphorical standpoint constraint systems may be seen as a natural
extension of the flow metaphor found in functional languages. In a functional language, flow is
unidirectional, but in a constraint system, data can flow in either direction along a link. To
illustrate this, let’s return to the temperature conversion example of section 2.2.3.2. In a
constraint language, the statement:

C = (F - 32) * 5/9

is not only an instruction about how to compute C given F, but a general declaration of a
relationship between the two quantities, so that either may be computed from the other. The
constraint system has the responsibility for figuring out how to perform this calculation, and
thus must have some algebraic knowledge or the equivalent.

This knowledge takes the form of a variety of constraint-solving techniques. The simplest
technique, local propagation of known values, is readily expressed through the flow metaphor.
In the functional version of the flow metaphor, values flow from inputs along wires, through
devices, and eventually produce output values. In local propagation, values flow in a similar
way, but the wires are bi-directional and input and outputs are not distinguished. There are still
computational devices, but instead of having distinguished input and output ports any port can
serve as an input or an output (or in other words, instead of implementing functions they
implement relations). Such a device will produce an output on any port whenever it receives
sufficient inputs on its other ports.

Figure 2.4: A constraint network.

Figure 2.4 shows a constraint-based variant of the dataflow network from Figure 2.2. In
contrast with the earlier figure, here data can flow in either direction along a wire, so that the
value in the centigrade box might have been specified by the user or computed by the network.
The arrows show one possible flow pattern, which would result from the user specifying the
value of centigrade. The distinction between input and output boxes no longer holds, but a
new distinction must be made between constants and variables—otherwise the network might
choose to change the value of the constant 32 rather than the value in the Fahrenheit box!
Constants are indicated by putting a padlock beside them, to indicate to the solver that it is not
to alter those values.
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This circuit-like metaphor for constraints was introduced by Sketchpad (Sutherland 1963)
which was the first system to represent constraints graphically. The technique was used as an
expository device in (Steele 1980) and implemented as an extension to ThingLab (Borning
1986).

Constraint programming may be viewed as one particularly simple and powerful way of
combining declarative and procedural knowledge.

8
 A constraint combines a relationship to

enforce, expressed in declarative terms (i.e., an adder constraint that enforces the relationship a
= b + c ) with a set of procedural methods for enforcing it. In the case of the adder, there would
be three methods corresponding to the three variables that can serve as outputs; each of
which computes a value from the remaining two variables

Other languages, most notably logic programming languages like Prolog, have been
fashioned along the idea that programs should take the form of declarative statements about
relationships. One slogan put forth by advocates of logic programming is “algorithm = logic +
control” (Kowlaski 1979), where “logic” refers to an essentially declarative language and
“control” refers to some additional mechanisms for controlling the deductive processes of the
language interpreter. The problem with Prolog is that it shortchanges both logic and control by
attempting to use the same language to specify both. Thus the language does not have the full
expressive power of logic, because doing so would make the imperative interpretation of a logic
program intractable. And while Prolog adds some control constructs such as the cut to i ts
declarative language, in general the ability to control the deductions of the interpreter are limited.

Constraint languages have the potential to overcome this limitation, since they separate out
the declarative and imperative parts of a program. Declarations of intent and procedures can
each be made in the idiom appropriate to the task, then linked together in a single constraint.
ThingLab (Borning 1979) was organized in this fashion. However, rather than develop this idea
as a programming paradigm, ThingLab, its descendants (i.e. (Freeman-Benson, Maloney et al.
1990)), and constraint-based systems in general evolved in a different direction.

 A typical contemporary constraint system (i.e. Juno-2 (Heydon and Nelson 1994)) is
designed as a declarative language together with a black-boxed constraint solver which can
solve constraint systems in that language. The user of such a system can specify constraints
using a given declarative language, but cannot specify procedures for satisfying them. In other
words, the imperative side of the equation is given short shrift. The reason this path was taken
is probably a desire for constraint solvers that are both fast and theoretically tractable. A
system that permits constraints to be built with arbitrary user defined procedures would be
quite difficult to control.

Constraint Imperative Programming (CIP) (Lopez, Freeman-Benson et al. 1993) is an attempt
to integrate declarative constraints with an imperative programming language. The idea behind
CIP is to combine an object-oriented procedural language with automatic constraint solving
capability that can enforce relations between slots of objects. While this is a promising line of

8 As far as I know this idea was first formulated by Alan Borning (Borning 1979).
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research, CIP languages are still limited in their expressive power. The constraint solver is
monolithic—you can’t create new imperative methods to solve declarative constraints—and in
some sense subordinate, relegated to the role of automatically maintaining relations among
variables in an otherwise procedural language. The same is true of other efforts to combine
constraints with more general models programming (Hetenryck 1989) (Siskind and McAllester
1993).

These efforts, while certainly valuable, do not seem to me to explore the full range of
possibilities of constraints as an organizing metaphor for programming. All of them take an
essentially fixed constraint solver and make it an adjunct to an otherwise ordinary procedural
language. A programming system that was fully organized around a constraint metaphor would
have to have a much more powerful concept of constraints, one that could encompass
computation in general, as does the object-oriented model. Constraints would have to be as
powerful as procedures (which they could be, if they had a fully expressive procedural
component) but also capable of being invoked without an explicit call. The agent-based systems
described in chapter 5 are attempts to realize this alternative version of the constraint model.

2.2.4 Interface Metaphors

The only area of computer science that makes a regular practice of engaging in explicit
discourse about its own metaphors is the field of human interface design. No doubt this is due
to the nature of the interface task: to make hidden, inner, abstruse worlds of computational
objects and actions accessible to users who may not have any direct knowledge of their
properties.

From our point of view, just about everything about computation is metaphorical anyway,
and the distinction between a highly metaphorical interface (such as the Macintosh desktop)
and a command-line interface (such as that of UNIX) is a matter of degree only. It is not hard to
see that the UNIX concepts of files and directories are just as grounded in metaphors as the
documents and folders of the Macintosh—the former have simply been around longer and thus
have achieved a greater degree of transparency.

Interface metaphors are generally easier to design than metaphors for programming
languages, for a couple of reasons. First, interface metaphors are usually designed for more
specific tasks than languages. They generally have only a small number of object types,
relations, and actions to represent, and so each element can be given a representation carefully
tailored to its purpose. A programming language, by contrast, has an extensible set of objects,
operations, and relations, and an interface that presents its elements to the user must
necessarily operate on a more general level. For example, a non-programmable interactive
graphics program might have special icons for each of the objects it allows the user to draw (i.e.
rectangles and lines) and operations it can perform (i.e. erase, move, resize). On the other
hand, a general-purpose graphic programming environment will have an ever-expanding set of
objects and operations and thus its interface, unless extended by the user, can only represent
objects and operations in general, and thus will be limited in the metaphors it can employ.
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One way to deal with this problem is to find an intermediate level between application-
specific but non-programmable tools, and general-purpose environments that are programmable
but difficult to present metaphorically. This approach is used by Agentsheets (Repenning 1993),
an environment building tool which is designed using a layered approach. The substrate level is
a general-purpose programming environment featuring a grid-based spatial metaphor which can
contain active objects, programmed in a general-purpose language (an extension of Lisp called
AgenTalk). Adapting Agentsheets for a new domain task involves having a metaphor designer
build a set of building blocks that work together using a common metaphor, such as flow. The
end-user then can construct simulations using the block-set and the metaphor, but is insulated
from the power and complexity of the underlying programming language.

Another reason that interface metaphors are easier to design than metaphors for
programming is that direct-manipulation interfaces in general don’t need to represent action.
Under the direct-manipulation paradigm, all actions are initiated by the user. While the results of
action or the action itself might have a graphic representation (for instance, opening a folder on
a desktop can be represented by a zooming rectangle) the action itself is soon over and does
not require a static representation. Nor is there a need to represent actors, since the user is the
only initiator of action in the system. The interface world is beginning to realize limits to the
direct-manipulation paradigm and embrace representations of action in the form of
anthropomorphic interface agents (see section 3.3.4).

Programming, however, is all about action and thus programming environments have a
need to represent actions and actors. It’s interesting that functional programming models, in
which action is de-emphasized, have been the most amenable to presentation through graphic
metaphors .  To represent  act ion,  programming metaphors  may also need to turn to
anthropomorphism.

2.3 Conclusion
My main complaint is that metaphor is a poor

metaphor for what needs to be done.
— Alan Kay (Kay 1990)

Our basic ideas about computation are founded on metaphoric models. The daily activity of
programmers involves inventing and dealing with new forms of computational structure, and
thus they are engaged in a continual process of inventing and deploying metaphors that make
these structures understandable. Such metaphors are not created arbitrarily, however. This
point is often lost in battles between constructivists and objectivists. Our ideas about the world
are constructed, but they are not constructed just as we please. Scientific metaphors must map
everyday concepts onto the actual properties of the natural world and thus the choices of
source domains and mappings are highly constrained. There may be more freedom in choosing
metaphors to organize computation, but not all metaphorical structuring will prove equally
powerful.

A good computational metaphor should use only a few real-world concepts for its source
domain, and map them onto computational concepts that are powerful. It is hard to capture
exactly what determines the power of a metaphorical system. Perhaps an example of a bad
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metaphor would help: I once used a language that had started as a tool for building computer-
assisted instruction “lessons”. It had since grown into a general purpose language, but was still
structured in terms of lesson units and control flow was organized around the underlying
metaphor of question-and-answer drills. All sorts of operations had to be shoehorned into this
framework. The question-and-answer metaphor did not translate into powerful and general
tools for computation, and as a result the language was quite awkward to use.

The moral is that not all real-world domains are suitable for use as the basis of a general
computational model. The ones we have examined in this chapter are dominant because they
are powerful and general, and because they have evolved over time as the nature of the
computational realm has become better understood. But we should hope that the evolutionary
process has not f inished and that there is room for the invention of new models for
programming that will overcome the limitations and biases of the existing ones.

In a sense, programming is a form of writing. The most basic model of computation, the
imperative model, is closely linked to the idea of narrative and drama. Programming is a process
of writing scripts for computational actors. Yet the imperative model of programming is
theoretically suspect, spawning a search for languages that are more tractable, such as
functional programming. Functional programming has not made wide inroads in environments
for novices or even for practicing programmers. The reasons for this are many, but surely one
is that functional programming discourages thinking of computation in terms of actions and
actors. Instead of fighting against the tendency to think in terms of actions and actors, we
should work with our natural epistemological tools, and embrace the use of metaphors based
on the actors we know, that is to say, humans and other animate entities. The nature of
animism and its use in computation is the subject of the next chapter.
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Chapter 3 Animacy and Agents
Sometimes I think it is a great mistake to have matter that

can think and feel. It complains so. By the same token,
though, I suppose that boulders and mountains and

moons could be accused of being a little too phlegmatic.

— Winston Niles Rumfoord

3.1 Introduction

There appears to be a fundamental dichotomy in human thought that separates the living
from the inanimate, the purposive from the mechanical, the social from the natural, and the
mental from the physical. The tendency to divide the world along such lines is strong, possibly
innate, crucial to social functioning, and a key part of folk psychology (Dennett 1987). This
grand divide is no doubt an example of what Minsky calls a “dumbbell theory”, or false dualism
(Minsky 1987, p117). I should make it clear that the dualism explored in this chapter is an
epistemic dualism that exists in our theories of the world, not in the world itself, and thus
should be distinguished from ontologically dual theories such as Cartesianism or vitalism.

Science has, at least on the surface, outgrown both sorts of dualism. But because the
distinction between animate and inanimate is such a universal and basic part of human thinking,
it haunts even the most sophisticated efforts to grapple with the nature of the mind. We all
begin as  dumbbel ls ,  and we do not  eas i ly  r id  ourselves  of  our  dumbbel l  theor ies .
Computational theories of the mind and computation itself are in some ways attempts to bridge
this gap—to make lifelike behavior and intelligence from inanimate parts, and to explain the
behavior of living things in terms drawn from the physical world. But the partial successes of
AI, cybernetics, and cognitive science in devising theories that partially unite these realms has
not yet remade our everyday minds accordingly. Nor are the scientific theories themselves
immune to the effects of this persistent divide.

It is a common practice to describe the activity of machines or other non-living objects in
animate terms. I  will  refer to these sorts of mappings as animate metaphors. The  te rm
anthropomorphism is more common, but is not quite as accurate, since other animals besides
humans can serve as the source domain. Another suitable term is ethopœia, the classical Greek
word for attributions of human qualities to non-human objects (Nass, Steuer et al. 1993). This
chapter explores the use of animism and animistic metaphors in the construction of the
computational realm. In particular, it examines the ways in which animacy is used to make the
operations of complex systems such as computers comprehensible.

Animate metaphors are powerful because they are capable of exploiting our knowledge
about humans and human action. When dealing with systems that are too complicated to be
understood in physical and mechanical terms, the leverage that animate metaphors can give is
crucial. It allows us to think in terms of purpose and function, and thus to understand without
having to know the “implementation details” of the system. At the same time, the use of animate



metaphors to describe machines can be dangerous, because of the risk of overattribution
errors. For instance, we can talk of a simple robot vehicle using negative feedback control as
“wanting” to propel itself towards some stimulus (as in (Braitenberg 1984)) but the nature of
this wanting is not the same as that of a person—the vehicle does not know that it wants, does
not necessarily feel anything like disappointment if it does not get its goal, and so forth. The
metaphor is compelling, but can also be misleading.

The first section of this chapter explores how the concepts of animate and inanimate arise,
how they develop, and how they are used. It traces a few key properties of the animate realm
through various attempts to analyze the two domains. Three key concepts emerge as the
defining properties of the animate realm: autonomy, purposefulness, and reactivity.

The second section looks at how animate metaphors have been used in computation and
what roles they play in the description of various programming languages. We will find that
while animism plays a central role in the foundation and continuing development of
computation, it tends to be a rather peculiar and limited form of animism, one that omits some of
the most important qualities of the domain.

The last section explores a new kind of programming paradigm based on agents, that is, on
collections of explicitly anthropomorphic units. Agent-based programming seeks to combine the
power of computation with the aspects of animism that previous forms of computational
animism have left out. It will also explore the use of narrative as a natural way to express the
action and interaction of animate beings.

3.2 The Realm of Animacy

Animacy is a basic category, yet one that is difficult to define precisely. The category of
animate things is not the same as living things (since plants and sessile animals for the most part
should not be included, while robots and other artificial beings perhaps should be). Animacy is
more than simply a category, but constitutes what Minsky calls a “realm of thought” with its
own distinctive style of mental representation and reasoning. The dichotomy between animate
and inanimate seems to manifest itself in different ways at different cognitive levels. In this
section I attempt to sketch out some different approaches to understanding how we think about
the animate realm. The roots of animacy are found in basic perceptual processes, but its
ramifications go beyond perception and affect the way we think about action and social
behavior.

3.2.1 The Perception of Causality

 The division between animate and inanimate appears to be both a universal and innate part
of how we see the world. An obscure but fascinating thread of research in perceptual
psychology indicates that the ability to distinguish between animate and inanimate objects may
be in some sense perceptual primitives, hard-wired into our brains at the lowest level (see
(Gelman and Spelke 1981) for a survey). At this level, animacy is manifest in the perception of
motion, specifically motion that appears to arise autonomously, without visible external
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causation. The ability to distinguish between caused and autonomous motion appears to be
innate and can be detected experimentally.

Research on the perception of causality began with the work of Michotte (Michotte 1950).
His experiments involved showing subjects a set of moving abstract shapes on a screen, and
asking them to make judgments about what they had seen. In a typical experiment, a moving
shape A would approach a second stationary shape B. When A contacted B, depending upon
the experimental situation B might start to move either immediately, or after a span of time, and
A might stop or continue to move. The subjects were then asked to interpret what had
happened.

All subjects tended to interpret these scenes in terms of causal relationships between the
two shapes: that is, the experimental situation would strongly suggest either a direct causal
relationship between the two movements, or an autonomous (non-caused) origin for the
movement of the second object. For example, in the case where A stopped and B immediately
began moving, the scene was interpreted as a collision or “launching”. In the case where A
continued to move along with B, the scene was interpreted as a case of A dragging B along with
it. In another case, similar to the first but with the difference of including a delay before B began
to move, the subjects would attribute autonomy or self-causation to B’s movement. The striking
thing about these experiments was the immediacy and power of their ability to induce particular
kinds of causal perceptions in the subjects, given the highly abstract character of the objects
and motions involved.

Michotte’s experiments have been replicated with six-month old infants (Leslie 1979)(Leslie
and Keeble 1987). It was found that these young subjects could distinguish between causal
and non-causal scenarios. These experiments involved showing the subjects a sequence of
presentations similar to those of Michotte, which would consist of all causal presentations with
one interposed non-causal presentation, or the inverse. In either case the infants would show a
startle response when the interposed presentation was shown.

Stewart (1982)(Stewart 1982) performed similar moving image experiments on adults. In this
case, both the motions and the judgments observers were asked to make were somewhat more
complex than in the earlier experiments. Stewart’s shapes would follow one another or avoid
one another, or start, stop, or change directions arbitrarily. Observers were asked to judge
whether the shapes in motion were “objects or creatures”. All of these motions induced
judgments of animacy or aliveness in observers, whereas shapes that followed less complex
paths were judged as inanimate or mechanical.

To generalize from the results of these experiments, it appears that humans strongly
distinguish between externally caused and autonomous motions, and that the ability to do so is
to some extent innate, or at least appears early in development. These perceptual abilities seem
to form the perceptual basis for the later development of concepts about living vs. non-living
things and purposefulness. To a first degree of approximation, any object moving in ways that
appear to violate basic Newtonian laws of motion—that is, an object that changes its motion
without apparent external cause, other than friction—tends to induce a judgment that the object
is alive, purposeful, and autonomous. On the other hand, objects in unchanging motion, or
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objects that change their motion only in response to visible external causes, are judged to be
inanimate.

The implications of these experiments are that the perceptual system is attuned to changes
in motion and relations in changes in motion, and that there is a need to interpret or explain
such changes by assigning their cause to either internal or external factors (Premack 1990). The
apparent innateness and universality of these effects argues that causality is in some sense a
perceptual primitive. Related concepts of aliveness, purpose, intent, self-awareness build upon
and refine these primitives.

That there should be such an innate mechanism makes a good deal of sense from an
evolutionary standpoint, since it is important for animals to be able to judge which objects in
their environment are alive and which are not. From the physiological point of view, it is well-
known that the visual system includes many sorts of motion detection mechanisms. The ability
to sense changes in motion and relations between different motions is a step up in complexity,
but not a very large one. There is even some evidence from studies on brain-damaged and
autistic subjects that indicates the presence of a physiological localized mechanism to detect
agency and causality (Baron-Cohen 1995).

Do even six-month old infants construct causal models of their world and distinguish
between external and internal causes? It seems more likely that there are at least two levels of
processing at work here: one, the level of basic perceptual processing, and another process of
interpretation and explanation that involves more conceptual thought. The perceptual
mechanisms may be able to provide the basic ability to distinguish between caused and
uncaused motions, while the conceptual mechanisms, which develop later, have the task of
fitting these perceptions into categories and constructing explanations for them.

3.2.2 The Development of Animism as a Category

Piaget’s studies of children’s thinking revealed a phenomenon he called childhood animism
(Piaget 1929). This is the tendency of children to attribute properties normally associated with
living things to the non-living. The qualities that are projected onto the inanimate world by
childhood animism include both aliveness and consciousness. These are obviously two
separate concepts, but they apparently follow similar stages through development, suggesting
that they are based on a common underlying concept. Other qualities that are brought into play
by childhood animism include freedom and the ability to have intentions or will. While some of
Piaget’s results have been challenged as being oversimplified (see (Carey 1985)), his central
results are still of interest.

Piaget found that children will attribute the quality of being alive to different object types at
different stages of development. In general, each stage exhibits a refinement, or narrowing, of
the class of things that are considered alive. The stages are outlined in Table 3.1.
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As a result of this developmental process, children can exhibit notions of aliveness that
depart quite dramatically from the adult version of the concept. For instance, a child of 8 (in
stage 1), when asked if a bicycle was alive, replied “No, when it doesn’t go it is not alive. When
it goes it is alive”. Objects might be endowed with consciousness of some things but not
others:

If you pricked this stone, would it feel it?—No .—Why not?—Because it is hard .—If you put it in the
fire, would it feel it?—Yes.—Why?—Because it would get burned (p176).

Children in the earlier stages (0, 1, and 2) tend to produce mixed and unsystematic
judgments. Piaget characterizes stage 2 as primarily a transition period in which the child
develops the distinction between things that move on their own (such as a person) and things
that only move under outside impetus (such as a bicycle). When this distinction is made the
child reaches the third stage, which Piaget considered to be the most “systematic and
interesting” of the four. Here is an example of a child struggling to express the Stage 3 idea that
autonomous motion is the salient quality that determines the ability to feel:

Tell me what you think, what makes you think that perhaps the wind doesn’t feel when it is
blowing?—Because it is not a person.— And why do you think perhaps it does feel?—Because it is
it that blows (p183).

Piaget gives special attention to this last answer as a striking illustration of the nature of
third-stage childhood animism. “It is it that blows” beautifully illustrates the child’s mind arriving
at the idea that it is initiators of action that are thought to be feeling and thus animate.

Piaget’s view is that only at the third stage (usually reached at ages 7 or 8) do children make
the distinction between motion in general and autonomous motion. This would appear to be in
conflict with the results of Michotte, Leslie, et al,  who believed that this distinction was present
much earlier. This conflict might be resolved by realizing that the Piagetian studies operate
purely in the conceptual realm, whereas the other researchers are studying the perceptual
ability to detect distinctions. Children may have an innate ability to distinguish types of
observed motion, but lack the ability to construct coherent explanations for such motion. The
latter ability must be learned, and in some sense the Piagetian developmental sequence is a case
of the conceptual mind lagging behind and eventually catching up to the distinctions generated

Stage Name Description

Stage 0 No concept random judgments

Stage 1 Activity anything active is alive

Stage 2 Movement only things that move are alive

Stage 3 Autonomous movement only things that move by themselves are alive

Stage 4 Adult concept (animals) only animals (and plants) are alive.

Table 3.1: (after (Carey 1985)) The stages of development of the concept of “alive”.
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innately by the perceptual system.

Piaget’s theory of animism has been critiqued on a number of grounds. For instance, the
questions asked by the experimenter can induce particular forms of thought and styles of
judgment (Piaget himself was aware of this). Also, children at all ages seem to use a large variety
of techniques for judging whether or not something is alive, and never use exclusively the fact
of autonomous movement (Carey 1985). Carey’s critique seems valid—the development of
children’s representation of the concept of living things is no doubt a more complex story than
the simple stage theory has it. However, as Carey admits, her study is not aimed at the heart of
the Piagetian theory of animism, which is concerned more with the developing notions of
causality rather than the definition of the word “alive” in any narrow sense. Despite her
disagreements with Piaget, she agrees that “the separation of intentional causality from other
types is central to what is changing.” This is really the only aspect of the theory that concerns
us here.

3.2.3 Frameworks of Understanding

A more sophisticated way to handle the distinction between animate and inanimate is to
treat them, not as categories into which objects must be slotted, but as two alternative
approaches with which to analyze everyday phenomena. Even children are able to flexibly
apply these approaches to some extent (recall the child who thought the bike was alive when it
moved and not otherwise). Philosophers and psychologists, who perhaps have a greater need
to think in fixed categories than children, often try to fix these approaches into categories, but
even they eventually have abandoned vitalism and dualism, recognizing the need to treat
animacy and aliveness as epistemological stances rather than fixed facts of the world. Dennett
has articulated this about as well as anybody with his distinction between intentional and
physical stances (Dennett 1987), but see also (Boden 1978) on the checkered history of
purposive explanation in psychology, and (Schaefer 1980) on how Freud blended both
mechanistic and animate stances in his metapsychology.

The sociologist Erving Goffman explored the question of how such stances (frameworks, in
his terms) are used in everyday life and how they function in organizing cognition and society.
His approach (Goffman 1974) identifies two primary frameworks: social and natural, which
correspond roughly to Dennett’s intentional and physical stances:

When the individual in our Western society recognizes a particular event, he [employs] one or
more frameworks or schemata of interpretation of a kind that can be called primary. I say primary
because application of such a framework or perspective is seen by those who apply it as not
depending on or harking back to some prior or “original” interpretation; indeed a primary
framework is one that is seen as rendering what would otherwise be a meaningless aspect of the
scene into something that is meaningful...

In daily life in our society a tolerably clear distinction is sensed, if not made, between two broad
classes of primary frameworks: natural and social. Natural frameworks identify occurrences seen as
undirected, unoriented, unanimated, unguided, “purely physical”...It is seen that no willful agency
causally and intentionally interferes, that no actor continuously guides the outcome. Success or
failure in regard to these events is not imaginable; no negative or positive sanctions are involved.
Full determinism and determinateness prevail.
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Social frameworks, on the other hand, provide background understanding for events that
incorporate the will, aim, and controlling effort of an intelligence, a live agency, the chief one being
the human being. Such an agency is anything but implacable; it can be coaxed, flattered, affronted,
and threatened. What it does can be described as “guided doings.” These doings subject the doer
to “standards,” to social appraisal of his action based on its honesty, efficiency, economy, safety,
elegance... A serial management of consequentiality is sustained, that is, continuous corrective
control, becoming most apparent when action is unexpectedly blocked or deflected and special
compensatory effort is required. Motive and intent are involved, and their imputation helps select
which of the various social frameworks of understanding is to be applied (p.21-22)/

These “guided doings” are subject to constant evaluation both from the doer and from
other participants on the scene as to their efficacy and quality, distinguishing them from purely
natural happenings, which are not so judged. Social frameworks, but not natural frameworks,
involve actors, that is, humans (or occasionally other entities such as animals or gods) that can
initiate actions and are responsible for their success.

Framework-based interpretation is fluid; a scene that appears to be a guided doing may be
transformed (through accidents or “muffings”, or by the realization that an act that seemed
intentional was actually an accident) into a scene in which physics takes over from intention (for
example, an ice-skater who slips and falls).

The concepts of muffings and fortuitousness have a considerable cosmological significance. Given
our belief that the world can be totally perceived in terms of either natural events or guided doings
and that every event can be comfortably lodged in one or the other category, it becomes apparent
that a means must be at hand to deal with slippage and looseness (p34-35).

The relevance of Goffman to this discussion is his specifically cultural perspective on the
dichotomy between animate and inanimate. The ability to distinguish between caused and
autonomous motions may be innate, but the types of situations in which this distinction is
applied can be enormously varied and conditioned by culture. For instance, differences in
religious views can often lead to differing use of frameworks: where some might see a natural
disaster others might see the will of a god.

The animate realm now takes on aspects of morality and the necessity of judgment: our
social lives require us to make these distinctions and to be subject to them. Trials in which
insanity defenses arise are an excellent example of a situation in which the distinction between
natural and social arises. A defendant who can be judged subject to the presumptively external
causation of insanity can escape having his actions judged according to the standards of social
frameworks. Social frameworks impose standards. Actions viewed within social frameworks can
be successful or otherwise, because they are initiated and guided by social actors.

3.2.4 Animacy and the Representation of Action

Animacy appears to be a basic category of the human mind, appearing in a variety of forms
at different levels of cognition. But to think of animacy as simply a category, in isolation from its
role in understanding, is to miss its significance, which stems from its key role in the
understanding of action and causality.

To t ry  and unders tand the place of  animacy in cogni t ion,  we need a theory of
representation that takes into account the importance of action. We will use Minsky’s frame-
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based theory of understanding (Minsky 1987, p245), in particular the theory of trans-frames
which has its roots in Schank’s conceptual dependency scheme for representing semantic
information (Schank 1975). Using these tools, I will attempt to sketch out such a cognitive
theory of animacy.

In Minsky’s theory, a frame is essentially a conceptual template or schema, representing a
single concept such as “chair” or “throw”, with labeled slots or terminals that serve to connect
it to other frames that represent related parts. So for instance a “chair” frame would have
terminals to represent legs and back, while a “throw” frame would have terminals representing
the object thrown, the thrower, and so forth. Understanding a scene, sentence, or situation
involves selecting a frame for it and finding appropriate entities to fill its terminals.

One particularly important kind of frame, used to represent action and change, is called a
trans-frame. A trans-frame is a generalized representation of action, which can be specialized for
particular circumstances by filling in terminals for various roles such as ACTION, ORIGIN,
DESTINATION, ACTOR, MOTIVE, and METHOD. Trans-frames roughly correspond to
sentences, in terms of the scale of the concept they encode, although the frame with its many
terminals is capable of including more information than a typical sentence. Schank further
categorizes trans events into PTRANS, MTRANS, and ATRANS types, corresponding to
whether the action involves physical movement, the transmission of information, or the transfer
of abstract relationships like ownership.

Trans-frames give us a way to think about the representation of action, and thus a way to
think about animacy, leading to a simple theory of what it means for something to be animate: A
thing will be seen as animate if its representation can plausibly fit into the ACTOR terminal of a
trans-frame. Or in other words, something will seem animate if it can be seen as the initiator of

an action. From the standpoint of language, this is equivalent to saying that it can be the subject
of a sentence describing the action (assuming the sentence is in the active voice). This definition
of animacy suggests the classical Aristotelian definition of an actor or agent as one who initiates
action. Of course, this definition is slightly tautological, and it doesn’t tell us what things will be
able to take on this role or why. But it does give us a convenient way to think about how the
animate category functions in relation to other mechanisms for understanding action.

Consider again the example from Piaget, where a child explains why he thinks that the wind
can feel—”because it is it that blows”. It appears that the child has a frame for BLOWING,
which has an actor slot that needs to be filled. Unable to find anything else to put in that slot,
the wind itself must be there: “it is it that blows”. And, when the wind takes on this role, it is
somehow endowed with the properties of the living, despite the fact that the child had
concluded earlier that the wind could not  feel, because “it is not a person”. Another child
denies animacy to the wind, “because it is the cloud that makes it blow” (that is, the wind here
is an object rather than an actor), and yet another bestows feeling upon the clouds for the
same reason. ACTORhood seems to play a powerful role in determining whether or not
something is thought to be animate.

Why are actions and actors so important to cognition? Although the world may be in reality
a unified flux of physical causation, we can’t think about it that way on a practical level. Instead,
we need to divide the changing world up into representable parts such as objects and actions.
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An action is a segment of activity with a beginning, generally in the form of an actor’s intention,
and an end, in which the world is in a new state as a result of the action. The idea of action,
and the related ideas of autonomous, intentional actors (and the notion that they can have “free
will”) is an artifact of this need to represent the world in manageable chunks.

More complex reasoning requires understanding sequences of events, which in turn
involves chaining trans-frames together. In such a chain, individual objects will change their
roles: what was an OBJECT of action in one frame may become the ACTOR in the next. The
ability to manipulate chains of changes is important to reasoning and suggests that the ability to
switch between animate and inanimate may actually be a necessity born of the need to create
such chains (see (Ackermann 1991) for a similar argument). The act of explanation chains trans-
frames in the opposite direction: when we ask a question like “what made him do that?” we are
seeking to build a frame that puts what was an ACTOR into an OBJECT-like role. When an
ACTOR’s initiation of action is explained by its internal properties, it appears purposeful; when
explained by external factors, it appears reactive. If it can’t be explained at all, which is often
the case, the action might have to attributed to something like free will.

3.2.5 Conclusion: the Nature of Animacy

We have attempted to define the animate realm through multiple approaches. Based on the
above analyses, I would like to posit three properties which together seem to characterize the
animate domain:

• Autonomy: the ability to initiate action. Animate creatures are capable of taking action “on
their own”, without an apparent external physical cause.

• Purposefulness: the actions undertaken by animate creatures are often directed towards
the achievement of a goal. This implies further that such actions can be evaluated as to their
effectiveness.

• Reactivity: animate creatures are responsive to their environment and adapt their actions as
necessary to the changes of the environment.

These properties relate to each other in complex ways, and in some respects are in tension
with each other. The concept of purposefulness is bound up with autonomy—an object’s
actions will be seen as more autonomous if they are directed toward a goal rather than being
driven solely by outside forces. Reactivity is a crucial part of purposefulness—a creature acting
to achieve a goal cannot do so blindly, but must be able to respond to changing conditions in
the world.

However, reactivity can be in tension with autonomy, since if the creature is reacting to
outside conditions, then it is in some sense being driven by outside forces, rather than initiating
action. For instance, a frog catching a fly with its tongue can be considered to have both
reacted to the fly and to have initiated the action. The frog is the central actor in this version of
the story. But it would be just as valid, if odd, to tell a story with the fly as the main actor,
acting causally on the frog to cause its own demise. The frog in this version is still reactive, but
its autonomy has disappeared. The presence of autonomy is particularly dependent upon point
of view and the choice of starting points when describing a sequence of causal events.
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Animacy, then, is more properly understood as a framework or way of thinking, rather
than as a category. Animate thinking stems from a basic need to explain happenings and tell
simple stories about them, and a need to fit things into roles in the stories as actors and objects
of action. Scientific and mechanistic ways of thinking are in some sense attempts to get beyond
these basic animistic tendencies, in that they tend to eliminate autonomy by searching for a
cause for every action. But the tendency to describe the world in terms of autonomous acters
is strong. Even scientists who should know better tend to try to find simple explanations and
single actors rather than grapple with the distributed causality of a complex system (Keller
1985) (Resnick 1992).

3.3 Animacy and Computation

Animacy is a primary domain, in that it is not itself grounded in metaphor but in more basic
processes. However, i t  can and does serve as a source domain for the metaphorical
understanding of other realms. Obvious and fanciful versions of these metaphors are quite
common in everyday life, as in utterances like “this bottle just doesn’t want to be opened”.
Some mechanical systems are so complex that they need to be treated as having moods,
particularly vehicles, and are thus anthropomorphized. I will refer to such usages as animate
metaphors. Computer systems in particular are prone to be anthropomorphized, due to their
complexity and apparent autonomy:

Anthropomorphization9 — Semantically, one rich source of jargon constructions is the hackish
tendency to anthropomorphize hardware and software. This isn't done in a naive way; hackers
don't personalize their stuff in the sense of feeling empathy with it, nor do they mystically believe
that the things they work on every day are 'alive'. What is common is to hear hardware or software
talked about as though it has homunculi talking to each other inside it, with intentions and desires.
Thus, one hears “The protocol handler got confused”, or that programs “are trying” to do things, or
one may say of a routine that “its goal in life is to X”. One even hears explanations like “... and its
poor little brain couldn't understand X, and it died.” Sometimes modeling things this way actually
seems to make them easier to understand, perhaps because it's instinctively natural to think of
anything with a really complex behavioral repertoire as 'like a person' rather than 'like a thing'.

The computer bridges the animate and inanimate worlds as few other objects can. Although
even humans can become subject to physical rather than intentional explanations, the
computer, as a manufactured object designed around animate metaphors, inherently straddles
the divide. People who interact with computers must do the same. Sherry Turkle has written
extensively on children’s reactions to computers as “marginal objects”,  not readily
categorizable as either living or inanimate:

Computers, as marginal objects on the boundary between the physical and the psychological,
force thinking about matter, life, and mind. Children use them to build theories about the animate
and the inanimate and to develop their ideas about thought itself (Turkle 1984, p31).

But animate metaphors for computation can be problematic as well. AI, which might be
considered an attempt to build an extended metaphorical mapping between humans and

9From the communally-written Hacker Jargon File, Version 3.0.0, 27 July 1993,
http://fount.journalism.wisc.edu/jargon/jarg_intro.html
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machines, impinges upon highly controversial issues in philosophy, and gives rise to
contradictory intuitions, intense passions, and stubborn disagreements about whether
computational processes can truly achieve intelligence (Dreyfus 1979), (Penrose 1989), (Searle
1980). The stereotypical AIs and robots seen in fiction are lifelike in some ways, but mechanical
in others—inflexible, implacable, even hostile. Computers are said to lack certain key
components of humanity or aliveness: consciousness, free will, intentionality, emotions, the
ability to deal with contradiction. People exposed to computers will often end up defining their
own humanness in terms of what the computer cannot apparently do (Turkle 1991). Something
about the nature of computers, no matter how intelligent they are, seems to keep them from
being seen as full members of the animate realm.

Our focus on animate metaphors allows us to sidestep this often sterile philosophical
debate. Instead, we will examine the ways in which computational practice makes use of
animism to structure itself.

Within the field of computation, anthropomorphic metaphors are sometimes denied as
wrongheaded or harmful:

Never refer to parts of programs or pieces of equipment in an anthropomorphic terminology, nor
allow your students to do so...The reason for this is that the anthropomorphic metaphor...is an
enormous handicap for every computing community that has adopted it...It is paralyzing in the
sense that because persons exist and act in time, its adoption effectively prevents a departure from
operational semantics and, thus, forces people to think about programs in terms of computational
behaviors, based on an underlying computational model. This is bad because operational reasoning
is a tremendous waste of mental effort (Dijkstra 1989).

But most computer practitioners are not of the opinion that anthropomorphism (or
operational thinking, for that matter) is such a bad thing. Indeed, the deliberate use of
anthropomorphism has been a promising tool in computer education:

One reason turtles were introduced [into Logo] was to concretize an underlying heuristic principle
in problem-solving—anthropomorphize! Make the idea come alive, be someone...Talking to
inanimate objects and thus giving them life is an implicit pattern in our lives; we have tried to turn it
to our advantage and make it an explicit process (Solomon 1976).

A common worry about anthropomorphic descriptions of computational system is the
danger of causing overattribution errors. That is, people might draw incorrect inferences about
the abilities of computers, assuming that they share more properties of the animate than they
actually do, such as the ability to reason or to learn. Sometimes this is dealt with by instructing
students to regard the little people as particularly dumb, mechanical instruction followers with
no goals, judgment, or intelligence of their own, much like a player of the “Simon Says” game. In
Papert’s phrase, “anthropomorphism can concretize dumbness as well as intelligence”.

This section explores the animate roots of computation and the ways in which the
programming paradigms introduced in the last chapter make use of animate metaphors. We will
also look at the relation of animism to human interface design, artificial intelligence, and the
teaching of programming. The questions to be asked are which attributes of animacy are
mapped into the computational domain, and onto what parts.
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3.3.1 Animism at the Origins of Computation

The entire enterprise of computation might be seen as being built around a series of
anthropomorphic metaphors, beginning with Turing’s description of what are now called Turing
machines. At this point in time, the word “computer” referred to a human calculator, who was
destined to be replaced by the described machine:

Computing is normally done by writing certain symbols on paper. We may suppose this paper is
divided into squares like a child’s arithmetic book... the behavior of the computer at any moment is
determined by the symbols which he is observing, and his ‘state of mind’ at that moment. We may
suppose that there is a bound B to the number of symbols or squares which the computer can
observe at one moment... Let us imagine the operations performed by the computer to be split up
into ‘simple operations’... Every such operation consists of some change of the physical system
consisting of the computer and his tape [a one-dimensional version of the squared paper]... The
operation actually performed is determined, as has been suggested by the state of mind of the
computer and the observed symbols. In particular, they determine the state of mind of the
computer after the operation.

We may now construct a machine to do the work of this computer (Turing 1936).

Here the anthropomorphism underlying computation is made quite explicit. Computation is
first conceived of as a human activity, albeit one carried out in a rather formal and limited
manner. The metaphorical mapping from the human domain has some questionable
components—in particular, the characterization of the human computer as having a ‘state of
mind’ that is discrete and drawn from a finite set of possible states. Nonetheless this metaphor
has proven extraordinarily powerful, and forms the basis of the imperative model of
programming described in section 2.2.3.1.

This prototypical computer, while described in animate terms, has few of the properties that
are central to animacy. The computer is not particularly autonomous—it is “doing what it is
told, no more, no less”. Its purpose, if any, comes from outside itself—it has no representation
or access to its goal. It has no relationship with a world outside of its own tape memory, so
certainly cannot be said to be reactive. It is, however, repeatedly performing actions, and so
despite its limitations is seen as animate. I call this particular reduced form of animism “rote
instruction follower animism”, to contrast it with the concept of animacy used in everyday life,
which is linked to autonomy, purposefulness, and consciousness.

It is interesting to contrast this form of computational animism with the related imagery
found in the discourse of computation’s close cousin, cybernetics. Cybernetics and the
technology of computation developed in parallel during and after World War II. Cybernetics
concerned itself precisely with those properties of animacy marginalized by Turing’s
hypothetical machine and the later actual machines: purposefulness, autonomy, reactivity, and
the importance of the relationship between an organism and its environment. These sciences
had origins in different technological tasks (feedback control in the case of cybernetics, code-
breaking in the case of computation), different mathematical bases (continuous time series vs.
discrete symbolic manipulation), and ultimately in different ideas about the mind (regulative vs.
cognitive). While the two approaches were discussed together during the period of the Macy
conferences (Heims 1991), they ultimately went their separate ways. Recent developments in
AI, such as the situated action approach to behavioral control (Agre and Chapman 1987) are in
some sense an attempt to bring back into AI the cybernetic elements that were split off.
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3.3.2 Animacy in Programming

The various programming models described in the last chapter can be analyzed in terms of
animacy. This will mean looking at each in terms of what each model offers the programmer in
terms of  tools  for  thinking about  act ion and actors .  L ike trans-frames, statements of
programming languages can be considered as representations of change. If we assume that the
operation of programs is understood, at least in part, by means of the application of such
frames, we can ask ourselves questions about the contents of the terminals of such frames.
What are the actions, what are the ACTORs and ORIGINs and DESTINATIONs? The identities
of the ACTORs are of particular interest: who or what is making these actions happen, who is
in charge? What images of control can inform our understanding?

To take an obvious example, consider an imperative assignment statement like LET A=B. In
the above terms, it is a command to move a value OBJECT (contained in B) from a SOURCE (B)
into a DESTINATION (A). This is essentially represented metaphorically as a physical transfer
(PTRANS) of an object from one place to another, although neither the objects nor places are
truly physical in any tangible sense. But what about the ACTOR terminal of the trans-frames
that represents this action? Who is performing the move operation?

Imperative statements or commands like the one above are like imperative sentences—they
do not explicitly name their ACTOR, instead they have an implied actor who is the recipient of
the command. In the computational case, the computer itself will take on the role of ACTOR
when it executes the instruction. This mode of address meshes with the image of the computer
as an animate but dumb being, who must be instructed in detail and cannot really take any
action on its own.

While object-oriented programming languages also follow a basically imperative model, the
image of their operation is somewhat different, because the objects are available to fill ACTOR
terminals. In OOP, programs are written as methods for specific object classes, and are seen as
executing on behalf of particular objects. This tends to make the implied actor of an imperative
instruction that occurs inside a method be the object, rather than the computer as a whole. The
fact that methods can refer to their owning objects through reserved words like self heightens
this effect.

Message-passing OOP languages introduce MTRANS or information-transmission events to
the metaphorical underpinnings of the language. A message send is an action that transmits a
request or order from one object to another (or to itself). OOP languages often use animistic
names like ask or send  for this operation. In a frame representation of a message-passing action,
objects will occupy both the ACTOR and DESTINATION terminals. Once the message is
transmitted, the DESTINATION object executes its own method for the message and, if it
should take any action, will fill the ACTOR role of the next operation.

Message-passing languages thus provide a richer conceptual image of their activity than can
be found in the basic imperative model, even though the computations they support may be
identical. The activity is no longer the actions of a single actor, but a complex of interactions
between objects. Even though, in an ordinary object-oriented language, the objects are not in
any real sense active or autonomous (that is, they only take action when explicitly activated
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from the outside), they provide better handles for programmers to apply animistic thinking. The
partially animistic nature of objects creates natural “joints” that allow the programmer or
program reader to carve up the activity of the program into small segments, each of which is
more readily understood in animate terms. Whereas previously the computation was seen as a
single actor manipulating passive objects, under OOP objects are seen as taking action on their
own behalf.

Functional languages, by contrast, are those in which action, time, and change have all been
banished for the sin of theoretical intractability. Such languages do not support animate thinking
at all, and there are no implied actors to be found. Some programming environments that are
quasi-functional, like spreadsheets, are amenable to a rather limited animate interpretation, in the
sense that spreadsheet cells that have a functional definition can be thought of as actively
“pulling in” the outside values needed to compute their own value. Spreadsheet cells are also
responsive to change, and purposeful in that they act on their own to maintain their value in
the face of change. But because they cannot act to change the world outside of themselves,
they are not going to be understood as animate in any broad sense.

Procedural languages blend the imperative and functional models, and so admit to being
understood as animate to varying degrees depending on the style of the program. The
modularization of a program into a collection of procedures allows each procedure to be seen
in animate terms; this is exemplified by the little-person metaphor, described below.

Constraint systems and languages vary in their treatment of actors and agency. Like the
functional model, they emphasize declarative statements of relationships rather than
specification of action, and so tend to be actorless. But some, like ThingLab, explicitly treat the
constraints as objects with procedural methods. This suggests that the constraints themselves

paradigm organizing metaphors and principles treatment of agents

imperative action, instruction-following single implicit agent

functional functional mappings no agents

dataflow flow of values through network cells can be seen as “pulling” agents

procedural society of computing objects; call and
return metaphors; combines impera-
tive and functional modes

procedures can be seen as agents;
little-person metaphor

object-oriented communication metaphors, message-
sending, encapsulation

encapsulation helps to present ob-
jects as agents

constraint declarations of relationships to be
maintained

constraints can be seen as agents
with goals.

Table 3.2: Summary of metaphors and agents in programming paradigms.
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could take the role of actors in the system. But in practice, constraints are seen as passive data
used by a unitary constraint-solver. The procedural side of constraints are single statements
that are manipulated as data objects by a planner, rather than active entities in their own right.

Animacy is a powerful conceptual tool with which to analyze programming paradigms (see
Table 3.2 for a summary). In particular, it can help explain the specific appeal and utility of
object-oriented programming, which has in recent years become an extremely popular model
for commercial programming. OOP is fundamentally just a way of organizing a program, and it
has not always been clear why or even if it is a superior way to do so. Animism provides a
theory about why OOP is powerful: its particular style of modularization divides up a program
so that animate thinking can be readily applied to any of its parts. Functional programming, on
the other hand, provides a model that systematically excludes animism, which might explain
why, despite its undeniable theoretical advantages, it has little popularity outside of a small
research community.

Animism lurks in the background of these classic programming models. Can it be used as an
explicit basis for the design of new ones? Agent-based programming, to be described, attempts
to do jus t  that .  In  par t icular ,  i t  seeks  to  provide a  language for  programs that  are
understandable in animate terms, but with the ACTOR slot filled by objects that partake of a
higher degree of animacy than the rote instruction followers found in the imperative and object
models. They should be capable of being seen as possessing the main qualities of real animacy:
purposefulness, responsiveness, and autonomy.

3.3.2.1 The Little-Person Metaphor

The little-person metaphor is a teaching device used to explain the operation of Logo to be-
ginners. The little-person metaphor was invented by Seymour Papert in the early days of Logo
development; the description here derives from the descriptions in (Harvey 1985) and (diSessa
1986). Under this metaphor, the computer is populated with little people (LPs) who are
specialists at particular procedures, and “hire” other LPs to perform subprocedures. LPs are
normally asleep, but can be woken up to perform their task. Whenever an LP needs a
subprocedure to be run, it wakes up and hires an LP who specializes in that procedure, and
goes to sleep. When the hired LP finishes executing its procedure, it reawakens the caller. A
“chief” LP serves as the interface to the user, accepting tasks from outside the LP domain and
passing them on to the appropriate specialists.

The LP metaphor is an explicitly animate metaphor for a procedural language. Procedures
are still rote instruction followers, accepting commands from the outside and executing fixed
scripts, and not capable of autonomous activity in any sense. Still, the LP metaphor succeeds
quite well in “animating” procedures and making their activity understandable. In some respects
it is easier to see a procedure as animate than the computer as a whole. I believe this is because
a procedure, being specialized for a particular task, brings along with it  a feeling of
purposefulness. LPs thus can be seen as fulfilling a task rather than as simply carrying out a
sequence of instructions. The social and communicative aspects of the metaphor are also im-
portant, since they give a metaphoric basis to the relationships between procedures.
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The little-person metaphor has been quite successful as a device for teaching the detailed
workings of the Logo language.10 Sometimes the model is taught through dramatization, with

students acting out the parts of the little people. Not only does the model provide a good tan-
gible model for the otherwise abstruse idea of a procedure invocation, but it turns them into
animate objects, allowing students to identify with them and to project themselves into the envi-
ronment.

3.3.3 Body- and Ego-Syntonic Metaphors

The Logo turtle was developed to encourage what Papert calls syntonic learning (Papert
1980, p.63). Turtles are said to be body syntonic, in that understanding a turtle is related to
and compatible with learners’ understandings of their own bodies. The turtle may also be ego
syntonic in that “it is coherent with children’s sense of themselves as people with intentions,
goals, desires, likes, and dislikes”. Syntonic learning, then, is any form of learning which
somehow engages with the student’s existing knowledge and concerns, in contrast to the more
common style of dissociated learning (such as the rote learning of historical events or multipli-
cation tables).

Papert’s theory of syntonic learning resonates with our theory of metaphorically-structured
understanding, which holds that all real conceptual learning involves building connections with
existing knowledge. Looking at syntonic learning as a metaphor-based process might give us a
way to think about how it works. Body syntonic learning involves creating a correspondence
between the body of the learner and some anthropomorphic element in the problem world (the
turtle). The learner is thus able to bring to bear a large store of existing knowledge and experi-
ence to what was an unfamiliar domain (geometry, in the case of the turtle). Metaphors based
on the body have the advantage of universality: everyone has a body and a large stock of
knowledge about it, even young children. The power of the turtle lies in its ability to connect
bodily knowledge with the seemingly more abstract realm of geometry.

The utility of body-syntonicity for problem solving has also been explored by (Sayeki
1989). Sayeki explored how people project themselves into an imaginary scene such as the
world of a physics or geometry problem, and found that problem solving times could be drasti-
cally decreased by including cues that allowed solvers to map the problem onto their own
bodies (i.e. making what was a geometric figure resemble a body by the addition of a cartoon
head). By introducing anthropomorphic forms (which he labels kobitos, or little people) he can
apparently make it much easier for subjects to find the appropriate mappings from their own
bodies to the objects of the problem, a process he refers to as “throwing-in”. This is an
interesting case of the deliberate deployment of metaphor in order to aid in problem-solving. It
also highlights the active nature of the process of metaphorical understanding—learners actively
project themselves into the problem domain, as is the case with the turtle.

10 Seymour Papert, personal communication.
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The realization of body-syntonicity through turtles and similar physical or graphic objects
that permit identification would seem to be a clear success. Ego-syntonicity, however, is more
problematic. The Logo turtle is only weakly ego-syntonic. A turtle always has bodily properties
(position and heading), but does not in itself have goals and intentions of its own, or behaviors
that take into account the environment (Resnick and Martin 1991). If it has any kind of ego, it is
the simple-minded one of the rote instruction follower. And this of course does allow the
learner to project some of their own mental activity onto the turtle, but only a highly limited
subset. The turtle can, in theory, be programmed to have ego-syntonic properties like goals,
but they are not inherent in the basic Logo turtle or the Logo environment. In particular, in
many implementations of Logo the turtle lacks any kind of sensory capability and thus cannot
really have goals because there is no way to verify when the goals are satisfied. Later work by
Papert and his students (Papert 1993) (Martin 1988) addresses the issue of augmenting the
turtle with sensors so that it could have responsive behaviors and gave more emphasis to the
role of feedback. However, the Logo language is still essentially oriented around the procedural
model, rather than a reactive or goal-oriented one.

There are strong emotional factors at work in this process of projection and identification.
Child programmers may have different styles of relating to the computer that affect how or if
they can identify with and project themselves onto the machine. Such styles are strongly condi-
tioned by gender and other social factors (Turkle 1984) (Papert 1993). It has been suggested,
for instance, that the child-rearing role of women predisposes them to “take pleasure in
another’s autonomy” while men are more likely to be preoccupied with their own autonomy
and thus more prone to domination and mastery rather than nurturing the autonomy of others
(Keller 1985). This difference in style has been observed in the different programming styles of
boys and gir ls  learning to program (Motherwell  1988) (Turkle and Papert  1991).  In
Motherwell’s study, girls were considerably more likely to treat the computer as a person than
were boys.

3.3.4 Anthropomorphism in the Interface

Human interface design has considered anthropomorphism in the form of “agents”. In this
context, an agent is an intelligent intermediary between a user and a computer system, visual-
ized as an anthropomorphic figure on the screen with whom the user interacts, often by means
of natural language (Apple Computer 1991). Interface agents are still mostly a fantasy although
there are some explorations of anthropomorphic interfaces with minimal backing intelligence
(Oren, Salomon et al. 1990), as well as efforts to use more caricatured, less naturalistic anthro-
pomorphic metaphors that use emotion to indicate the state of a computational process
(Kozierok 1993).

There is a long-standing debate in the interface community about the utility and ethics of
agents (Laurel 1990). Anthropomorphic agents promise easier to use interfaces for novices; but
they also threaten to isolate the more experienced user from the ability to directly control their
virtual world (Shneiderman 1992) (Lanier 1995). Other ethical issues revolve around the
question of whether having a computational system present itself as a mock person requires or
elicits the same sort of moral attitudes that apply to a real person, along with the even more
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provocative notion that dealing with simulated people who can be abused (deleted or
deactivated, for instance) will lead to similar callous attitudes towards real people.

Nass demonstrated that people interacting with computers are prone to treat computers as
social actors, when interaction is framed appropriately (Nass, Steuer et al. 1993). That is, if the
interaction is framed as a conversation, users will apply the usual social rules of conversation
to the interaction (i.e., praising others is considered more polite than praising oneself). The
subjects of the experiments applied these rules even though they believed that such rules were
not properly applied to computers. This research suggests that people can be induced to take
an animate view (in Goffman’s terms, to apply a social framework) by certain specific cues,
such as voice output. This cueing process seems to operate almost beneath conscious control,
much as the motional cues used by Michotte to induce perceptions of animacy.

Many interfaces are not as explicitly anthropomorphic as those above, but incorporate a
few cues that induce a mild degree of animism. The Logo language, for example, is designed to
use natural-language terms in a way that encourages a form of interface anthropomorphism.
Commands, syntax, and error messages are carefully crafted so that they resemble natural lan-
guage communication, casting the Logo interpreter, procedures, or turtle as communicating
agents. For instance, if a user gives Logo an unrecognized command (say SQUARE), it re-
sponds with “I DON’T KNOW HOW TO SQUARE”, rather than something on the order of
“Undefined procedure: SQUARE”. The student can then “instruct” Logo by saying:

TO SQUARE
REPEAT 4 [FD 70 RT 90]
END SQUARE

The interesting detail here is the syntax for procedure definition makes the definition re-
semble instruction in natural language: “To [make a] square, do such-and-such...”. By putting
the user in the position of addressing the computer (or the turtle) in conversation, the system
promotes the use of animate thinking. This syntactical design allows Logo teachers to employ
the metaphor of “teaching the computer” or “teaching the turtle” to perform procedures
(Solomon 1986).

Consider the different shadings of meaning present in the following different ways of ex-
pressing a textual error message:

 1 “Missing argument to procedure square.”
 2 “Procedure square requires more arguments.”
 3 “Procedure square needs more arguments.”
 4 “Procedure square wants more arguments.”

Of these, message 1 is the most formal, and the least animate. It is not even a sentence, just
a declaration of a condition. Message 2 casts the procedure as the subject of a sentence, which
is a large step in the direction of animacy. Messages 3 and 4 are of the same form as 2, but alter
the verb so as to imply increasingly human attributes to the procedure. All these variants and
more occur in various places in the discourse of computer science and in the discourse-like in-
teractions between programmers and their environments. Most professional programming envi-
ronments use messages that are like message 1 or 2, while those like message 3 are found in
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some Logo environments in keeping with the language’s use of animate and natural-language
constructs (see below). Statements like message 4 are rarely used as error messages, but are
common in the informal discourse of programmers.

Consider also the messages of the form “I don’t know how to square”, issued by some
Logo environments to indicate an undefined procedure. The use of the first person makes these
more explicitly anthropomorphic than the earlier group. But since there is no procedure, the “I”
must refer to the computer as a whole, or the interpreter, rather than a specific part. These
presentational subtleties are indicative of subtle modulations of animism in the Logo environ-
ment: the interpreter/turtle is fairly heavily animate, to the point where it can refer to itself in the
first person, whereas procedures are less so: they have “needs”, but do not present them-
selves as agents, instead letting the interpreter speak for them.

In recent years the term “agent” has become overused in the commercial software world
almost to the point of meaninglessness. Still, some core commonalties appear among most
products and systems touted as agents. One of these meanings is “a process that runs in the
background, autonomously, without being directly invoked by a user action”. Even the simplest
programs of this type, such as calendar and alarm programs, have been dignified as agents.
Less trivial applications include programs that try to learn and automate routine user actions
(Kozierok 1993) (Charles River Analytics 1994).

 This usage seems to derive from the overwhelming success of the direct manipulation in-
teraction paradigm. Because of the current dominance of this model of computer use, any user
application that operates outside of the direct manipulation mode, even something as simple as
an alarm clock, becomes an agent if only by contrast.

Another popular type of “agent” is the migrating program, such as “Knowbots” that roam
the network looking for information that meets preset criteria (Etzioni and Weld 1994). Agents of
this sort can transport themselves over a network to remote locations where they will perform
tasks for their user. Special languages, such as Telescript (General Magic 1995) are under
development to support the development and interchange of these agents. It is not clear to me
why a program running on a remote computer is any more agent-like than one running on a lo-
cal computer. The animism apparently arises from the ways in which these programs are in-
tended to be used. Remote execution might contribute to a greater feeling of autonomy, and
agent programs can migrate from machine to machine, like a wandering animal, and reproduce
by copying themselves. The development of computer networks has given rise to spatial
metaphors (like the overused “cyberspace”) which in turn seems to encourage the use of ani-
mate metaphors for the entities that are to populate the new space. Telescript in particular fea-
tures places, which are similar to processes, as one of its main object types.

3.3.5 Animate Metaphors in Artificial Intelligence

The task of Artificial Intelligence is to derive computational models of human thought, a pro-
cess that is metaphorical in nature but maps in the opposite direction from the one we have
been considering here, that is, the use of animate metaphors for computation. The two ways of
knowing are intimately related, of course: metaphorical mappings of this broad sort tend to be
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bidirectional, so that models of the mind and of the computer are necessarily co-constructed in
each other’s image. I will not directly address the issues raised by computational metaphors for
mind, a topic addressed widely elsewhere (see (Agre 1996) for a view that emphasizes the
specific role of metaphor).

However, mental or animistic metaphors for computation are just as much a part of AI as
are computational metaphors for mind. From this standpoint, AI is less a way of doing psychol-
ogy and more an engineering practice that relies on the inspiration of human thought for design
principles and language. In other words, it makes explicit the animism that has been implicit in
other approaches to computation. For example, here is a fairly typical description of the opera-
tion of an AI program, selected at random from a textbook:

When F IXIT [a program] reexamines a relation, it looks for a way to explain that relation using all but
one of the precedents... [the exception] is omitted so that F   IXIT can explore the hypothesis that it
provided  an incorrect explanation... (Winston 1992, p390) [emphasis added].

The italicized words above indicate verbs that put the program in the position of an animate
actor. Such talk is probably necessary, in that it is the most compact and meaningful way to
communicate an understanding of the program to the reader.

AI has always pushed the frontiers of complexity in programming and thus has generated
many new metaphors for computational activity, metaphors which are not necessarily linked to
the founding metaphor of computation as thought. An example of this would be the blackboard
model of problem solving (Reddy, Erman et al. 1973), in which a blackboard metaphorically
represents a scratch memory and communications medium that can be shared by multiple
computational processes.

The willingness of AI to freely leap between computational and animate language has
proved both fruitful and dangerous. The fruitfulness results from the richness of animate lan-
guage for describing processes, and the inadequacy of more formal language. The danger re-
sults from the tendency to take one’s own metaphorical language too literally. (McDermott
1987) is a well-known diatribe against the practice of giving programs animistic names like
UNDERSTAND rather than more restrained, formalistic names based on the underlying algo-
rithm. Such naming practices, however, are a constituent part of the practice of AI. Constant
critical self-evaluation is the only way to ensure that the metaphors are used and not abused.

The subfield of distributed artificial intelligence (Bond and Gasser 1988), in which AI
systems are spl i t  into concurrent communicat ing parts ,  makes more explici t  use of
anthropomorphic metaphors to represent its parts. Because communication often dominates
the activity of such systems, metaphors of communication and social interaction predominate.
The metaphors employed include negotiation (Davis and Smith 1983), market transactions
(Malone, Fikes et al. 1988), and corporations or scientific communities (Kornfeld and Hewitt
1981). A particularly important thread of work in this field begins with Hewitt’s work on Actors,
a model of concurrent computation based on message passing (Hewitt 1976) (Agha 1986). The
Actor model is a computational theory, in essence a model of concurrent object oriented
programming, but the work on Actors has included a good deal of work on higher-level
protocols and on ways of organizing communication between more complex actors. This has
led to an interest  in “open systems” (Hewit t  1986) ,  an approach to thinking about

76 Animacy



computational systems that acknowledges their continual interaction with an external
environment.

Minsky’s Society of Mind represents perhaps the most figurative use of anthropomorphic
language in AI, perhaps out of necessity as it is a semi-technical book written in largely non-
technical language. By using anthropomorphic metaphors to talk about parts of minds, Minsky
risks being accused of resorting to homunculi, and indeed has been (Winograd 1991). Dennett
has a lucid defense of homuncular theories of the mind:

It all looks too easy, the skeptics think. Wherever there is a task, posit a gang of task-sized agents
to perform it — a theoretical move with all the virtues of theft over honest toil, to adapt a famous
put-down of Bertrand Russell’s.

Homunculi — demons, agents — are the coin of the realm in Artificial Intelligence, and computer
science more generally. Anyone whose skeptical back is arched at the first mention of homunculi
simply doesn’t understand how neutral the concept can be, and how widely applicable. Positing a
gang of homunculi would indeed be just as empty a gesture as the skeptic imagines, if it were not
for the fact that in homunculus theories, the serious content is in the claims about how the posited
homunculi interact, develop, form coalitions or hierarchies, and so forth (Dennett 1991, p261).

3.3.6 Conclusion: Computation Relies on Animate Metaphors

We have seen that animate metaphors and usages play a number of roles in computing:
they appear in the discourse of computation as foundational metaphors, in pedagogy as teach-
ing devices, and are taken with various degrees of literalism in interface design and AI.
Fundamentally, computers are devices that act, and thus we are prone to see them in animate
terms.

But in most cases the animism attributed to the computer is of a limited kind, the “rote in-
struction-follower” kind of animism. In some sense, this is proper and unexceptional—after all,
the computer is a rote instruction follower, at the level of its inner workings. Students must
learn to give up their animism and look at the computer as it “really is”, that is, under the me-
chanical viewpoint, as a device without goals or feelings, if they are to understand its opera-
tions in detail.

But what if our goal is not to teach how machines work, but particular styles of thought? If
our interest is in exploring programming as a means of controlling action and of building animate
systems, the fact that the language of computation provides only a narrow concept of animacy
is unfortunate. With that in mind, the next section looks at the idea of agents as the basis for
programming languages that can support a richer notion of animacy.

3.4 Agent-Based Programming Paradigms

This section develops a theory of agent-based programming, that is, a model of program-
ming strongly based on animate metaphors. Agent-based programming begins with the tradi-
tional anthropomorphic mapping underlying the idea of computation and changes it in two
ways. First, it changes the nature of the mapping so that instead of presenting the computer as
a single anthropomorphic entity, it is instead seen as a society of interacting autonomous
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agents. Second, it extends the mapping between the anthropomorphic representation and the
underlying computational reality to include new characteristics, such as goals and emotions
based on the state of goals.

Using multiple applications of the anthropomorphic metaphor in the description of a pro-
gram is not a particularly new idea. It is present, in varying degrees of explicitness, in the little-
person model, in object-oriented programming, in the Actor model of computation, and in the
Society of Mind. However, in these systems, the metaphor has for the most part remained in
the background, used only for teaching purposes or to illustrate a set of concepts that quickly
become detached from their metaphorical roots. The animate parts in such systems are for the
most part seen as rote instruction followers.

In  agen t -based  programming ,  the  an imate  metaphor  i s  t aken  more  se r ious ly .
Anthropomorphic characteristics are deliberately brought forward into the language and inter-
face, and the user is encouraged to think of agent activity and interaction in those terms. More
importantly, agent-based programming seeks to provide a richer form of anthropomorphism
than earlier models. In contrast to the rote-instruction-follower version of animacy found in
most of the standard models of computation, the animacy of agent-based systems attempts to
emphasize the characteristics of animacy we have found to be the most important: autonomy,
purposefulness, and reactivity.

We will see that the single most important technique for realizing this concept of agents is to
give them explicit goals—that is, concrete and accessible representations of what it is they are
supposed to accomplish. Goals can help crystallize the anthropomorphic metaphor: an agent is
not just any sort of person, it’s a person with a job to do. Goals can support reactivity (agents
react to events that affect their goal) and support detection of conflicts when one agent inter-
feres with another’s goal.

3.4.1 Principles of Agent-Based Programming

In the loosest sense of the term, an agent-based system is simply one whose functionality is
distributed among active functional modules. If a module can be seen to be taking an action to
achieve a purpose, it partakes of agenthood. By this criterion, even the most ordinary pro-
grams written in standard procedural languages may be seen as agent-based: agents are proce-
dures, while the communications between them are procedure calls. So this definition does not
capture anything very distinctive, although it does allow us to see that the roots of the agent
metaphor are to be found in standard programming practice.

How can we design agents that are more likely to be seen in animate terms? We have iden-
tified three characteristics in particular that contribute to the feeling of animacy: purposefulness,
autonomy, and reactivity. These characteristics do not have simple technical definitions, and
are deeply intertwined with one another. The following sections explore how these characteris-
tics can be realized in concrete computational terms. Other criteria must be taken into consider-
ation when designing an agent language. We would like our agent system to be at least as pow-
erful and usable as more traditional languages. This means that we also need to consider tradi-
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tional language design issues such as understandability, expressiveness, modularity, and com-
posability.

Agent-based programming, by its nature, emphasizes action-taking rather than computation
in the narrow sense. Because of this, it is crucial that agents be embedded in some kind of envi-
ronment in which they can act on other active or passive objects. The environment, then, will
be just as important as the language in determining the nature of agent-based programming,
since it determines the kinds of action and interaction that can take place. Chapter 4 treats these
issues in detail; for now, we should just keep in mind that agents are involved in interactions
with a complex world.

3.4.1.1 Purpose, Goals, and Conflict

When we talk about a “goal” , we mix a thousand meanings in one word.
 — Marvin Minsky, Society of Mind

In a complex software system, every component is there to achieve some goal of the de-
signer. This goal may be evident to an expert familiar with the global workings of the system
and the relationships of the parts, but may not be at all evident to a novice attempting to under-
stand the system from scratch. In fact, even experts often have trouble understanding the pur-
pose of other’s code, and occasionally even their own.

Agent-based programming can make these underlying purposes explicit, by including a
computational representation of the state of affairs the agent is supposed to bring about. Agents
allow procedural programs to be associated with declarative information about what they do. In
the same way that objects in a dynamic language like Lisp can carry around their type with
them, agents can carry around their goals. Explicit goals serve a number of different purposes
in an agent system:

Control: The most basic use of goals is simply to control and structure activity by triggering
procedures at appropriate times. A goal tells an agent when to run—that is, when its goal is un-
satisfied.

Verification: Goals allow agents to monitor the success or failure of their actions—success-
ful actions make the goal become satisfied. This can make debugging easier, since parts of pro-
grams that fail to achieve their stated purpose are explicitly revealed. The fact that agents can
have an idea of success and failure also provides a way to deal with unreliable problem-solving
techniques. Agents may create several subagents to help achieve its goal, each subagent having
the same goal as its superior, but using different methods of achieving it. Because the agents
can tell whether or not they have succeeded, the superior agent can use this knowledge to dis-
patch among its subagents.

Conflict detection: If an agent achieves its goal, it can continue to monitor that goal and de-
tect if some other agent causes the goal to no longer hold. This is one way to detect inter-agent
conflict. Conflict situations are quite common in complex systems, and are a common source of
bugs. The presence of explicit goals permits an agent to detect situations in which another agent
interferes with its goal, and makes it easier to convey to the user the nature of the problem.
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Organization: Agent-based programming can be viewed as a particular way of organizing
program fragments, by analogy with object-oriented programming. Just as OOP organizes pro-
cedures around the objects that it manipulates, in agent-based systems procedures can be
viewed as organized around the goals they are meant to achieve. Each of these forms of modu-
larity provides a degree of encapsulation or black-boxing, that is, a separation between the ex-
ternal interfaces of objects and their internal implementations. In OOP, this means that an object
can send another object a message without having to know about the internal structure of the
receiving object or the methods that process the message. The analogous property for agent-
based systems is that an agent can assert a goal to be satisfied without having to worry about
the details of the other agents that will be recruited to satisfy that goal

Visualization: Explicit goals can also make programs more comprehensible to an observer
who is reading the program or watching it execute. The goals serve as annotations or com-
ments that explain in a declarative style what a procedure is trying to do. But unlike textual
comments, goals are in a machine-usable form and can thus be used for a variety of interface
tasks.

Goals thus form the conceptual and computational basis for giving agents explicit represen-
tations of their purpose, which also contributes to the realization of the other two major quali-
ties of animacy we seek: autonomy and reactivity.

3.4.1.2 Autonomy

In the standard procedural model of programming, programs run only when they are ex-
plicitly invoked by an outside entity, such as a user or another program. Agents, by contrast,
should be able to invoke themselves, without the need for external invocation. That is, they
should be autonomous in the sense we have been using the word in this chapter—capable of
initiating action, or being seen as such. Of course, since an agent is also a constructed mecha-
nism, one which the programmer builds and understands using a more mechanical, causal point
of view, this apparent autonomy may only be skin-deep. No action really happens all by itself.
So agents will always have to be capable of being seen in at least two ways: as autonomous ac-
tion takers and as mechanical responders to outside conditions.

The simplest way to realize agent autonomy is to make each agent into a separate process,
and let it run in a loop concurrently with all other agents (and other activity, such as user ac-
tions). Concurrency in some form is a minimal requirement for agent autonomy. But concur-
rency by itself is a bare-bones approach to constructing agents. It provides a necessary plat-
form to support autonomy, but no structure for handling conflicts or explicitly dealing with
goals.

A somewhat different approach is to allow agents to be triggered by specific events or
states. That is, agents specify somehow what states or events they are interested in, and are
activated whenever these occur, without having to continuously check for them. This has the
same effect as the concurrent approach, but it can be more efficient and the metaphor is differ-
ent. In some sense triggering is causal or non-autonomous, because the agent is being activated
by an outside force, but if we use the monitoring metaphor the agent may still be seen as the
source of action.
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3.4.1.3 Reactivity

Reactivity means that agents should be responsive to the world. But what does this mean?
For one thing, it implies that the agent is operating in a changing world—an assumption at odds
with the standard model of procedural programming, where the environment is generally static.
It also implies that the agent has some readily available means of sensing the state of the world.
More importantly, it means that the image of the agent is different from the sequential executor
that the rote-instruction-follower model suggests. While agent-based systems should certainly
be capable of executing sequences of operations, it should also be easy for them to respond to
changes in the world at any time.

Reactivity is related to the properties of autonomy and purposefulness. An autonomous
entity initiates action—but to seem purposeful must have some reason for taking action. For
simple systems, the reason is usually going to be a change in the state of the world, that is, the
entity is reacting to something in its environment.

3.4.2 Computational Realizations of Agents

This section examines some of the ways in which the term “agent” has been used to refer
to elements of larger computational systems, and analyzes their strengths and deficiencies com-
pared to the criteria outlined above.

3.4.2.1 Agent as Process

The simplest realization of computational agents is as concurrent processes that can exe-
cute simple loops. This approach is used by MultiLogo (Resnick 1988). In MultiLogo, agents are
processes that can execute any procedure. Agents are thus general purpose entities rather
than being specialized for particular functions. Each agent has a graphic turtle of its own, so
turtles are controlled by a single agent, but the agents can communicate freely with the sensors
and effectors of LEGO creatures, permitting experiments in which multiple agents can be
controlling a single creature. Agents communicate by sending messages to one another. Each
agent has an input queue for messages and has some control over how messages are inserted
into the queue of recipients.

MultiLogo agents, being separate processes, are certainly autonomous. The language pro-
vides no special constructs for supporting goals or reactivity, although it is a fairly simple matter
to set up procedures with conditionals that provide these kinds of features. There are no built-
in facilities for handling conflict: if two agents try and control the same LEGO motor, contention
will arise. Agents, however, are protected from conflicting commands by handling them through
a queue, which effectively serializes them.

One major difference between MultiLogo’s approach and the agent-based systems of
LiveWorld is the sharp distinction in the former between agents and procedures. This follows
standard computing practice, but led to some confusion among students learning to use
MultiLogo, who had to learn to perform two separate types of problem decomposition. In ef-
fect, agents (processes) are a separate facility for concurrent operation that is augmenting a
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standard procedural language (Logo). Perhaps the confusion arises because both concepts par-
take of animacy in different ways, and get conflated in the students’ minds.

3.4.2.2 Agent as Rule

Another model for agent is a rule or demon. In this model, agents have a condition and an
action to be taken when the condition is met. A collection of such agents, together with a pro-
cedure for resolving conflicts, forms a forward-chaining rule system, that is, a system that is
driven solely by the current state of the world rather than by goals. While agents may have a
purpose, they do not have explicit goals. Teleo-reactive programming (Nilsson 1994) is an
example of a formalism that uses sets of rules to implement agents; for more discussion see
Section 5.1.3.

Although the agent-as-process model is more general (since a process can presumably im-
plement a rule using conditionals), the more restrictive format of the agent-as-rule model can
simplify conflict resolution and makes possible certain control strategies (such as recency or
specificity) and efficient implementations (such as storing rules in a data structure that permits
fast triggering (Forgy 1982)).

Rules, considered as a programming metaphor, are quintessentially reactive but are not
goal-oriented and are not usually thought of in particularly anthropomorphic or autonomous
terms. One way in which rules are anthropomorphized is to think of them as demons that are
triggered by specific events or conditions.

3.4.2.3 Agent as Enhanced Object

Shoham’s Agent Oriented Programming (AOP) formalism (Shoham 1993) is a computational
framework explicitly designed as an extension or specialization of object-oriented programming.
Objects become agents by redefining both their internal state and their communication
protocols in intentional terms. Whereas normal objects contain arbitrary values in their slots
and communicate with messages that are similarly unstructured, AOP agents contain beliefs,
commitments, choices, and the like; and communicate with each other via a constrained set of
speech acts such as inform, request, promise, and decline. The state of an agent is explicitly
defined as a mental state.

The AOP concept of agent is coarser-grained than that found in LiveWorld’s agent systems.
Each agent has its own mentality or belief system as opposed to components of a single mind.
There is no real opportunity for conflict in AOP, because each agent is responsible for maintain-
ing consistency among its commitments. If given contradictory information a choice must be
made, but there is no built-in mechanism for doing this.

Oddly enough, the AOP formalism appears to have no explicit representation of desire or
goals. Nor do the languages that implement AOP provide processes or other constructs that
support autonomous activity. Agents, despite their mental qualities, are essentially passive like
ordinary objects, but communicating at a higher level of abstraction. The agency in AOP is en-
tirely representational, rather than active. The roots of agency are seen as having explicit beliefs
and knowledge, rather than in being goal-directed or autonomous.
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This makes Shoham’s concept of agency almost entirely orthogonal to LiveWorld’s. They
are not necessarily incompatible though—there is the interesting possibility that it might be pos-
sible to combine Shoham’s representational agency with the purposive, autonomous idea
agency developed here. This is an area for future research.

3.4.2.4 Agent as Slot and Value-Producer

Playground (Fenton and Beck 1989) had a rather idiosyncratic view of agents as a
combination of a slot and a value-producing form for that slot. An agent in this system is
something like a spreadsheet cell that is also part of an object. See Section 2.2.3.2 for further
discussion of Playground.

Playground’s model of agent seems rather un-agent-like in the context of our discussion, in
that it cannot take any action to effect the world outside of itself. Functional agents like these
can be anthropomorphized to some extent by describing their computation as a “pulling” of
values from other cells in the system to use in its computation of its own value. This is opposed
to the usual “pushing” activity of more imperatively-structured languages. This terminology at
least puts the agent in an active role, but does not really allow it to act on the world.

A Playground agent is autonomous, in the sense that it continuously updates its value
without outside intervention, and reactive for the same reason. It has no explicit representation
of goal or purpose. Since there is exactly one agent per slot, there is no real opportunity for
conflict to arise.

3.4.2.5 Agent as Behavioral Controller

A wide variety of systems for controlling the behavior of an intelligent creature employ dis-
tributed networks of simple modules. Some of these refer to the modules “agents”, but it is
more common in this realm for the creatures themselves to be called agents. To avoid confu-
sion we will continue to use agent to refer to the internal active parts.

These systems arise from a movement within the AI and artificial life fields that focuses on
intelligent action rather than the more traditional symbolic problem solving. In part this focus
stems from frustrations with the state of work in traditional paradigms, in part from an interest
in modeling animal behavior for its own sake, in part from philosophical standpoints about the
nature of human intelligence and activity (see section 2.1.4), and in part by a search for alter-
natives to the dominant planning and reasoning paradigm, which can be computationally in-
tractable and has a limited ability to deal with a dynamic world (Chapman and Agre 1986).

While situated action does not rule out representation and reasoning, it de-emphasizes
them. Intelligent action is generated first by responsiveness to current conditions in the world.
Systems that work in this way tend to be organized around a functional modularity. Rather than
the centralized architecture of traditional AI, these systems are divided up into more-or-less in-
dependent, modules each of which is in charge of a particular behavior. These modules are
connected in networks so that some control can be exerted, but each module is in charge of
managing its own connection to the world through sensors and effectors.
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A variety of computational constructs are used to implement the internal agents of these
situated creatures. I will survey a few of these systems; for a fuller treatment see (Agre 1995).

The subsumption architecture (Brooks 1986) (Connell 1989) is a design methodology for
robot control systems. A subsumption program consists of a number of modules connected in
a network, usually arranged in a layered fashion, with each layer capable of controlling action
independently. Higher-level layers are capable of preempting lower-level ones using a scheme
based on fixed priority gates that make up the network. Each module is an autonomous
augmented finite-state machine, which can communicate with the outside world through
sensors, to other modules through the network, and to itself through a small set of registers.
Modules typically implement fairly simple behavioral control rules, sometimes augmented with
state. Goals are implicit rather than explicit, and conflict between modules is handled by
hardwired priorities in the connections between the modules and the network.

The Agar system is a software kit for modeling animal behavior (Travers 1988), and its
conception of control is based loosely on Tinbergen’s ethological models (Tinbergen 1951)
(also see section 5.2). In Agar, an animal’s behavioral control system consists of a network of
agents. An agent is something of a cross between a process and a rule, and has an activation
level and a threshold that determines when it can run. Agents in general connect a sensory
stimulus to an action, which may be an external action or the activation of another agent.
Agents affect one another by passing activation in this manner, and the usual practice is to
arrange them into a control hierarchy so that higher-level agents can activate ones at lower
levels. There are no explicit goals. Conflict is avoided by hard-wired inhibitory links between
agents that conflict.

Maes’ Action Selection Algorithm (Maes 1989) (Maes 1990) is somewhat different from the
above systems. It too posits a division of a control system into functional modules, with
variable activation levels. However, the relations between them are modeled after the relations
of classical STRIPS-like planning operators, so that modules are connected to other modules that
represent their preconditions and expected results. Unlike the other models, this allows the
activation of the system to respond to changing goals as well as to conditions in the world. The
action selection algorithm is explicitly non-hierarchical so that there are no managers, however,
there is a “bottleneck” in that only one module can actually act at any one time.

The agents of these systems are highly limited, yet can perform complex tasks. As agents in
the sense of this chapter, they are somewhat deficient. All three systems offer a high degree of
reactivity. Agar’s agents and Brooks’ behavior modules are semi-autonomous: they run con-
currently, and take action on their own. Maes’ competence modules are less so, since only one
can act at a time. All the architectures implement purposefulness, but only Maes’ uses an ex-
plicit representation of goals.

3.4.3 Agents and Narrative

Narrative deals with the vicissitudes of intention.
— Jerome Bruner (Bruner 1986)
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The agent metaphor allows computational elements to be envisioned using more natural and
powerful conceptual tools than those provided by more formalistic approaches. But thinking
about program parts in animate terms is only the first step. Once that mapping is created, what
other uses can be made of it? One possibility is to explore the traditional methods for express-
ing the interactions and histories of human agents; that is, of narrative forms. There would
seem to be great potential in using the form of stories both to create software agents (through
programming-by-example or case-based techniques) and to present the activity of such agents
to the user.

This second technique was explored in prototype form in the Nose Goblins system
(Travers and Davis 1993). This project included an agent architecture that was one of the
predecessors of LiveWorld’s, and allowed users to construct constraint-like agents that
performed tasks in a graphic design domain. In this architecture, agents related goals and
methods, and could detect inter-agent conflict.

When an agent conflict was detected, Nose Goblins created a story about the conflict and
expressed the story to the user using a format that combined a comic-strip/storyboard format
with clips of animated cartoon characters (see Figure 3.1). The storyboard served to present
the temporal qualities of the story, while the animated characters presented the emotional states
of the actors, based on the satisfaction state of their goals (happy, unhappy, or angry if in a
conflict situation). When a conflict was detected, a partial storyboard was generated with the fi-
nal panel showing the characters in an angry state; it was then up to the user to resolve the sit-
uation. The resolution was stored in a case library and used to deal with future conflicts.
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Figure 3.1: Four panels from a Nose Goblins storyboard. The first two frames illustrate the goals of
the two agents involved, while the last two illustrate how one agent clobbers another’s goal and

the resultant conflict.

Narrative is a natural form for describing action, particularly action that involves the inter-
action of multiple actors. If computational objects are going to be understood anthropomorphi-
cally, their actions are going to be best understood through narrative forms.

3.5 Conclusion

This chapter has defined and explored a particular mode of thought and its relationship to
computation. I imagine that some readers might have found this discussion to be highly irritat-
ing. “Why all this attention to such a marginal concept?”, I hear them saying. “Don’t you know
that anthropomorphism is at best a useful pedagogical device, and not something that really has
anything to do with how computers work and are programmed?” Assuming any of those read-
ers have actually made it to the end of the chapter, I would like to answer them. In computa-
tion, animism has become what I have called a transparent metaphor, one that is so much a
part of the structure of the discourse of the field that we have forgotten that it is there. This
chapter is an attempt to see a metaphor that has become close to invisible, with the hope of
understanding and extending it.

Is there a need for this treatment? I think that there is, because of the confusion that rages
in various segments of the computer world over issues that are deeply tied to the issue of just
what it means to be animate and/or intelligent. The current fad of using the word “agent” for
software of all types is one aspect of this unease, and it generates a good deal of confusion.
Another symptom is the recent split in AI between representationalists and the situated action
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approach, reminiscent of the older split between AI and cybernetics. Mature science is sup-
posed to converge on a theory; but instead computational approaches to intelligence and life
seem to be diverging, with no consensus on the problems to be solved, let alone the answers.

This chapter, then, is an attempt to address these problems at a conceptual level, by trying
to understand how the languages of computation are related to the language used to describe
life and action. We found that while animate metaphors are pervasive in computation, being in
some sense a founding metaphor for the field, the metaphors offer up only a limited form of
animacy that leaves out many of the key properties associated with aliveness. The rote-instruc-
tion-follower image affects and infects our thinking and limits our imagination about what com-
puters can do.

Agent-based programming systems set out to bring a fuller form of animacy to the descrip-
tion of computational processes. By picturing the components of programs as animate objects
that can have explicit goals, a degree of autonomy, and the ability to dynamically react to their
surroundings, languages can be designed that are more suitable for creating animate worlds.
The following chapter illustrates some agent systems based on these ideas and explores what
they can do.
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Chapter 4 LiveWorld
If the computer is a universal control system,

let’s give kids universes to control.

— Theodore H. Nelson (Nelson 1974)

The substrate of LiveWorld, upon which the agent systems were constructed, constitutes a
general purpose computational medium, designed for liveliness and ease of construction.
LiveWorld consists of a tightly integrated object system and interface, which permits ready
manipulation of the various components needed to make animate worlds. In addition to making
the animated graphic objects or actors easy to create, manipulate, and control, it was necessary
to make the internal parts and operations of the objects and the programs that drove them
visible and manipulable as well. While LiveWorld itself is not based on agents or animate
metaphors, it provides a world in which languages and programs based on those metaphors
can be developed.

Note: this chapter goes into a good deal of detail about the inner workings of LiveWorld.
Readers who are interested only in the agent systems may wish to skip over all but the first
section of this chapter. The first  section is an overview which introduces enough of
LiveWorld’s terminology to make the next chapter understandable.

4.1 Overview of LiveWorld

LiveWorld’s virtual space consists of a hierarchical structure of objects called boxes (see
figure 1.1). Boxes can be created and manipulated with the mouse; they are concrete and
tangible graphic representations of underlying computational objects. The intent of the interface
is to make the entire computational state of the virtual world available to the user in the form of
boxes.

Boxes are named and can have values. If a box color is inside of a box turtle, then color is
sometimes referred to as an annotation o f  turtle. Annotations can function like slots of
standard object-oriented languages, so in the above example the value of the color box will be
interpreted as a slot of the turtle. Boxes are sometimes referred to as frames, reflecting their
underlying representation.

Some boxes represent graphic objects; these are called actors. Actor boxes are contained
inside theaters, which present them in two separate views: a stage view which shows them in
graphical form, and a cast view which shows them in the form of boxes. These two views are
interconstrained so that changes in one are reflected in the other.

Boxes can inherit properties from a prototype. New boxes are often made by cloning an
existing box, which just means making a new box with the original as prototype. Cloned boxes
(also called spinoffs) inherit various properties from their prototype, such as values for slots.
Inheritance is dynamic, meaning that changes in the prototype may affect the spinoff. The initial



LiveWorld environment consists of specialized objects including theaters, actors, slots, sensors;
users usually begin the programming process by cloning and combining these into a world of
their own. After an object is cloned the new object may be customized by modifying any of its
properties to be different from its prototype.

LiveWorld is programmed using an extension of Common Lisp. Since boxes are named and
are in a hierarchy, they can be referred to by paths. There are two forms of box paths. The
absolute form gives the name of a box starting from the top, or root, of the hierarchy. For
instance, the path

#/theater-1/cast/turtle/color

names the color f rame of a turtle inside the cast o f  theater-1. Relative boxpaths allow
references to be made relative to a local box; these are explained in section 4.5.4.2.

A message passing language is defined on frames: The ask primitive is used to send a
message to a box. For instance,

(ask #/theater-1/cast/turtle :forward 10)

will cause the named turtle to move forward 10 units. Boxes specify their responses to
messages by means of methods, which are themselves boxes containing a program.

Specialized boxes called animas offer process-like capabilities. An anima repeatedly sends a
:step message to its containing box, concurrently with other animas and user-initiated actions.
Animas can be used as the basis for building agents.

4.2 Design

4.2.1 General Goals

LiveWorld was designed to support certain basic qualities of interaction: all parts of the
system should be concretely represented and accessible, the system should feel reactive, it
should permit exploratory or improvisatory programming, and there should be a clear learning
path that leads a user from simple to more complex modes of use.

4.2.2 A World of Lively Objects

Creating animate systems requires the creation and organization of many different kinds of
parts, including worlds, actors (graphic objects, also called creatures), agents (behavior
generators). Each of these parts in turn can have parts of its own or aspects affecting its
appearance and function. The number of objects can be quite overwhelming unless deliberate
steps are taken to present the complexity in a form that a novice can comprehend.

The approach used by LiveWorld is in the tradition of Smalltalk and Boxer, in that it tries to
make computational objects real for the user. Objects should be concrete—that is, they should

90 LiveWorld



appear to have a solid existence, metaphorically rooted in the properties of physical objects,
and tangible—they should be accessible to the senses and actions of the user.

The techniques used to achieve these goals include a simple yet powerful object-oriented
programming system with prototype-based inheritance (arguably more concrete in its operation
than class-based inheritance); and the integration of the object system with an equally simple-
yet-powerful direct manipulation interface (see Figure 4.1). Together object-oriented
programming (OOP) and direct manipulation serve to make computational objects appear as
concrete and tangible. These properties allow users to make use of their visual and motor
abilities to interact with computational objects.

LiveWorld is designed to support agent-based programming, or programming with an
animate flavor. It is not itself constructed from agents11, but is intended to support the creation

of agents, both computationally and from a design standpoint. Object-oriented programming is
the existing programming paradigm best capable of supporting animate thinking (see 3.3.2), so
LiveWorld starts from that basis. Objects are animate in the sense of being capable of acting,
but only in response to messages from outside themselves. This is a powerful paradigm, fully
capable of representing a wide range of computational activity, but its metaphorical implications
may be limiting. OOP presents a picture of objects as passive, taking action only in response to
a stimulus from the outside. For LiveWorld, we want objects to seem capable of acting as
animate creatures.

As set out in Chapter 3, the three salient characteristics of animacy are purposefulness,
autonomy, and reactivity. The agent systems described in Chapter 5 are more directly
concerned with these issues, but the underlying level is capable of providing some basic
support for the latter two. Autonomy is supported by special objects called animas, which
provide a facility similar to processes, but in a style designed to support agent-based
programming. Animas provide a “power source” which can be combined with other objects to
produce independent behavior, running independently from user activity and from each other.
They form the underlying basis of some of the simpler agent systems detailed in section 5.1.
Reactivity is supported by sensors that allow objects to detect other objects or conditions in
their environment, and by the more general computed-slot facility that allows values to be
automatically updated from changing environments.

4.2.3 Spatial Metaphor and Direct Manipulation

To make computational objects real for the novice, who has not yet developed the skills to
mentally visualize them, objects can be given some of the properties of physical objects, such
as appearance, location, and responsiveness to action. In other words, they should be brought
out to the user by means of a direct manipulation interface (Shneiderman 1983). The interface
should disappear as a separate entity; instead the user should be able to think of computational
objects as identical with their graphic representation (Hutchins, Hollan et al. 1986, p97).

11Section 6.3.4 dicusses the prospect of building a system that is entirely based on agents.
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LiveWorld presents itself as a collection of recursively nested graphic objects, arrayed in
space and manipulable by the user. This idea is largely borrowed from Boxer (diSessa and
Abelson 1986), following the design principle referred to as naive realism. LiveWorld retains
Boxer’s basic metaphor of recursively nested boxes, but differs from Boxer in the way it treats
its basic object. In Boxer, boxes are understood in reference to a textual metaphor. A Boxer
box is like a character in a text string that can have internal structure, which will be other lines
of text that also may include boxes. Boxes have no fixed spatial position, but are fixed in
relationship to the text line that contains them. There are no classes of boxes (except a few
built-in system types) and no inheritance.

In contrast to Boxer, LiveWorld boxes are to be understood as graphic objects that may be
moved with the mouse. While Boxer’s interface is rooted in word processing (specifically in the
Emacs text editor (Stallman 1981) from which Boxer derives its command set), LiveWorld’s is
rooted in object-oriented drawing programs. Both systems extend their root metaphor by
allowing for recursive containment.

LiveWorld’s object system supports the idea that a user should always be able to access
internal data, but shouldn’t have to see detail that is irrelevant to her needs. Complex objects
can be treated atomically as necessary, but opened up so that their workings can be viewed
and their parameters can be changed.

4.2.4 Prototype-based Object-oriented Programming

Object-oriented programming (OOP) makes programs more concrete by giving them a
feeling of locality. Under OOP, each piece of a program is closely associated with a particular
object or class of objects. Rather than an abstract set of instructions, a routine is now a
method,  belonging to a part icular  object  and intended to handle a speci f ic class of
communication events. It has a location, and in a sense its function is made more concrete by
its association with a class of objects.

 Prototype-based languages (Lieberman 1986) (Ungar and Smith 1987) are an alternative to
the class-based object schemes used in more traditional OOP languages such as Smalltalk,
CLOS, or C++. Prototype-based OOP arguably offers additional concreteness by dispensing
with classes. In a class-based object system, every object is an instance of a class, and
methods are associated with a class rather than with particular concrete objects. While classes
are usually represented by objects, these objects are of a different order than normal objects
and are sometimes called meta-objects to emphasize this distinction. In contrast, a prototype-
based system has no distinction between classes and instances or between objects and meta-
objects. Instead of defining objects by membership in a class, they are defined as variations on
a prototype. Any object may serve as a prototype for other objects.

The advantages of prototype-based programming are simplicity, concreteness, and the
possibility of a better cognitive match between program construct and the thinking style of the
programmer. It eliminates whole classes of metaobjects, and simplifies the specification of
inherited properties. In a sense it is object creation by example.
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For example, the properties of elephants might be defined by a prototypical elephant
(Clyde) who has color gray and mass heavy. Properties of Clyde become defaults for the
spinoffs, so all elephants will be gray and heavy unless their default is overridden, as in the
case of pink elephants. With prototypes, the specification of defaults and exceptions are done
in exactly the same way, that is, simply by specifying concrete properties of objects. In a class
system, one would generally have to use separate sorts of statements to express both “all
members of the class elephant are gray” and “except for the pink ones”.

There are some indications that mental representation of categories is structured around
prototypes (Lakoff 1987). Whether this translates into any cognitive advantage for prototype-
based computer languages is  open to quest ion. What prototypes do accomplish for
programming is to smooth out the development process, by easing the transition from
experimentation to system-building.

LiveWorld’s prototype-based object system is a modified version of Framer (Haase 1992), a
knowledge representation tool that provides a hierarchical structure for objects, prototype-
based inheritance, and a persistent object store. It is based on a single structure, the frame,
which can take the place of a number of constructs that are usually separate. Framer is a
representation-language language in the tradition of RLL-1 (Greiner 1980). In this type of
language, slots of a frame are first-class objects (frames) in their own right. This ability to put
recursive slots-on-slots makes it relatively easy to implement advanced programming constructs
that are difficult or impossible to realize in conventional object systems, such as facets, demons,
dependency networks, and histories. For example, any slot-frame can have a demon added to
it, which will be stored on a slot of the slot.

Framer was not designed as an object system for dynamic environments like LiveWorld,
and required a few modifications, additions, and speedups. I chose Framer for this task
because of its hierarchical structure, which was a perfect match for the Boxer-like interface I
envisioned for LiveWorld, because of its simplicity, because of its prototype-based inheritance
scheme, and because the ability to recursively annotate slots made it a very flexible vehicle for
experimentation. LiveWorld’s graphic representation for the frames is the box, which is
described below. From the user’s perspective boxes and frames are identical, and for the most
part I will use the terms interchangeably.

4.2.5 Improvisational Programming

A programming system for novices ought to support experimentation and improvisation.
The model of use should not assume that the user has a fully worked-out model of the task.
Rather, the system should assume that the user is engaged in an activity that consists of
incremental and interleaved design, construction, debugging, and modification. This means that
each part of the user’s cyclical path between idea, execution, and evaluation has to be short
and relatively painless.
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Figure 4.1: How LiveWorld supports improvisational programming.

Improvisational programming relies on the ability to build programs incrementally12. This

facility is an important part of dynamic programming environments for novices such as Boxer
or Smalltalk, since novices need the short feedback cycle that incremental programming can
provide. From the standpoint of interface design, incremental programming is akin to non-modal
interface design: conventional programming requires constant switching between writing and
testing, while incremental programming attempts to reduce or eliminate that modal switch.

A graphic browsing and editing interface contributes to the improvisatory feel of a system
by laying out all the available parts and options for the user, encouraging combination,
modification, and experimentation. Lisp and Logo generally have not included such a facility,
but Boxer and Smalltalk have made browsing interfaces a prominent part of their design.

The combination of object system, incremental programming, and graphic construction
gives the system the feel of a construction kit. A construction kit essentially provides a set of
parts that are both more complex than “raw material” and are designed to fit together. Kits
support improvisation because they reduce the effort needed to try new configurations.

Prototype-based object systems are arguably better at supporting improvisation than their
class-based equivalents. A class-based system makes it hard to create one-of-a-kind objects, so
building something is always at least a two stage process (first defining the class, then
instantiating an instance). Prototype-based systems eliminate this barrier, freeing users to build
concretely without having to first turn their concrete ideas into abstract classes.

The immediate feedback of the system closes the gap between execution and evaluation.
Graphic displays that provide affordances for action can involve the user in object manipulation
and suggest courses of action.

12 Sometimes the ability to build programs incrementally is conflated with the distinction between
interpreted and compiled languages. While the idea of interactive incremental program construction has its
roots in interpreted languages, modern programming environments support incremental compilation, so that
the benefits of compilation and incremental construction can be combined.
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4.2.6 Parsimony

Also borrowed from Boxer is the idea that a single structure, the box, can be made to serve
a multitude of purposes. In most languages, variables, data structures, sets, graphics, classes,
buttons, and palettes are very different sorts of things with very different interfaces. In Boxer
and LiveWorld all of these structures are replaced by the box, which is flexible enough that it
can perform all of their functions. This technique is of great value in reducing the complexity of
the interface, since only a single set of manipulation skills needs to be learned.

4.2.7 Metacircularity

As much as possible, the interface of LiveWorld is defined in the language itself, giving the
user control over its appearance and operations. Framer’s recursive structure makes it easy to
use frames to represent information about frames, and LiveWorld makes frequent use of this
capability. For instance, display information for frame boxes is stored in (normally invisible)
frame annotations to each displayed frame (%box-position, for instance). If you display these
frames, they get their own display annotations, recursively. Because LiveWorld represents its
internal processes in the same way as its user-level information, it may be considered as
capable of a degree of computational reflection (Maes 1987) (Ferber and Carle 1990) in that it is
possible for programs within LiveWorld to modify their underlying interpreter and related
mechanisms.

4.2.8 Graphic Realism and Liveness

LiveWorld strives for a feeling of real objects interacting in real-time. The principle of naive
realism is heightened in LiveWorld by displaying boxes and actors as solid objects that retain
their solidity as they are moved around. This simple but important technique serves to heighten
the realistic and concrete feel of the medium.13

13 The ability to do smooth double-buffered dragging was made possible by the Sheet system
developed by Alan Ruttenberg.
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Figure 4.2: A cloned sensor about to be dropped into a turtle actor.

When a box or actor is in transit (for instance, just after being cloned but before being
dropped in its home) it appears to float over the world, casting a shadow to indicate its
transitional state (see figure 4.2).

The “liveness” of LiveWorld requires that many activities are ongoing simultaneously. This
means that screen objects must be able to move concurrently, and also that screen animation
can proceed concurrently with user interaction. The feeling of liveness is enhanced by updating
displays immediately. For instance, dragging an object will cause any related displays to update
continuously, not only after the object is released. Also, autonomous screen objects continue
to act during user interaction, and responsive objects may change their behavior as a result of
user motion, again even before the operation is complete. The goal of the system is to
encourage users to interact with the systems they build.

Many systems that allow interactive editing of a runnable system use global mode switching
as a predominant feature of their interface (for example, the NeXT Interface Construction Kit
has a big icon of a knife switch for this purpose). These systems impose a barrier between
construction and use that should be unnecessary. LiveWorld avoids the need for global mode
switching,

14
 encouraging users to modify their systems as they run. This has the effect of

tightening the debugging loop as well as making the interface less modal.

4.2.9 Learning Path

A programming system for novices should be both easy to learn and powerful. It is too
much to expect a powerful system to be learned all at once, so the system needs to provide a
learning path consisting of techniques that allow a user to progressively learn and adopt
features of the system. Each layer of the system should provide “conceptual scaffolding” that

14 LiveWorld does have a master switch to turn off animation, but its use is optional—editing can take
place while things are running.
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allows the learning of the next layer to be rooted in existing skills. Complexity needs to be
hidden until it is needed, at which time it should reveal itself in understandable terms.

In LiveWorld, there are a number of distinct levels of usage that exist within an integrated
framework. The intent is that simple modes of use should be easily learnable and also lead the
user into the more complex modes. For example, a user whose only experience is in using
direct-manipulation graphics programs can approach the use of LiveWorld as she would a
drawing program. Unlike a drawing program, however, LiveWorld makes the properties of the
object into manipulable objects in their own right, and can thus introduce this novice user to
the idea of properties; slots; and values.

The learning path of a novice might follow these steps:

• use of direct manipulation graphics to create pictures;

• opening up the graphic objects to manipulate properties and slots; using objects as
prototypes;

• adding behavior to objects by copying agents from a library;

• debugging behavior interactions;

• customizing behaviors by modifying agents.

The coexistence of several modes of use that shade naturally into each other creates a
learning curve. Mastery at one level can function as scaffolding for learning the next.

4.2.10 Rich Starting Environment; Libraries

One important stage of use in the scaffolding model is programming by copying and
combining pre-built objects and behaviors from libraries. Later, users may open up these
objects to see how they work and change them. Alan Kay has termed this style of use
“differential programming” (Kay 1981). The idea behind differential programming is to support
the common desire to make an object that is almost identical to an existing one, but with a few
small modifications.

This is quite different from Logo’s approach (see section 1.3.3), while Boxer is somewhere
in between. Logo environments generally begin as blank slates, containing only a turtle. A new
Boxer environment presents a blank slate to the user, but the educational community around
Boxer has also developed a style in which the user begins with an already-constructed
microworld containing both working examples and components that can be used in new
simulations.

LiveWorld goes beyond Boxer in that it is designed to permit easy modification and
combination of pre-existing components by direct manipulation. Any existing object (from a
library or elsewhere) can be cloned, and the clone can then be modified incrementally without
affecting the original. If a modification turns out to have an undesirable effect, the modification
can be undone by deletion, and the object will revert back to the properties and behavior of the
original. LiveWorld’s hierarchical object system allows library objects to be combined into new
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configurations: i.e., a user might combine a graphic representation for an actor cloned from a
library of pictures and add to it sensors and agents cloned from separate libraries.

Aside from their use as sources of prototypes and components, the libraries also act as
sources of examples. That is, each entry in a library may be treated as a closed object, which is
used as is, or an open object that can be modified or inspected.

4.3 Box Basics

This section introduces the essential features of LiveWorld’s representation and interface.

4.3.1 Boxes Form a Hierarchical Namespace

The LiveWorld environment is  made out of boxes or frames. The terms are used
interchangeably except in contexts where there is a need to distinguish between the screen
representation (box) and the internal structure (frame). From the user’s perspective, they are
the same. Boxes are named and can contain other boxes as annotations. Boxes thus form a
hierarchical namespace, with a single distinguished box as the root. The inverse of the
annotation relation is called home, so that all boxes except the root have exactly one home.

Framer’s syntax for referring to frames uses a syntax based on Unix pathnames. #/
designates the root frame, #/theater-1 designates an annotation of #/ named theater-1, and
#/theater-1/cast/bug/xpos designates a frame named xpos  several levels down in the hierarchy
whose home is #/theater-1/cast/bug. LiveWorld introduces some variants on this syntax
which are explained in section 4.5.4.2. Boxes also can have a value o r  ground, which may be
any Lisp object, including another box. The value allows a box to serve as a slot.

4.3.2 Inheritance, Prototypes and Cloning

A box can have a prototype, from which it inherits values and annotations. For example,
the prototype of #/poodle is  #/dog. #/poodle will inherit all the properties of #/dog, but can
override ones in which it differs, such as #/poodle/hair-curliness. The inverse of the prototype
relation is the spinoff, so #/dog has #/poodle as a spinoff.

 By default, a frame’s prototype is the annotation of its home’s prototype with the same
name. For example, if the prototype of #/dog i s  #/wolf,  then the default  prototype of
#/dog/personality will be #/wolf/personality. However, the prototype can be any frame at all,
so that while #/rover might be a spinoff of #/dog, #/rover/personality could be changed to be a
spinoff of #/sheep/personality. Within LiveWorld, new frames are usually created by cloning
existing frames; see 4.4.4.

Framer provides only single inheritance (a frame can have at most one prototype). But since
contained frames can have their own prototypes that violate the default rule, it is possible to
simulate some of the effects of multiple inheritance.
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4.3.3 The Basic Box Display

LiveWorld’s display consists of a single hierarchy of nested boxes, each representing a
frame. A typical set of boxes is illustrated in Figure 4.3.

handle namehome annotations

value

prototype

resizer

icon

Figure 4.3: Boxes and their parts. The labels denote parts or relations relative to the object my-
turtle.

Boxes consist of the following graphic elements (from left to right on the top in Figure 4.3):

handle – controls whether the box is open (displaying its annotations) or closed. The
handle appears in solid form if there are (interesting) annotations to display, otherwise it
appears in outline form.

icon - icons can give a box a more distinctive visual appearance. Icons, inherited like other
box properties, serve to indicate broad types of boxes (in the illustration, the icons for
worlds, actors, and sensors are visible) and may also be used to indicate the state of the
object represented by the box (as in Goal Agents, see 5.1.2).

name – the name of the box. Required; and must be unique within the box’s home.

value – the value or ground of the box, if it has one.

The following elements are only visible when the box is open:

annotations – these appear as contained boxes. Only interesting annotations are displayed,
see 4.4.6.

• prototype – the name of the boxes prototype appears in the lower-right corner of the box.

• resizer – used to change the size of the box.

Each of these elements also functions as an affordance for action. For instance, clicking on a
box’s prototype indicator can select the box’s prototype, or change it. Clicking on the name or
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value accesses similar functionality. The actions selected by clicks can be customized through
click tables; see 4.4.3.

4.3.4 Theatrical Metaphor

Graphic objects are implemented by special frames called actors that  l ive in theaters.
Theaters offer two views of their objects, a cast view and a stage view. Both the cast and stage
are frames themselves, and the actor frames are actually contained within the cast frame and
draw themselves in the stage frame. The two views of the objects are interconstrained (so that,
for instance, dragging an object will continuously update the relevant slot displays). In Figure
4.3, simple-world is a theater with the stage and cast visible as annotations.

A library of basic actors is provided, which the programmer can clone and customize.
These include various shapes, lines, turtle-like rotatable objects, and text-actors. The library
itself is a theater and new objects are created by using the standard cloning commands. There
is no need for specialized palette objects.

Figure 4.4: The library of graphic objects

Actors respond to roughly the same commands as boxes. Both may be cloned by the same
mouse-keyboard gesture, for instance. Both may be dragged, although the meaning of dragging
an actor is different from dragging a box. The meaning of gestures may be independently
customized for both actors and boxes.
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Composite actors can be created by making a separate theater and cloning its stage (see
figure 4.5). Instead of another stage, this makes an actor that contains all the actors of the
original stage as parts. The “inheritance” of parts is dynamic, which means that changes in the
original parts are immediately reflected in the composite.

Figure 4.5: Composite actors. The theater on the right allows the parts of the face to be manipulated; while
on the left the face is a single actor.

The link between graphic and non-graphic objects may help novices who are experienced
users of direct manipulation interfaces make the transition to programming, both by showing
them a different view of their actions and by permitting them to interact with computational
objects in a familiar way. On the other hand, the link between the graphic and box views is
somewhat ad hoc and in conflict with the goal of making objects seem concrete by strongly
identifying objects and their representation (see section 4.8.1).

4.4 Interface Details
An interface is what gets in between you and what

you want to do.

— Carl Havermiste (Havermiste 1988)

4.4.1 Selection

LiveWorld’s interface command structure is based on the standard select-then-operate user
interface model. Once a box is selected, it may be operated on by menu commands, keyboard
commands, or mouse gestures, all of which can be customized for particular boxes and their
spinoffs.
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Multiple selection is partially supported. Several frames can be selected together and
operated on as a group. For instance, if a group of actors is selected they can all be sent a
:grow  message with a single menu selection. However, not all operations make sense for all
groups of selected boxes. This is especially true when boxes on different levels are selected. In
particular, if a box and one of its containing boxes are both selected, dragging becomes
problematic, because the base against which the inner box is moving is itself moving.

4.4.2 Menus

LiveWorld has three menus of its own. The LiveWorld menu contains global controls and
items that operate on the selected box. This is about the same set of operations described in
the mouse-gesture table below, plus some additional commands for saving and restoring frame
structures to files.

The Slots menu shows what slots (annotations) are accessible for the selected box. Both
local and inherited slots are included. Slots are organized under the prototype box in which
they appear in the regular box view, and the prototypes are arranged in inheritance order,
providing self-documentation of the inheritance structure.

               
Figure 4.6: Slots and Ask menus, in this case for the box named

#/theater-1/cast/rectangle-2.

Selecting an item from the Slots menu finds or creates a slot frame as an annotation to the
selected frame, declares that slot interesting (see 4.4.6) so that it will be visible, and selects it.
Since this has the effect of moving down one level in the box hierarchy, the Slots menu also
includes an inverse operation, Up, which allows the user to navigate up the box hierarchy by
selecting the box enclosing the current selection.

The Ask menu lists all available methods or slots with values for the selected frame.
Choosing an item from the menu sends the corresponding message to the selected frame, that
is, it is equivalent to a call to the Lisp ask procedure (see section 4.5.2). If the message
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corresponds to a method that takes arguments, the user will be asked to supply them. The
menu items indicate whether or not they take arguments and if they have an equivalent
keyboard command (see section 4.5.3. If the ask procedure returns a value it is displayed next
to the Ask menu.

Both menus are customized for the selected box or boxes. In the case of multiple selection,
the Ask menu shows only methods or slots that are valid for each of the selected boxes. It’s
more difficult to define a sensible behavior for the Slots menu when more than one box is
selected; currently it simply shows the slots for a single selected object.

4.4.3 Mouse Operations

Many operations in LiveWorld can be performed with mouse gestures. A mouse gesture is
a combination of a mouse click on some part of a box together with some set (possibly empty)
of modifier keys.

The use of modifier keys is somewhat unfortunate, since they are not a particularly easy-to-
learn interface technique. Ideally, there would be an affordance (that is, a visible and clickable
part) for every possible action. If this were so then there would be no need for modifier keys.
But the limitations of screen real estate, together with the large number of operations possible,
does not allow this. The combination of separate box regions and modifier keys is a
compromise measure. To ameliorate the difficulty this may cause, several rules are adopted:

• All gesture operations can also be accessed from the LiveWorld menu.

• The interface tries to maintain consistency of meaning among the particular modifier keys.
For instance, the command modifier usually indicates an editing operation, while the
command-option-control modifier indicates a deletion (of a frame, value, or prototype,
depending on the region of the click).
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no shift keys cmd opt ctrl shift-opt cmd-opt-ctrl

body drag edit value clone step move delete

title - edit name - - - -

value - edit value - - copy value
(shift-cmd)

delete value

handle open or close open or
close all

open with
internals

- - -

prototype select
prototype

edit
prototype

- - - delete
prototype

resizer resize - default size - windowize -

actor drag actor resize
actor

- step - -

Table 4.1: Global mouse gestures. An entry of “-” means the behavior of a click on the region is
the same as the corresponding click on the body.

Boxes can customize their  handling of mouse gestures by changing the value of
annotations within a set of frames knows as click tables. For example, buttons (Figure 4.7) work
by providing an entry in the body-click-table for ordinary clicks that calls a user-specified action
(and makes control-click take over the ordinary function of drag, so the button can still be
moved). A separate click table can be defined for each part of the box (body, resizer,
prototype, and so forth). For the purposes of mouse click handling, the graphic representation
of an actor is  considered a region and has i ts  own table.  Click tables also serve as
documentation for mouse gestures

           
Figure 4.7. Illustrating the use of click-tables. The left-hand box is a button which performs an

action when clicked (it can be dragged with control-click). The box on the right is a turtle actor,
which will be rotated rather than resized (the default) when given a cmd-click mouse gesture.
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4.4.4 Cloning

New objects are usually made by cloning existing objects with a mouse gesture. The steps
involved are as follows:

• The user clones an existing box with a mouse gesture.

• A new box is made that has the original as its prototype. The new box lives in a special
frame called #/limbo.

• The new box appears to float over the world, casting a shadow (see figure 4.2). As it is
dragged, potential homes are indicated by highlighting them. Some boxes specify that they
can only be dropped into particular types of boxes (for instance, sensors can only be
dropped into actors).

• The new object is dropped into its home when the user releases the mouse.

• Install methods are run (see section 4.7.4).

4.4.5 Inheritance

LiveWorld objects that are cloned from a prototype maintain a live link back to that
prototype, and continue to look up values for local annotations in the prototype until local
values are defined. This results in what I call dynamic inheritance, meaning that changes in
prototypes can affect spinoffs, a fact which is reflected in the interface. This is most noticeable
in the case of actors, whose properties can be affected by mouse motions. If an actor with
spinoffs is resized, for example, and the spinoffs are inheriting size values from it, they will also
change as the mouse moves. This gives a strong tactile feeling for the nature of inheritance.
However, it can also lead to expectation violations. An attempt was made to mitigate this by the
use of special dragging handles that indicate which objects will be affected by a drag or resize
operation (see Figure 4.8).

Figure 4.8: Dragging handles. oval (on the left) is selected, so it has solid handles that allow the
user to change its position or size slots. oval-1 inherits its xsiz and ysiz slots from oval, so it has

hollow handles to indicate that it too will change if those properties are modified in oval.
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Dynamic inheritance is a useful feature for conveying the idea and feel of inheritance, but it
is somewhat in tension with the realist metaphor. Although it is based on realistic cognitive
models it does not correspond to the behavior of real world objects. While you might
understand your neighbor’s car in terms of a “prototypical car” (perhaps your own) you do
not expect the neighbor’s car to change colors if you should happen to paint your own!

This issue is an example of what (Smith 1987) refers to as “the tension between literalism
and magic”. There is a tradeoff between adherence to a real-world metaphor and providing
access to the useful properties of the computational world that might appear to violate that
metaphor. In this case I was particularly interested in exploring the properties of an interface
that incorporated dynamic inheritance, so the decision was made to allow this “magical”
property into the system. A system aimed solely at novices might choose to adhere more
closely to the literal metaphor, or perhaps make dynamic inheritance available as an option.

4.4.6 Interestingness

Framer creates local annotations for slot references. This means, for example, if a rectangle
object inherits its color from a parent, it will nonetheless get a local color annotation on the first
reference. This is done primarily for efficiency—the local annotation serves as a cache that will
speedup future lookups. However, it means that there are many slots in existence which are
not of direct interest to the user. A newly created rectangle has about 12 such local slots, with
only 2 of them (the x and y positions) actually containing information unique to that rectangle.

To deal with this problem, LiveWorld defines an interestingness predicate for frames which
controls whether or not they are displayed. Essentially a frame is deemed interesting if it is
acting as other than a local cache. This is true if it fulfills at least one of the following criteria:

• It has a local value;

• Its prototype is other than the default;

• It contains an interesting annotation; or

• It has been explicitly marked as interesting by the user.

The last clause allows users to make local slots visible, usually for the purpose of modifying
their value. For instance, when a user creates a new frame using the Slots menu it is marked as
interesting to ensure that it actually appears. Some frames have this property set by the system,
such as the cast and stage annotations of theaters, because such frames should always be
visible.

4.4.7 Box Sizes and Positions

The size and position of a box are specified by internal annotations on the corresponding
frame. These annotations are internal, that is, they are not normally seen by the user (see
section 4.7.2). Using the system to represent information about itself has several advantages:
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• Sizes and positions are automatically saved and restored along with the rest of a set of
boxes when they are closed or written out to a file.

• Box sizes and positions inherit dynamically, just as those of actors do. This means that
dragging or resizing a box might change the position or size of a spinoff. This behavior
might be disconcerting, but can also serve to reinforce the reality of inheritance
relationships to the user.

• A user can choose to make the internal frames visible, which results in a dynamic display of
the internal workings of the system.

By default, boxes will automatically resize themselves to be just large enough to contain
their contents. This too is done on a dynamic basis, so if an internal box is being dragged, its
container will resize itself during the drag. This process is known as “shrink-wrapping”. Of
course a user might also want to specify the size of a box by hand, for instance if she was
planning to drop a large set of new items into it and wanted to make the space in advance so
they could be arranged properly. To deal with this a box has a third internal slot, preferred-
size, which contains the user-specified preferred size or nil  if the default shrink-wrapping
behavior is desired.

4.5 Language Extensions

This section describes LiveWorld’s extensions to Lisp. The facilities include accessors for
boxes and their components, a message passing language defined on boxes.

4.5.1 Accessors for Boxes

Framer extends Lisp with the frame structure and accessors for its components (i.e., frame-
home,  frame-prototype). LiveWorld has a slightly modified set of functions for accessing
annotations and grounds: names of boxes are given in the form of Lisp keywords, which are
preceded with a colon and not evaluated.

(getb box name)
Returns the annotation of box named name, or generates an error if the annotation is not
present.

(getb-safe box name)
Same as getb but returns nil  rather than getting an error.

(getb-force box name &optional prototype)
Same as getb, but will create the frame if necessary (as a spinoff of prototype).

4.5.2 Message-Passing with ask

LiveWorld defines a message-passing protocol on boxes. When a box receives a message,
which consists of a name and some optional arguments, it looks for an annotation with the
same name as the message. This annotation should be a method object, which specifies an
action (see the next section). In other words, methods are themselves boxes and are inherited
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by the usual mechanism. A single primitive, ask, is used both to send messages and to retrieve
values from slots. The syntax of ask is as follows:

(ask box message arguments*)

Ask examines the annotation of box named by message. If it is a method, that method is
applied to the box and arguments. If it’s an ordinary slot, the value of the slot is retrieved and
returned. For example:

(ask turtle :color) Returns the value of turtle’s color slot.

(ask turtle :forward 10) Causes the turtle to move forward 10 pixels.

There are also functions send  and slot, which are like ask except that they always do a
message send or a slot-lookup, respectively. This can be useful if a program wants to access a
method object as a value rather than invoke it (something users would not ordinarily need to
do).

ask-self  is a variant of ask that can be used to access a slot or method directly. While ask is
analogous to message-sending constructs in other languages, ask-self  is rather unusual. I t
depends upon the fact that slots and methods are first-class objects and are local to their
containing object:

(ask-self slot-or-method arguments*)

will return the value in slot-or-method, or invoke it as a method if it is one. Ask-self is often
used to extract a value from a box. Because this operation is quite common, it can be
abbreviated as v for value. The following constructs are thus equivalent:

(ask box name)
(ask-self (getb box name) )

Setting values is done by sending them a :set message:

(ask slot  :set value)

This allows objects to specify special actions to be performed on sets. For instance,
computed slots (see section 4.6.3) get an error if an attempt is made to set their value. Because
setting values is such a common operation, it may be abbreviated using the Common Lisp
construct setf with a value accessing construct such as ask or v:

(setf (v slot) value)
(setf (ask box slot) value)

4.5.3 Methods
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Methods are written in Common Lisp augmented with Framer and LiveWorld extensions.
There are several different kinds of methods, and it is possible for users to add further kinds.

The system defines the following standard classes of methods:

• primitive methods: these methods are built into the system code. Their definitions cannot
normally be seen or changed by the user15. Primitive methods can take arguments.

• simple methods:  these methods consist of a single box which contains the method
definition in the form of a Lisp expression. They cannot take arguments. See Figure 4.9 for
an example.

• complex methods: complex methods can take arguments. A complex method is a box with
internal boxes that specify the arguments and body of the method.

Figure 4.9: A turtle with a simple method for :step messages.

Figure 4.9 illustrates a simple method for a turtle that implements a behavior. The method is
named step, so that (ask #/circler/cast/turtle :step) will execute it. The method calls several
other methods such as forward and turn-left, which are inherited from the prototype turtle and
are not visible. The @^/ notation is a boxpath that refers to the turtle (see section 4.5.4.2).
Triangle-sensor is a sensor (see section 4.6.4). The anima causes step to be called repeatedly
(see section 4.6.1).

The body of a method can access several special symbols that are bound to values that
indicate the local context. The symbol here is bound to the box in which the text of the
expression appears. The symbol self is bound to the object which is the method’s container.
The symbol call-next is function-bound to a function that will invoke the method belonging to
the object’s prototype. This functionality is analogous to call-next-method in CLOS (Steele

15The existence of primitive methods is an artifact of the way in which LiveWorld was bootstrapped,
and they could be eliminated.
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1990), although the way in which next-methods are found in LiveWorld is very different. If a
method calls call-next, the system follows the method’s prototype link back until an appropriate
next method is found. This allows any object to specialize a method while making use of the
default behavior, and it also allows behaviors from one object to be imported to another, while
preserving appropriate inheritance and calling paths.

Methods can have other slots besides their body and arguments. Among the standard
defined slots are documentation, whose value can be an explanatory string, and command-
key, whose value is a character which will make the method invokable by a keyboard command
when the parent object is selected (see Figure 4.6).

4.5.4 Relative Box Reference

Methods often need to refer to their containing object or to other boxes. Absolute box
names are usually not suitable because they will break if the method is cloned. Methods thus
need to refer to boxes in relation to their own location.

4.5.4.1 Self

The simplest way to handle relative reference is through a special variable that refers to the
local object. In many other OOP languages this variable is called self, and LiveWorld continues
that tradition. In the body of a method, the name self can be used to refers to the object that
contains the method. However, LiveWorld’s hierarchical object system generates needs for
more complex forms of relative reference. Also, the name self is somewhat confusing in the
context of a hierarchical object system: it might just as logically be taken to refer to the box in
which it occurs, rather than the box for which it is a method, which might be several levels up
in the hierarchy.

4.5.4.2 Boxpaths

To solve these problems, I defined a new syntax for boxpaths, which provides a more
flexible facility for relative reference to boxes and their values. Boxpaths specify a relative path
from one box to another. Boxpaths are always specified relative to the box in which they
occur, removing the ambiguity of self. Boxpaths also allow reference based on types. For
instance, a boxpath can specify paths that say “go up to the nearest enclosing actor box and
then get the value from its prey-sensor’s other slot.”

Boxpath syntax is based on Framer’s default syntax. An @  introduces a boxpath, and
following characters specify navigation paths through the box hierarchy, either up or down. A
caret (^) means “go up”, that is, access an ancestor of the current box. A boxpath can go a
fixed number of steps up the container hierarchy, or it can search upwards for a particular kind
of box. Downward navigation is expressed by the standard frame syntax (see 4.3.1) but with
an extension that allows box values, as well as boxes themselves, to be accessed.

 This extension is based on Unix directory naming conventions, with a box treated
analogously to a directory. A final / in a boxpath indicates that the path is to return the final
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box in the path, while the absence of a final / indicates that the final box’s value should be
returned.

Some examples of how boxpaths express common patterns of box reference:

@ / The  loca l  box  ( the  box  in  which  the  boxpa th
appears).

@ The value of the local box.

@^/ The immediate container of the local box.

@^/food-sensor The value of the box named food-sensor that is a
sibling of the local box.

@^^/ The container of the immediate container.

@^actor/prey-sensor/other The example above: “go up to the nearest enclosing
actor box and then ge t  the  va lue f rom i t s  prey-
sensor’s other slot.”

Boxpaths are essentially a syntactic abbreviation for complex sequences of box accessing
functions. For example, the last example above expands into the Lisp code:

(ask (getb (lookup-box *here* :actor)
           :prey-sensor)
     :other)

Where *here* is bound to the box in which the boxpath appears. Lookup-box i s  a
function that searches up the box hierarchy for a box of a specified type.

4.5.5 Demons

The standard :set method includes a facility for establishing demons on a slot. These are
procedures that get executed whenever the value of a slot changes. While similar effects can be
accomplished by defining a local :set method, the advantage of demons are that they can be
easily added dynamically, and if there are more than one they will not interfere with each other
(that is, a box can have many demons, while it can have at most one local : set  method).
LiveWorld uses demons for many internal functions, such as invalidating computed slots (see
4.6.3) and updating the display of graphic actors if one of their parameters should change.

Demons are stored in an internal annotation (name %demons) and are inherited by clones
of the parent object. To avoid the potential of infinite recursion, the %demons slot itself has a
:set method for that prototype that avoids the usual demon mechanism.

The demon mechanism can generalize to handle other types of events besides value
changes. For instance, boxes can also have annotation demons that get called whenever an
annotation is added to or removed. A typical use is for a sensor to put an annotation demon
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on the cast box of a theater, so that it can be informed whenever a new actor appears in the
world.

4.5.6 Global Object

The inheritance scheme of Framer was modified to include the concept of a global default
prototype. Named #/global, this box serves as a last resort when looking up slots. This object
provides the default methods for common operations such as :set, the default annotations for
interface operations such as click tables, and default templates for universally shared slots,
such as documentation and %demons.

4.6 Specialized Objects

4.6.1 Animas and Agents

Animas are objects that provide an interface to the background execution facility of
LiveWorld. An anima causes its enclosing object to be sent messages repeatedly. Animas run
concurrently with user actions and provide the underlying ability to create autonomous and
reactive objects. Animas are the foundation on which the agent systems of Chapter 5 are built.

When the animas are running, all objects containing active animas are sent :step messages
repeatedly. Any object can have a :step method, but they are most commonly found in method
objects. The effect of sending :step to a method object is to apply the method to its container. A
method of zero arguments can thus be converted into an agent of sorts simply by dropping an
anima into it (see Figure 4.9 for an example). Animas are thus conceptually similar to processes,
although the execution of animas are not truly concurrent (Chapter 5 goes into more detail
about how animas can be modified to provide better concurrency as well as conflict resolution
facilities). The execution of animas is interleaved with each other and with user action.

Animas may be turned on or off individually, and there is also a “master switch” in the
LiveWorld menu that can disable all animas. When this master switch is off, the entire system
can be single stepped by the user, which means that each active anima gets sent a single :step
message. This is useful for debugging.

It is interesting to note that the metaphorical description of the relationship between
processes and procedure is inverted. In more traditional systems, processes are established
that execute procedures inside themselves, while in LiveWorld, the process mechanism lives
inside the procedural object that it calls. This inversion of the usual relationship is one part of
LiveWorld’s attempt to change the metaphors used to describe computation into a form that
suggests a greater degree of animacy and autonomy (see Chapter 3).
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4.6.2 Specialized Slots

LiveWorld defines some slot objects that are specialized for particular kinds of values, such
as colors or points, that have special display requirements. The prototypes for these objects
live in a library named #/slots (see Figure 4.10). For example, #/slots/color-slot defines special
methods that cause it to display its value as a color swatch, and to invoke the system color
picker when its value is edited. These slots are incorporated into other system objects (i.e.,
most actors have a color-slot, and turtles and some sensors use an angle-slot to specify their
headings).

Figure 4.10: The slot library.

Some specialized slots take advantage of Framer’s recursive annotations to have parameters
of their own. In the figure, bar-graph-slot and formatted-slot are open to show their parameter
slots.

4.6.3 Computed Slots

Computed slots are slots that dynamically compute their value from an expression, in the
manner of spreadsheet cells. The value of a computed slot is defined by a to-compute method
defined as an annotation to the slot. For example, the computed slot area in Figure 4.11
computes the area of its containing actor as the product of the actor’s regular xsiz and  ysiz
slots. Note the use of boxpaths in the method, which allows the area slot to be cloned into
other actors.
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Figure 4.11: An example of a computed slot.

A computed slot’s value is accessed using normal mechanisms, but trying to set it will cause
an error. The value is displayed in an italic font to indicate that it is not settable.

There are actually several varieties of computed slots. The simplest just computes its value
on demand (that is, whenever the rectangle is asked for its area, the multiplication specified in
the to-compute method will be run). The more complex varieties cache their value and only
recompute it when necessary. This requires that the cached value be invalidated whenever any
of the values that it depends upon change. Since these values are in other slots, this can be
accomplished by putting demons (see 4.5.5) on the depended-upon slots which invalidate the
cached values (a technique developed in (Fisher 1970) to support what were called
“continuously evaluating expressions”). These demons are installed automatically by
monitoring slot accesses during the evaluation of the to-compute method.

Figure 4.12 illustrates some of the internal structures and mechanisms that implement
computed slots. Every cached computed slot has an internally stored value and a flag that

Figure 4.12: The same computed slot, with the internal slots that comprise the computational
mechanism revealed.
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specifies whether or not that value is valid. Each slot upon which the computed slot depends
has a demon added, which causes the computed slot to become invalid whenever the value of
the depended-upon slot changes. In this case the demon appears as a compiled Lisp closure.

4.6.4 Sensors

Sensors are objects that allow actors to obtain information about their surroundings, and
are implemented specialized versions of computed slots. That is, they are computed slots that
compute their value based on the actors’ world, and are designed to be annotations of actors.
Sensors can also provide a graphic representation of themselves as an add-on layer to the
actor they are part of. An example of a sensor may be seen in Figure 4.3. This triangle-sensor is
so called because its field is in the shape of a triangular region, and is sensitive to objects that
enter that field.

Sensors make particularly effective use of Framer’s hierarchical representation structure,
which lets them be seen as both slots and objects with slots of their own. Sensors contain slots
that specify their parameters or details about the results they are computing (the to-compute
method can set other slots besides returning a value). An example is shown in Figure 4.13.
Shape  is a computed slot itself, that depends upon field-heading,  field-width,  field-range, and

Figure 4.13: Inside a triangle-sensor.

Figure 4.14: The sensor library
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on the heading of the containing actor. The effect of these dependencies is to let the shape of
the sensor be computed automatically when the actor moves or when the user changes the
values of one of the sensor’s slots. Other parameters allow the sensor to be customized to be
sensitive to particular kinds of objects (for instance, only ovals).

There are many kinds of sensors (see Figure 4.14). Some, like the triangle-sensor, have a
predicate value. Others have numerical values (for instance, the range-sensor, which monitors
the distance of a single object) or return the detected actor or actors themselves (such as
nearest-object-sensor). While most sensors respond to actors, some, like wall-sensor, respond
to other features of the environment.

4.6.5 Multimedia Objects

LiveWorld’s object system makes it straightforward to provide specialized objects for a
variety of media, and also to provide libraries of samples. The two most useful and most fully
supported media forms are pictures and sounds. Pictures are simply a form of actor. Sounds
are specialized boxes with :play  and :record methods. Both pictures and sounds objects are
implemented as encapsulations of the corresponding Macintosh system objects, and can be
imported from external applications.

Figure 4.15: Libraries of pictures and sounds.
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Sound objects can be used to provide auditory responses for creatures or sound effects
for games, but also have a special use for debugging, a technique sometimes called “program
auralization” (DiGiano, Baecker et al. 1993) by analogy to the well-established techniques of
program visualization.

LiveWorld supports audioization by providing a special kind of object, called an auto-
sound, which can be dropped into a method. The effect of this is to cause the sound to be
played whenever the method is called. This technique not only supports program audioization,
but makes it easy to add sound effects to games and simulations.

4.6.6 K-lines

Frames can also be used to implement a form of memory loosely based on Minsky’s K-line
learning mechanism (Minsky 1980). In Society of Mind, a K-line records a partial mental state
represented as the activation state of a set of agents. In LiveWorld, a K-line can record the state
(that is, the values) of a selected set of boxes. A K-line is a box created in the usual way. To
specify that a slot is to be recorded by the K-line, the user makes a clone of the slot and drops
it into the K-line. The K-line thus contains spinoffs of all the frames that it covers and responds
to two basic messages, :store and :recall, which have simple implementations. Store forces each
spinoff to have the current value of its prototype, while recall copies the value of the spinoff
back to the prototype. An additional message, :add-object, will cause the K-line to cover all of
the interesting slots of an object.

LiveWorld’s K-lines were constructed mostly to see how far the prototype relationship
could be extended into other uses (for a similar experiment, see the discussion of ports in
4.9.1). While these K-lines are not powerful enough to be of much use in mental modeling, they
have proved to have some utility in recording initial states for applications like animations and
games.

4.7 Miscellaneous Issues

4.7.1 Shallow vs. Deep Cloning

A question arises when a box is cloned about which of its internal parts should be cloned
along with it. For example, in the case of an actor with no complex internal parts, there is no
need to clone any of its slots—the values will be inherited. But if the actor has sensors, the
sensors need to be copied so that the new creature has its own perceptions, rather than
inheriting those of its parent! So, in some cases internal parts do  need to be cloned.

Which objects require this treatment? Ordinary slots, in general, do not need to be copied
by this mechanism, since their values are inherited. The objects that need to be copied explicitly
are those that cause some side-effect, such as creating an image on the screen (actors) or
compute a value based on local information (sensors).
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LiveWorld provides a mechanism that allows any box to specify that it must be cloned
whenever a box that contains it is cloned. Such boxes are flagged with an internal annotation,
%copy-as-part. Whenever any box is cloned, all of the original box’s annotations are examined
via recursive descent for the presence of this flag, which if present causes the box containing it
to be cloned into the appropriate place. Since the appropriate place might be several levels deep
in the new box, the intervening container boxes must also be cloned.

The same mechanism is used to maintain dynamic inheritance relationships after an object is
cloned. For example, if turtle-1 is cloned to form turtle-2, and then turtle-1 is given a sensor,
turtle-2 should receive a clone of that sensor. The %copy-as-part flag also controls this
propagation.

4.7.2 Internal Frames

LiveWorld uses annotations to record information about its internal functioning (for
example, the screen position of a frame’s display is stored as an annotation on that frame).
Showing these to the user would be confusing. LiveWorld therefore allows certain frames to be
marked as internal, with the result that they are not normally displayed to the user in the box
view or in menus. The convention used is that internal frames are those whose names begin
with the %  character16. An advanced user can choose to display these frames, by holding

down an additional key during a command that opens a box or displays a menu. A frame with
its internal frames exposed may be seen in Figure 4.16. Internal frames serve some of the same
purposes as closets do in Boxer.

Figure 4.16: A box that has (some) of its internal frames showing. One of them, %view-size, also
has its own internal frames visible. The values in these slots are Lisp point objects that denote x-y

coordinate pairs.

Aside from the display information shown in the figure, internal frames are used to store
data for internal mechanisms like demons, internal state like interestingness (see 4.4.6), and
slots whose value would be meaningless to the user, such as pointers to Macintosh sound
objects.

16 It would be more elegant to use an annotation to convey this information. The %  convention is an
artifact of LiveWorld’s development history, and has been retained for reasons of efficiency.
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4.7.3 Deleting Boxes

Deleting objects can be problematic in a prototype-based object system. One issue is the
question of how to deal with objects that inherit from the object being deleted. Framer’s built-in
handler for deletion simply disallows deletion of a frame with spinoffs. LiveWorld extends
Framer by allowing the user to specify a way to proceed when a problematic deletion is
detected.

The user’s options are to:

• abort the deletion;

• delete all the spinoffs as well; or

• try to preserve the spinoffs by splicing out  the deleted frame.

Splicing out a frame involves removing it and its annotations from the inheritance chain so
that it may be deleted. Each spinoff of the spliced-out frame (and its annotations, recursively)
must have its prototype changed to point to the prototype of the spliced-out frame, and if the
spliced-out frame provides a value that value must be copied into each spinoff. This complex-
sounding procedure retains the old values of slots and retains as much of the inheritance
relationship as is possible.

Giving the user choices is fine for interactive use, but does not deal with the problem of
deletion by a program in a live simulation. For instance, in a dynamic biological simulation,
animals will reproduce by creating spinoffs of themselves. If a parent is eaten by a predator, we
don’t want the child to be affected, but we also don’t want the system to stop and ask the user
what to do.

There are also some fundamental problems with splicing out prototypes. Consider the case
where there is a prototype ant, and many spinoffs of it (and possibly spinoffs of the spinoffs).
Say further that there is an anteater in the simulation with an ant sensor. Sensors often specify
the type of object they are sensitive to. If the prototypical ant gets spliced out and deleted, the
ant sensor will be pointing to a deleted frame. Even worse, the ants will have no common
prototype that allows them to be considered to be a class of objects17. Furthermore, the ants

now each have their own copy of whatever properties were defined by the prototype (such as
the complement of  sensors  and agents )  so i t  i s  no longer  poss ible to change these
characteristics without changing them individually for each ant.

A better solution to the deletion problem, which makes good use of LiveWorld’s hierarchical
structure, is to keep prototype objects in a separate theater (see Figure 4.17). These prototypes
are then outside of the simulation, inactive, and so in no danger of being deleted.

17It might be argued that using prototypes to specify classes is a bit inelegant anyway. If the sensors
were truer to their real-world models, they would not specify a type of object to be sensitive to, but instead
would use a detectable characteristic of the object (i.e. the ant sensor would look for objects that were small
and black). This is certainly implementable within the framework of LiveWorld, but would be considerably
less efficient than the current scheme.
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Figure 4.17: Illustrating the use of a separate theater to hold prototypes.

 The deletion problem is one that is not found in class-based object systems, where there is
no danger that the definition of a class of objects will be taken as an element of that class. Some
other prototype-based object systems, such as Self (see section 4.9.2) avoid this problem by
using static rather than dynamic inheritance. In Self, spinoffs inherit properties from prototype
at the time they are created and do not maintain a pointer back to their prototype, so deleting
the prototype is not problematic.

4.7.4 Install and Deinstall Protocol

LiveWorld defines an install/deinstall protocol on frames. Whenever a frame is created,
deleted, or moved it is sent :%install and :%deinstall messages as appropriate (a move will
generate both). Methods for these messages handle operations such as installing demons for
computed slots or creating the graphic representation for actors.

4.7.5 Error Handling

Any programming environment must be able to deal with unexpected conditions. LiveWorld
utilizes Common Lisp’s condition handling system to provide an error handling facility with a
box-based interface. When an error is detected, it generates a Lisp condition object which is
then encapsulated into a box. For any type of error, the system can provide specialized error
boxes that provide user options or other information.
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Figure 4.18. An error has occurred in the execution of the trail-rule method, generating the error
object no-method-error.

An example is shown in the figure. The error box contains three buttons that specify
restart options. Clicking the create button, for instance, causes a method object of the
appropriate name and type to be created, after which the user can fill in its slots.

4.8 Some Unresolved Issues

LiveWorld in its current state has a few shortcomings and inconsistencies in its design,
which are discussed here. Solutions to some of these problems are also discussed in Chapter
6.

4.8.1 Multiple Views of Actors

The workings of the theater/stage/cast mechanism is somewhat ad hoc relative to the rest of
the user interface metaphor. These boxes have special relationships between each othber that
are not found elsewhere in LiveWorld and are not capable of being explained by the basic
mechanisms of the system. This magical mechanism is motivated by the need to have multiple
views of actors. They must be capable of being seen both as graphics and as structured
objects, and so the interface goal of having a perceived identity between object and screen
representation must be relaxed.

This is not a severe problem for the interface; the relationship between the views is not
hard to understand. Nevertheless it is annoying that a special mechanism is required in this
case. Furthermore, the need for multiple views may not be confined to graphic objects, and this
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suggests that the solution to the ad hoc-ness of the theater mechanism should be a general
mechanism for supporting multiple views.

A related issue has to do with the need for actors to be able to change their appearance.
LiveWorld allows graphic properties of actors to be changed, but not the general form, which is
determined by the actor’s prototype. Some other actor-based systems (i.e. Rehearsal World
(Finzer and Gould 1984)) separate out an object’s appearance into a separate object called a
costume, which can be attached to an actor and easily changed.

One solution to these problems is to introduce the idea that an object is distinct from its
graphic appearance and that it can have multiple appearances. Both costumes and the dual
views of actors and boxes can be handled by a more general mechanism. This view mechanism
might even be able to subsume other aspects of the system such as composite actors and
specialized slots. The problem with this solution is that it significantly increases the complexity
of the system by introducing new objects, and it might interfere with the feeling that users are
manipulating real objects rather than representations of them.

4.8.2 Uniform Interfaces Have a Downside

LiveWorld’s box was designed to fulfill many functions with a single uniform construct. This
makes learning the system easier, but may impose certain cognitive penalties as well. The
elements of the LiveWorld system appear rather uniform, both in terms of graphic appearance
and at the functional level. For instance, objects and slots look the same—they are both
boxes—and so it is possible, during the course of an interaction, to confuse one for another.
The ability for boxes to have icons that indicate their type or states was a late addition to
LiveWorld and helps ameliorate the uniformity problem. However, there is still a tension in the
design between the desire for uniformity and particularity.

The deeper issue is one of abstract vs. concrete constructs. The box, which is designed to
be capable of being a great many different things, is necessarily abstract in comparison with,
say, a button that serves a single purpose and has only one operation it supports. While
constructing a broad class of functions out of a small set of structural elements is elegant,
esthetically pleasing, and reduces the number of things to learn, it can also cause difficulties for
novices (diSessa 1986). The difficulty arises because the minimal elegant elements are
necessarily abstracted from the concrete functional goals of the user. In contrast, systems in
which each component is specialized by an expert for a particular use are less flexible, but they
can be carefully designed so that each component is distinguishable, as are, for instance, the
various elements of the standard Macintosh user interface (Apple Computer 1987).

4.8.3 Cloning and Dependent Objects

In the early versions of LiveWorld, sensors had to be contained directly within an actor.
This caused a problem when trying to define libraries of drop-in behaviors. The behaviors were
dependent upon the presence of the appropriate sensors, so cloning the behavior alone from
the library would not, by itself, produce the needed behavior. Somehow the behavior needed
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to bring the sensor along with it. A number of solutions were considered (and some were
implemented). This design issue, while fairly minor, is typical of many such issues that arise in
an environment like LiveWorld.

• Give the behavior an :%install method that created the needed sensors. The effect for
the user would be that cloning an agent would result not only in the agent appearing in the
destination, but a sensor appearing alongside it. This scheme has the problem that two
behaviors might try to create two different sensors with the same name. Another, more serious
problem is that the install mechanism is intended to be below the user’s level of awareness,
meaning that users cannot (easily) write new behaviors with included sensors.

• Equip the model behaviors in the library with actual sensor objects, that would somehow,
when cloned, migrate upwards to the proper place with the actor. This solves the problem of
having to write :%install methods but not the name conflict problem. It also introduces a rather
magical new form of object movement to the interface.

• The third (and best) approach is to modify the implementation of sensors to allow them to
live anywhere within an actor rather than requiring them to be directly beneath. This allows
prototype behaviors to carry their sensors along with them in the natural way, eliminates the
need for migration, and also eliminates the potential for name conflicts. The only disadvantage is
that sensors will now no longer be so directly associated with their actors (i.e., it is no longer
possible to gain access to all of an actor’s sensors by opening up only the actor).

4.9 Relations to Other Work

4.9.1 Boxer and Logo

Boxer was a central influence in the design of LiveWorld. As explained in section 4.2.3,
LiveWorld retains Boxer’s emphasis on the concrete, its use of hierarchical nesting to hide detail
and provide a uniform medium, and its use of a single structure to perform a multiplicity of
computational and interface tasks. LiveWorld extends Boxer’s ideas by making Boxes into
objects with inheritance relationships and a message-passing language, and by providing a
direct manipulation interface.

Boxer’s interface is based around a generalization of text editing. While the benefits of
LiveWorld’s object-orientation and direct manipulation are many, there is at least one advantage
to Boxer’s approach: the text-based model provides for the ordering of the parts within a box,
making it easier to express constructs like lists and arrays.

Boxer includes a port mechanism that allows references across the box hierarchy. A port is
rather like an alias for a box that can be placed in a remote part of the system, and in most
respects functions like the original box. The port displays the value in the original box, and
setting the contents of the port changes that of the original box. Ports are an alternative to
referring to remote boxes by names or by complicated access paths. For the most part a facility
like this has not been needed in LiveWorld. However, ports can be mimicked in LiveWorld
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using the prototype relationship. A port is just a spinoff with a specialized :set method that
changes the value of the original frame rather than the local value. It’s somewhat more difficult,
thought not impossible, to handle the other operations on frames in a port-like fashion, such as
adding annotations.

Logo, a direct ancestor of Boxer, was also influential in many ways, but primarily at a
conceptual rather than design level (see sections 1.3.3 and 3.3.3). The turtle, of course, derives
from Logo.

4.9.2 Self

Self (Ungar and Smith 1987) is the prototypical prototype-based object-oriented language.
Its chief feature is an extremely simple object and inheritance model, which makes it easy to
teach and implement. From the standpoint of object-oriented programming, LiveWorld’s (really
mostly Framer’s) major contributions over and above what Self provides are in providing slots
that are first-class objects, and dynamic inheritance. Another difference is that in Self, an object
generally does not inherit values from its prototype, but from a separate object (called the
parent). While this has certain advantages, Framer’s method is in many respects simpler to
understand, and it is easier to represent the inheritance relationships in a dynamic graphic
environment like LiveWorld.

Self has an exploratory graphic interface (Chang and Ungar 1993) which has much in
common with LiveWorld’s interface. Both systems emphasize animation, but use it in very
different ways. The Self interface animates its object representations (akin to LiveWorld’s boxes)
in a fashion designed to make them seem real to the user (i.e., when a new object is made, it
does not simply appear, but swoops in from the side of the screen), but this animation is
outside the realm of the user’s control. LiveWorld is more concerned with allowing the user to
control the animation of graphic objects, leaving the more abstract, structural representation of
objects unanimated.

4.9.3 Alternate Reality Kit

ARK, or the Alternate Reality Kit (Smith 1987), is another environment with goals similar to
that of LiveWorld. In this case the commonality is in providing a lively, reactive feel, and in
integrating graphic objects with computational objects. Other shared properties include
prototypes (ARK’s prototypes work more like those of Self), step methods to drive concurrent
objects, and a special limbo state (called MetaReality in ARK) for objects in a state of transition.

Both ARK and Rehearsal World, as well as many other visual environments, rely on a
separation of user levels. Components are built by sophisticated users, generally outside of the
visual environment, while more naive users are allowed to connect these components together
graphically but not to open them up or modify them. LiveWorld, on the other hand, tries hard
to make every object openable and accessible.
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4.9.4 Rehearsal World

The Rehearsal World system (Finzer and Gould 1984) explored the use of theatrical
metaphors as an interface to an object-oriented programming environment. Rehearsal world
presents objects as “players” which come in “troupes” and can be moved onto “stages”,
objects are controlled by “cues”, and putting objects through their paces is, of course, done
via rehearsal, which in practice is a weak form of programming-by-demonstration (Cypher
1993) in which objects can record user actions and play them back on command.

LiveWorld borrows from Rehearsal World the theatrical metaphor, and the idea of providing
a large set of existing players (a troupe) which users can use as components and starting points
for further development. The purpose and feel of the two systems also have many points of
commonality: both aim to provide a friendly and dynamic world where programming and direct
manipulation are integrated. The main differences are LiveWorld’s unusual object system and its
emphasis on concurrent reactive objects. Rehearsal World’s programs, in contrast, are
generally “button-driven”, that is, driven directly by user actions.

LiveWorld also incorporated a form of “rehearsal”-based programming, where objects
could record a sequence of message sends for later playback. This facility was not developed
very far, however.

4.9.5 Ágora

Ágora (Marchini and Melgarejo 1994) is a platform for modeling distributed simulations
based on graphic objects, concurrent iterated programs, and communication between them.
One of  Ágora’s more innovative ideas is the notion of a communication medium, which
provides a metaphor for broadcast style of inter-actor communication. In this model, any actor
can connect itself to one or several communication media. Objects communicate with each
other by sending messages to a medium which then rebroadcasts it to the other objects
present.

A medium can correspond to various sensory modalities such as vision or smell. The
various media can have different behaviors and properties that determine the duration and
disposition of messages. Mediums thus take the place of LiveWorld’s sensors. In LiveWorld,
sensors compute values obtained directly from the world. The sensors themselves are trusted
to look only at slots that make sense given the sensor’s designed-in locality. Having media
objects encapsulates this constraint into a separate object. By reifying the idea of a medium,
Ágora presents an alternative to the traditional one-to-one image of message passing and
provides a conceptual basis for thinking about object interaction in a variety of different
circumstances.

4.9.6 IntelligentPad

IntelligentPad (Tanaka 1993) is a “media architecture” visually quite similar to LiveWorld.
The basic unit is the pad, graphic objects which can be given various appearances and
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behaviors and pasted within other pads to form hierarchical structures. Pads when pasted
establish message-passing links between them. Pads serve as displays, buttons, containers, and
can represent complex simulation objects like springs and gears.

While the pad environment allows end users to manipulate and combine given sets of pads,
it does not support full programming capabilities. Users cannot modify the behavior of the basic
pads nor create new kinds of objects. In this respect its design philosophy resembles that of
Agentsheets (see section 6.2.2).

4.10 Conclusion

I wish that I hadn’t needed to spend the time I did building LiveWorld. In fact, I was both
annoyed and somewhat puzzled that there was no system like this available already—an object-
oriented system coupled with a powerful underlying language, with an interface that could
support multiple moving objects and concrete viewing. This seemed like something that should,
in this day and age, be already commercially available and in the hands of children. The
absence of such systems is, I think, a reflection of the fact that we don’t have languages that
are oriented towards programming in such environments. And of course the absence of
suitable languages is in part due to the absence of environments! I chose to break this no-
chicken-and-no-egg cycle by building the environment first, partly to avoid falling into the
common language-design trap of elegant languages that can’t do anything tangible. Because of
this, LiveWorld is oriented towards agents but not itself based on agents. Nonetheless, it has
unique features which derive from the agent-based point of view. While the language and
environment may be formally separable, the design values that inform them are the same.
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Chapter 5 Programming
with Agents

Putting the control inside was ratifying what de facto had already
happened—that you had dispensed with God. But you had taken on a

greater, and more harmful, illusion. The illusion of control. That A could do
B. But that was false. Completely. No one can do. Things only happen, A

and B are unreal, are names for parts that ought to be inseparable...

— Thomas Pynchon, Gravity’s Rainbow p34

Earlier chapters showed that the discourse of computation is founded on a diverse set of
metaphors, with anthropomorphic or animate metaphors playing a particularly central role. This
chapter presents a series of agent-based systems and languages that are explicitly designed to
exploit animate metaphors. Several implementations of agents within LiveWorld are presented
here, ranging from extremely simple agents that have only implicit goals, to somewhat more
complex agent systems that allow agents to have explicit goals and thus monitor their own
activity, and finally to Dynamic Agents, a system which allows agents to dynamically create new
goals and agents. This system is flexible enough to build agent systems that operate with a
variety of control structures and can perform a variety of tasks in the problem domains set out
in Chapter 1.

5.1 Simple Agent Architectures

In this section we develop and examine a couple of “toy” agent architectures that illustrate
some of the issues involved in using agents in a dynamic environment. In the first system,
Simple Agents, goals are implicit and agents are simply repeating procedures. Trivial though it is,
the Simple Agents system still illustrates some of the issues involved in agent concurrency and
conflict handling. In the second system, Goal Agents, agents are more structured and have
explicit goals that can be used for a variety of purposes. Both systems offer an essentially static
agent model, that is, agents are not created or deleted during the course of activity. Systems
that allow for the dynamic creation of agents will be the subject of the next section.

5.1.1 Simple Agents

The simplest form of agent that we will consider is essentially just a procedure that can
arrange for itself to be invoked repeatedly, or in other words, a procedure that can be readily
converted into a process. These agents have no explicit goals or declarative aspect, nor do
they have any convenient way to communicate with other agents. Their agenthood rests solely
with their ability to carry out their function independent of outside control.

LiveWorld provides a way to turn any method of zero arguments into an agent by
dropping in an anima (see section 4.6.1). Thus, the Simple Agents system is really just a
straightforward extension of the existing LiveWorld method structure. Animas are hooks for



Figure 5.1: a turtle executing a classic turtle circle using two simple agents, one to go forward, and
one to turn by a variable amount.

LiveWorld’s activity driver, so to understand the action of simple agents in more detail, we will
need to look at the anima driver mechanism, and modify it to handle some of the issues raised
by agents.

The default anima driver is a simple loop which calls the function run-animas repeatedly.
Each call is considered an anima cycle. This driver is shown in Listing 5.1. Note that this driver
ensures that anima-driven agents run in lock-step with each other, in the sense that each gets to
execute exactly once during each clock cycle. This form of concurrency makes agents
synchronized by default, allowing them to be simpler than they would have to be if they
needed to achieve synchronization through explicit constructs.

(defun run-animas ()
  (dolist (a *running-animas*)
    (send a :step)))

Listing 5.1: The very simplest anima driver.

5.1.1.1 Simulating Concurrency

When several animas are active, issues of concurrency and conflict can arise. The default
anima driver shown in Listing 5.1 basically ignores these issues. Each agent simply executes in
turn, creating problems of unpredictability and order-dependency. The unpredictability comes
from the fact that the ordering of agents in this round-robin execution is arbitrary, so that two
seemingly identical agent systems might exhibit different behavior if the animas happen to be
listed internally in different orders. Additionally, the execution of one agent may affect the
subsequent action of another. Ideally, all agents would execute concurrently, so that the results
of one could not affect the other and the results of execution would always be predictable.

A form of simulated concurrent execution can be accomplished rather easily in LiveWorld
by modifying the anima driver. The basic idea is this: all effects of agents are ultimately
expressed as side-effects to the values of boxes. So if all side effects are delayed until the end
of an agent cycle, the effects of concurrent execution can be simulated. To do this, the agent

128 Agents



driver needs to be changed. Rather than simply stepping each anima in turn, it needs to operate
in two phases: one to compute the new values, and another to make those new values current.

The ability to annotate boxes makes this simple to implement. All that is necessary is to
modify the global :set method so that instead of actually altering the value of a box, it will store
the new value in an annotation on the box. Then this action is made conditional on the value of
a variable *phase*. The master anima driver now will step all animas with *phase* set to 1, then
go back and update the actual values of any changed boxes. The implementation of this is
shown in Listing 5.2. This code basically says that when *phase* is 1, the new value is stored
on the annotation named :new-value of the given box, and the box is saved in a global list for
later processing in phase 2. If *phase* is 2, a normal set is done using set-slot-1, the primitive
function for changing a slot’s value. The anima driver is changed so that it drives the two
phases alternately.

(defvar *phase* 0)
(defvar *phase2-boxes*)

(def-lw-method :set #/global (new-value)
  (case *phase*
    (1 (progn
         ;; use lower-level mechanism to save new value in annotation
         (set-slot-1 (getb-force self :new-value) new-value)
         (pushnew self *phase2-boxes*)
         new-value))                      ; return the new value
    ((0 2) (set-slot-1 self new-value))))

(defun run-animas ()
  (let ((*phase* 1)
        (*phase2-boxes* nil))
    (dolist (a *running-animas*)
      (send a :step))
    (setf *phase* 2)
    (dolist (f *phase2-boxes*)
      (send f :set (slot f :new-value)))))

Listing 5.2: two-phase slot setting in Simple Agents.

In addition to properly simulating concurrency, this two-phase-clock technique has an
additional advantage and one severe drawback. The advantage is that it also gives us the hooks
to deal with conflict in a systematic way, a topic dealt with in the next section. The drawback is
that it significantly changes the semantics of the languages. Under the two-phase clock regime, if
a method sets a slot value and then uses that slot value in further computation, it will no longer
obtain the right answer. This serious problem is somewhat offset by the fact that agents are
usually quite simple and rarely need to examine the value of a slot that has been set in the same
cycle.

5.1.1.2 Handling Conflict

Delaying the operation of :set to achieve concurrency also gives some leverage for dealing
with conflict. A conflict occurs when two or more agents try to specify different values for the
same slot. If this happens under the system as described above, we will again suffer order-
dependencies among the agents (since the last agent to run during phase 1 will be the one that
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ends up supplying the new value). To deal with this, we can extend the above scheme to keep
track of all the :sets done to a slot during the course of a single agent cycle (during phase 1),
and then during phase 2, figure out for each slot which value will prevail.

(def-lw-method :set #/global (new-value)
  (case *phase*
    (1 (progn (push (list new-value *agent*)
                    (slot self :proposals))
              (pushnew self *phase2-boxes*)))
    ((0 2) (set-slot-1 self new-value))))

(defun run-animas ()
  (let ((*phase* 1)
        (*phase2-boxes* nil))
    (dolist (a *running-animas*)
      (let ((*agent* (box-home a)))
        (send a :step)))
    (setf *phase* 2)
    (dolist (f *phase2-boxes*)
      (send f :resolve-set))))

(def-lw-method :resolve-set #/global ()
  (let ((proposals (slot-or-nil self :proposals)))
    (case (length proposals)
      (0 (error "No proposals for ~A" self))
      (1 (send self :set (caar proposals)))
      (t (send self :resolve-conflict)))
    (setf (slot self :proposals) nil)))

(def-lw-method :resolve-conflict #/global ()
  (let* ((proposals (slot self :proposals))
         (best (maximize proposals
                         :key
                         #'(lambda (proposal)
                             (let ((agent (cadr proposal)))
                               (or (ask-if agent :urgency)
                                   0))))))
    (send self :set (car best))))

Listing 5.3: Conflict handling in Simple Agents.

To make this work, we need some way to arbitrate between conflicting agents. This is
accomplished by equipping them with an :urgency slot. When an agent sets a slot’s value, a
pointer to the agent gets saved along with the proposed new value, so the phase 2 code can
compare the urgency values of conflicting agents (we assume that no agent sets the same slot
twice on the same cycle).

In this version of the system, during phase 1 each slot collects proposals for what its new
value should be. Proposals consist of the new value and a pointer to the agent that is
responsible for suggesting it. During phase 2, the proposals are evaluated and resolved by the
:resolve-set and  :resolve-conflict methods. maximize is a utility function that will select an
element from a list (in this case the list of proposals) that yields the maximum value of a key
function (in this case, the urgency of the agent that generated the proposal).The code above is
not as efficient as it could be, since there is no real need to store all the proposals and find the
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maximum later, but we will see that keeping the proposals around will be useful for generating
user displays and for establishing alternative conflict resolution strategies.

Since urgency values are just slots, they can be dynamically updated by additional agents
(for instance, the urgency of a find-food agent might increase with time and decrease when food
was found).

Figure 5.2: Three simple agents, with urgency.

An example where agents conflict is shown in Figure 5.2. This is the same as the previous
example with the addition of a new agent, bounce-agent, a sensor, and a new rectangle actor.
Bounce-agent checks to see if the turtle overlaps this rectangle, and if so it makes it back up
and turn around. The :urgency slot of bounce-agent is 1, allowing it to supersede the other
agents, which have the default urgency value of 0. The result is that the normal circling
behavior prevails except when the turtle is in contact with the rectangle, when bounce-agent
takes charge.

A few other things to note about this example: it is obviously necessary for bounce-agent
to move the turtle as well as changing its heading, since otherwise, the turtle would still overlap
the rectangle and the :turn-right action would be repeated on the next cycle. Less obvious is
the fact that the two asks in bounce-agent are effectively done in parallel, because of the delay
built into slot-setting in this agent system. That is why the turtle must back up rather than
simply turning around and then going forward. Essentially, no sequentially-dependent
operations can appear inside the action of a single agent when the two-phase-clock method is
used. The two asks can appear in either order without changing the effect of the agent.

Note that this method of conflict resolution can result in part of an agent’s action being
carried out while another part is overridden by another agent with a higher urgency. In other
words, conflicts are resolved at the slot level rather than at the agent level. Whether this is
desirable or not depends on how one interprets the anthropomorphic metaphor. A partially-
successful action might be interpreted as a compromise.
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(def-lw-method :resolve-conflict #^/cast/turtle/heading ()
  (let* ((proposals (slot self :proposals))
         (average (/ (reduce #'+ proposals :key #'car)
                     (length proposals))))
    (send self :set average)))

Listing 5.4: An alternative conflict resolution method.

Also note that other methods of resolving a conflict are possible. For instance, for a
numerical slot like heading, the values of all proposals could be averaged rather then selecting
one of them. These alternate resolution methods can be implemented on a per-slot basis by
specializing the :resolve-conflict method. Listing 4 shows an example in which proposals to set
the heading of any turtle will be averaged.

5.1.1.3 Presenting Conflict Situations to the User

The ability of the simple agent system to capture conflict can be exploited to generate
displays for the user. This allows the user to specify the resolution to conflicts, and can
automatically generate agent urgency values.

Figure 5.3: Presenting the user with an agent conflict situation.

An example of this is shown in Figure 5.3. In between phase 1, when each agent has made
its attempt to set slots, and phase 2, when actions must be selected and performed, the system
surveys the changed slots for agent conflicts. If conflicts are found that cannot be arbitrated by
the urgency mechanism (because the agents involved have equal urgency), the system
generates a display illustrating the effects of each agent and presenting the choice of agents to
the user. Each agent generates a corresponding box containing copies of the slots it effects, and
a thumbnail snapshot of the world as it would be if that agent alone was allowed to execute.
Thumbnails are based on a special kind of slot whose value is a picture. In this case, the conflict
is a complex one: bounce-agent is in conflict with turn-agent over  the heading slot, and in
conflict with fd-agent over the xpos  and ypos  slots.

The user then has to select some combination of agents that avoids conflicts. In the figure,
bounce-agent could be selected by itself, or turn-agent a n d  fd-agent could be selected
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together, since they don’t conflict with each other. The system can then adjust the urgencies of
the selected agents so that this particular conflict will be arbitrated the same way automatically in
the future.

In a more complicated system (for instance, one with multiple active actors) there are likely
to be multiple sets of conflicting agents. This situation could be handled with multiple sets of
thumbnails to choose among, although this could get confusing rather quickly.

5.1.1.4 Behavior Libraries

The simpler agent systems lend themselves particularly well to a mode of programming in
which behaviors are selected from a library and cloned and dropped into an actor. An example
of such a library is shown in Figure 5.4. This library contains both simple agents and goal
agents (which are described below). Library agents generally refer to other objects through
relative boxpath references (see 4.5.4) so that their clones will work properly in any context.
Additionally, l ibrary agents may refer to slots of their own, which allows them to be
parameterized (see behavior get-to in the figure for an example).

Figure 5.4: A library containing a variety of drop-in behaviors.
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Figure 5.5: A library of objects containing agents.

Figure 5.5 illustrates how agents can be embedded into a library of other objects. This
library contains a variety of turtles and patches (actor objects that are stationary but do
something when another object contacts them). Velocity-turtle, for example, has a simple
agent,  fd, that gives it a constant forward velocity, and another Goal Agent (see the next
section) that implements the wrapping behavior seen in most Logo environments. The sound-
patch object plays a sound when another object passes over it (the sound, like the agent that
generates the behavior, is an internal annotation to the patch object itself). The other patches,
curve-patch and slow-patch, will change the motion of turtles that pass over them.

5.1.2 Goal Agents

This section describes a slightly more sophisticated form of agent-based programming called
Goal Agents. This system illustrates several additional aspects of agents. Specifically, it shows
how agents can be based around goals, and how this further enables the use of simple
anthropomorphic metaphors to illustrate agent activity.

A goal-agent consists of a box whose value is a goal in the form of a Lisp predicate
expression. The agent’s task is to keep this goal satisfied. In addition to the goal itself, the box
display includes an icon that indicates the state of the agent. A satisfied goal displays a smiley
face icon, while an unsatisfied one produces a frown. Goal agents have a few other properties
which are stored as internal annotations. Of these, the most significant is the action, which
specifies how the agent is to attempt to satisfy its goal.

In Figure 5.6 we see an instance of a satisfied goal agent inside an actor (Opus). The agent’s
goal is that the overlap-sensor have a value of :no, or in other words that its parent actor
should not be in contact with any other actor.
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Figure 5.6: A satisfied goal-agent.

In Figure 5.7 the turtle has moved, causing the agent to become unsatisfied, as indicated by
the changed icon. The agent has been opened to reveal the action within. This action will
execute repeatedly until the agent is once again satisfied. In this case the action moves the actor
20 pixels in a randomly chosen direction, so eventually (assuming the turtle is static) Opus will
elude the turtle and the goal will once again be satisfied.

Figure 5.7: The goal-agent, unsatisfied and open.

Goal-agents act somewhat like an iterative construct of a procedural language, such as the
repeat...until construct of Pascal, running the action until the test is satisfied. Goal Agents are
also somewhat similar to situation/action rules, with the difference that instead of specifying a
triggering condition and action, a goal-agent contains the negation of the triggering condition as
its goal, and acts only when this goal is unsatisfied, or as the ethologist Hinde put it, “The
concept of a goal refers always to a situation which brings a sequence of behaviour to an end.”
(Hinde 1978, p. 624).

It’s worthwhile noting that this agent (and all the other types of agents presented in this
chapter) operate concurrently with user interaction. For example, the above agent allows the
user to chase Opus around by dragging another object. It is this property, the ability to interact
with running agent programs, that gives LiveWorld its feeling of liveliness.

Goal-agents can also have precondition, urgency, and satisf ied-action slots. The
precondition slot contains another predicate and determines whether or not the agent is

Agents 135



allowed to run its action. Satisfied-action is an action to take if the goal is satisfied, as opposed
to the normal action which is done if the goal is unsatisfied. The satisfied-action slot is included
mainly for the sake of symmetry, although since it is somewhat in conflict with the goal-seeking
metaphor its use is discouraged.

(def-lw-method :step #/goal-agent ()
  (if (ask self :precondition)
    (if (ask-self self)                   ; are we satisfied?
      (progn (ask self :satisfied-action)
             (setf (ask self :icon) *smile-icon*))
      (progn (ask self :action)
             (setf (ask self :icon) *frown-icon*)))))

Listing 5.5: Step method for goal agents.

Goal Agents (as described so far) can be implemented by equipping a LiveWorld object with
the :step method shown in Listing 5.5. Implementing goal-agents also requires installing defaults
for the slots involved, that is, goal agents must have a default :satisfied-action method that
does nothing, and a default :precondition that is always true. Some other mappings into
emotional icons are possible; for instance, an agent whose goal was unsatisfied but could not
act because of a precondition might appear as frustrated.

As described so far Goal Agents don’t really have much more computational power than
Simple Agents, since simple agents can simulate the goal/precondition/action mechanism of goal
agents with ordinary Lisp conditionals. However, Goal Agents provide some additional
structure, in that the separate parts of the conditional are now separate objects and can thus be
accessed separately. This means that the system now has the ability to know more about the
state of agents. This property is what enables the anthropomorphic icon display. It also enables
some alternative control strategies. Agents can test the satisfaction condition of other agents,
and conflict resolution strategies can be used that take into account the knowledge about which
agents need to run, based on the state of their goals. This permits agents to be arranged in
sequences, albeit awkwardly (see the next section).

A useful variant of goal agents can be made by replacing the goal with a condition. The
result is an if-then-agent, which consists of three clauses corresponding to the usual parts of a
conditional statement: if, then, and else (see section 5.4.1 for an example). Sometimes this is a
more natural way to formulate an agent, but because it is not based on a goal it is less amenable
to anthropomorphization.

5.1.3 A Comparison: Teleo-Reactive Programming

It is instructive to compare Goal Agents with other goal-based formalisms for controlling
action. The teleo-reactive program formalism (Nilsson 1994) was developed to address one of
the same issues that motivated LiveWorld: the fact that sequential programming is not always
suited to the control of agents that are in a continuous relationship with their environment.
Other languages at this level include GAPPS (Kaelbling 1988), Chapman’s circuit-based
architecture (Chapman 1991), and universal plans (Schoppers 1987).
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The teleo-reactive program formalism is particularly simple to understand. A teleo-reactive
program consists of an ordered set of rules, rather like production rules. Unlike traditional
production systems, however, actions are not discrete events (such as adding a token to a list)
but durative actions like move. Durative actions persist as long as the triggering condition
remains the first satisfied condition in the program. Nilsson suggests thinking of the program in
terms of a circuit, which is constantly sensing the world and turning on a specific action.
Equivalently, one can think of the T-R program as being called repeatedly in a loop whose cycle
time is short compared with the typical length of time of actions. Rules are tested in order until
one of the left-hand sides is true, and when one is found its right-hand side action will be
executed. Then the process is repeated. For instance, here is a sample program (from Nilsson)
that is intended to get the actor to navigate to a bar and grab it:

is-grabbing → nil
at-bar-center & facing-bar → grab-bar

on-bar-midline & facing-bar → move
on-bar-midline → rotate

facing-midline-zone → move
T → rotate

The equivalent program in Lisp would be something like this, with the understanding that
the program is enclosed in a rapidly-repeating loop:

(if is-grabbing
        nil
   (if (and at-bar-center facing-bar)
       grab-bar
       (if (and on-bar-midline facing bar)
           rotate
            (if ...

While this language is rather simple, there are a few nonintuitive peculiarities about it. One
thing to note is that actions are not directly associated with their goals. Instead, the action of
rule n is intended to achieve the goal of rule n-1. Another is that considered as a plan for
action, it reads backwards: the last action to be performed, grab-bar, comes first.

To express the equivalent program with Goal Agents requires creat ing an agent
corresponding to each rule as follows (the notation Gn is short for “agent n’s goal is satisfied”):

n goal action precondition
5
.

is-grabbing grab-bar G2

5
.

at-bar-center & facing-bar move G3 & ~G1

5
.

on-bar-midline & facing-bar rotate G4 & ~G1 & ~G2

5
.

on-bar-midline move G5 & ~G1 & ~G2 & ~G3

5
.

facing-midline-zone rotate   T  & ~G1 & ~G2 & ~G3 & ~G4

Table 5.1: A teleo-reactive program expressed in goal agents.
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This transformation makes for a more natural modularity (actions are associated with the
goals they achieve) but necessitates explicit preconditions, rather than having them be implicit in
the order of productions. There is no simple way to express any ordering of the goals.

One problem with this is that the preconditions get rather complicated for long action
chains. Agent n has to check that agent n+1 has been satisfied and check that all agents 1...n-1
have not been satisfied! The reason for this is our refusal to have any sort of central arbitrator
or serializer that decides which agent should run. Instead we want each agent to figure out for
itself if it is applicable, but that means that each agent has to know about all the other agents
involved that come before it in the sequence. This is hardly modular.

Figure 5.8: A teleo-reactive program expressed as Goal Agents. The long visible sensor of the ant
is the facing-midline-zone sensor; other predicates are implemented with overlap-sensors. The bar

is the thick rectangle, the bar midline is visible as a guideline.

The Goal Agents system thus provides a richer way to allow agents to interact than does
Simple Agents, but still does not make it very natural to talk about sequences of action. This
issue (and others) are addressed by Dynamic Agents.
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5.2 Dynamic Agents

The agent-based programming systems introduced so far are quite limited in their
expressive power. While agents can pursue goals, they are limited to a single fixed method for
achieving them. Agent systems have fixed sets of agents and cannot readily modify their goals
during execution. There is no easy way to specify sequences of action or lists of goals to be
achieved sequentially. This essentially means that actors driven by simple agent systems are
limited to a single fixed response to a given situation.

Dynamic Agents (DA) was designed to overcome some of these limitations, and is the most
powerful agent language implemented within LiveWorld. In contrast to earlier systems in which
agents were basically static entities, in Dynamic Agents, new goals can be created on the fly and
agents created to realize them. As in Goal Agents, agents are responsible for a single goal or
task. But to carry out their task, they can create new tasks which in turn results in the creation
of new, subordinate agents. The agents in a DA system thus form a hierarchy, but a hierarchy
that can dynamically change over time.

Imagine an agent as a person. It has a job to do, which can involve either keeping a goal
satisfied or carrying out an action. It is created and activated by its superior, but otherwise acts
autonomously. Its actions can consist of direct changes to the world, or it can recruit
subordinate agents to pursue subtasks that contribute to its own success.

In terms of the anthropomorphic metaphor, the hierarchy consists of managers and
workers. Managers can have goals, which they monitor but take no direct action to achieve.
Instead they create and supervise the activity of other agents. Worker agents actually make
changes to the world. Managers have some flexibility in the manner in which they activate their
subordinates. For example, an agent to stack blocks might have a subordinate in charge of
finding blocks, another in charge of moving the hand to the block, another to grasp the block,
another to move the hand so that the block is on top of the stack, and another to release the
block from the hand. This agent would want to activate its subagents sequentially and in a fixed
order. An agent which maintains a set of graphic constraints would have a subagent for each
constraint, but would typically not care about the order in which they were achieved. It would,
however, need to make sure that one agent did not interfere with the goals of another agent.
The language for specifying agents has to be flexible enough to accommodate these different
sorts of managers.
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little-person model Tinbergen model dynamic agents

basic model procedural reactive task-driven

units “little people”
(procedure invocations)

drive centers agents

persistence dynamic static dynamic

goals no support implicit explicit

action executing procedures releasing energy performing tasks

communi–
cation

LPs ask other LPs to
perform procedures

passing energy agents post tasks which
generate new agents

conflict no model intra-layer inhibition slot conflict and goal conflict

multiple
methods

one LP per procedure
call

one unit per behavior can have multiple agents for a
task

failure
handling

none none (except repetition) agents can fail, allowing other
methods to be tried

state running, dormant,
waiting

blocked; activation
energy

dormant,[un]satisfied, failed,
succeeded, determination

concurrency exactly one LP active at
a time

one active unit per layer multiple active agents

top “chief LP” initiates
activity

top-center God agent organizes activity

bottom primitive procedures motor units worker agents

Table 5.2: Programming models compared.

Two earlier forms of hierarchical control system have influenced the design of the agent
hierarchy underlying DA. The first of these is the hierarchy of procedure calls generated by the
activity of an interpreter for a procedural programming language, and the little-person metaphor
sometimes used to illustrate it (see 3.3.2.1). The notion of a society of experts performing tasks
on demand is retained, but extended in several significant ways. A little person executes a
procedure once then disappears, but a dynamic agent is a persistent entity. This allows agents
to have significantly greater capabilities. Agents operate in parallel, they can monitor goals as
well as carry out procedures, and there can be more than one agent created to accomplish a
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given task. Because agents can have goals, there is a basis in the model for thinking of agents as
satisfied or unsatisfied, successful or failed, and for handling conflict.

The other major model for DA’s hierarchy of agents is Tinbergen’s model of animal
behavior control systems (Tinbergen 1951), and computational attempts to realize it such as
(Travers 1988) and (Tyrrell 1993). Like Tinbergen’s drive units and releasing mechanisms,
agents in a DA hierarchy are constantly checking their state against the world, and so can take
control when necessary, possibly overriding other agents. This flexibility is not found in the
standard procedural models of programming. In some sense, DA can be understood as an
attempt to integrate the reactive hierarchies of Tinbergen with the formal simplicity and power of
the procedural model.

Table 5.2 shows a point-by-point comparison of dynamic agents with the little-person
model of procedural programming and Tinbergen’s model of animal behavior. The basic
metaphor behind procedural programming is serialized following of instruction, while in the
Tinbergen model it is reacting to environmental stimuli. Dynamic Agents attempts to integrate
these by basing its model of an agent on tasks which can specify both sequences to execute
and goals to be achieved. From the LP model, DA takes the idea that agents can dynamically
create subagents as part of their activity. From the Tinbergen model, DA takes the idea that
agents while arranged in a hierarchy have a measure of autonomous control, can run
concurrently, can constantly check on the state of the world and can seize control from each
other. The possibility of combining the best features of these two rather different models of
control was the inspiration behind the design of Dynamic Agents.

5.2.1 Overview

This section presents a technical overview of the structures, concepts, and operation of the
Dynamic Agents system. The DA system works by building a hierarchy of agents (see Figure
5.8) based on user specified tasks. In a cyclic process, the agents are activated and may take
actions which consist of either a direct action which changes the world, or the creation of
subtasks and subagents. Agents may come into conflict by attempting to perform incompatible
actions or by interfering with another agent’s goal. The system attempts to resolve conflicts and
schedule agent activity in such a way as to satisfy as many agents as possible.

Each agent is in charge of a single task, which determines its type and behavior. Primitive
tasks specify a direct action to take in the world. Other kinds of tasks can specify goals to be
achieved, or complex procedures to perform that invoke a number of subtasks. Tasks are
specified using a vocabulary of built-in control constructs and user-defined templates. For
instance an and  task speci f ies  a  number of  subtasks,  a l l  of  which must  be sat is f ied
simultaneously for the and  task to be satisfied. A script task, on the other hand, activates its
subtasks sequentially. Agents have a numerical determination  value which corresponds roughly
to how hard they try to take their action in the face of conflicts.

At the top of the agent hierarchy is an agent with a special task called (god). This agent
serves to organize the activity of the next lowest layer of agents, which embody top-level tasks.
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Worker agents
take action in the world.

template

task

prim.
task

prim.
task

template
Templates specify subordinate agents.

Satisfied agents
don't need to

create subordinates
template

task

This agent supervises activity.

top
task top

task
top
task

These agents handle top-level tasks.

(god)

Figure 5.9: An agent hierarchy.

These tasks can be specified explicitly by the user in task objects, or arise implicitly from user
actions. They can also be part of objects in a simulation or library.

Agents can be in a number of different states. Agents whose task is a goal can be satisfied
o r  unsatisfied. Agents that carry out an action can be successful,  failed,  o r  waiting f o r  a
subordinate. Worker agents succeed when they are able to carry out their action. They can fail
for a variety of reasons, including coming into conflict with other agents. Manager agents
generally succeed or fail based on the success or failure of their subordinates. For example, the
failure of a single subordinate will cause an and  agent to fail, while a similar subordinate failure
under an or agent will instead cause a different subordinate to be activated.

The agent interpreter begins its process of activating agents from the top agent and works
its way downwards. At each level, the task of an agent determines which subagents, if any, will
become activated. For instance, a script agent will only activate one subagent, whereas an and
agent will activate all of its subagents. An agent that is satisfied needs to take no action and will
not activate any subagents.

Eventually this process bottoms out in worker agents who attempt to execute primitive
tasks. The actions of these agents are deferred so that concurrency and conflict resolution can
work right, in a manner very similar to that used in simple agents (see 5.1.1.2). The conflicts are
resolved using the determination values of the agents involved. Agents that prevail (or are not
in conflict) are marked as successful, while losers are marked as failed. Success and failure
propagate upwards in a manner determined by the tasks involved. The successful actions are
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realized, that is, their proposed changes for LiveWorld slots become the current values. This
may cause other agents to become unsatisfied. Agent determination values can change as other
agents fail and succeed, so that conflict resolution is not permanent—the “balance of power”
can shift. This cycle is repeated either indefinitely or until all top-level tasks are satisfied.

5.2.2 Structures

This section explains the major structures used in dynamic agents: tasks, agents, and
templates. To briefly summarize the relationship between these three separate but closely
related concepts:

• A task is an expression that specifies a job to do;

• An agent is a structure created to carry out a particular task;

• A template is a structure that specifies, for some set of tasks, how to create agents to carry
them out.

Templates extend the kinds of tasks that can be handled and thus in some sense constitute
the program specification of an agent system. To extend this rough analogy with traditional
procedural programming, tasks correspond to procedure calls, while agents correspond
(roughly) to the stack frames or other internal structures used to keep track of procedure
invocations. However, agents are longer-lived, keep more information, and have more
complicated associated control mechanisms than stack frames.

5.2.2.1 Tasks

A  task is an expression in Lisp syntax that represents either a goal to be achieved or an
action to be taken. While tasks are in the form of Lisp structures, they are not (in general)
interpreted as Lisp expressions. The first element of a task specifies the general type of task,
and may be a special symbol such as and  or do , or the name of a domain task. Because tasks
and agents  are  c losely  coupled,  we wi l l  use  the terminology for  tasks  and agents
interchangeably (for instance, we might refer to the type of agent, which is simply the type of its
task). There are a number of different general classes of task:

• goals are tasks that have an interpretation as a predicate (in other words, they are
satisfiable. Some special tasks (such as and-type tasks) are also goals, and tasks that are in
the form of user or system-defined predicates are also goals.

• actions are tasks that are not predicates.

• primitive tasks are action tasks that take direct action in the world.

• manager tasks include all non-primitive tasks. Agents with manager tasks take no direct
action on the world. Instead they specify and control some number of subordinate agents.

• special  tasks are manager tasks whose type is a member of the vocabulary of control
constructs presented below. They generate their subordinate agents according to rules
presented in section 5.2.4. In general, special tasks have one or many subforms, each of
which is a task and generates a single subordinate agent.
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• domain tasks are manager tasks with a user-defined, domain-dependent type. Domain tasks
generate subagents according to templates that match the task.

To summarize: tasks can be split along several dimensions into disjoint pairs of classes.
Goals and actions are one such pair, as are manager and primitive tasks; and special and
domain tasks. For instance, an and  task is a special task, a goal, and a manager task.

Some sample tasks are presented here. More detailed examples may be found later (see
especially section 5.4).

 (= #^/rect/xsiz #^/rect/ysiz)

This task is a goal since it has a predicate value. The task it denotes is to keep the values of
two slots equal (it ensures that the #/rect object is a square). An agent for this task would take
no action if the task was satisfied. If it was unsatisfied, the agent would create subagents to try
to achieve satisfaction.

 (go-to #^/ant #^/food-3)

This is a user-defined goal task. The goal is satisfied when the ant is in contact with food-3,
and when unsatisfied will create subagents that will cause the ant to move towards its goal.
These subagents will manage the ant’s direction and movement.

(do (ask #^/turtle :forward 20)

This is a primitive task. An agent with this task will make the turtle go forward when it is
activated.

(script (find-free-block @^/marker/)
        (go-to @^/hand @^/marker/)
        (grasp @^/hand))

This script task from the blocks world instructs the agent to make three subagents and
activate them serially. The first instructs a marker object to find a free block, the second
instructs the actor representing the hand to go to the marker, while the third instructs the hand
to grasp whatever object it finds. All three of these subtasks are high-level domain tasks that
generate manager agents.

5.2.2.2 Agents

An agent is a structure created to carry out and monitor a task. Agents are arranged
hierarchically as described above. Internally agents are represented by low-level Lisp structures
for efficiency, but they also have representations in box form for presentation to the user.

The most important property of an agent is its task. An agent also contains an assortment
of additional state variables that are used to control its activity. This includes its precondition,
its current subordinate agent (for script tasks and others that activate only one subagent at a
time), its determination, and its success or failure state including information about lost conflicts.
Agents also contain the necessary pointers to maintain the agent hierarchy. If an agent was
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generated by a template, it contains a pointer back to that template along with the variable
bindings that resulted from the match of the template’s task-pattern to the agent’s task.

Agents are intended to be understood anthropomorphically as the active and interested
components of the system. To that end, a set of icons are used to represent the state of agents
in terms suggestive of human emotion. In addition to the icons for goal satisfaction used in goal-
agents (see 5.1.2), dynamic agents can express the state of their action (succeeded, failed, or
waiting) and the presence of conflict. The icons and their interpretation are:

• inactive (asleep)  
The agent is inactive.

• satisfied (happy)  
The agent is active and its goal is satisfied.

• unsatisfied (sad)  
The agent is active and its goal is not satisfied.

• in conflict (angry)  
The agent was satisfied, but was made unsatisfied by another agent.

• failed (thumbs-down)  
The agent failed.

• succeeded (thumbs-up)  
The agent succeeded.

• waiting (tapping fingers)  
The agent is waiting for a subordinates to complete.

Roughly, an iconic face is used to indicate the satisfaction state of the task, while an iconic
hand is used to show the state of any action taken to achieve that task. These are somewhat
independent, since an agent’s task can become satisfied without direct action by the agent.

5.2.2.3 Templates

A template specifies a method for constructing an agent to handle a particular class of
domain task. The relationship between templates and agents is similar to the relationship
between a procedure specification and a procedure invocation in a standard procedural
language: that is, the template is a static, generalized structure that serves as a pattern for
dynamically creating other structures (agents) to deal with particular instances of tasks. Thus,
templates correspond to what is normally thought of as “the program”, that is, they contain the
specifications of what the computer is to do.
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When an agent with a domain (non-special) task is expanded, the system matches its task
against all

18
 templates. If exactly one template matches, then a single subagent is created using

that template’s information. If more than one template matches the task, an intervening ONEOF
task is created to manage the multiple agents that result.

Templates consist of a number of fields. Some of these have values that are patterns used
to match and generate tasks. The most important of these are the task-pattern and the action-
pattern, which specifies a new task. The semantics of a template are (roughly) that if there is an
active task that matches the task-pattern of the template, then a subagent should be built that
incorporates the new task specified by the action-pattern. Templates can also specify
preconditions for the agent and other relevant agent properties.

In this document, templates are shown defined by Lisp forms. It is also possible to create
templates in the form of box structures within LiveWorld, by the usual method of cloning a
specialized object and filling out the appropriate slots.

Patterns are specified using a pattern-matching language based on the one in (Norvig 1992).
A pattern consists of a Lisp list in which some of the elements are pattern variables. Pattern
variables are symbols beginning with the ? character. For example, the pattern (= ?a ?b) would
match the task (= @^/rect/x @^/rect/y), binding the variables ? a and  ?b to the appropriate
matched values. This information is used to substitute the values for pattern variables in the
other patterns in the template, such as the action.

Here is an example of a template from an animal-behavior simulation:

(deftemplate (get-food-forward ?a)
  :precondition ´(and (yes? (ask ?a :left-food))
                      (yes? (ask ?a :right-food)))
  :action ´(repeat (do (ask ?a :forward 10))))

The task-pattern of this template is (get-food-forward ?a),  and the effect of the
template is to say that if a task of that form is asserted (for some actor that will match the
pattern variable ?a), and the two food sensors are both returning :yes values, then go forward.
The pattern variable ?a will be bound to the actor when the template is matched against
outstanding tasks, and the precondition and action are evaluated in a context that includes the
resultant bindings of the pattern variables.

In the above example, the pattern matching facility does not add much power over and
above the agent systems already seen. However, the next example uses multiple pattern
variables to establish templates for tasks that involve relations between slots:

(deftemplate (= (+ ?b ?c) ?a)
  :name +left
  :precondition ´(settable ?b)
  :action ´(= ?b (- ?a ?c)))

18 Actually the implementation organizes templates into buckets based on their first element in order to
minimize the relatively expensive process of pattern-matching. This is an implementation detail.
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This template specifies one method for satisfying a particular form of arithmetic constraint
by reducing it to a simpler constraint. This template is part of the system’s general arithmetic
capabilities. As this example suggests, there can be more than one template matching a task.
When a task matches with multiple templates, the system will generate multiple agents under a
oneof agent (see 5.2.4.4).

The fields of a template specification are:

• The task pattern (the header or second element of the deftemplate form) is used to match
the template against a task. It can contain pattern variables that get bound to elements in the
original task.

• The action pattern (specified by the :action keyword) generates a new task based on the
values of pattern variables bound in the goal pattern. This task becomes the basis for a
subagent of the original task’s agent. This field must be supplied (or calculated from the
satisfied field, see below).

• The precondition pattern specifies a precondition that also becomes part of the newly
created agent. The default value is t, that is, by default agents are always able to run.

• The satisfied field allows a predicate and action to be defined together (see below).

• The name field assigns the template a name that uniquely identifies it for purposes of
debugging and redefinition. The default value of the name is the goal-pattern. This means
that if multiple templates are being defined for a single goal-pattern, they had better have
unique names so the system does not interpret them as redefinitions of one template.

• The determination-factor field is a number used to scale the determination value assigned to
the agent (see 5.2.7). The default value is 1.

Users can define their own goals by using the :satisfied parameter of templates. This
essentially defines both the declarative and procedural parts of a high-level goal simultaneously.
For instance,

(deftemplate (square ?a)
   :satisfied (= (ask ?a :xsiz) (ask ?a :ysiz)))

This template definition both defines a one-argument Lisp predicate square with the obvious
definition, and creates a template that if given a square task will attempt to achieve it by posting
the appropriate equality task. This process involves converting the task-pattern into a Lisp
function specifier and argument list, and for this reason a template that includes a :satisfied field
must have a task-pattern that is of the form (<symbol> <pattern-var>*).

The pattern-matcher is actually more powerful than described so far. Most of its capabilities
(for instance, matching a variable to a segment of arbitrary length) have not been used. One
extension that has proved useful is syntax that allows patterns to specify that a pattern variable
must match a box of a particular type. For instance, the pattern

(yes? (?spinoff ?sensor #/sensors/overlap-sensor))

wi l l  ma tch  any  t a sk  o f  the  fo rm ( ye s ?  foo),  i f  a n d  o n l y  i f  foo i s  a  s p i n o f f  o f
#/sensors/overlap-sensor.
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5.2.3 Control

From the implementation standpoint, agents do not really operate independently but instead
are controlled through a centralized agent interpreter. This interpreter is in charge of creating
agents for the initial tasks, finding templates to match tasks and creating the new tasks specified
by the templates, and so on recursively. The interpreter is also in charge of determining what
subset of these agents are to be active at any time.

The interpreter is cyclic, that is, it consists of a process that repeatedly examines and
updates the structure of agents. There are a number of different ways such an interpreter could
work. For instance, it could pick a single agent to activate on each cycle, or pick a single agent
on each level, or activate as many agents simultaneously as it can. To be true to the distributed
form of the anthropomorphic metaphor, we have chosen the latter, even though the single-
agent-at-a-time methods might be more tractable. So a single major cycle of agent activity
consists of activating as many agents as are appropriate, and, if any actions are proposed,
resolving conflicts and executing them. This section describes the internal mechanics of agent
activation and control. For an extended example of the consequences of such activity, see
section 5.3.5.

5.2.3.1 Activation and Expansion

Activation is the process of making an agent check its goal (if any) and take necessary
action. Agents are activated in a top-down process, starting from the top-agent and working
down to the worker agents. Activating one agent may result in the creation of subagents and
their subsequent activation.

When an agent is activated, it first performs several checks. First, if the agent has already
completed, nothing is done. This does not necessarily mean that each agent can run only once,
since the completion state of an agent can be reset (see below). If the agent is not complete, it
checks whether it may already be satisfied (if it is a goal) and whether or not its precondition is
met (if it has one). After passing these checks, an agent has determined both that it needs to run
and that it can.

At this point if it is a primitive agent it runs its action. Otherwise it expands itself and marks
its subordinate agents for later activation. Expansion is the process of creating subagents for an
agent. This involves different processes for different types of agents. For agents with domain-
specific tasks, expansion involves finding templates that match the task and using them to
create subagents. For special tasks, the process varies but most typically involves making one
subagent per clause of the task. For the god  task, expansion involves collecting all the top-level
tasks and making a subagent for each. Each agent is expanded at most one time.

5.2.3.2 Cycles

The process of agent interpretation is essentially iterative. The system activates some set of
agents, they perform their tasks, and the process is repeated. In the earlier systems this
process was relat ively s imple,  with an anima-based driver that  clocked each agent
independently, with a global conflict resolution phase. The dynamic agents system is
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significantly more complex and requires a more complex driver. I have found it useful to think
of three different levels of cycle for the different levels of agent activity:

• A  microcycle is the smallest-scale cycle, and a single microcycle consists of activating a
single agent.

• A  major cycle o r  millicycle is a round of microcycles that starts from the top agent and
proceeds downwards until the leaves of the agent tree are reached, which will be worker
agents executing primitive tasks. This is followed by a conflict resolution phase and the
actual state change. A major cycle is like a single unit of real-time, in which all the agents can
act if they need to.

• A  macrocycle consists of initializing the agent tree and performing millicycles until the top
agent successfully completes. Note that a complete macrocycle is possible only if all the top-
level tasks are able to be completed.

Microcycles are useful mostly for the purpose of user stepping, and macrocycles only
make sense for constraint-like problems where all the top-level tasks are goals. The millicycle is
really the fundamental unit of dynamic agent activity, and when the system is being driven by
an anima (see 4.6.1) it is essentially performing a millicycle per anima clock.

5.2.3.3 Success and Failure

An agent can succeed or fail at various points in its activity. Success or failure halts the
agent activity and signals the agent’s boss agent, which will take action dependent upon its task.

Agents succeed when:

• a worker agent successfully executes its action.

• an agent with a goal-task is activated and finds its goal already satisfied.

• a subordinate agent succeeds and appropriate task-specific conditions are met.

Agents fail when:

• a worker agent gets a Lisp error.

• a worker agent loses a slot conflict to another agent.

• an agent’s precondition is unsatisfied.

• no templates can be found for a domain-specific task.

• a subordinate agent fails and appropriate task-specific conditions are met.

• subordinate agents succeed but the agent’s goal is still not satisfied.

Lisp errors may occur due to bugs in the specification of primitive tasks, of course, but
they may also be generated by general templates being applied in situations where they don’t
work. For instance, an agent that attempts to satisfy the task (= a (* b c)) by setting b equal to
(/ a c) will get a Lisp error (and thus fail) if c happens to be zero. When this happens, the Lisp
error is caught by the agent interpreter, the agent is marked failed, and other methods are tried.
This means that the user can be rather free in specifying methods.
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The “task-specific conditions” mentioned above refer to the way in which agents react to
success or failure for different special tasks. For instance, the failure of an agent whose boss is
an and  agent will cause the boss to fail as well. In the case where the boss is an or agent,
however, the failure will cause a different subordinate of the boss to be activated during the
next millicycle. What happens next depends on the parent’s action type. For instance, if a child
of an agent with an and  special action (which we will call an and  agent for short) fails, then the
parent agent will fail as well. If a child of a script agent succeeds, it makes the next sequential
child the current one so that it will be activated on the next agent cycle.

Agent success and failure persists across cycles but may be reset in some circumstances,
allowing the agent to attempt to run again. These circumstances include when a successful
agent’s goal becomes unsatisfied (a goal conflict, see 5.2.6.2) or when a failed agent has its
determination increased due to sibling failures.

5.2.4 Special Tasks

This section describes the vocabulary of control constructs that are used to create special
and primitive tasks, and how they are interpreted by the agent system. The interpretations of
other types of tasks (that is, domain tasks) are specified by templates. Special tasks allow tasks
to be combined in different ways, and in some sense represent different “managerial styles” or
ways of accomplishing a complex task by parceling it out to subordinate agents. Some tasks
activate all their subordinates at once, while others activate them one at a time. Of the latter,
some specify a fixed order of activation while others don’t care. Some tasks are goals that can
be satisfied or not, while others are just actions. These distinctions are somewhat confusing,
but each task represents a different strategy for accomplishing a complex task. Examples of
special tasks in use may be seen in section 5.4 and elsewhere.

5.2.4.1 Combining Tasks

These special tasks serve to combine several subordinate tasks in various ways.

(AND goal*), (OR goal*)

These special task types are duals of each other in many respects. And and or tasks are
goals, and their satisfaction is a function of the satisfaction of their subtasks (which must also
be goals). An and agent activates all of its subagents simultaneously, and expects them all to be
satisfied eventually. If any of them fail, the and agent fails. An or agent activates its subagents
one at a time, in an unspecified order, choosing another if one fails and only failing if all
subagents fail.

(ALL <task>*), (ONE <task>*)

All and one are similar to and and or, but are actions rather than goals, and can have
actions as their subtasks. An all agent activates all of its subagents, in parallel, and completes
successfully when all of the subagents complete successfully. A failed subagent will cause it to
fail. one acts like or in activating subtasks one at a time in arbitrary order, but requires only one
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successful subtask to succeed. In other words, whereas a n d  a n d  o r  pay attention to
satisfaction, all and one only care about success.

(SCRIPT <task>*)

Script tasks are actions. A script causes its subordinate tasks to be activated one at a time,
in the order specified. Each task must complete successfully before the next task is begun.
Scripts succeed when the last task is done and fail if any subtask fails.

(TRY <task>*)

Try is similar to script, in that subtasks are activated one at a time and in the specified
order. However, only one of the subtasks needs to succeed for the try task to succeed. In
other words, try tries running each subtask until one succeeds, at which time it succeeds itself.
Roughly, try is to script as or is to and .

(AND-SCRIPT <goal>*)

This special task combines the semantics of and with the sequential properties of script.
Like the former, and-script tasks must be satisfiable goals and their subtasks must be as well.
But unlike and , and like script, they activate their subordinates one at a time, in the order
specified by the task.

The difference between and-script and script is that the former requires that its tasks
remain satisfied after they are completed. That is, once a subagent of a script is finished, it no
longer cares about its goal, but all steps of an and-script up to the current step must remain
satisfied even after they are completed. If they become unsatisfied, the and-script fails (there is
no or-script because its behavior would be identical to the more general try construct).

5.2.4.2 Control Tasks

(REPEAT <task>)

REPEAT tasks are actions that never complete, and thus cause their inner task to remain
activated indefinitely. Generally, REPEAT tasks are used as the expansion of goals, so that the
inner task will be executed only until the goal is satisfied. REPEAT is most useful for actions that
achieve a goal only after multiple iterations. For an example, see the template for GET-TO tasks
in section 5.2.5.3.

The REPEAT construct allows for iteration at the agent level. Iteration in primitive actions
(that is, at the Lisp level) is discouraged, because it blocks other agents from running. Using
REPEAT allows the iteration to be interleaved with other agent actions.

5.2.4.3 Primitive Tasks

(DO <lisp>*)
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Primitive tasks are specified using the do  task type. Primitive tasks are handled by worker
agents that have no subordinates and always complete immediately. They can fail due to Lisp
errors or by coming into conflict with a more determined agent. While primitive tasks can
specify the execution of arbitrary Lisp programs, they are expected to be simple and fast, and
will typically involve nothing more complicated than sending an object a message, or changing
the value of a slot or two.

5.2.4.4 Internal Special Tasks

Some special tasks are for the internal use of the system, and are not meant to be used in
user-specified tasks and templates.

(ONEOF task*)

oneof tasks are used only internally: they cannot appear in user-specified tasks or
templates. They act essentially like one  tasks, but are generated by the system when multiple
subagents are required for a single domain task. So for instance, a goal of (= @/a @/b) would
generate two subtasks corresponding to the two obvious ways to make an equality constraint
be true:

(do (setf @/a @/b))
(do (setf @/b @/a))

Because domain tasks can have only one subagent, a oneof task and subagent is created to
intervene between the equality constraint and the two methods. Here an outline notation is
used to show the relationship between an = constraint, its subordinate oneof task, and two
further subordinates:

a1: (= @/a @/b)
  a2: (oneof <a3> <a4>)
       a3: (do (setf @/a @/b))
       a4: (do (setf @/b @/a))

Note that since oneof tasks are used only internally, they are able to refer directly to their
subagents. In actuality the treatment of equality is somewhat more complicated; see section
5.2.5.1 for more details.

(GOD)

The GOD special task is used internally by the system for the top agent. It gathers together
all the top-level tasks, makes them into subagents, and otherwise acts essentially like an all task.

5.2.5 Domain Tasks and Templates: Examples

Domain tasks are interpreted according to templates; that is, the user specifies an
interpretation for them. This section presents some detailed examples of domain tasks and the
templates that interpret them.
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5.2.5.1 Numerical Constraints; Equality

Numerical constraints are expressed as algebraic relations. For example, one way to
express a task to maintain the relationship between Fahrenheit and centigrade temperature
representations looks like this:

T1: (= @^/Fahrenheit
       (+ 32.0 (* 1.8 @^/centigrade)))

Equality constraints are usually handled by templates that propose two subagents: one that
proposes to make the equality constraint hold by making the expression on the left-hand side
be equal to the one on the right, and the inverse. These tasks are expressed by means of the
<== operator, known as one-way equality. This operator has the same declarative meaning as
=, that is, it is satisfied if its two arguments are numerically equal. Its procedural meaning is that
equality can only be achieved by altering left hand side to match the right. A similar construct,
<=equal , is available for non-numeric values. The basic definition of one-way equality is
provided by the following set of templates:

(deftemplate (<== ?a ?b)
  :satisfied (= ?a ?b)
  :precondition `(settable? '?a)
  :action ‘(do (setf ?a ?b)))

(deftemplate (= ?a ?b)
  :name =left
  :action '(<== ?a ?b))

(deftemplate (= ?a ?b)
  :name =right
  :action '(<== ?b ?a))

The temperature conversion task would result in the two subtasks:

T3: (<== @^/Fahrenheit
         (+ 32.0 (* 1.8 @^/centigrade)))

T4: (<== (+ 32.0 (* 1.8 @^/centigrade))
         @^/Fahrenheit)

If the left-hand side of a one-way equality constraint is settable, it can be expanded into a
worker agent by the first template shown above. Settable-ness is defined by the settable?
function, and is true of anything that can be a legitimate first argument to the Common Lisp setf
macro. @^/Fahrenheit is settable, so T3 can be expanded into:

T5: (do (setf @^/Fahrenheit
        (+ 32.0 (* 1.8 @^/centigrade)))

T4, however, has a left-hand side that is not settable. This does not mean the task is
hopeless, however! Other templates can match it and transform it into subtasks that will
eventually allow action to be taken:

(deftemplate (<== (+ ?b ?c) ?a)
  :name +right
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  :action `(<== ?c (- ?a ?b)))

This template says that a one-way equality task that is trying to change the value of a sum
((+ ?b ?c)) can be transformed into a new task that sets one of the items being summed (in
this case, ?c). The template will match T4 and generate a new subtask:

T6: (<== (* 1.88 @^/centigrade)
            (- @^/Fahrenheit 32.0))

In effect, the template has performed an algebraic transformation on T4. This process of
transformation continues, controlled by other templates which have forms similar to the +right
template, until it results in a runnable worker agent. In this case, the penultimate task, which will
expand directly into a worker agent, is:

T11: (<== @^/centigrade
          (/ (- @^/Fahrenheit 32.0) 1.8))

A rewriting system like this poses a danger of generating a non-terminating chain of
transformed tasks, either through looping or through infinite expansion. The built-in set of
templates for handling numerical constraints avoids this problem by ensuring that templates
always generate new tasks whose left side is a sub-part of the left side of the original task. Since
each transformation must produce a new task whose left side is strictly smaller than the starting
task, the process of transformation must eventually terminate.

5.2.5.2 Geometry

Geometrical constraints ultimately turn into numerical constraints of the type shown above.
The combination of the template pattern language and LiveWorld’s object facilities allow them to
be expressed as higher-level relationships.

For example, the (rectangle <actor>) form of goal is heavily used in graphic constraint
problems such as the graphic version of the temperature converter. The dimensions of
LiveWorld actors are directly controlled by the four slots xpos ,  ypos ,  xsiz a n d  ysiz.  The
rectangle constraint defines two additional slots, bottom and  right, and enforces geometric
consistency among the resulting set of six slots. Rectangle does not by itself put any constraint
on the appearance of an actor, instead it allows other constraints to be placed on any one of a
rectangle’s sides or dimensions. It should also be noted that rectangle constraints can be
applied to any actor, or indeed anything with the appropriate slots. For instance, it makes sense
to give ovals a rectangle constraint. The constraint actually means “enforce consistency on an
object’s rectangular bounding box.”

The rectangle constraint is defined by the following template:

(deftemplate (rectangle ?r)
  :satisfied
  (and (= (ask ?r :right) (+ (ask ?r :xpos) (ask ?r :xsiz)))
       (= (ask ?r :bottom) (+ (ask ?r :ypos) (ask ?r :ysiz)))))
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This means that an unsatisfied rectangle task will expand into an and  task which will in turn
expand into two equality tasks.

Geometric constraints can also express inter-object relationships. The within constraint
specifies that one object should lie entirely within another:

(deftemplate (within ?a ?b)
  :satisfied (and (>= (ask ?a :xpos) (ask ?b :xpos))
                  (<= (ask ?a :right) (ask ?b :right))
                  (>= (ask ?a :ypos) (ask ?b :ypos))
                  (<= (ask ?a :bottom) (ask ?b :bottom))))

A  within task expands to an and  subtask with four subtasks of its own. Each of these
enforces a numeric relationship. When >= and <= tasks are unsatisfied, they are expanded into
equality tasks. That is, if the task (>= a b) is encountered and unsatisfied, the system will
attempt to enforce it by trying to equate a and b. This technique obviously is incomplete, in that
it only tries a very small subset of the possible ways to make the constraint true. However, it
produces reasonable interactive behavior in the case of the within constraint. If the user drags
an object constrained to be within another, the agents will do nothing as long as the constraint
is satisf ied. I f  the object goes outside the boundaries of the surrounding object,  the
surrounding object will be moved as if bumped and dragged.

Note that  the two objects  constrained by a within t a sk  mus t  a l so  have  rectangle
constraints defined so that their bottom and right slots are defined and maintained properly.

Figure 5.10: A world combining numerical and geometrical tasks. The conversion task (T1 in the
text) appears in the task object within temperature. Within the centigrade bar, task-1 asserts that

the bar is a rectangle while task constrains its vertical size to be equal to the computed centigrade
temperature.
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5.2.5.3 Behavior

Tasks and templates from behavioral domains tend to make more use of the repeat
construct, reflecting the fact that the actions that satisfy goals in this domain generally do not
satisfy immediately, as they do in the more abstract domains above. Instead, they achieve their
goal only by repeated application. A simple example:

(deftemplate (get-to ?creature ?place)
  :satisfied (eq (ask (ask ?creature :overlap-sensor) :other)
?place)
  :action '(repeat
            (script
             (head-towards ?creature ?place)
             (do (ask ?creature :forward 10)))))

This template defines a goal called get-to, that expects to have actors match its pattern
variables. The goal is satisfied when its two actor arguments are in contact, as defined by the
creature actor’s overlap-sensor. This template generates a subagent with a repeat task. This
means that the innermost task (the script) will be repeated until the get-to task is satisfied. The
script first attempts to satisfy the head-towards goal, and when it is satisfied will proceed to
activate the do  agent, which will move the creature forward. The script task ensures that
forward motion only happens if the head-towards goal is satisfied, that is, only if the creature is
facing the target. The fact that the repetition is outside of the script ensures that the head-
towards goal will remain monitored and if the target object moves, the creature will realign itself
before moving forward. By contrast, a goal of the form:

(script
  (head-towards ?creature ?place)
  (repeat (do (ask ?creature :forward 10))))

would adjust the heading once, and then go forward indefinitely with no further course
corrections.

5.2.6 Conflict

There are two types of conflict that can occur during the execution of a DA system. The
first, slot conflict , occurs when two or more agents attempt to set a slot to different values. The
second, goal conflict, occurs when a successful action results in another agent’s goal becoming
unsatisfied. These two types of conflict represent different constraints on agent activity. Slot
conflict models the physical impossibility of an object being in two states at once or taking
simultaneous actions that are physically incompatible (for instance, an actor cannot move in
two different directions at once). Goal conflict, on the other hand, reflects the fact that agents
will often interfere with each other’s goals, and that either compromises must be reached or
some agents will remain unsatisfied.

5.2.6.1 Slot Conflict

Each major cycle might result in many worker agents attempting to take action. This raises
the possibility that they might come into conflict. As in Simple Agents, all the actions of worker
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agents are ultimately expressed as changes to the values of slots, and so slot conflict is defined
as more than one agent trying to set a slot to incompatible values. The DA system uses
techniques similar to the two-phase clock technique used in the simpler agent systems. Under
this technique, the actions of worker agents are not actually performed when the agent is
activated but instead get deferred and turned into proposals for each slot.

At the end of each major cycle, therefore, a conflict resolution procedure is required to
determine which slots have conflicting proposals and which agents shall prevail. This involves
collecting all the slots that have proposals, all the worker agents that have made proposals,
computing sets of agents that are in conflict, and for each set, picking an agent to prevail. This is
done by comparing the determination of the agents in the conflicting set. The agent thus
selected gets to make its proposals take effect, and is marked as successful, while the losing
agents fail.

In some cases, it is important to detect conflicts between agents that do not necessarily get
activated during the same major cycle. This is the case for agents that are jointly underneath an
and  agent, for instance.

When an agent’s proposal is realized, the slots that are changed record which agent
provided the value, and the current clock tick. When the persistent-slot-values switch is on,
this data is used in future cycles. In this case, in addition to any proposals suggested by agents
running in the current cycle, the prevailing value and the agent that set it are also compared in
the conflict resolution stage. This essentially means that in order to change a slot value, an
agent must have a higher determination than the last agent to successfully set that slot’s value.

5.2.6.2 Goal Conflict

Goal conflict occurs when the action of one agent causes another agent, previously marked
as satisfied, to become unsatisfied. When this happens, the newly-unsatisfied agent is reset,
that is, its completion state is revoked so that it can run again. In addition, it is marked as the
vict im of  a confl ict ,  which causes no addit ional processing but causes the graphic
representation of the agent state to be an “angry” icon rather than the less descriptive
“unsatisfied” icon.

The intent of the goal-conflict handling mechanism is to allow these “angry” goals to have
another chance to satisfy themselves. In the most usual case, the goal was originally satisfied
without taking any action, so it had not asserted its control over any slots. Now that the
conflicting agent has run, when the original agent runs again it is likely to encounter slot-
conflicts with the agent that caused the goal-conflict. The slot-conflict mechanism is more
specific, and gives the conflicting agents a chance to search for non-conflicting methods of
attaining their goals.

5.2.7 Determination

Each agent has a determination value between 0 and 1 that is used to resolve conflicts. The
metaphorical interpretation of determination is a measure of how much the agent wants to be
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successful, and how strongly it will “press its case” when coming into conflict with other
agents. An agent’s determination value can depend on a number of factors:

• the determination and type of its superior agent;

• how many siblings exist, and how many of them have failed;

• the determination scaling factor of the creating template.

The default determination value is 1. Agents that have subordinates pass the determination
down to them according to their type. and-type agents, that require all of their subordinates to
be successful, will give each subordinate the same determination as itself. or-type agents (which
include or and oneof agents) will split their determination among their subordinates.

More precisely, an OR-type agent’s determination is split up among those subordinates that
have not failed. When a subordinate does fail, the determinations of its remaining siblings are
recalculated.

The effect of this determination calculation in constraint-type domains is roughly to
implement local propagation of known states. A fully known state, in this interpretation, is a slot
that is being held to a value by an agent with a determination of 1. A constraint agent that
supervises several different methods will initially give each method a determination less than 1.
If a method tries to set a slot that has been locked (that is, set by a highly-determined agent) it
will fail. If all methods fail, the system tries to determine which agents have failed permanently
(for reasons other than conflict) and which still have a chance for succeeding if their activation
is increased. Then each of the latter class is given a chance to run with the full determination of
its parent.

Figure 5.11 illustrates a typical sequence of events that make up a propagation. When slot1

slot1

1) slot-1 value
set by agent
with high
determination

ONEOF

DO... DO...

3) fails due
to conflict
with slot-1

4) runs with
increased
determination

slot-2
5) changes the
value of another
slot

(= ...2) goal
becomes
unsatisfied

DO...

Figure 5.11: How agents implement local  propagation of constraints.

158 Agents



is set by an agent with a high determination (step 1), it causes the goal agent to become
unsatisfied (step 2). The goal agent activates its subordinates, and while the first one now fails
where previously it might have succeeded (step 3), the second one succeeds (step 4) because
it alters a different slot, which might result in further propagation. For a detailed example of how
this method of propagation works in practice, see section 5.3.5.

5.3 Interface

We have described how agents work but have not yet described how the user specifies
and controls them. The most important need for the interface is to allow the user to create and
remove top-level tasks. In addition the user needs to be able to exert some control over the
agent interpreter, such as cycling manually for debugging or controlling certain parameters that
affect the operation of the interpreter.

5.3.1 Top-Level Tasks

Top-level tasks are those specified directly by the user. They are used to create the initial
population of agents directly subordinate to the top agent. Top-level tasks can be created in a
couple of different ways: they can be explicitly specified by the user by using task objects,  or
they can be automatically generated as a result of user actions such as dragging, which allows
the user’s intentions to be represented to the agent system as tasks.

Explicit top-level tasks are specified by means of task objects (see Figure 5.10 for some
examples). Like other LiveWorld objects, these are created by cloning a prototype. The task is
entered as the value of the object. Task objects also incorporate a toggle button, which allows
them to be turned on or off, and icons that indicate the task’s status. Relative box paths (see
4.5.4.2) may be used in the specification of tasks, which makes it possible to incorporate task
objects into other objects which can then be used as prototypes for further objects (that is, the
task objects will be cloned along with their container objects, and the new tasks will properly
refer to the new object).

5.3.2 Auto-tasks and Locks

In order for DA to be used as an interactive constraint system, the user’s actions must
somehow be represented within the system. This is done by translating user actions such as
dragging, size changing, or setting the value of a slot into goal tasks.

Auto-tasks generally have the form:

(<== (v <slot>) <value>)

That is, they use one-way equality to specify that the slot is to hold a certain value. In
general auto-tasks persist only briefly, and are removed as soon as the user takes another
action. For example, during a drag, each time the user moves the mouse, two tasks are created,
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one to hold the x position at a constant value and similarly for the y position. During the next
move, these tasks are removed and new ones will take their place.

Lock tasks are similar in form to auto-tasks, in that they specify that a slot or slots are to be
held to constant value. Lock tasks, however, are created explicitly by sending a slot a :lock
command. This command simply creates the appropriate task and marks the slot with an icon.

5.3.3 The Agent Display

Agent activity may be monitored through an agent display that shows the status of every
active agent in the system. The graph uses LiveWorld’s hierarchical box display to convey the
hierarchical structure of the agent tree. This also allows the user to control the level of detail by
closing uninteresting boxes. Each agent shows its state by means of anthropomorphic icons
(see 5.2.2.2). When active, the agent display is dynamically updated as agents change state.

Figure 5.12: The agent display.

5.3.4 Controlling When and How Agents Run

The agent system is designed to run concurrently with user interaction. There are several
ways to do this, the best method being dependent upon on the type of problem being modeled.
One technique is to have the agent system driven by an anima. This is best for domains in
which the modeled system is basically independent of the user, such as an animal behavior
simulation. For constraint domains, where objects do not move except in response to the user,
a smoother interface is obtained by triggering the agent interpreter explicitly after each user
action.
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A number of user-settable switches are available to control the details of agent activation.
These switches appear in the agent control panel (see Figure 5.13).

• agents-on?
When this switch is on, agents will be activated automatically after every user action. That
is, after every user operation (such as dragging an object—each individual mouse
movement counts as an operation) the system will execute a macrocycle.

• auto-tasks?
This switch controls whether or not user actions get translated into auto-tasks.

• eager-locks?
This switch, when on, causes lock-type tasks (including auto-tasks) to execute early on in
each macrocycle. This makes constraint-solving faster by ensuring that all locked slots have
their value asserted early on. When the switch is off, lock agents must first become
unsatisfied before they can run, which leads to extra cycles of activity.

• hide-activity?
This switch controls when redisplay happens, but does not affect agent activity. When off,
redisplay happens after every millicycle, that is, after every agent operation. When on,
redisplay only happens after every macrocycle, that is, it happens only after the agent
system is quiescent with all satisfiable agents satisfied. Turning this switch on can make
constraint solving seem “smoother” at the cost of hiding the processing from the user.

The remaining switches in the control panel control how much information is displayed but
do not affect agent operation. show-auto-tasks?, for instance, control whether or not auto-
tasks are turned into visible task objects. These switches exist only for the sake of allowing the
user to save on both time and the consumption of screen real estate.

Figure 5.13: The agent control panel.

The control panel also contains methods that allow the user to manually initiate agent
cycles, an anima-based agent driver (run-tasks), the prototype for task objects, and other agent-
related miscellany.
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5.3.5 Agent Displays and Storyboards

The operation of a system of agents is a complex affair, with possibly hundreds of agents
acting and interacting. It is a challenge to present this activity to the user in a comprehensible
manner. Similar problems are present in any programming system, of course, but the
concurrency and distributed control model of DA makes following a sequence of action even
more difficult than it might be otherwise. The anthropomorphic metaphor underlying agents
suggests that narrative forms might be useful for the purpose of conveying the underlying
structure of activity (see section 3.4.3). Users of Dynamic Agents can generate storyboards,  or
comic-strip-like graphic representations, as one method of visualizing agent activity.

Storyboards have an advantage over other methods for representing temporal processes
(such as animation) in that a storyboard maps time into space, so that a number of different
moments of time may be seen together and compared visually. The comic-strip form, defined as
“juxtaposed images in deliberate sequence” (McCloud 1993), has a rich vocabulary for
expressing both temporal and spatial relations, at a variety of scales. Comics are also a
narrative form, meaning that they lend themselves to expressing the “vicissitudes of intention”
in Bruner’s phrase. In plainer terms, stories deal with characters with goals, their attempts to
realize those goals, and their success or failure—a format which nicely supports the activity of
agent systems.

The s toryboards automatical ly generated by DA only scratch the surface of  the
representational and narrative language available. A storyboard is composed of a sequence of
panels, each of which represents some segment of time in the evolution of the agent system.
Panels can contain a variety of relevant types of information, such as graphic snapshots of the
changing world that the agents are manipulating, textual description of the action (modeled after
comic-strip captions), or other representations of activity.

In general, there is too much going on in an agent system to put every agent and every
action in a storyboard. Thus the problem of storyboard generation requires selectivity in terms
of the information displayed, as well as the ability to translate events into suitable graphic
representations. The system must select which moments to translate into panels, and what
details of those moments are significant enough to take up space in the storyboard.

The strategy used to generate DA storyboards is to emphasize change and the agents
responsible for it. Each panel of a storyboard represents a moment in which the world changes,
and the panel includes both the results of that change (in the form of a snapshot of the relevant
parts of the world) and information about the agents responsible for the changes. There are too
many agents involved in a typical step to display them all, so further selectivity is called for. The
generator chooses agents from the top and bottom of the agent hierarchy that reflect the why
and how behind the actions.

This selectivity is in contrast with the more direct, lower-level representations used in the
full agent display (see 5.3.3). These take different approaches to illustrating the same thing,
namely agent activity. The agent graph display is intended to be a direct, transparent, and literal
picture of the agents, while the storyboard is intended to tell a story about agent activity. Thus
the displays are quite different, albeit with certain common features.

162 Agents



Fi
gu

re
 5

.1
4:

 A
 s

to
ry

bo
ar

d.

F
ig

u
re

 5
.1

4
 i

s 
a

n
 e

x
a

m
p

le
 o

f 
a

 f
a

ir
ly

 s
im

p
le

 s
to

ry
b

o
a

rd
,

il
lu

st
ra

ti
n

g 
a 

se
q

u
en

ce
 o

f 
ac

ti
o

n
 f

ro
m

 t
h

e 
gr

ap
h

ic
 t

em
p

er
at

u
re

c
o

n
v

e
rs

io
n

 p
ro

b
le

m
 (

se
e

 s
e

c
ti

o
n

 5
.2

.5
.1

).
 E

a
c

h
 p

a
n

e
l 

o
f 

a
st

or
yb

oa
rd

 r
ep

re
se

nt
s 

a 
m

aj
or

 c
yc

le
, 

a 
re

as
on

ab
le

 c
ho

ic
e 

gi
ve

n 
th

at
a 

m
aj

o
r 

cy
cl

e 
co

rr
es

p
o

n
d

s 
to

 a
 u

n
it

 o
f 

w
o

rl
d

 t
im

e.
 H

o
w

ev
er

,
st

or
yb

oa
rd

 p
an

el
 t

im
e 

do
es

 n
ot

 i
nc

lu
de

 a
 p

an
el

 f
or

 e
ve

ry
 m

aj
or

 c
yc

le
o

f 
th

e 
ag

en
t 

in
te

rp
re

te
r.

 O
n

ly
 m

aj
o

r 
cy

cl
es

 t
h

at
 a

ct
u

al
ly

 r
es

u
lt

 i
n

ch
an

ge
 t

o
 t

h
e 

w
o

rl
d

 a
re

 i
n

cl
u

d
ed

, 
o

r 
in

 o
th

er
 w

o
rd

s,
 m

aj
o

r 
cy

cl
es

th
at

 i
nc

lu
de

 n
o 

su
cc

es
sf

ul
 e

xe
cu

ti
on

s 
of

 w
or

ke
r 

ag
en

ts
 a

re
 e

xc
lu

de
d.

T
h

is
 i

s 
to

 c
o

n
se

rv
e 

sp
ac

e,
 t

o
 k

ee
p

 t
h

e 
n

ar
ra

ti
ve

 i
n

te
re

st
in

g 
(b

y
o

m
it

ti
n

g 
p

an
el

s 
w

h
er

e 
n

o
th

in
g 

vi
si

b
le

 h
ap

p
en

s)
 a

n
d

 t
o

 l
im

it
 t

h
e

d
is

p
la

y 
to

 t
h

e 
m

o
st

 s
al

ie
n

t 
in

fo
rm

at
io

n
. 

Fo
r 

ex
am

p
le

, 
th

e 
sa

m
p

le
st

o
ry

b
o

ar
d

 s
h

o
w

n
 h

as
 6

 p
an

el
s,

 b
u

t 
w

o
u

ld
 h

av
e 

1
4

 i
f 

al
l 

m
aj

o
r

cy
cl

es
 w

er
e 

in
cl

ud
ed

. T
he

 o
m

itt
ed

 m
aj

or
 c

yc
le

s 
in

cl
ud

e 
ag

en
t a

ct
iv

ity
,

bu
t i

n 
th

es
e 

cy
cl

es
 a

ll 
ag

en
ts

 fa
il 

an
d 

so
 ta

ke
 n

o 
ac

tio
n 

in
 th

e 
w

or
ld

.

Th
is

 p
ol

ic
y 

ha
s 

in
te

re
st

in
g 

na
rr

at
iv

e 
co

ns
eq

ue
nc

es
. 

A
s 

it
 s

ta
nd

s,
ea

ch
 p

an
el

 o
f 

th
e 

st
o

ry
b

o
ar

d
 r

ep
re

se
n

ts
 a

 m
o

m
en

t 
o

f 
ch

an
ge

 i
n

 t
h

e
w

o
rl

d
. 

If
 t

h
e 

ex
cl

u
d

ed
 s

te
p

s 
w

er
e 

in
cl

u
d

ed
, 

th
e 

st
o

ry
 b

ei
n

g 
to

ld
w

ou
ld

 b
e 

m
or

e 
“i

nt
er

na
l”

, 
re

fl
ec

ti
ng

 n
ot

 j
us

t 
th

e 
ac

ti
on

s 
of

 t
he

 a
ge

nt
s,

bu
t 

th
ei

r 
in

te
rn

al
 s

ta
rt

s,
 p

au
se

s,
 p

ro
po

sa
ls

, 
an

d 
fa

il
ur

es
. 

Th
is

 l
ev

el
 o

f
d

et
ai

l 
m

ig
h

t 
b

e 
o

f 
va

lu
e 

u
n

d
er

 c
er

ta
in

 c
ir

cu
m

st
an

ce
s,

 b
u

t 
fo

r 
th

e
p

re
se

n
t 

p
u

rp
o

se
s,

 t
h

e 
p

re
se

n
ta

ti
o

n
s 

o
f 

su
ch

 i
n

te
rn

al
 d

et
ai

l 
w

il
l 

b
e

m
in

im
iz

ed
 (

as
 i

m
p

le
m

en
te

d
, 

th
e 

st
o

ry
b

o
ar

d
 g

en
er

at
o

r 
h

as
 u

se
r-

se
tta

bl
e 

sw
itc

he
s 

th
at

 c
on

tr
ol

 th
e 

le
ve

l o
f d

et
ai

l p
re

se
nt

ed
).

Ea
ch

 p
an

el
 i

n
cl

u
d

es
 a

 s
na

ps
ho

t o
f 

th
e

 c
h

a
n

g
e

d
 p

a
rt

s 
o

f 
th

e
w

or
ld

, 
w

hi
ch

 m
ay

 i
nc

lu
de

 b
ot

h 
ch

an
ge

s 
to

 g
ra

ph
ic

 a
ct

or
s 

or
 c

ha
ng

es
to

 t
h

e 
va

lu
es

 o
f 

o
th

er
 b

o
xe

s.
 S

in
ce

 t
h

e 
p

ic
tu

re
 i

s 
n

o
t 

en
o

u
gh

 t
o

co
nv

ey
 t

he
 r

ea
so

ns
 a

nd
 s

ou
rc

es
 o

f 
ch

an
ge

, 
pa

ne
ls

 m
us

t 
al

so
 i

nc
lu

de
so

m
e 

in
fo

rm
at

io
n

 a
b

o
u

t 
th

e 
ag

en
ts

 r
es

p
o

n
si

b
le

 f
o

r 
th

e 
ac

ti
o

n
 i

n
 t

h
e

pa
ne

l. 
Li

st
in

g 
al

l a
ge

nt
s 

in
vo

lv
ed

 in
 a

 s
in

gl
e 

cy
cl

e 
w

ou
ld

 b
e 

to
o 

m
uc

h
d

et
ai

l.
 T

h
e 

sy
st

em
 s

el
ec

ts
 t

h
e 

ag
en

ts
 t

h
at

 b
es

t 
co

n
ve

y 
th

e 
ho

w
 a

n
d

th
e

 w
hy

 b
eh

in
d

 t
h

e 
ac

ti
o

n
 o

f 
th

e 
p

an
el

. 
In

 p
ra

ct
ic

e,
 t

h
is

 m
ea

n
s

in
cl

u
d

in
g 

th
e 

w
o

rk
er

 a
ge

n
ts

 t
h

at
 a

ct
u

al
ly

 p
er

fo
rm

ed
 t

h
e 

ac
ti

o
n

 (
th

e
h

o
w

) 
an

d
 t

h
e 

to
p

-l
ev

el
 a

ge
n

ts
 t

h
at

 t
h

e 
w

o
rk

er
s 

ar
e 

w
o

rk
in

g 
fo

r,
w

h
ic

h
 c

o
n

ve
y 

th
e 

p
u

rp
o

se
 (

th
e 

w
h

y)
 o

f 
th

e 
ac

ti
o

n
. 

T
h

e 
ef

fe
ct

 i
s 

to
in

cl
u

d
e 

b
o

th
 t

h
e 

u
lt

im
at

e 
go

al
 o

r 
p

u
rp

o
se

 o
f 

th
e 

ac
ti

o
n

 a
n

d
 t

h
e

co
nc

re
te

 p
hy

si
ca

l 
ev

en
ts

 t
ha

t 
w

er
e 

ta
ke

n 
to

 r
ea

li
ze

 i
t,

 w
hi

le
 o

m
it

ti
ng

th
e 

in
te

rm
ed

ia
te

 s
ta

ge
s 

of
 c

om
pu

ta
tio

n.

A
ls

o
 i

n
cl

u
d

ed
 a

re
 a

n
y 

to
p

-l
ev

el
 a

ge
n

ts
 t

h
at

 h
av

e 
ex

p
er

ie
n

ce
d

 a
ch

an
ge

 i
n 

th
ei

r 
st

at
e 

as
 a

 r
es

ul
t 

of
 t

he
 a

ct
io

n 
of

 t
he

 m
aj

or
 c

yc
le

, 
ev

en
if

 t
h

ey
 t

h
em

se
lv

es
 h

av
e 

n
o

t 
ta

ke
n

 a
ct

io
n

. 
In

 p
ra

ct
ic

e 
th

is
 m

ea
n

s
ag

en
ts

 t
h

at
 w

er
e 

sa
ti

sf
ie

d
 b

u
t 

h
av

e 
b

ec
o

m
e 

u
n

sa
ti

sf
ie

d
 d

u
e 

to
 t

h
e

A
ge

n
ts

1
6

3



action of another agent (that is, there has been a goal conflict; see section 5.2.6.2). The
narrative rationale for including these is to illustrate the further effects of the panel’s action,
beyond the immediate physical effects. Generally such agents will become the active agents of
the next panel, so this is also a device for linking the panels of the storyboard together.

Panels illustrate changes in agent state by using a variant of the usual agent icon notation.
Each agent that is shown in a panel is shown with a pair of icon sets, separated with an arrow,
illustrating the state of the agent before and after the action of the panel. Typically this
information shows that some agents went from being satisfied to unsatisfied, or the reverse.

Figure 5.15: The first panel of the storyboard.

There are six panels in this example storyboard, which is a recording of activity in the
constraint system shown in Figure 5.10. The action begins just after the user has made a
change (by moving the position of the first bar) but before the agents have had a chance to
respond to the change. This state is shown in panel-1. The “changes” shown reflect the first
activation of the various top-level task agents involved in this system. All the agents except a7
have managed to satisfy themselves. a7’s task is to keep the rectangle slots of bar consistent.
Since bar/xpos has changed, a7 is no longer consistent.

Note that a4 is satisfied and has succeeded in panel 1, indicating not only that the value of
bar/bottom is set at 200 (at the level of the baseline) but also that, since a4 has run, it will be
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attempting to hold
t h e  s l o t  a t  t h a t
value throughout
the computat ion.
T h i s  h a s  c o n s e -
q u e n c e s  f o r  t h e
next panel.

Figure 5.16: Panel 2.

I n  t h e  n e x t
p a n e l ,  a7 i s
activated and suc-
ceeds in becoming
satisfied. By open-
ing up the box rep-
resent ing a7,  w e
can see that it was
the worker  agent
a29  t ha t  b rough t
this about by alter-
ing the ysiz slot of
bar. This omits much of the internal agent activity involved in accomplishing the end state, such
as an attempt to satisfy a7 by  se t t ing  bar/bottom ins tead of  bar/ysiz . This attempt failed
because it came into conflict with the previously successful (and more determined) agent a4.

a29 ’s action has
satisfied a7 b u t  h a s
also caused a6,  who
relates the vert ical
s i z e  o f  bar t o  t h e
v a l u e  o f  t h e
Fahrenheit s l o t ,  t o
become unsatisfied.

Figure 5.17: Panel 3.

In panel-3 a simi-
l a r  p a t t e r n  i s  r e -
peated. a6 satisfied
itself by changing the
value of Fahrenheit,
causing a11 ,  which
relates the values of
Fahrenheit a n d
centigrade,  t o  b e -
come unsatisfied.

Since Fahrenheit is not a graphic slot, the system cannot illustrate the action of this panel
with a snapshot of the actors involved. Instead, it selects the appropriate boxes and their
surrounding context.
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Figure 5.18: The final  panel of the storyboard.

This pattern of propagating goal conflicts and resolutions continues in successive panels. In
panel-4,  a11  sets  centigrade to its correct value. In panel-5, the wave of change propagates
back into the graphic part of the world, causing a change in bar-1’s vertical size. Finally, in
panel-6, bar-1’s vertical position is adjusted without violating any further constraints, so the
agents finally become quiescent, and the story is complete.

5.4 Additional Examples of Agent Systems

Some additional examples of agent based systems are presented here. The first two are a
game and a simulation that use the simpler forms of agents, while the rest are built using
Dynamic Agents.
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5.4.1 A Video Game

Figure 5.19: A video game.

This simple video game was constructed by a novice user (with assistance) from sets of
pre-built components. The components in this case come from a library designed for
videogames which includes behaviors such as motion, shooting and collision detection, agents
that implement keyboard commands, and the score actors. In this game, two players attempt to
drive each other backwards by shooting fruit at each other. Each player controls a turtle from
the keyboard. Here one turtle is open to reveal its agents, which are mostly if-then agents, a
variant of goal agents (see section 5.1.2).

The left-key-agent is built out of a general purpose key agent, so the constructor needs to
fill in only the key and the action, which is performed repeatedly whenever the key is held
down. In this case the left-arrow key results in the turtle moving left. Another agent, if-touch,
detects when a player is hit by an opponent and moves backwards.
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5.4.2 A Physical Simulation

Figure 5.20: An orbital simulator.

Physical forces can be modeled by simple agents. This example shows a simulation of a
spaceship orbiting a planet. It was assembled from a kit of parts that provide basic physical
simulation capabilities, such as velocity and acceleration. A simple agent, move, provides the
ship with motion by constantly incrementing its position by two velocity variables. The planet
exerts its force on the ship through another simple agent, gravity. Because the gravity agent is
part of the planet, cloning the planet creates another gravity source which will have an
immediate effect on the ship. The user can control the ship’s bearing and acceleration (with
sound effects) from the keyboard, which is monitored by other agents (i.e. left-key) as in the
video game example.

This example illustrates how simple agents can be used to simulate physical systems, while
giving the user direct tangible access to the variables (slots) and forces (agents) involved.
Simulations like this admit to a variety of different modes of use: as a game in which the object is
to put the spaceship in a stable orbit around the planet without colliding with it or shooting off
the screen; as a vehicle for experimentation (say, by observing the effects of different masses,
gravitational constants, or laws of gravity); or as both an example and kit of parts for building
further simulations.
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5.4.3 A More Complex Graphic Constraint Problem

Figure 5.21: A complex constraint example.

This example shows a more complex constraint problem, involving the kinds of tasks found
in realistic graphic design problems. The scenario is based on one presented in (MacNeil 1989),
which involves designing a series of labels for a line of pesticides. Here we see an example of a
label for repelling penguins. This system involves about 22 top-level tasks and typically
generates around 100 agents. The top tasks specify relations among the position and size of
the four graphic elements in the design.

For example, these user tasks:

constrain the graphic (pict) to be square, and to have its left side abutting the world
“Penguin” (pestname). Other tasks include rectangle constraints for all the objects, and text-
block constraints that ensure that the text actors are exactly large enough to contain their text
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( these ensure that if  the user should alter the text, the objects will adjust themselves
accordingly). Still others specify the left and right edge alignments, hold the bar’s vertical height
to be 1/3 the height of the main text, and ensure that the two words maintain the relative scale
of their font size.

This example illustrates a well-known problem with graphic constraint systems. A typical
constrained diagram involves far more individual constraints than can be easily specified by
hand. Dynamic Agents ameliorates this problem a bit by allowing abstract constraints, such as
within, so that fewer individual constraints have to be specified. Still, the task can be daunting.
One possible solution is to have agents that can create constraint agents by automatically
inferring them from user examples, as in (Kurlander and Feiner 1991).

5.4.4 A Creature in Conflict

This is a fairly simple behavioral system, which illustrates arbitration between competing
behaviors. Task-1 specifies that the turtle should attempt to get to the goal, while task specifies
that the turtle is to avoid overlaps with objects. These two goals are contradictory (because
getting to the goal requires overlapping with it), but of even greater concern is the barrier
obstacle which lies in between the turtle and its goal.

This example indicates the use of determination in animal behavior worlds. When the two
tasks specify conflicting actions, the winner is the agent with the higher determination. In this
case, determination can be controlled by the user through annotations to the user task objects.
I f  the get-to task has higher determination, the turtle will bravely penetrate the unpleasant
obstacle on its way to the goal, while if the avoid-overlaps task is stronger, as in the figure, it
will end up going around it. This illustrates how determination may be set by the user as
annotations to tasks.

Figure 5.22: A conflicted creature.

The get-to task and template are described in section 5.2.5.3. Avoid-overlaps is only
satisfied when there is no overlap between its ?creature argument and any other actor. Its
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action is a script that backs off from the overlap, then turns randomly and moves forward. The
effect of this is to move in a rather groping fashion around the edge of the obstacle.

(deftemplate (avoid-overlaps ?creature)
  :satisfied (no? (ask ?creature :overlap-sensor))
  :action `(repeat
            (script
             (do (ask ?creature :forward -15))
             (do (ask ?creature :turn-right (arand 0 180)))
             (do (ask ?creature :forward 15)))))

5.4.5 An Ant

This is a slightly more complicated behavioral simulation, based on the realistic ant
simulation of Agar (Travers 1988). It illustrates some other methods for organizing multiple
goals. In this case, the goals are controlled by special tasks that sequence them. script and try
tasks specify a series of subtasks to be performed in order. This is a different style than in the
previous example, where both agents were active concurrently and conflict was resolved at the
slot level using determination.

Figure 5.23: An ant..

The top-level be-an-ant task arranges three subgoals in a strict priority. The latter ones will
not be processed until the earlier ones are satisfied. The use of and-script rather than script
means that if the early tasks in the sequence become unsatisfied (for instance, if find-food
moves and thereby makes avoid-walls become unsatisfied) then control will revert to the earlier
goal (see section 5.2.4.1). A plain script goal could cause the ant to get stuck in its find-food
subtask and wander off the screen.

(deftemplate (be-an-ant ?a)
  :action '(repeat
            (and-script
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             (eat ?a)
             (avoid-walls ?a)
             (find-food ?a))))

This somewhat oddly-structured eat agent is satisfied when the ant is not on top of any
food, and will eat any such food until it is gone. The actual eating is accomplished by a method
named eat.

(deftemplate (eat ?a)
  :satisfied (no? (ask ?a :on-food))
  :action '(do (ask ?a :eat)))

An avoid-walls agent will be satisfied when the ant is not touching any walls, and backs
away from walls when necessary.

(deftemplate (avoid-walls ?a)
  :satisfied (no? (ask ?a :wall-sensor))
  :action '(do (ask ?a :forward -10)
               (ask ?a :turn-right (arand 180 30))))

The following find-food agent is satisfied when the ant i s touching food19. Note the duality

between script and try.  Try is useful for precondition-based subtasks that are likely to fail,
script (and and-script) works well with goal-based tasks. Note that the goal-tasks like avoid-
walls could easily be expressed in precondition/action form rather than as a goal. Unfortunately
it is hard to mix these two types of task underneath one manager.

(deftemplate (find-food ?a)
  :satisfied (yes? (ask ?a :on-food))
  :action '(repeat
            (try
             (find-food-forward ?a)
             (find-food-left ?a)
             (find-food-right ?a)
             (find-food-random ?a))))

(deftemplate (find-food-forward ?a)
  :precondition '(and (yes? (ask ?a :right-eye))
                      (yes? (ask ?a :left-eye)))
  :action '(do (ask ?a :forward 10)))

(deftemplate (find-food-left ?a)
  :precondition '(yes? (ask ?a :left-eye))
  :action '(do (ask ?a :turn-left 10)))

(deftemplate (find-food-right ?a)
  :precondition '(yes? (ask ?a :right-eye))
  :action '(do (ask ?a :turn-right 10)))

(deftemplate (find-food-random ?a)

19Note that this means that the and-script agent that manages the be-an-ant goal can never itself be
satisfied, because it contains two contradictory terms. This is permissible, and it means that the repeat
around the and-script is not strictly necessary.
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  :action '(do
             (ask ?a :turn-left (arand 0 90))
             (ask ?a :forward 20)))

5.4.6 A Recursive Function

While the DA system deliberately de-emphasizes computation in the literal sense, it is still
capable of performing the recursive computations that are the specialty of procedural and
functional languages. Because DA tasks cannot return values, making this work requires a bit of
trickery, which is to use LiveWorld’s hierarchy to store intermediate values in temporary
boxes.

Figure 5.24: Computing factorial with agents.

(deftemplate (factorial ?x ?x-fact)
  :name fact-end-test
  :precondition '(= ?x 1)
  :action '(<== ?x-fact 1))

(deftemplate (factorial ?x ?x-fact)
  :name fact-recurse
  :precondition ‘(> ?x 1)
  :action (let ((temp (getb ?x-fact :iresult)))
            `(all (factorial (- ?x 1)  (v ,temp))
                  (<== ?x-fact (* ?x (v ,temp))))))

Two templates define agents that implement the end-test and recursion steps of the
standard recursive factorial definition. The recursion step involves creating an intermediate box,
as an annotation of the final result, and posting two subtasks: one to compute the intermediate
result that will be stored in the new box; and another to relate this intermediate result to the
final result. The user task specifies that anytime the value of n changes, fact-n will be set to the
factorial of the new value, with intermediate result boxes being created as necessary. Note that
the tasks here involve one-way equality (<==) rather than the equality relations found in the
constraint examples. This means that changing fact-n will just result in a failed and unsatisfied
task, rather than an attempt to compute the (generally undefined) inverse of factorial.
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5.4.7 A Scripted Animation

When young users first encounter a system that allows them to create moving objects, their
first impulse is often to create a story based on simple movements: “Sam the elephant leaves his
house, goes to the park, then goes to school, then goes back home”. Unfortunately systems
that are purely reactive make this simple task difficult. In DA, the script construct allows this
task to be done naturally.

Figure 5.25: A scripted journey.

(deftemplate (journey ?creature ?itinerary)
  :action `(script ,@(mapcar #'(lambda (place)
                                  `(get-to ?creature ,place))
                             ?itinerary)))

This template for journey tasks uses a Lisp macro to allow the task to take a variable-length
itinerary, which is converted into a script task with the appropriate number of arguments.
Because it uses get-to tasks (see above), it works even when the destinations are in motion—
the train will simply re-orient as necessary. The effect is that the train will seek its goal, even if it
is moving, but as soon as it touches the goal, the train will go on to seek the next goal in its
script.
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5.4.8 BUILDER in the Blocks World

Figure 5.26: Stacking blocks.

The sole user task in this world is play-with-blocks, which has two subordinates, build
and wreck. The all construct specifies that they should both be activated at once.

(deftemplate (play-with-blocks ?a)
  :action `(all (build ?a) (wreck ?a)))

The add  task is the basic block-building script, which serially finds a block, gets it, finds the
top of the tower, and puts the block there. Build simply repeats the add  operation until a block
intersects the headroom object.

(deftemplate (build ?a)
  :satisfied (yes? (ask #^/cast/headroom :block-sensor))
  :action '(repeat (add ?a)))

(deftemplate (add ?a)
  :action `(script (find-free-block ?a)
                   (get-obj ?a)
                   (find-tower-top ?a)
                   (put-obj ?a)))

The find-free-block and find-tower-top agents call up behaviors written in the lower-level
language. These functions use the marker as a kind of sensor, based on the idea of a visual
routine (Ullman 1984). For instance, find-free-block moves the marker to the left hand side of
the world, just above the table, and moves it to the right until it encounters a block. If so, it
moves up until it detects either empty space (in which case it returns the value of the block it
was just on) or another block (in which case it continues its leftward search). These operations
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could have been written in DA, but have been implemented as methods in the underlying
language for speed.

(deftemplate (find-free-block ?a)
  :action '(do (ask (ask ?a :marker) :findfree)))

(deftemplate (find-tower-top ?a)
  :action '(do (ask (ask ?a :marker) :findtop)))

Get-obj and put-obj make use of the marker object to find their argument (the object to get
or the place to put it). So get-obj first makes the hand  get-to to the marker, then activates a
grasp task, which calls an underlying method that effectively grabs an underlying block object
(grabbing is in fact implemented by a separate simple agent, which continually moves the
grabbed block to the location of the hand as it moves).

(deftemplate (get-obj ?a)
  :action `(script (get-to ?a (ask ?a :marker))
                   (grasp ?a)))

(deftemplate (put-obj ?a)
  :action `(script (get-to ?a (ask ?a :marker))
                   (release ?a)))

(deftemplate (grasp ?a)
  :satisfied (ask ?a :grasped-object)
  :action '(do (ask ?a :grasp)))

(deftemplate (release ?a)
  :satisfied (null (ask ?a :grasped-object))
  :action '(do (ask ?a :release)))

Wreck works by finding the tower top, moving the hand to it, and systematically scattering
the blocks. Since wreck is activated concurrently with build,  we need to give i t  a lower
determination so that build has a chance to work. Once build is satisfied (which happens when
the tower is tall enough), then it will no longer attempt to run and wreck will have a chance. In
fact, since wreck is only inhibited when there is a slot that both build and wreck are attempting
to change, wreck might occasionally seize control of the hand while build is not moving it (for
instance, when it is moving the marker). This implementation of unconscious destructive urges
is considered a feature. If stricter control is necessary, script can be used in play-with-blocks
to ensure that wreck is dormant until build is done.

(deftemplate (wreck ?a)
  :determination .9
  :action ...)

5.5 Discussion

The design of the dynamic agent system and its predecessors attempts to weave together a
number of different ideas and influences:

• the deliberate use of anthropomorphic metaphors;
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• the power and generality of procedural programming languages;

• the responsiveness of behavioral control networks;

• the declarative power of constraint systems.

The developmental  his tory of  the agent  systems began with the idea of  loosely
anthropomorphic agents. I built several behavioral control systems using them, and then
attempted to integrate the agent idea with a more general-purpose language. This involved
thinking about agents driven by goals rather than by situations, and led to the realization that
agents could be a good basis for constraint solving systems.

5.5.1 DA as a Procedural Language

DA provides equivalents to most of the basic control and modularity constructs found in
procedural languages: sequencing, conditionals, iteration, abstraction, and recursion. These
appear in different forms than they do in procedural languages, however. Iteration, for
example, is to some extent implicit in the concept of an agent. Therefore rather than having an
explicit iteration construct, DA provides a construct, repeat, which does not generate a loop in
the way imperative loop constructs do but instead influences the behavior of the iterative agent
interpreter.

It is worth clarifying the conceptual relationship between DA agents and procedures.
Agents are clearly similar to procedures (or more precisely, procedure invocations): both
perform tasks, both are capable of being anthropomorphized; agents can invoke other agents
and thus create a hierarchy similar to a tree of procedure invocations. However, there are
important differences. Agents can be running concurrently, whereas only one thread of a
procedure tree can be active at any one time. Agents are persistent, and are driven iteratively
and thus capable of autonomous activity. An agent’s supervisor can activate or deactivate it,
but while active it is in charge of its own operation. When an agent has a goal, this means that it
is in effect constantly monitoring the goal and taking action to achieve it when necessary.

One notable feature of procedural languages that is missing from DA is the notion of the
value of an expression. In DA, tasks do not have values, and all computation is strictly by
means of side-effects. The choice to omit values was made to emphasize the notion of an agent
as something that performs an action, rather than as something that computes a value. In part
this was a reaction (perhaps an over-reaction) to the emphasis on value computation found in
functional or mostly-functional languages, as well as some attempts to model agents in a
functional style (see section 3.4.2.4) which did not, to my mind, capture agency adequately.
Another reason for de-emphasizing the return of values was the accessibility of Lisp substrate
for doing actual computation when necessary.

Programs that normally work by returning values can be transformed into equivalent
programs that work via side-effects, by creating temporary boxes to hold the intermediate
values (see the factorial example above). It might be possible to integrate value-returning back
into the language. It did not fit into earlier agent systems, in which agents were totally
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independent, but since DA preserves a calling hierarchy the idea that a called agent could
return a value would be more natural.

5.5.2 DA as a Behavioral Control System

As a behavioral control system, DA offers capabilities roughly equivalent to those of its
predecessor Agar, Brook’s subsumption architecture (Brooks 1986), Pengi (Agre and Chapman
1987) or teleo-reactive systems (Nilsson 1994). Agents can implement a set of responses to
conditions in the world that implement adaptive behavior. Unlike these systems (except for
Agar), DA uses a hierarchy of agents for control. This makes writing agents simpler since sets
of  behaviors  can be t reated as  a  group ( for  ins tance,  see how get-to i s  u s e d  a s  a
“prepackaged” behavior in several of the examples above), and it increases the salability of the
system. Another advantage of DA in comparison to other behavioral control systems is built in
structures for implementing sequences.

DA’s method of handling inter-agent conflict is somewhat different than these other
systems, most of which require hardwired conflict links or other methods of arbitration, if they
treat conflict at all. DA detects conflicts at the last possible moment, that is, only if agents
actually attempt to simultaneously take incompatible actions (see section 5.2.6). When a conflict
is  detected, arbitrat ion is  performed based on the determination of the agents.  The
determination of agents is usually fixed, although since it is specified by a regular slot it is
possible to alter its value by other agents (say, a hunger-simulating agent that would slowly
increase the determination of a food-finding agent).

More sophisticated methods of handling determination are possible within the DA
framework. One possibility would be to use a system similar to Maes’ Action Selection algorithm
(AS), which spreads activation energy (more or less equivalent to determination) between
behavior modules based both on current goals and the state of the world (Maes 1990). This
algorithm provides a flexible way for modules to string themselves into sequences of action in
an emergent fashion. There are some differences in style and goals between this work and DA
that make this complicated.

First of all, AS is explicitly non-hierarchical. There are no managers or “bureaucratic
modules”; instead all modules exist in an unlayered network, connected by successor,
predecessor, and conflict links. To generate these links, AS modules must specify in detail both
their preconditions and the expected results of their actions, expressed as lists of conditions.
DA is somewhat more flexible, allowing agents to be controlled by either preconditions or goals
(expected results). DA does no backwards chaining through the precondition, relying instead
on supervisory agents to order goals appropriately. Only one AS module can run at any one
time, so all are essentially in competition with one another to run, which contrasts with DA’s
emphasis on concurrency.

Whereas AS deliberately avoids pre-specified sequences of behavior, preferring them to
emerge from the interaction of the available behavior modules, the world, and the goals of the
creature, being able to specify sequences explicitly is a design goal of DA. This reflects a deeper
difference in the purpose of the two schemes. AS is deliberately done in an emergent or bottom-
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up style. This is certainly a worthwhile scientific goal. However, emergent systems are
notoriously difficult to understand, since their knowledge and activity is concealed as a
collection of opaque numerical values. This makes them less suitable as a vehicle for
encouraging constructionist novice programming, which is top-down (in some sense) by
nature.

Of course DA must make use of numerical values too, as a last-resort mechanism for
resolving conflicts. In any distributed control system, such values act as a l ingua franca fo r
making comparisons between agents. However, the semantics of such values are difficult to
define and their opacity makes systems that use them hard to understand. One alternative is to
use symbolic statements of preference: that is, explicitly state that behavior a has priority over
behavior b, rather than hiding this fact behind numbers. This technique has been used in the
Pengi and Sonja systems (Agre and Chapman 1987) (Chapman 1991). Symbolic Preferences are
easier to understand, but must be specified explicitly for every new behavior. Another
advantage they have is that they are easily specified by the user using a conflict display like the
one described in section 5.1.1.3.

5.5.3 DA as a Constraint System

DA has been shown to be capable of performing some of the functions of a constraint
system. Tasks can be declarations of relationship, and templates can be written that generate
agents that enforce these relationships. Since templates can take arbitrary action, it is difficult to
characterize exactly how powerful the constraint system is. The ability to match task patterns
and generate new tasks is similar to the equational-rewriting techniques of Bertrand (Leler
1988). This ability can be used to implement the simple constraint-solving technique of local
propagation of known states, as seen in the temperature conversion example and elsewhere
(see section 5.2.7). It can also be used to implement special-purpose methods for solving
constraints that cannot be performed by local propagation. For instance, a constraint of the
form (= a (* b b)) cannot be solved for b by local propagation, but DA allows templates to be
added that know how to compute square roots in this particular case. Inequalities are another
instance where DA’s agent-based approach works well. While they cannot be solved in general,
special-purpose methods can be created to handle them in ways appropriate to the domain.

The main problem with DA is that i ts control system is l imited and often hard to
understand. Here is an example that illustrates some of these limits. The world below contains
two rectangle tasks as well as the within task that is visible (see section 5.2.5.2). This latter task
specifies that the solid rectangle is to be contained within the hollow rectangle. The effect is to
allow the user to drag either object around, and have the other one adjust its position or size
accordingly.
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Figure 5.27: The within world, in working and anomalous states.

However, if the user should increase the size of the inner solid rectangle, the system fails to
come to a stable state (that is, a state in which all top-level tasks are satisfied). Instead, both
objects begin traveling to the left until they are off the stage!

The reason for this behavior is a limitation in the way conflicts are detected and handled. A
worker agent’s action will be suppressed (that is, fail) only if there is a slot conflict involved—
that is, if it attempts to alter a slot that another more determined agent has laid claim to. As it
turns out, in the situation above there is a conflict but it is a goal conflict: agents interfere with
each other’s goals, but alter mutually exclusive sets of slots (see section 5.2.6). Therefore,
rather than picking a better way of resolving the conflict, the agents just alternate their actions
ad infinitum.

There are several possible solutions to this problem: one is to support undoing an action. If
an agent’s action could be withdrawn if it was found to cause a goal conflict with a stronger
agent, then it could be undone. Another, perhaps more general technique is to employ another
type of manager agent that is separate from the main hierarchy of agents and monitors it for
looping behavior, and can intervene if necessary (this idea derives from the Society of Mind
concept of a B-Brain (Minsky 1987)). In fact, these ideas were explored in various early
versions of DA, but rejected as too difficult to fit into the agent model. The current model is a
compromise between power and simplicity.
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5.5.3.1 Related Work

There is a large body of work on constraint-based problem solving, and a smaller one on
interactive graphic systems based on constraints, including the classic systems Sketchpad
(Sutherland 1963) and ThingLab (Borning 1979) as well as more recent efforts such as Juno-2
(Heydon and Nelson 1994). Garnet (Myers, Giuse et al. 1994), while not providing true
constraints (it has so-called “one-way constraints”, which are more like spreadsheet cells or
LiveWorld’s self-computing slots) is of interest because it also explores prototype-based object
systems in the context of interaction. ThingLab, in particular, is oriented towards creating
dynamic simulations as well as static drawings.

(Ishizaki 1996) applied agents to problems of graphic design. The emphasis of this work
was different, however. Rather than solving static constraints, agents were employed to create
dynamic designs, or to endow graphic elements with responsive behavior. For instance, in a
Dynamic News Display, an agent would be in charge of creating and placing a headline when a
news story arrived, based on its contents and the current display. The system (called Model of
Dynamic Design) had three levels of control, agents, strategies, and actions, which correspond
roughly to top-level agents, manager agents, and worker agents in DA. However, there is no
concept of conflict resolution or constraint solving in the model.

5.5.4 DA and Anthropomorphism

DA agents are intended to be understood through animate metaphors. Recall that for our
purposes animacy was defined by three key properties:

• autonomy (the ability to initiate action);

• purposefulness (being directed towards a goal);

• reactivity (the ability to respond to changes in the environment).

These qualities are woven into the way DA agents work. An agent is continually clocked
(subject to being activated by its superior), which allows it to take action whenever it needs to.
It should be emphasized that the clocking process in DA and the other agents systems exists in
some sense at a level beneath the animate metaphor, in the sense that in a person, a heartbeat
is something that is necessary for action but is not normally considered a factor in the process
leading to action. The clocking process (based on animas in the simpler agent systems) does, in
fact, serve to give the agents that are clocked the equivalent of both an energy source and a
metronomic pulse that can be harnessed to drive action when necessary. This clocking allows
an agent to appear autonomous by initiating action at any time. It is equally responsible for
a l lowing agents  to  be  respons ive  to  changing  condi t ions  ( indeed,  au tonomy and
responsiveness are really two sides of the same coin (see section 3.4.1). Purposefulness is
realized by allowing agents to be controlled by goal-like tasks.

The anthropomorphic icons used in agent boxes serve to indicate, in a limited way, the
state of the agents vis-a-vis their goals and actions. Two different displays were created that
make use of these icons. The agent graph shows all the agents in the system in their hierarchical
structure, and updates them as the system runs through its cycles. It can be used to watch the
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agents states change in real time. The other form of display is the storyboard, which is
generated after the fact and selectively presents the dynamics of the agent system in a static
narrative form.

5.5.4.1 Creation of Agents

One aspect of the way the agent system works seems to violate the anthropomorphic
metaphor, or at least strain it. This is the manner in which new agents come into being. When a
template specifies that new tasks are to be created, new agents are also created to embody and
supervise the tasks. However, this means that agents are constantly coming into being (and are
discarded rather unceremoniously as garbage when they have outlived their usefulness). This
is a rather callow way to treat anthropomorphic beings! Of course, the ease of creating agents
is also one of the chief features of DA, so this problem is fundamental in some sense.

One way to fix this is simply to change the metaphor a bit, so that agents are recruited
instead of created. In this variant of the metaphor, tasks are created, but agents are drawn from
a pool of pre-existing agents to deal with the tasks as they are needed. When the task is
completed, the agent (and any subordinates it might have recruited) are returned to the pool.

While this may make agents appear more like real living entities, it complicates the
implementation and its presentation. Now there is a new entity, the pool, and there will be the
problem of how many agents it should be staffed with, what happens when it runs out, and so
forth.

In both variants of the metaphor, an agent is a general-purpose worker who can perform
any task. The knowledge of how to perform these tasks come from templates (which might be
metaphorically presented as making up an “employee’s manual”, were we to extend the
corporate metaphor a bit more). Another possible modification to the metaphor would be to
conflate agents and templates. In this variant, an agent would be specialized for particular tasks,
and emerge from idleness to deal with them as necessary. The problem with this is that there
may be a need for multiple agents of the same type, so there is still the problem of agent
creation, which now can’t even be handled by having a pool of general purpose agents (see the
next section for further discussion). Perhaps agents could train other “new hire” agents in their
expertise.

All this shows that the details of the mapping between the animate and computational
domains is not at all straightforward. In this case the ease with which software entities come
into being, which is a principle source of the power of any programming system, is in direct
tension with anthropomorphism.

5.5.4.2 Agents, Tasks, and  Templates

The fact that there are three different but closely related entities in DA—tasks, agents, and
templates—seems somewhat unfortunate. Although they all serve necessary and separate
functions, it is confusing and can strain the anthropomorphic metaphor.

While developing DA, I resisted the separation of agents and templates for a long time. Most
of the earlier prototypes did not have this distinction. In my earlier images of how the system
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should work, based on Society of Mind, agents are both program specifications and concrete
instantiated mechanisms. Rather than having procedural instantiations and bound variables,
their “arguments” are supplied again by fixed hardware buses called pronomes (Minsky 1987,
p226). This picture may be more biologically realistic (in the sense that functionality is closely
linked to a piece of hardware), but a programming language that works this way is severely
handicapped by the lack of basic tools such as recursion. It is conceivable to add these
capabilities to a Society of Mind-based model with the addition of special stack memory that
incorporates K-lines for remembering the state of agents, but this is awkward. Some early
implementations of agents did work this way. However, my devotion to realism gave way to a
greater need for simplicity. Working without the separation between program and invocation felt
like going back in time to older languages like FORTRAN that did not support recursion. To
address these problems, I developed the idea of templates as entities separate from agents.

It might be possible to hide this split from the user. For instance, it might be possible to
combine the functionality of agents and templates, call the results “agents”, and allow them to
make copies of themselves, thus preserving the ability to support multiple instantiations. It is
also probably possible to de-emphasize tasks as a separate entity, since tasks are mostly
matched one-to-one with agents. There still needs to be some way to talk about the specification
of an agent’s job (the task) as separate from the agent itself, which includes a good deal of other
information besides the task.

5.5.4.3 Are Agents Too Low-level?

Each agent is very simple, just embodying an expression from the rather basic task
language and executing a simple interpreter to achieve them. This simplicity makes for an
understandable system, yet it strains somewhat against the anthropomorphic metaphor. Can
such simple things be thought of in animate terms? In particular, some constructs force us to
posit more “people” in the agent hierarchy than you might expect (i.e. the repeat construct
forms an agent whose only job is to tell its one subordinate to continue doing whatever it is
already trying to do20). The graphic version of Fahrenheit/centigrade conversion, for instance,

can use up to 70 agents to accomplish its task.

One early version of DA attempted to deal with this problem by compressing tasks into an
agent that was slightly more complex than the final version. This agent could have both a goal
and an action; that is, it could combine what would be two agents in the final version. Because
the pattern of task-generation often alternates between goals and actions, this had the effect of
generating about half as many agents as in the final version. It also helped strengthen the notion
of an agent as something that tied together declarative and procedural information. However,
the process of packing tasks two-to-an-agent was complex and confusing, and so I decided to
use the simpler form of agent described here.

This problem would only be worse in a system that was uniformly agent-based (see section
6.3.4). If all computation was done with agents, rather than offloading some tasks to Lisp, there

20This may in fact accurately model the role of many real-world managers.
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would be at least an order of magnitude more agents to deal with. The solution, then, might be
not to reduce the total number of agents but to use some form of hierarchical display to
normally hide the low-level ones from the view of the user. This is already done to some extent
in the current agent display and storyboard system, and is in keeping with the general interface
style of LiveWorld.

5.5.4.4 Variants of Anthropomorphic Mapping

Part of LiveWorld’s general design aesthetic is to not hide anything from the user. Detail
must often be suppressed to save screen resources and the user’s attentional resources, but it
should always be ultimately accessible. Another design goal is simplicity and regularity. These
goals may sometimes be in conflict with the goal of using anthropomorphic metaphors. It may
help convey the anthropomorphic feel of the system to suppress some of the internals of the
system. For instance, the god  agent strains the metaphor of the system at several points. It
exists primarily for the sake of internal regularity, making it possible to treat the entire group of
agents as a single structure. But from the user’s point of view, it is at variance with the
metaphor of distributed agents. Why are we gathering the diverse set of top-level tasks under a
single director? Perhaps it would be better to hide god  from the user, preserving the impression
of independent agents for top-level tasks.

Another instance in which the anthropomorphic mapping is not simple is in the area of
emotional icons. We would like to use the emotional state anger to indicate that two nodes are
in conflict. But this can’t be done with a straightforward mapping between the agent states and
the displayed emotional states, because in the usual case, at any given time one of the nodes
involved in a conflict is going to be satisfied (its goal is currently met) and one is not. Satisfaction
and being-in-conflict are thus somewhat orthogonal properties of nodes, and if they were
translated straightforwardly into a screen representation, there would have to be an angry face
and a smiling face displayed (in fact an early version of the system worked in just this way).
However, this would strain the anthropomorphic metaphor, which dictates that an agent
present a single face to the world. The solution was to just show the angry face, which
encoded the more salient of the node properties. Another solution would be to have richer
icons that could represent angry-and-satisfied and angry-and-unsatisfied in a single expression,
or even better, generate faces parametrically rather than using fixed icons. This opens up the
possibility for incorporating all relevant information about an agent (satisfaction, determination,
success, conflict status) in a single highly expressive facial representation generated on the fly
(Thórisson 1996). Humans can read a lot into a face—whether the computer can write out its
state in such a way that it can be so read remains to be seen.

5.6 Summary

The agent metaphor suggests that programs be built out of components that are designed
to be understood in anthropomorphic terms. In order to achieve this, we attempt to endow our
agents with purpose, autonomy, and the ability to react to events in their world. This chapter
presents a series of agent systems and shows that the metaphor can be used to unite several
disparate styles of computation:
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• the behavior-module-based, action-selection approach to the generation of creature
behavior (Tinbergen, Brooks, Maes);

• the dynamics, generative power, and ability to deal with sequential operations found in
procedural programming languages (Lisp, Logo);

• the ability to integrate declarative and procedural information found in early constraint
systems (Sketchpad, ThingLab).

DA is the most powerful agent system and integrates these three strands most fully, but it is
somewhat hard to understand. The simpler agent systems lack the full power of a programming
language, but are simple to understand and lend themselves to the drag-and-drop, mix-and-
match construction paradigm of LiveWorld.
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Chapter 6 Conclusions
You can’t have everything. Where would you put it?

– Steven Wright

6.1 Summary and Contributions

This dissertation was motivated by a desire to find new ways of thinking about action,
programming, and the control of animate systems. To this end, it has explored a particular
approach to programming based on the central idea of animate agents. There are three main
contributions:

• An analysis of how metaphors in general, and animate metaphors in particular, are used in
the construction and comprehension of computation and programming languages;

• A series of agent-based programming systems that take the insights of the above analysis
into account;

• An environment, LiveWorld, that is designed to support the construction of agent-based
systems.

The analysis of metaphor and animacy (chapters 2 and 3) is an attempt to grapple with the
informal conceptual underpinnings of a domain usually presented in formal terms. The notion of
metaphorical models was chosen as the vehicle for this exploration because of its success in
revealing the structure of everyday domains. While metaphor has been studied in the realm of
computer interfaces, there has been very little prior study of the metaphors underlying
programming languages. This section of the dissertation thus took a broad approach to the
subject. Some effort was necessary to recover the ability to detect the presence of metaphors
that have become transparent. A number of established programming paradigms were
subjected to an analysis based on their underlying metaphors.

Particular attention was paid to the role of animate metaphors in these paradigms, and in
computation generally. It was found that animate metaphors are part of the foundation of
computation, and play a role in most (but not all) programming paradigms. However, the form
of animacy used to construct computation is of a peculiarly limited sort that relies on images of
humans behaving in a rote or mechanical fashion. Some of the key properties that otherwise
define the animate realm, such as autonomy and purposefulness, are missing from this
standard form of computational animism.

Agent-based programming is then introduced as an organizing metaphor for computation
that includes these properties. A variety of computational techniques for realizing agents were
examined. Different aspects of agent-like functionality can be found in the computational world
in the form of processes, rules, objects, goals, procedures, and behavior modules. The task of
designing an agent-based programming system is to use these elements to generate a
programming system that is both powerful and can be seen in animate terms.



Chapter 5 presented a number of such systems. Simple Agents is a minimalist version of an
agent, offering only concurrency and a form of conflict detection and resolution. Goal Agents
extends this model by introducing a more structured version of an agent that includes a goal. It
was shown that this can provide the necessary foundation for anthropomorphic interfaces and
for organizing systems of agents. Dynamic Agents is a more powerful system that introduces
dynamic creation of new agents, hierarchical control, sequencing, and a variety of control
constructs. This system approaches the generality of a full-powered programming language
using the agent metaphor. The utility of the system for behavioral simulation, constraint
problems, and a variety of other uses is explored.

The LiveWorld environment (chapter 4) was conceived originally as a platform or tool for
the exploration into agent-based programming languages, but contains some original
contributions in its own right. In particular, it combines Boxer’s style of hierarchical concrete
presentation in the interface with an underlying object system based on recursive annotation
and inheritance through prototypes. LiveWorld extends the underlying object system, Framer,
in order to make it operate in a dynamic interactive environment. LiveWorld contains many
features to support agent-based programming, including sensors that allow objects to react to
one another, and animas that allow autonomous processes to be easily introduced into a
constructed world.

6.2 Related Work

The individual chapters in the body of the thesis discuss work that is related to the separate
themes of this thesis. Here, we discuss a few systems that are related to more than one theme:
that is, some other environments that are designed for novices, strive for a lively feel, and
contain programming capabilities that are in some sense agent-like.

6.2.1. KidSim

KidSim (Cypher and Smith 1995) is a programming environment designed to allow children
to create graphic simulations, using a rule-based approach to programming. KidSim has a
colorful interface which permits direct manipulation of a variety of objects (i.e. agents,
costumes, and rules). In KidSim, an agent is equivalent to what LiveWorld calls actors or
creatures (and what KidSim calls a rule, we would call an agent). Each agent has a set of rules
and a set of properties (slots) that are accessible through a graphic editor. While you cannot
create entirely new kinds of objects as in LiveWorld, agents once created can be used as a
basis for creating more agents of the same type. KidSim originally had the ability to support a
deep inheritance hierarchy as does LiveWorld, but this feature was eliminated because it was
judged to be too confusing.

KidSim avoids text-based programming languages, instead using a form of programming by
demonstration to generate graphic rewrite rules, which can then be modified in an editor. The
world of KidSim is based on a grid of cells which can be occupied by various graphic objects.
The rewrite rules thus operate on patterns of cell occupancy. Each agent has a set of rules
which can be arranged in order of priority.
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KidSim is based on a simple idea which makes it easy to learn, yet permits creating a wide
range of simulations. However, the rewrite rule approach makes some things difficult. For
instance, if an object is to both move and deal with obstacles in its path, it must be given
separate rule sets for each of the four possible directions of movement. More fundamentally,
pure rule-based systems have difficulties dealing with sequential action and control in general.
They also do not lend themselves to building powerful abstractions in the way that procedural
languages do, and thus are limited in their ability to deal with complexity.

6.2.2. Agentsheets

Agentsheets (Repenning 1993) is not an end-user environment itself, but a tool for creating
a variety of domain-specific graphical construction systems. Each such system includes a set of
parts (agents) which the end-user can arrange on gridded field (the agentsheet). The end-user
cannot construct the agents themselves; instead these are desigened and built by a separate
class of expert designers. Agents in this system are autonomous objects that contain sensors,
effectors, behavior, state, and a graphical depiction. Agents can move from cell to cell, although
not all of the visual languages supported by the system make use of this feature. They can also
sense and communicate with their neighbors. Their behavior is specified by a Lisp-embedded
language called AgenTalk. (In fact there are other ways to program agents, such as specifying
graphical rewrite rules as in KidSim, but most of the system’s flexibility comes from the
AgenTalk level).

This simple scheme supports a wide variety of metaphors. In flow-based languages, agents
are static but change their state based on their neighbor, and so can simulate electrical circuits
or fluid flow. In anthropomorphic metaphors, the agents represent creatures that move around
in the world and interact with one another, and can support behavioral simulations or certain
types of videogames. Limited programming can be done at the end-user level with languages
that provide agents with control-flow metaphors (one example is a visual language for designing
the flow of automatic phone answering services).

Agentsheets has been shown to be a very flexible system, but its full range is only
accessible to experts. There is a sharp division between the end user, who can only manipulate
a set of pre-constructed objects, and the expert designer who can build new kinds of objects
and new languages. This is in contrast to LiveWorld’s goal of making as much of the inner
workings of the system accessible to the end-user as possible.

6.2.3. ToonTalk

ToonTalk is the most unusual of the environments described here, and perhaps the most
powerful. Its interface is entirely visual and highly animated, and its underlying computational
model is a version of Concurrent Constraint Programming (CCP) (Saraswat 1993), an advanced
programming paradigm descended from logic programming. The system provides an elaborate
mapping from the constructs of CCP to animated objects. For example, methods are shown as
robots; their programs exist in thought bubbles; a communication is a bird flying out of its nest
and back; terminating an agent is represented with an exploding bomb. Just as Logo was
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designed as a child-friendly version of Lisp, ToonTalk is a version of CCP in which mathematical
formalisms are replaced by animated characters.

ToonTalk is extremely lively, sometimes to the point of causing confusion. The underlying
language is inherently concurrent, and so is the environment. Graphic objects or sprites form
the basis of user worlds. Games and simulations on the order of Pong can be readily
constructed. The programming style is a form of programming by example. The user performs a
sequence of concrete actions using a set of tools, which can be recorded into a robot (method).
The user can then make the resulting programs more abstract by explicitly removing constants
from them.

Program execution is animated, and since there is no textual code other than the graphic
actors, Kahn is justified in claiming that the programs themselves are in the form of animations,
not merely illustrated by them. Whether this is really easier to understand than a textual
description is debatable, however. While the idiom of animated video characters might be more
immediately accessible to a child, it is hard to follow a complex set of moving objects. Static
descriptions of programs and their activity (such as storyboards; see section 5.3.5) have the
advantage of standing still so you can read them!

Another problem is that some of these metaphors seemed strained—for instance, agents
and objects are represented as houses, presumably because they contain an assortment of
other objects, while an entire computation system is a city. However, when this metaphor is
extended via recursion it leads to expectation violations such as objects that have within them
whole cities. In other cases, the metaphor is apt but not extensible: for instance, a scale is used
to indicate a comparison between numbers, but this metaphor does not readily extend to other
predicates.

CCP comes from an essentially declarative logic programming tradition, which ordinarily
would make it an awkward tool for programming dynamic systems. Nevertheless ToonTalk
manages to represent action and perception using extensions to the basic model in the form of
sensors and “remote control variables” which cause side effects. Because of these, ToonTalk is
quite capable of building animate systems such as videogames despite its declarative heritage.

6.3 Directions for further research

6.3.1 What Can Novices Do with Agents?

LiveWorld has had only casual testing with novice programmers. Several students
succeeded in building video-game worlds using simple agents and other objects drawn from a
library of video-game components (see sections 4.2.10 and 5.4.1). Obviously, more evaluation
with users is needed: of LiveWorld, its implementations of agents, and the basic ideas of agent-
based programming.

Dynamic Agents, at least in its present form, is probably too complex for novices. While the
basic concepts of the language are not that much more complicated than those found in a
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procedural language, and it should not be beyond the ability of a novice to create tasks and
templates, it can be very difficult to understand the resultant complex concurrent activity of the
agent system. A scaled-back version of DA that eliminated concurrency and conflict detection,
but retained the goal-directed control structure, might be more tractable although less powerful.
There are many possible languages that lie on the continuum between a basic procedural
language and DA, allowing for a tradeoff between power and comprehensibility. At the low-
powered end of the spectrum,  there are concepts from agent-based programming that could be
usefully transferred to purely procedural languages, such as turning invocations into graphic
objects and displaying them anthropomorphically.

The simpler agent systems might be more promising places to start evaluating the utility of
agent-based programming for novices. The ideas behind these systems are sufficiently simple
and intuitive (at least to recent generations that have grown up with video games) that they
should be usable by young children. Work with children on programming environments with
similar capabilities is encouraging: (Marion 1992) describes elementary-school students building
animal behavior simulations in PlayGround; (Burgoin 1990) describes a group of somewhat
older children building robots that are controlled by a rule-like language; and the systems
described in section 6.2 also have shown that children can create behavioral simulations using
agent-like constructs. None of these systems use explicit goals or anthropomorphize their
agents, so it remains to be seen whether these features make agents easier to understand or
not. It would also be interesting to study the nature of children’s anthropomorphization of
computers and program parts, and whether these tendencies are different in agent-based
systems.

The understandability of any programming system will be based both on the underlying
concepts and on how well those concepts are presented to the user through the interface.
Thus, the answers to this question and the next will be linked together.

6.3.2 Can Agent Activity Be Made More Understandable to the
User?

Like any complex system, agent systems can be hard to understand. However, agent
systems also suggest new techniques for presenting program activity. The use of narrative
techniques to explain (and eventually to produce) agent activity is one of the more interesting
areas opened up by agent-based programming. The storyboards that DA can generate only
begin to explore this area. Presenting the activity of complex collections of hundreds of agents
will require more knowledge about characters and narrative.

The representation of agents in anthropomorphic terms can be extended. There are
additional emotional states that can be used to reflect computational states (such as surprise to
indicate an expectation violation (Kozierok 1993)). The magnitude of emotions such as
happiness or anger can be conveyed by parameterizing facial displays (see section 5.5.4.4).
Perhaps more importantly, there is a need to individualize agents so that they can be thought of
as characters. Libraries of animated characters could be selected as representations that match
the characteristics of the underlying agents. This idea was explored in (Travers and Davis
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1993), but only for a two-agent system. Extending this idea to more complex systems of agents
is an interesting challenge.

The mappings from agent activity to narrative forms can also be extended. The stories told
now are all of a fairly simple type, and the technique used to tell them is simplistic. We can
imagine other kinds of stories when agent systems become more sophisticated, for instance,
stories about conflict being resolved into cooperation, or developmental stories in which a
character learns from experience. As for the presentational forms, the medium of the
storyboard has many rich possibilities, such as parallel time tracks and highlighting details, that
have yet to be explored.

6.3.3 Can Agent Systems Be Made More Powerful?

The Dynamic Agents system is somewhat limited in terms of the intelligence it can apply to
performing its tasks. While it has some support for exploring multiple methods of achieving a
goal, it cannot perform searches for solutions as do planners. Since an agent may perform
arbitrary actions, it is difficult to represent the projected results of a potential action, which is
planning requires. More fundamentally, putting actions under the control of a centralized
planner violates the agent metaphor. Decentralized methods that simulate some of the effects of
planning (such as Maes’ action selection algorithm; see section 5.5.2) might be an acceptable
substitute.

Other methods for improving DA performance that are more consonant with the agent
metaphor are also possible. For instance, there could be agents that are outside of the standard
agent hierarchy and act to improve its performance (see section 5.5.3). Manager agents like this
could also be used for more sophisticated forms of conflict resolution than the contest-of-
strength technique currently employed by LiveWorld. Rather than have two conflicting agents
fight it out, they could refer their conflict to an outside mediator who could implement
negotiation of compromises or make use of non-local information to help resolve the dispute.

Agents currently do not learn from experience, and thus have to solve each constraint
problem all over again each time any element of the system changes. Smarter agents could
remember which methods worked and under which circumstances, and make the correct
choices without having to search through failures. Mediator agents too could have memories.
Some of these techniques were explored, for extremely simple cases, in (Travers and Davis
1993). Case-based techniques were used for learning, so that situations and solutions would
be remembered in a case library and matched with new situations as they arose. However, the
challenge is to implement such facilities in a way that fits into the overall metaphor and makes
the behavior of the system more understandable rather than more opaque. There is a tension
between making the system smarter and making it more comprehensible.

6.3.4 Can Agents be Organized in Different Ways?

The Dynamic Agents system is based on a hierarchical model of agent organization, and
employs metaphors based on human managerial hierarchies. This form of organization is
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common in computational systems, but is problematic to some because of its metaphorical
implications. Bureaucratic hierarchies can be unpleasant and inefficient in real life, so why
duplicate them in the computer?

Hierarchy arises in computational systems for the same reason it does in society: to allow a
measure of centralized control to be exerted over a domain that is too big or complex to be
controlled by a single individual or agent. Hierarchy allows parts of the domain to be controlled
by subordinate agents while keeping ultimate control centralized. This control is not obtained
without a cost, however. In social systems, the costs include the ethical and political
consequences that attend the subordination of individuals to the power of others. This sort of
cost is presumably not a direct issue when designing a software system around social and
anthropomorphic metaphors, except insofar as it might promote the idea of hierarchical
subordination in general.

But there are other problems with hierarchical organization that can affect both human and
artificial societies. These stem from the fact that such systems lead to long and sometimes
unreliable paths of communication between the worlds they manipulate and the agents that
make decisions. Information about the world must percolate upwards through a chain of
command while decisions filter downwards. This process can be slow and error-prone.
Hierarchical organization disempowers agents who are most in touch with the world and
isolates the agents with power from the world they seek to control. Allowing subordinates a
greater degree of independence can alleviate some of these problems, but at the risk (from the
manager’s perspective) of losing control and causing incoherent system behavior. As a result,
hierarchical organizations are constantly seeking a balance between top-down control and
autonomy.

The DA system was also designed to seek a balance between control and autonomy. In
contrast to procedural languages, which use a strict top-down command regime, DA employs a
more flexible style of control. While they are subject to hierarchical management structure,
dynamic agents execute autonomously and concurrently, in the manner similar to that
employed in hierarchical behavioral control systems (see 5.2). Managers actually manage,
rather than command: their role is to activate and coordinate the activities of their subordinates,
rather than to directly control them. The control path between perception, decision-making and
action is shortened, and most commonly only involves a single level of agent.

Certainly there are other ways to organize systems of agents that avoid hierarchical models
and metaphors. Perhaps an agent system could be organized around the idea of group
negotiation towards a consensus, after the model of Quaker meetings. Such systems suffer
from scaling problems, however, and presuppose a more sophisticated agent that is capable of
representing and negotiating among alternative courses of action. Another mode of organization
which avoids hierarchy is a market-based (or “agoric”) system in which agents hired others to
perform tasks for them (Miller and Drexler 1988). However, in such systems the relationship
between agents is looser, and it is correspondingly harder for a manger to manage the activity
of a “hired” agent when (for example) the subtask no longer needs to be accomplished because
circumstances have changed (this sort of constraint is presumably the reason real-world
economic activity makes use of both hierarchixal firms and non-hierarchical markets).
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All non-hierarchical schemes have serious problems with comprehensibility. A large system
of agents is a formidable thing to understand, and organizing agents along hierarchical lines is
the most powerful way to make such a collection into something that can be understood. The
true advantage of hierarchy, from the standpoint of comprehensibility, is that it is the scheme
that allows the details of agent activity to be abstracted away. This is one reason why
hierarchical organization is so highly valued in the design of engineered systems.

The question of control in agent-based systems is fraught with political overtones, and
forces designers  and users  to think about issues of  control ,  autonomy, power,  and
organization in the human world as well as the computational. There are many possible ways to
organize the activity of agents. From the standpoint of constructivist education, what would be
most desirable is a system that allowed users to create and explore a variety of organizational
forms.

6.3.5 Can the Environment Be Agents All the Way Down?

One legitimate criticism of the system as a whole is that it has a split personality: the basic
LiveWorld level and the agent languages are to some extent separate, and organized around
different metaphors. LiveWorld uses an unusual form of the OOP paradigm, highlighted by an
interface which emphasizes the tangibility of objects. The DA system uses the agent metaphor
which emphasizes action, goal-seeking, and autonomous behavior. This is partially an artifact of
the system’s developmental history—the object system had to be in place before the research
into agents could take place. But in the future, wouldn’t it be better to use a single paradigm for
the system? Can an environment be made that is “agents all the way down”?

There are several answers to this question. For one thing, it is not clear that a single
metaphor can really work at all levels. Agents need to take their action in a world of objects, so
in some sense the operation of the agent-based level depends upon an object level already
being in place. Making everything an agent, the way some OOP systems make everything an
object, might require diluting the concept of agent to the point where it is no longer useful.

Still, there could be more integration between the levels. One interesting prospect is to base
the agent system on a more suitable low-level general computational mechanism than Lisp and
the LiveWorld object system. One candidate is the Actors programming formalism (Hewitt
1976), which already supports object-orientation, concurrency, and message-passing. Actor
languages in theory could replace Lisp as the base language in which agents are programmed.
Actors are already quite similar to dynamic agents in some ways. An actor is like a procedure
invocation, but can also persist over time and have state. Unlike procedures, but like dynamic
agents, actors do not implicitly return values. If an invoker of an actor wants a response, it
must create another actor as a continuation to handle the value, and pass the continuation
along as an argument.

But actors are still essentially driven from external messages rather than running as
autonomously independent processes (Agha, Mason et al. 1993). They are not goal-oriented
and have no built-in models for conflict resolution. Thus if Actors is to serve as a basis for an
agent system like DA, it will be necessary to build a layer of agent-based protocols on top of the
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basic Actor model. Another problem is that the actor model has not, as yet, resulted in many
practical programming tools. Actor programming can be difficult, unnatural, and verbose, and
actor languages do not have the sophisticated inheritance mechanisms found in other object-
oriented systems. Nonetheless the Actor model looks like a promising way to put agent-based
programming on a more elegant and rigorous footing.

6.3.6 Agents in Shared Worlds

Animate systems naturally lend themselves to implementation in distributed and multi-user
environments. In such environments, users at various locations would construct active objects
that would be loosed into common areas to interact with one another. Text-based systems of
this kind (called MUDs or Multi-User Dungeons) have become widespread in recent years, and
show promise as environments for learning to program. The social nature of such artificial
worlds provides an audience, context, and motivation for constructionist learning (Bruckman
1993).

However, the text-based nature of MUDs limits the kinds of interactions that can take place,
and the programming languages that are available are often limited in what they can express.
Some MUDs are inhabited by sophisticated artificial personalities (Foner 1993), but these
generally are developed outside of the MUD itself, and simulate a user connected to it from the
outside. Users cannot generally construct such complex autonomous actors from within the
environment.

The ideas of agent-based programming and the LiveWorld environment should fit naturally
into shared worlds and might improve their utility. Programs in shared environments have to
respond to a variety of events and changing circumstances, a task well-suited to the agent-
based paradigm. LiveWorld’s design encourages thinking of programs and behaviors as objects
that can be manipulated inside of a graphic environment. This objectification of program
components should be particularly useful in a shared social environment, allowing programs to
become social objects that can be readily discussed and shared.

6.4 Last Word

We are entering an era in which a multitude of new forms of media will be invented and
deployed. Whether these new forms become tools for thought or mere distractions depends
upon how easy it is for non-specialists to use them to express their ideas. Programmability has
been neglected in the rush to develop new media, but what is new and interesting about the
new digital forms, namely their interactivity and dynamism, require some grasp of the art of
programming in order to be fully utilized.

Programming should thus be thought of as a basic intellectual skill, comparable to writing.
Like writing, programming has to be learned, sometimes laboriously; and while it can certainly
be made simpler and more accessible than it has been, it cannot and should not be reduced to
triviality or eliminated. In my own experience, genuine learning takes place when the learner is
motivated to learn, when the topic is interesting for its own sake or is a means to a genuinely
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desired end. Programming can be either, but too often is presented in a dystonic manner
unconnected with the learner’s actual interests. And too often the tools that programming
environments provide are too weak to allow a beginner to advance to the point where their
skills can match their vision.

My project has been an effort to set programming in new contexts and put a new face on it.
Rather than framing computing and programming as a means of manipulating abstract and
disembodied data, LiveWorld frames it as a task of building concrete autonomous graphic
worlds, and supplies the tools necessary for building such worlds. Rather than thinking of
programs in formal or mechanical terms, agent-based programming sees them in animate terms,
with purposes, reactions, and conflicts of their own. The hope is that thinking about these
systems can engage the learner’s thinking about purpose, reaction, and conflict in the wider
world, a world that is inhabited by and largely determined by the purposeful mechanisms of life.
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