Recursive Interfaces for Reactive Objects

Michael Travers

MIT Media Laboratory
20 Ames Street
Cambridge, MA 02139
(617) 253-0608
mt@media.mit.edu

ABSTRACT

LiveWorld is a graphical environment designed to support
research into programming with active objects. It offers
novice users a world of manipulable objects, with graphical
objects and elements of the programs that make them move
integrated into a single framework. LiveWorld is designed
to support a style of programming based on rule-like agents
that allow objects to be responsive to their environment. In
order to make this style of programming accessible to
novices, computational objects such as behavioral rules
need to be just as concrete and accessible as the graphic ob-
jects. LiveWorld fills this need by using a novel object sys-
tem, Framer, in which the usual structures of an object-
oriented system (classes, objects, and slots) are replaced
with a single one, the frame, that has a simple and intuitive
graphic representation.

This unification enables the construction of an interface that
achieves elegance, simplicity and power. Allowing graphic
objects and internal computational objects to be manipu-
lated through an integrated interface can provide a concep-
tual scaffolding for novices to enter into programming.

KEYWORDS: programming environments, objects, direct
manipulation, visual object-oriented programming, agents,
rules

INTRODUCTION

The Vivarium Project was begun in 1986 by Ann Marion
and Alan Kay [8] with the goal of exploring new, biologi-
cally inspired directions for novice programming environ-
ments. Inspired by the task of simulating animal behavior,
we also wanted to make our computational environment
more life-like. In part, this meant that objects should not be
mere passive respondents to the commands of an external
user or program, but have autnomous behaviors of their
own. They should react to the user and to each other. The
computational models used in these designs were based on
agents in Minsky’s [11] sense: small modules that define
simple behaviors, but can be combined into large systems
that exhibit complex behavior; and that execute au-

tonomously, yet can interact with and influence one
another.

The Vivarium project has generated some earlier software
environments: Agar [13] and Playground [4]. In these
systems the computational realization of an agent was
something of a cross between a rule and a process. These
previous efforts concentrated on simulating the environ-
ment, the specification of agents for the animate objects,
and the interaction between the creatures and their environ-
ment. LiveWorld is an effort to improve upon these
systems in several ways: first, by providing a flexible and
powerful object system and interface, and second by incor-
porating a more developed notion of a computational agent,
along with a theory of how such agents may be created and
debugged. This paper deals only with the first of these
goals.

The motivating simulation domain for these systems was
animal behavior, but the larger goal was always to find
fruitful new models for programming in general. Many
other systems may be described in terms of objects with
autonomous but interacting behaviors; i.e., video games,
MUDs, and virtual worlds in general. I’ve coined the term
animate system to refer to this class of environment
consisting of multiple reactive objects.

Creating animate systems requires manipulating many
different kinds of objects (worlds, actors, agents, and sen-
sors, for instance). These must be accessible, manipulable,
extensible, and combinable by the user. Yet we don’t want
to overwhelm novices with complexity. LiveWorld’s
solution is to use a novel object system, Framer [6], which
permits objects to be viewed and manipulated at varying
levels of detail. Complex objects may be treated as black
boxes by beginning users, while more advanced users can
open them up to see and change the parts inside. To
accomplish this, all levels of parts are made out of the same
basic structure, the frame.

The design values of LiveWorld include:

e tangibility — objects should be concrete, accessible to
the senses, and capable of direct manipulation.

e reactivity — objects should be aware and capable of
reacting to each other. The programs that drive objects
should be running all the time, so that user interaction can
trigger object behavior.

e improvisation — it should be easy to explore new
possibilities by making incremental modifications to
existing objects.

* learnability — the system should provide “conceptual
scaffolding” that allows the learning of new skills to be
rooted in existing skills.

RECURSIVE OBJECT STRUCTURE

LiveWorld’s object system and interface are tightly inte-
grated and must be considered together. The interface design
was inspired in part by Boxer [3], which pioneered the use
of recursive containment as a basis for a general
computational medium. LiveWorld borrows the powerful
idea of recursive containment from Boxer, and integrates it
with object-oriented programming. The object system is
based on Framer, a knowledge representation tool with
prototype-based inheritance, developed by Ken Haase at the
MIT Media Laboratory. Framer’s hierarchical object repre-
sentation meshes perfectly with a Boxer-like graphic
interface.

Object system

Framer provides a single structure, the frame, out of which
more complicated structures are built. A frame has a name
and a location within a structure that is similar to a
hierarchical file system. All frames except the root have a
container or home frame and may also have contained
frames or annotations. Frames also have an optional value
(which may be any Lisp object, including another frame)
and an optional prototype (which must be a frame).

The graphic counterpart to the frame is the box. From the
user’s perspective these two constructs are identical, i.e., it
is possible for “the user to act as if the representation were
the thing itself” [7, p97] for all components of the system.
LiveWorld represents Framer’s hierarchical structure by
means of spatial containment.

Figure 1 illustrates a simple LiveWorld construction.
Frame names are indicated in boldface, so X is an
annotation of my-turtle, which is in turn an annotation
of cast. Frame values follow the name, so the value of
the x annotation is 24. Boxes may be open or closed, with

v simple-world
i v cast

. » ovall
v my-turtle
P xXpos: 4|l> ypos: & |

P heading: 22.25|;—,(F|—

J L]

[theater[

Figure 1: A simple world with two graphic objects. Note
that theater, stage, cast, objects, and slots are all
realized from the basic frame/box.

this state being controlled by a handle in the shape of a
triangle (styled after the hierarchical folder display in the
Macintosh Finder [1]). A closed box displays only its name
and value, while an open box will display the contained
annotations, the prototype (in a recessed box in the lower-
right) and a resize handle.

Recursive annotation

A frame can thus serve as an object in the usual sense (by
containing other frames that define its properties and
behaviors) or a slot (by virtue of the fact that it can have a
value). Frames may also be used as collections of objects,
and because any frame may serve as a prototype, they also
take the place of classes in a traditional class-based OOP
system. Boxes can also serve as buttons and other interface
objects by giving them a special click handling method (see
figure 3).

This is quite different from traditional object systems,
where classes, slots and objects are very different sorts of
entities. This unification permits LiveWorld to have a
simple and uniform interface.

In addition to providing a simplification of traditional con-
structs, frames make it easy to build advanced programming
constructs that are difficult or impossible to realize in con-
ventional object systems. These include facets, demons,
dependency networks, and histories. It also makes it easy to
use frames to represent information about frames. For
instance, display information for frame boxes is stored in
(normally invisible) frame annotations to each displayed
frame (%box-position, for instance). If you display
these frames, they get their own display annotations, recur—
sively.

It should be noted that LiveWorld and Framer are recursive
only in the sense that the basic frame structure is defined
recursively, and most functions that deal with it call
themselves recursively to work their way up or down the
frame hierarchy. It does not imply that a frame can contain
itself.

Prototype-based

Prototype-based object languages [10, 14] are an alternative
to the class-based object schemes used in more traditional
OOQOP languages. In a class-based object system, every
object is an instance of a class. Although classes are
usually represented by objects, they are of a distinctly
different order than normal objects. Sometimes the set of
class objects and related descriptors are called meta-objects.
In contrast, a prototype-based system has no classes or
special class objects. There is no rigid distinction between
classes and instances or between objects and meta-objects.
Instead of defining objects by membership in a class, they
are defined as variations on a prototype. Any object may
serve as a prototype for other objects.

The advantages of prototype-based programming are
simplicity and concreteness. It eliminates a whole set of
objects (class descriptors) from the environment, and
simplifies the specification of inherited properties. In a

sense it is specification by example. For example, the
properties of elephants might be defined by a prototypical
elephant (Clyde) who has color gray and mass heavy.
Properties of Clyde become defaults for the spinoffs, so all
elephants will be gray and heavy unless their default is
overridden, as in the case of pink elephants. With
prototypes, the specification of defaults and exceptions are
done in exactly the same way, that is, simply by specifying
concrete properties of objects.

There are some indications that mental representation of
categories makes use of prototypes [9]. Whether this
translates into any cognitive advantage for prototype-based
computer languages is open to question. What prototypes
do accomplish for programming is to smooth out the
development process, by easing the transition from
experimentation to system-building.

Theatrical metaphor

Graphic objects are implemented by special frames called
actors that appear in theaters. Theaters offer two views of
their objects, a cast view and a stage view. Both the cast
and stage are frames themselves, and the actor frames are
actually contained within the cast frame and draw
themselves in the stage frame. The two views of the objects
are interconstrained (so that, for instance, dragging an object
will continuously update the relevant slot displays).

The system provides a graphics library of basic actors.
These include shapes and text-actors, pictures, and turtles.
The library itself is a theater and new objects are created by
using the standard cloning commands, so there is no need
for specialized palette objects.

The link between graphic and non-graphic objects may help
novices who are experienced users of direct manipulation
interfaces make the transition to programming, both by
showing them a different view of their actions and by
permitting them to interact with computational objects in a
familiar way.

v simple-world
7 1 v cast

A 4 oval|

v my-turtle
P xpos: 4|I> ypos: 6 |
b heading: 22.25]|
¥ SeNsSor : yes
b field-range: 75
b field-width: SO}

[k
'l

Figure 2: simple-world after dropping a sensor into
the turtle and opening it. The sensor displays as a
translucent range overlay; and recomputes its value as
the objects move.

Sensors

In LiveWorld, sensors are frames within an actor that have a
value (i.e., :yes if the sensor is activated, or a number for a
numerically-valued sensor). Sensors also have many
properties associated with them — such as their range and
what kind of objects they are sensitive to. Because frames
can have both a value and annotations, this is easy to
represent. The sensor in Figure 2 contains internal slot
frames (such as field-range) that allow it to be
customized. It may be seen as a slot (since it has a value) or
an object with slots of its own.

INTERFACE DYNAMICS

Dragging

Most operations in LiveWorld are accomplished by moving
objects around (dragging). There are several forms of
dragging; the most basic kind changing only the position of
the object, with no semantic effects. Lift-and-drop dragging
removes the object from its container and allows it to be
placed in another. A lifted object actually lives in a special
frame (limbo) and the distinction is indicated to the user
by a drop shadow. Clone-and-drop dragging actually creates
a new spinoff object which is then treated as if it had been
lifted. Clone-and-drop is the most common way to create
new frames.

One interesting feature of LiveWorld is immediate redisplay
of inherited values. For instance, if a graphic object is
cloned, and then the original is resized, both the original
and the clone will be updated interactively. This is a
powerful illustration of inheritance and may have
pedagogical value. On the other hand, it can cause surprises
for users who aren’t aware that values are being inherited.

Selection and Commands

LiveWorld operates on the select-and-operate user interface
model. The selected frame can be deleted, its value or
prototype changed, etc. The Messages menu allows the user
to send messages to the selected object, as well as serving
as documentation for available operations. The Slots menu
shows what slots are defined for that object and selecting an
item from that menu will create a version of that slot frame
local to the selected object.

Cloning

Typically, new objects in LiveWorld are created by copying
existing objects via the clone-and-drop interface and
modifying selected properties. The new object has the
object it was cloned from as its prototype, and (in general)
inherits all the properties of the original. Graphic objects
may be cloned in either their box representation or their
graphic representation.

By default, cloning is shallow. This means that if a frame
with contained frame structure is cloned, only the top-level
frame is copied. For most internal frames (i.e. those used as
slots) this is adequate, since the slot values in the original
will be accessible in the new one. But in some cases,
internal objects must be copied. For instance, in Figure 2,
if a clone of turtle is made, the slots xpos, ypos, and
heading don’t need to be copied (and aren’t), but sensor

must and will be, since the new turtle ought to have eyes of
its own. Frames specify for themselves if they need to be
copied when their container is copied. The frames that need
to be copied are generally those that specify local sub-parts
like sensors, or generate side-effects like animas (described
below).

After a frame is cloned it must be installed (dropped)
somewhere. Frames can have a fits-within slot that
specifies what sort of object the frame may be dropped into;
the interface will only allow the object to be dropped
appropriately (i.e., sensors can only be dropped into actors).
Frames can have install methods which allows them to
specify side-effects that happen as a result of being dropped.

Inheritance

One of LiveWorld’s strengths is illustrating the nature of
inheritance. Graphic objects that inherit properties from a
prototype will update dynamically if the prototype is
changed. Inherited values in boxes are shown in italics; they
too update dynamically if changed.

Framer only offers single inheritance, but because slots are
objects in their own right it is often possible to simulate
the effects of inheriting from multiple objects. For
instance, if we have a turtle (which can inherit only from
the prototypical turtle) and we want to add behavior that
defines a mass and forces acting upon it, we can copy in the
appropriate slots from the prototypical physical object (i.e.,
mass, gravity-agent). Effectively, the turtle can
inherit properties from several objects.

PROGRAMMING

LiveWorld defines a message-passing protocol over Framer
objects. Actions (LiveWorld’s term for methods) are
themselves frames, so they can be copied from object to
object and otherwise manipulated.

Actions contain code written in Lisp extended with
primitives for Framer and for message-passing (see Fig. 4
for an example). Future versions will also support actions
programmed in other languages (such as Logo or a natural-
language-like scripting language). It’s relatively easy to
support multiple languages by making language interpreta-
tion an object property. In Lisp, messages are sent to
objects through the ask primitive. The Ask menu lists
the available messages for the selected object and serves
both as documentation and interface.

Agents are specialized actions that arrange to be run
repeatedly by virtue of containing an anima object (see
below). A typical agent consists of a conditional that tests a
sensor and conditionally takes an action (by sending a
message). A variety of schemes exist to permit agents to
control each other; these are beyond the scope of this paper.
Further development will allow the specification of
networks of agents, handling conflicts between agents, and
support for agents with explicit goals.

LiveWorld provides a library of actions and agents.
Beginning users can create animated creatures by cloning

objects out of this library. The objects also provide a
starting point and templates for more advanced users who
are ready to start programming. The transitions between
these stages (copying, modifying, and finally creating
agents from scratch) are relatively smooth, with each stage
providing scaffolding for learning the next.

¥ button
» act: (ask self :print)|

v body-click-table
P control-click: drag|

b elick: :act

[body-click-table[
b %border-width: 3| =

v thrust
b act: (ask actor :accelerate 10)|

[button

Figure 3: Customizing a frame in order to define buttons.

Redefining the interface through itself

The interface that LiveWorld presents is partially definable
in LiveWorld itself. This is done by means of click tables
that define mouse actions. A mouse gesture is really defined
by two parameters: the part of the box clicked upon, and the
particular gesture (modifier keys) held down. Arbitrarily, we
pick the first of these to be the most important and define
click-tables for various components (including one for
clicks on the graphic view of an actor). Click-tables contain
entries for particular clicks (i.e. option-shift-click)
whose values are messages to be sent to the frame that
contains the table.

Click tables inherit like anything else, so this technique
may be used to define specialized objects such as buttons
(see Figure 3). Here, an action object is specialized to have
a different appearance (via the %border-width slot) and
a special action to take on an ordinary mouse click (it will
send itself a :act message). The button object can then be
cloned and the clones given code of their own to define their
action, as is done with the thrust button.

Reactivity and concurrency

Standard computer languages and interfaces are based on a
strictly top-down, command-driven model of execution.
This model is inadequate to build simulations of systems in
which multiple objects may be acting independently.
Worse, it teaches students to think of control in a top-down
style that may hinder understanding of systems in which
control is distributed, that is to say almost any real-world
system.

The image of LiveWorld is that there are many objects,
many agents, and many actions going on at once. Objects
are not controlled through a central locus, but determine
their own actions. Ideally, every part of the system should

v cast
» patch | » start-point |

v turtle
» xpos: 34.87| » ypos: 160.7| v turn-agent

» heading: 274 .3
’ pen-down?: t|

P code:

» distance-sensor: 37.4¢! |

(if (> (ask self :distance-sensor)
(ask self :last-distance))

(ask self :turn-left (arand O 1280))

(ask self :turn-left (arand O 10)))

; if we are getting closer

; turn a lot
; else turn a little

» last-distance: ¢?.3?| b anima: on

[lizp-agent[

» go: (ask actor :forward 10)|

[tortie[

Figure 4: The actors for the klinokinesis example. The turtle has two agents: one makes it go forward at a constant
rate, the other makes it turn a random amount that depends on the food concentration gradient. The value of the

last-distance slot is also computed by an internal agent (not shown).

be constantly aware, monitoring its conditions and reacting
to it.

LiveWorld supports concurrency by enabling objects to be
called in the background. The interface to this capability is
through objects called animas, which repeatedly send a
message to their containing frame. Animas may be turned
on and off individually, or en masse. Inheritance may be
used to control a group of animas.

Animas illustrate a classic tradeoff in object-oriented design.
Animas are add-in objects which enable any containing
object to become an agent or process. The alternative would
be to make animacy a property of the containing agent
itself. The advantage of this second approach is simplicity,
since it has one less object type. The anima solution,
however, has the advantages of modularity in that a specific
ability is encapsulated in a specific kind of object, and that
object can be included anywhere); and of providing an
interface or affordance to the user for adding or removing
animacy. LiveWorld’s hierarchical object system permits a
compromise between these solutions. Since animas can be
hidden in higher-level objects and automatically inherited,
the user can ignore the fact of their existence at first, and
discover them later when ready to “open the hood” of an
agent.

Animas are normally running in the background, and it is
common for the user to be making changes to the world or
to code while other activities are going on. For instance, in
the klinokinesis example below, you can move the food
patch that the turtle is tracking and watch it adapt. This
serves to lower the barriers between running and coding.

In the present implementation, animas are called in a round-
robin fashion. This is adequate for most examples, but does
not really qualify as true pseudo-parallelism. A facility to
support pseudo-parallelism by performing all side-effects in
parallel has been constructed and is undergoing evaluation.
Again, the recursive annotation ability of framer helps,

since the system can store intermediate values locally in
annotations.

FINAL EXAMPLE

In Figures 4 and 5, a simulation of klinokinesis, a
navigation technique used by very simple animals to
navigate. The strategy is to move forward (via the go
agent) and to change directions based upon gradient
differences from a food source. The rule is: if the
concentration is increasing, turn a small amount, otherwise,
turn in a random direction). The liveness of the simulation
allows you to interact with it (for instance, by moving the
food patch while the turtle is running, or by changing the
direction manually by using the turn-right button,
inserted from figure 3).

PROBLEMS AND FUTURE WORK
LiveWorld’s unified representation has some negative
consequences. For instance, LiveWorld builds a variety of

1 X Ly
¥ ~
A
A

.

Figure 5: The stage for the cast in figure 4. The turtle
started from the point at the lower-left and found its way
by “smell” to the food patch at the upper right

constructs using the basic containment relationship. As a
result, from the user’s perspective containment is over-
loaded and its various uses somewhat ad hoc. The relation
between a sensor inside a creature is not the same as that of
an anima inside an agent. Since the graphic representations
are the same, this may be confusing to the user.

In general, there is a tension between simple, powerful, and
general constructs and the interface goal of making specific
structures for specific tasks. Take object palettes in a
traditional program: because they are special objects, they
may easily be given special properties such as floating or a
special appearance. LiveWorld, though, has been carefully
designed so that no special palette objects are necessary! We
have achieved simplicity, but at the cost of being able to
easily specialize the design of specific elements.

There are many unresolved issues revolving around the
deletion and modification of prototypes. Framer by default
does not allow the deletion of an object with spinoffs. The
interface encourages loose patterns of cloning, but this can
cause problems as dependencies are created which make later
modification difficult. I have experimented with a modified
delete function that permits deleting an object with
spinoffs, by copying the slots of the prototype into the
spinoffs. This preserves the characteristic of the spinoffs
but loses type information.

User testing of the system is planned; some issues to be
investigated are the learnability of the object system;
whether the availability of all objects in graphic form is
empowering or confusing, and whether the particular forms
of conceptual scaffolding actually provide greater
learnability.

RELATED WORK

Boxer

Boxer also uses graphic containment of boxes to support a
variety of computational constructs. However, Boxer and
LiveWorld have very different notions of what a box is. In
Boxer, boxes are understood in terms of an extension of text
editing. A Boxer box is like a character in a text string that
can have internal structure, which will be other lines of text
and boxes. Boxes have no fixed spatial position, but do
have a position based on textual ordering. There are no
classes of boxes (except a few built-in system types) and no
inheritance.

In contrast, LiveWorld boxes are full-fledged objects, and
the interface presents them as such. Boxes are dragged and
copied with the mouse rather than with keyboard editing
commands. Where the interface of Boxer is rooted in text
editing (it is in fact based on the Emacs text editor), the
interface of LiveWorld is rooted in object-oriented graphics.
Both systems extend their root metaphor by allowing for
recursive containment.

LiveWorld’s advantages over Boxer is primarily in
implementing inheritance and a more modern interface
(mouse-based rather than text-based) with better integration
of graphics. The advantages of Boxer is that its textual

metaphor makes it natural to impose an order over the
items in a box, and may be more accessible to some users
with a textual orientation.

Self

Self [14] is currently the prototypical prototype-based
object-oriented programming system. LiveWorld’s (really
Framer’s) major contribution over and above what Self
provides is in making slots be first-class objects and thus
enabling recursive annotation and containment. Another
difference is that in Self, an object generally does not
inherit values from its prototype, but from a separate object
(the parent). While this has certain advantages, LiveWorld’s
method is simpler and, I hope, easier to convey to the naive
user.

Self has an exploratory graphic interface [2] which, while
having some commonality with that of LiveWorld, is
exploring essentially different issues. For instance, both
systems emphasize animation, but use it in very different
ways. The Self interface animates its object representations
(akin to LiveWorld’s boxes) in a fashion that makes them
seem real to the user, but this animation is outside the
realm of the user’s control. LiveWorld is more concerned
with allowing the user to control the animation of graphic
objects, leaving the more abstract, structural representation
of objects unanimated.

Rehearsal World and ARK

Other systems which LiveWorld may be compared with
include Rehearsal World [5] and the Alternate Reality Kit
(ARK) [12]. LiveWorld borrows its theatrical metaphor
from Rehearsal World, which used it in more elaborate form
(i.e. referring to message-passing as “cues”). The purpose
and feel of the two systems also have many points of
commonality: both aim to provide a friendly and dynamic
world where programming and direct manipulation are
integrated. The main differences are LiveWorld’s unusual
object system and its emphasis on concurrent reactive
objects. Rehearsal World’s programs, in contrast, are
generally “button-driven”, that is, driven directly by user
actions.

ARK is another environment with goals similar to that of
LiveWorld. In this case the commonality is in providing a
lively, reactive feel, and in integrating graphic objects with
computational objects. Other shared properties include
prototypes (ARK’s prototypes work more like those of
Self), step methods to drive concurrent objects, and a
special limbo state (called MetaReality in ARK) for objects
in transition.

Both ARK and Rehearsal World, as well as many other
visual environments, rely on a separation of user levels.
Components are built by sophisticated users, generally
outside of the visual environment, while more naive users
are allowed to connect these components together graphi-
cally but not to open them up or modify them. LiveWorld,
on the other hand, tries hard to make every object openable
and accessible.

CONCLUSIONS

LiveWorld combines a novel form of object-oriented
programming with a direct manipulation interface to create
an environment that’s concrete, reactive, and flexible. To
date, the system has been used chiefly as a tool for
exploring the space of possible agent-based programming
styles.

The fact that all objects are presented graphically by default,
that is, without the cognitive overhead of having to request
their display in an inspector, is a subtle yet powerful
change in the way that the programmer relates to objects. In
LiveWorld, every object and every slot is an affordance for
action as well as a prototype for improvised modifications.

ACKNOWLEDGMENTS

Ken Haase and Alan Ruttenberg developed tools that made
this work possible. Alan Kay and Ann Marion began the
Vivarium project and have provided support through Apple
Computer. Mitsubishi Electric has also provided support.
Amy Bruckman, Andy diSessa, and Linda Hershenson
commented on drafts of this paper.

REFERENCES

1. Apple Computer. Apple Human Interface Guidelines:
The Apple Desktop Interface. Addison-Wesley,
Reading, Massachusetts, 1987.

2. Chang, B.-W. and Ungar, D. Animation: From
Cartoons to the User Interface. In Proceedings of UIST
‘93. (November 3-5, Atlanta, Georgia), 1993, pp. 45-
56.

3. diSessa, A.A. and Abelson, H. Boxer: A
Reconstructible Computational Medium.
Communications of the ACM 29,9, 1986, 859-868.

4. Fenton, J. and Beck, K. Playground: An Object
Oriented Simulation System with Agent Rules for
Children of All Ages. In Proceedings of OOPSLA ‘89.
1989, pp. 123-137.

5. Finzer, W. and Gould, L. Programming by Rehearsal.
Xerox Palo Alto Research Center Research Report
SCL-84-1, 1984.

6. Haase, K., Framer. 1992, unpublished software:

7. Hutchins, E.L., Hollan, J.D., and Norman, D.A.,
Direct Manipulation Interfaces, in User Centered
System Design, D.A. Norman and S.W. Draper,
Editor. 1986, Lawrence Erlbaum Associates: Hillsdale
NJ.

8. Kay, A. Vivarium Papers. Unpublished essays, 1990.

9. Lakoff, G. Women, Fire, and Dangerous Things.
University of Chicago Press, Chicago, 1987.

10. Lieberman, H. Using Prototypical Objects to
Implement Shared Behavior in Object Oriented

11.

12.

13.

14.

Systems. In Proceedings of First ACM Conference on
Object Oriented Programming Systems, Languages &
Application. Portland), 1986, pp. .

Minsky, M. Society of Mind. Simon & Schuster, New
York, 1987.

Smith, R. Experiences with the Alternate Reality Kit:
An Example of the Tension Between Literalism and
Magic. In Proceedings of SIGCHI+GI’87: Human
Factors in Computing Systems. Toronto), 1987, pp.
61-67.

Travers, M., Animal Construction Kits, in Artificial
Life: SFI Series in the Sciences of Complexity, C.
Langton, Editor. 1988, Addison-Wesley: p. 421-442.

Ungar, D. and Smith, R.B. Self: The Power of
Simplicity. In Proceedings of OOPSLA ‘87. (October
4-8. 1987, Orlando, Florida), 1987, pp. 227-241.

