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This paper presents an overview of the Cedar programming environment, focusing on its overall 
structure-that is, the major components of Cedar and the way they are organized. Cedar supports 
the development of programs written in a single programming language, also called Cedar. Its primary 
purpose is to increase the productivity of programmers whose activities include experimental pro- 
gramming and the development of prototype software systems for a high-performance personal 
computer. The paper emphasizes the extent to which the Cedar language, with run-time support, has 
influenced the organization, flexibility, usefulness, and stability of the Cedar environment. It high- 
lights the novel system features of Cedar, including automatic storage management of dynamically 
allocated typed values, a run-time type system that provides run-time access to Cedar data type 
definitions and allows interpretive manipulation of typed values, and a powerful deuice-independent 
imaging model that supports the user interface facilities. Using these discussions to set the context, 
the paper addresses the language and system features and the methodologies used to facilitate the 
integration of Cedar applications. A comparison of Cedar with other programming environments 
further identifies areas where Cedar excels and areas where work remains to be done. 

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques; D.2.6 
[Software Engineering]: Programming Environments; D.3.3 [Programming Languages]: Lan- 
guage Constructs; D.4 [Operating Systems]: General; D.4.7 [Operating Systems]: Organization 
and Design; H.O[Information Systems]: General 

General Terms: Design, Languages 

Additional Key Words and Phrases: Experimental programming, integrated programming environ- 
ment, open operating system, strongly typed programming language 

1. INTRODUCTION 

Cedar is an environment for developing and testing. experimental computer 
software systems. The primary focus for Cedar has been to develop a wide range 
of experimental office information and personal information management appli- 
cations. Cedar also supports the development and evolution of the Cedar envi- 
ronment itself, as well as research into new technologies such as VLSI design 
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tools for high-performance computer systems. People working with Cedar on 
such projects do so in small groups or as individuals. Cedar is used by several 
organizations within the Xerox Corporation, but primarily in the Palo Alto 
Research Center (PARC) where Cedar was created. 

This paper presents an overview of the Cedar environment. It examines how 
the Cedar environment is structured to meet the needs of creating experimental 
software systems, and describes many of the components that make up the 
environment. It also reviews the features of the Cedar language, which has had 
a strong influence on Cedar’s design. The paper identifies several important 
concepts contained in Cedar that contribute to its power and success. We briefly 
evaluate the success of Cedar in meeting the goals set out in its requirements 
document and also compare Cedar to other programming environments that 
attempt to meet similar goals. 

This paper does not concentrate on user interface issues or on how to use 
Cedar, but does occasionally refer to such issues when they relate to the power 
or structure of Cedar. Readers interested in a Cedar user’s view of software 
development in an earlier version of Cedar should refer to Teitelman’s paper, 
“A Tour Through Cedar” [51]. 

Over time the name Cedar has come to refer to both the major language in the 
environment and to the environment itself. Originally, the language was named 
“Cedar Mesa,” to indicate its heritage as an evolution and proper superset of the 
Mesa language. However, common usage shortened the name of the language to 
simply Cedar, and left the reader or listener to determine from context whether 
Cedar referred to the language or the environment. In this paper we consistently 
use the phrase “Cedar language” to refer to the language; “Cedar” by itself refers 
to the programming environment. 

An earlier and shorter version of this paper was presented at the ACM 
SIGPLAN/SIGSOFT Symposium on Language Issues in Programming Environ- 
ments [49]. 

1 .l The Origins and Evolution of Cedar 

Cedar was created and continues to evolve in the Computer Science Laboratory 
at Xerox PARC. Cedar is a research environment supporting the development 
and use of experimental programs, emphasizing office information and personal 
information management applications. These programs often feature formatted 
text, graphics, digitized voice, databases, and distributed computing. Although it 
was clear at the outset that some unsolved problems would be addressed, the 
intent was to combine well-understood methods and technologies to create an 
environment for software research that would exploit a new generation of high- 
performance personal computers, including the Xerox 1132 (Dorado) [26] and 
the Xerox 1108 (Dandelion) [25]. 

Cedar, as an operating system and as a programming environment, is the direct 
descendant of several earlier Xerox systems: Alto, Smalltalk, Interlisp, Pilot, and 
the Xerox Development Environment. 

The evolution of Cedar began with a simple environment for the Alto personal 
com.puter [54]. The most important new feature of the Alto was its bitmapped 
display, which allowed a new style of user interaction. Software for the Alto was 
created using the typeless BCPL language. Its structure was based on the notion 
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of an open1 operating system [29]. The tools built for the Alto environment were 
limited primarily by memory, but also lacked integrated functionality and were 
executed serially, thus monopolizing the Alto during their use. The Alto system 
exhibited a varied set of user interface paradigms, since this was a time of 
experimentation and of limited ability to share existing code. 

When the strongly typed Mesa language [35] was developed for the Alto, the 
Mesa implementors produced a faithful rendering of the Alto/BCPL system 
components, without extending their concepts. The next major system develop- 
ment was the Mesa-based Pilot operating system [40] and its associated Tajo 
programming environment [47, 551. Pilot and Tajo were designed for use with a 
second generation of workstations, such as the Dandelion, that included memory 
mapping and larger physical memories than were available on the Alto. The 
Pilot/Tajo programming environment was used within Xerox to create the Star 
and Viewpoint office systems, and later became the Xerox Development Envi- 
ronment (XDE) product, marketed by the Xerox Information Systems Division. 

The Cedar system started with an assessment in 1978 of the goals and 
requirements for an experimental programming environment. The requirements 
document [15] outlined over 50 goals aimed at defining an environment for 
creating moderate-sized programs to be used by moderate numbers of people. 
The development of the Dorado within PARC at that time promised significantly 
greater computing resources, including several times more processing speed, 
larger real and virtual memories, higher memory bandwidth for color and larger 
black-and-white displays, and larger local disk storage. An assessment of how 
earlier versions of Cedar met the goals of the requirements document is presented 
by Teitelman [52]. 

Appendix B charts the evolution of Cedar over the next five years. The earliest 
versions of Cedar were built on the Pilot operating system. These early versions 
adopted ideas from other interactive programming environments, notably Inter- 
lisp and Smalltalk. Later versions incorporated changes due to innovations in 
XDE and those due to observed shortcomings in earlier versions of Cedar. These 
issues are discussed in Section 3, Structural Overview of Cedar. 

Cedar has also borrowed from more conventional current operating systems, 
among them the UNIX@ operating system. However, Cedar and systems with 
which we can most usefully compare it (Interlisp-D, Smalltalk-80, and the UNIX 
systems) attempt to achieve similar goals through markedly different methods. 
A comparison of Cedar with these systems appears in Section 10, Comparisons. 

1.2 Benefits to Cedar Users 

The Cedar programming environment offers several important and powerful 
paradigms for software development. Four of the major benefits are improved 
programmer productivity, software integration, higher quality software, and 
flexible program development methodologies. 

1 Our use of the term open operating system differs from the more current notion of an open system. 
An open operating system is a structuring methodology for an operating system (see Section 3.1, Open 
Operating Systems), while an open system implies that the interfaces to a system are in the public 
domain [59]. 
@UNIX is a registered trademark of AT&T Bell Laboratories. 
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1.2.1 Improved Programmer Productivity. Cedar was designed to improve the 
productivity of experienced programmers in the development of experimental 
programs. This resulted in a rich set of program development tools (program 
editors, compilers, symbolic debuggers, and version managers), automatic storage 
management to reduce the drudgery of storage allocation, and an extensible 
system architecture that provides leverage in building new applications through 
exploitation of existing implementations. Cedar also supports concurrent opera- 
tion of several applications. A programmer can therefore attend to the most 
important activity by easily switching his attention among several tools and 
operations. As an aid to development and testing, Cedar also allows experimental 
versions of programs to operate concurrently with earlier versions. 

1.2.2 Software Integration. Considerable power can be achieved by building 
on the best work of others to incorporate those ideas or functions in new systems. 
Integration is more than simple techniques for interconnecting programs [16]. 
Rather, integration applies to designing extensible and customizable software 
packages, and to building packages that can be used by other programs. Further- 
more, integration extends to consistent user interface paradigms and shared 
components for user interface construction that transfer the user’s training from 
one application to another. Several integrating mechanisms available in Cedar 
are described in Section 8. 

1.2.3 Higher Quality Software. We expect to use our experimental programs 
in real situations to solve real problems. The environment must therefore be 
robust and must gracefully handle large problems. Larger and faster processors, 
support for large numbers of concurrent applications, and the availability of 
shared resources within a distributed computing environment all contribute to 
improved software quality, as do consistent and carefully designed interfaces to 
the applications and their implementations. 

1.2.4 Flexible Program Development Methodologies. The Cedar environment 
itself serves as a model for the development of software systems. Small applica- 
tions can often be built quickly by extending and combining existing interfaces. 
Large applications can be built using the same tools and techniques as those used 
for building the Cedar environment. For example, a large suite of VLSI design 
tools is being built with Cedar software development tools. 

1.3 Novel Aspects of Cedar 

As Cedar has evolved, several aspects of this programming environment have 
proved to be particularly interesting: 

-Safe Storage, which provides automatic storage management in a strongly 
typed language; 

-deferred type binding for run-time type discrimination; 
-an open operating systems approach to the Cedar system, including its com- 

ponents, tools, and applications; 
-the Cedar Abstract Machine, which provides program access to program 

structures, types, and data; 
-local, remote, and multimachine symbolic debugging in context; 
-Tioga, a programmer’s text editor, which is extensible and integrated into the 

environment; 
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-the Imager, a device-independent graphics package for high-quality two- 
dimensional images; 

-several methodologies for implementing and managing large system develop- 
ment. 

These aspects of Cedar will be introduced and discussed when relevant in the 
remainder of the paper. 

1.4 Outline of the Paper 

Cedar is a large complex software system. This paper describing Cedar is also 
large and complex. Some of the technical concepts we present profoundly influ- 
ence the design of many Cedar components. Consequently, the reader may find 
it difficult to appreciate the implications of some concepts until a thorough 
reading has exposed their influences and consequences. The authors certainly 
found it difficult to present these concepts in a linear fashion. Unfortunately, we 
can only publish a linear document, and we chose the following outline. 

Understanding the Cedar environment begins with an understanding of the 
Cedar language presented in Section 2, The Cedar Language. 

The layered architecture of the Cedar components is introduced in Section 3, 
Structural Overview of Cedar, which discusses the major design philosophies used 
in Cedar. The four major layers are presented in four separate sections: 4. Cedar 
Machine, 5. Nucleus, 6. Life Support, and 7. Applications. These largely descriptive 
sections concentrate on the components of each layer, together with some 
structural aspects. Material that has not been published previously-for example, 
the Abstract Machine component of the Nucleus-receives greater attention. 

The focus changes from a structural overview to a methodological discussion 
in Section 8, Methodologies, which describes the methods developed to use the 
components of Cedar to greatest advantage. Two case studies in Section 9, Case 
Studies, illustrate how Cedar was used to develop the Cedar Imager and to build 
an integrated voice-annotated electronic mail system. The next section, 10, 
Comparisons, examines other programming environments that have attempted 
to achieve similar goals and requirements. Concluding arguments about 
the strengths and weaknesses of the current Cedar system are presented in 
Section 11, Conclusions. Appendix A contains the glossary of Cedar terminology, 
which defines Cedar terms and indexes their use in the paper. Appendix B 
chronicles the release history of Cedar. 

The authors suggest that readers who are unfamiliar with Cedar should read 
the language section, 2, in some detail, briefly skim the structural overview, 
Sections 3-7, and then read the methodology, Section 8, case studies, Section 9, 
and comparisons, Section 10. Using the glossary on first reading will help define 
unfamiliar terms and locate sections that discuss terms in more detail. A second 
reading of the language and structural overview sections will permit greater 
understanding of the conclusions drawn in Section 11. 

2. THE CEDAR LANGUAGE 

The Cedar language, an extension of Mesa 119, 27, 31, 351, is a strongly typed 
systems implementation language in the ALGOL family. Mesa includes facilities 
for modularization and separate compilation (with full type-checking across 
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module boundaries), lightweight processes and monitors, exception handling, and 
procedure variables. Cedar language extensions retain full type-checking while 
providing automatic storage management and facilities for delaying the binding 
of type information until run-time. In addition, the Cedar language provides 
immutable’ strings, as well as Lisp-like lists and atoms. 

This section presents selected features of the Cedar language. It reviews those 
features inherited from Mesa that strongly influence the structure of the Cedar 
system and describes the features unique to the Cedar language. Throughout this 
paper we use the term “Mesa/Cedar” to refer to the common portion of the two 
languages. The features described here cover the major differences between Cedar 
and Pascal. Other Cedar language details are omitted for brevity. 

2.1 Strong Typing, Interfaces, and Modules 

The Mesa/Cedar language is strongly typed. That is, the type of every value can 
be determined via static analysis. The compiler performs this analysis to ensure 
the type-correctness of all programs. Strong typing allows the compiler to catch 
many common programming errors and to produce efficient code. 

A Mesa/Cedar program consists of a set of separately compiled modules. They 
are of two kinds: interface and implementation modules. An interface module acts 
as a specification for a related set of functions or a data abstraction. It describes 
public data types, procedures, and variables. It can also include definitions of 
opaque types, whose structure and behavior are hidden from the external world. 
An implementation module contains executable statements, provides storage for 
variables, and supplies concrete representations for opaque types. 

For example, suppose that interface module A defines procedure P (that is, A 
specifies the names and types of P’s parameters and results). An implementation 
module that supplies the code for P exports an implementation of P to A. Other 
modules that access A.P must import interface A, these modules are clients of the 
interface A. 

Associated with each running implementation module is a global frame that 
contains storage for its global variables. These global variables act as own 
variables for the procedures defined in a module. It is possible to allocate multiple 
instances of a global frame for a single implementation module. 

The clear separation of interfaces and implementations serves several valuable 
purposes. First, it provides selective information hiding between implementors 
and clients. This permits independent program development and allows multiple 
implementations of the same interface. For example, an implementation can be 
modified to fix bugs or to improve performance without requiring client recom- 
pilation, provided that the modified implementation continues to conform to the 
original interface. Second, it provides the mechanism for intermodule type- 
checking. Interface modules are compiled into symbol tables that are consulted 
when modules are compiled, when they are bound together to form a pro- 
gram, and when they are loaded into the system. The enforcement of strong 

’ Throughout this paper, when we refer to immutable values we mean values that, once created, may 
not be changed. Operations on such values include deleting them entirely (usually through garbage 
collection), examining them, or producing new values by copying all or parts of them. References to 
immutable strings may be passed freely among programs without danger that the values observed by 
the original owners will change. 
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I ntetface Implementation Configuration 

Fig. 1. The dependencies among interfaces, implementations, and configurations 
are crucial to modular structure in the Mesa family of languages. An interface is 
depicted as an arrow representing an abstraction. An implementation is depicted 
as a block of code that may export one or more interfaces and that may import 
several interfaces to supply procedures or variables upon which the implementation 
depends. A configuration may also export and import interfaces depending on 
the combination of implementations within the configuration. Many more 
arrangements of imported and exported interfaces are possible than depicted 
in these simple examples. For an example, see the Walnut Voice configurations in 
Figure 7. 

typing across module boundaries permits Mesa/Cedar programmers to make 
extensive changes to large systems with confidence. For example, if the number 
or types of a procedure’s parameters are modified and a module imports an old 
version of the procedure, then the compiler, the binder, or the loader will report 
a type error. 

A separate configuration description specifies how to resolve the imports and 
exports of a collection of implementation modules. Configurations allow flexibil- 
ity in creating a program from alternative implementations of the same interface. 
A configuration can be hierarchical, including within it subconfigurations. Con- 
figurations, like modules, may also import and export interfaces, as shown in 
Figure 1. This provides name scoping for interfaces. The process of combining 
modules based on a configuration description is called binding. Interfaces im- 
ported by a top-level configuration will be resolved during loading. The binding 
mechanisms supported by Cedar are static. Dynamic binding is achieved by using 
procedure variables and a variety of conventions that will be described throughout 
the paper. 

2.2 Lightweight Processes and Monitors 

Mesa/Cedar provides lightweight processes and language support for managing 
them. Lightweight processes are multiple concurrent threads of control that share 
the same address space [12, 27, 301. A lightweight process is entirely represented 
by its current execution state. This state is a chain of procedure activation 
records, each containing the local variables and program counter for a procedure 
invocation that has not yet completed. By contrast, a “heavyweight” process also 
includes management of major resources, such as virtual memory, open tiles, and 
devices [41]. 
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The efficiency of Mesa/Cedar’s processes makes it natural to structure pro- 
grams to reflect their inherent concurrency. A process switch is fast (it takes 
about twice as long as a procedure call-return pair, or approximately 8 microsec- 
onds on a Dorado). 

Monitors [8,24] are a unified mechanism for providing synchronization among 
multiple processes and for protecting shared data. Only one process can execute 
within any procedure of the monitor at a time. If a process discovers that it needs 
additional resources while inside a monitor, it can wait on a condition variable. 
This suspends the process and places it on a waiting list associated with that 
condition variable, after which other processes can enter the monitor. The 
suspended process runs again when the condition is notified or when a timeout 
occurs. 

In situations where a single monitor lock is too restrictive, monitored objects 
allow additional concurrency. By associating a separate monitor lock with each 
object, this alternative permits one process to execute inside the monitor for each 
object instance. 

2.3 Exception Handling 

The exception-handling mechanism provided by the Mesa/Cedar language allows 
the implementation of an abstraction to check preconditions and ensure internal 
consistency efficiently. In addition, its distinguished syntax alerts a reader of the 
program source that an exceptional condition can arise. 

When an exception is raised during the execution of a statement, normal 
execution is suspended and a handler (a special kind of procedure) is invoked, 
The correct handler for a given condition is determined by a combination of 
dynamic and static scoping. The handler is selected by searching backward 
through the call stack of the process for the innermost caller that has supplied a 
handler for the condition. A handler can specify termination or resumption of 
the statement that raised the exception. In the termination case, execution 
continues in the procedure containing the handler, and the later procedures are 
aborted. To give procedures that are about to be aborted in this way an oppor- 
tunity to restore a consistent state, the special exception UNWIND is generated in 
each procedure. For example, a monitor entry procedure typically provides an 
unwind handler to reestablish its monitor invariant. All exceptions that are not 
caught by explicit handlers are caught by the Cedar debugger, leaving the 
suspended execution state intact for examination. 

2.4 Procedure Variables and Support for Object-Style Programming 

Mesa/Cedar procedures can be treated as values. They can be passed as argu- 
ments and saved in variables for later invocation. Procedure variables have a 
variety of important uses, several of which are discussed in more detail in later 
sections. They are also essential to the implementation of object-style program- 
ming, which we define as the representation of program behavior through 
dynamically created objects that specify both the data corresponding to some 
abstraction and the operations that can be performed on or by the objects. 

In the Mesa/Cedar language, an object’s data and the values of procedures that 
implement its operations can be specified together in the same record. As an 
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optimization of this format, objects that have many object instances and many 
operations can be represented by creating an explicit record of procedures for 
each kind of object. A pointer to this procedure record is then included with the 
object instance data. The indirection inherent in this structure permits a form 
of object “classes”: each class shares the same procedure record. It is possible to 
create objects with modified behavior by copying the procedure record and 
replacing a subset of the procedures. However, the Mesa/Cedar language provides 
no formal class inheritance mechanism. 

For a longer discussion of this topic and an instructive example, see Serlet’s 
discussion of object-oriented programming in Cedar [45]. 

2.5 Automatic Storage Management and the Safe Language 

Extensions to the Cedar language provide the basis for automatic storage man- 
agement [42]. These extensions eliminate the following two problems with Mesa’s 
explicitly allocated and deallocated pointers to dynamic storage: 

-The programmer must deallocate a dynamic object at the right time to avoid 
dangling references, in which an (invalid) pointer to an object remains after 
the object has been deallocated, and storage leaks, in which an object becomes 
inaccessible without its storage being deallocated for reuse. 

-Invalid pointers can result from failure to initialize a pointer, from incorrect 
pointer arithmetic, or from explicit violations of the type system through 
improper use of type coercions such as the LOOPHOLE construct. Using an 
invalid pointer to modify memory can destroy program or system data struc- 
tures in ways that are difficult to track down. 

The first problem is solved by automatic storage deallocation, in which garbage 
collection algorithms built into the system take on the responsibility of deallo- 
cating dynamic objects when they are no longer being used. This makes the 
construction of experimental programs significantly less tedious for programmers. 
Furthermore, the structure of the resulting programs is often simpler. Less 
handshaking is required between a client and an abstraction regarding who will 
deallocate a dynamic object, and exception handlers need not be certain to 
deallocate the storage owned by a routine that is being aborted. 

The safe subset of the Cedar language addresses the second problem. The safe 
subset includes a carefully selected subset of the original Mesa language as well 
as the extensions described here. It has been formally demonstrated that even 
erroneous programs written in the safe subset maintain a set of storage invariants 
that ensure the integrity of the storage allocation structures, other system data, 
and all code [38]. The unsafe features that remain outside the safe subset must 
occasionally be used, most often in the lower levels of the system. The additional 
syntax described below provides ample warning that the programmer is respon- 
sible for maintaining the system’s storage invariants. 

Reference types, a new class of pointer types analogous to Pascal’s or Mesa’s 
POINTER types, allow safe access to collectible storage. A reference variable, called 
a REF, holds the address of a collectible object of a specified data type. To help 
ensure that a reference’s value is always valid, the system automatically initializes 
it to NIL. The operator NEW allocates a new collectible object of a specified type, 
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with optional initialization of its contents, and returns a reference to the new 
object. References may be freely copied (by assignment or by procedure parameter 
binding) and discarded (by assigning NIL or by exiting a scope). The system makes 
a region of collectible storage available for further allocation only when no 
references to it remain. 

For example, the declarations 

Node: TYPE = REcom[left, right: FIEF Node, contents: CHAR]; 

root: REF Node; 

declare a new variable root to hold nodes of a binary tree of characters, while the 
statement 

rOOt c NEw[Node c [NIL, NIL, ‘A]]; 

allocates a new collectible object of type Node, initializes its contents field to the 
letter “A”, and stores a reference to the new object in root. 

Procedures are either SAFE or UNSAFE, depending on whether they guarantee to 
maintain the storage invariants. The programmer can let the compiler check that 
a safe procedure uses only safe constructs (a CHECKED block), or may instead 
assert its safety (a TRUSTED block). Code in a CHECKED block cannot be the direct 
cause of a memory smash. In addition to ensuring that only constructs in the 
safe subset are used, the compiler generates tests for illegal memory references, 
such as out-of-range assignments to numeric variables and array index bounds’ 
violations. 

The use of unsafe language constructs is permitted in TRUSTED and 
UNCHECKED blocks. These constructs include the type-escape mechanism 
LOOPHOLE, the original Mesa POINTERS, and address arithmetic. Situations that 
require their use arise most often in low-level system code, such as the low-level 
implementation of data structures and safe storage itself, low-level I/O, and 
unpacking network communication packets. By declaring a block to be TRUSTED, 

the programmer asserts that all uses of unsafe features within the block maintain 
the storage invariants. UNCHECKED blocks carry no programmer warrantees. 

Our use of the term automatic storage management throughout this paper 
denotes both the notational convenience and protection offered by the safe subset 
of the Cedar language, and the set of storage management capabilities that are 
enabled by the allocation and garbage collection methods of the Cedar Safe 
Storage facilities (See Section 5.4). 

2.6 Delayed Type Binding 

Delaying type binding until run-time can provide important program flexibility. 
The original Mesa language offers very limited capabilities for delaying type 
binding. The choice among predeclared alternatives of a variant record may be 
made at run-time, and the lengths of sequences and descriptor-based strings and 
arrays may be specified then. Additional type flexibility in Mesa can only be 
achieved through use of the unsafe type-escape mechanism LOOPHOLE. Cedar 
language extensions for delayed type binding include a generic reference type 
(REF ANY) and a run-time type system. 
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A variable of type REF ANY can take on a value of type FIEF T for any 
type T. However, the actual type of the referenced object must be verified at 
run-time before the object can be examined or modified. Two run-time func- 
tions and some new syntax allow the use of FIEF ANY variables while retaining full 
compile-time type checking. 

The boolean form ISTYPE[X, T] is defined to return TRUE if and only if the actual 
type of the object x is equal to the type T. 

The type transfer form NARROW[X, T] has type T. It is defined to return x (with 
type T) if and only if ISTYPE[X, T] = TRUE. Otherwise it raises a run-time type 
error. The type T can be omitted if it is unambiguously determined by context. 

A special form of SELECT statement (similar to Pascal’s case statement) has 
been defined to ease the use of REF ANY variables. The statement 

WITH V SELECT FROM 

VI: T, => ( (stmflist, ) ); 
vp: T2 => ((stmfiist~)); 

vn: T, => ((stmflist,) 1; 
ENDCASE => {(Sf~thkt,,,)); - -SSSU~eS On/y that V hi% fy/X? REF ANY 

is interpreted as if each arm were written as 

IF V # NIL AND ISTYPE[V, Ti] 
THEN (Vi: Ti + NARROW[V]; (Sf&/&)). 

Because the object referenced by v is known to have a specific type in each arm, 
the arm’s statements are permitted to examine and/or modify the values of 
its fields. 

In addition to generic reference variables, the Cedar language also has generic 
procedure types. A procedure type may use ANY as the type of its formal parameter 
record type and/or result record type. This allows flexibility in specifying a 
procedure parameter or procedure variable. Procedure values with specific do- 
mains and ranges may be widened to these dynamic types, and later tested and 
narrowed analogously to REF ANY. They must be narrowed before being applied. 
The inefficiency of the current implementation of generic procedure values 
prohibits their use for time-critical programming tasks. 

Generic reference types allow procedures to store or pass as parameters objects 
of any reference type and to examine or modify objects of prearranged varying 
types. However, they do not permit procedures to examine or modify objects of 
completely unspecified types-an important capability for debuggers and other 
monitoring tools. To fulfill this need, Cedar provides a run-time type system to 
manipulate the run-time representations of types. (The type of each statically 
allocated object can be discovered by consulting the appropriate symbol tables, 
and a type tag is stored with each collectible object. Parts of these data structures 
are also needed at run-time to support the garbage collector’s reference counting.) 
In the current implementation these functions are too slow to compensate for 
the absence of full polymorphism in the language, which would permit values of 
type TYPE to be passed as parameters and stored in variables. Further discussion 
of the run-time type system, which is included in the Abstract Machine compo- 
nent of the Cedar system, can be found in Section 6.4, Abstract Machine. 
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2.7 Rope, Atom, and List Types 

Several other flexible data types based on references have been introduced 
into Cedar. Notable among them are a variable-length immutable text- 
string type (known as a ROPE), a variable-length linked-list type (LIST), and 
atoms (ATOM). 

An instance of a ROPE is an immutable collectible sequence of characters. 
Because ropes are immutable, the sequence of characters denoted by a given rope 
never changes; that is, every operation creates a new rope. As a result, ropes can 
be safely shared between programs without concern for storage ownership or 
synchronization. The rope interface provides a large set of useful operations on 
ropes, including rope concatenation, rope comparison, subrope extraction, and 
rope scanning. For efficiency, the standard implementation of ROPE represents a 
rope as a directed acyclic graph with heuristics that attempt to limit its depth. 
Therefore most rope concatenation and subrope extraction operations can be 
performed by manipulating small numbers of these structures rather than copying 
large numbers of characters. A client can provide a customized implementation 
of ROPE by implementing a small set of basic operations on the new representa- 
tion. The combination of convenience and efficiency of Cedar ropes have led to 
their widespread use at all levels of the system. 

The Cedar language has a new type constructor, LIST OF, to declare singly 
linked lists whose elements are all of the same type. The type definition 

L: TYPE = LIST OF T; 

is equivalent to the set of recursive type definitions 

L: TYPE = REF N; 
N: TYPE = RECORD [first: T, rest: L]; 

where N is a “private” name. The record fields first and rest provide the 
functionality of Lisp CAR and CDR. 

The list constructor CONS adds a new element to the beginning of a list. A 
series of coNses can be abbreviated using the LIST function. For example, to 
declare a list of ropes, initialize its value, and then add a new element, one could 
write 

colors: LIST OF ROPE t ~s~[“red”, “yellow”, “blue”] 

COlOrS t CONS[” white”, COlOrS]; - -CO/O/~ = LIST[” White”, “fed”, “ye//OW”, “b/Ue”] 

A list assignment copies the reference rather than the entire structure. As a 
result, safety considerations require that a LIST OF REF ANY must have limited 
assignment compatibility.’ Suppose that variable lora has type LIST OF REF ANY 

and variable lort has type LIST OF REF T. The assignment lora c- lort is illegal, 
because it creates a potential aliasing problem. That is, new elements of other 
types could then be added to lora and accessed through lot?. This storage mistyping 
would represent violation of the storage invariants. 
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Cedar’s atoms are uniquely addressed values in a global name space, much like 
Lisp atoms. They can be located by their client-assigned names, decorated with 
property lists, and compared for equality using a simple pointer test. 

2.8 Language Shortfalls 

Automatic storage management for a strongly typed language and the flexibility 
offered by Cedar’s new reference data types have worked well. However, the 
initial design for the Cedar language included several items that are as yet 
unimplemented. Among these are a formal subclassing mechanism for objects; 
true polymorphism, which would allow variables of type TYPE; retained frames, 
which would eliminate restrictions on storing nested procedure values; and a 
canonical representation of programs that would allow programs as data. 

3. STRUCTURAL OVERVIEW OF CEDAR 

This section presents the concepts and methods used in structuring the Cedar 
environment as a collection of components that are arranged in layers. The open 
operating-system architecture developed for the Alto system has had a significant 
influence on Cedar. Several concepts underlying the structure of Cedar are 
presented, as well as the philosophies that guided its development. The contri- 
butions of existing programming environments for Mesa, Interlisp, and Smalltalk 
are discussed. Finally, the four layers of the Cedar system are introduced. 

3.1 Cedar as an Open Operating System 

The description of the Alto/BCPL system by Lampson and Sproull [29] defines 
the closed/open terminology as it is used in this paper. 

A closed operating system has memory protection, generally in the form of 
hardware support, which provides separate address spaces for the operating 
system routines and for each user application. The operating system supplies 
user programs with special methods for invoking a fixed set of operations. The 
routines that implement these operations, unless they are also explicitly exported 
as system operations, are not available directly to client programs. This organi- 
zation is typical of conventional multiuser operating systems. 

An open operating system is simply a collection of program modules (containing 
sets of related procedures) that share the machine’s single address space. The 
structure of the resulting system is determined by policies for organizing, loading, 
and running these modules. The policies may be imposed by convention or 
enforced by the system or the programming language. 

The structure of the proposed programming environment and the relationship 
of its components to one another did not arise explicitly in the deliberations that 
led to Cedar. Rather, the open style is particularly well suited to the hardware 
architecture of the Dorado and Dandelion processors. The single, unsegmented 
address space of this architecture makes reliable and effective implementation of 
a closed-style system difficult. The need to support an integrated, interactive 
environment for a single user also favored this approach. Thus, an open operating 
system modeled on earlier BCPL- and Mesa-based systems for Xerox processors 
was a natural choice as a basis for building Cedar. 
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AS the implementation of Cedar progressed, considerable effort was devoted 
both to refining the policies for structuring it and to producing the specific 
detailed organization of its components. As a result, Cedar’s structure itself has 
emerged as an important aspect of the system. Furthermore, the viability of this 
structure has been enhanced by features inherited or borrowed from Cedar’s 
Mesa forerunners, from other successful interactive environments (notably Lisp 
and Smalltalk), and from other parts of Cedar. 

3.2 Structuring Methodologies in Cedar 

The evolution of Cedar from its Alto/Mesa roots has been relatively continuous. 
By the time of the Cedar 4.0 release in March of 1983, the basic organization of 
the system, as well as the methods and rules for maintaining the organization, 
were well established. The concepts underlying Cedar’s structure can be sum- 
marized in the following points: 

-Operating system routines can be called as ordinary Cedar language procedures. 
There is no sharp boundary between client programs and system routines. 

-The components of Cedar are carefully arranged into layers. Higher level layers 
are built on the capabilities of lower level ones. 

-The components in one layer may only call procedures located in the same or 
lower layers (except in a manner treated in the next paragraph). This restric- 
tion is enforced only by convention. Violations can result in system failure due 
to an attempt to invoke a procedure in a component that has not yet been 
loaded or initialized. 

-Once initialization is complete, a component can supply a procedure value as 
the parameter to a lower level service procedure. The service procedure can 
later invoke the supplied procedure to obtain information, to report state 
changes, or otherwise to communicate with the higher level component. This 
method, which will be further refined below and in Section 8, Methodologies, 
provides a restricted form of what Clark calls “upcalls” [ 121. 

-This structure differs from the virtual machine concept, in which each level of 
a system is implemented entirely in terms of the abstractions provided by the 
next-lower one. The difference is that in an open operating system the lower 
level modules remain directly available to clients at all higher levels. An 
application can generally choose to use components from any level or to replace 
them with custom-built components (which can still use the standard lower 
level components). 

Without violating these principles, the challenge was to assign components to 
layers in the most effective way. A number of potentially conflicting objectives 
guided the organization of Cedar: 

-The components located lowest in the structure should have the fewest de- 
pendencies on other components, so that there need not be violations of the 
policies prohibiting calls to higher levels. 

-For the same reason, there should be no “loops” (mutual dependencies) among 
components. Note that “loops” between interfaces make consistent compi- 
lation impossible, so they are effectively prohibited by the language. The 
observation here is that mutual dependencies between implementations also 
lead to difficulties in managing and understanding the system. Of course, loops 
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that arise due to upcalls to procedures supplied dynamically by higher level 
clients can be quite useful, and have not proven troublesome. 

-The components located lowest in the structure should provide the most 
important and widely used facilities needed by other software. 

-Subject to the above objectives, components should occupy positions as high 
in the structure as possible. This makes them easier to develop, maintain, and 
replace, and allows them to use more of the system’s capabilities. 

Ideally, then, the components with the fewest dependencies must also be the 
most widely needed ones, or these objectives will conflict with each other. 
Fortunately, in recent versions of Cedar (beginning with Cedar 5.0), these 
objectives appear to have been met particularly well. A rewrite of Cedar’s virtual 
memory, storage allocation, disk, formatted input/output, file, and directory 
packages for that release eliminated many of the undesirable dependencies. At 
the same time, the number of components that could make full use of these 
important facilities was increased. Dynamically bound upward calls were em- 
ployed to eliminate some of the loops. 

Occasionally, a component was found that appeared to require placement lower 
in the structure than its dependence on other components would permit. Closer 
examination usually revealed that the component could be separated into a high- 
level part, such as one or more display-based or command-style user interfaces, 
and a lower level package providing a set of functions through a well-defined 
Cedar language interface. Although the package had to be located fairly low in 
the structure, perhaps because its services were also needed by other low-level 
components, the user interfaces could be moved much higher, where they could 
use a richer set of packages. Section 8.2 expands upon this philosophy of “build 
packages, then tools” and its implications for integrated program development. 

We have not developed any objective measure of the quality of a particular 
component organization. Subjectively, there is considerable satisfaction with the 
current organization. The sections that follow describe this organization in 
sufficient detail for the reader to evaluate these claims. 

3.3 Influences of the Mesa/Cedar Language 

Alto BCPL was a useful open operating system, but it had many shortcomings. 
BCPL is a typeless language that provides many opportunities for errors that 
the Mesa/Cedar type system can prevent. Mesa/Cedar’s strong type-checking 
has demonstrably improved the reliability and the ease of development of 
programs produced for Xerox processors [ 191. 

Mesa/Cedar’s interfaces are very useful in describing and delimiting the 
capabilities supplied by a particular system component. Further, configurations 
provide a concrete way to describe components within the language and to 
identify the interfaces that each component implements. With configurations, 
one can also use private copies of standard system components without fear of 
the name conflicts and undetected binding errors that could arise in the Alto 
BCPL world. As we will see in Section 8.7, Program Development, tools such 
as the Tioga editor and the Viewers window package can even be used for 
testing and debugging their successors, through judicious use of configuration 
descriptions. 
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Interfaces and configurations do not provide a complete descriptive technique 
for the structure of Cedar. Export lists identify the public and private interfaces 
of a component, but there is no provision for enforcing the restriction against 
statically bound upward calls. 

A shortcoming common to both Mesa and Cedar language implementations 
has led to restrictions in the use of some procedure values. A nested procedure N 
(one declared within the scope of another procedure P) can be passed as a 
parameter to procedure X, but X cannot save the procedure value N for later 
invocation. This is illegal because P’s activation record, which provides the 
context for the nested procedure, is not retained beyond the lifetime of P’s 
invocation. Instead, X must invoke N directly as part of its operation. A procedure 
value that is used in this way, whether nested or not, is known as a call-back 
procedure. 

A nonnested procedure R can also be passed to a procedure Y whose purpose 
is to save R’s value for later invocation. A procedure value that is used in this 
way is known as a registered procedure, and Y is often referred to as a registration 
procedure. 

Both call-back and registered procedures can be used to accomplish upward 
calling, which is often helpful in the orderly structuring of the system. Examples 
of both kinds of procedures appear repeatedly in Sections 5, Nucleus, 6, Life 
Support, and 8, Methodologies. 

Cedar’s lightweight processes, first introduced in the Mesa system, are impor- 
tant to the success of the open operating system style. Processes are not 
responsible for memory protection, storage management, or address space man- 
agement. The execution point of a process is therefore free to move from one 
system level to another, relying only upon the semantics of ordinary Cedar 
procedure calls. Processes may preempt each other at any time (subject to the 
protection and synchronization provided by monitors [27]), so that high-priority 
processes may receive rapid service. Time-slice scheduling algorithms divide the 
processor fairly among processes at the same level, without cluttering client 
programs with explicit synchronization code. 

3.4 Contributions from Interlisp and Smalltalk 

Cedar’s primary contribution to the evolution of open operating system organi- 
zation is automatic storage management in a strongly typed language. None of 
Cedar’s predecessors is immune to catastrophic damage or eventually fatal storage 
leaks that result from improper pointer management-the kinds of unrecoverable 
mishaps that traditional closed operating systems were designed to protect 
against. Although closed operating systems confine such damage to the process 
or job that causes it, Cedar’s aim is to prevent the damage entirely, through its 
combination of compile-time and run-time tests. These methods are known to 
work well in Lisp and Smalltalk implementations. Admittedly, storage leaks, 
while infrequent, can still occur even in the safe subset of Cedar (see the 
discussion of cyclic data structures in Section 5.4, Safe Storage). 

The elimination of concern about the ownership of collectible objects has 
improved the convenience and reliability of communications between system 
layers, both downward and upward, through call-back and registered procedures. 
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Fig. 2. The structural overview of Cedar. 

In Cedar, the automatic storage management operations are atomic with 
respect to all but the highest priority processes (which are not permitted to 
invoke these operations). Thus, the powerful preemptive-process capabilities of 
Mesa have been preserved in Cedar without threatening the system’s storage 
invariants. 

3.5 Structural Organization of Cedar 

Figure 2 presents a structural view of Cedar, as a set of major levels each 
comprising a set of layered components. Following the methodology developed 
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in this section, each component is built upon abstractions supplied by components 
lower in the structure. The figure was designed to express the orderings and 
dependencies among the components. A component C appears directly above 
another component D if and only if C uses the facilities of D directly. Block areas 
imply neither the relative importance nor the relative sizes of the components 
they represent. The irregular and rather riotous collections of shapes and com- 
ponent positions in each layer are intended to depict Cedar as a system under 
control but in a state of constant growth and evolution. (Alan Perlis has referred 
to systems with this sort of character as “organithms” [39].) Note that only a 
representative selection of Applications components is shown. 

The four major Cedar layers are the Cedar Machine-hardware, microcode, 
and primitives needed to execute the language; the Nucleus-the operating 
system kernel; Life Support-the basic facilities needed for program develop- 
ment; and Applications-packages and tools written by and for the Cedar user 
community. 

Sections 4 through 7 follow the organization of Figure 2 (from bottom to top) 
to present an overview of the major components of each of the four Cedar layers, 
emphasizing the lower three. This overview provides the factual basis for further 
discussion of how improvements in programming productivity, integration, soft- 
ware quality, and program development methodology are achieved in Cedar. 

4. THE CEDAR MACHINE 

The Cedar Machine includes the hardware, the microcode, and the primitives 
needed to execute the Cedar language. 

4.1 Workstation Hardware 

The Cedar programming environment runs on the family of Xerox Scientific 
Workstations, which includes the Dorado [26] and the Dandelion [25]. The 
Dorado is a high-performance personal workstation with 16-bit words, a 
cached virtual memory with a single, large virtual address space (24 bits, 
word-addressed), and up to 32 megabytes of physical memory (typically 4 to 
16 megabytes). The writeable microstore allows customized instruction sets 
for different languages and environments (Cedar, Smalltalk, and Interlisp). 
Input/output devices include a large (1024 X 808 pixels) high-resolution bit- 
mapped black-and-white display, a keyboard, a mouse pointing device, and an 
Ethernet interface. A color display can be added using a frame buffer in work- 
station memory. A typical personal workstation has a local disk of 80 megabytes 
or 315 megabytes, while servers can support up to four disks. 

Cedar language interfaces are provided all the way down to the hardware. The 
processor, clock, and all I/O devices have Cedar language interfaces that may be 
used by other Cedar programs. 

Cedar workstations operate in the Xerox Research Internet environment, 
which includes database and file servers, shared printers, name authentication 
servers, and distributed electronic mail services [3, 6, 9, 341. 

4.2 Microcode 

The Cedar microcode implements an extension of the Mesa machine architecture 
[25], which was designed to execute Algol-like languages efficiently. Two factors 
combine to produce exceptionally compact representations of programs: a stack 
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machine architecture, which allows zero-address instructions, and variable length 
byte-coded instructions, whose encodings are based upon an analysis of static 
instruction frequencies in existing compiled Mesa programs [48]. A compact 
program representation saves storage space and contributes to faster execution. 
The increased locality of a smaller program can reduce cache misses and page 
faults. In addition, the architecture allows for interleaved execution of several 
hundred processes. Microcoded instructions directly support a number of the 
important features of Cedar, among them: 

-rapid allocation of activation records from a heap rather than a stack; 
-powerful control transfer disciplines that accommodate coroutine and process- 

switching transfers in addition to conventional procedure calls; 
-reference-counted store instructions that are vital to the efficient implemen- 

tation of Cedar’s garbage collection algorithms; 
-direct linkages to fault and exception handlers that are implemented as 

ordinary Cedar procedures. 

The fault and exception handlers manage arithmetic exceptions, machine 
failures, virtual memory faults, programmed traps, and memory references that 
would violate the storage invariants that support Cedar’s automatic storage 
management. The routine that handles programmed traps provides low-level 
support for breakpoint and program-tracing activities (see Section 6.4, Abstract 
A4uchine). 

Other microcoded routines implement the primitive operations for communi- 
cating with input/output facilities. 

4.3 Run-Time Support 

All Cedar programming is done using the Cedar language. There are no assembly 
language routines. The machine hardware, microcode, and low-level run-time 
support combine to form a virtual machine well suited to the efficient execution 
of Cedar programs. 

Low-level routines and data structure definitions provide a Cedar language 
interface to the microcoded processor architecture. Although this component is 
not written in the safe language, its interfaces are asserted to be safe. Hence, 
higher level software can be written in the safe subset of the Cedar language and 
freely use the facilities of run-time support. 

5. THE NUCLEUS LAYER 

The Cedar Nucleus contains the basic operating system facilities needed for 
storage management, process management, file system management, and com- 
munications with the user and the outside world. 

5.1 Device Drivers 

Cedar has borrowed from the Xerox Pilot system [40] the notion of abstract 
device interfaces. Corresponding implementations on each processor for each 
specific device type extend the virtual machine defined by the microcode to 
include the peripherals as well. For example, Cedar provides an interface defining 
the abstract behavior of disk storage devices. There are several disk device 
drivers, one for each type of device, that implement this abstract disk interface. 
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The Disk component described below can be programmed in terms of this abstract 
disk interface, without detailed knowledge of the peculiarities of different kinds 
of physical drives. 

5.2 Disk 

The Disk component provides shared access to disk storage on the workstation. 
It provides low-level facilities for investigating the state and configuration of 
each drive and for performing page-level input/output operations between 
specified disk addresses and virtual memory locations. Clients of the Disk 
component must ensure that virtual memory buffers have physical memory 
allocated to them. 

5.3 Virtual Memory (VM) 

The Cedar virtual memory (VM) differs in philosophy from its most recent 
ancestor, Pilot [40]. Pilot was designed for processors that had relatively small 
physical memories and disk capacities. This required a space-efficient but com- 
plex implementation based on mapping regions of virtual memory to named disk 
files. Cedar, intended for larger machines, has been able to abandon this approach 
in favor of a simpler, more time-efficient scheme. Cedar represents virtual 
memory as a single backing file, employing a resident page map. (Recall that 
Cedar has a single virtual address space.) VM retains only one history bit per 
page and uses simple algorithms for page replacement. Experience has shown 
that these parameters provide adequate performance. 

VM also permits higher level clients to ensure temporarily that a region of 
virtual memory has physical memory allocated to it, so that components at levels 
lower than VM can deal with memory through virtual addresses without incurring 
page faults. Using this mechanism, input/output buffers and the frame buffer for 
the color display are fixed in physical memory as needed. 

Cedar file input/output is accomplished by explicit operations, rather than by 
VM mapping actions as they were in Pilot. The resulting performance improve- 
ments, both for code swapping and for file access, have been significant. Perhaps 
more importantly, this design permits the virtual memory implementation to 
occupy a position quite low in the Cedar level structure. Only the Cedar machine 
implementation and the VM implementation itself need to deal with physical 
memory addresses. Thus almost all of the Cedar system can operate in the virtual 
memory environment. 

Most of the virtual memory package is interrupt-driven, responding to page 
faults immediately as they occur. One exception is the laundry process, an 
optimization that writes dirty pages to disk before the memory is actually needed. 
While the operation of the laundry process is not necessary for system integrity, 
it is critical for system performance. The laundry process becomes aggressive 
about cleaning memory only during times of high page-fault activity. 

5.4 Safe Storage 

The extensions to the Cedar language for automatic storage management are 
supported by the runtime type system described in Section 6.4, Abstract Machine, 
a storage allocator (implementing the NEW operator), and a combination of 
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garbage collection techniques. The allocator and garbage collection methods are 
supplied by the Safe Storage component. 

The allocator stores a run-time type tag in each new object. These tags index 
run-time data structures that the garbage collectors use to locate embedded 
references. The garbage collection algorithms were derived from earlier designs 
by Deutsch and Bobrow [ 141. A full description of the revised algorithms appears 
in Rovner’s recent paper [42]. 

An incremental garbage collector runs at frequent intervals, triggered by 
specific elapsed-time or memory utilization criteria. It operates as a background 
process with little interference during normal system operation. The incremental 
collector takes a synchronous snapshot of key system data such as the activation 
records and then processes the snapshot at its leisure. The manipulation of 
collectible objects is prevented only during the snapshot, which takes about 12 
milliseconds on a Dorado. The incremental collector is able to reclaim most of 
the storage objects that are no longer referenced, using information obtained 
from reference counts and examination of current activation records. The refer- 
ence counts of collectible objects are not adjusted when they are assigned to local 
variables. Instead it is assumed that any reference found in an activation record 
is valid (that is, the corresponding object must be retained), even if the object’s 
reference count is zero. This is an important optimization, considerably reducing 
the expense of reference counting. 

A further optimization, called the conseruatiue scan, reduces the execution time 
and complexity of the incremental garbage collector. The conservative scan treats 
all activation record values that happen to denote addresses of collectible objects 
as if they were valid references to those objects. For example, some bit patterns 
for large integer values appear to be references to objects. As a result, some 
unreferenced objects may be retained. 

The incremental collector cannot detect cyclic data structures, such as those 
generated by two-way linked lists or certain queue implementations. Programs 
can explicitly break cycles when they determine that such data structures are no 
longer needed. In addition, a conventional, preemptive trace-and-sweep garbage 
collection algorithm has been included to reclaim such structures. The trace-and- 
sweep collector reclaims essentially all unreferenced storage (it also uses the 
conservative scan), but monopolizes the machine for between twenty seconds 
and several minutes during the process. Servers or other programs that need to 
remain available for long periods of time without danger of storage leakage can 
invoke the trace-and-sweep collector directly. Users may also invoke it manually. 
Performance monitoring tools exist to understand the use of objects and to locate 
cyclic data structures (see Section 7.1, Performance Measurement Tools). 

A package that creates objects of a given type can also specify finalization code 
to be executed when an object of that type becomes inaccessible outside the 
package. The finalization code is free to examine the object and perform any 
final operations such as removing the object from a cache, releasing a virtual 
memory buffer associated with the object, or breaking the circularity of a 
data structure to permit additional reclamations by the incremental collector. 
Because the collectors that trigger finalization use the conservative scan, the 
finalization of an object has a very high probability of occurring but cannot 
be guaranteed. 
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5.5 File 

The local file system underlying Cedar is straightforward. It manages the config- 
uration of one or more physical disk volumes and their subdivision into logical 
volumes. Within logical volumes, it manages the page-level allocation, deletion, 
reading, and writing of disk files. The file structuring methods borrow heavily 
from earlier Xerox systems [29,40]. In particular, redundant information stored 
with each file page permits recovery if portions of tiles or directories are damaged. 
Only primitive file-level locking facilities are provided, permitting simultaneous 
access to either many readers or one writer. 

The File component does not include a directory implementation, leaving that 
up to higher levels in the hierarchy. Instead, the file-creation procedures return 
unique identifiers that clients can use to locate the files later. Different clients 
may choose their own directory organizations for their files, but most choose to 
use the standard directory implementation. The Cedar file system and Alpine, a 
transaction-based file server, are major clients of the File component. 

5.6 File System (FS) 

The Cedar workstation file management and directory package [44] supports the 
appearance of a uniform file naming space, spanning the user’s local disk and 
the set of shared file servers available through the attached communications 
network. The concepts of naming and storage are separate, though often related. 
File names can represent either local files, where the only copy of the file resides 
on the workstation’s disk, or attached files, where the file name is a symbolic 
path name to a remote file. Read-only copies of entire remote files are retrieved 
and cached as needed on the local disk. FS provides these facilities by maintaining 
a local file name table and a remote file cache table describing the contents of the 
local disk. 

The local file name table, which is implemented as a B-Tree [l] for efficiency 
of access, provides a local, hierarchical name space for files. Arbitrary nested 
directory structures can be expressed as subdirectories of the single root directory. 
Entries in the local name directory may be either local files or attached files. 
Thus, a subdirectory can be created that describes a complete system or set of 
related tools consisting of a combination of local and remote files. 

The remote file cache table organizes the set of remote files for which local 
copies exist. Files may be referenced via attachments, which are listed in the 
local file name table, or via full symbolic path names. Because files are only 
copied to the cache when they are needed, often only a small ‘subset of the files 
indicated by attachments will actually be cached. Disk space is managed auto- 
matically by flushing the least-recently-used copies of remote files from the cache 
when additional space is needed. Cache entries refer to specific versions of remote 
files by name and creation time. 

The server part of a file name may be either a real server name or a logical 
server name. A logical server is a mapping of a logical server name to a single 
write server and a set of read servers. The idea is to write to the single write 
server, but to permit reading from any of the read servers, both to distribute the 
load among the servers and to provide alternatives when a server fails. This 
requires the replication of important directories on several physical servers. 
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Replication of updates is not entirely automatic, but one can invoke maintenance 
procedures periodically to propagate the updates. 

The current Cedar file servers prohibit symmetric treatment of remote tile 
reads and writes. Therefore, FS will not accept a request to open a remotely 
named file for writing. Instead, the file must first be written locally, entering its 
name in the local directory. A special FS copy routine may then be invoked to 
create a new remote copy and replace the local directory reference with an 
attachment to the remote file. We will return to this subject in the version and 
release management discussion of Section 6.11, DF Package. 

5.7 Input/Output Streams (IO) 

The IO interface defines an object type called a STREAM. Conceptually, a STREAM 

is a sequence of items, such as bytes, characters, or records. The IO interface 
defines generic procedures for creating and using STREAM objects, including useful 
input scanning and output formatting routines. Cedar contains over a dozen 
specific implementations of the STREAM class supporting several sources and 
destinations, among them disk files, the keyboard and display, the Ethernet, and 
pipes.3 

The STREAM is a flexible and widely used data type. It is easy to define 
specialized streams for specific applications. Programs that read and write 
streams can be written without explicit knowledge of the source or destination 
media. 

5.8 Communications 

Network communications require substantial software support beyond the low- 
level device drivers. Cedar includes a complete implementation of the experimen- 
tal Pup internetwork protocols described by Boggs et al. [6]. Lower levels of the 
Pup package provide a basic datagram (packet-level) service. Higher levels 
implement asynchronous terminal emulation, a file transfer protocol, a remote 
procedure call facility, a byte stream protocol, and a range of information utilities 
such as time and name lookup services. 

Of the higher level protocols, the most important for new Cedar applications 
is the communications support for remote procedure calls (RPC). Ordinary calls 
to procedures through specified interfaces execute on remote machines, returning 
any results to the caller as usual. The implementation is based on stub routines 
that field the client’s calls locally. A stub routine composes procedure parameters 
into data packets, handles the reliable communication of requests to the remote 
site, and later removes any result values from incoming packets for return to the 
caller. Corresponding stub routines at the remote site reconstruct the parameters, 
complete the linkage to the actual procedure implementations, and compose the 
results into packets. 

RPC includes facilities for dynamic binding. Clients can specify a service or 
machine to which an interface is to be bound (dynamic import), and servers can 
dynamically make remote interfaces available (dynamic export). The Cedar RPC 

3 Pipes provide the buffering and synchronization needed to connect an output stream from one 
process directly to the input stream of another [41]. 
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package, described by Birrell and Nelson [4], performs two additional functions: 
it automatically constructs both sets of stub routines from the interface defini- 
tions, and it provides the underlying algorithms that complete the calls reliably, 
efficiently, and securely (using optional DES encryption [36] techniques). Cedar 
RPC builds its protocols directly on the datagram level of the Pup package. 

To date, we have produced three major Cedar systems that use RPC for all 
their communications: a transaction-based file server, an experimental telephone 
and voice annotation service, and a “Compute Server.” All three are described 
further in Section 7, Applications. Furthermore, implementations of RPC for 
other languages and programming environments are beginning to extend the 
range of services that Cedar applications can provide or use. 

5.9 Terminal 

Most Cedar applications are content with the higher level display-management 
and user input facilities supplied by Viewers and TIP (Sections 6.6 and 6.3). 
However, more radical applications may need to use the display or input devices 
in a conflicting way-to try out a new window package, for example. The Terminal 
interface provides a clean abstraction to the display, keyboard, and mouse. There 
may be several instances of Terminal, each with its own full-display bitmap and 
optional color frame-buffer display memory. Operations are available to switch 
the use of the physical hardware (and thus the entire contents of the display 
memory) among the Terminal instances. The standard Cedar display is obtained 
through the use of just one Terminal instance. Another Terminal instance is 
employed to drive a much simpler user interface while the system is being loaded. 

5.10 Running Programs 

This section describes the components that are responsible for initializing the 
system, loading programs, and saving copies of the running system at interesting 
checkpoints. The methodologies that have been developed to construct a useful 
environment using these components are discussed in Section 8, Methodologies. 

A Cedar boot file is a compact representation of a set of code and data segments, 
assigning each segment to some locations in virtual memory. The boot file 
specifies the virtual memory map so that physical memory can be initialized 
when the boot file is run. It also specifies an initial execution context (program 
counter, process, and activation record). 

The germ, a self-contained program, loads and starts a boot file, and performs 
other activities that need to be performed when very little is running and when 
few amenities are available. The germ is small and simple enough to be fetched 
from the local disk or the Ethernet, installed in memory, and started by the 
primitive bootstrap capabilities of the host machine’s hardware and microcode. 

The loader is responsible for loading and starting program components during 
normal system operation. It first assigns a component to virtual memory locations 
and copies its code segments to the assigned locations. It searches a global symbol 
table known as the load state to locate bindings for the interfaces that the 
component imports, then records in the load state the interfaces that are exported 
by the component (for use in satisfying the import needs of programs that are 
loaded later). Interfaces supplied by a new version of a component supercede 
older versions, although in the present system existing bindings are not broken. 
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This binding process is a simplified version of the methods employed by the 
Cedar binder to produce configurations from configuration descriptions (see 
Sections 2.1, Modules and 6.8, Compiler and Binder). Finally, the loader executes 
the initialization code for the component. 

At any time the user may invoke a command that stops the system and creates 
a checkpoint file, whose form is the same as a boot file. A checkpoint file captures 
the state of all active virtual memory, producing a system image that includes 
running code, activation records, global frames, and other active data. This data 
includes the display bitmaps, so a checkpoint captures the visible system state 
as well as the internal state. It does not record the state of files, directories, or 
other I/O devices. In order to leave the programs managing these and other 
external values in a clean state at the time of the checkpoint, programs may 
register cleanup procedures that will be executed just before the checkpoint file 
is produced. 

To use a checkpoint, one boots the system from a checkpoint file instead of a 
boot file. This rollback operation restores the memory configuration of the 
processor to its earlier state. It then calls another set of registered procedures, 
which will check the state of the external environment and reverse the effects of 
the checkpoint cleanup procedures. 

5.11 Discussion of the Nucleus Structure 

Components of the Nucleus that do not have access to the basic memory 
management facilities provided by VM and Safe Storage are at a significant 
disadvantage. They must be very carefully written, and they are often very 
difficult to understand or change. Such components should therefore be located 
as low in the structure as possible. Since the redesign of low-level components 
that occurred during the Cedar 5.0 release in late 1983, the only component above 
the Cedar Machine that does not use virtual memory is the virtual memory (VM) 
implementation itself. Even device drivers and the Disk package, which are 
located below VM, can address their resident memory buffers using virtual 
memory addresses supplied to them by higher level initialization routines. VM is 
so low in the structure that it cannot even find for itself the disk file used to 
back up memory. During Cedar initialization, the File package is used to inform 
VM of the backing file location. The simple design of VM makes this possible 
because neither file directories nor file concepts are required to get VM to work. 

Safe Storage resides just above VM, having been placed much lower in the 
structure than was possible in the earlier Pilot-based versions of Cedar. Because 
of this nearly all of the system components are written in the safe subset of the 
Cedar language, and therefore can benefit from the increased reliability and 
convenience that automatic storage management provides. The location of Safe 
Storage also enables most programs to use the Cedar data types that depend on 
collectible storage, including ROPE, ATOM, LIST, and STREAM. 

In earlier Cedar systems, parts of the IO package had to be located above the 
Abstract Machine (described in Section 6.4), because IO needed some of the 
Abstract Machine’s advanced features, such as the ability to print symbolically 
the value of a FIEF ANY. This was unfortunate, since the simpler features of IO 
were widely used. In Cedar 5.0, IO was moved to its present position in the 
Nucleus by arranging for the Abstract Machine implementation to supply the 
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advanced features as registered procedures. It is necessary for components located 
between IO and the Abstract Machine to avoid using the advanced features until 
the Abstract Machine has been initialized. 

There are problems associated with moving programs to lower positions in the 
hierarchy. One such problem is that the debugging and error handling tools 
depend upon much of the system (including at least the Abstract Machine, FS, 
File, Safe Storage, Imager, Viewers, and Tioga). Local debugging for these 
packages is delicate, so the arm’s length debugging techniques described in 
Section 8.4, Installing and Debugging Programs, must often be used when working 
in this region. 

The placement of other components in the Nucleus and Life Support layers 
follow similar reasoning based on the structural objectives stated above. Facilities 
such as the Tioga editor appear within Life Support at levels that might seem 
surprisingly low, until one realizes their central importance in the implementation 
of most Cedar user interfaces. 

At the higher levels the applications are not as tightly interrelated, and the 
precise layering is not as important. The main problem at these levels is to find 
an acceptable initialization order for interrelated programs, or to connect them 
in such a way that the initialization order does not matter. 

6. THE LIFE SUPPORT LAYER 

The Life Support layer includes most of the standard program development tools 
in the Cedar environment. In fact, the name Life Support evolved from the 
notion of a minimal set of tools needed to provide a complete development 
environment for a new Cedar release. Many of the Life Support components are 
quite large, providing functions directly to Cedar users or applications program- 
mers, and in this sense they resemble applications more than operating system 
components. Life Support includes components for the Cedar user interface, such 
as a display manager, a text editor, command and expression interpreters as well 
as components for software development and management. 

Cedar programmers tend to write their packages, when appropriate, so that 
the packages can be used in three ways: via a client program interface, via the 
command interpreter (see Section 6.9), and via a viewer-based user interface 
(also known as a display-based interface). The point is that the full functionality 
of the package should be made available through the client program interface, 
rather than hidden under a command or viewer-based user interface (see Section 
8.2, Tools and Packages). Of course, in some packages it only makes sense to 
provide a client program interface. 

From the Life Support level on up, it is relatively easy to experiment with 
alternative components, either by replacing existing components with variants 
or simply by including the alternatives in private configurations and ignoring the 
system-provided components. A more complete discussion of these techniques 
appears in Sections 8.4, Installing and Debugging Programs, and 8.7, Program 
Development. 

6.1 Useful Packages 

During the development of Cedar, many generally useful packages have been 
produced. Examples include packages for sorting arbitrary values, maintaining 
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symbol tables, and managing a registry of commands. A library of well-designed 
packages can reduce the need to reimplement common methods for each appli- 
cation. Improved reliability and performance are often side benefits. These 
packages have been collected as Cedar components in the Life Support layer, low 
enough in the Cedar structure that they can be used by as many components as 
possible. 

There are several standard symbol table packages in Cedar. A SymTub imple- 
ments a simple one-level symbol table, mapping ropes to FIEF ANY values. Atoms 
provide a kind of global one-level symbol table, but a SymTab allows one to limit 
the scope of names. A RefTab provides a table and operations with the same 
semantics as SymTabs, except that the keys are also REF ANY values. 
Neither Reffabs nor SymTabs assume any ordering among the keys whose 
values they store. When such an ordering is important, one may choose to use 
a RedBlackTree data structure [21] instead. 

The Real package implements a library of numeric algorithms conforming to 
the IEEE single-precision floating-point standard. The package is compatible 
with the microcoded REAL operations, which also are implemented to the IEEE 
specification [23]. The Random package generates pseudorandom 32-bit integers 
on request, beginning with a seed that is derived from the system clock or a 
client-supplied value. 

The Commander package is a general registry for user commands. Applications 
that wish to be driven by simple commands, each composed of a verb with 
parameters, may register command names and the procedures that implement 
them. The intent is that tools, including but not limited to the Cedar Command 
Tool (see Section 6.9), will accept user commands and interpret them by con- 
sulting the Commander registry to locate command procedures. The Commander 
is located at a low level in the Life Support layer so that components can register 
commands during system initialization, long before the Command Tool and user- 
level applications have been loaded. 

6.2 User Profile 

A uSer profile is a personalized collection of the custom-tailoring options that 
applications and packages make available to users. The user profile for a given 
user is a text file, stored on a file server, that is automatically fetched during user 
authentication. Among its uses are the specification of the final steps of the full 
boot process and the specification of standard defaults for packages, such as the 
name of the default printer. The User Profile package maintains a parsed 
representation of these specifications for rapid and convenient access by client 
programs. 

6.3 lnscript and TIP Tables 

Input devices available to the Cedar user include a conventional keyboard, the 
motions and buttons of a mouse pointing device, a keyset chording device, and a 
graphics tablet. The In-script package produces a single serial buffer of time- 
stamped input events from these devices. If an application has special high- 
performance user input requirements, such as the need to react in real time to 
the trajectory of the mouse-driven cursor, it can use the Inscript package directly 
and independently to extract the input events from the buffered stream. This 
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works better than direct sampling of the hardware by individual applications 
because the Inscript package collects and time-stamps the events using clocked 
interrupts. Events are less likely to be missed and timing of events will be more 
regular. Each client of Inscript must determine which of the input events are 
intended for it, ignoring those intended for other clients. 

Most applications interpret users’ actions through the Terminal Input Pro- 
cessor, or TIP. TIP uses a finite-state machine implementation to interpret 
Inscript input events based on easy-to-write specifications that are parsed into 
TIP tables. For each event (such as keystroke, mouse click, or mouse movement) 
or each event sequence (such as clicking a mouse button twice in succession or 
depressing a key for a long time), a TIP table entry specifies a sequence of action 
tokens that represent the semantics of the event. 

The TIP package assumes that characters entered on the keyboard are intended 
to be displayed sequentially at a display location previously selected by a user 
action or by a program, rather than at the present cursor location. Keyboard 
events are therefore translated into actions specified by an input focus repre- 
senting this preselected location. The input focus can be changed by clicking the 
mouse, by typing characters, or under program control. 

A high-priority process called the notifier interprets input events according to 
the known set of TIP tables. Standard rules determine the choice of TIP table 
to invoke for each event, based on the current input focus for keyboard events 
and the cursor’s display location for mouse events. The system notifier collects 
the TIP action tokens and invokes a client notifier associated with the TIP table. 
Typically, the client notifier creates a new process to carry out the desired action 
then returns immediately so that the system notifier can react quickly to 
the next event. In this way the user can initiate or control many concurrent 
applications. Furthermore, applications can be written in a way that does not 
preempt the user’s ability to choose from moment to moment which application 
to interact with. 

Default TIP tables define standard behavior for the basic Cedar user interfaces. 
Specialized TIP tables support the special input needs of advanced applications, 
such as drawing programs. Additional user-specified TIP tables may be layered 
on top of existing TIP tables to give the knowledgeable user the ability to custom 
tailor an existing application. 

6.4 Abstract Machine 

An original goal for the Cedar environment was to combine a compiled, strongly 
typed language with the interpretive symbolic power of Interlisp or Smalltalk. 
The Cedar Abstract Machine facility represents a step in this direction. 

The Abstract Machine provides descriptions of types and run-time values, 
programs and program instances in terms of Cedar language semantics. It models 
active data and program instances in a running program and provides the ability 
to modify data and some program values. Because the Abstract Machine is a 
powerful facility whose description has not been published previously, we present 
its features in more detail. 

6.4.1 Overview of the Abstract Machine. All of the Abstract Machine’s facilities 
are based ultimately on the symbol tables and program graphs produced by the 
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compiler, the binder, and the loader. To a client the Abstract Machine appears 
as a set of abstractions (data types and associated operations) that allows types 
and run-time values to be examined, picked apart, and modified. 

The Abstract Machine (AM) implementation is based on the following 
concepts: 

Run-time Types. For each Cedar language TYPE defined in a running Cedar 
world, the Abstract Machine provides a unique run-time value called a Type. 
These Type values are used by all the Abstract Machine interfaces as run-time 
representations of their corresponding Cedar language types. The same values 
are also used by the Safe Storage component to label collectible objects. 

Type Information. The AMTypes interface provides procedural access to the 
names and structures of data types. The interface includes a complete set of 
operations for discovering name, size, and other attributes about each Type, for 
following the definition chain of a type to its underlying basic or constructed 
type, and for analyzing the internal structure of composite types. The Type values 
are categorized into classes. One can determine from a Type’s class whether it is 
a primitive Cedar language TYPE (each has a class to itself), a definition (a name 
bound to another type), or a type produced by one of a number oftype construc- 
tors (pointers, records, procedures, and the like). 

Value Manipulation. Other AMTypes procedures permit examination and 
modification of run-time values. An object called a TypedVariable (TV) can 
represent the Type and current value of any Cedar language variable-a local 
variable, a global variable, a field of a record variable, or a value reached via a 
pointer or a REF. Operations on TypedVariables support interpretive programs 
that can manipulate arbitrary data structures. An example is the standard Cedar 
debugger package that can print a textual representation of any Cedar value. 
These operations typically take three orders of magnitude longer to execute than 
the equivalent compiled code operating directly on the same objects. 

Abstract/Concrete Translation. Operations in the AMBridge interface produce 
TypedVariables from Cedar language values (FIEF variables, ordinary values, local 
and global frames). The association between the referents of REF variables 
and their type tags can be made safely and automatically by the system. 
For other values, the associations are based on TRUSTED program assertions. 
AMBridge also provides inverse operations to extract Cedar language values from 
TypedVariables. 

Program and Process Structure Information. The AMModel interface contains 
operations for investigating a program’s structure: procedures in terms of their 
embedded blocks, program modules in terms of their procedures, and configura- 
tions in terms of their program modules and subconfigurations. A description of 
the loaded configurations and their associated global information within a run- 
ning Cedar system is also available through AMModel. Using the AMProcess 
interface, one can enumerate the active processes, suspend or resume the opera- 
tion of selected processes, and locate the top activation record for a given process. 
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AMTypes call cln.ss Count Name 

TVType[refTV] 
Range[l252] 
UnderType[l254] 
NComponents[ 12471 
IndexToName[l247.1] 
IndexToName[l247,2] 
IndexToName[l247,3] 
UnderType[Sl] 
NValues[ 10581 
First[lO58] 
Last[lO58] 

1252 
1254 
1247 
- 

1412 
1412 

91 
1058 
- 
- 
- 

reference 
definition 
record 

- 
longlnteger 
longlnteger 
definition 
enumerated 

- 
- 
- 

- 
- 
- 
3 
- 
- 
- 
- 
2 

- 
- 

- 
- 
- 
- 

“X” 
8, I, 

“viskle” 
- 
- 

“FALSE” 
“TRUE” 

Fig. 3. The Abstract Machine permits a client to examine the run-time type information about a 
running program. These are the results of calling various AMTypes procedures concerning the 
example in this section. 

Program Control. The AMEvents interface provides a set of low-level opera- 
tions for setting breakpoints and for tracing program flow. 

Access to Multiple Virtual Memories. The Abstract Machine uses the WorldVM 
interface for all references to run-time values and to run-time program and 
process structures. WorldVM supports symbolic access to three address spaces: 
local, the current (running) address space; world-swap, a restartable memory 
image saved on disk; or teledebug, an environment accessed using network 
communications. These arm’s length methods are infrequently used, but are 
invaluable when the local methods fail (see Section 6.10, Debugging). 

6.4.2 Example of Abstract Machine Usage. We present an example to show 
how clients use the Cedar Abstract Machine facilities. Consider a client program, 
perhaps a debugging application, which needs to extract the names and types of 
all the fields in a record. The client is given a REF ANY, named ref, that points to 
the record. Suppose that the relevant types (as yet unknown to the client) are: 

Point: TYPE = REF PointRec; 
PointRec: TYPE = RECORD[ 

X, y: INT, 

visible: BOOL]; 

The results of examining this record structure via the Cedar Abstract Machine 
are summarized in Figure 3. 

To begin, the client uses the AMBridge interface to associate a 
TypedVariable with the variable ref: 

refTV: AMTypesTypedVariable c AMBridge.TVForReferent[refl; 

This TypedVariable contains both type and value information for the 
reference. The type information is examined through the AMTypes inter- 
face to determine the run-time type, an AMTypes.Type value, and its 
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associated type class. In this example, the type classes we encounter will be 
reference, definition, record, longlnteger, and enumerated. 

type: AMTypes.Type t AMTypes.TVType[refTV]; - -7252 in this example 

class: AMTypes.Class t AMTypes.TypeClass[type]; 
- -reference class in this example 

The client in this example expects a reference class, but in general, the client 
program would select an action based on the type class. In the case of a reference, 
one requests the type of the referent through the AMTypesRange procedure 
(which is also used to request the range type of arrays). The resulting type class 
is definition, indicating that the reference has type REF PointRec rather than 
FIEF RECORD[...]. The AMTypes.UnderType procedure strips away any layers of 
type definitions until a nondefinition type is found: 

reffype c AMTypes.Range[type]; - -type of referent 
recordType c AMTypes.UnderType[refType]; - -strip away type definitions 
class t AMTypes.TypeClass[recordType]; - -record c/ass in this case 

For this example, we expect a record structure. Records contain several fields; 
therefore one must determine how many fields are in the record type and process 
each field iteratively by extracting the field type from the record type. 

ncomponents: NAT t AMTypes.NComponents[recordType]; 
FOR i: NAT IN [l ..nComponents]oo 

name t AMTypes.IndexToName[recordType, i]; 
type t AMTypes.IndexToType[recordType, i]; 
class c AMTypes.TypeClass[type]; 
- -select processing based on type class of this field 
ENDLOOP; 

The PointRec record has three component fields. The two INT fields return type 
class longlnteger and the BOOL field returns type class definition, which in turn is 
defined to be type class enumerated. Enumerated types can be examined by 
AMTypes procedures to determine the number of values in the enumeration, and 
the first, last, next, and previous values. 

6.4.3 Assessment of the Abstract Machine. The present Abstract Machine 
facilities were designed primarily as a basis for program debugging and develop- 
ment. For this function, they have served very well. Several different approaches 
to interactive Cedar expression and statement interpretation, source-level break- 
point management, and controls for errant processes have been developed using 
the Abstract Machine. 

A complete Abstract Machine description of Cedar would provide an interpre- 
tation for the semantics of the entire language, allowing the specification of the 
meanings of Cedar programs without any reference to the characteristics of the 
underlying hardware. A generally useful Abstract Machine implementation 
would, in addition, be efficient enough to serve as the basis for truly polymorphic 
language features (the type REF ANY is useful, but insufficient). Although the 
current implementation does not yet achieve these goals, the Abstract Machine 
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forms the basis for an interpreter that is fast enough for interactive and debugging 
use (see Section 6.10). 

As it stands, however, the Cedar Abstract Machine is one of the system’s more 
novel components. It has demonstrated that a strongly typed compiled language 
is not incompatible with the notions of run-time types, programs as data, and 
other powerful and flexible concepts usually found only in more interpretive 
languages. 

6.5 lmager 

Interactive Cedar applications rely on the power and flexibility of high-resolution 
bitmapped display terminals. In earlier Xerox systems, support for interactive 
graphics was limited to low-level bitmap operations, such as the RasterOp 
(BitBlt) function described by Newman and Sproull [37]. While one may manip- 
ulate bitmaps directly in Cedar, most applications instead use the Imuger, which 
is a device-independent graphics package for high-quality two-dimensional im- 
aging of text, line art, and scanned images. The Imager appears quite low in the 
layered structure of Cedar to permit high-quality graphics in most interactive 
applications. The Viewers window manager and Tioga editor both make extensive 
use of the Imager graphics package for their operation. 

The imaging model [56] of the Imager is based on the Interpress page descrip- 
tion language [58]. The Imager supports the presentation of a variety of image 
material: text in various fonts, lines and curves of various thicknesses, strokes or 
enclosed outlines, sampled images, and various color models. Image transforma- 
tions can scale, rotate, translate, and clip images through simple specifications. 

Due to the device-independent design, images may be rendered on a variety 
of devices, some of which include black-and-white displays, full-color displays, 
color-mapped displays, laser printers, color printers, film or video recorders, as 
well as pseudodevices such as Interpress masters, pixel arrays for capturing 
scan-converted bitmaps, or display lists. The Imager implementation makes 
extensive use of object-style programming to permit extension to new devices 
and customization by new graphical applications. 

6.6 Viewers 

Most Cedar applications are intended to be used in a cooperative fashion, sharing 
the display real estate with other concurrent applications. They do this using 
Viewers. The Viewers abstraction provides an application with a virtual display, 
keyboard, and mouse. Each viewer is a rectangular region whose position and 
overall size is managed by the Viewers package, but whose contents are the 
business of the applications that create them. The Viewers package redisplays 
the contents of each viewer based on client-supplied specifications whenever its 
contents, size, or location changes. Closing a Viewer causes it to appear at the 
bottom of the display as an icon (a small evocative picture). An open Viewer uses 
TIP tables to connect the user’s input actions and the application-specific 
functions, serializing these actions when the user reacts faster than the actions 
can be performed. 
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In actuality, a hierarchy of viewers exists in the system. The top-level viewers 
we have been discussing here may include nested subviewers-perhaps to scroll 
the contents of a subwindow separately, to permit another application to supply 
the subwindow contents, or to request information to be entered by the user. 
Subviewers may be quite small. For example, the menu buttons that appear in 
each top-level viewer are represented as small subviewers. 

Top-level Cedar viewers never overlap, but instead occupy two adjacent col- 
umns, each viewer sharing the column with other viewers assigned to that column. 
If an auxiliary color display is available, a third column of viewers can appear 
there. Figure 4 shows a sample of the Cedar displays during editing of this paper. 
Viewers can either have variable height to share the available space equitably, or 
can suggest some preferred height. The user can easily override the assigned 
widths of the columns and the heights of individual viewers. This tiled design 
was implemented as an experiment whose objectives were to provide a predict- 
able model for window placement, to minimize user interaction required for win- 
dow scaling and positioning, and to achieve high-performance display updating. 
The underlying graphics facilities also support the more common overlapping- 
window model. 

The Viewers package also serves as a focal point for integrating Cedar appli- 
cations. Viewer instances are assigned to viewer classes. A viewer’s class deter- 
mines its display and user interface behavior. Programmers can create viewers 
as members of standard system classes, or can define their own viewer classes 
(see Section 8.1, Procedure Variables). A viewer can also be associated with a 
custom TIP table and with other attachments that customize its operation. 

Another interesting aspect of the Viewers implementation is that a window 
does not have a “process behind it.” Rather, processes are created dynamically 
in response to user actions-often a new process for each action. For most viewer 
classes, the quiescent state has no processes associated with the viewer. However, 
the Command Tool described in Section 6.9 has the command interpreter process 
“behind it,” with other processes created dynamically as needed. 

6.7 Tioga 

The Tioga document composition system provides the tools to create and edit 
formatted documents, including Cedar programs. Tioga documents are tree- 
structured, with each node corresponding approximately to a paragraph or 
statement. Tioga nodes can be decorated with user-specified style information 
that controls their displayed and printed appearance. Tioga is a “what you see 
is what you get” galley editor; it does not provide automatic support for page 
makeup. 

Tioga displays documents in text viewers, making extensive use of TIP tables 
to specify the user interface. Tioga implements a simple postfix language in 
which its operations are expressed. This language specifies the meanings of the 
interactive editing operations, command abbreviations, and other prerecorded 
sequences of editing actions. 

Apart from its value for editing documents, Tioga is an important Cedar 
resource, since it can be used in any text viewer. This means that applications 
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like command language interpreters and specialized viewer-based tools can em- 
ploy Tioga’s well-understood user interface and text-manipulation features. It 
also means that text and attributes can be freely copied among viewers. For 
example, one can select file name arguments for commands from anywhere on 
the display, scroll through the command execution history, or invoke a command 
by copying it from a “recipe-book” document, using only the mouse-driven text- 
editing and scrolling operations of Tioga. 

Although Tioga does not understand Cedar language syntax, we find that using 
Tioga as a program editor has several important benefits. First, viewing programs 
as formatted documents with common typographic conventions makes them 
easier to read and share. Furthermore, Tioga’s flexible search commands, com- 
bined with a small number of connections to the Cedar Abstract Machine, allow 
it to approach the usefulness of many special-purpose program development tools 
found in other programming environments. 

-Simple pattern-matching allows Tioga’s abbreviation expansion command to 
construct templates for language constructs and procedure call parameters. 
Tioga’s hierarchical node structure allows the suppression of detail for a larger 
contextual view and the manipulation of entire constructs as units. These 
capabilities provide many of the advantages of other modern syntax-directed 
editors [13, 50, 571. 
-Tioga also performs the use-to-definition portion of the Masterscope func- 
tions in Interlisp [53]. A selection of the form intetface.item may be used to 
request a new viewer displaying the file that defines or implements the item, 
scrolled to the item’s definition. (If an implementation of interface has been 
loaded, AMModel functions are used to locate the implementation’s file name. 
Otherwise Tioga makes a guess based on program naming conventions.) Unfor- 
tunately, mapping from an item’s definition to its uses is beyond Tioga’s capa- 
bilities. That would require the capabilities of Cedar system modeling, a partially 
implemented extension to the DF Package (see Section 6.11). 
-Tioga’s client interface permits the Cedar debugger to show a breakpoint or 
error location as a highlighted region in a source file viewer, so that the user can 
see procedure and variable names in context. By using the ability to copy text 
freely among viewers, the user can copy expressions from the source to the 
debugger area for interpretation. This contrasts with the method used by the Blit 
debugger [lo], which constructs menus of currently visible procedure, variable, 
and field names to ease user input. 

In this paper we have not emphasized user interface issues. Teitelman’s paper 
[51] includes many examples of the various uses of Tioga and Viewers. Those 
interested in an expanded treatment of the Imager, Viewers, and Tioga are 
referred to [ 21. 

6.8 Compiler and Binder 

The Cedar Compiler verifies the correct use of data types both within modules 
and across module boundaries. In addition to machine code for each module, the 
compiler produces symbol tables and statement maps for use by the Abstract 
Machine. The Binder produces larger configurations of modules from individually 
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compiled modules and previously bound configurations. It extends the compiler’s 
strong type-checking by ensuring that the names and timestamps of exported 
interfaces match those specified by the components that import them. 

. 

6.9 Command Tool 

Cedar Life Support includes a conventional command interpreter in the form of 
a text viewer into which the user types commands and into which the system 
responds with results. The command syntax, an amalgam derived both from the 
UNIX shell [7] and from earlier Xerox systems, includes provisions for redirect- 
ing command output to another destination (usually a file or a pipe to a process 
executing a concurrent command), and for accepting command input from 
another source (also usually a file or a pipe). 

The Command Tool registers a small number of initial commands, primarily 
for running programs and for examining and manipulating local and remote file 
directories through the services of FS (list, delete, copy, and the like). As 
applications are started, they may register additional commands with the Com- 
mander package (Section 6.1), supplying procedures that extend the set of 
available operations. One such application is the Interpreter (Section 6.10), which 
registers a command to evaluate Cedar language expressions. Commands are 
usually executed sequentially, or in a tightly coupled fashion using pipes. But it 
is also possible to invoke a command such that it runs concurrently, using a 
separate viewer for its input and output activities. The use may also create more 
than one Command Tool viewer, then issue commands in each that may run 
concurrently. 

The Command Tool inherits from its environment several capabilities that 
make it more useful. Perhaps the most noticeable is the full availability of the 
Tioga editor for constructing commands. This includes copying commands from 
other sources, such as earlier points in the same Command Tool’s text script, 
other Command scripts, or any other Tioga document. 

The Command Tool also uses property lists (lists of key-value pairs, where the 
keys are usually atoms) to provide a reasonably efficient dynamic binding 
mechanism. Each Command Tool viewer has a separate property list. Standard 
Command Tool properties include command-lookup rules and directory search 
lists, working directories to use as a default in evaluating file names, statistics 
gathering procedures to be applied before and after every command is run, and 
default input and output streams. This property list is available during command 
parsing and during the execution of the registered procedure that implements 
each command (it is passed as a parameter when a registered command procedure 
is called). 

6.10 Source-Level Debugging 

Cedar’s source-level debugging facilities are a good example of the method 
described in Section 3.2, Structuring Methods, that splits an application into a 
low-level, widely available package and one or more higher level user interfaces 
that are clients of the low-level package. 

The expression interpreter accepts a rope value representing a Cedar language 
expression and a context value representing an execution context. It evaluates 
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the expression in that context, returning a TypedVariable as a result. The 
expression interpreter is located just above the Abstract Machine. In fact, it 
should probably be designated as a high-level extension of the Abstract Machine, 
whose facilities it uses to interpret the expression. The expression interpreter is 
used in a number of applications to obtain the effect of dynamic program 
composition where high performance is not required. In addition, specialized 
diagnostic routines can be built for specific purposes by calling on the facilities 
of the Abstract Machine and the interpreter. 

The standard Cedar debugging tools rely not only on the Abstract Machine 
and the expression interpreter, but also on Viewers, the Tioga editor, and the 
Command Tool. They are therefore located much higher in the Life Support 
layer. An interpreter viewer is one of the basic programming tools. It can be 
created at the user’s request, or when a process stops due to a breakpoint or an 
uncaught exception condition. The user can examine the process execution stack, 
evaluate expressions, and examine or modify variable values. A menu button 
instructs the debugger to locate the suspended execution point for some activation 
record and to highlight the corresponding source statement in a separate Tioga 
viewer. Breakpoints, specified by selecting a statement in a source viewer, may 
be similarly set and cleared from compiled code. Interpreter functions are also 
available directly from the Command Tool. 

The Debug Tool, another viewer-based tool, exhibits the state of all the running 
processes, configurations, and their components in the system. The Debug Tool 
can selectively suspend running processes and can open an interpreter window 
set to the top of a suspended process’s stack. It is valuable in locating process 
deadlocks (resulting from improperly used monitors) or runaway processes. 

All of the debugging facilities may be applied to a remote machine’s memory 
environment by using teledebugging techniques, or to a suspended world-swapped 
environment (see Section 6.4). 

6.11 Tools for Version and Release Management 

File and version management in Cedar is made tractable by a suite of packages 
and tools built around description files (DF files). Details about DF files and how 
they work are included in Schmidt’s thesis [43]. A brief description here is 
followed by a discussion in Section 8.5, Release Management, of how DF files are 
used. 

A DF tile describes the set of source, object, configuration description, and 
ancillary files required to construct and document a Cedar system component. 
The DF file lists the files that define the component by specifying their names, 
fully qualified with their network locations and create dates. In addition, it lists 
other DF files (and specified files within each) that describe any additional 
components needed to compile, bind, and use the component. 

The DF Package supplies three primary operations. The bringover procedure 
operates on DF files to copy its defined and included files onto a local file-system 
working directory (by establishing attachments to the remote files). The storeback 
procedure, using a DF tile as a guide, copies changed files to their designated 
remote locations, while revising the DF file to reflect the changes. The verify 
procedure examines the contents of a DF file for consistency and completeness, 
reporting problems such as missing files, superfluous files, or files with incorrect 
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versions. A DF file that is verified without errors provides a consistent and 
complete description of the component. 

DF files are also used to describe the sections and figures of a paper or book, 
the drawings and wiring lists specifying a hardware design, or any other collection 
of related files. 

One client of the DF Package is a program that fetches critical files during 
system initialization. As a result the DF Package occupies a low-level position 
within the Life Support layer. Its standard user interfaces (one a specialized 
viewer-based interface, the other a set of Command Tool operations) are run as 
ordinary applications. 

A variant of the Cedar DF Package has been adapted for use in the Xerox 
Development Environment (XDE) [47]. 

7. CEDAR APPLICATIONS LAYER 

By now it should be clear that any distinction between “the system” and “the 
applications” is a matter of convenience, as is the assignment of components to 
particular levels. Components originally developed as applications are often 
evaluated, modified, and then incorporated into lower levels, usually into the Life 
Support layer. Other components are more clearly user-oriented programs pro- 
viding functions for specialized needs. However, even among components in the 
Applications level, the packages are layered into various abstractions. A detailed 
example of this layering appears in Section 9.2, WalnutVoice Case Study. 

Space does not permit a complete enumeration of the Cedar applications 
produced to date, even if we knew what they were. Here we catalog a set of 
applications that are representative of the range of activities that Cedar supports. 

7.1 Performance Measurement Tools 

Cedar programmers have implemented an array of performance monitoring tools 
and debugging enhancements. The Spy (a descendant of the Mesa Spy [33]) 
monitors CPU usage, storage allocation, or page-fault performance by recording 
the call stack of the active process at specified intervals. Celtics uses very low- 
cost breakpoints to display statement execution counts dynamically. This pro- 
vides some of the benefits of interactive debugging even within high-priority 
processes or time-sensitive code. The BreakTool provides enhanced breakpoint 
facilities, such as program tracing and conditional breakpoints. In addition, it 
supports the evaluation of arbitrary interpreted expressions at specified program 
locations, thus allowing a mixture of compiled and interpreted code during 
program development. 

The Watch tool maintains and displays statistics on selected system resources 
and events. Among the data displayed are statistics on file system activity, virtual 
memory utilization, Ethernet communications, disk utilization, and garbage 
collection activity. Pupwatch logs Ethernet packets transmitted to and from a 
selected host and displays them in a viewer. 

Additional packages provide statistics and examination tools for Cedar 
data structures. SweepColbctibleStorage enumerates all collectible objects. 
ExamineStorage looks at all collectible objects and reports statistics. It can also 
be used repeatedly to track the changes in the number of objects by type. 
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CircularGarbage discovers circular data structures that are otherwise unrefer- 
enced. Given a collectible object, RecursivelyNil applies itself to all of the 
references within the object and then assigns NIL to all references found in this 
way. This breaks circular references and generally improves garbage collection 
performance. 

7.2 Database Support 

Cedar includes a number of packages that support database applications. Alpine 
furnishes a transaction-based network file service [9] for Cedar. Two major 
Alpine features are page-level locking of data and support for multiserver trans- 
actions. Alpine supplies a file system directory and implements the same Pup 
file transfer protocol (FTP) used by our other file servers. An Alpine file server 
acts as one of the multiple pseudoservers for the Cedar release directories, 
providing backup in the event that the regular file servers fail. 

The entity-relationship database package Cypress [ll] runs in a user’s work- 
station but stores its database on Alpine servers. Cypress implements a simple 
semantic data model, as well as supporting most of the features of a relational 
database. 

7.3 Electronic Mail 

The Walnut electronic mail system operates in conjunction with the Grapevine 
message transport mechanism [3]. It stores message databases (using Cypress) 
on Alpine file servers. Messages are acquired from Grapevine and stored in the 
database, where they may be moved between message set categories, answered, 
forwarded, deleted, archived, or unarchived. Walnut users typically use multiple 
viewers to display message sets, which contain message headers, and messages. 
Within each viewer they use the standard Tioga editing functions for composing 
new messages and for filling in message-reply templates. 

The Walnut electronic mail system is an example of a layered package in the 
Applications level. Walnut provides the user interface and mail database imple- 
mentation, but uses Cypress to manage its database. Cypress in turn uses the 
Alpine file server to manage its files. 

7.4 Whiteboard 

The Whiteboard package [17] is used to organize information spatially in a 
collection of viewers. Subviewers of various kinds (text, icons, tools, illustrations, 
mail messages, and even other whiteboards) can be arranged by the user. The 
user can select almost any viewer on his display and add it to a whiteboard. 

Whiteboards have been used to organize large collections of useful infor- 
mation, such as an introduction to Cedar and project information for the 
CSL research notebook. Large whiteboards use nested whiteboards to cross- 
reference information. 

The whiteboard contents and their layout are saved on a Cypress database, 
and may be concurrently displayed or modified by several users using their own 
workstations. Concurrent updates to the same whiteboard are detected by the 
database system. 
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7.5 Imaging Tools 

Of the numerous imaging applications within Cedar, we describe only a few here. 
The Griffiin illustrator produces single-page color illustrations from line drawings 
and shaded areas. The SolidViews three-dimensional solid-modeling illustrator 
creates synthesized graphical objects and renders them with various lighting and 
texture mapping techniques. The ColorTool provides an interactive color selection 
tool in which the user manipulates the color of a patch by using a variety of color 
systems. The Magnifier provides a handy tool for demonstrations because it can 
magnify any region of the black-and-white or color display. Preview builds 
viewers for various types of printable file formats on the display, such as scanned 
images and Interpress [58] files. Additional tools include a digital darkroom for 
manipulating scanned images, including two-dimensional fast Fourier transforms 
for image enhancement All of these tools create images to be rendered on a 
variety of imaging devices: displays, laser printers, color proofing systems, 
videotape, and film 121. 

7.6 Etherphone 

The experimental Etherphone system [46] uses Ethernet communications to 
transmit digitized voice. The system consists of microprocessor-based electronic 
telephones, a centralized switching server, a voice file server, and workstation 
programs to support voice communications and voice recording services. From a 
workstation, a user can place and receive telephone calls, maintain private 
telephone directories, and manage a database of voice messages. A voice anno- 
tation package allows voice to be added to Tioga documents and provides simple 
voice-editing functions. In addition, a commercial text-to-speech synthesizer 
exists as a server in the Etherphone network. The synthesizer allows the system 
to “speak” text, initiated either by the user (perhaps by selecting the text in a 
viewer) or by a program (such as speaking an error message or proofreading a 
document). 

7.7 Compute Server 

The Compute Server [22] uses the remote procedure call protocol to coordinate 
the assignment of computing tasks to processors with compute cycles to spare, 
and then to manage the execution of these tasks. Initial clients of the compute 
server are two typesetting packages, the compiler, MakeDo (see Section 7.10), 
and a three-dimensional image-rendering package. 

7.8 VLSI Design Tools 

Hardware design researchers have produced a suite of integrated VLSI design, 
simulation, and analysis tools that operate in the Cedar environment. ChipNDale, 
an interactive VLSI layout tool, makes use of multiple viewers (including the 
color display), uses extensive parallel processing for interactive tasks, and serves 
as a focal point for the integration of VLSI design tools. Tools integrated with 
ChipNDale include a circuit extractor, a CIF file generator, a mask generator, 
plotting packages, and design rule checkers. The simulation package Rosemary 
and the timing analysis package Thyme both accept circuit designs created by 
ChipNDale. 
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7.9 ViewRec 

Some application-level packages are intended to be used within other packages. 
One example, ViewRec, constructs a simple viewer-based user interface given any 
Cedar record value (including local activation records and global frames). 
ViewRec determines the names and types of all top-level fields and then displays 
them symbolically. The client may expand REF-containing fields into additional 
ViewRec viewers. The user of such a viewer may modify fields by editing their 
visual representation, may compose parameter values for any procedure values 
displayed, and may invoke the corresponding procedures. Some prototype appli- 
cations use ViewRec viewers exclusively for their user interfaces because they 
are so simple to construct and so easy to use. 

7.10 MakeDo 

MakeDo automatically determines dependencies between tiles and issues the 
commands needed to bring derived files up to a consistent state. The basic 
dependencies that MakeDo understands include compilation, binding, and the 
automatic generation of RPC stub modules from interface modules (see Section 
5.8, Communications, for the description of RPC). The MakeDo implementation 
extends to dependencies among tiles of arbitrary types. As a result it is also used 
within the VLSI design automation process described in Section 7.8, VLSI Tools. 
MakeDo was inspired by the UNIX make command [ 181, although make 
relies on the user to supply the dependencies and the commands to reestablish 
consistency. 

8. CEDAR PROGRAMMING METHODOLOGIES 

We stated in the Introduction that flexible program development methodologies 
were among the four important benefits to Cedar users, the others being improved 
programmer productivity, integration of software systems, and improved quality 
of software. In this section we focus on some of the methodologies that have been 
developed for using the Cedar language, programming packages, and tools to 
produce experimental programs and to manage the resulting collection of soft- 
ware. We have included representative methods that we believe to be carefully 
designed and documented. These methods are generally well understood and well 
accepted within the Cedar programming community. The remainder of this 
section discusses the following topics: 

-using procedure variables 
-producing tools and programming packages 
-integrating user interfaces 
-installing, running, and debugging programs 
-version and release management 
-software browsing 
-developing and testing programs 

This is a discussion of what people do with the system. As such it will inevitably 
provide insights into th8 ‘ways in which Cedar achieves the other important 
benefits claimed for it in the Introduction. However, we have deferred until the 
Conclusions an analysis of how and how well the system meets these objectives. 
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8.1 Methods for Using Procedure Variables 

Cedar language interfaces and configuration descriptions are flexible (although 
static) methods for binding clients to specific implementations of the interfaces 
they import. However, even these flexible binding methods are not sufficient in 
some circumstances. Three popular methods have evolved for using procedure 
variables to achieve more dynamic behavior, without eliminating the protection 
and convenience of strong typing: call-back procedures, registered procedures, 
and object-style procedure invocation (see Section 3.3, Mesa Contributions). 
These uses of procedure variables allow higher level clients to affect the opera- 
tions of lower level components in ways that relax the hierarchical layering 
imposed by Cedar’s structural rules. 

8.1.1 Call-Back Procedures. Call-back procedures are most often used as an 
enumeration technique. The underlying package enumerates a structure whose 
representation is unknown to the client. The action to be performed on each 
element of the enumeration is supplied by a client procedure. Thus the call-back 
mechanism extends a lower level component of Cedar to include the client 
semantics during the invocation of the component. 

An example of the use of call-back procedures for enumeration appears in the 
Rope package. The representation of a Cedar rope is private to the Rope package. 
A client that needs to perform some action for each character of a rope r can call 
Rope.Map[r, actionProc], where actionproc is a client-specified call-back proce- 
dure. The map procedure applies actionproc to every character in the rope. Other 
situations where enumerations are used frequently include file directories, Walnut 
messages, and various ordered data structures. 

Another use of call-back procedures occurs in the Imager graphics package, 
where two levels of call-backs are used to implement generalized paths. The 
Imager wants to construct a geometric path from coordinates in the x-y plane. 
The client of the Imager’s generalized paths has some data structure from which 
the path can be extracted. The client provides a path procedure, and the Imager 
calls the client back to request coordinate values by supplying its own call-back 
procedures for the client path procedure to insert coordinates into the path. 

8.1.2 Registered Procedures. Registered procedures are used in two function- 
ally similar but conceptually different ways: to enable event notification and to 
achieve what might be called behavior modification. Two examples should suffice 
to explain and distinguish these techniques. 

Event notification allows Cedar packages to notice when a workstation is not 
being used. When there has been no user activity at a workstation for some time, 
Cedar blanks the display and enters an idle state until a user again requests 
service. The implementation of the Idle interface notifies interested clients 
whenever the system goes idle or becomes busy again. (For instance, Walnut 
does not retrieve new mail while the workstation is idle.) To receive these 
notifications the client supplies a notification procedure by calling a registration 
procedure in the Idle interface, which adds the notification procedure to a list. 
The procedures on this list will be called with a parameter specifying either the 
becomingldle or the becomingBusy event whenever the idle state changes. Other 
examples of event notification include notifications that the Viewers package 
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generates when something important happens to a viewer (such as creating it, 
destroying it, or saving the file displayed in it), and notifications that the system 
is about to be-or has just been-booted, “rolled back”, or power-cycled. 

The Tioga editor uses behavior modification to add functionality to its menu 
buttons. When the user pushes the Get menu button attached to a text viewer, 
the Tioga editor uses a file name selected by the user to identify the next file to 
edit in the viewer. If the name is not a fully qualified file name, Tioga will look 
for the file on a single local working directory before giving up. If unsuccessful, 
Tioga is willing to call any registered procedures that have been supplied to 
modify (or extend) the behavior of Get. One such procedure consults system 
symbol tables to locate the fully qualified file names of source files that are part 
of the Cedar release (see Section 8.6, Browsing). More sophisticated extensions 
to the functionality of the Get operation include Tioga’s use-to-definition capa- 
bilities (Section 6.7, Tiogu). 

A common design for registration interfaces allows the client to supply data at 
registration time that enables the called procedure to access the client’s state 
information. This is necessary because Cedar does not support retained execution 
frames. 

8.1.3 Simple Procedural Objects. Several variations of object-style program- 
ming exist in Cedar. All are based on the same underlying implementation of an 
object: a reference to a record that contains both instance data and procedures 
defining the operations on that data (see Section 2, The Cedar Language). 
Procedure variables and strong type-checking make this approach safe and 
effective. By convention, the object itself is supplied as the first parameter to 
each operation. The operations for a particular object type are defined along with 
the object type within a Cedar language interface. 

Procedural objects extend the functionality defined in an interface by permit- 
ting new implementations to be provided dynamically at object-creation time. 

For example, Cedar ropes are implemented as references that denote text 
sequences either directly or as client-supplied procedural objects. A ROPE object 
is defined by three operations: fetching a character, mapping a specified action 
onto all the characters, and appending characters to the ROPE object. An other 
ROPE operations are defined in terms of those supplied operations. 

As an example of a client-supplied rope object, consider a rope that represents 
the characters of the ASCII character set in collating-sequence order: that is, the 
sequence 256 characters long, beginning with the character ‘\OOO, and ending 
with ‘\255. This rope can be implemented as follows: 

@‘te: TYPE = [0..255]; 
MyFetch: PROC [base: REF ANY, index: Byte] RETURNS [CHAR] = ( 

RETURN [vAL[index]]}; - - VAL coerces a number t0 a CHAR 

MakeAsciiSet: PROC [] RETURNS [ROPE] = ( 

RETURN [Rope.MakeRope[base: NIL, size: 256, fetch: MyFetch, 
map: NIL, append: NIL]]); 

MakeAsciiSet creates a rope that can be used in the same way as any other 
rope. (The map and append operations default to implementations using fetch.) 
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Although it behaves exactly like a sequence of 256 characters in rope operations, 
it occupies less space. Client-supplied ropes can also be used to make an entire 
file behave like a rope (via appropriate file accesses and buffering), so that rope 
functions can be applied to arbitrarily large files. Tioga relies heavily on file 
ropes. 

Similarly, Viewers and IO stream objects use procedural objects for client- 
supplied window and stream abstractions. 

8.1.4 Object Classes. An important attribute of most object-style programming 
languages is that each object instance is a member of a class, the members of 
which share the same behavior and may share some global state. In Cedar a class 
(a set of classes conforming to the same interface, actually) is defined by a 
record type containing the operation procedures. An object type is defined by 
a record type containing instance-specific data and a reference to the operation 
record. Every member of a class shares the same operation record. Two examples 
discussed here are IO streams and Viewer classes. 

Cedar character streams are implemented as classes conforming to the interface 
specification IO.STREAM. Several components in the Cedar release provide imple- 
mentations for standard stream classes, such as file streams and keyboard 
streams. A client may easily implement an additional stream class suited to the 
client-specific purposes by supplying a new operation record and registering the 
new STREAM class. 

Cedar viewers are implemented as a set of viewer classes defined by the interface 
specification ViewerClasses.Viewer. As an added convenience the Viewers pack- 
age maintains a registry of named viewer classes. A viewer class implementation 
provides operations to initialize a viewer, to save its contents, to destroy a 
viewer, to paint its contents on the display, and so on. Standard viewer classes 
implement viewers supporting the Tioga editor ($Text class), the Command 
Tool ($Typescript), generic support for viewers consisting of nested viewers 
($Container), and a few others ($Button, $Label, $Rule). Clients create new 
viewer instances by calling ViewerOps.CreateViewer[className]. They can also 
implement additional viewer classes. 

Operations on viewers are implemented in terms of extensive facilities in the 
Viewers package. The ViewerClasses.Viewer record defines data fields, such as 
size information and display coordinates, that are common to all viewer classes. 
It also provides a clientData field, which is a FIEF ANY that the class implemen- 
tation may use to store implementation-dependent instance data. For the cost 
of a NARROW statement to validate the clientData value in the implementation 
of each operation, the flexibility of multiple object classes is obtained without 
compromising type safety. 

Object classes in Cedar are defined by convention, not by the Cedar language. 
Multiple inheritance, hierarchical or otherwise, can be achieved through direct 
program manipulation of copies of the procedure records that specify existing 
classes, but the system provides no direct support for these concepts. 

8.2 Methods for Producing Tools and Programming Packages 

We have said that software integration provides leverage in building new systems 
out of previously existing components. Cedar interfaces are a useful tool in 
structuring each component so as to promote integration. 
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At a low level, Cedar interfaces provide the mechanism for strong typing in 
modular programs. Checking by the compiler, binder, and loader ensures that 
types are used correctly across many modules. But Cedar interfaces also act as a 
form of specification language, describing the public behavior of an abstraction. 
Programmers are encouraged to provide functionality that will be useful to client 
programs. 

8.2.1 Build Packages, then Tools. An important key to the integration of Cedar 
applications is captured in the admonition to “build packages, then tools.” The 
developer of a user application is encouraged to express its full functionality as 
a Cedar language interface, to build the implementation of the interface, and to 
produce the intended user interface as its first client. Whether the application’s 
complete functionality or its user interface is designed first, and whether the 
package is designed in a top-down or bottom-up fashion, “build packages, then 
tools” is intended to describe the end result of the design process. 

This approach fosters integration in a number of ways. It enables an application 
to be driven by more than one user interface. For instance, the functions of 
the DF Package are available through a viewer-based interface and through 
Command Tool operations. More important, the existence of a program- 
ming interface makes it possible to compose higher level application packages 
directly in terms of the lower level functions. It is not necessary to simulate the 
input/output behavior of lower level user interfaces nor to borrow and customize 
the lower level source code. The resulting reuse of packages provides traditional 
software engineering benefits: bug fixes and performance improvements need 
only be made once to apply to all uses. An extensive example is presented in 
Section 9.2, WalnutVoice Case Study. 

Multiple uses for packages also encourages good craftsmanship in their con- 
struction. First, it encourages the programmer to design the component’s func- 
tionality carefully, aiming for a complete and comprehensible set of data types 
and operations. Examination of a programming interface tends to point out 
missing functionality before the package is released to users. Second, it encour- 
ages attention to the efficiency of frequently used special cases. 

This design process sometimes creates difficulties when an application does 
not lend itself to a simple hierarchical decomposition into layered abstractions. 
It often requires several iterations to arrive at the proper partitioning of functions 
among interfaces. The results have generally proved worth the effort. This careful 
reworking of interfaces and implementations has consumed a considerable frac- 
tion of the Cedar development effort, but it is also in large part responsible for 
the quality of the result. 

8.2.2 Layered Design of Interfaces. The design of interfaces within individual 
Cedar components parallels the layered structure of Cedar as a whole. Within 
typical, large Cedar components there are four levels of interfaces: the user 
interface, the event notifier, the client programming interface, and internal 
interfaces. At the interactive user interface level, the TIP package maps keyboard 
clicks and mouse movements into action tokens. The event notifier interface 
maps these action tokens into registered procedure calls on the application’s 
client interface. The client interface defines the actions to be performed by the 
application package. Internal interfaces supply operations within the application 
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Fig. 5. Layers of interfaces in the Tioga editor. 

when external invariants imposed by the client/implementation interface are 
already met. 

The Tioga editor is a canonical example of these layers of interfaces, presented 
schematically in Figure 5. The Tioga TIP table maps user actions into editing 
requests. The Tioga notifier receives these actions and calls registered editing 
operations, while maintaining an edit history log of editing events. The client- 
callable TiogaOps interface performs the same actions as the notifier but may be 
invoked by a program rather than a user interface. Finally, the Tioga internal 
interfaces assume that appropriate locks and invariants are already established 
and perform the basic editing operations on the document structures. 

Other applications may use functions of the Tioga editor at any of these 
levels. The EditTool is a viewer-based user interface that supplies buttons 
and a macro expander to invoke the editing operations. The Walnut electronic 
mail system uses the TiogaOps interface to prepare message-reply templates 
automatically. 

8.3 Methods for Integrating User Interfaces 

The sharing of facilities and resources that we have described from a program- 
ming standpoint is also evident to the Cedar user. At the user interface level it 
manifests itself in a somewhat different way. To the user it is immaterial how 
programs are structured or how much code is shared. What is significant is the 
hierarchical structure of Cedar viewers on the display and the commonality of 
the user interfaces within different viewers that have similar appearances and 
functions. 

The most immediately obvious example is the common behavior of pushbutton- 
style menu actions within all kinds of viewers. In fact, often the same button, 
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representing the same behavior, appears in more than one class of viewer. For 
instance, the Tioga Find button appears in document viewers, typescripts, and 
Walnut message set viewers. The use of the mouse to select text or other objects 
is also treated in a consistent manner. 

Another important example is the universal availabilty of the Tioga text editing 
commands. Tioga’s facilities are available within text editor viewers, within 
typescript viewers, and within any viewer or subviewer that contains user- 
modifiable text. Using only Tioga actions, text can be copied or moved from one 
viewer to another-from document to document, or from a document into a 
Command Tool viewer, where the text contents will be executed as the next 
command. 

8.4 Methods for Installing, Running, and Debugging Programs 

To this point, we have described Cedar as it exists in the steady state, with all 
system and user programs already present in virtual memory and properly 
initialized. Clearly, we need methods for getting started and for introducing new 
programs into the system. 

In a typical closed operating system, running a program is straightforward: the 
system loads a monolithic program image into the address space of a new process 
and starts it up. In Cedar there are more choices and some additional difficulties. 
One choice would be to require that each user’s system be fully described by a 
single Cedar configuration. A bootstrap loader would assign each module to 
virtual memory locations and start the system. This method alone would not 
allow adequate flexibility in the choice of components to run, nor would it allow 
the incremental introduction of new or modified programs. An extreme contrast- 
ing approach would be to introduce components one at a time, binding them to 
components introduced earlier and starting them as they are loaded. If the entire 
system were built in this way each time the system was initialized, the process 
would take too long and require inordinate care in choosing the loading and 
startup order. Here we describe the middle course between these approaches that 
is used in Cedar. 

8.4.1 Cedar Installation. Cedar is distributed to users as a file containing the 
Cedar microcode, a file containing the germ (an initialization program, see 
Section 5.10, Running Programs), a single boot file containing the Cedar code 
for the Cedar Machine and the Nucleus layers, and a large collection of Cedar 
configurations representing the Life Support layer and widely used applications. 
These files are installed by a small program obtained from either the Ethernet 
or the local disk by a tiny sequence of bootstrapping microcode that is built into 
the machine. To boot Cedar, this program loads and starts the germ giving it the 
address of the Cedar boot file. 

The Nucleus includes enough of the system to manage memory, to read 
and write files, to send and receive Ethernet messages, and generally to sup- 
port ordinary Cedar programs. The Nucleus also includes the loader. Shortly 
after it is started, the Cedar boot file consults a list of the Life Support pack- 
ages to be loaded and started. The user can override the default pack- 
age list with a customized one. Once the Life Support layer has finished 
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boot-strapping itself, the display has been initialized and the environment is 
ready to support applications. 

Finally, a file of user-set parameters called the user profile (see Section 6.2) is 
retrieved from the user’s file server directory. This profile includes specifications 
of additional components that need to be fetched and possibly started in order 
to produce the user’s desired standard configuration. Once these steps have 
occurred, the system is ready for use. This entire process is known as a full boot. 

8.4.2 Checkpoint and Rollback. Performing a full boot is a flexible and effective 
method for producing custom-designed systems, but it takes a long time-two to 
ten minutes on a Dorado, even longer on slower processors. Moreover, it does 
not permit one to save the results of any initialization activities which might also 
be lengthy operations nor to capture a particular configuration as the evidence 
of program failure. Checkpoint files (see Section 5.10, Running Programs) address 
these needs. Having performed a full boot and perhaps performed one or two 
manual initialization steps, standard practice is to produce a checkpoint repre- 
senting the resulting system state. 

Most often, one begins a Cedar session by rolling back to a previous checkpoint, 
a process that takes less than a minute. Full boots are needed only when testing 
new versions of packages in the checkpoint, or when new versions are released. 

8.4.3 World-Swap Debugging and Teledebugging. Checkpointing methods can 
also be used for debugging. Most problems can be diagnosed using debugging 
tools that operate as ordinary processes in the same address space (or world) 
with the target applications being debugged. But when problems develop that 
prevent the proper operation of the debugging capabilities, low-level facilities in 
the germ can be manually triggered to store a special checkpoint image, then to 
boot a separate debugging environment that can examine the state of the saved 
image. This action is called a world swap. If the problem can be repaired in the 
saved image, another world swap will allow execution to proceed. Otherwise, the 
next logical step is a rollback or a full boot. 

A popular alternative to world-swap debugging, teledebugging, is also supported 
by the germ. Normal system operation can be suspended and control transferred 
to a germ program called the debug nub, which expects low-level debugging 
commands in the form of Ethernet packets from a debugging program running 
on another machine. These teledebugging primitives include fetches and stores 
of specified memory locations, breakpoint manipulation operations, and a proceed 
command. The suspended system itself can be used as the target system image, 
in place of a checkpoint file. Teledebugging can be much faster than world-swap 
debugging, especially since breakpoints require many world swaps, and the world- 
swap operation is measured in tens of seconds. 

8.5 Methods for Version and Release Management 

Managing the thousands of files that constitute the Cedar system requires 
automated assistance. Several tools and supporting conventions make the devel- 
opment of Cedar components an orderly process. In Section 6.11, DF Package, 
we introduced DF files, which describe a collection of related files for a package 
or application. Just as interfaces and configurations impose a checkable hierarchy 
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that makes programming manageable by reducing the amount of information 
that the programmer must deal with at one time, DF files form a similar hierarchy 
for describing and managing the files that make up the system. 

The Cedar release methodologies utilize DF files and file-naming conventions 
to enforce the structure of Cedar among many programmers and across many 
system releases. 

8.5.1 How PF Files are Used. A typical modification of a package proceeds by 
first performing a bringover operation to copy the DF file and all the files that it 
specifies into a subdirectory on the workstation. Because the resulting directory 
entries are only attachments, this process is quite rapid. Next, selected sources 
are edited, compiled, bound, and tested. In most cases the DF file serves as the 
only input the MakeDo program (see Section 7.10) needs in order to perform the 
compilation and binding operations automatically, processing only those files 
that have changed or whose dependencies have changed. 

The modifications create new local files that are not visible to any other Cedar 
user. When the modifications have been completed and tested, the DF Package 
is invoked to store a new consistent version of the files on the file server and to 
verify their completeness and consistency. The problems of managing the files 
comprising a component, determining the actions needed to produce new ver- 
sions, and managing multiple versions have been reduced from earlier fully 
manual procedures to the simpler problem of maintaining a correct DF file 
description of the component. 

The concepts underlying DF files have been extended to serve as a full 
description of a running program. These system models [28, 431 may eventually 
form the basis for automatic recompilation, run-time module replacement, and 
answers to queries about a program’s structure, such as the locations of all uses 
of some variable (similar to Interlisp’s Masterscope). 

8.5.2 Cedar Release Management Methodologies. A Cedar release is a consist- 
ent version of the system specified as a set of DF files, each describing the files 
contained in one of the release’s components. The Nucleus and Life Support 
layers are expressed as umbrella DF files that list the DF files for their compo- 
nents. These umbrella DF files are verified to ensure that they describe a 
consistent and self-contained set of interfaces and implementations. The release 
of application packages is managed separately with slightly different conventions, 
as described below. 

The methodology for releasing Cedar has evolved considerably. Early laissez- 
faire methods gave way to more tightly controlled ones. All of the files in a release 
reside in a single tree-structured file directory replicated on one or more file 
servers. Standard file-naming conventions for storing Cedar DF files and com- 
ponents enable programmers to browse the large directory structure. During 
development, this directory may be updated by any system implementor who 
announces a submission through a standard-format electronic mail message. 
After the release the contents of this directory become nearly immutable, in that 
files may be changed or supplanted only for critical bug fixes and enhancements, 
and only under careful administration. Between releases, interfaces of released 
components may not change for any reason. Instead, new functions are provided 
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by new “extras” interfaces (interfaces that contain additions to existing inter- 
faces) that will be merged with the standard interfaces in the next release. 

A similar but less stringent methodology applies to the Cedar Applications 
layer. A separate release directory, known as the CedarChest, contains applica- 
tions and tools. Although consistency checks are applied periodically, there is no 
official release process for Applications layer software. Applications programmers 
are free to release new versions, and frequently do. Interface changes are nego- 
tiated among the relevant implementors. 

One of the requirements for each system or Applications component is a 
documentation file. This file, whose name is derived from the component name, 
is stored in a standard documentation subdirectory and is included in the DF file 
for the component. Two software catalogs, one for Cedar and another for 
CedarChest, are automatically constructed from the set of documentation files 
for components in the release directories. For each component these catalogs 
provide a summary of its functionality, a set of descriptive keywords, a list of 
Command Tool commands (if any) that it supplies, and a pointer to its complete 
documentation file. 

Applications that are not part of the official Cedar or CedarChest releases are 
typically released using similar methods applied to their own file directories. 

8.6 Methods for Software Browsing 

Cedar is large, distributed, and constantly changing. The creation of integrated 
software can involve the use of items from many interfaces, located at all levels 
of the environment. Tools for navigating easily and quickly through the system 
are a necessity. In earlier systems, finding the correct file server and directory 
for a component was sometimes a challenge in itself. The many conventions and 
the documentation catalogs described in the release process above help program- 
mers discover and locate relevant information about the system. The tools and 
methods described below provide additional browsing facilities. 

8.6.1 From Use to Definition. A few programming environments include com- 
prehensive browsing facilities, which assist with the development and debugging 
of programs by exploiting the known linkages among definitions, implementa- 
tions, and uses of program components. The Masterscope function in Interlisp 
is an excellent example [53]. Cedar lacks a unified browsing capability, but it 
does include a number of tools that, when used with the Tioga editor, provide 
considerable assistance in locating things. 

The most important of these tools is the Cedar interpreter, which can evaluate 
expressions, display the fully qualified names of variables, and open Tioga viewers 
on the source files corresponding to breakpoint locations. 

Another invaluable tool is Tioga’s use-to-definition function (Section 6.7, 
Tiogu), which can open a viewer on the source for either the interface definition 
or the implementation of a qualified name. These names can be selected from 
the output of the interpreter or from another source viewer. Since Mesa/Cedar 
programs often involve chains of definitions that traverse several source tiles, 
the ability to proceed within seconds from definition to subdefinition is crucial. 
This ability to browse without explicit knowledge of the size or organization’of 
the file server name space allows the user to focus on the small numbers of files 
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that are relevant to the current task, rather than on the enormity of the system 
as a whole. The symbol tables described in the next section support this use-to- 
definition facility. 

8.6.2 Symbol Table Management for Cedar Releases. Tioga’s use-to-definition 
features, the symbolic debugger, and other clients of the Abstract Machine need 
to perform various mappings between Cedar program values and the source files 
in which they are declared. The program modules produced by the compiler and 
binder contain only the location-independent names of the corresponding source 
files (known as their short names), rather than the full path names that could 
locate them on a release or private directory. For programs under development, 
one can arrange to have copies of the sources in a local directory where Tioga 
and the Abstract Machine can look for them. However, additional mechanisms 
are required to allow users to locate the sources for released components without 
requiring the entire system directory to reside on each workstation. Without 
ready access to the sources for the release, the browsing facilities would be much 
less valuable and the system much less open. 

An ad hoc approach to the location of system sources is currently used in 
Cedar. A set of files known as version maps are produced by traversing the tree 
of DF files corresponding to the released boot file. Version maps are efficient 
mappings that allow source and object files to be found on their release directories, 
given their short names or the unique identifiers assigned to their object modules. 
When there has been a change, updated version maps are automatically copied 
to the local disk at the beginning of every interactive session. 

8.6.3 Other Browsing Tools. There are several useful Command Tool opera- 
tions for browsing through the Cedar system. The FindR command examines the 
version maps for entries matching a file name pattern and simply lists any 
matches. OpenR uses the version maps to open a source viewer, given only a 
short name. GetFromReZease examines the latest compilation error log, creates 
file attachments in the current working directory for release files that were 
needed but not found, and suggests additions to the DF file for the package being 
modified. 

The set of browsing tools in Cedar is by no means complete. When all else 
fails, users resort to a command that performs a regular expression search through 
a specified set of source files. At a few seconds per file on a Dorado, this method 
is often effective in finding a starting point for a more structured investigation. 

8.7 Methods for Developing and Testing Programs 

All program development in Cedar, aside from simple experiments using the 
interpreter, involves compiling and loading new versions of Cedar language source 
programs. The methods work in the same way whether system components or 
private applications are being developed, and whether the intent is experimen- 
tation or permanent change. However, the methods that are applicable do vary, 
depending on whether a new component is being added to the system, a com- 
ponent is being replaced by another, or the behavior of a component is simply 
being modified. As we have seen before, the methods allow more flexibility but 
are often more elaborate than the methods for similar development in closed 
operating systems. 
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8.7.1 Adding New Components. If the package or tool to be run has not yet 
been loaded, and if it does not need to be a part of the Nucleus layer to run 
correctly, the process of testing it is simple: one simply loads it and starts it (see 
Section 5.10, Running Programs). If its permanent home is in the Nucleus or 
Life Support layers, the replacement methods described below will eventually be 
required. 

8.7.2 Replacing Components. If a component is to be permanently substituted 
for another, or if it is important that clients of the old component be rebound to 
the new one, the replacement method must be used. Replacing a component 
requires producing a new instance of the system that contains the new component 
version instead of the old one. 

In some cases it is feasible to replace a program module without restarting the 
system or destroying the values of its global variables. The new code can be 
loaded, and clients of the previous instance can be “rebound” to the new one. 
The old code can then be removed from virtual memory. Module replacement 
has been demonstrated experimentally in Cedar, but has not been released for 
general use. 

In the absence of dynamic module replacement, the only way to replace a 
component is to restart the system with the new component in it. The difficulty 
of doing this depends on the component’s level. Applications components can be 
readily replaced after a rollback to a checkpoint that does not include them. Life 
Support components can be replaced by performing a full boot using a modified 
list of boot packages. Finally, replacing a Nucleus component requires the 
installation of a modified boot file, followed by a full boot. However it is done, 
when a component is replaced, all clients will execute the new one. 

8.7.3 Modifying Component Behavior. The techniques described in Section 
8.1, Using Procedure Variables, are used in many places throughout Cedar to 
enable client modification of existing components without requiring recompila- 
tion or replacement of the components themselves. To use these techniques, the 
original component implementation must be written with flexible client extension 
in mind. Otherwise the modification will involve changes to the components 
themselves. Sometimes these changes can be tested without resorting to compo- 
nent replacement by using a technique called augmentation. 

Augmentation involves running a new copy of a component without disturbing 
the previous versions. One can confine the effects of the new component to a 
selected set of clients by binding them together into a configuration that does 
not export the component’s interfaces. Such a configuration effectively hides the 
interfaces from the load state. Alternatively, one can make the new component’s 
interface public by substituting its interfaces for the existing ones in the current 
load state. In the former case, any clients that are run after the augmented 
configuration is loaded will be bound to the original component; in the latter 
case, they will get the new one. 

It is usually possible to augment a system with several new instances of a 
component before the exhaustion of some system resource, such as virtual 
memory or a dedicated part of it, forces a rollback. Most Cedar applications are 
developed in this way. 
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9. CASE STUDIES 

In order to give a feeling for how Cedar is really used for experimental program 
development, we present two case studies. The first describes the replacement of 
the Cedar Graphics package by the Imager package during a recent Cedar release. 
The second demonstrates the value of the layering of components in the devel- 
opment of an integrated voice-annotated electronic mail application. 

9.1 Case Study: lmager Replacement of Cedar Graphics 

The augmentation approach discussed in the previous section has a number of 
advantages in an interactive system. One such advantage is the possibility of 
developing and debugging new interactive tools and interfaces using the facilities 
of their predecessors. Conceptually, earlier open operating systems could support 
this kind of interactive bootstrapping. In practice, however, difficulties such as 
naming conflicts, limited memory, or the inability to share user input/output 
resources have prevented effective application of this idea. An elaborate instance 
of this approach was successfully applied during the development of Cedar 6.0. 

The left half of Figure 6 depicts the structure of the Cedar 5.2 system, 
emphasizing the user input/output components and the program editing, devel- 
opment, control, and debugging tools that use them. These components have all 
been described in considerable detail in Section 5, Nucleus and in Section 6, Life 
Support, except for the Cedar Graphics package, which was the predecessor to 
the Cedar 6.0 Imager. Cedar Graphics implemented an equally powerful graphical 
model, but was directed primarily at managing the Cedar display. Having built 
the more device-independent Imager, the developers were faced with the problem 
of debugging corresponding versions of Viewers, Tioga, and the various applica- 
tions that depend upon them. Because user interaction with the local debugger 
relies on the services of the Imager, Viewers, and Tioga, debugging new versions 
of them presented a difficult problem. To examine and control a wayward Imager- 
based system, the developers could use either the world-swap debugger or the 
teledebugger, both based on the existing Cedar Graphics package. However, the 
augmentation approach permitted the developers to use the more convenient 
local debugger. 

The lowest level of the terminal input/output facilities is the Terminal 
component (Section 5.9), which was carefully designed to support completely 
independent, possibly conflicting uses of the display, keyboard, and mouse. 
Each suite of applications relies on the facilities of a virtual terminal. The user 
can select a virtual terminal to view and manipulate by depressing an unlikely 
assortment of keys. 

Figure 6 as a whole indicates how the Cedar 5.2 system was augmented to 
include a configuration containing the new Imager. Bound with the new Imager 
were its applications and a copy of the user input components, Inscript and TIP. 
Inscript and TIP were set up to obtain input from a new virtual terminal whose 
display was controlled by the Imager. Because this configuration did not export 
any interfaces, all packages outside it continued to use the existing Cedar 
Graphics-based system. Until this configuration was working reliably, the devel- 
opers were able to use the Cedar Graphics-based program development tools, still 
associated with the standard virtual terminal, to debug the new components. 
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Fig. 6. The replacement of the Cedar Graphics package by the new Imager package 
required binding the Imager and its clients together to avoid interface mismatches. 

In a subsequent configuration, not shown, the role of the Imager and Cedar 
Graphics were reversed. This produced a version of the now nearly complete 
Cedar 6.0 system, with a version of the earlier program development tools 
available (in an alternate virtual terminal) to handle obscure problems with the 
new facilities. 

9.2 Case Study: WalnutVoice and Layers of Applications 

The layering methodologies apply to Cedar applications as well as to the Cedar 
system. This layering of applications helps programmers manage the large 
amount of Cedar software and cope with dependencies on packages undergoing 
concurrent development. WalnutVoice allows electronic mail messages to be 
annotated with digitized voice recordings; it is a client of Walnut and is layered 
on top of Walnut. Walnut supports both a user interface for managing one’s 
personal mail in a database and a client program interface for other applications 
to integrate with Walnut. Clients may depend on this stable interface despite 
continued performance improvements in the Walnut implementation. Walnut in 
turn depends on several application components, including the database software 
(Cypress), a user interaction package that supports buttons composed of format- 
ted Tioga documents (TiogaButtons), and the typesetting software (TSetter). 
Walnut itself is layered into several parts, one for the user interface to the mail 
database, one for managing the database, one for sending messages over the 
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WalnutVoice 

WalnutControl 

WalnutControlPackage 

WalnutKernel WalnutRegistry WalnutSend Nut TiogaButtons TBQueue TSetter 

Fig. 7. Application components that make up WalnutVoice, which offers voice annotation 
of electronic mail messages, may be layered much like Cedar. Each box represents a 
component whose name appears above the box (unexpanded components, which have no 
application component dependencies, are shown as smaller boxes). The top line of names 
within a box lists the major implementation modules (Walnut has none as it combines two 
other components). The bottom line lists other application components that are imports 
(other imports from the Life Support and Nucleus layers are not described). Several 
component and module names appear here that do not appear elsewhere in the paper; they 
are included here for completeness. 

internetwork, and one for registering Walnut event service handlers. Figure 7 
shows all of the layers of application components in Cedar upon which 
WalnutVoice depends. It is important to note that the open operating systems 
approach permits a component to access lower level components through the 
permeable layers. For example, WalnutVoice depends directly on the Cypress 
database package for its directory information as well as indirectly through 
Walnut for the maintenance of the Walnut message database. 

Another way to view the open operating system in this layered set of applica- 
tions is to concentrate on one component. This examination reflects the working 
set of interfaces that a programmer might deal with when designing a single 
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WalnutVoice 

WalnutVoicePkg 

VoiceDB FinchSmarts Walnut VoiceUtilsClient 

from Life Support: 
Command Tool, Tioga, Viewers, Interpreter& Debugger, 
Abstract Machine, and Useful Packages 

from the Nucleus: 
RPC, Communications, IO, FS, File, and Safe Storage 

from the Cedar Machine: 

Fig. 8. The WalnutVoice component depends directly on four application components 
and fifteen Cedar interfaces from the Life Support, Nucleus, and Cedar Machine layers. 
The fifteen system components are shown as dark areas on the small version of Figure 2 
below. 

component. WalnutVoice depends directly on four application components and 
about 15 interfaces from the Life Support, Nucleus, and Cedar Machine layers 
of Cedar. These dependencies appear in Figure 8. While the implementations of 
these dependent components may be quite large, the programmer works only 
with the interface specifications. Convenient browsing facilities permit the pro- 
grammer to examine relevant interface details quickly. 

10. COMPARISONS WITH OTHER ENVIRONMENTS 

To put Cedar in perspective, we compare its structure with those of a small 
number of programming environments that were not in Cedar’s direct evolution- 
ary chain, looking at both the similarities and the differences in their designs. 
Some of the differences are inherent, while others provide insights that could 
lead to future developments in Cedar. We will look at the two systems from 
which Cedar has borrowed most heavily: Interlisp-D and Smalltalk-80. We also 
include a discussion of the UNIX system, a traditional system whose ideas have 
influenced Cedar significantly. 

There are a number of important programming environment features that we 
are not considering in this paper: programs as data, fast turn-around for program 
changes during system development, and the specifics of the user interface. We 
concentrate instead on structural aspects. 

10.1 Interlisp-D 

Interlisp, a dialect of Lisp, was initially created as an application program running 
in the Tenex operating system [5]. Since Interlisp provides a single global name 
space, and since virtually all of the system except the lowest level primitives and 
the access to operating system facilities are written in Interlisp, the design is 
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986. 



A Structural View of the Cedar Programming Environment 475 

inherently an open one. However, the original input/output facilities and whole- 
sale memory management facilities were limited to whatever the Tenex system 
provided. 

More recently, Interlisp has been transported to Xerox personal workstations, 
including the Dolphin, Dandelion, and Dorado. It has been enhanced with a 
bitmapped display and a powerful window management package, based on earlier 
prototype work using Tenex Interlisp with Altos as terminals. The resulting 
system is known as Interlisp-D [57]. Interlisp-D should be classed as an open 
operating system, in the sense that all of the system’s components are available 
to client programs. 

All Lisp dialects rely centrally on automatic storage management of their list 
structures. In fact, it was the clear success of Lisp garbage-collection methods 
that led us to add them to Cedar. When programs use only the basic functional 
primitives of Lisp, they are inherently safe. To handle concurrent processing, 
Interlisp-D includes a simple nonpreemptive process scheduler with no sema- 
phore or monitoring facilities. Errors in process synchronization cannot interfere 
with proper storage management, but one must exercise care to avoid races and 
deadlocks. 

Interlisp does not have strong typing. There has been a long-running debate 
about the trade-off between the flexibility of typeless systems, such as Interlisp, 
and strongly typed systems, which are able to find many errors at compile time 
and which offer the potential for greater efficiency at execution time. Cedar takes 
an intermediate position in this debate by using strong typing, but still allowing 
for delayed type binding and generic references (see Section 2, The Cedur 
Language). 

A running Lisp system has no identifiable component structure or explicit 
layering, but rather contains a vast collection of individual procedures. Of course, 
the user documentation does present the system in an orderly fashion, clustering 
groups of related procedures according to their purpose. 

10.2 Smalltalk- 
Smalltalk systems, from Smalltalk- through the present Smalltalk- [20], 
have also evolved towards a greater degree of openness. As with Interlisp, the 
parts of the systems written in Smalltalk are universally available, since Smalltalk 
operates in a global name space. And like Interlisp, the amount of the system 
written in Smalltalk has increased as the implementation became more efficient. 
Now every aspect of Smalltalk except for a very small kernel is available to 
Smalltalk programmers. 

Smalltalk systems also rely upon automatic storage management, and their 
allocated objects are more complex than those of Interlisp. Objects are repre- 
sented as variable-sized records containing embedded object references. The 
Interlisp and Smalltalk implementations provided a partial existence-proof for 
the kind of storage management Cedar needed. The overall safety of Smalltalk- 
80 is similar to that of Cedar and Interlisp-D. The process-management facilities 
are quite similar to those in Interlisp-D. 

The object-oriented approach exemplified by Smalltalk- was also one 
of Cedar’s goals-a goal so far only partly met. The present Mesa and 
Cedar languages now include some simple syntactic constructs that allow the 
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programmer to invoke a set of procedures associated with a particular data type 
using an object-oriented notation. Many Cedar facilities use this syntax, but the 
construction and management of such objects are the responsibility of each 
programmer. Moreover, neither the Cedar language nor the system provides any 
support for the important Smalltalk- notion of class inheritance, in which 
specific object classes are specified as extensions to the specifications of more 
general ones. Class inheritance is a structuring approach that is orthogonal to 
the explicit layering of Cedar components. Inheritance deals with the relation- 
ships between implementations of related object types rather than the relation- 
ships between callers and callees. Classes and class inheritance are important 
concepts that might benefit strongly typed languages like Cedar. 

Although the Smalltalk- implementation does not exhibit an explicit layering 
of components, it does have effective means for clustering the operations belong- 
ing to each component-as collections of operations implemented by a particular 
class. In fact, the Smalltalk- system supports a further organization of opera- 
tions within a class, encouraging the programmer to collect these operations into 
subgroups called categories. This is also an idea that could be used to advantage 
in Cedar. 

10.3 The UNIX System 

We have selected the UNIX system as an example of a closed operating system, 
which relies on hardware memory protection to partition the code and data used 
by the system for its operation from those of the user processes, and similarly to 
protect the user processes from each other. The closed approach has disadvan- 
tages that led to the development of open operating systems like Cedar, but it 
also has important advantages. 

Disadvantages of a closed operating system 

-The clear boundary between the application and the system is apparent in 
application programs, usually appearing explicitly as a system call of some kind. 
System facilities that are available as system calls can contain useful subcom- 
ponents. However, these subcomponents are often not directly available to 
applications. 
-Applications that run as parts of an integrated open operating system often 
benefit from the ability to share common memory. In particular, the management 
of the shared display within systems like Cedar are heavily dependent on shared 
memory. System performance and programming convenience suffer when appli- 
cations are forced to take a more arm’s length approach to information sharing. 

Much of the strength of the UNIX system has come from the interoperation 
of commands. A typical command in the UNIX system is a filter. That is, it 
takes an input stream, modifies the data, and writes the result on an output 
stream. Such filters can often be composed to produce the desired program. The 
commands interoperate in that the output of one command can become the 
input of the next command. In essence, such interoperating programs commu- 
nicate through their command or user interfaces. The weakness of this approach 

‘Our use of the distinction between interoperation and integration is due to a conversation with 
Robert Sproull. 
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is that the information must be expressed as a stream of bytes. Often this is 
inconvenient, because there may be no simple mapping of the data to a stream 
of bytes. (For example, a directed graph does not map well into a linear structure.) 
Cedar instead provides integration of packages, in that the intermediate forms of 
one computation are used within another computation. 
-Changing the operating system to provide new or different functions is not as 
straightforward as it is in Cedar. (However, we should point out that since UNIX 
sources are generally available and comprehensible, it is possible to customize a 
UNIX system.) 

Advantages of a closed operating system 

-A user process cannot readily interfere with the operation of the system or 
another process, whatever the inherent safety of the programs running in the 
process. 
-User applications can be terminated and their memory and other resources 
entirely reclaimed as easily as they can be loaded and started. 
-Multiple address spaces make it easier to support more than one programming 
language or environment on the same machine. Detailed storage-management 
decisions and calling conventions (which are the primary difficulties in getting 
languages to coexist) are left to the individual processes in their individual 
address spaces. 
-Debuggers can run in protected processes, using system-provided facilities for 
accessing the memory and other run-time state associated with a target process. 
The target process can be completely frozen during the debugging activity. Cedar’s 
local debugging can break down due to process deadlock or failure in the safety 
mechanisms; one must then resort to teledebugging or world-swap debugging, 
both fairly clumsy methods. However, Cedar’s nonlocal methods are less clumsy 
than the methods available for debugging the UNIX kernel, which use a symbolic 
assembly-level debugger to examine a core dump. 

We believe that the advantages of closed operating systems are important. 
Combining the advantages of both approaches to programming environment 
design, beginning with either base, is an important topic for future research. 

11. CONCLUSIONS 

This paper identifies those systems aspects of the Cedar programming environ- 
ment that distinguish it from other experimental programming environments. 
The paper indicates how the novel features combine to achieve a select set of 
benefits: improved programmer productivity, improved quality of software, inte- 
gration of system software, and flexible program development methodologies. 
Some of these benefits were original goals of the Cedar project, and others were 
identified along the way. 

Programmer productivity in Cedar is improved significantly by the integration 
of tools in a high-quality environment. In addition, a number of powerful tools 
enhance the programming process. The structured Tioga document editor, 
Abstract Machine facilities for examining program structures, debugging tech- 
niques that operate in the same or remote address spaces, performance measure- 
ment tools, and tools for version and release management-all available in an 
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environment that also contains the programs under development and the every- 
day office-related necessities of the user-account for this improvement. 

High-quality programs result primarily from careful design and implementa- 
tion. The issue in this paper has been to identify how the machine architecture 
and the system design can help. The Dorado, with its high-speed processor, large 
address space, and large physical memory, was designed to remove impediments 
to experimental development caused by limited resources. Cedar uses its strongly 
typed language, automatic storage management, careful organization of compo- 
nents into layers, and lightweight processes (among other things) to exploit the 
power of the machine while reducing or eliminating the most common causes of 
unreliability. 

For an environment to be considered integrated, it must first support multiple 
activities simultaneously. It must permit the resources of the machine to be 
shared so that independent activities do not interfere with each other. It must 
also support the sharing of components, the building of specialized components 
in terms of more general ones, and the sharing of user interface implementations 
and methodologies across a wide range of applications. The Cedar attributes that 
help improve program quality are all important for integration. Again, lightweight 
processes, the contributions of automatic storage management, and Cedar’s 
layered organization are contributing factors. Procedure registration and the 
object-style programming enabled by procedure variables are particularly valuable 
tools for integration. 

These benefits are all interrelated. Without some of them, others would be 
harder to achieve. The program development methodologies outlined in Section 
8, Methodologies, are particularly important. Their absence would have made it 
impossible to build an integrated system as large and as rich as Cedar. In addition, 
these methodologies serve as models for building other experimental systems. 

The remainder of this section presents several reflections on the Cedar envi- 
ronment. 

11 .l Insights 

We can now discuss the ramifications of the novel aspects of the Cedar environ- 
ment, outlined in Section 1.3, Novel Aspects of Cedar. The decision to emphasize 
these particular aspects resulted from insights gained during the design and 
development of Cedar. These discussions have been deferred until most of the 
details and context were presented. 

11.1.1 Automatic Storage Management. The original goal of the Cedar safe 
language features has been met. It is very rare for Cedar programmers to have to 
deal with memory smashes. In addition, automatic storage management has 
provided other benefits. 

In systems without automatic storage management, one must deal with the 
ownership of objects, especially parameters to procedures. For example, a routine 
that prints text strings might be supplied either with a constant string, whose 
storage should not be released because it will be used repeatedly, or with a 
constructed value, whose lifetime need not extend beyond the completion of the 
printing routine. The client must either surround the call with allocation- 
management statements, or must somehow charge the printing routine with the 
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responsibility for managing the disposition of the parameter’s storage. Either 
method is clumsy. These problems are magnified when trying to design consistent 
rules across a large system. 

In Cedar we can share objects without concern for ownership of the object and 
without complicating the interface. Procedures that create objects may simply 
return an appropriate value, be it a primitive data type or a composite record 
reference. This clarifies the interface specification as well as the client code, 
resulting in faster design of interfaces and implementations. The finalization of 
objects when they are about to be reclaimed permits an object’s implementation 
to control the cleanup of associated data structures, even if the object had been 
shared extensively. 

It is not immediately obvious, but automatic storage management increases 
the value and safety of call-back and registered procedures because it provides 
additional flexibility in the kinds of values that can be exchanged through these 
procedures. In systems without automatic storage management, concern over the 
lifetime of allocated objects has led to restrictions on the use of procedure 
variables in system calls [40]. In closed operating systems, difficulties in estab- 
lishing the proper memory environment generally prohibit the use of either 
registration or call-back procedures. 

The performance of the Cedar incremental garbage collector is sufficiently 
good that it is rarely noticed by Cedar users. More than 90 percent of all garbage 
collections occur in the background. 

11.1.2 Procedure Variables and Objects. Cedar’s methods for using procedure 
variables make experimentation easier by allowing the programmer to extend 
strongly typed, statically compiled, and statically bound interfaces. Programmers 
can add functionality without changing low-level parts of the system and without 
understanding implementation internals. In fact, it is often impossible to deter- 
mine the difference between client-supplied objects and predefined ones. For 
example, all Tioga commands, viewer classes, and command names are registered 
as procedure variables. There is only a minimal performance penalty for this 
kind of extensibility. However, one must amortize the initial overhead of design- 
ing or understanding a registration mechanism over later clients and experiments. 

The generic reference type, REF ANY, permits objects to contain and proce- 
dures to handle uninterpreted data references. Cedar’s use of procedure variables 
differs from Mesa’s because an object or procedure declaration may specify a 
generic reference without the necessity to define in advance all the types of 
possible references. 

Object class definitions, which characterize the common behavior of objects, 
are useful structuring concepts across a wide range of applications. Sharing 
objects makes integration easier because applications can use the same data 
structures and gain leverage from the same user interface buttons and menus. 

11.1.3 Interfaces, Structural Conventions, and Other Chunking Mechanism. 
Integrated systems are big, and Cedar is enormous. Fortunately, there are several 
mechanisms in Cedar that help present the system in manageable chunks that 
people find easier to remember. The four layers organize components into the 
Cedar Machine, Nucleus, Life Support, and Applications. Each component 
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provides a small set of interfaces for each abstraction in the component. Finally, 
implementations of the interfaces accomplish the functionality. For example, 
programmers interact with the Tioga text editor only through a few client 
interfaces that spawn over a hundred internal interfaces and implementations. 

The structural layers in Cedar lead to a stable understanding of the environ- 
ment, in spite of constant change. Clients are unaffected by changes in imple- 
mentations for performance or bug fixes. Layering of applications also means 
that added functionality is easily inherited. For example, Walnut manipulates 
Tioga documents as the content of electronic mail messages, and when Tioga 
was enhanced to display pictures, then electronic mail messages could contain 
illustrations without any change to Walnut. 

Cedar supports “programming in the small” through the interpreter, module 
interfaces, and implementations, “programming in the medium” through config- 
urations describing packages and components, and “programming in the large” 
through version management tools, version maps, and file servers with replicated 
directories. The two case studies in Section 9, Case Studies, demonstrated that 
it is practical to throw away large parts of Cedar and reprogram them with 
new parts, and that we use the layering methodologies even when building 
applications. 

11.1.4. The Abstract Machine and its Applications. The Abstract Machine 
enables the robust local debugging techniques, backed up by remote debugging, 
that are fundamental to the productivity and quality of the experimental pro- 
grams developed in Cedar. Through the Abstract Machine, Cedar supports 
interpreting the Cedar language, source-level debugging in context, and browsing 
Cedar programs through use-to-definition and version maps. Interestingly, Cedar 
does not have a privileged system program called the debugger. Instead, the Tioga 
editor, the expression interpreter, typescript viewers, and a collection of special- 
ized tools that draw upon the facilities of the Abstract Machine package provide 
the basic tools for debugging. 

When problems arise that cannot be handled by the existing tools, new ones 
are built. A good example is Celtics, a “fast breaks” package, which counts 
selected statement executions without disrupting running processes as full- 
fledged breakpoints would. This tool, created as a nonprivileged client of the 
Abstract Machine, enables the debugging of time-critical components. 

Another productivity issue is automating the construction of programs. We get 
along without a syntax-directed editor, yet manage to achieve many of its features: 
correct syntax through templates, consistent typography and style through tem- 
plates and formatting heuristics, and convenient access to procedure arguments 
and record fields through abbreviation expansions. Many of these facilities are 
built on top of the Tioga editor, the Abstract Machine, version maps, and the 
DF package. 

11.1.5 The Imager and its Applications, Especially Tioga. Graphics in Cedar is 
ubiquitous because the Imager handles all display output for the window package 
and text editor, as well as graphical illustrator programs. Applications can now 
reliably capture any black-and-white or color image in a device-independent 
representation, and either display it on the terminal or print it on any of a range 
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of experimental Interpress printers. Although the imaging model of the Imager 
is stressed by some interactive applications, notably due to the lack of trans- 
parent colors, the overall impact of an efficient, functional, and ubiquitous 
graphics package has enhanced our ability to experiment with graphical 
systems and data. 

The impact of sharing the Tioga user interface throughout the Cedar system 
has had significant productivity and integration effects. Users can apply the 
editing operations to almost any text on the display because applications can 
easily and efficiently share access to the Tioga editor. Knowledgeable users 
customize input action events to accelerate common actions or to satisfy personal 
preferences. 

11.1.6 Facilities for Managing Large Sizes in Cedar. Achieving improved pro- 
gram quality and complete integration of components requires a commitment to 
handling large sizes gracefully. The Cedar virtual memory is large. Processes are 
lightweight and many can run concurrently. The file system permits very large 
files and directories. Furthermore, data structures within an integrated system 
may become large. The Cedar system contains an interface design methodology 
using objects that permits several alternative implementations of the same 
interface. Thus, for example, a small Tioga document may be composed of in- 
memory ROPE fragments, while a large document might be composed of file-based 
RopeFile ROPE fragments. Once created, Tioga does not distinguish between these 
implementations, but rather manipulates them identically through the single 
Rope interface. The alternative implementations of a common abstraction permit 
Cedar to evolve gracefully to accommodate very large problems. 

The version and release management methods have made it possible to develop 
and maintain a system as large and diverse as Cedar. Through DF files and the 
DF Package, it is possible to maintain control over the organization of the overall 
system into components, and over the transport of consistent versions of their 
files to and from the local working directories where the components are devel- 
oped or used. The motivation for DF files was to regain some of the file 
management capabilities that were lost in the evolution from time-sharing 
systems to personal workstations in a distributed computing environment. In 
fact, the DF Package has provided us with a number of automatic and semi- 
automatic ways to maintain and verify consistent versions that go beyond what 
can be achieved through conventional file directory facilities. 

11.2 Shortfalls 

Cedar has its share of inadequacies. Some have been addressed and repaired, 
such as redesigning the virtual memory and file systems to take better advantage 
of the machine’s ample resources. The remainder fall into three categories: things 
that need fixing, things that are incomplete, and things that would need to be 
added before we could claim that Cedar is a fully satisfactory environment. 

The Cedar language has inherited from its Mesa ancestors an orientation 
towards a 16-bit word size and even a 16-bit address space for critical run-time 
objects such as procedure activation records and global frames. These limitations 
artificially reduce the number of modules that can be loaded and the number of 
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processes that can operate concurrently. Cedar has inadequate performance on 
Dandelion hardware because its memory management facilities were tuned for 
the larger and faster Dorado. 

The Cedar directory package, FS, which manages file names in a way that 
extends the file system to include the entire Xerox Research Internetwork, does 
not attempt to make the existence of the network and the local file cache 
transparent to the programmer or user. Manual steps are still required to move 
files from the local disk to their permanent storage locations. 

Cedar’s network communications components have not yet reached the level 
of maturity of most of the other low-level Cedar packages, nor do they support 
all of the communication protocols that are in use within Xerox. A much cleaner 
implementation is nearing completion. 

The Abstract Machine interface provides complete access to Cedar types and 
values at run-time in a consistent fashion. Unfortunately, the interface is com- 
plicated and clumsy to use, despite many attempts to simplify it. Further research 
is required to allow easier program access to this information. 

Cedar viewers provide considerable assistance with the control and presenta- 
tion of information, but they are showing their age. The state of the art of display 
management facilities has advanced considerably since the Viewers package was 
designed. There is an effort underway to produce a replacement that will support 
more ambitious viewing paradigms while improving performance and program- 
ming flexibility. 

Many of the applications being developed in Cedar are information manage- 
ment applications. The databases and tile systems that are needed to support 
these applications are not yet adequate to the task, although there is active 
research in this area. 

The Cedar language does not support abstract data type concepts as well as it 
should. Syntactic and semantic support for opaque types, object-style program- 
ming, and polymorphic data types are incomplete or absent from the current 
language. 

The system also lacks a complete, efficient, interactive interpreter for the 
Cedar language. The original intent was to modify the compiler for interactive 
use, and we still believe that is the right approach. There is also a growing 
consensus that command interpreters such as the one in the Command Tool 
should be more fully integrated with the Cedar language interpreter, and that 
there should be support for specialized user-defined languages. 

Cedar runs on proprietary hardware, is expressed in a proprietary language, 
provides its own proprietary operating system and file format, and communicates 
using proprietary protocols. While there are good reasons for each of these 
choices, many of which have been argued in this paper, insufficient attention 
has been paid to developing methods in Cedar for interacting with other 
environments, languages, and systems. Several remedies to these difficulties are 
being pursued. 

11.3 Summary 

The Cedar programming environment is heavily used within the Xerox research 
community to build experimental software systems. Cedar programmers, both as 
systems researchers and as beneficiaries of its facilities, are productive in a robust 
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and integrated environment. The current version of Cedar (Cedar 6.0) occupies 
more than 17 million bytes of disk storage and contains over 1,500 source files, 
more than 400,000 lines of source code, approximately 150 DF files, and over 100 
configurations. Very rough productivity measurements of the Cedar Life Support 
layer indicate that over 50 work-years, about 6,000 lines of code per year were 
produced. Similar measurements for the CedarChest applications software indi- 
cate 10,000 lines of code per year over 50 work-years, and for the on-going VLSI 
design tools project indicate 11,000 lines of code per year over 18 work-years. 
Some individuals have sustained productive output rates about twice as high. 
Although Cedar continues to grow, the management tools appear to be keeping 
pace. 

We have examined the Cedar system from its goals, benefits, methodologies, 
and the components that make Cedar work. This structural overview of Cedar 
has revealed how it is used for building experimental systems, how it improves 
programmer productivity, and how it improves the quality of programs. Even 
with its identified shortfalls, Cedar has reached a level of maturity where it 
should be valuable in its present form for some time. 

APPENDIX A. GLOSSARY OF CEDAR TERMINOLOGY 

Abstract Machine 

Alto 

Applications layer 

ATOM 

attached files 
automatic storage management 

BCPL 

binder 
boot file 
bringover 

call-back procedure 

Cedar Machine 

checkpoint 

client 

closed operating system 

program debugging and analysis facilities 
(Sect. 6.4) 
a small personal computer designed at PARC 
in 1973 (Sects. 1.1, 3.1) 
fourth layer of Cedar: packages and tools 
(Sect. 7) 
uniquely identified objects with properties 
(Sect. 2.7) 
symbolic links to remote files (Sect. 5.6) 
automatic storage deallocation through gar- 
bage collection, supported by the Cedar safe 
language subset (Sect. 5.4) 
a typeless system programming language 
(Sects. 1.1, 3.1) 
a linkage editor (Sect. 6.8) 
a binary form of the Nucleus (Sect. 5.10) 
copying DF file and attaching local file 
names to remote files (Sect. 6.11) 
a procedure passed as an argument (Sects. 
3.3, 8.1) 
first layer of Cedar: hardware, microcode, 
and primitives (Sect. 4) 
a bootable snapshot of a running system 
(Sects. 5.10, 8.4) 
a program (rather than a person) that uses 
another program or system (Sect. 2.1) 
a system with hardware memory protection 
for separate address spaces (Sects. 3.1, 10.3) 
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collectible storage 

configuration 

conservative scan 

Dandelion 

dangling reference 

dependency 

DF Package 

DF file 

delayed type binding 

Dorado 
export 

finalization 

FS 
full boot 

garbage collection 

generic reference 
germ 

global frame 

Imager 

immutable value 

implementation module 

import 

incremental garbage collector 

interface module 

Interlisp 
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that part of memory where objects may be 
allocated and garbage collected (Sects. 2.5, 
5.4, 7.1) 
control information for the binder: result of 
a binding (Sects. 2.1, 9.2) 
an optimizaton used in garbage collection 
(Sect. 5.4) 
the Xerox 1108 workstation (Sects. 1.1, 4.1, 
11.2) 
an invalid pointer to an object after the ob- 
ject has been deallocated (Sect. 2.5) 
package A depends on package B if A uses 
any interfaces from B (Sect. 2.1) 
software to manipulate packages managed by 
DF files (Sect. 6.11) 
a file that fully describes the files that make 
up a package (Sect. 6.11) 
manipulation of typeless objects at run-time 
(Sect. 2.6) 
the Xerox 1132 workstation (Sects. 1.1, 4.1) 
implementors of a procedure for an interface 
are said to export the procedure (Sect. 2.1) 
actions that occur when an object is no longer 
accessible to clients (Sect. 5.4) 
the Cedar file system (Sect. 5.6) 
a boot of Cedar from its components (Sect. 
5.10) 
freeing of collectible objects that are no 
longer needed (Sect. 5.4) 
see REF ANY 

a small bootstrap program for initializing 
Cedar (Sect. 5.10) 
run-time data associated with an implemen- 
tation module (Sects. 2.1, 6.4) 
device-independent graphics package (Sects. 
6.5, 9.1) 
a value that cannot be changed after it has 
been created (Sects. 2, 2.7, 8.5) 
a program module that contains data decla- 
rations and executable statements (Sect. 2.1) 
clients of an interface are said to import the 
interface (Sect. 2.1) 
a garbage collector that does its job concur- 
rently with other system activities (Sect. 5.4) 
a program module that describes the public 
part of a data abstraction (Sect. 2.1) 
a dialect of Lisp with a large integrated 
library of facilities (Sects. 3.4, 10.1) 



IO 

Life Support layer 

lightweight process 

LIST 

load state 

local debugging 

Mesa 

Mesa/Cedar 

monitor 

NARROW 

Nucleus 

object-style programming 

open operating system 

Pilot 

polymorphic language 

procedural object 

procedure variable 

programs as data 

property list 

registered procedure 

reference ( REF) 

REF ANY 

reference count 
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the input/output package: implements 
STREAM (SeCt. 5.7) 
third layer of Cedar: basic program develop- 
ment facilities (Sect. 6) 
a process with a very fast context switch and 
no responsibility for memory management 
(Sect. 2.2) 
variable-length linked list (Sect. 2.7) 
symbol table for exported items in a running 
Cedar system (Sect. 5.10) 
debugging in the same address space as the 
program being debugged (Sects. 5.10, 8.4) 
a Pascal-like, strongly typed, system pro- 
gramming language (Sects. 1.1, 2, 3.3) 
term used throughout this paper to refer to 
features common to the Mesa and Cedar 
languages 
a language method to provide mutually ex- 
clusive access to shared data (Sect. 2.2) 
a type validation function for generic refer- 
ences (Sect. 2.6) 
second layer of Cedar: operating system ker- 
nel (Sect. 5) 
a philosophy of how to use abstract data 
types (Sect. 2.4) 
collection of program modules for an oper- 
ating system (Sect. 3.1) 
an operating system based on Mesa (Sects. 
1.1, 5.1) 
allows values of type TYPE to be passed as 
parameters and stored in variables (Sect. 2.6) 
a record that includes data and procedure 
variables (Sects. 2.4, 8.1) 
procedure descriptor; may be passed as a 
parameter and stored in a variable (Sects. 
2.3, 8.1) 
dynamic construction and execution of pro- 
grams (Sect. 6.4) 
a list of key-value pairs, where a key is usu- 
ally an ATOM (Sect. 6.9) 
a call-back procedure that is retained for 
later invocation (Sect. 3.3) 
a typed, reference-counted pointer to a col- 
lectible object (Sect. 2.5) 
an untyped reference to any collectible object 
(Sects. 2.6, 6.1, 6.4, 8.1) 
the count of REF’S pointing to an object (Sect. 
2.6) 
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remote file 
retained execution frame 

rollback 

ROPE 

RPC 
safe subset 

server 

service 

Smalltalk 

STREAM 

storage leak 

storeback 

teledebugging 

Tioga 

TIP tables 

type discrimination 
user 

user profile 

viewer 

VM 
Walnut 

world 

world-swap debugging 

XDE 

a file stored on a file server (Sect. 5.6) 
activation record retained beyond the life- 
time of the corresponding procedure invoca- 
tion: sometimes known as a closure (Sects. 
2.8, 3.3, 8.1) 
restart of a Cedar world saved in a check- 
point (Sect. 5.10) 
immutable garbage-collected sequence of 
characters (Sect. 2.7) 
remote procedure call (Sect. 5.8) 
Cedar language subset that always maintains 
the storage invariants required for automatic 
storage management (Sect. 2.5) 
a computer dedicated to performing service 
functions (Sects. 4.1, 5.4, 5.8) 
a program or system that responds to clients 
(Sect. 5.8) 
an integrated object-oriented programming 
system (Sects. 3.4, 10.2) 
a data abstraction describing a sequence of 
bytes (Sects. 5.7, 8.1) 
failure to deallocate unreferenced allocated 
objects (Sects. 2.5, 3.4, 5.4) 
copying updated files described by a DF file 
onto a file server (Sect. 6.11) 
debugging one world from another using two 
machines and the Ethernet (Sect. 5.10) 
a galley editor for formatted documents 
(Sect. 6.7) 
specification for interpreting terminal input 
(Sect. 6.3) 
discovering the type of a REF ANY (Sect. 2.6) 
a person (rather than a program) who uses 
some program or system 
a collection of parameters set by the user 
(Sect. 6.2) 
a rectangular region of the display; window 
(Sect. 6.6) 
virtual memory package (Sect. 5.3) 
an electronic mail database system (Sect. 
7.3) 
an instance of a system, including its virtual 
memory and processes (Sect. 6.4) 
debugging one world from another using the 
same machine (Sect. 5.10) 
the programming environment for Mesa 
(Sects. 1.1, 6.11) 
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APPENDIX B. CEDAR RELEASE HISTORY 

Release 

Cedarl.? 
Cedar2.0 
Cedar2.1 
Cedar2.2 
Cedar2.3 
Cedar2.4 
Cedar2.5 

Cedar26 
Cedar3.0 

Cedar3.1 
Cedar3.2 

Cedar3.3 
Cedar3.4 

Cedar3.5 

Cedar4.0 

Cedar4.1 

Cedar4.2 

Cedar4.3 
Cedar4.4 
Cedar5.0 

Cedar5.1 
Cedar5.2 

Cedar6.0 

- Date 

Aug. 1981 
Oct. 1981 
Nov. 1981 
Dec. 1981 
Jan. 1982 
Feb. 1982 
Mar. 1982 

Apr. 1982 
May 1982 

May 1982 
Jul. 1982 

Aug. 1982 
Oct. 1982 

Dec. 1982 

Mar. 1983 

May 1983 

Jun. 1983 

- 
Dec. 1983 

Mar. 1984 
Jun. 1984 

Jun. 1985 

Major features 

First release of Cedar to clients 
First automatic release of Cedar 

Safe language introduced 

Viewers & Tioga introduced 
User Executive (earlier version of Command Tool), 

DF tools 
maintenance release 
no Tajo dependencies, Database, Cedar interim file 

system, Press printing 
maintenance release 
Safe interfaces for Nucleus, Color display support, 

Remote procedure call, Viewers and Tioga work 
well 

maintenance release 
Local debugger, Walnut electronic mail database, 

initial Dandelion support, Cedar kernel language 
Major maintenance release, Abstract Machine intro- 

duced 
No Copilot dependencies, Abstract Machine, world- 

swap debugging, performance improvements, Al- 
pine transaction file server introduced 

Command Tool, Interpreter Tool, maintenance 
release 

RopeFile, Squirrel database browsing tool, mainte- 
nance release 

maintenance release 
maintenance release 
Cedar off Pilot base, FS, VM, Safe Storage, IO, four 

major layers: Machine, Nucleus, Life Support, Ap- 
plications 

Dandelion support, specific release directories 
performance improved, >8 megabyte memory sup- 

port, many new applications 
Interface housecleaning, Imager, Interpress, logical 

file servers (246 application components in 
CedarChest) 

Number of 

22 
24 
26 
32 
40 

48 
50 

62 
63 

79 
78 

87 

95 

146 
146 
146 

153 

104 
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