
A Structural View of the Cedar Programming
Environment

DANIEL C. SWINEHART, POLLE T. ZELLWEGER, RICHARD J. BEACH,
and ROBERT B. HAGMANN
Xerox Palo Alto Research Center

This paper presents an overview of the Cedar programming environment, focusing on its overall
structure-that is, the major components of Cedar and the way they are organized. Cedar supports
the development of programs written in a single programming language, also called Cedar. Its primary
purpose is to increase the productivity of programmers whose activities include experimental pro-
gramming and the development of prototype software systems for a high-performance personal
computer. The paper emphasizes the extent to which the Cedar language, with run-time support, has
influenced the organization, flexibility, usefulness, and stability of the Cedar environment. It high-
lights the novel system features of Cedar, including automatic storage management of dynamically
allocated typed values, a run-time type system that provides run-time access to Cedar data type
definitions and allows interpretive manipulation of typed values, and a powerful deuice-independent
imaging model that supports the user interface facilities. Using these discussions to set the context,
the paper addresses the language and system features and the methodologies used to facilitate the
integration of Cedar applications. A comparison of Cedar with other programming environments
further identifies areas where Cedar excels and areas where work remains to be done.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques; D.2.6
[Software Engineering]: Programming Environments; D.3.3 [Programming Languages]: Lan-
guage Constructs; D.4 [Operating Systems]: General; D.4.7 [Operating Systems]: Organization
and Design; H.O[Information Systems]: General

General Terms: Design, Languages

Additional Key Words and Phrases: Experimental programming, integrated programming environ-
ment, open operating system, strongly typed programming language

1. INTRODUCTION

Cedar is an environment for developing and testing. experimental computer
software systems. The primary focus for Cedar has been to develop a wide range
of experimental office information and personal information management appli-
cations. Cedar also supports the development and evolution of the Cedar envi-
ronment itself, as well as research into new technologies such as VLSI design

This paper is a revision and extension of an earlier preliminary version, “The Structure of Cedar,”
which appeared in SZGPLAN Not. 20, 7 (July 1985).
Authors’ address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0164-0925/86/1000-0419 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986, Pages 419-490.

420 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

tools for high-performance computer systems. People working with Cedar on
such projects do so in small groups or as individuals. Cedar is used by several
organizations within the Xerox Corporation, but primarily in the Palo Alto
Research Center (PARC) where Cedar was created.

This paper presents an overview of the Cedar environment. It examines how
the Cedar environment is structured to meet the needs of creating experimental
software systems, and describes many of the components that make up the
environment. It also reviews the features of the Cedar language, which has had
a strong influence on Cedar’s design. The paper identifies several important
concepts contained in Cedar that contribute to its power and success. We briefly
evaluate the success of Cedar in meeting the goals set out in its requirements
document and also compare Cedar to other programming environments that
attempt to meet similar goals.

This paper does not concentrate on user interface issues or on how to use
Cedar, but does occasionally refer to such issues when they relate to the power
or structure of Cedar. Readers interested in a Cedar user’s view of software
development in an earlier version of Cedar should refer to Teitelman’s paper,
“A Tour Through Cedar” [51].

Over time the name Cedar has come to refer to both the major language in the
environment and to the environment itself. Originally, the language was named
“Cedar Mesa,” to indicate its heritage as an evolution and proper superset of the
Mesa language. However, common usage shortened the name of the language to
simply Cedar, and left the reader or listener to determine from context whether
Cedar referred to the language or the environment. In this paper we consistently
use the phrase “Cedar language” to refer to the language; “Cedar” by itself refers
to the programming environment.

An earlier and shorter version of this paper was presented at the ACM
SIGPLAN/SIGSOFT Symposium on Language Issues in Programming Environ-
ments [49].

1 .l The Origins and Evolution of Cedar

Cedar was created and continues to evolve in the Computer Science Laboratory
at Xerox PARC. Cedar is a research environment supporting the development
and use of experimental programs, emphasizing office information and personal
information management applications. These programs often feature formatted
text, graphics, digitized voice, databases, and distributed computing. Although it
was clear at the outset that some unsolved problems would be addressed, the
intent was to combine well-understood methods and technologies to create an
environment for software research that would exploit a new generation of high-
performance personal computers, including the Xerox 1132 (Dorado) [26] and
the Xerox 1108 (Dandelion) [25].

Cedar, as an operating system and as a programming environment, is the direct
descendant of several earlier Xerox systems: Alto, Smalltalk, Interlisp, Pilot, and
the Xerox Development Environment.

The evolution of Cedar began with a simple environment for the Alto personal
com.puter [54]. The most important new feature of the Alto was its bitmapped
display, which allowed a new style of user interaction. Software for the Alto was
created using the typeless BCPL language. Its structure was based on the notion
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 421

of an open1 operating system [29]. The tools built for the Alto environment were
limited primarily by memory, but also lacked integrated functionality and were
executed serially, thus monopolizing the Alto during their use. The Alto system
exhibited a varied set of user interface paradigms, since this was a time of
experimentation and of limited ability to share existing code.

When the strongly typed Mesa language [35] was developed for the Alto, the
Mesa implementors produced a faithful rendering of the Alto/BCPL system
components, without extending their concepts. The next major system develop-
ment was the Mesa-based Pilot operating system [40] and its associated Tajo
programming environment [47, 551. Pilot and Tajo were designed for use with a
second generation of workstations, such as the Dandelion, that included memory
mapping and larger physical memories than were available on the Alto. The
Pilot/Tajo programming environment was used within Xerox to create the Star
and Viewpoint office systems, and later became the Xerox Development Envi-
ronment (XDE) product, marketed by the Xerox Information Systems Division.

The Cedar system started with an assessment in 1978 of the goals and
requirements for an experimental programming environment. The requirements
document [15] outlined over 50 goals aimed at defining an environment for
creating moderate-sized programs to be used by moderate numbers of people.
The development of the Dorado within PARC at that time promised significantly
greater computing resources, including several times more processing speed,
larger real and virtual memories, higher memory bandwidth for color and larger
black-and-white displays, and larger local disk storage. An assessment of how
earlier versions of Cedar met the goals of the requirements document is presented
by Teitelman [52].

Appendix B charts the evolution of Cedar over the next five years. The earliest
versions of Cedar were built on the Pilot operating system. These early versions
adopted ideas from other interactive programming environments, notably Inter-
lisp and Smalltalk. Later versions incorporated changes due to innovations in
XDE and those due to observed shortcomings in earlier versions of Cedar. These
issues are discussed in Section 3, Structural Overview of Cedar.

Cedar has also borrowed from more conventional current operating systems,
among them the UNIX@ operating system. However, Cedar and systems with
which we can most usefully compare it (Interlisp-D, Smalltalk-80, and the UNIX
systems) attempt to achieve similar goals through markedly different methods.
A comparison of Cedar with these systems appears in Section 10, Comparisons.

1.2 Benefits to Cedar Users

The Cedar programming environment offers several important and powerful
paradigms for software development. Four of the major benefits are improved
programmer productivity, software integration, higher quality software, and
flexible program development methodologies.

1 Our use of the term open operating system differs from the more current notion of an open system.
An open operating system is a structuring methodology for an operating system (see Section 3.1, Open
Operating Systems), while an open system implies that the interfaces to a system are in the public
domain [59].
@UNIX is a registered trademark of AT&T Bell Laboratories.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

422 - D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

1.2.1 Improved Programmer Productivity. Cedar was designed to improve the
productivity of experienced programmers in the development of experimental
programs. This resulted in a rich set of program development tools (program
editors, compilers, symbolic debuggers, and version managers), automatic storage
management to reduce the drudgery of storage allocation, and an extensible
system architecture that provides leverage in building new applications through
exploitation of existing implementations. Cedar also supports concurrent opera-
tion of several applications. A programmer can therefore attend to the most
important activity by easily switching his attention among several tools and
operations. As an aid to development and testing, Cedar also allows experimental
versions of programs to operate concurrently with earlier versions.

1.2.2 Software Integration. Considerable power can be achieved by building
on the best work of others to incorporate those ideas or functions in new systems.
Integration is more than simple techniques for interconnecting programs [16].
Rather, integration applies to designing extensible and customizable software
packages, and to building packages that can be used by other programs. Further-
more, integration extends to consistent user interface paradigms and shared
components for user interface construction that transfer the user’s training from
one application to another. Several integrating mechanisms available in Cedar
are described in Section 8.

1.2.3 Higher Quality Software. We expect to use our experimental programs
in real situations to solve real problems. The environment must therefore be
robust and must gracefully handle large problems. Larger and faster processors,
support for large numbers of concurrent applications, and the availability of
shared resources within a distributed computing environment all contribute to
improved software quality, as do consistent and carefully designed interfaces to
the applications and their implementations.

1.2.4 Flexible Program Development Methodologies. The Cedar environment
itself serves as a model for the development of software systems. Small applica-
tions can often be built quickly by extending and combining existing interfaces.
Large applications can be built using the same tools and techniques as those used
for building the Cedar environment. For example, a large suite of VLSI design
tools is being built with Cedar software development tools.

1.3 Novel Aspects of Cedar

As Cedar has evolved, several aspects of this programming environment have
proved to be particularly interesting:

-Safe Storage, which provides automatic storage management in a strongly
typed language;

-deferred type binding for run-time type discrimination;
-an open operating systems approach to the Cedar system, including its com-

ponents, tools, and applications;
-the Cedar Abstract Machine, which provides program access to program

structures, types, and data;
-local, remote, and multimachine symbolic debugging in context;
-Tioga, a programmer’s text editor, which is extensible and integrated into the

environment;
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986. \

A Structural View of the Cedar Programming Environment l 423

-the Imager, a device-independent graphics package for high-quality two-
dimensional images;

-several methodologies for implementing and managing large system develop-
ment.

These aspects of Cedar will be introduced and discussed when relevant in the
remainder of the paper.

1.4 Outline of the Paper

Cedar is a large complex software system. This paper describing Cedar is also
large and complex. Some of the technical concepts we present profoundly influ-
ence the design of many Cedar components. Consequently, the reader may find
it difficult to appreciate the implications of some concepts until a thorough
reading has exposed their influences and consequences. The authors certainly
found it difficult to present these concepts in a linear fashion. Unfortunately, we
can only publish a linear document, and we chose the following outline.

Understanding the Cedar environment begins with an understanding of the
Cedar language presented in Section 2, The Cedar Language.

The layered architecture of the Cedar components is introduced in Section 3,
Structural Overview of Cedar, which discusses the major design philosophies used
in Cedar. The four major layers are presented in four separate sections: 4. Cedar
Machine, 5. Nucleus, 6. Life Support, and 7. Applications. These largely descriptive
sections concentrate on the components of each layer, together with some
structural aspects. Material that has not been published previously-for example,
the Abstract Machine component of the Nucleus-receives greater attention.

The focus changes from a structural overview to a methodological discussion
in Section 8, Methodologies, which describes the methods developed to use the
components of Cedar to greatest advantage. Two case studies in Section 9, Case
Studies, illustrate how Cedar was used to develop the Cedar Imager and to build
an integrated voice-annotated electronic mail system. The next section, 10,
Comparisons, examines other programming environments that have attempted
to achieve similar goals and requirements. Concluding arguments about
the strengths and weaknesses of the current Cedar system are presented in
Section 11, Conclusions. Appendix A contains the glossary of Cedar terminology,
which defines Cedar terms and indexes their use in the paper. Appendix B
chronicles the release history of Cedar.

The authors suggest that readers who are unfamiliar with Cedar should read
the language section, 2, in some detail, briefly skim the structural overview,
Sections 3-7, and then read the methodology, Section 8, case studies, Section 9,
and comparisons, Section 10. Using the glossary on first reading will help define
unfamiliar terms and locate sections that discuss terms in more detail. A second
reading of the language and structural overview sections will permit greater
understanding of the conclusions drawn in Section 11.

2. THE CEDAR LANGUAGE

The Cedar language, an extension of Mesa 119, 27, 31, 351, is a strongly typed
systems implementation language in the ALGOL family. Mesa includes facilities
for modularization and separate compilation (with full type-checking across

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

424 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

module boundaries), lightweight processes and monitors, exception handling, and
procedure variables. Cedar language extensions retain full type-checking while
providing automatic storage management and facilities for delaying the binding
of type information until run-time. In addition, the Cedar language provides
immutable’ strings, as well as Lisp-like lists and atoms.

This section presents selected features of the Cedar language. It reviews those
features inherited from Mesa that strongly influence the structure of the Cedar
system and describes the features unique to the Cedar language. Throughout this
paper we use the term “Mesa/Cedar” to refer to the common portion of the two
languages. The features described here cover the major differences between Cedar
and Pascal. Other Cedar language details are omitted for brevity.

2.1 Strong Typing, Interfaces, and Modules

The Mesa/Cedar language is strongly typed. That is, the type of every value can
be determined via static analysis. The compiler performs this analysis to ensure
the type-correctness of all programs. Strong typing allows the compiler to catch
many common programming errors and to produce efficient code.

A Mesa/Cedar program consists of a set of separately compiled modules. They
are of two kinds: interface and implementation modules. An interface module acts
as a specification for a related set of functions or a data abstraction. It describes
public data types, procedures, and variables. It can also include definitions of
opaque types, whose structure and behavior are hidden from the external world.
An implementation module contains executable statements, provides storage for
variables, and supplies concrete representations for opaque types.

For example, suppose that interface module A defines procedure P (that is, A
specifies the names and types of P’s parameters and results). An implementation
module that supplies the code for P exports an implementation of P to A. Other
modules that access A.P must import interface A, these modules are clients of the
interface A.

Associated with each running implementation module is a global frame that
contains storage for its global variables. These global variables act as own
variables for the procedures defined in a module. It is possible to allocate multiple
instances of a global frame for a single implementation module.

The clear separation of interfaces and implementations serves several valuable
purposes. First, it provides selective information hiding between implementors
and clients. This permits independent program development and allows multiple
implementations of the same interface. For example, an implementation can be
modified to fix bugs or to improve performance without requiring client recom-
pilation, provided that the modified implementation continues to conform to the
original interface. Second, it provides the mechanism for intermodule type-
checking. Interface modules are compiled into symbol tables that are consulted
when modules are compiled, when they are bound together to form a pro-
gram, and when they are loaded into the system. The enforcement of strong

’ Throughout this paper, when we refer to immutable values we mean values that, once created, may
not be changed. Operations on such values include deleting them entirely (usually through garbage
collection), examining them, or producing new values by copying all or parts of them. References to
immutable strings may be passed freely among programs without danger that the values observed by
the original owners will change.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 425

I ntetface Implementation Configuration

Fig. 1. The dependencies among interfaces, implementations, and configurations
are crucial to modular structure in the Mesa family of languages. An interface is
depicted as an arrow representing an abstraction. An implementation is depicted
as a block of code that may export one or more interfaces and that may import
several interfaces to supply procedures or variables upon which the implementation
depends. A configuration may also export and import interfaces depending on
the combination of implementations within the configuration. Many more
arrangements of imported and exported interfaces are possible than depicted
in these simple examples. For an example, see the Walnut Voice configurations in
Figure 7.

typing across module boundaries permits Mesa/Cedar programmers to make
extensive changes to large systems with confidence. For example, if the number
or types of a procedure’s parameters are modified and a module imports an old
version of the procedure, then the compiler, the binder, or the loader will report
a type error.

A separate configuration description specifies how to resolve the imports and
exports of a collection of implementation modules. Configurations allow flexibil-
ity in creating a program from alternative implementations of the same interface.
A configuration can be hierarchical, including within it subconfigurations. Con-
figurations, like modules, may also import and export interfaces, as shown in
Figure 1. This provides name scoping for interfaces. The process of combining
modules based on a configuration description is called binding. Interfaces im-
ported by a top-level configuration will be resolved during loading. The binding
mechanisms supported by Cedar are static. Dynamic binding is achieved by using
procedure variables and a variety of conventions that will be described throughout
the paper.

2.2 Lightweight Processes and Monitors

Mesa/Cedar provides lightweight processes and language support for managing
them. Lightweight processes are multiple concurrent threads of control that share
the same address space [12, 27, 301. A lightweight process is entirely represented
by its current execution state. This state is a chain of procedure activation
records, each containing the local variables and program counter for a procedure
invocation that has not yet completed. By contrast, a “heavyweight” process also
includes management of major resources, such as virtual memory, open tiles, and
devices [41].

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1986.

426 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and Fi. B. Hagmann

The efficiency of Mesa/Cedar’s processes makes it natural to structure pro-
grams to reflect their inherent concurrency. A process switch is fast (it takes
about twice as long as a procedure call-return pair, or approximately 8 microsec-
onds on a Dorado).

Monitors [8,24] are a unified mechanism for providing synchronization among
multiple processes and for protecting shared data. Only one process can execute
within any procedure of the monitor at a time. If a process discovers that it needs
additional resources while inside a monitor, it can wait on a condition variable.
This suspends the process and places it on a waiting list associated with that
condition variable, after which other processes can enter the monitor. The
suspended process runs again when the condition is notified or when a timeout
occurs.

In situations where a single monitor lock is too restrictive, monitored objects
allow additional concurrency. By associating a separate monitor lock with each
object, this alternative permits one process to execute inside the monitor for each
object instance.

2.3 Exception Handling

The exception-handling mechanism provided by the Mesa/Cedar language allows
the implementation of an abstraction to check preconditions and ensure internal
consistency efficiently. In addition, its distinguished syntax alerts a reader of the
program source that an exceptional condition can arise.

When an exception is raised during the execution of a statement, normal
execution is suspended and a handler (a special kind of procedure) is invoked,
The correct handler for a given condition is determined by a combination of
dynamic and static scoping. The handler is selected by searching backward
through the call stack of the process for the innermost caller that has supplied a
handler for the condition. A handler can specify termination or resumption of
the statement that raised the exception. In the termination case, execution
continues in the procedure containing the handler, and the later procedures are
aborted. To give procedures that are about to be aborted in this way an oppor-
tunity to restore a consistent state, the special exception UNWIND is generated in
each procedure. For example, a monitor entry procedure typically provides an
unwind handler to reestablish its monitor invariant. All exceptions that are not
caught by explicit handlers are caught by the Cedar debugger, leaving the
suspended execution state intact for examination.

2.4 Procedure Variables and Support for Object-Style Programming

Mesa/Cedar procedures can be treated as values. They can be passed as argu-
ments and saved in variables for later invocation. Procedure variables have a
variety of important uses, several of which are discussed in more detail in later
sections. They are also essential to the implementation of object-style program-
ming, which we define as the representation of program behavior through
dynamically created objects that specify both the data corresponding to some
abstraction and the operations that can be performed on or by the objects.

In the Mesa/Cedar language, an object’s data and the values of procedures that
implement its operations can be specified together in the same record. As an
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 427

optimization of this format, objects that have many object instances and many
operations can be represented by creating an explicit record of procedures for
each kind of object. A pointer to this procedure record is then included with the
object instance data. The indirection inherent in this structure permits a form
of object “classes”: each class shares the same procedure record. It is possible to
create objects with modified behavior by copying the procedure record and
replacing a subset of the procedures. However, the Mesa/Cedar language provides
no formal class inheritance mechanism.

For a longer discussion of this topic and an instructive example, see Serlet’s
discussion of object-oriented programming in Cedar [45].

2.5 Automatic Storage Management and the Safe Language

Extensions to the Cedar language provide the basis for automatic storage man-
agement [42]. These extensions eliminate the following two problems with Mesa’s
explicitly allocated and deallocated pointers to dynamic storage:

-The programmer must deallocate a dynamic object at the right time to avoid
dangling references, in which an (invalid) pointer to an object remains after
the object has been deallocated, and storage leaks, in which an object becomes
inaccessible without its storage being deallocated for reuse.

-Invalid pointers can result from failure to initialize a pointer, from incorrect
pointer arithmetic, or from explicit violations of the type system through
improper use of type coercions such as the LOOPHOLE construct. Using an
invalid pointer to modify memory can destroy program or system data struc-
tures in ways that are difficult to track down.

The first problem is solved by automatic storage deallocation, in which garbage
collection algorithms built into the system take on the responsibility of deallo-
cating dynamic objects when they are no longer being used. This makes the
construction of experimental programs significantly less tedious for programmers.
Furthermore, the structure of the resulting programs is often simpler. Less
handshaking is required between a client and an abstraction regarding who will
deallocate a dynamic object, and exception handlers need not be certain to
deallocate the storage owned by a routine that is being aborted.

The safe subset of the Cedar language addresses the second problem. The safe
subset includes a carefully selected subset of the original Mesa language as well
as the extensions described here. It has been formally demonstrated that even
erroneous programs written in the safe subset maintain a set of storage invariants
that ensure the integrity of the storage allocation structures, other system data,
and all code [38]. The unsafe features that remain outside the safe subset must
occasionally be used, most often in the lower levels of the system. The additional
syntax described below provides ample warning that the programmer is respon-
sible for maintaining the system’s storage invariants.

Reference types, a new class of pointer types analogous to Pascal’s or Mesa’s
POINTER types, allow safe access to collectible storage. A reference variable, called
a REF, holds the address of a collectible object of a specified data type. To help
ensure that a reference’s value is always valid, the system automatically initializes
it to NIL. The operator NEW allocates a new collectible object of a specified type,

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

428 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

with optional initialization of its contents, and returns a reference to the new
object. References may be freely copied (by assignment or by procedure parameter
binding) and discarded (by assigning NIL or by exiting a scope). The system makes
a region of collectible storage available for further allocation only when no
references to it remain.

For example, the declarations

Node: TYPE = REcom[left, right: FIEF Node, contents: CHAR];

root: REF Node;

declare a new variable root to hold nodes of a binary tree of characters, while the
statement

rOOt c NEw[Node c [NIL, NIL, ‘A]];

allocates a new collectible object of type Node, initializes its contents field to the
letter “A”, and stores a reference to the new object in root.

Procedures are either SAFE or UNSAFE, depending on whether they guarantee to
maintain the storage invariants. The programmer can let the compiler check that
a safe procedure uses only safe constructs (a CHECKED block), or may instead
assert its safety (a TRUSTED block). Code in a CHECKED block cannot be the direct
cause of a memory smash. In addition to ensuring that only constructs in the
safe subset are used, the compiler generates tests for illegal memory references,
such as out-of-range assignments to numeric variables and array index bounds’
violations.

The use of unsafe language constructs is permitted in TRUSTED and
UNCHECKED blocks. These constructs include the type-escape mechanism
LOOPHOLE, the original Mesa POINTERS, and address arithmetic. Situations that
require their use arise most often in low-level system code, such as the low-level
implementation of data structures and safe storage itself, low-level I/O, and
unpacking network communication packets. By declaring a block to be TRUSTED,

the programmer asserts that all uses of unsafe features within the block maintain
the storage invariants. UNCHECKED blocks carry no programmer warrantees.

Our use of the term automatic storage management throughout this paper
denotes both the notational convenience and protection offered by the safe subset
of the Cedar language, and the set of storage management capabilities that are
enabled by the allocation and garbage collection methods of the Cedar Safe
Storage facilities (See Section 5.4).

2.6 Delayed Type Binding

Delaying type binding until run-time can provide important program flexibility.
The original Mesa language offers very limited capabilities for delaying type
binding. The choice among predeclared alternatives of a variant record may be
made at run-time, and the lengths of sequences and descriptor-based strings and
arrays may be specified then. Additional type flexibility in Mesa can only be
achieved through use of the unsafe type-escape mechanism LOOPHOLE. Cedar
language extensions for delayed type binding include a generic reference type
(REF ANY) and a run-time type system.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 429

A variable of type REF ANY can take on a value of type FIEF T for any
type T. However, the actual type of the referenced object must be verified at
run-time before the object can be examined or modified. Two run-time func-
tions and some new syntax allow the use of FIEF ANY variables while retaining full
compile-time type checking.

The boolean form ISTYPE[X, T] is defined to return TRUE if and only if the actual
type of the object x is equal to the type T.

The type transfer form NARROW[X, T] has type T. It is defined to return x (with
type T) if and only if ISTYPE[X, T] = TRUE. Otherwise it raises a run-time type
error. The type T can be omitted if it is unambiguously determined by context.

A special form of SELECT statement (similar to Pascal’s case statement) has
been defined to ease the use of REF ANY variables. The statement

WITH V SELECT FROM

VI: T, => ((stmflist,));
vp: T2 => ((stmfiist~));

vn: T, => ((stmflist,) 1;
ENDCASE => {(Sf~thkt,,,)); - -SSSU~eS On/y that V hi% fy/X? REF ANY

is interpreted as if each arm were written as

IF V # NIL AND ISTYPE[V, Ti]
THEN (Vi: Ti + NARROW[V]; (Sf&/&)).

Because the object referenced by v is known to have a specific type in each arm,
the arm’s statements are permitted to examine and/or modify the values of
its fields.

In addition to generic reference variables, the Cedar language also has generic
procedure types. A procedure type may use ANY as the type of its formal parameter
record type and/or result record type. This allows flexibility in specifying a
procedure parameter or procedure variable. Procedure values with specific do-
mains and ranges may be widened to these dynamic types, and later tested and
narrowed analogously to REF ANY. They must be narrowed before being applied.
The inefficiency of the current implementation of generic procedure values
prohibits their use for time-critical programming tasks.

Generic reference types allow procedures to store or pass as parameters objects
of any reference type and to examine or modify objects of prearranged varying
types. However, they do not permit procedures to examine or modify objects of
completely unspecified types-an important capability for debuggers and other
monitoring tools. To fulfill this need, Cedar provides a run-time type system to
manipulate the run-time representations of types. (The type of each statically
allocated object can be discovered by consulting the appropriate symbol tables,
and a type tag is stored with each collectible object. Parts of these data structures
are also needed at run-time to support the garbage collector’s reference counting.)
In the current implementation these functions are too slow to compensate for
the absence of full polymorphism in the language, which would permit values of
type TYPE to be passed as parameters and stored in variables. Further discussion
of the run-time type system, which is included in the Abstract Machine compo-
nent of the Cedar system, can be found in Section 6.4, Abstract Machine.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1986.

430 ’ D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

2.7 Rope, Atom, and List Types

Several other flexible data types based on references have been introduced
into Cedar. Notable among them are a variable-length immutable text-
string type (known as a ROPE), a variable-length linked-list type (LIST), and
atoms (ATOM).

An instance of a ROPE is an immutable collectible sequence of characters.
Because ropes are immutable, the sequence of characters denoted by a given rope
never changes; that is, every operation creates a new rope. As a result, ropes can
be safely shared between programs without concern for storage ownership or
synchronization. The rope interface provides a large set of useful operations on
ropes, including rope concatenation, rope comparison, subrope extraction, and
rope scanning. For efficiency, the standard implementation of ROPE represents a
rope as a directed acyclic graph with heuristics that attempt to limit its depth.
Therefore most rope concatenation and subrope extraction operations can be
performed by manipulating small numbers of these structures rather than copying
large numbers of characters. A client can provide a customized implementation
of ROPE by implementing a small set of basic operations on the new representa-
tion. The combination of convenience and efficiency of Cedar ropes have led to
their widespread use at all levels of the system.

The Cedar language has a new type constructor, LIST OF, to declare singly
linked lists whose elements are all of the same type. The type definition

L: TYPE = LIST OF T;

is equivalent to the set of recursive type definitions

L: TYPE = REF N;
N: TYPE = RECORD [first: T, rest: L];

where N is a “private” name. The record fields first and rest provide the
functionality of Lisp CAR and CDR.

The list constructor CONS adds a new element to the beginning of a list. A
series of coNses can be abbreviated using the LIST function. For example, to
declare a list of ropes, initialize its value, and then add a new element, one could
write

colors: LIST OF ROPE t ~s~[“red”, “yellow”, “blue”]

COlOrS t CONS[” white”, COlOrS]; - -CO/O/~ = LIST[” White”, “fed”, “ye//OW”, “b/Ue”]

A list assignment copies the reference rather than the entire structure. As a
result, safety considerations require that a LIST OF REF ANY must have limited
assignment compatibility.’ Suppose that variable lora has type LIST OF REF ANY

and variable lort has type LIST OF REF T. The assignment lora c- lort is illegal,
because it creates a potential aliasing problem. That is, new elements of other
types could then be added to lora and accessed through lot?. This storage mistyping
would represent violation of the storage invariants.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 431

Cedar’s atoms are uniquely addressed values in a global name space, much like
Lisp atoms. They can be located by their client-assigned names, decorated with
property lists, and compared for equality using a simple pointer test.

2.8 Language Shortfalls

Automatic storage management for a strongly typed language and the flexibility
offered by Cedar’s new reference data types have worked well. However, the
initial design for the Cedar language included several items that are as yet
unimplemented. Among these are a formal subclassing mechanism for objects;
true polymorphism, which would allow variables of type TYPE; retained frames,
which would eliminate restrictions on storing nested procedure values; and a
canonical representation of programs that would allow programs as data.

3. STRUCTURAL OVERVIEW OF CEDAR

This section presents the concepts and methods used in structuring the Cedar
environment as a collection of components that are arranged in layers. The open
operating-system architecture developed for the Alto system has had a significant
influence on Cedar. Several concepts underlying the structure of Cedar are
presented, as well as the philosophies that guided its development. The contri-
butions of existing programming environments for Mesa, Interlisp, and Smalltalk
are discussed. Finally, the four layers of the Cedar system are introduced.

3.1 Cedar as an Open Operating System

The description of the Alto/BCPL system by Lampson and Sproull [29] defines
the closed/open terminology as it is used in this paper.

A closed operating system has memory protection, generally in the form of
hardware support, which provides separate address spaces for the operating
system routines and for each user application. The operating system supplies
user programs with special methods for invoking a fixed set of operations. The
routines that implement these operations, unless they are also explicitly exported
as system operations, are not available directly to client programs. This organi-
zation is typical of conventional multiuser operating systems.

An open operating system is simply a collection of program modules (containing
sets of related procedures) that share the machine’s single address space. The
structure of the resulting system is determined by policies for organizing, loading,
and running these modules. The policies may be imposed by convention or
enforced by the system or the programming language.

The structure of the proposed programming environment and the relationship
of its components to one another did not arise explicitly in the deliberations that
led to Cedar. Rather, the open style is particularly well suited to the hardware
architecture of the Dorado and Dandelion processors. The single, unsegmented
address space of this architecture makes reliable and effective implementation of
a closed-style system difficult. The need to support an integrated, interactive
environment for a single user also favored this approach. Thus, an open operating
system modeled on earlier BCPL- and Mesa-based systems for Xerox processors
was a natural choice as a basis for building Cedar.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1986.

432 - D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

AS the implementation of Cedar progressed, considerable effort was devoted
both to refining the policies for structuring it and to producing the specific
detailed organization of its components. As a result, Cedar’s structure itself has
emerged as an important aspect of the system. Furthermore, the viability of this
structure has been enhanced by features inherited or borrowed from Cedar’s
Mesa forerunners, from other successful interactive environments (notably Lisp
and Smalltalk), and from other parts of Cedar.

3.2 Structuring Methodologies in Cedar

The evolution of Cedar from its Alto/Mesa roots has been relatively continuous.
By the time of the Cedar 4.0 release in March of 1983, the basic organization of
the system, as well as the methods and rules for maintaining the organization,
were well established. The concepts underlying Cedar’s structure can be sum-
marized in the following points:

-Operating system routines can be called as ordinary Cedar language procedures.
There is no sharp boundary between client programs and system routines.

-The components of Cedar are carefully arranged into layers. Higher level layers
are built on the capabilities of lower level ones.

-The components in one layer may only call procedures located in the same or
lower layers (except in a manner treated in the next paragraph). This restric-
tion is enforced only by convention. Violations can result in system failure due
to an attempt to invoke a procedure in a component that has not yet been
loaded or initialized.

-Once initialization is complete, a component can supply a procedure value as
the parameter to a lower level service procedure. The service procedure can
later invoke the supplied procedure to obtain information, to report state
changes, or otherwise to communicate with the higher level component. This
method, which will be further refined below and in Section 8, Methodologies,
provides a restricted form of what Clark calls “upcalls” [121.

-This structure differs from the virtual machine concept, in which each level of
a system is implemented entirely in terms of the abstractions provided by the
next-lower one. The difference is that in an open operating system the lower
level modules remain directly available to clients at all higher levels. An
application can generally choose to use components from any level or to replace
them with custom-built components (which can still use the standard lower
level components).

Without violating these principles, the challenge was to assign components to
layers in the most effective way. A number of potentially conflicting objectives
guided the organization of Cedar:

-The components located lowest in the structure should have the fewest de-
pendencies on other components, so that there need not be violations of the
policies prohibiting calls to higher levels.

-For the same reason, there should be no “loops” (mutual dependencies) among
components. Note that “loops” between interfaces make consistent compi-
lation impossible, so they are effectively prohibited by the language. The
observation here is that mutual dependencies between implementations also
lead to difficulties in managing and understanding the system. Of course, loops

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 433

that arise due to upcalls to procedures supplied dynamically by higher level
clients can be quite useful, and have not proven troublesome.

-The components located lowest in the structure should provide the most
important and widely used facilities needed by other software.

-Subject to the above objectives, components should occupy positions as high
in the structure as possible. This makes them easier to develop, maintain, and
replace, and allows them to use more of the system’s capabilities.

Ideally, then, the components with the fewest dependencies must also be the
most widely needed ones, or these objectives will conflict with each other.
Fortunately, in recent versions of Cedar (beginning with Cedar 5.0), these
objectives appear to have been met particularly well. A rewrite of Cedar’s virtual
memory, storage allocation, disk, formatted input/output, file, and directory
packages for that release eliminated many of the undesirable dependencies. At
the same time, the number of components that could make full use of these
important facilities was increased. Dynamically bound upward calls were em-
ployed to eliminate some of the loops.

Occasionally, a component was found that appeared to require placement lower
in the structure than its dependence on other components would permit. Closer
examination usually revealed that the component could be separated into a high-
level part, such as one or more display-based or command-style user interfaces,
and a lower level package providing a set of functions through a well-defined
Cedar language interface. Although the package had to be located fairly low in
the structure, perhaps because its services were also needed by other low-level
components, the user interfaces could be moved much higher, where they could
use a richer set of packages. Section 8.2 expands upon this philosophy of “build
packages, then tools” and its implications for integrated program development.

We have not developed any objective measure of the quality of a particular
component organization. Subjectively, there is considerable satisfaction with the
current organization. The sections that follow describe this organization in
sufficient detail for the reader to evaluate these claims.

3.3 Influences of the Mesa/Cedar Language

Alto BCPL was a useful open operating system, but it had many shortcomings.
BCPL is a typeless language that provides many opportunities for errors that
the Mesa/Cedar type system can prevent. Mesa/Cedar’s strong type-checking
has demonstrably improved the reliability and the ease of development of
programs produced for Xerox processors [191.

Mesa/Cedar’s interfaces are very useful in describing and delimiting the
capabilities supplied by a particular system component. Further, configurations
provide a concrete way to describe components within the language and to
identify the interfaces that each component implements. With configurations,
one can also use private copies of standard system components without fear of
the name conflicts and undetected binding errors that could arise in the Alto
BCPL world. As we will see in Section 8.7, Program Development, tools such
as the Tioga editor and the Viewers window package can even be used for
testing and debugging their successors, through judicious use of configuration
descriptions.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

434 ’ D. C. Swinehart, P. T. Zellweger, R. J. Beach, and FL B. Hagmann

Interfaces and configurations do not provide a complete descriptive technique
for the structure of Cedar. Export lists identify the public and private interfaces
of a component, but there is no provision for enforcing the restriction against
statically bound upward calls.

A shortcoming common to both Mesa and Cedar language implementations
has led to restrictions in the use of some procedure values. A nested procedure N
(one declared within the scope of another procedure P) can be passed as a
parameter to procedure X, but X cannot save the procedure value N for later
invocation. This is illegal because P’s activation record, which provides the
context for the nested procedure, is not retained beyond the lifetime of P’s
invocation. Instead, X must invoke N directly as part of its operation. A procedure
value that is used in this way, whether nested or not, is known as a call-back
procedure.

A nonnested procedure R can also be passed to a procedure Y whose purpose
is to save R’s value for later invocation. A procedure value that is used in this
way is known as a registered procedure, and Y is often referred to as a registration
procedure.

Both call-back and registered procedures can be used to accomplish upward
calling, which is often helpful in the orderly structuring of the system. Examples
of both kinds of procedures appear repeatedly in Sections 5, Nucleus, 6, Life
Support, and 8, Methodologies.

Cedar’s lightweight processes, first introduced in the Mesa system, are impor-
tant to the success of the open operating system style. Processes are not
responsible for memory protection, storage management, or address space man-
agement. The execution point of a process is therefore free to move from one
system level to another, relying only upon the semantics of ordinary Cedar
procedure calls. Processes may preempt each other at any time (subject to the
protection and synchronization provided by monitors [27]), so that high-priority
processes may receive rapid service. Time-slice scheduling algorithms divide the
processor fairly among processes at the same level, without cluttering client
programs with explicit synchronization code.

3.4 Contributions from Interlisp and Smalltalk

Cedar’s primary contribution to the evolution of open operating system organi-
zation is automatic storage management in a strongly typed language. None of
Cedar’s predecessors is immune to catastrophic damage or eventually fatal storage
leaks that result from improper pointer management-the kinds of unrecoverable
mishaps that traditional closed operating systems were designed to protect
against. Although closed operating systems confine such damage to the process
or job that causes it, Cedar’s aim is to prevent the damage entirely, through its
combination of compile-time and run-time tests. These methods are known to
work well in Lisp and Smalltalk implementations. Admittedly, storage leaks,
while infrequent, can still occur even in the safe subset of Cedar (see the
discussion of cyclic data structures in Section 5.4, Safe Storage).

The elimination of concern about the ownership of collectible objects has
improved the convenience and reliability of communications between system
layers, both downward and upward, through call-back and registered procedures.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment

Command Tool

Life Support
level

window manager

Nucleus
level

RPC Loader
remote

procedure
call

Communications

IO

Checkpoint/
Rollback

FS
file directory package

Cedar
Machine

File

Safe Storage

Terminal

Virtual Memory

Disk management and abstract device drivers

Runtime Support
support for procedure linkage, process switching. and runtime error handling

microcode
Mesa stack architecture with added suPport for automatic ?&raw management I

1 D-machines large memory
processor D to 16M l&bit words

Fig. 2. The structural overview of Cedar.

In Cedar, the automatic storage management operations are atomic with
respect to all but the highest priority processes (which are not permitted to
invoke these operations). Thus, the powerful preemptive-process capabilities of
Mesa have been preserved in Cedar without threatening the system’s storage
invariants.

3.5 Structural Organization of Cedar

Figure 2 presents a structural view of Cedar, as a set of major levels each
comprising a set of layered components. Following the methodology developed

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

436 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and FL B. Hagmann

in this section, each component is built upon abstractions supplied by components
lower in the structure. The figure was designed to express the orderings and
dependencies among the components. A component C appears directly above
another component D if and only if C uses the facilities of D directly. Block areas
imply neither the relative importance nor the relative sizes of the components
they represent. The irregular and rather riotous collections of shapes and com-
ponent positions in each layer are intended to depict Cedar as a system under
control but in a state of constant growth and evolution. (Alan Perlis has referred
to systems with this sort of character as “organithms” [39].) Note that only a
representative selection of Applications components is shown.

The four major Cedar layers are the Cedar Machine-hardware, microcode,
and primitives needed to execute the language; the Nucleus-the operating
system kernel; Life Support-the basic facilities needed for program develop-
ment; and Applications-packages and tools written by and for the Cedar user
community.

Sections 4 through 7 follow the organization of Figure 2 (from bottom to top)
to present an overview of the major components of each of the four Cedar layers,
emphasizing the lower three. This overview provides the factual basis for further
discussion of how improvements in programming productivity, integration, soft-
ware quality, and program development methodology are achieved in Cedar.

4. THE CEDAR MACHINE

The Cedar Machine includes the hardware, the microcode, and the primitives
needed to execute the Cedar language.

4.1 Workstation Hardware

The Cedar programming environment runs on the family of Xerox Scientific
Workstations, which includes the Dorado [26] and the Dandelion [25]. The
Dorado is a high-performance personal workstation with 16-bit words, a
cached virtual memory with a single, large virtual address space (24 bits,
word-addressed), and up to 32 megabytes of physical memory (typically 4 to
16 megabytes). The writeable microstore allows customized instruction sets
for different languages and environments (Cedar, Smalltalk, and Interlisp).
Input/output devices include a large (1024 X 808 pixels) high-resolution bit-
mapped black-and-white display, a keyboard, a mouse pointing device, and an
Ethernet interface. A color display can be added using a frame buffer in work-
station memory. A typical personal workstation has a local disk of 80 megabytes
or 315 megabytes, while servers can support up to four disks.

Cedar language interfaces are provided all the way down to the hardware. The
processor, clock, and all I/O devices have Cedar language interfaces that may be
used by other Cedar programs.

Cedar workstations operate in the Xerox Research Internet environment,
which includes database and file servers, shared printers, name authentication
servers, and distributed electronic mail services [3, 6, 9, 341.

4.2 Microcode

The Cedar microcode implements an extension of the Mesa machine architecture
[25], which was designed to execute Algol-like languages efficiently. Two factors
combine to produce exceptionally compact representations of programs: a stack
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 437

machine architecture, which allows zero-address instructions, and variable length
byte-coded instructions, whose encodings are based upon an analysis of static
instruction frequencies in existing compiled Mesa programs [48]. A compact
program representation saves storage space and contributes to faster execution.
The increased locality of a smaller program can reduce cache misses and page
faults. In addition, the architecture allows for interleaved execution of several
hundred processes. Microcoded instructions directly support a number of the
important features of Cedar, among them:

-rapid allocation of activation records from a heap rather than a stack;
-powerful control transfer disciplines that accommodate coroutine and process-

switching transfers in addition to conventional procedure calls;
-reference-counted store instructions that are vital to the efficient implemen-

tation of Cedar’s garbage collection algorithms;
-direct linkages to fault and exception handlers that are implemented as

ordinary Cedar procedures.

The fault and exception handlers manage arithmetic exceptions, machine
failures, virtual memory faults, programmed traps, and memory references that
would violate the storage invariants that support Cedar’s automatic storage
management. The routine that handles programmed traps provides low-level
support for breakpoint and program-tracing activities (see Section 6.4, Abstract
A4uchine).

Other microcoded routines implement the primitive operations for communi-
cating with input/output facilities.

4.3 Run-Time Support

All Cedar programming is done using the Cedar language. There are no assembly
language routines. The machine hardware, microcode, and low-level run-time
support combine to form a virtual machine well suited to the efficient execution
of Cedar programs.

Low-level routines and data structure definitions provide a Cedar language
interface to the microcoded processor architecture. Although this component is
not written in the safe language, its interfaces are asserted to be safe. Hence,
higher level software can be written in the safe subset of the Cedar language and
freely use the facilities of run-time support.

5. THE NUCLEUS LAYER

The Cedar Nucleus contains the basic operating system facilities needed for
storage management, process management, file system management, and com-
munications with the user and the outside world.

5.1 Device Drivers

Cedar has borrowed from the Xerox Pilot system [40] the notion of abstract
device interfaces. Corresponding implementations on each processor for each
specific device type extend the virtual machine defined by the microcode to
include the peripherals as well. For example, Cedar provides an interface defining
the abstract behavior of disk storage devices. There are several disk device
drivers, one for each type of device, that implement this abstract disk interface.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

438 l D. C. Swinehart, P. T. Zellweger, FL J. Beach, and R. B. Hagmann

The Disk component described below can be programmed in terms of this abstract
disk interface, without detailed knowledge of the peculiarities of different kinds
of physical drives.

5.2 Disk

The Disk component provides shared access to disk storage on the workstation.
It provides low-level facilities for investigating the state and configuration of
each drive and for performing page-level input/output operations between
specified disk addresses and virtual memory locations. Clients of the Disk
component must ensure that virtual memory buffers have physical memory
allocated to them.

5.3 Virtual Memory (VM)

The Cedar virtual memory (VM) differs in philosophy from its most recent
ancestor, Pilot [40]. Pilot was designed for processors that had relatively small
physical memories and disk capacities. This required a space-efficient but com-
plex implementation based on mapping regions of virtual memory to named disk
files. Cedar, intended for larger machines, has been able to abandon this approach
in favor of a simpler, more time-efficient scheme. Cedar represents virtual
memory as a single backing file, employing a resident page map. (Recall that
Cedar has a single virtual address space.) VM retains only one history bit per
page and uses simple algorithms for page replacement. Experience has shown
that these parameters provide adequate performance.

VM also permits higher level clients to ensure temporarily that a region of
virtual memory has physical memory allocated to it, so that components at levels
lower than VM can deal with memory through virtual addresses without incurring
page faults. Using this mechanism, input/output buffers and the frame buffer for
the color display are fixed in physical memory as needed.

Cedar file input/output is accomplished by explicit operations, rather than by
VM mapping actions as they were in Pilot. The resulting performance improve-
ments, both for code swapping and for file access, have been significant. Perhaps
more importantly, this design permits the virtual memory implementation to
occupy a position quite low in the Cedar level structure. Only the Cedar machine
implementation and the VM implementation itself need to deal with physical
memory addresses. Thus almost all of the Cedar system can operate in the virtual
memory environment.

Most of the virtual memory package is interrupt-driven, responding to page
faults immediately as they occur. One exception is the laundry process, an
optimization that writes dirty pages to disk before the memory is actually needed.
While the operation of the laundry process is not necessary for system integrity,
it is critical for system performance. The laundry process becomes aggressive
about cleaning memory only during times of high page-fault activity.

5.4 Safe Storage

The extensions to the Cedar language for automatic storage management are
supported by the runtime type system described in Section 6.4, Abstract Machine,
a storage allocator (implementing the NEW operator), and a combination of
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 439

garbage collection techniques. The allocator and garbage collection methods are
supplied by the Safe Storage component.

The allocator stores a run-time type tag in each new object. These tags index
run-time data structures that the garbage collectors use to locate embedded
references. The garbage collection algorithms were derived from earlier designs
by Deutsch and Bobrow [141. A full description of the revised algorithms appears
in Rovner’s recent paper [42].

An incremental garbage collector runs at frequent intervals, triggered by
specific elapsed-time or memory utilization criteria. It operates as a background
process with little interference during normal system operation. The incremental
collector takes a synchronous snapshot of key system data such as the activation
records and then processes the snapshot at its leisure. The manipulation of
collectible objects is prevented only during the snapshot, which takes about 12
milliseconds on a Dorado. The incremental collector is able to reclaim most of
the storage objects that are no longer referenced, using information obtained
from reference counts and examination of current activation records. The refer-
ence counts of collectible objects are not adjusted when they are assigned to local
variables. Instead it is assumed that any reference found in an activation record
is valid (that is, the corresponding object must be retained), even if the object’s
reference count is zero. This is an important optimization, considerably reducing
the expense of reference counting.

A further optimization, called the conseruatiue scan, reduces the execution time
and complexity of the incremental garbage collector. The conservative scan treats
all activation record values that happen to denote addresses of collectible objects
as if they were valid references to those objects. For example, some bit patterns
for large integer values appear to be references to objects. As a result, some
unreferenced objects may be retained.

The incremental collector cannot detect cyclic data structures, such as those
generated by two-way linked lists or certain queue implementations. Programs
can explicitly break cycles when they determine that such data structures are no
longer needed. In addition, a conventional, preemptive trace-and-sweep garbage
collection algorithm has been included to reclaim such structures. The trace-and-
sweep collector reclaims essentially all unreferenced storage (it also uses the
conservative scan), but monopolizes the machine for between twenty seconds
and several minutes during the process. Servers or other programs that need to
remain available for long periods of time without danger of storage leakage can
invoke the trace-and-sweep collector directly. Users may also invoke it manually.
Performance monitoring tools exist to understand the use of objects and to locate
cyclic data structures (see Section 7.1, Performance Measurement Tools).

A package that creates objects of a given type can also specify finalization code
to be executed when an object of that type becomes inaccessible outside the
package. The finalization code is free to examine the object and perform any
final operations such as removing the object from a cache, releasing a virtual
memory buffer associated with the object, or breaking the circularity of a
data structure to permit additional reclamations by the incremental collector.
Because the collectors that trigger finalization use the conservative scan, the
finalization of an object has a very high probability of occurring but cannot
be guaranteed.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1966.

440 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

5.5 File

The local file system underlying Cedar is straightforward. It manages the config-
uration of one or more physical disk volumes and their subdivision into logical
volumes. Within logical volumes, it manages the page-level allocation, deletion,
reading, and writing of disk files. The file structuring methods borrow heavily
from earlier Xerox systems [29,40]. In particular, redundant information stored
with each file page permits recovery if portions of tiles or directories are damaged.
Only primitive file-level locking facilities are provided, permitting simultaneous
access to either many readers or one writer.

The File component does not include a directory implementation, leaving that
up to higher levels in the hierarchy. Instead, the file-creation procedures return
unique identifiers that clients can use to locate the files later. Different clients
may choose their own directory organizations for their files, but most choose to
use the standard directory implementation. The Cedar file system and Alpine, a
transaction-based file server, are major clients of the File component.

5.6 File System (FS)

The Cedar workstation file management and directory package [44] supports the
appearance of a uniform file naming space, spanning the user’s local disk and
the set of shared file servers available through the attached communications
network. The concepts of naming and storage are separate, though often related.
File names can represent either local files, where the only copy of the file resides
on the workstation’s disk, or attached files, where the file name is a symbolic
path name to a remote file. Read-only copies of entire remote files are retrieved
and cached as needed on the local disk. FS provides these facilities by maintaining
a local file name table and a remote file cache table describing the contents of the
local disk.

The local file name table, which is implemented as a B-Tree [l] for efficiency
of access, provides a local, hierarchical name space for files. Arbitrary nested
directory structures can be expressed as subdirectories of the single root directory.
Entries in the local name directory may be either local files or attached files.
Thus, a subdirectory can be created that describes a complete system or set of
related tools consisting of a combination of local and remote files.

The remote file cache table organizes the set of remote files for which local
copies exist. Files may be referenced via attachments, which are listed in the
local file name table, or via full symbolic path names. Because files are only
copied to the cache when they are needed, often only a small ‘subset of the files
indicated by attachments will actually be cached. Disk space is managed auto-
matically by flushing the least-recently-used copies of remote files from the cache
when additional space is needed. Cache entries refer to specific versions of remote
files by name and creation time.

The server part of a file name may be either a real server name or a logical
server name. A logical server is a mapping of a logical server name to a single
write server and a set of read servers. The idea is to write to the single write
server, but to permit reading from any of the read servers, both to distribute the
load among the servers and to provide alternatives when a server fails. This
requires the replication of important directories on several physical servers.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 441

Replication of updates is not entirely automatic, but one can invoke maintenance
procedures periodically to propagate the updates.

The current Cedar file servers prohibit symmetric treatment of remote tile
reads and writes. Therefore, FS will not accept a request to open a remotely
named file for writing. Instead, the file must first be written locally, entering its
name in the local directory. A special FS copy routine may then be invoked to
create a new remote copy and replace the local directory reference with an
attachment to the remote file. We will return to this subject in the version and
release management discussion of Section 6.11, DF Package.

5.7 Input/Output Streams (IO)

The IO interface defines an object type called a STREAM. Conceptually, a STREAM

is a sequence of items, such as bytes, characters, or records. The IO interface
defines generic procedures for creating and using STREAM objects, including useful
input scanning and output formatting routines. Cedar contains over a dozen
specific implementations of the STREAM class supporting several sources and
destinations, among them disk files, the keyboard and display, the Ethernet, and
pipes.3

The STREAM is a flexible and widely used data type. It is easy to define
specialized streams for specific applications. Programs that read and write
streams can be written without explicit knowledge of the source or destination
media.

5.8 Communications

Network communications require substantial software support beyond the low-
level device drivers. Cedar includes a complete implementation of the experimen-
tal Pup internetwork protocols described by Boggs et al. [6]. Lower levels of the
Pup package provide a basic datagram (packet-level) service. Higher levels
implement asynchronous terminal emulation, a file transfer protocol, a remote
procedure call facility, a byte stream protocol, and a range of information utilities
such as time and name lookup services.

Of the higher level protocols, the most important for new Cedar applications
is the communications support for remote procedure calls (RPC). Ordinary calls
to procedures through specified interfaces execute on remote machines, returning
any results to the caller as usual. The implementation is based on stub routines
that field the client’s calls locally. A stub routine composes procedure parameters
into data packets, handles the reliable communication of requests to the remote
site, and later removes any result values from incoming packets for return to the
caller. Corresponding stub routines at the remote site reconstruct the parameters,
complete the linkage to the actual procedure implementations, and compose the
results into packets.

RPC includes facilities for dynamic binding. Clients can specify a service or
machine to which an interface is to be bound (dynamic import), and servers can
dynamically make remote interfaces available (dynamic export). The Cedar RPC

3 Pipes provide the buffering and synchronization needed to connect an output stream from one
process directly to the input stream of another [41].

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

442 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

package, described by Birrell and Nelson [4], performs two additional functions:
it automatically constructs both sets of stub routines from the interface defini-
tions, and it provides the underlying algorithms that complete the calls reliably,
efficiently, and securely (using optional DES encryption [36] techniques). Cedar
RPC builds its protocols directly on the datagram level of the Pup package.

To date, we have produced three major Cedar systems that use RPC for all
their communications: a transaction-based file server, an experimental telephone
and voice annotation service, and a “Compute Server.” All three are described
further in Section 7, Applications. Furthermore, implementations of RPC for
other languages and programming environments are beginning to extend the
range of services that Cedar applications can provide or use.

5.9 Terminal

Most Cedar applications are content with the higher level display-management
and user input facilities supplied by Viewers and TIP (Sections 6.6 and 6.3).
However, more radical applications may need to use the display or input devices
in a conflicting way-to try out a new window package, for example. The Terminal
interface provides a clean abstraction to the display, keyboard, and mouse. There
may be several instances of Terminal, each with its own full-display bitmap and
optional color frame-buffer display memory. Operations are available to switch
the use of the physical hardware (and thus the entire contents of the display
memory) among the Terminal instances. The standard Cedar display is obtained
through the use of just one Terminal instance. Another Terminal instance is
employed to drive a much simpler user interface while the system is being loaded.

5.10 Running Programs

This section describes the components that are responsible for initializing the
system, loading programs, and saving copies of the running system at interesting
checkpoints. The methodologies that have been developed to construct a useful
environment using these components are discussed in Section 8, Methodologies.

A Cedar boot file is a compact representation of a set of code and data segments,
assigning each segment to some locations in virtual memory. The boot file
specifies the virtual memory map so that physical memory can be initialized
when the boot file is run. It also specifies an initial execution context (program
counter, process, and activation record).

The germ, a self-contained program, loads and starts a boot file, and performs
other activities that need to be performed when very little is running and when
few amenities are available. The germ is small and simple enough to be fetched
from the local disk or the Ethernet, installed in memory, and started by the
primitive bootstrap capabilities of the host machine’s hardware and microcode.

The loader is responsible for loading and starting program components during
normal system operation. It first assigns a component to virtual memory locations
and copies its code segments to the assigned locations. It searches a global symbol
table known as the load state to locate bindings for the interfaces that the
component imports, then records in the load state the interfaces that are exported
by the component (for use in satisfying the import needs of programs that are
loaded later). Interfaces supplied by a new version of a component supercede
older versions, although in the present system existing bindings are not broken.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1966.

A Structural View of the Cedar Programming Environment l 443

This binding process is a simplified version of the methods employed by the
Cedar binder to produce configurations from configuration descriptions (see
Sections 2.1, Modules and 6.8, Compiler and Binder). Finally, the loader executes
the initialization code for the component.

At any time the user may invoke a command that stops the system and creates
a checkpoint file, whose form is the same as a boot file. A checkpoint file captures
the state of all active virtual memory, producing a system image that includes
running code, activation records, global frames, and other active data. This data
includes the display bitmaps, so a checkpoint captures the visible system state
as well as the internal state. It does not record the state of files, directories, or
other I/O devices. In order to leave the programs managing these and other
external values in a clean state at the time of the checkpoint, programs may
register cleanup procedures that will be executed just before the checkpoint file
is produced.

To use a checkpoint, one boots the system from a checkpoint file instead of a
boot file. This rollback operation restores the memory configuration of the
processor to its earlier state. It then calls another set of registered procedures,
which will check the state of the external environment and reverse the effects of
the checkpoint cleanup procedures.

5.11 Discussion of the Nucleus Structure

Components of the Nucleus that do not have access to the basic memory
management facilities provided by VM and Safe Storage are at a significant
disadvantage. They must be very carefully written, and they are often very
difficult to understand or change. Such components should therefore be located
as low in the structure as possible. Since the redesign of low-level components
that occurred during the Cedar 5.0 release in late 1983, the only component above
the Cedar Machine that does not use virtual memory is the virtual memory (VM)
implementation itself. Even device drivers and the Disk package, which are
located below VM, can address their resident memory buffers using virtual
memory addresses supplied to them by higher level initialization routines. VM is
so low in the structure that it cannot even find for itself the disk file used to
back up memory. During Cedar initialization, the File package is used to inform
VM of the backing file location. The simple design of VM makes this possible
because neither file directories nor file concepts are required to get VM to work.

Safe Storage resides just above VM, having been placed much lower in the
structure than was possible in the earlier Pilot-based versions of Cedar. Because
of this nearly all of the system components are written in the safe subset of the
Cedar language, and therefore can benefit from the increased reliability and
convenience that automatic storage management provides. The location of Safe
Storage also enables most programs to use the Cedar data types that depend on
collectible storage, including ROPE, ATOM, LIST, and STREAM.

In earlier Cedar systems, parts of the IO package had to be located above the
Abstract Machine (described in Section 6.4), because IO needed some of the
Abstract Machine’s advanced features, such as the ability to print symbolically
the value of a FIEF ANY. This was unfortunate, since the simpler features of IO
were widely used. In Cedar 5.0, IO was moved to its present position in the
Nucleus by arranging for the Abstract Machine implementation to supply the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

444 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

advanced features as registered procedures. It is necessary for components located
between IO and the Abstract Machine to avoid using the advanced features until
the Abstract Machine has been initialized.

There are problems associated with moving programs to lower positions in the
hierarchy. One such problem is that the debugging and error handling tools
depend upon much of the system (including at least the Abstract Machine, FS,
File, Safe Storage, Imager, Viewers, and Tioga). Local debugging for these
packages is delicate, so the arm’s length debugging techniques described in
Section 8.4, Installing and Debugging Programs, must often be used when working
in this region.

The placement of other components in the Nucleus and Life Support layers
follow similar reasoning based on the structural objectives stated above. Facilities
such as the Tioga editor appear within Life Support at levels that might seem
surprisingly low, until one realizes their central importance in the implementation
of most Cedar user interfaces.

At the higher levels the applications are not as tightly interrelated, and the
precise layering is not as important. The main problem at these levels is to find
an acceptable initialization order for interrelated programs, or to connect them
in such a way that the initialization order does not matter.

6. THE LIFE SUPPORT LAYER

The Life Support layer includes most of the standard program development tools
in the Cedar environment. In fact, the name Life Support evolved from the
notion of a minimal set of tools needed to provide a complete development
environment for a new Cedar release. Many of the Life Support components are
quite large, providing functions directly to Cedar users or applications program-
mers, and in this sense they resemble applications more than operating system
components. Life Support includes components for the Cedar user interface, such
as a display manager, a text editor, command and expression interpreters as well
as components for software development and management.

Cedar programmers tend to write their packages, when appropriate, so that
the packages can be used in three ways: via a client program interface, via the
command interpreter (see Section 6.9), and via a viewer-based user interface
(also known as a display-based interface). The point is that the full functionality
of the package should be made available through the client program interface,
rather than hidden under a command or viewer-based user interface (see Section
8.2, Tools and Packages). Of course, in some packages it only makes sense to
provide a client program interface.

From the Life Support level on up, it is relatively easy to experiment with
alternative components, either by replacing existing components with variants
or simply by including the alternatives in private configurations and ignoring the
system-provided components. A more complete discussion of these techniques
appears in Sections 8.4, Installing and Debugging Programs, and 8.7, Program
Development.

6.1 Useful Packages

During the development of Cedar, many generally useful packages have been
produced. Examples include packages for sorting arbitrary values, maintaining
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 445

symbol tables, and managing a registry of commands. A library of well-designed
packages can reduce the need to reimplement common methods for each appli-
cation. Improved reliability and performance are often side benefits. These
packages have been collected as Cedar components in the Life Support layer, low
enough in the Cedar structure that they can be used by as many components as
possible.

There are several standard symbol table packages in Cedar. A SymTub imple-
ments a simple one-level symbol table, mapping ropes to FIEF ANY values. Atoms
provide a kind of global one-level symbol table, but a SymTab allows one to limit
the scope of names. A RefTab provides a table and operations with the same
semantics as SymTabs, except that the keys are also REF ANY values.
Neither Reffabs nor SymTabs assume any ordering among the keys whose
values they store. When such an ordering is important, one may choose to use
a RedBlackTree data structure [21] instead.

The Real package implements a library of numeric algorithms conforming to
the IEEE single-precision floating-point standard. The package is compatible
with the microcoded REAL operations, which also are implemented to the IEEE
specification [23]. The Random package generates pseudorandom 32-bit integers
on request, beginning with a seed that is derived from the system clock or a
client-supplied value.

The Commander package is a general registry for user commands. Applications
that wish to be driven by simple commands, each composed of a verb with
parameters, may register command names and the procedures that implement
them. The intent is that tools, including but not limited to the Cedar Command
Tool (see Section 6.9), will accept user commands and interpret them by con-
sulting the Commander registry to locate command procedures. The Commander
is located at a low level in the Life Support layer so that components can register
commands during system initialization, long before the Command Tool and user-
level applications have been loaded.

6.2 User Profile

A uSer profile is a personalized collection of the custom-tailoring options that
applications and packages make available to users. The user profile for a given
user is a text file, stored on a file server, that is automatically fetched during user
authentication. Among its uses are the specification of the final steps of the full
boot process and the specification of standard defaults for packages, such as the
name of the default printer. The User Profile package maintains a parsed
representation of these specifications for rapid and convenient access by client
programs.

6.3 lnscript and TIP Tables

Input devices available to the Cedar user include a conventional keyboard, the
motions and buttons of a mouse pointing device, a keyset chording device, and a
graphics tablet. The In-script package produces a single serial buffer of time-
stamped input events from these devices. If an application has special high-
performance user input requirements, such as the need to react in real time to
the trajectory of the mouse-driven cursor, it can use the Inscript package directly
and independently to extract the input events from the buffered stream. This

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

446 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

works better than direct sampling of the hardware by individual applications
because the Inscript package collects and time-stamps the events using clocked
interrupts. Events are less likely to be missed and timing of events will be more
regular. Each client of Inscript must determine which of the input events are
intended for it, ignoring those intended for other clients.

Most applications interpret users’ actions through the Terminal Input Pro-
cessor, or TIP. TIP uses a finite-state machine implementation to interpret
Inscript input events based on easy-to-write specifications that are parsed into
TIP tables. For each event (such as keystroke, mouse click, or mouse movement)
or each event sequence (such as clicking a mouse button twice in succession or
depressing a key for a long time), a TIP table entry specifies a sequence of action
tokens that represent the semantics of the event.

The TIP package assumes that characters entered on the keyboard are intended
to be displayed sequentially at a display location previously selected by a user
action or by a program, rather than at the present cursor location. Keyboard
events are therefore translated into actions specified by an input focus repre-
senting this preselected location. The input focus can be changed by clicking the
mouse, by typing characters, or under program control.

A high-priority process called the notifier interprets input events according to
the known set of TIP tables. Standard rules determine the choice of TIP table
to invoke for each event, based on the current input focus for keyboard events
and the cursor’s display location for mouse events. The system notifier collects
the TIP action tokens and invokes a client notifier associated with the TIP table.
Typically, the client notifier creates a new process to carry out the desired action
then returns immediately so that the system notifier can react quickly to
the next event. In this way the user can initiate or control many concurrent
applications. Furthermore, applications can be written in a way that does not
preempt the user’s ability to choose from moment to moment which application
to interact with.

Default TIP tables define standard behavior for the basic Cedar user interfaces.
Specialized TIP tables support the special input needs of advanced applications,
such as drawing programs. Additional user-specified TIP tables may be layered
on top of existing TIP tables to give the knowledgeable user the ability to custom
tailor an existing application.

6.4 Abstract Machine

An original goal for the Cedar environment was to combine a compiled, strongly
typed language with the interpretive symbolic power of Interlisp or Smalltalk.
The Cedar Abstract Machine facility represents a step in this direction.

The Abstract Machine provides descriptions of types and run-time values,
programs and program instances in terms of Cedar language semantics. It models
active data and program instances in a running program and provides the ability
to modify data and some program values. Because the Abstract Machine is a
powerful facility whose description has not been published previously, we present
its features in more detail.

6.4.1 Overview of the Abstract Machine. All of the Abstract Machine’s facilities
are based ultimately on the symbol tables and program graphs produced by the
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 447

compiler, the binder, and the loader. To a client the Abstract Machine appears
as a set of abstractions (data types and associated operations) that allows types
and run-time values to be examined, picked apart, and modified.

The Abstract Machine (AM) implementation is based on the following
concepts:

Run-time Types. For each Cedar language TYPE defined in a running Cedar
world, the Abstract Machine provides a unique run-time value called a Type.
These Type values are used by all the Abstract Machine interfaces as run-time
representations of their corresponding Cedar language types. The same values
are also used by the Safe Storage component to label collectible objects.

Type Information. The AMTypes interface provides procedural access to the
names and structures of data types. The interface includes a complete set of
operations for discovering name, size, and other attributes about each Type, for
following the definition chain of a type to its underlying basic or constructed
type, and for analyzing the internal structure of composite types. The Type values
are categorized into classes. One can determine from a Type’s class whether it is
a primitive Cedar language TYPE (each has a class to itself), a definition (a name
bound to another type), or a type produced by one of a number oftype construc-
tors (pointers, records, procedures, and the like).

Value Manipulation. Other AMTypes procedures permit examination and
modification of run-time values. An object called a TypedVariable (TV) can
represent the Type and current value of any Cedar language variable-a local
variable, a global variable, a field of a record variable, or a value reached via a
pointer or a REF. Operations on TypedVariables support interpretive programs
that can manipulate arbitrary data structures. An example is the standard Cedar
debugger package that can print a textual representation of any Cedar value.
These operations typically take three orders of magnitude longer to execute than
the equivalent compiled code operating directly on the same objects.

Abstract/Concrete Translation. Operations in the AMBridge interface produce
TypedVariables from Cedar language values (FIEF variables, ordinary values, local
and global frames). The association between the referents of REF variables
and their type tags can be made safely and automatically by the system.
For other values, the associations are based on TRUSTED program assertions.
AMBridge also provides inverse operations to extract Cedar language values from
TypedVariables.

Program and Process Structure Information. The AMModel interface contains
operations for investigating a program’s structure: procedures in terms of their
embedded blocks, program modules in terms of their procedures, and configura-
tions in terms of their program modules and subconfigurations. A description of
the loaded configurations and their associated global information within a run-
ning Cedar system is also available through AMModel. Using the AMProcess
interface, one can enumerate the active processes, suspend or resume the opera-
tion of selected processes, and locate the top activation record for a given process.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

448 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and Ft. B. Hagmann

AMTypes call cln.ss Count Name

TVType[refTV]
Range[l252]
UnderType[l254]
NComponents[12471
IndexToName[l247.1]
IndexToName[l247,2]
IndexToName[l247,3]
UnderType[Sl]
NValues[10581
First[lO58]
Last[lO58]

1252
1254
1247
-

1412
1412

91
1058
-
-
-

reference
definition
record

-
longlnteger
longlnteger
definition
enumerated

-
-
-

-
-
-
3
-
-
-
-
2

-
-

-
-
-
-

“X”
8, I,

“viskle”
-
-

“FALSE”
“TRUE”

Fig. 3. The Abstract Machine permits a client to examine the run-time type information about a
running program. These are the results of calling various AMTypes procedures concerning the
example in this section.

Program Control. The AMEvents interface provides a set of low-level opera-
tions for setting breakpoints and for tracing program flow.

Access to Multiple Virtual Memories. The Abstract Machine uses the WorldVM
interface for all references to run-time values and to run-time program and
process structures. WorldVM supports symbolic access to three address spaces:
local, the current (running) address space; world-swap, a restartable memory
image saved on disk; or teledebug, an environment accessed using network
communications. These arm’s length methods are infrequently used, but are
invaluable when the local methods fail (see Section 6.10, Debugging).

6.4.2 Example of Abstract Machine Usage. We present an example to show
how clients use the Cedar Abstract Machine facilities. Consider a client program,
perhaps a debugging application, which needs to extract the names and types of
all the fields in a record. The client is given a REF ANY, named ref, that points to
the record. Suppose that the relevant types (as yet unknown to the client) are:

Point: TYPE = REF PointRec;
PointRec: TYPE = RECORD[

X, y: INT,

visible: BOOL];

The results of examining this record structure via the Cedar Abstract Machine
are summarized in Figure 3.

To begin, the client uses the AMBridge interface to associate a
TypedVariable with the variable ref:

refTV: AMTypesTypedVariable c AMBridge.TVForReferent[refl;

This TypedVariable contains both type and value information for the
reference. The type information is examined through the AMTypes inter-
face to determine the run-time type, an AMTypes.Type value, and its
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 449

associated type class. In this example, the type classes we encounter will be
reference, definition, record, longlnteger, and enumerated.

type: AMTypes.Type t AMTypes.TVType[refTV]; - -7252 in this example

class: AMTypes.Class t AMTypes.TypeClass[type];
- -reference class in this example

The client in this example expects a reference class, but in general, the client
program would select an action based on the type class. In the case of a reference,
one requests the type of the referent through the AMTypesRange procedure
(which is also used to request the range type of arrays). The resulting type class
is definition, indicating that the reference has type REF PointRec rather than
FIEF RECORD[...]. The AMTypes.UnderType procedure strips away any layers of
type definitions until a nondefinition type is found:

reffype c AMTypes.Range[type]; - -type of referent
recordType c AMTypes.UnderType[refType]; - -strip away type definitions
class t AMTypes.TypeClass[recordType]; - -record c/ass in this case

For this example, we expect a record structure. Records contain several fields;
therefore one must determine how many fields are in the record type and process
each field iteratively by extracting the field type from the record type.

ncomponents: NAT t AMTypes.NComponents[recordType];
FOR i: NAT IN [l ..nComponents]oo

name t AMTypes.IndexToName[recordType, i];
type t AMTypes.IndexToType[recordType, i];
class c AMTypes.TypeClass[type];
- -select processing based on type class of this field
ENDLOOP;

The PointRec record has three component fields. The two INT fields return type
class longlnteger and the BOOL field returns type class definition, which in turn is
defined to be type class enumerated. Enumerated types can be examined by
AMTypes procedures to determine the number of values in the enumeration, and
the first, last, next, and previous values.

6.4.3 Assessment of the Abstract Machine. The present Abstract Machine
facilities were designed primarily as a basis for program debugging and develop-
ment. For this function, they have served very well. Several different approaches
to interactive Cedar expression and statement interpretation, source-level break-
point management, and controls for errant processes have been developed using
the Abstract Machine.

A complete Abstract Machine description of Cedar would provide an interpre-
tation for the semantics of the entire language, allowing the specification of the
meanings of Cedar programs without any reference to the characteristics of the
underlying hardware. A generally useful Abstract Machine implementation
would, in addition, be efficient enough to serve as the basis for truly polymorphic
language features (the type REF ANY is useful, but insufficient). Although the
current implementation does not yet achieve these goals, the Abstract Machine

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

450 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

forms the basis for an interpreter that is fast enough for interactive and debugging
use (see Section 6.10).

As it stands, however, the Cedar Abstract Machine is one of the system’s more
novel components. It has demonstrated that a strongly typed compiled language
is not incompatible with the notions of run-time types, programs as data, and
other powerful and flexible concepts usually found only in more interpretive
languages.

6.5 lmager

Interactive Cedar applications rely on the power and flexibility of high-resolution
bitmapped display terminals. In earlier Xerox systems, support for interactive
graphics was limited to low-level bitmap operations, such as the RasterOp
(BitBlt) function described by Newman and Sproull [37]. While one may manip-
ulate bitmaps directly in Cedar, most applications instead use the Imuger, which
is a device-independent graphics package for high-quality two-dimensional im-
aging of text, line art, and scanned images. The Imager appears quite low in the
layered structure of Cedar to permit high-quality graphics in most interactive
applications. The Viewers window manager and Tioga editor both make extensive
use of the Imager graphics package for their operation.

The imaging model [56] of the Imager is based on the Interpress page descrip-
tion language [58]. The Imager supports the presentation of a variety of image
material: text in various fonts, lines and curves of various thicknesses, strokes or
enclosed outlines, sampled images, and various color models. Image transforma-
tions can scale, rotate, translate, and clip images through simple specifications.

Due to the device-independent design, images may be rendered on a variety
of devices, some of which include black-and-white displays, full-color displays,
color-mapped displays, laser printers, color printers, film or video recorders, as
well as pseudodevices such as Interpress masters, pixel arrays for capturing
scan-converted bitmaps, or display lists. The Imager implementation makes
extensive use of object-style programming to permit extension to new devices
and customization by new graphical applications.

6.6 Viewers

Most Cedar applications are intended to be used in a cooperative fashion, sharing
the display real estate with other concurrent applications. They do this using
Viewers. The Viewers abstraction provides an application with a virtual display,
keyboard, and mouse. Each viewer is a rectangular region whose position and
overall size is managed by the Viewers package, but whose contents are the
business of the applications that create them. The Viewers package redisplays
the contents of each viewer based on client-supplied specifications whenever its
contents, size, or location changes. Closing a Viewer causes it to appear at the
bottom of the display as an icon (a small evocative picture). An open Viewer uses
TIP tables to connect the user’s input actions and the application-specific
functions, serializing these actions when the user reacts faster than the actions
can be performed.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 451

In actuality, a hierarchy of viewers exists in the system. The top-level viewers
we have been discussing here may include nested subviewers-perhaps to scroll
the contents of a subwindow separately, to permit another application to supply
the subwindow contents, or to request information to be entered by the user.
Subviewers may be quite small. For example, the menu buttons that appear in
each top-level viewer are represented as small subviewers.

Top-level Cedar viewers never overlap, but instead occupy two adjacent col-
umns, each viewer sharing the column with other viewers assigned to that column.
If an auxiliary color display is available, a third column of viewers can appear
there. Figure 4 shows a sample of the Cedar displays during editing of this paper.
Viewers can either have variable height to share the available space equitably, or
can suggest some preferred height. The user can easily override the assigned
widths of the columns and the heights of individual viewers. This tiled design
was implemented as an experiment whose objectives were to provide a predict-
able model for window placement, to minimize user interaction required for win-
dow scaling and positioning, and to achieve high-performance display updating.
The underlying graphics facilities also support the more common overlapping-
window model.

The Viewers package also serves as a focal point for integrating Cedar appli-
cations. Viewer instances are assigned to viewer classes. A viewer’s class deter-
mines its display and user interface behavior. Programmers can create viewers
as members of standard system classes, or can define their own viewer classes
(see Section 8.1, Procedure Variables). A viewer can also be associated with a
custom TIP table and with other attachments that customize its operation.

Another interesting aspect of the Viewers implementation is that a window
does not have a “process behind it.” Rather, processes are created dynamically
in response to user actions-often a new process for each action. For most viewer
classes, the quiescent state has no processes associated with the viewer. However,
the Command Tool described in Section 6.9 has the command interpreter process
“behind it,” with other processes created dynamically as needed.

6.7 Tioga

The Tioga document composition system provides the tools to create and edit
formatted documents, including Cedar programs. Tioga documents are tree-
structured, with each node corresponding approximately to a paragraph or
statement. Tioga nodes can be decorated with user-specified style information
that controls their displayed and printed appearance. Tioga is a “what you see
is what you get” galley editor; it does not provide automatic support for page
makeup.

Tioga displays documents in text viewers, making extensive use of TIP tables
to specify the user interface. Tioga implements a simple postfix language in
which its operations are expressed. This language specifies the meanings of the
interactive editing operations, command abbreviations, and other prerecorded
sequences of editing actions.

Apart from its value for editing documents, Tioga is an important Cedar
resource, since it can be used in any text viewer. This means that applications

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 453

like command language interpreters and specialized viewer-based tools can em-
ploy Tioga’s well-understood user interface and text-manipulation features. It
also means that text and attributes can be freely copied among viewers. For
example, one can select file name arguments for commands from anywhere on
the display, scroll through the command execution history, or invoke a command
by copying it from a “recipe-book” document, using only the mouse-driven text-
editing and scrolling operations of Tioga.

Although Tioga does not understand Cedar language syntax, we find that using
Tioga as a program editor has several important benefits. First, viewing programs
as formatted documents with common typographic conventions makes them
easier to read and share. Furthermore, Tioga’s flexible search commands, com-
bined with a small number of connections to the Cedar Abstract Machine, allow
it to approach the usefulness of many special-purpose program development tools
found in other programming environments.

-Simple pattern-matching allows Tioga’s abbreviation expansion command to
construct templates for language constructs and procedure call parameters.
Tioga’s hierarchical node structure allows the suppression of detail for a larger
contextual view and the manipulation of entire constructs as units. These
capabilities provide many of the advantages of other modern syntax-directed
editors [13, 50, 571.
-Tioga also performs the use-to-definition portion of the Masterscope func-
tions in Interlisp [53]. A selection of the form intetface.item may be used to
request a new viewer displaying the file that defines or implements the item,
scrolled to the item’s definition. (If an implementation of interface has been
loaded, AMModel functions are used to locate the implementation’s file name.
Otherwise Tioga makes a guess based on program naming conventions.) Unfor-
tunately, mapping from an item’s definition to its uses is beyond Tioga’s capa-
bilities. That would require the capabilities of Cedar system modeling, a partially
implemented extension to the DF Package (see Section 6.11).
-Tioga’s client interface permits the Cedar debugger to show a breakpoint or
error location as a highlighted region in a source file viewer, so that the user can
see procedure and variable names in context. By using the ability to copy text
freely among viewers, the user can copy expressions from the source to the
debugger area for interpretation. This contrasts with the method used by the Blit
debugger [lo], which constructs menus of currently visible procedure, variable,
and field names to ease user input.

In this paper we have not emphasized user interface issues. Teitelman’s paper
[51] includes many examples of the various uses of Tioga and Viewers. Those
interested in an expanded treatment of the Imager, Viewers, and Tioga are
referred to [21.

6.8 Compiler and Binder

The Cedar Compiler verifies the correct use of data types both within modules
and across module boundaries. In addition to machine code for each module, the
compiler produces symbol tables and statement maps for use by the Abstract
Machine. The Binder produces larger configurations of modules from individually

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

454 ’ D. C. Swinehart, P. T. Zellweger, R. J. Beach, and 5. B. Hagmann

compiled modules and previously bound configurations. It extends the compiler’s
strong type-checking by ensuring that the names and timestamps of exported
interfaces match those specified by the components that import them.

.

6.9 Command Tool

Cedar Life Support includes a conventional command interpreter in the form of
a text viewer into which the user types commands and into which the system
responds with results. The command syntax, an amalgam derived both from the
UNIX shell [7] and from earlier Xerox systems, includes provisions for redirect-
ing command output to another destination (usually a file or a pipe to a process
executing a concurrent command), and for accepting command input from
another source (also usually a file or a pipe).

The Command Tool registers a small number of initial commands, primarily
for running programs and for examining and manipulating local and remote file
directories through the services of FS (list, delete, copy, and the like). As
applications are started, they may register additional commands with the Com-
mander package (Section 6.1), supplying procedures that extend the set of
available operations. One such application is the Interpreter (Section 6.10), which
registers a command to evaluate Cedar language expressions. Commands are
usually executed sequentially, or in a tightly coupled fashion using pipes. But it
is also possible to invoke a command such that it runs concurrently, using a
separate viewer for its input and output activities. The use may also create more
than one Command Tool viewer, then issue commands in each that may run
concurrently.

The Command Tool inherits from its environment several capabilities that
make it more useful. Perhaps the most noticeable is the full availability of the
Tioga editor for constructing commands. This includes copying commands from
other sources, such as earlier points in the same Command Tool’s text script,
other Command scripts, or any other Tioga document.

The Command Tool also uses property lists (lists of key-value pairs, where the
keys are usually atoms) to provide a reasonably efficient dynamic binding
mechanism. Each Command Tool viewer has a separate property list. Standard
Command Tool properties include command-lookup rules and directory search
lists, working directories to use as a default in evaluating file names, statistics
gathering procedures to be applied before and after every command is run, and
default input and output streams. This property list is available during command
parsing and during the execution of the registered procedure that implements
each command (it is passed as a parameter when a registered command procedure
is called).

6.10 Source-Level Debugging

Cedar’s source-level debugging facilities are a good example of the method
described in Section 3.2, Structuring Methods, that splits an application into a
low-level, widely available package and one or more higher level user interfaces
that are clients of the low-level package.

The expression interpreter accepts a rope value representing a Cedar language
expression and a context value representing an execution context. It evaluates
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 455

the expression in that context, returning a TypedVariable as a result. The
expression interpreter is located just above the Abstract Machine. In fact, it
should probably be designated as a high-level extension of the Abstract Machine,
whose facilities it uses to interpret the expression. The expression interpreter is
used in a number of applications to obtain the effect of dynamic program
composition where high performance is not required. In addition, specialized
diagnostic routines can be built for specific purposes by calling on the facilities
of the Abstract Machine and the interpreter.

The standard Cedar debugging tools rely not only on the Abstract Machine
and the expression interpreter, but also on Viewers, the Tioga editor, and the
Command Tool. They are therefore located much higher in the Life Support
layer. An interpreter viewer is one of the basic programming tools. It can be
created at the user’s request, or when a process stops due to a breakpoint or an
uncaught exception condition. The user can examine the process execution stack,
evaluate expressions, and examine or modify variable values. A menu button
instructs the debugger to locate the suspended execution point for some activation
record and to highlight the corresponding source statement in a separate Tioga
viewer. Breakpoints, specified by selecting a statement in a source viewer, may
be similarly set and cleared from compiled code. Interpreter functions are also
available directly from the Command Tool.

The Debug Tool, another viewer-based tool, exhibits the state of all the running
processes, configurations, and their components in the system. The Debug Tool
can selectively suspend running processes and can open an interpreter window
set to the top of a suspended process’s stack. It is valuable in locating process
deadlocks (resulting from improperly used monitors) or runaway processes.

All of the debugging facilities may be applied to a remote machine’s memory
environment by using teledebugging techniques, or to a suspended world-swapped
environment (see Section 6.4).

6.11 Tools for Version and Release Management

File and version management in Cedar is made tractable by a suite of packages
and tools built around description files (DF files). Details about DF files and how
they work are included in Schmidt’s thesis [43]. A brief description here is
followed by a discussion in Section 8.5, Release Management, of how DF files are
used.

A DF tile describes the set of source, object, configuration description, and
ancillary files required to construct and document a Cedar system component.
The DF file lists the files that define the component by specifying their names,
fully qualified with their network locations and create dates. In addition, it lists
other DF files (and specified files within each) that describe any additional
components needed to compile, bind, and use the component.

The DF Package supplies three primary operations. The bringover procedure
operates on DF files to copy its defined and included files onto a local file-system
working directory (by establishing attachments to the remote files). The storeback
procedure, using a DF tile as a guide, copies changed files to their designated
remote locations, while revising the DF file to reflect the changes. The verify
procedure examines the contents of a DF file for consistency and completeness,
reporting problems such as missing files, superfluous files, or files with incorrect

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

456 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. 8. Hagmann

versions. A DF file that is verified without errors provides a consistent and
complete description of the component.

DF files are also used to describe the sections and figures of a paper or book,
the drawings and wiring lists specifying a hardware design, or any other collection
of related files.

One client of the DF Package is a program that fetches critical files during
system initialization. As a result the DF Package occupies a low-level position
within the Life Support layer. Its standard user interfaces (one a specialized
viewer-based interface, the other a set of Command Tool operations) are run as
ordinary applications.

A variant of the Cedar DF Package has been adapted for use in the Xerox
Development Environment (XDE) [47].

7. CEDAR APPLICATIONS LAYER

By now it should be clear that any distinction between “the system” and “the
applications” is a matter of convenience, as is the assignment of components to
particular levels. Components originally developed as applications are often
evaluated, modified, and then incorporated into lower levels, usually into the Life
Support layer. Other components are more clearly user-oriented programs pro-
viding functions for specialized needs. However, even among components in the
Applications level, the packages are layered into various abstractions. A detailed
example of this layering appears in Section 9.2, WalnutVoice Case Study.

Space does not permit a complete enumeration of the Cedar applications
produced to date, even if we knew what they were. Here we catalog a set of
applications that are representative of the range of activities that Cedar supports.

7.1 Performance Measurement Tools

Cedar programmers have implemented an array of performance monitoring tools
and debugging enhancements. The Spy (a descendant of the Mesa Spy [33])
monitors CPU usage, storage allocation, or page-fault performance by recording
the call stack of the active process at specified intervals. Celtics uses very low-
cost breakpoints to display statement execution counts dynamically. This pro-
vides some of the benefits of interactive debugging even within high-priority
processes or time-sensitive code. The BreakTool provides enhanced breakpoint
facilities, such as program tracing and conditional breakpoints. In addition, it
supports the evaluation of arbitrary interpreted expressions at specified program
locations, thus allowing a mixture of compiled and interpreted code during
program development.

The Watch tool maintains and displays statistics on selected system resources
and events. Among the data displayed are statistics on file system activity, virtual
memory utilization, Ethernet communications, disk utilization, and garbage
collection activity. Pupwatch logs Ethernet packets transmitted to and from a
selected host and displays them in a viewer.

Additional packages provide statistics and examination tools for Cedar
data structures. SweepColbctibleStorage enumerates all collectible objects.
ExamineStorage looks at all collectible objects and reports statistics. It can also
be used repeatedly to track the changes in the number of objects by type.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 457

CircularGarbage discovers circular data structures that are otherwise unrefer-
enced. Given a collectible object, RecursivelyNil applies itself to all of the
references within the object and then assigns NIL to all references found in this
way. This breaks circular references and generally improves garbage collection
performance.

7.2 Database Support

Cedar includes a number of packages that support database applications. Alpine
furnishes a transaction-based network file service [9] for Cedar. Two major
Alpine features are page-level locking of data and support for multiserver trans-
actions. Alpine supplies a file system directory and implements the same Pup
file transfer protocol (FTP) used by our other file servers. An Alpine file server
acts as one of the multiple pseudoservers for the Cedar release directories,
providing backup in the event that the regular file servers fail.

The entity-relationship database package Cypress [ll] runs in a user’s work-
station but stores its database on Alpine servers. Cypress implements a simple
semantic data model, as well as supporting most of the features of a relational
database.

7.3 Electronic Mail

The Walnut electronic mail system operates in conjunction with the Grapevine
message transport mechanism [3]. It stores message databases (using Cypress)
on Alpine file servers. Messages are acquired from Grapevine and stored in the
database, where they may be moved between message set categories, answered,
forwarded, deleted, archived, or unarchived. Walnut users typically use multiple
viewers to display message sets, which contain message headers, and messages.
Within each viewer they use the standard Tioga editing functions for composing
new messages and for filling in message-reply templates.

The Walnut electronic mail system is an example of a layered package in the
Applications level. Walnut provides the user interface and mail database imple-
mentation, but uses Cypress to manage its database. Cypress in turn uses the
Alpine file server to manage its files.

7.4 Whiteboard

The Whiteboard package [17] is used to organize information spatially in a
collection of viewers. Subviewers of various kinds (text, icons, tools, illustrations,
mail messages, and even other whiteboards) can be arranged by the user. The
user can select almost any viewer on his display and add it to a whiteboard.

Whiteboards have been used to organize large collections of useful infor-
mation, such as an introduction to Cedar and project information for the
CSL research notebook. Large whiteboards use nested whiteboards to cross-
reference information.

The whiteboard contents and their layout are saved on a Cypress database,
and may be concurrently displayed or modified by several users using their own
workstations. Concurrent updates to the same whiteboard are detected by the
database system.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

458 - D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

7.5 Imaging Tools

Of the numerous imaging applications within Cedar, we describe only a few here.
The Griffiin illustrator produces single-page color illustrations from line drawings
and shaded areas. The SolidViews three-dimensional solid-modeling illustrator
creates synthesized graphical objects and renders them with various lighting and
texture mapping techniques. The ColorTool provides an interactive color selection
tool in which the user manipulates the color of a patch by using a variety of color
systems. The Magnifier provides a handy tool for demonstrations because it can
magnify any region of the black-and-white or color display. Preview builds
viewers for various types of printable file formats on the display, such as scanned
images and Interpress [58] files. Additional tools include a digital darkroom for
manipulating scanned images, including two-dimensional fast Fourier transforms
for image enhancement All of these tools create images to be rendered on a
variety of imaging devices: displays, laser printers, color proofing systems,
videotape, and film 121.

7.6 Etherphone

The experimental Etherphone system [46] uses Ethernet communications to
transmit digitized voice. The system consists of microprocessor-based electronic
telephones, a centralized switching server, a voice file server, and workstation
programs to support voice communications and voice recording services. From a
workstation, a user can place and receive telephone calls, maintain private
telephone directories, and manage a database of voice messages. A voice anno-
tation package allows voice to be added to Tioga documents and provides simple
voice-editing functions. In addition, a commercial text-to-speech synthesizer
exists as a server in the Etherphone network. The synthesizer allows the system
to “speak” text, initiated either by the user (perhaps by selecting the text in a
viewer) or by a program (such as speaking an error message or proofreading a
document).

7.7 Compute Server

The Compute Server [22] uses the remote procedure call protocol to coordinate
the assignment of computing tasks to processors with compute cycles to spare,
and then to manage the execution of these tasks. Initial clients of the compute
server are two typesetting packages, the compiler, MakeDo (see Section 7.10),
and a three-dimensional image-rendering package.

7.8 VLSI Design Tools

Hardware design researchers have produced a suite of integrated VLSI design,
simulation, and analysis tools that operate in the Cedar environment. ChipNDale,
an interactive VLSI layout tool, makes use of multiple viewers (including the
color display), uses extensive parallel processing for interactive tasks, and serves
as a focal point for the integration of VLSI design tools. Tools integrated with
ChipNDale include a circuit extractor, a CIF file generator, a mask generator,
plotting packages, and design rule checkers. The simulation package Rosemary
and the timing analysis package Thyme both accept circuit designs created by
ChipNDale.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 459

7.9 ViewRec

Some application-level packages are intended to be used within other packages.
One example, ViewRec, constructs a simple viewer-based user interface given any
Cedar record value (including local activation records and global frames).
ViewRec determines the names and types of all top-level fields and then displays
them symbolically. The client may expand REF-containing fields into additional
ViewRec viewers. The user of such a viewer may modify fields by editing their
visual representation, may compose parameter values for any procedure values
displayed, and may invoke the corresponding procedures. Some prototype appli-
cations use ViewRec viewers exclusively for their user interfaces because they
are so simple to construct and so easy to use.

7.10 MakeDo

MakeDo automatically determines dependencies between tiles and issues the
commands needed to bring derived files up to a consistent state. The basic
dependencies that MakeDo understands include compilation, binding, and the
automatic generation of RPC stub modules from interface modules (see Section
5.8, Communications, for the description of RPC). The MakeDo implementation
extends to dependencies among tiles of arbitrary types. As a result it is also used
within the VLSI design automation process described in Section 7.8, VLSI Tools.
MakeDo was inspired by the UNIX make command [181, although make
relies on the user to supply the dependencies and the commands to reestablish
consistency.

8. CEDAR PROGRAMMING METHODOLOGIES

We stated in the Introduction that flexible program development methodologies
were among the four important benefits to Cedar users, the others being improved
programmer productivity, integration of software systems, and improved quality
of software. In this section we focus on some of the methodologies that have been
developed for using the Cedar language, programming packages, and tools to
produce experimental programs and to manage the resulting collection of soft-
ware. We have included representative methods that we believe to be carefully
designed and documented. These methods are generally well understood and well
accepted within the Cedar programming community. The remainder of this
section discusses the following topics:

-using procedure variables
-producing tools and programming packages
-integrating user interfaces
-installing, running, and debugging programs
-version and release management
-software browsing
-developing and testing programs

This is a discussion of what people do with the system. As such it will inevitably
provide insights into th8 ‘ways in which Cedar achieves the other important
benefits claimed for it in the Introduction. However, we have deferred until the
Conclusions an analysis of how and how well the system meets these objectives.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

460 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

8.1 Methods for Using Procedure Variables

Cedar language interfaces and configuration descriptions are flexible (although
static) methods for binding clients to specific implementations of the interfaces
they import. However, even these flexible binding methods are not sufficient in
some circumstances. Three popular methods have evolved for using procedure
variables to achieve more dynamic behavior, without eliminating the protection
and convenience of strong typing: call-back procedures, registered procedures,
and object-style procedure invocation (see Section 3.3, Mesa Contributions).
These uses of procedure variables allow higher level clients to affect the opera-
tions of lower level components in ways that relax the hierarchical layering
imposed by Cedar’s structural rules.

8.1.1 Call-Back Procedures. Call-back procedures are most often used as an
enumeration technique. The underlying package enumerates a structure whose
representation is unknown to the client. The action to be performed on each
element of the enumeration is supplied by a client procedure. Thus the call-back
mechanism extends a lower level component of Cedar to include the client
semantics during the invocation of the component.

An example of the use of call-back procedures for enumeration appears in the
Rope package. The representation of a Cedar rope is private to the Rope package.
A client that needs to perform some action for each character of a rope r can call
Rope.Map[r, actionProc], where actionproc is a client-specified call-back proce-
dure. The map procedure applies actionproc to every character in the rope. Other
situations where enumerations are used frequently include file directories, Walnut
messages, and various ordered data structures.

Another use of call-back procedures occurs in the Imager graphics package,
where two levels of call-backs are used to implement generalized paths. The
Imager wants to construct a geometric path from coordinates in the x-y plane.
The client of the Imager’s generalized paths has some data structure from which
the path can be extracted. The client provides a path procedure, and the Imager
calls the client back to request coordinate values by supplying its own call-back
procedures for the client path procedure to insert coordinates into the path.

8.1.2 Registered Procedures. Registered procedures are used in two function-
ally similar but conceptually different ways: to enable event notification and to
achieve what might be called behavior modification. Two examples should suffice
to explain and distinguish these techniques.

Event notification allows Cedar packages to notice when a workstation is not
being used. When there has been no user activity at a workstation for some time,
Cedar blanks the display and enters an idle state until a user again requests
service. The implementation of the Idle interface notifies interested clients
whenever the system goes idle or becomes busy again. (For instance, Walnut
does not retrieve new mail while the workstation is idle.) To receive these
notifications the client supplies a notification procedure by calling a registration
procedure in the Idle interface, which adds the notification procedure to a list.
The procedures on this list will be called with a parameter specifying either the
becomingldle or the becomingBusy event whenever the idle state changes. Other
examples of event notification include notifications that the Viewers package
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 461

generates when something important happens to a viewer (such as creating it,
destroying it, or saving the file displayed in it), and notifications that the system
is about to be-or has just been-booted, “rolled back”, or power-cycled.

The Tioga editor uses behavior modification to add functionality to its menu
buttons. When the user pushes the Get menu button attached to a text viewer,
the Tioga editor uses a file name selected by the user to identify the next file to
edit in the viewer. If the name is not a fully qualified file name, Tioga will look
for the file on a single local working directory before giving up. If unsuccessful,
Tioga is willing to call any registered procedures that have been supplied to
modify (or extend) the behavior of Get. One such procedure consults system
symbol tables to locate the fully qualified file names of source files that are part
of the Cedar release (see Section 8.6, Browsing). More sophisticated extensions
to the functionality of the Get operation include Tioga’s use-to-definition capa-
bilities (Section 6.7, Tiogu).

A common design for registration interfaces allows the client to supply data at
registration time that enables the called procedure to access the client’s state
information. This is necessary because Cedar does not support retained execution
frames.

8.1.3 Simple Procedural Objects. Several variations of object-style program-
ming exist in Cedar. All are based on the same underlying implementation of an
object: a reference to a record that contains both instance data and procedures
defining the operations on that data (see Section 2, The Cedar Language).
Procedure variables and strong type-checking make this approach safe and
effective. By convention, the object itself is supplied as the first parameter to
each operation. The operations for a particular object type are defined along with
the object type within a Cedar language interface.

Procedural objects extend the functionality defined in an interface by permit-
ting new implementations to be provided dynamically at object-creation time.

For example, Cedar ropes are implemented as references that denote text
sequences either directly or as client-supplied procedural objects. A ROPE object
is defined by three operations: fetching a character, mapping a specified action
onto all the characters, and appending characters to the ROPE object. An other
ROPE operations are defined in terms of those supplied operations.

As an example of a client-supplied rope object, consider a rope that represents
the characters of the ASCII character set in collating-sequence order: that is, the
sequence 256 characters long, beginning with the character ‘\OOO, and ending
with ‘\255. This rope can be implemented as follows:

@‘te: TYPE = [0..255];
MyFetch: PROC [base: REF ANY, index: Byte] RETURNS [CHAR] = (

RETURN [vAL[index]]}; - - VAL coerces a number t0 a CHAR

MakeAsciiSet: PROC [] RETURNS [ROPE] = (

RETURN [Rope.MakeRope[base: NIL, size: 256, fetch: MyFetch,
map: NIL, append: NIL]]);

MakeAsciiSet creates a rope that can be used in the same way as any other
rope. (The map and append operations default to implementations using fetch.)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

462 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

Although it behaves exactly like a sequence of 256 characters in rope operations,
it occupies less space. Client-supplied ropes can also be used to make an entire
file behave like a rope (via appropriate file accesses and buffering), so that rope
functions can be applied to arbitrarily large files. Tioga relies heavily on file
ropes.

Similarly, Viewers and IO stream objects use procedural objects for client-
supplied window and stream abstractions.

8.1.4 Object Classes. An important attribute of most object-style programming
languages is that each object instance is a member of a class, the members of
which share the same behavior and may share some global state. In Cedar a class
(a set of classes conforming to the same interface, actually) is defined by a
record type containing the operation procedures. An object type is defined by
a record type containing instance-specific data and a reference to the operation
record. Every member of a class shares the same operation record. Two examples
discussed here are IO streams and Viewer classes.

Cedar character streams are implemented as classes conforming to the interface
specification IO.STREAM. Several components in the Cedar release provide imple-
mentations for standard stream classes, such as file streams and keyboard
streams. A client may easily implement an additional stream class suited to the
client-specific purposes by supplying a new operation record and registering the
new STREAM class.

Cedar viewers are implemented as a set of viewer classes defined by the interface
specification ViewerClasses.Viewer. As an added convenience the Viewers pack-
age maintains a registry of named viewer classes. A viewer class implementation
provides operations to initialize a viewer, to save its contents, to destroy a
viewer, to paint its contents on the display, and so on. Standard viewer classes
implement viewers supporting the Tioga editor ($Text class), the Command
Tool ($Typescript), generic support for viewers consisting of nested viewers
($Container), and a few others ($Button, $Label, $Rule). Clients create new
viewer instances by calling ViewerOps.CreateViewer[className]. They can also
implement additional viewer classes.

Operations on viewers are implemented in terms of extensive facilities in the
Viewers package. The ViewerClasses.Viewer record defines data fields, such as
size information and display coordinates, that are common to all viewer classes.
It also provides a clientData field, which is a FIEF ANY that the class implemen-
tation may use to store implementation-dependent instance data. For the cost
of a NARROW statement to validate the clientData value in the implementation
of each operation, the flexibility of multiple object classes is obtained without
compromising type safety.

Object classes in Cedar are defined by convention, not by the Cedar language.
Multiple inheritance, hierarchical or otherwise, can be achieved through direct
program manipulation of copies of the procedure records that specify existing
classes, but the system provides no direct support for these concepts.

8.2 Methods for Producing Tools and Programming Packages

We have said that software integration provides leverage in building new systems
out of previously existing components. Cedar interfaces are a useful tool in
structuring each component so as to promote integration.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 463

At a low level, Cedar interfaces provide the mechanism for strong typing in
modular programs. Checking by the compiler, binder, and loader ensures that
types are used correctly across many modules. But Cedar interfaces also act as a
form of specification language, describing the public behavior of an abstraction.
Programmers are encouraged to provide functionality that will be useful to client
programs.

8.2.1 Build Packages, then Tools. An important key to the integration of Cedar
applications is captured in the admonition to “build packages, then tools.” The
developer of a user application is encouraged to express its full functionality as
a Cedar language interface, to build the implementation of the interface, and to
produce the intended user interface as its first client. Whether the application’s
complete functionality or its user interface is designed first, and whether the
package is designed in a top-down or bottom-up fashion, “build packages, then
tools” is intended to describe the end result of the design process.

This approach fosters integration in a number of ways. It enables an application
to be driven by more than one user interface. For instance, the functions of
the DF Package are available through a viewer-based interface and through
Command Tool operations. More important, the existence of a program-
ming interface makes it possible to compose higher level application packages
directly in terms of the lower level functions. It is not necessary to simulate the
input/output behavior of lower level user interfaces nor to borrow and customize
the lower level source code. The resulting reuse of packages provides traditional
software engineering benefits: bug fixes and performance improvements need
only be made once to apply to all uses. An extensive example is presented in
Section 9.2, WalnutVoice Case Study.

Multiple uses for packages also encourages good craftsmanship in their con-
struction. First, it encourages the programmer to design the component’s func-
tionality carefully, aiming for a complete and comprehensible set of data types
and operations. Examination of a programming interface tends to point out
missing functionality before the package is released to users. Second, it encour-
ages attention to the efficiency of frequently used special cases.

This design process sometimes creates difficulties when an application does
not lend itself to a simple hierarchical decomposition into layered abstractions.
It often requires several iterations to arrive at the proper partitioning of functions
among interfaces. The results have generally proved worth the effort. This careful
reworking of interfaces and implementations has consumed a considerable frac-
tion of the Cedar development effort, but it is also in large part responsible for
the quality of the result.

8.2.2 Layered Design of Interfaces. The design of interfaces within individual
Cedar components parallels the layered structure of Cedar as a whole. Within
typical, large Cedar components there are four levels of interfaces: the user
interface, the event notifier, the client programming interface, and internal
interfaces. At the interactive user interface level, the TIP package maps keyboard
clicks and mouse movements into action tokens. The event notifier interface
maps these action tokens into registered procedure calls on the application’s
client interface. The client interface defines the actions to be performed by the
application package. Internal interfaces supply operations within the application

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

464 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. 8. Hagmann

procedure calls

editing tokens editing tokens procedure calls
t

Notifier

+
Tioga internal

interfaces

1
document objects

Fig. 5. Layers of interfaces in the Tioga editor.

when external invariants imposed by the client/implementation interface are
already met.

The Tioga editor is a canonical example of these layers of interfaces, presented
schematically in Figure 5. The Tioga TIP table maps user actions into editing
requests. The Tioga notifier receives these actions and calls registered editing
operations, while maintaining an edit history log of editing events. The client-
callable TiogaOps interface performs the same actions as the notifier but may be
invoked by a program rather than a user interface. Finally, the Tioga internal
interfaces assume that appropriate locks and invariants are already established
and perform the basic editing operations on the document structures.

Other applications may use functions of the Tioga editor at any of these
levels. The EditTool is a viewer-based user interface that supplies buttons
and a macro expander to invoke the editing operations. The Walnut electronic
mail system uses the TiogaOps interface to prepare message-reply templates
automatically.

8.3 Methods for Integrating User Interfaces

The sharing of facilities and resources that we have described from a program-
ming standpoint is also evident to the Cedar user. At the user interface level it
manifests itself in a somewhat different way. To the user it is immaterial how
programs are structured or how much code is shared. What is significant is the
hierarchical structure of Cedar viewers on the display and the commonality of
the user interfaces within different viewers that have similar appearances and
functions.

The most immediately obvious example is the common behavior of pushbutton-
style menu actions within all kinds of viewers. In fact, often the same button,
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 465

representing the same behavior, appears in more than one class of viewer. For
instance, the Tioga Find button appears in document viewers, typescripts, and
Walnut message set viewers. The use of the mouse to select text or other objects
is also treated in a consistent manner.

Another important example is the universal availabilty of the Tioga text editing
commands. Tioga’s facilities are available within text editor viewers, within
typescript viewers, and within any viewer or subviewer that contains user-
modifiable text. Using only Tioga actions, text can be copied or moved from one
viewer to another-from document to document, or from a document into a
Command Tool viewer, where the text contents will be executed as the next
command.

8.4 Methods for Installing, Running, and Debugging Programs

To this point, we have described Cedar as it exists in the steady state, with all
system and user programs already present in virtual memory and properly
initialized. Clearly, we need methods for getting started and for introducing new
programs into the system.

In a typical closed operating system, running a program is straightforward: the
system loads a monolithic program image into the address space of a new process
and starts it up. In Cedar there are more choices and some additional difficulties.
One choice would be to require that each user’s system be fully described by a
single Cedar configuration. A bootstrap loader would assign each module to
virtual memory locations and start the system. This method alone would not
allow adequate flexibility in the choice of components to run, nor would it allow
the incremental introduction of new or modified programs. An extreme contrast-
ing approach would be to introduce components one at a time, binding them to
components introduced earlier and starting them as they are loaded. If the entire
system were built in this way each time the system was initialized, the process
would take too long and require inordinate care in choosing the loading and
startup order. Here we describe the middle course between these approaches that
is used in Cedar.

8.4.1 Cedar Installation. Cedar is distributed to users as a file containing the
Cedar microcode, a file containing the germ (an initialization program, see
Section 5.10, Running Programs), a single boot file containing the Cedar code
for the Cedar Machine and the Nucleus layers, and a large collection of Cedar
configurations representing the Life Support layer and widely used applications.
These files are installed by a small program obtained from either the Ethernet
or the local disk by a tiny sequence of bootstrapping microcode that is built into
the machine. To boot Cedar, this program loads and starts the germ giving it the
address of the Cedar boot file.

The Nucleus includes enough of the system to manage memory, to read
and write files, to send and receive Ethernet messages, and generally to sup-
port ordinary Cedar programs. The Nucleus also includes the loader. Shortly
after it is started, the Cedar boot file consults a list of the Life Support pack-
ages to be loaded and started. The user can override the default pack-
age list with a customized one. Once the Life Support layer has finished

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

466 - D. C. Swinehart, P. T. Zellweger, R. J. Beach, and Ft. B. Hagmann

boot-strapping itself, the display has been initialized and the environment is
ready to support applications.

Finally, a file of user-set parameters called the user profile (see Section 6.2) is
retrieved from the user’s file server directory. This profile includes specifications
of additional components that need to be fetched and possibly started in order
to produce the user’s desired standard configuration. Once these steps have
occurred, the system is ready for use. This entire process is known as a full boot.

8.4.2 Checkpoint and Rollback. Performing a full boot is a flexible and effective
method for producing custom-designed systems, but it takes a long time-two to
ten minutes on a Dorado, even longer on slower processors. Moreover, it does
not permit one to save the results of any initialization activities which might also
be lengthy operations nor to capture a particular configuration as the evidence
of program failure. Checkpoint files (see Section 5.10, Running Programs) address
these needs. Having performed a full boot and perhaps performed one or two
manual initialization steps, standard practice is to produce a checkpoint repre-
senting the resulting system state.

Most often, one begins a Cedar session by rolling back to a previous checkpoint,
a process that takes less than a minute. Full boots are needed only when testing
new versions of packages in the checkpoint, or when new versions are released.

8.4.3 World-Swap Debugging and Teledebugging. Checkpointing methods can
also be used for debugging. Most problems can be diagnosed using debugging
tools that operate as ordinary processes in the same address space (or world)
with the target applications being debugged. But when problems develop that
prevent the proper operation of the debugging capabilities, low-level facilities in
the germ can be manually triggered to store a special checkpoint image, then to
boot a separate debugging environment that can examine the state of the saved
image. This action is called a world swap. If the problem can be repaired in the
saved image, another world swap will allow execution to proceed. Otherwise, the
next logical step is a rollback or a full boot.

A popular alternative to world-swap debugging, teledebugging, is also supported
by the germ. Normal system operation can be suspended and control transferred
to a germ program called the debug nub, which expects low-level debugging
commands in the form of Ethernet packets from a debugging program running
on another machine. These teledebugging primitives include fetches and stores
of specified memory locations, breakpoint manipulation operations, and a proceed
command. The suspended system itself can be used as the target system image,
in place of a checkpoint file. Teledebugging can be much faster than world-swap
debugging, especially since breakpoints require many world swaps, and the world-
swap operation is measured in tens of seconds.

8.5 Methods for Version and Release Management

Managing the thousands of files that constitute the Cedar system requires
automated assistance. Several tools and supporting conventions make the devel-
opment of Cedar components an orderly process. In Section 6.11, DF Package,
we introduced DF files, which describe a collection of related files for a package
or application. Just as interfaces and configurations impose a checkable hierarchy
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 467

that makes programming manageable by reducing the amount of information
that the programmer must deal with at one time, DF files form a similar hierarchy
for describing and managing the files that make up the system.

The Cedar release methodologies utilize DF files and file-naming conventions
to enforce the structure of Cedar among many programmers and across many
system releases.

8.5.1 How PF Files are Used. A typical modification of a package proceeds by
first performing a bringover operation to copy the DF file and all the files that it
specifies into a subdirectory on the workstation. Because the resulting directory
entries are only attachments, this process is quite rapid. Next, selected sources
are edited, compiled, bound, and tested. In most cases the DF file serves as the
only input the MakeDo program (see Section 7.10) needs in order to perform the
compilation and binding operations automatically, processing only those files
that have changed or whose dependencies have changed.

The modifications create new local files that are not visible to any other Cedar
user. When the modifications have been completed and tested, the DF Package
is invoked to store a new consistent version of the files on the file server and to
verify their completeness and consistency. The problems of managing the files
comprising a component, determining the actions needed to produce new ver-
sions, and managing multiple versions have been reduced from earlier fully
manual procedures to the simpler problem of maintaining a correct DF file
description of the component.

The concepts underlying DF files have been extended to serve as a full
description of a running program. These system models [28, 431 may eventually
form the basis for automatic recompilation, run-time module replacement, and
answers to queries about a program’s structure, such as the locations of all uses
of some variable (similar to Interlisp’s Masterscope).

8.5.2 Cedar Release Management Methodologies. A Cedar release is a consist-
ent version of the system specified as a set of DF files, each describing the files
contained in one of the release’s components. The Nucleus and Life Support
layers are expressed as umbrella DF files that list the DF files for their compo-
nents. These umbrella DF files are verified to ensure that they describe a
consistent and self-contained set of interfaces and implementations. The release
of application packages is managed separately with slightly different conventions,
as described below.

The methodology for releasing Cedar has evolved considerably. Early laissez-
faire methods gave way to more tightly controlled ones. All of the files in a release
reside in a single tree-structured file directory replicated on one or more file
servers. Standard file-naming conventions for storing Cedar DF files and com-
ponents enable programmers to browse the large directory structure. During
development, this directory may be updated by any system implementor who
announces a submission through a standard-format electronic mail message.
After the release the contents of this directory become nearly immutable, in that
files may be changed or supplanted only for critical bug fixes and enhancements,
and only under careful administration. Between releases, interfaces of released
components may not change for any reason. Instead, new functions are provided

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

468 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

by new “extras” interfaces (interfaces that contain additions to existing inter-
faces) that will be merged with the standard interfaces in the next release.

A similar but less stringent methodology applies to the Cedar Applications
layer. A separate release directory, known as the CedarChest, contains applica-
tions and tools. Although consistency checks are applied periodically, there is no
official release process for Applications layer software. Applications programmers
are free to release new versions, and frequently do. Interface changes are nego-
tiated among the relevant implementors.

One of the requirements for each system or Applications component is a
documentation file. This file, whose name is derived from the component name,
is stored in a standard documentation subdirectory and is included in the DF file
for the component. Two software catalogs, one for Cedar and another for
CedarChest, are automatically constructed from the set of documentation files
for components in the release directories. For each component these catalogs
provide a summary of its functionality, a set of descriptive keywords, a list of
Command Tool commands (if any) that it supplies, and a pointer to its complete
documentation file.

Applications that are not part of the official Cedar or CedarChest releases are
typically released using similar methods applied to their own file directories.

8.6 Methods for Software Browsing

Cedar is large, distributed, and constantly changing. The creation of integrated
software can involve the use of items from many interfaces, located at all levels
of the environment. Tools for navigating easily and quickly through the system
are a necessity. In earlier systems, finding the correct file server and directory
for a component was sometimes a challenge in itself. The many conventions and
the documentation catalogs described in the release process above help program-
mers discover and locate relevant information about the system. The tools and
methods described below provide additional browsing facilities.

8.6.1 From Use to Definition. A few programming environments include com-
prehensive browsing facilities, which assist with the development and debugging
of programs by exploiting the known linkages among definitions, implementa-
tions, and uses of program components. The Masterscope function in Interlisp
is an excellent example [53]. Cedar lacks a unified browsing capability, but it
does include a number of tools that, when used with the Tioga editor, provide
considerable assistance in locating things.

The most important of these tools is the Cedar interpreter, which can evaluate
expressions, display the fully qualified names of variables, and open Tioga viewers
on the source files corresponding to breakpoint locations.

Another invaluable tool is Tioga’s use-to-definition function (Section 6.7,
Tiogu), which can open a viewer on the source for either the interface definition
or the implementation of a qualified name. These names can be selected from
the output of the interpreter or from another source viewer. Since Mesa/Cedar
programs often involve chains of definitions that traverse several source tiles,
the ability to proceed within seconds from definition to subdefinition is crucial.
This ability to browse without explicit knowledge of the size or organization’of
the file server name space allows the user to focus on the small numbers of files
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 469

that are relevant to the current task, rather than on the enormity of the system
as a whole. The symbol tables described in the next section support this use-to-
definition facility.

8.6.2 Symbol Table Management for Cedar Releases. Tioga’s use-to-definition
features, the symbolic debugger, and other clients of the Abstract Machine need
to perform various mappings between Cedar program values and the source files
in which they are declared. The program modules produced by the compiler and
binder contain only the location-independent names of the corresponding source
files (known as their short names), rather than the full path names that could
locate them on a release or private directory. For programs under development,
one can arrange to have copies of the sources in a local directory where Tioga
and the Abstract Machine can look for them. However, additional mechanisms
are required to allow users to locate the sources for released components without
requiring the entire system directory to reside on each workstation. Without
ready access to the sources for the release, the browsing facilities would be much
less valuable and the system much less open.

An ad hoc approach to the location of system sources is currently used in
Cedar. A set of files known as version maps are produced by traversing the tree
of DF files corresponding to the released boot file. Version maps are efficient
mappings that allow source and object files to be found on their release directories,
given their short names or the unique identifiers assigned to their object modules.
When there has been a change, updated version maps are automatically copied
to the local disk at the beginning of every interactive session.

8.6.3 Other Browsing Tools. There are several useful Command Tool opera-
tions for browsing through the Cedar system. The FindR command examines the
version maps for entries matching a file name pattern and simply lists any
matches. OpenR uses the version maps to open a source viewer, given only a
short name. GetFromReZease examines the latest compilation error log, creates
file attachments in the current working directory for release files that were
needed but not found, and suggests additions to the DF file for the package being
modified.

The set of browsing tools in Cedar is by no means complete. When all else
fails, users resort to a command that performs a regular expression search through
a specified set of source files. At a few seconds per file on a Dorado, this method
is often effective in finding a starting point for a more structured investigation.

8.7 Methods for Developing and Testing Programs

All program development in Cedar, aside from simple experiments using the
interpreter, involves compiling and loading new versions of Cedar language source
programs. The methods work in the same way whether system components or
private applications are being developed, and whether the intent is experimen-
tation or permanent change. However, the methods that are applicable do vary,
depending on whether a new component is being added to the system, a com-
ponent is being replaced by another, or the behavior of a component is simply
being modified. As we have seen before, the methods allow more flexibility but
are often more elaborate than the methods for similar development in closed
operating systems.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

470 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

8.7.1 Adding New Components. If the package or tool to be run has not yet
been loaded, and if it does not need to be a part of the Nucleus layer to run
correctly, the process of testing it is simple: one simply loads it and starts it (see
Section 5.10, Running Programs). If its permanent home is in the Nucleus or
Life Support layers, the replacement methods described below will eventually be
required.

8.7.2 Replacing Components. If a component is to be permanently substituted
for another, or if it is important that clients of the old component be rebound to
the new one, the replacement method must be used. Replacing a component
requires producing a new instance of the system that contains the new component
version instead of the old one.

In some cases it is feasible to replace a program module without restarting the
system or destroying the values of its global variables. The new code can be
loaded, and clients of the previous instance can be “rebound” to the new one.
The old code can then be removed from virtual memory. Module replacement
has been demonstrated experimentally in Cedar, but has not been released for
general use.

In the absence of dynamic module replacement, the only way to replace a
component is to restart the system with the new component in it. The difficulty
of doing this depends on the component’s level. Applications components can be
readily replaced after a rollback to a checkpoint that does not include them. Life
Support components can be replaced by performing a full boot using a modified
list of boot packages. Finally, replacing a Nucleus component requires the
installation of a modified boot file, followed by a full boot. However it is done,
when a component is replaced, all clients will execute the new one.

8.7.3 Modifying Component Behavior. The techniques described in Section
8.1, Using Procedure Variables, are used in many places throughout Cedar to
enable client modification of existing components without requiring recompila-
tion or replacement of the components themselves. To use these techniques, the
original component implementation must be written with flexible client extension
in mind. Otherwise the modification will involve changes to the components
themselves. Sometimes these changes can be tested without resorting to compo-
nent replacement by using a technique called augmentation.

Augmentation involves running a new copy of a component without disturbing
the previous versions. One can confine the effects of the new component to a
selected set of clients by binding them together into a configuration that does
not export the component’s interfaces. Such a configuration effectively hides the
interfaces from the load state. Alternatively, one can make the new component’s
interface public by substituting its interfaces for the existing ones in the current
load state. In the former case, any clients that are run after the augmented
configuration is loaded will be bound to the original component; in the latter
case, they will get the new one.

It is usually possible to augment a system with several new instances of a
component before the exhaustion of some system resource, such as virtual
memory or a dedicated part of it, forces a rollback. Most Cedar applications are
developed in this way.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 471

9. CASE STUDIES

In order to give a feeling for how Cedar is really used for experimental program
development, we present two case studies. The first describes the replacement of
the Cedar Graphics package by the Imager package during a recent Cedar release.
The second demonstrates the value of the layering of components in the devel-
opment of an integrated voice-annotated electronic mail application.

9.1 Case Study: lmager Replacement of Cedar Graphics

The augmentation approach discussed in the previous section has a number of
advantages in an interactive system. One such advantage is the possibility of
developing and debugging new interactive tools and interfaces using the facilities
of their predecessors. Conceptually, earlier open operating systems could support
this kind of interactive bootstrapping. In practice, however, difficulties such as
naming conflicts, limited memory, or the inability to share user input/output
resources have prevented effective application of this idea. An elaborate instance
of this approach was successfully applied during the development of Cedar 6.0.

The left half of Figure 6 depicts the structure of the Cedar 5.2 system,
emphasizing the user input/output components and the program editing, devel-
opment, control, and debugging tools that use them. These components have all
been described in considerable detail in Section 5, Nucleus and in Section 6, Life
Support, except for the Cedar Graphics package, which was the predecessor to
the Cedar 6.0 Imager. Cedar Graphics implemented an equally powerful graphical
model, but was directed primarily at managing the Cedar display. Having built
the more device-independent Imager, the developers were faced with the problem
of debugging corresponding versions of Viewers, Tioga, and the various applica-
tions that depend upon them. Because user interaction with the local debugger
relies on the services of the Imager, Viewers, and Tioga, debugging new versions
of them presented a difficult problem. To examine and control a wayward Imager-
based system, the developers could use either the world-swap debugger or the
teledebugger, both based on the existing Cedar Graphics package. However, the
augmentation approach permitted the developers to use the more convenient
local debugger.

The lowest level of the terminal input/output facilities is the Terminal
component (Section 5.9), which was carefully designed to support completely
independent, possibly conflicting uses of the display, keyboard, and mouse.
Each suite of applications relies on the facilities of a virtual terminal. The user
can select a virtual terminal to view and manipulate by depressing an unlikely
assortment of keys.

Figure 6 as a whole indicates how the Cedar 5.2 system was augmented to
include a configuration containing the new Imager. Bound with the new Imager
were its applications and a copy of the user input components, Inscript and TIP.
Inscript and TIP were set up to obtain input from a new virtual terminal whose
display was controlled by the Imager. Because this configuration did not export
any interfaces, all packages outside it continued to use the existing Cedar
Graphics-based system. Until this configuration was working reliably, the devel-
opers were able to use the Cedar Graphics-based program development tools, still
associated with the standard virtual terminal, to debug the new components.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

472 l D. C. Swinehart, P. T. Zellweger, Ft. J. Beach, and FL B. Hagmann

IO, FS, Safe Storage

Fig. 6. The replacement of the Cedar Graphics package by the new Imager package
required binding the Imager and its clients together to avoid interface mismatches.

In a subsequent configuration, not shown, the role of the Imager and Cedar
Graphics were reversed. This produced a version of the now nearly complete
Cedar 6.0 system, with a version of the earlier program development tools
available (in an alternate virtual terminal) to handle obscure problems with the
new facilities.

9.2 Case Study: WalnutVoice and Layers of Applications

The layering methodologies apply to Cedar applications as well as to the Cedar
system. This layering of applications helps programmers manage the large
amount of Cedar software and cope with dependencies on packages undergoing
concurrent development. WalnutVoice allows electronic mail messages to be
annotated with digitized voice recordings; it is a client of Walnut and is layered
on top of Walnut. Walnut supports both a user interface for managing one’s
personal mail in a database and a client program interface for other applications
to integrate with Walnut. Clients may depend on this stable interface despite
continued performance improvements in the Walnut implementation. Walnut in
turn depends on several application components, including the database software
(Cypress), a user interaction package that supports buttons composed of format-
ted Tioga documents (TiogaButtons), and the typesetting software (TSetter).
Walnut itself is layered into several parts, one for the user interface to the mail
database, one for managing the database, one for sending messages over the
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural Viiw of the Cedar Programming Environment 473

WalnutVoice

WalnutControl

WalnutControlPackage

WalnutKernel WalnutRegistry WalnutSend Nut TiogaButtons TBQueue TSetter

Fig. 7. Application components that make up WalnutVoice, which offers voice annotation
of electronic mail messages, may be layered much like Cedar. Each box represents a
component whose name appears above the box (unexpanded components, which have no
application component dependencies, are shown as smaller boxes). The top line of names
within a box lists the major implementation modules (Walnut has none as it combines two
other components). The bottom line lists other application components that are imports
(other imports from the Life Support and Nucleus layers are not described). Several
component and module names appear here that do not appear elsewhere in the paper; they
are included here for completeness.

internetwork, and one for registering Walnut event service handlers. Figure 7
shows all of the layers of application components in Cedar upon which
WalnutVoice depends. It is important to note that the open operating systems
approach permits a component to access lower level components through the
permeable layers. For example, WalnutVoice depends directly on the Cypress
database package for its directory information as well as indirectly through
Walnut for the maintenance of the Walnut message database.

Another way to view the open operating system in this layered set of applica-
tions is to concentrate on one component. This examination reflects the working
set of interfaces that a programmer might deal with when designing a single

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

474 l D. C. Swinehart, P. T. Zellweger, Ft. J. Beach, and R. B. Hagmann

WalnutVoice

WalnutVoicePkg

VoiceDB FinchSmarts Walnut VoiceUtilsClient

from Life Support:
Command Tool, Tioga, Viewers, Interpreter& Debugger,
Abstract Machine, and Useful Packages

from the Nucleus:
RPC, Communications, IO, FS, File, and Safe Storage

from the Cedar Machine:

Fig. 8. The WalnutVoice component depends directly on four application components
and fifteen Cedar interfaces from the Life Support, Nucleus, and Cedar Machine layers.
The fifteen system components are shown as dark areas on the small version of Figure 2
below.

component. WalnutVoice depends directly on four application components and
about 15 interfaces from the Life Support, Nucleus, and Cedar Machine layers
of Cedar. These dependencies appear in Figure 8. While the implementations of
these dependent components may be quite large, the programmer works only
with the interface specifications. Convenient browsing facilities permit the pro-
grammer to examine relevant interface details quickly.

10. COMPARISONS WITH OTHER ENVIRONMENTS

To put Cedar in perspective, we compare its structure with those of a small
number of programming environments that were not in Cedar’s direct evolution-
ary chain, looking at both the similarities and the differences in their designs.
Some of the differences are inherent, while others provide insights that could
lead to future developments in Cedar. We will look at the two systems from
which Cedar has borrowed most heavily: Interlisp-D and Smalltalk-80. We also
include a discussion of the UNIX system, a traditional system whose ideas have
influenced Cedar significantly.

There are a number of important programming environment features that we
are not considering in this paper: programs as data, fast turn-around for program
changes during system development, and the specifics of the user interface. We
concentrate instead on structural aspects.

10.1 Interlisp-D

Interlisp, a dialect of Lisp, was initially created as an application program running
in the Tenex operating system [5]. Since Interlisp provides a single global name
space, and since virtually all of the system except the lowest level primitives and
the access to operating system facilities are written in Interlisp, the design is
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 475

inherently an open one. However, the original input/output facilities and whole-
sale memory management facilities were limited to whatever the Tenex system
provided.

More recently, Interlisp has been transported to Xerox personal workstations,
including the Dolphin, Dandelion, and Dorado. It has been enhanced with a
bitmapped display and a powerful window management package, based on earlier
prototype work using Tenex Interlisp with Altos as terminals. The resulting
system is known as Interlisp-D [57]. Interlisp-D should be classed as an open
operating system, in the sense that all of the system’s components are available
to client programs.

All Lisp dialects rely centrally on automatic storage management of their list
structures. In fact, it was the clear success of Lisp garbage-collection methods
that led us to add them to Cedar. When programs use only the basic functional
primitives of Lisp, they are inherently safe. To handle concurrent processing,
Interlisp-D includes a simple nonpreemptive process scheduler with no sema-
phore or monitoring facilities. Errors in process synchronization cannot interfere
with proper storage management, but one must exercise care to avoid races and
deadlocks.

Interlisp does not have strong typing. There has been a long-running debate
about the trade-off between the flexibility of typeless systems, such as Interlisp,
and strongly typed systems, which are able to find many errors at compile time
and which offer the potential for greater efficiency at execution time. Cedar takes
an intermediate position in this debate by using strong typing, but still allowing
for delayed type binding and generic references (see Section 2, The Cedur
Language).

A running Lisp system has no identifiable component structure or explicit
layering, but rather contains a vast collection of individual procedures. Of course,
the user documentation does present the system in an orderly fashion, clustering
groups of related procedures according to their purpose.

10.2 Smalltalk-
Smalltalk systems, from Smalltalk- through the present Smalltalk- [20],
have also evolved towards a greater degree of openness. As with Interlisp, the
parts of the systems written in Smalltalk are universally available, since Smalltalk
operates in a global name space. And like Interlisp, the amount of the system
written in Smalltalk has increased as the implementation became more efficient.
Now every aspect of Smalltalk except for a very small kernel is available to
Smalltalk programmers.

Smalltalk systems also rely upon automatic storage management, and their
allocated objects are more complex than those of Interlisp. Objects are repre-
sented as variable-sized records containing embedded object references. The
Interlisp and Smalltalk implementations provided a partial existence-proof for
the kind of storage management Cedar needed. The overall safety of Smalltalk-
80 is similar to that of Cedar and Interlisp-D. The process-management facilities
are quite similar to those in Interlisp-D.

The object-oriented approach exemplified by Smalltalk- was also one
of Cedar’s goals-a goal so far only partly met. The present Mesa and
Cedar languages now include some simple syntactic constructs that allow the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

476 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and FL B. Hagmann

programmer to invoke a set of procedures associated with a particular data type
using an object-oriented notation. Many Cedar facilities use this syntax, but the
construction and management of such objects are the responsibility of each
programmer. Moreover, neither the Cedar language nor the system provides any
support for the important Smalltalk- notion of class inheritance, in which
specific object classes are specified as extensions to the specifications of more
general ones. Class inheritance is a structuring approach that is orthogonal to
the explicit layering of Cedar components. Inheritance deals with the relation-
ships between implementations of related object types rather than the relation-
ships between callers and callees. Classes and class inheritance are important
concepts that might benefit strongly typed languages like Cedar.

Although the Smalltalk- implementation does not exhibit an explicit layering
of components, it does have effective means for clustering the operations belong-
ing to each component-as collections of operations implemented by a particular
class. In fact, the Smalltalk- system supports a further organization of opera-
tions within a class, encouraging the programmer to collect these operations into
subgroups called categories. This is also an idea that could be used to advantage
in Cedar.

10.3 The UNIX System

We have selected the UNIX system as an example of a closed operating system,
which relies on hardware memory protection to partition the code and data used
by the system for its operation from those of the user processes, and similarly to
protect the user processes from each other. The closed approach has disadvan-
tages that led to the development of open operating systems like Cedar, but it
also has important advantages.

Disadvantages of a closed operating system

-The clear boundary between the application and the system is apparent in
application programs, usually appearing explicitly as a system call of some kind.
System facilities that are available as system calls can contain useful subcom-
ponents. However, these subcomponents are often not directly available to
applications.
-Applications that run as parts of an integrated open operating system often
benefit from the ability to share common memory. In particular, the management
of the shared display within systems like Cedar are heavily dependent on shared
memory. System performance and programming convenience suffer when appli-
cations are forced to take a more arm’s length approach to information sharing.

Much of the strength of the UNIX system has come from the interoperation
of commands. A typical command in the UNIX system is a filter. That is, it
takes an input stream, modifies the data, and writes the result on an output
stream. Such filters can often be composed to produce the desired program. The
commands interoperate in that the output of one command can become the
input of the next command. In essence, such interoperating programs commu-
nicate through their command or user interfaces. The weakness of this approach

‘Our use of the distinction between interoperation and integration is due to a conversation with
Robert Sproull.

ACM Transactions on Programming Languages and Systeins, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 477

is that the information must be expressed as a stream of bytes. Often this is
inconvenient, because there may be no simple mapping of the data to a stream
of bytes. (For example, a directed graph does not map well into a linear structure.)
Cedar instead provides integration of packages, in that the intermediate forms of
one computation are used within another computation.
-Changing the operating system to provide new or different functions is not as
straightforward as it is in Cedar. (However, we should point out that since UNIX
sources are generally available and comprehensible, it is possible to customize a
UNIX system.)

Advantages of a closed operating system

-A user process cannot readily interfere with the operation of the system or
another process, whatever the inherent safety of the programs running in the
process.
-User applications can be terminated and their memory and other resources
entirely reclaimed as easily as they can be loaded and started.
-Multiple address spaces make it easier to support more than one programming
language or environment on the same machine. Detailed storage-management
decisions and calling conventions (which are the primary difficulties in getting
languages to coexist) are left to the individual processes in their individual
address spaces.
-Debuggers can run in protected processes, using system-provided facilities for
accessing the memory and other run-time state associated with a target process.
The target process can be completely frozen during the debugging activity. Cedar’s
local debugging can break down due to process deadlock or failure in the safety
mechanisms; one must then resort to teledebugging or world-swap debugging,
both fairly clumsy methods. However, Cedar’s nonlocal methods are less clumsy
than the methods available for debugging the UNIX kernel, which use a symbolic
assembly-level debugger to examine a core dump.

We believe that the advantages of closed operating systems are important.
Combining the advantages of both approaches to programming environment
design, beginning with either base, is an important topic for future research.

11. CONCLUSIONS

This paper identifies those systems aspects of the Cedar programming environ-
ment that distinguish it from other experimental programming environments.
The paper indicates how the novel features combine to achieve a select set of
benefits: improved programmer productivity, improved quality of software, inte-
gration of system software, and flexible program development methodologies.
Some of these benefits were original goals of the Cedar project, and others were
identified along the way.

Programmer productivity in Cedar is improved significantly by the integration
of tools in a high-quality environment. In addition, a number of powerful tools
enhance the programming process. The structured Tioga document editor,
Abstract Machine facilities for examining program structures, debugging tech-
niques that operate in the same or remote address spaces, performance measure-
ment tools, and tools for version and release management-all available in an

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

478 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

environment that also contains the programs under development and the every-
day office-related necessities of the user-account for this improvement.

High-quality programs result primarily from careful design and implementa-
tion. The issue in this paper has been to identify how the machine architecture
and the system design can help. The Dorado, with its high-speed processor, large
address space, and large physical memory, was designed to remove impediments
to experimental development caused by limited resources. Cedar uses its strongly
typed language, automatic storage management, careful organization of compo-
nents into layers, and lightweight processes (among other things) to exploit the
power of the machine while reducing or eliminating the most common causes of
unreliability.

For an environment to be considered integrated, it must first support multiple
activities simultaneously. It must permit the resources of the machine to be
shared so that independent activities do not interfere with each other. It must
also support the sharing of components, the building of specialized components
in terms of more general ones, and the sharing of user interface implementations
and methodologies across a wide range of applications. The Cedar attributes that
help improve program quality are all important for integration. Again, lightweight
processes, the contributions of automatic storage management, and Cedar’s
layered organization are contributing factors. Procedure registration and the
object-style programming enabled by procedure variables are particularly valuable
tools for integration.

These benefits are all interrelated. Without some of them, others would be
harder to achieve. The program development methodologies outlined in Section
8, Methodologies, are particularly important. Their absence would have made it
impossible to build an integrated system as large and as rich as Cedar. In addition,
these methodologies serve as models for building other experimental systems.

The remainder of this section presents several reflections on the Cedar envi-
ronment.

11 .l Insights

We can now discuss the ramifications of the novel aspects of the Cedar environ-
ment, outlined in Section 1.3, Novel Aspects of Cedar. The decision to emphasize
these particular aspects resulted from insights gained during the design and
development of Cedar. These discussions have been deferred until most of the
details and context were presented.

11.1.1 Automatic Storage Management. The original goal of the Cedar safe
language features has been met. It is very rare for Cedar programmers to have to
deal with memory smashes. In addition, automatic storage management has
provided other benefits.

In systems without automatic storage management, one must deal with the
ownership of objects, especially parameters to procedures. For example, a routine
that prints text strings might be supplied either with a constant string, whose
storage should not be released because it will be used repeatedly, or with a
constructed value, whose lifetime need not extend beyond the completion of the
printing routine. The client must either surround the call with allocation-
management statements, or must somehow charge the printing routine with the
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 479

responsibility for managing the disposition of the parameter’s storage. Either
method is clumsy. These problems are magnified when trying to design consistent
rules across a large system.

In Cedar we can share objects without concern for ownership of the object and
without complicating the interface. Procedures that create objects may simply
return an appropriate value, be it a primitive data type or a composite record
reference. This clarifies the interface specification as well as the client code,
resulting in faster design of interfaces and implementations. The finalization of
objects when they are about to be reclaimed permits an object’s implementation
to control the cleanup of associated data structures, even if the object had been
shared extensively.

It is not immediately obvious, but automatic storage management increases
the value and safety of call-back and registered procedures because it provides
additional flexibility in the kinds of values that can be exchanged through these
procedures. In systems without automatic storage management, concern over the
lifetime of allocated objects has led to restrictions on the use of procedure
variables in system calls [40]. In closed operating systems, difficulties in estab-
lishing the proper memory environment generally prohibit the use of either
registration or call-back procedures.

The performance of the Cedar incremental garbage collector is sufficiently
good that it is rarely noticed by Cedar users. More than 90 percent of all garbage
collections occur in the background.

11.1.2 Procedure Variables and Objects. Cedar’s methods for using procedure
variables make experimentation easier by allowing the programmer to extend
strongly typed, statically compiled, and statically bound interfaces. Programmers
can add functionality without changing low-level parts of the system and without
understanding implementation internals. In fact, it is often impossible to deter-
mine the difference between client-supplied objects and predefined ones. For
example, all Tioga commands, viewer classes, and command names are registered
as procedure variables. There is only a minimal performance penalty for this
kind of extensibility. However, one must amortize the initial overhead of design-
ing or understanding a registration mechanism over later clients and experiments.

The generic reference type, REF ANY, permits objects to contain and proce-
dures to handle uninterpreted data references. Cedar’s use of procedure variables
differs from Mesa’s because an object or procedure declaration may specify a
generic reference without the necessity to define in advance all the types of
possible references.

Object class definitions, which characterize the common behavior of objects,
are useful structuring concepts across a wide range of applications. Sharing
objects makes integration easier because applications can use the same data
structures and gain leverage from the same user interface buttons and menus.

11.1.3 Interfaces, Structural Conventions, and Other Chunking Mechanism.
Integrated systems are big, and Cedar is enormous. Fortunately, there are several
mechanisms in Cedar that help present the system in manageable chunks that
people find easier to remember. The four layers organize components into the
Cedar Machine, Nucleus, Life Support, and Applications. Each component

ACM Transactions on Programming Languages and Systems, Vol. 8. No. 4.Oh+- lqR6.

480 l D. C. Swinehart, P. T. Zellweger, FL J. Beach, and R. B. Hagmann

provides a small set of interfaces for each abstraction in the component. Finally,
implementations of the interfaces accomplish the functionality. For example,
programmers interact with the Tioga text editor only through a few client
interfaces that spawn over a hundred internal interfaces and implementations.

The structural layers in Cedar lead to a stable understanding of the environ-
ment, in spite of constant change. Clients are unaffected by changes in imple-
mentations for performance or bug fixes. Layering of applications also means
that added functionality is easily inherited. For example, Walnut manipulates
Tioga documents as the content of electronic mail messages, and when Tioga
was enhanced to display pictures, then electronic mail messages could contain
illustrations without any change to Walnut.

Cedar supports “programming in the small” through the interpreter, module
interfaces, and implementations, “programming in the medium” through config-
urations describing packages and components, and “programming in the large”
through version management tools, version maps, and file servers with replicated
directories. The two case studies in Section 9, Case Studies, demonstrated that
it is practical to throw away large parts of Cedar and reprogram them with
new parts, and that we use the layering methodologies even when building
applications.

11.1.4. The Abstract Machine and its Applications. The Abstract Machine
enables the robust local debugging techniques, backed up by remote debugging,
that are fundamental to the productivity and quality of the experimental pro-
grams developed in Cedar. Through the Abstract Machine, Cedar supports
interpreting the Cedar language, source-level debugging in context, and browsing
Cedar programs through use-to-definition and version maps. Interestingly, Cedar
does not have a privileged system program called the debugger. Instead, the Tioga
editor, the expression interpreter, typescript viewers, and a collection of special-
ized tools that draw upon the facilities of the Abstract Machine package provide
the basic tools for debugging.

When problems arise that cannot be handled by the existing tools, new ones
are built. A good example is Celtics, a “fast breaks” package, which counts
selected statement executions without disrupting running processes as full-
fledged breakpoints would. This tool, created as a nonprivileged client of the
Abstract Machine, enables the debugging of time-critical components.

Another productivity issue is automating the construction of programs. We get
along without a syntax-directed editor, yet manage to achieve many of its features:
correct syntax through templates, consistent typography and style through tem-
plates and formatting heuristics, and convenient access to procedure arguments
and record fields through abbreviation expansions. Many of these facilities are
built on top of the Tioga editor, the Abstract Machine, version maps, and the
DF package.

11.1.5 The Imager and its Applications, Especially Tioga. Graphics in Cedar is
ubiquitous because the Imager handles all display output for the window package
and text editor, as well as graphical illustrator programs. Applications can now
reliably capture any black-and-white or color image in a device-independent
representation, and either display it on the terminal or print it on any of a range
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 481

of experimental Interpress printers. Although the imaging model of the Imager
is stressed by some interactive applications, notably due to the lack of trans-
parent colors, the overall impact of an efficient, functional, and ubiquitous
graphics package has enhanced our ability to experiment with graphical
systems and data.

The impact of sharing the Tioga user interface throughout the Cedar system
has had significant productivity and integration effects. Users can apply the
editing operations to almost any text on the display because applications can
easily and efficiently share access to the Tioga editor. Knowledgeable users
customize input action events to accelerate common actions or to satisfy personal
preferences.

11.1.6 Facilities for Managing Large Sizes in Cedar. Achieving improved pro-
gram quality and complete integration of components requires a commitment to
handling large sizes gracefully. The Cedar virtual memory is large. Processes are
lightweight and many can run concurrently. The file system permits very large
files and directories. Furthermore, data structures within an integrated system
may become large. The Cedar system contains an interface design methodology
using objects that permits several alternative implementations of the same
interface. Thus, for example, a small Tioga document may be composed of in-
memory ROPE fragments, while a large document might be composed of file-based
RopeFile ROPE fragments. Once created, Tioga does not distinguish between these
implementations, but rather manipulates them identically through the single
Rope interface. The alternative implementations of a common abstraction permit
Cedar to evolve gracefully to accommodate very large problems.

The version and release management methods have made it possible to develop
and maintain a system as large and diverse as Cedar. Through DF files and the
DF Package, it is possible to maintain control over the organization of the overall
system into components, and over the transport of consistent versions of their
files to and from the local working directories where the components are devel-
oped or used. The motivation for DF files was to regain some of the file
management capabilities that were lost in the evolution from time-sharing
systems to personal workstations in a distributed computing environment. In
fact, the DF Package has provided us with a number of automatic and semi-
automatic ways to maintain and verify consistent versions that go beyond what
can be achieved through conventional file directory facilities.

11.2 Shortfalls

Cedar has its share of inadequacies. Some have been addressed and repaired,
such as redesigning the virtual memory and file systems to take better advantage
of the machine’s ample resources. The remainder fall into three categories: things
that need fixing, things that are incomplete, and things that would need to be
added before we could claim that Cedar is a fully satisfactory environment.

The Cedar language has inherited from its Mesa ancestors an orientation
towards a 16-bit word size and even a 16-bit address space for critical run-time
objects such as procedure activation records and global frames. These limitations
artificially reduce the number of modules that can be loaded and the number of

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

482 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

processes that can operate concurrently. Cedar has inadequate performance on
Dandelion hardware because its memory management facilities were tuned for
the larger and faster Dorado.

The Cedar directory package, FS, which manages file names in a way that
extends the file system to include the entire Xerox Research Internetwork, does
not attempt to make the existence of the network and the local file cache
transparent to the programmer or user. Manual steps are still required to move
files from the local disk to their permanent storage locations.

Cedar’s network communications components have not yet reached the level
of maturity of most of the other low-level Cedar packages, nor do they support
all of the communication protocols that are in use within Xerox. A much cleaner
implementation is nearing completion.

The Abstract Machine interface provides complete access to Cedar types and
values at run-time in a consistent fashion. Unfortunately, the interface is com-
plicated and clumsy to use, despite many attempts to simplify it. Further research
is required to allow easier program access to this information.

Cedar viewers provide considerable assistance with the control and presenta-
tion of information, but they are showing their age. The state of the art of display
management facilities has advanced considerably since the Viewers package was
designed. There is an effort underway to produce a replacement that will support
more ambitious viewing paradigms while improving performance and program-
ming flexibility.

Many of the applications being developed in Cedar are information manage-
ment applications. The databases and tile systems that are needed to support
these applications are not yet adequate to the task, although there is active
research in this area.

The Cedar language does not support abstract data type concepts as well as it
should. Syntactic and semantic support for opaque types, object-style program-
ming, and polymorphic data types are incomplete or absent from the current
language.

The system also lacks a complete, efficient, interactive interpreter for the
Cedar language. The original intent was to modify the compiler for interactive
use, and we still believe that is the right approach. There is also a growing
consensus that command interpreters such as the one in the Command Tool
should be more fully integrated with the Cedar language interpreter, and that
there should be support for specialized user-defined languages.

Cedar runs on proprietary hardware, is expressed in a proprietary language,
provides its own proprietary operating system and file format, and communicates
using proprietary protocols. While there are good reasons for each of these
choices, many of which have been argued in this paper, insufficient attention
has been paid to developing methods in Cedar for interacting with other
environments, languages, and systems. Several remedies to these difficulties are
being pursued.

11.3 Summary

The Cedar programming environment is heavily used within the Xerox research
community to build experimental software systems. Cedar programmers, both as
systems researchers and as beneficiaries of its facilities, are productive in a robust
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 483

and integrated environment. The current version of Cedar (Cedar 6.0) occupies
more than 17 million bytes of disk storage and contains over 1,500 source files,
more than 400,000 lines of source code, approximately 150 DF files, and over 100
configurations. Very rough productivity measurements of the Cedar Life Support
layer indicate that over 50 work-years, about 6,000 lines of code per year were
produced. Similar measurements for the CedarChest applications software indi-
cate 10,000 lines of code per year over 50 work-years, and for the on-going VLSI
design tools project indicate 11,000 lines of code per year over 18 work-years.
Some individuals have sustained productive output rates about twice as high.
Although Cedar continues to grow, the management tools appear to be keeping
pace.

We have examined the Cedar system from its goals, benefits, methodologies,
and the components that make Cedar work. This structural overview of Cedar
has revealed how it is used for building experimental systems, how it improves
programmer productivity, and how it improves the quality of programs. Even
with its identified shortfalls, Cedar has reached a level of maturity where it
should be valuable in its present form for some time.

APPENDIX A. GLOSSARY OF CEDAR TERMINOLOGY

Abstract Machine

Alto

Applications layer

ATOM

attached files
automatic storage management

BCPL

binder
boot file
bringover

call-back procedure

Cedar Machine

checkpoint

client

closed operating system

program debugging and analysis facilities
(Sect. 6.4)
a small personal computer designed at PARC
in 1973 (Sects. 1.1, 3.1)
fourth layer of Cedar: packages and tools
(Sect. 7)
uniquely identified objects with properties
(Sect. 2.7)
symbolic links to remote files (Sect. 5.6)
automatic storage deallocation through gar-
bage collection, supported by the Cedar safe
language subset (Sect. 5.4)
a typeless system programming language
(Sects. 1.1, 3.1)
a linkage editor (Sect. 6.8)
a binary form of the Nucleus (Sect. 5.10)
copying DF file and attaching local file
names to remote files (Sect. 6.11)
a procedure passed as an argument (Sects.
3.3, 8.1)
first layer of Cedar: hardware, microcode,
and primitives (Sect. 4)
a bootable snapshot of a running system
(Sects. 5.10, 8.4)
a program (rather than a person) that uses
another program or system (Sect. 2.1)
a system with hardware memory protection
for separate address spaces (Sects. 3.1, 10.3)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

484 . D. C. Swinehart, P. T. Zellweger, FL J. Beach, and R. B. Hagmann

collectible storage

configuration

conservative scan

Dandelion

dangling reference

dependency

DF Package

DF file

delayed type binding

Dorado
export

finalization

FS
full boot

garbage collection

generic reference
germ

global frame

Imager

immutable value

implementation module

import

incremental garbage collector

interface module

Interlisp

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

that part of memory where objects may be
allocated and garbage collected (Sects. 2.5,
5.4, 7.1)
control information for the binder: result of
a binding (Sects. 2.1, 9.2)
an optimizaton used in garbage collection
(Sect. 5.4)
the Xerox 1108 workstation (Sects. 1.1, 4.1,
11.2)
an invalid pointer to an object after the ob-
ject has been deallocated (Sect. 2.5)
package A depends on package B if A uses
any interfaces from B (Sect. 2.1)
software to manipulate packages managed by
DF files (Sect. 6.11)
a file that fully describes the files that make
up a package (Sect. 6.11)
manipulation of typeless objects at run-time
(Sect. 2.6)
the Xerox 1132 workstation (Sects. 1.1, 4.1)
implementors of a procedure for an interface
are said to export the procedure (Sect. 2.1)
actions that occur when an object is no longer
accessible to clients (Sect. 5.4)
the Cedar file system (Sect. 5.6)
a boot of Cedar from its components (Sect.
5.10)
freeing of collectible objects that are no
longer needed (Sect. 5.4)
see REF ANY

a small bootstrap program for initializing
Cedar (Sect. 5.10)
run-time data associated with an implemen-
tation module (Sects. 2.1, 6.4)
device-independent graphics package (Sects.
6.5, 9.1)
a value that cannot be changed after it has
been created (Sects. 2, 2.7, 8.5)
a program module that contains data decla-
rations and executable statements (Sect. 2.1)
clients of an interface are said to import the
interface (Sect. 2.1)
a garbage collector that does its job concur-
rently with other system activities (Sect. 5.4)
a program module that describes the public
part of a data abstraction (Sect. 2.1)
a dialect of Lisp with a large integrated
library of facilities (Sects. 3.4, 10.1)

IO

Life Support layer

lightweight process

LIST

load state

local debugging

Mesa

Mesa/Cedar

monitor

NARROW

Nucleus

object-style programming

open operating system

Pilot

polymorphic language

procedural object

procedure variable

programs as data

property list

registered procedure

reference (REF)

REF ANY

reference count

A Structural View of the Cedar Programming Environment l 485

the input/output package: implements
STREAM (SeCt. 5.7)
third layer of Cedar: basic program develop-
ment facilities (Sect. 6)
a process with a very fast context switch and
no responsibility for memory management
(Sect. 2.2)
variable-length linked list (Sect. 2.7)
symbol table for exported items in a running
Cedar system (Sect. 5.10)
debugging in the same address space as the
program being debugged (Sects. 5.10, 8.4)
a Pascal-like, strongly typed, system pro-
gramming language (Sects. 1.1, 2, 3.3)
term used throughout this paper to refer to
features common to the Mesa and Cedar
languages
a language method to provide mutually ex-
clusive access to shared data (Sect. 2.2)
a type validation function for generic refer-
ences (Sect. 2.6)
second layer of Cedar: operating system ker-
nel (Sect. 5)
a philosophy of how to use abstract data
types (Sect. 2.4)
collection of program modules for an oper-
ating system (Sect. 3.1)
an operating system based on Mesa (Sects.
1.1, 5.1)
allows values of type TYPE to be passed as
parameters and stored in variables (Sect. 2.6)
a record that includes data and procedure
variables (Sects. 2.4, 8.1)
procedure descriptor; may be passed as a
parameter and stored in a variable (Sects.
2.3, 8.1)
dynamic construction and execution of pro-
grams (Sect. 6.4)
a list of key-value pairs, where a key is usu-
ally an ATOM (Sect. 6.9)
a call-back procedure that is retained for
later invocation (Sect. 3.3)
a typed, reference-counted pointer to a col-
lectible object (Sect. 2.5)
an untyped reference to any collectible object
(Sects. 2.6, 6.1, 6.4, 8.1)
the count of REF’S pointing to an object (Sect.
2.6)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

486 l D. C. Swinehart, P. T. Zellweger, FL J. Beach, and FL B. Hagmann

remote file
retained execution frame

rollback

ROPE

RPC
safe subset

server

service

Smalltalk

STREAM

storage leak

storeback

teledebugging

Tioga

TIP tables

type discrimination
user

user profile

viewer

VM
Walnut

world

world-swap debugging

XDE

a file stored on a file server (Sect. 5.6)
activation record retained beyond the life-
time of the corresponding procedure invoca-
tion: sometimes known as a closure (Sects.
2.8, 3.3, 8.1)
restart of a Cedar world saved in a check-
point (Sect. 5.10)
immutable garbage-collected sequence of
characters (Sect. 2.7)
remote procedure call (Sect. 5.8)
Cedar language subset that always maintains
the storage invariants required for automatic
storage management (Sect. 2.5)
a computer dedicated to performing service
functions (Sects. 4.1, 5.4, 5.8)
a program or system that responds to clients
(Sect. 5.8)
an integrated object-oriented programming
system (Sects. 3.4, 10.2)
a data abstraction describing a sequence of
bytes (Sects. 5.7, 8.1)
failure to deallocate unreferenced allocated
objects (Sects. 2.5, 3.4, 5.4)
copying updated files described by a DF file
onto a file server (Sect. 6.11)
debugging one world from another using two
machines and the Ethernet (Sect. 5.10)
a galley editor for formatted documents
(Sect. 6.7)
specification for interpreting terminal input
(Sect. 6.3)
discovering the type of a REF ANY (Sect. 2.6)
a person (rather than a program) who uses
some program or system
a collection of parameters set by the user
(Sect. 6.2)
a rectangular region of the display; window
(Sect. 6.6)
virtual memory package (Sect. 5.3)
an electronic mail database system (Sect.
7.3)
an instance of a system, including its virtual
memory and processes (Sect. 6.4)
debugging one world from another using the
same machine (Sect. 5.10)
the programming environment for Mesa
(Sects. 1.1, 6.11)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment l 487

APPENDIX B. CEDAR RELEASE HISTORY

Release

Cedarl.?
Cedar2.0
Cedar2.1
Cedar2.2
Cedar2.3
Cedar2.4
Cedar2.5

Cedar26
Cedar3.0

Cedar3.1
Cedar3.2

Cedar3.3
Cedar3.4

Cedar3.5

Cedar4.0

Cedar4.1

Cedar4.2

Cedar4.3
Cedar4.4
Cedar5.0

Cedar5.1
Cedar5.2

Cedar6.0

- Date

Aug. 1981
Oct. 1981
Nov. 1981
Dec. 1981
Jan. 1982
Feb. 1982
Mar. 1982

Apr. 1982
May 1982

May 1982
Jul. 1982

Aug. 1982
Oct. 1982

Dec. 1982

Mar. 1983

May 1983

Jun. 1983

-
Dec. 1983

Mar. 1984
Jun. 1984

Jun. 1985

Major features

First release of Cedar to clients
First automatic release of Cedar

Safe language introduced

Viewers & Tioga introduced
User Executive (earlier version of Command Tool),

DF tools
maintenance release
no Tajo dependencies, Database, Cedar interim file

system, Press printing
maintenance release
Safe interfaces for Nucleus, Color display support,

Remote procedure call, Viewers and Tioga work
well

maintenance release
Local debugger, Walnut electronic mail database,

initial Dandelion support, Cedar kernel language
Major maintenance release, Abstract Machine intro-

duced
No Copilot dependencies, Abstract Machine, world-

swap debugging, performance improvements, Al-
pine transaction file server introduced

Command Tool, Interpreter Tool, maintenance
release

RopeFile, Squirrel database browsing tool, mainte-
nance release

maintenance release
maintenance release
Cedar off Pilot base, FS, VM, Safe Storage, IO, four

major layers: Machine, Nucleus, Life Support, Ap-
plications

Dandelion support, specific release directories
performance improved, >8 megabyte memory sup-

port, many new applications
Interface housecleaning, Imager, Interpress, logical

file servers (246 application components in
CedarChest)

Number of

22
24
26
32
40

48
50

62
63

79
78

87

95

146
146
146

153

104

ACKNOWLEDGMENTS
Cedar has been a massive undertaking, so far consuming well over fifty person-
years of design and implementation effort. There is not space to name them all,
but we felt it important to acknowledge the major contributors, and even that is
a long list! The following people were primarily responsible for the conceptual
development, implementation, and project management of Cedar: Russ Atkinson,
Andrew Birrell, Mark Brown, Peter Deutsch, Bob Hagmann, Butler Lampson,
Roy Levin, Scott McGregor, Jim Morris, Hal Murray, Bill Paxton, Michael Plass,
Paul Rovner, Ed Satterthwaite, Eric Schmidt, Mike Schroeder, Larry Stewart,
Ed Taft, Bob Taylor, Warren Teitelman, John Warnock, and Doug Wyatt. More

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

488 . D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann

than fifty people have made significant contributions, either officially or as
creative users. To those contributors who were not mentioned explicitly, please
accept our apologies and appreciation.

We would also like to thank those who helped us with the preparation of this
paper: Jim Donahue for permitting us to incorporate ideas from his integration
paper [16]; Peter Kessler and Bertrand Serlet for their thorough readings; Ed
Satterthwaite for comments on the language section; Luis Felipe Cabrera, Pave1
Curtis, Carl Hauser, Roy Levin, Michael Plass, Paul Rovner, and Larry Stewart
for reading early versions; Jack Kent and John Beatty for reading the paper with
the view of a neophyte Cedar user. The referees’ comments and questions also
helped to clarify our presentation.

REFERENCES

1. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Znf. 1,3 (1972), 173-189.

2. BEACH, R. Experience with the Cedar programming environment for computer graphics re-
search. Gr. Interface 84.

3. BIRRELL, A., LEVIN, R., NEEDHAM, R., AND SCHROEDER, M. Grapevine: An exercise in
distributed computing. Commun. ACM 25, 4 (Apr. 1982).

4. BIRRELL, A., AND NELSON, B. Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984).

5. BOBROW, D., BURCHFIEL, J., MURPHY, D., AND TOMLINSON, R. TENEX: A paged time-sharing
system for the PDP-10. Commun. ACM 15, 3 (Mar. 1972), 135-143.

6. Boccs, D., SHOCH, J., TAFT, E., AND METCALFE, R. Pup: An internetwork architecture. IEEE
Trans. Commun. 28,4 (Apr. 1980), 612-624.

7. BOURNE, S. The UNIX shell. Bell Syst. Tech. J. 57, 6, Pt. 2 (Jul.-Aug. 1978), 1971-1990.
8. BRINCH HANSEN, P. Operating Systems Prirzciples. Prentice-Hall, Englewood Cliffs, N.J.,

Jul. 1973.
9. BROWN, M., KOLLING, K., AND TAFT, E. The Alpine file system. Xerox PARC Rep. CSL-84-

4, 1984.
10. CARGILL, T. Debugging C programs with the Blit. AT&T Bell Lab. Tech. J. 63,8, Pt. 2 (1984),

1633-1648.
11. CATTELL, R. G. G. Design and implementation of a relationship-entity-datum data model.

Xerox PARC Rep. CSL-83-4, 1983.
12. CLARK, D. The structuring of systems using upcalls. In Proceedings of the 10th Symposium on

Operation Systems Principles (Dec. 1985), 171-180.
13. DELISLE, N., MENICOSY, D., AND SCHWARTZ, M. Viewing a programming environment as a

single tool. In Proceedings of the ACM SZGSOFTISZGPLAN Software Engineering Symposium
on Practical Software Development Environments (Apr. 1984), 49-56.

14. DEUTSCH, P., AND BOBROW, D. An efficient, incremental, automatic garbage collector.
Commun. ACM 29, 7 (Jul. 1976).

15. DEUTSCH, P., AND TAFT, E. Requirements for an experimental programming environment.
Xerox PARC Rep. CSL-80-10,198O.

16. DONAHUE, J. Integration mechanisms in Cedar. In Proceedings of the ACM SZGPLAN 85
Symposium on Language Issues in Programming Environments (Seattle, Wash., Jun. 1985).
SZGPLAN Not. 20, 7 (Jul. 1985).

17. DONAHUE, J., AND WIDOM. J. Whiteboards: A graphical database tool. Xerox PARC Rep.
CSL-85-4,1985.

18. FELDMAN, S. Make-a program for maintaining computer programs. In UNIX Programmer’s
Manual, Supplementary Documents, 4.2 Berkeley Software Distribution, Virtual VAX-11 Version.
Computer Science Div., Univ. of California, Berkeley, 1984.

19. GESCHKE, C., MORRIS, J., AND SATTERTHWAITE, E. Early experience with Mesa. Commun.
ACM 20,8 (Aug. 1977).

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

A Structural View of the Cedar Programming Environment 489

20. GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implementation, McGraw-
Hill, New York, 1983.

21. GUIBAS, L., AND SEDGEWICK, R. A dichromatic framework for balanced trees. In Proceedings
of the 19th Annual Symposium on Foundations of Computer Science, (Ann Arbor. Mich., Oct.
1978).

22. HAGMANN, R. Process server: Sharing processing power in a workstation environment. In
Proceedings of the 6th International Conference on Distributed Computing Systems (Boston, May
1986).

23. IEEE. A proposed standard for binary floating-point arithmetic. Computer 14, 3 (Mar. 1981),
51-62.

24. HOARE, C. A. R. Monitors: An operating system structuring concept. Commun. ACM 17, 10
(Oct. 1974), 549-557.

25. JOHNSSON, R., AND WICK, J. An overview of the Mesa processor architecture. In Proceedings
of Symposium on Architectural Support for Programming Languages and Operation Systems (Apr.
1982). SIGPLAN Not. 17,4 (Mar. 1982).

26. LAMPSON, B., AND PIER, K.: LAMPSON, B., MCDANIEL, G., AND ORNSTEIN, S.: CLARK, D.,
LAMPSON, B., AND PIER, K. The Dorado: A high performance personal computer, three papers.
Xerox PARC Rep. CSL-81-1,198l.

27. LAMPSON, B., AND REDELL, D. Experience with processes and monitors in Mesa. Commun.
ACM 23, 2 (Feb. 1980), 105-117.

28. LAMPSON, B., AND SCHMIDT, E. Organizing software in a distributed environment. In Proceed-
ings of the SIGPLAN 83 Symposium on Programming Language Issues in Software Systems (San
Francisco, Jun. 1983).

29. LAMPSON, B., AND SPROULL, R. An open system for a single-user machine. In Proceedings of

the 7th Symposium on Operating Systems Principles (Dec. 1979), 98-105.
30. LAUER, H., AND NEEDHAM, R. On the duality of operating system structures. In Proceedings of

the 2nd International Symposium on Operating Systems (Rocquencourt, France, Oct. 1978), IRIA.
Reprinted in Oper. Syst. Reu. 13,2 (Apr. 1979), 3-19.

31. LAUER, H., AND SATTERTHWAITE, E. The impact of Mesa on system design. In Proceedings of
the 4th International Conference on Software Engineering (Munich, Sept. 1979).

32. MCCREIGHT, E. The Dragon computer system: An early overview. In Proceedings of the NATO
Advanced Study Institute on Microarchitecture of VLSI Computers (Urbino, Italy, Jul. 1984).

33. MCDANIEL, G. The Mesa Spy: An interactive tool for performance debugging. In Proceedings
of the 1982 ACM SZGMETRICS Conference on Measurement and Modeling of Computer Systems
(Aug. 1982).

34. METCALFE, R., AND BOGGS, D.: CRANE, R., AND TAFT, E.: SHOCH, J., AND HUPP. J. The
Ethernet local network: Three reports. Xerox PARC Rep. CSL-80-2,198O.

35. MITCHELL, J. Mesa language manual. Xerox PARC Rep. CSL-79-3,1979.
36. NBS. Data Encryption Standard. FIPS publ. 46, National Bureau of Standards, U.S. Dept. of

Commerce, Washington, D.C., 1977.
37. NEWMAN, W., AND SPROULL, R. Principles of Interactive Computer Graphics. 2nd Ed., McGraw-

Hill, New York, 1979.
38. OWICKI, S. Making the world safe for garbage collection. POPL 8 (Jan. 1981).
39. PERLIS, A. Another view of software. In Proceedings of the 8th International Symposium on

Software Engineering (Imperial College, London, Aug. 1985).
40. REDELL, D., DALAL, Y., HORSLEY, T., LAUER, H., LYNCH, W., MCJONES, P., MURRAY, H., AND

PURCELL, S. Pilot: An operating system for a personal computer. Commun. ACM 23, 2 (Feb.
1980).

41. RITCHIE, D., AND THOMPSON, K. The UNIX time-sharing system. Bell Syst. Tech. J. 57, 6,
Pt. 2 (Jul.-Aug. 1978), 1905-1930.

42. ROVNER, P. On adding garbage collection and runtime types to a strongly-typed, statically-
checked concurrent language. Xerox PARC Rep. CSL-84-7, 1985.

43. SCHMIDT, E. Controlling large software development in a distributed environment. Ph.D. thesis.
Univ. of California, Berkeley, 1982; also available as Xerox PARC Report CSL-82-7, 1982.

44. SCHROEDER, M., GIFFORD, D., AND NEEDHAM, R. A caching file system for a programmer’s
workstation. In Proceedings of the 10th Symposium on Operating Systems Principles (Dec. 1985),
25-34.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

490 l D. C. Swinehart, P. T. Zellweger, R. J. Beach, and FL B. Hagmann

45. SERLET, B. Object-oriented programming in Cedar. In Proceedings of Journees Langages Ori-
entes Objet (Paris, Jan. 1986). Also appears in Actes des Journees Iangages Orientes Objet. Bigre
Globule, 64-68.

46. STEWART, L., SWINEHART, D., AND ORNSTEIN, S. Adding voice to an office computer network.
In Proceedings of the GlobeCorn 83, IEEE Communications Society Conference (Nov. 1983).

47. SWEET, R. The Mesa programming environment. In Proceedings of the ACM SIGPLAN 85
Symposium on Language Issues in Programming Environments (Jun. 1985). SIGPLAN Not. 20,
7 (Jul. 1985).

48. SWEET, R., AND SANDMAN, J., JR. Empirical analysis of the Mesa instruction set. In Proceedings
of the Symposium on Architectural Support for Programming Languages and Operating Systems.
(Apr. 1982). SIGPLAN Not. 17,4 (Mar. 1982).

49. SWINEHART, D., ZELLWEGER, P., AND HAGMANN, R. The structure of Cedar. In Proceedings of
the ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments (Jun.
1985). SIGPLAN Not. 20, 7 (Jul. 1985).

50. TEITELBAUM, T., AND REPS., T. The Cornell Program Synthesizer: A syntax-directed program-
ming environment. Commun. ACM 24,9 (Sept. 1981), 563-573.

51. TEITELMAN, W. A tour through Cedar. IEEE Softw. (Apr. 1984).
52. TEITELMAN, W. The Cedar programming environment: A midterm report and examination.

Xerox PARC Rep. CSL-83-11,1984.
53. TEITELMAN, W., AND MASINTER, L. The Interlisp programming environment. Computer 14,4

(Apr. 1981), 25-34.
54. THACKER, C., MCCREIGHT, E., LAMPSON, B., SPROULL, R., AND BOGGS, D. Alto: A personal

computer. Xerox PARC Rep. CSL-79-11,1979.
55. WALLACE, D. Tajo functional specification, version 6.0. Xerox internal document, Oct. 1980.
56. WARNOCK, J., AND WYA~, D. A device-independent graphics imaging model for use with raster

devices. Comput. Gr. Z6,3 (Jul. 1982), 313-319.
57. Xerox Corp. Interlisp Reference Manual. Oct. 1983.
58. Xerox Corp. Interpress Electronic Printing Standard, Version 2.1. Xerox System Integration

Standard XSIS 048404, Apr. 1984.
59. ZIMMERMANN, H. OS1 reference model-the IS0 model of architecture for open systems

interconnection. IEEE Trans. Commun. 28, 4 (Apr. 1980), 425-432.

Received September 1985; revised March and May 1986; accepted May 1986

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

