
The Structure of Cedar

Daniel C. Swinehart, Polle T. Zellweger, and Robert B. Hagmann
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

I. Introduction

This paper presents an overview of the Cedar
programming environment, focusing primarily on its overall
structure: the major components of Cedar and the way they
are organized. Cedar supports the development of programs
written in a single programming language, also called Cedar.
We will emphasize the extent to which the Cedar language,
with runtime support, has influenced the organization,
comprehensibility, and stability of Cedar.

Produced in the Computer Science Laboratory (CSL)
at the Xerox Palo Alto Research Center, Cedar is a research
environment supporting the development and use of
experimental programs, emphasizing office information and
personal information management applications. Although
it was clear that some unsolved problems would be
addressed, the intent was to combine well-understood
methods and technologies to exploit a new generation of
high-performance personal computers, including the Xerox
1132 (Dorado) and Xerox 1108 (Dandelion).

The primary design objective of Cedar was to improve
the productivity of experienced programmers in the
production of experimental programs. An early require-
ments document describes the specific capabilities needed
to achieve this objective [12]. Several of the more important
requirements concerning the system's structure included:

• Concurrency. Although Cedar is a single-user system,
it must nonetheless support the execution of
concurrent applications. For instance, compilation,
text editing, status displays, and background file
updates should be able to proceed simultaneously.

• Industrial strength. The system must include a large
virtual address space, efficient and powerful facilities
for the automatic management of storage, and a rich
set of program development tools (editors, compilers,
symbolic debuggers, version management control).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-165-2/85/006/0230 $00.75

These facilities must be achieved without major
performance penalties.

• Integration. A prerequisite for the concurrent
operation of independent applications is coexistence:
the applications must be able to share the lowest-level
resources such as memory, files, and the display screen
without disturbing each other. But the structure of
Cedar should also foster the sharing of higher-level
components where possible, including cooperation
among applications. (For instance, events to be
remembered by an automated appointments calendar
might be entered from event announcements received
by electronic mail.) Finally, we wanted our user
interface experiments to converge to a collection of
widely-applicable user interface paradigms, presenting
an integrated and consistent user view. A more
detailed discussion of Cedar's integration mechanisms
from a program developer's viewpoint appears in a
companion paper in this proceedings [13].

This paper has two major parts. Section 2 provides a
comprehensive (although not exhaustive) overview of the
Cedar system, including the Cedar language and the
system's components. Based on this description, Section 3
discusses the overall structure of the system: its underlying
philosophy, the design decisions that helped create it, and
its points of similarity and difference from several other
popular programming environments. Finally, we present
some examples of how the structure of Cedar facilitates
program development.

2. Cedar Overview

The organization of Cedar has benefited from the
lessons of several rounds of implementation. Figure 1
summarizes its overall structure, as a set of major divisions
each comprising a set of layered components. Each
component is built upon abstractions supplied by
components at lower layers in the structure. The figure was
designed to express the orderings and dependencies among
the components; block areas imply neither the relative
importance nor the relative sizes of the components they
represent.

The four major Cedar divisions are: the Cedar
Machine-hardware, microcode, and primitives needed to

230

execute the language; the Nucleus- the
operating system kernel; Life Support- the basic
facilities needed for program development; and
Applications-packages and tools written by and
for the Cedar user community. Underlying the
entire system are the facilities of the Cedar
language. This section begins with a description
of the important features of the Cedar language.
It then follows the organization of Figure 1 (from
bottom to top) to present an overview of the
four Cedar divisions, emphasizing the lower
three.

2.1 The Cedar Language

The Cedar language, a descendant of Mesa
[14, 23, 27], is a strongly-typed systems
implementation language in the Pascal family.
Mesa includes facilities for modularization and
separate compilation (with full type-checking
across module boundaries), lightweight processes
and monitors, exception handling, and first-class
procedure variables. Cedar extensions retain full
type-checking while providing automatic storage
management and facilities for delaying the
binding of type information until runtime. In
addition, Cedar provides immutable strings, as
well as Lisp-like lists and atoms. We begin with
a reminder of some important characteristics that
Cedar shares with Mesa, and then we discuss
the facilities unique to Cedar.

Cedar features inherited from Mesa

Appfications
level

Life Support
level

Etherphone SolidViews I ;elephone supporl
3-d mensional ustrator

Walnut Whiteboards
electronic marl electronic notebook ChipNDale [TSetter

Cypress] IC desig i tools I document formatter
relational database

Alpine Griffin
transaction-based file service 2-dimens onal ustrator

Command Tool

Tioga
tree-stn!r~!red text editor _~,~_.. :=-~.a~g --

~ e Viewers Binder

r window manager lmager Compiler

Nucleus
level

A Cedar program consists of a set of
separately-compiled modules. There are two
kinds of modules: interface and program
modules. Interface modules describe a set of
types, procedures, and variables that together
specify a related set of functions or a data
abstraction. Interface modules are compiled into
symbol tables that are used to enforce inter-module type
checking, both at compile time and when modules are
bound together to form a program. Program modules
contain actual data declarations and executable statements.
A program module that supplies the code for a public
procedure or variable P exports an instance of P; this module
is said to implement P. Other program modules that access
P must import an interface describing P; these modules are
clients of that interface.

The configuration is another concept inherited from
Mesa; it is a separate specification of how a set of modules
should be combined to form a program. The import list of
each component in a configuration must be satisfied by the
interfaces exported from other included components, or by
a list of interfaces imported by the configuration itself. A
configuration can be constructed to export (make available
outside the configuration) all or only some of the interfaces
that are exported by its components.

Cedar
Machine

DF Package Abstract TIP Useful
version control Machine User Profile lnscript Packages

terminal input

Loader

Communications
FS

file directory package

Checkpoint/
Rollback

IO

File Terminal

Safe Storage

Virtual Memory

Disk management and abstract device drivers

Runtime Support
support for procedure linkage, procefa switching, and runtime error handling

microcode
Mesa stack architecture with added support for automatic storage manalsement

D-machine large local memory mouse bitmapped Ethernet
processor up to .]ZM 16-bit words d sp ay access

Figure 1. The Structure of Cedar.

Cedar Extensions

The extensions that distinguish the Cedar language
from Mesa provide automatic deallocation of dynamic
storage (supported by reference counting and a garbage
collector), delayed type binding via generic pointers, and a
runtime type mechanism.

Automatic storage deallocation. Cedar's storage management
extensions provide safe storage. These changes eliminate
the following two kinds of problems with Mesa's explicitly
allocated and deallocated pointers to dynamic storage:

• First, the programmer must deallocate a dynamic
object at precisely the right time to avoid dangling
references, in which an (invalid) pointer to an object
remains after the object has been deallocated, and
storage leaks, in which an object becomes inaccessible
without being deallocated for re-use.

• Second, invalid pointers can result from failure to
initialize a pointer, incorrect pointer arithmetic, or

231

explicit violations of the type system through improper
use of type coercions (LOOPHOLES). Using an invalid
pointer to modify memory can destroy program or
system data structures in ways that are difficult to
track down.

Automatic storage deaUocation solves the first problem, thus
making the construction of experimental programs
significantly more convenient.

The safe subset of the Cedar language, which includes
the extensions described here and a carefully-selected subset
of the original Mesa language, addresses the second
problem. It has been formally demonstrated that even
erroneous programs written in the safe subset maintain a
set of invariants that ensure the integrity of the memory
allocation structures, other system data, and all code [29].
The unsafe features that remain outside the safe subset must
occasionally be used, most often in the lower levels of the
system. The additional syntax required to use them provides
ample warning that the programmer is responsible for
maintaining the invariants.

References, a new class of pointer data types analogous
to Pascal's or Mesa's POINTER types, provide the means for
safe program access to collectible storage. A reference
variable, called a REF, holds the address of a collectible
object of a specified data type. The system automatically
initializes REFs to NIL. The operator NEW allocates a new
collectible object of a specified type, with optional
initialization, and returns a reference to the new objec t.
References may be freely replicated and discarded, by
assignment or by procedure parameter binding; the system
releases a region of collectible storage only when no valid
references to it remain. For example, the declarations

Node: TYPE = RECORD [leftSon, rightSon: REF Node,
contents: CHAR];

root: REF Node;

declare a new variable root to hold nodes of a binary tree
of characters, while the statement

root ~- NEW[Node 4- [NIL, NIL, 'A]];

allocates a new collectible object of type Node, initializes
its value to the leaf "A", and stores a reference to the new
object in root.

Because unsafe constructs are sometimes needed to
write low-level system code, the Cedar language has not
eliminated them. However, their use is only permitted
within clearly marked procedures or blocks. Unsafe
language constructs include the unsafe type escape
mechanism LOOPHOLE, the original Mesa POINTERs, and
address arithmetic. Furthermore, assignments to
REF-containing variant records are not permitted to change
the tag (choice of variant) of the record. Because the system
deallocates procedure activation records when the procedure
returns (i.e., there are no retained frames), nested
PROCEDURE values cannot be assigned to collectible storage
or to a module's global storage. When necessary, the
compiler also generates code to check for other conditions
that could cause illegal memory references, including
out-of-range assignments to numeric variables and array
index bounds violations.

The Cedar compiler verifies the programmer's

adherence to the safe subset restrictions. Additional Cedar
syntax controls the level of safety checking. Program blocks
are specified by the programmer to be one of CHECKED,
TRUSTED, and UNCHECKED. Within CHECKED blocks (the
system default) only constructs in the safe subset are
permitted; as a result, code in a CHECKED block can never
be the direct cause of a memory smash. Use of unsafe
features is allowed in TRUSTED and UNCHECKED blocks.
By labelling a block TRUSTED, a programmer asserts that
all uses of unsafe features within that block maintain the
invariants; UNCHECKED blocks carry no such assertions.
Further, a programmer specifies that a Cedar procedure is
either SAFE or an UNSAFE; the body of a SAFE procedure
must be either CHECKED or TRUSTED. CHECKED program
blocks may call only SAFE procedures.

Delayed type binding. Compile-time type specification,
otherwise known as strong typing, can catch many common
programming errors during compilation and also allows the
compiler to produce efficient code. However, delaying type
binding until runtime can provide important program
flexibility, particularly during program development. For
example, programming tools such as debuggers must be
able to manipulate objects of any type. The original Mesa
language offers very limited capabilities for delaying type
binding: the choice among predeclared alternatives of a
variant record may be made at runtime, and the lengths of
sequences and descriptor-based strings and arrays may be
specified at runtime. Additional type flexibility in Mesa
can only be achieved through use of the unsafe type escape
mechanism LOOPHOLE. Cedar extensions for delayed type
binding include a generic reference type (REF ANY) and a
runtime type system.

A variable of type REF ANY can take on, through
assignment or parameter passing, a value of type REF T for
any type T. However, the actual type of the referenced
object must be verified at runtime before the object can be
examined or modified. Two runtime functions and some
new syntax allow the use of REF ANY variables while
retaining full compile-time type checking.

The boolean form ISTYPE[X, T] is defined to return
TRUE if and only if the actual type of the object x is equal
to the type T.

The type transfer form NARROW[x, T] has type T; it is
defined to return x if and only if ISTYPE[x, T] = TRUE;
otherwise it raises a runtime type error. The type T can be
omitted if it is unambiguously determined by context.

A special form of SELECT statement (similar to Pascal's
case statement) has been defined to ease the use of REF
ANY variables. The statement

WITH v SELECT FROM
vl: T1 => {(stmtlistt>};
v2:T2 = > {(stmtlist2>};

vn: Tn => {(stmtlistn>};
ENDCASE => { (stmtlistn÷ t> } ; -- assumes only that v has

type REF A N Y

is interpreted as if each arm were written as

IF [STYPE[v, Td THEN {vi: Ti = NARROW[v]; (stratlisti>}.

(Note: the braces "{}" are equivalent to BEGIN - END

232

brackets, and the ~'=" in vi's declaration makes its value
immutable within that arm.) Because the object referenced
by v is known to have a specific type in each arm, the arm's
statements are permitted to examine or modify its fields.

In addition to generic reference variables, Cedar also
has generic procedure types. Procedures can be declared
to take values of type ANY as parameters, and/or return
values of type ANY as results. Generic procedure values
must be narrowed analogously to generic reference types
before use.

Generic reference types allow procedures to manipulate
objects of prearranged varying types, but do not permit
procedures to examine or modify objects of completely
unspecified types-an important capability for debuggers
and other monitoring tools. To fulfill this need, Cedar
provides a runtime type system to manipulate the runtime
representations of types; a type tag is stored with each
collectible object. In the current implementation, these
functions are too slow to be a substitute for full
polymorphism.

Miscellaneous extensions. Finally, several other flexible data
types based on REFS have been introduced into Cedar.
Notable among them are variable-length immutable text
strings (known as ROPEs), variable-length linked lists, and
ATOMS.

Cedar's list-processing facilities are similar to those in
Lisp, except that (as with all other Cedar variables) the type
of every list variable or expression is a compile-time constant
(but may be REF ANY). For example, to declare a list of
32-bit integers and set its value to the first six primes, one
could write

Iprimes: LIST OF INT;

lprimes ~- LIST[l, 2, 3, 5, 7, 11].

Several operations are defined on lists. For any list 1 whose
elements have type T, the value of l.first is an object of
type T (basically Lisp CAR), and the value of l.rest is an
object of type LIST OF T (basically Lisp CDR). The function
CONS[e, 1] constructs a new list lnew with lnew.first = e
and lnew.rest --- 1.

Cedar's ATOMS are uniquely-addressed values much
like Lisp atoms. They can be located by their client-assigned
names, decorated with property lists, and compared for
equality using a simple pointer test.

2.2 The Cedar Machine

All Cedar programming is done using the Cedar
language; there are no assembly language routines. The
machine hardware, microcode, and low-level runtime
support combine to form a virtual machine well-suited to
the efficient execution of Cedar programs.

Hardware. The Cedar programming environment runs on
the family of Xerox Scientific Workstations, which includes
the Dorado and the Dandelion [18]. The Dorado [19] is a
high-performance personal workstation with 16-bit words, a
cached virtual memory with a large virtual address space
(24 bits, word-addressed), and up to 32 megabytes of
physical storage (typically two to eight megabytes). The
writeable microstore allows customized instruction sets for
different languages and environments. Input/output devices
include a large (1024 x 808 pixels) high-resolution

bitmapped black-and-white display, a keyboard, a mouse
pointing device, and an Ethernet interface. A color display
can be added.

Cedar workstations operate in the Xerox Research
Internet environment that includes database and file servers,
shared printers, name authentication servers, and distributed
electronic mail services [2, 7, 5, 26].

Microcode. The Cedar microcode implements an extension
of the Mesa machine architecture [18], which was designed
to execute AlgoHike languages efficiently. Two factors
combine to produce exceptionally compact representations
of programs: a stack machine architecture, which allows
zero-address instructions, and variable length byte-coded
instructions, whose encodings are based upon an analysis of
static instruction frequencies in existing compiled Mesa
programs [36]. A compact program representation not only
saves storage space, but it also contributes to faster
execution, largely due to increased locality and hence fewer
cache misses and page faults. The architecture also supports
arbitrary control transfer disciplines (such as coroutines):
activation records are allocated from a heap rather than a
stack. In addition, the architecture allows for concurrent
execution of up to one thousand processes. The microcode
provides linkages to compiled fault and exception handlers;
extensions for Cedar in support of safe storage include
reference-counted store instructions and additional
exception handlers that intercept invalid storage references.

Runtirae Support. Low-level routines and data structure
definitions provide a Cedar language interface to the
microcoded processor architecture, supporting procedure
linkage, process switching, and runtime error handling.
Although this component is not written in the safe language,
its interfaces are asserted to be safe.

2.3 The Nucleus

The Cedar Nucleus contains the basic operating system
facilities needed for memory management, process
management, file system management, and communications
with the user and the outside world.

Device drivers. Cedar has borrowed from the Xerox Pilot
system the notion of abstract device interfaces [30].
Corresponding implementations on each processor for each
specific device type extend the virtual machine defined by
the microcode to include the peripherals as well. For
example, Cedar provides an interface abstractly defining the
behavior of disk drives. The Disk component can be
programmed in terms of this interface, without detailed
knowledge of the peculiarities of each type of drive that the
underlying implementations must support.

Disk. The Disk component provides a uniform interface to
the attached disk drives. It provides low-level facilities for
investigating the state and configuration of each drive, and
for performing page-level input/output operations between
specified disk addresses and virtual memory locations.
Clients of the Disk component must ensure that virtual
memory buffers have physical memory allocated to them.

Virtual Memory. The Cedar virtual memory (VM) differs
in philosophy from its most recent ancestor, Pilot [30]. Pilot
was designed for processors that had relatively small physical

233

memories and disk capacities. This required a
space-efficient but complex implementation based on
mapping regions of virtual memory to named disk files.
Cedar, intended for larger machines, has been able to
abandon this approach in favor of a simpler, more
time-efficient scheme. Cedar represents virtual memory as
a single backing file, employing a resident page map. VM
permits higher-level clients to ensure temporarily that a
region of virtual memory has physical memory allocated to
it, so that components at levels lower than VM can deal
with memory through virtual addresses without incurring
page faults.

File input/output must be accomplished by explicit
operations, rather than as VM mapping actions. The
performance improvements, both for code swapping and
for file access, have been significant. Perhaps more
importantly, this design permits the virtual memory
implementation to occupy a position quite low in the Cedar
level structure; only the Cedar machine implementation and
the VM implementation itself need to deal with physical
memory addresses. Thus the majority of the Cedar system
can operate in the virtual memory environment.

Safe Storage. The safe storage extensions to the Cedar
language are supported by the runtime type system
mentioned in {}2.1, a storage allocator (implementing the
NEW operator), and a combination of garbage collection
techniques. The allocator stores a runtime type tag in each
new object; these tags index runtime data structures that
the garbage collectors use to locate embedded references.
The garbage collection algorithms were derived from earlier
designs by Deutsch and Bobrow [111. A full description of
the revised algorithms appears in Rovner's recent paper [32].

An incremental garbage collector runs at frequent
intervals, triggered by specified elapsed-time or memory
utilization criteria. It operates as a background process.
The incremental collector is able to reclaim most of the
storage objects that are no longer referenced, using
information obtained from reference counts and
examination of current activation records. An optimization
called the conservative scan reduces the execution time of
the incremental garbage collector, but it can cause a few
collectible objects to be retained.

The incremental collector cannot detect cyclic data
structures, such as those generated by two-way linked lists
or certain queue implementations. Programs can explicitly
break cycles when they determine that such data structures
are no longer needed. In addition, a conventional,
preemptive trace-and-sweep garbage collection algorithm has
been included to reclaim such structures. The
trace-and-sweep collector reclaims virtually all unreferenced
storage (it also use~ the conservative scan), but monopolizes
the machine for twenty seconds to several minutes during
the process. Servers or other programs that need to remain
available for long periods of time without danger of storage
leakage can invoke it directly. Users may also invoke the
trace-and-sweep collector manually.

A package that creates objects of a given type can also
specify finalization code to be executed when an object of
that type becomes inaccessible outside the package. The
finalization code is free to examine the object and perform
any final operations such as removing the object from a

cache, releasing a virtual memory buffer associated with the
object, or breaking the circularity of a data structure to
permit additional reclamations by the incremental collector.

File. The local file system underlying Cedar is
straightforward. It manages the configuration of one or
more physical disk volumes and their subdivision into
logical volumes. Within logical volumes, it manages the
page-level allocation, deletion, reading, and writing of disk
files. The file structuring methods borrow heavily from
earlier Xerox systems [22, 30]. In particular, redundant
information stored with each file page permits recovery if
portions of files or directories are damaged. Only primitive
locking facilities are provided, based on many-reader,
one-writer write locks.

The File component does not include a directory
implementation, leaving that up to higher levels in the
hierarchy. Instead, the file-creation procedures return
unique identifiers that clients can use to locate the files
later. Different clients may choose their own directory
organizations for their files, but most choose to use the
standard directory implementation.

FS. The Cedar workstation file management and directory
package supports the appearance of a uniform file naming
space, spanning the user's local disk and the set of shared
file servers available through the attached communications
network. File names can represent two kinds of files: local
files, where the only copy of the file resides on the
workstation's disk; and attached files, where the file name
is a symbolic path name to a remote file. Read-only copies
of remote files are retrieved and cached as needed on the
local disk. FS provides these facilities by maintaining two
logical directories describing the contents of the local disk:
the local file name directory and the remote file cache
directory.

The local file name directory provides a local,
hierarchical name space for files. Arbitrary nested directory
structures can be expressed as subdirectories of the single
root directory. Entries in the local name directory may be
either local files or attached files. Thus, a local name space
that describes a complete system or set of related tools can
be created out of local and remote files.

The remote file cache directory organizes the set of
remote files for which local copies exist. Files may be
referenced via local file name directory attachments or by
using a full symbolic path name. Because files are only
copied to the cache when they are needed, often only a
small subset of the files indicated by attachments will
actually be cached. Disk space is managed automatically
by flushing least-recently-used remote file copies from the
cache when additional space is needed. Cache entries refer
to specific versions of remote files, by name and creation
time.

Our current file servers have limitations that prevent
reading and writing of remote files from being treated
entirely symmetrically. FS will not accept a request to open
a remotely-named file for writing. Therefore the file must
first be written locally, entering its name in the local
directory. A special FS copy routine may then be invoked
to create a new remote copy and replace the local directory
reference with an attachment to the remote file.

234

!0. The IO interface defines generic procedures for t~reating
and using streams of characters or words, including useful
input scanning and output formatting routines. The Cedar
IO package contains over a dozen specific implementations
of streams supporting several sources and destinations,
among them disk files, the keyboard and display, the
Ethernet, and pipes (objects that provide the buffering and
synchronization needed to connect an output stream from
one process directly to the input stream of another [31]).

It is easy to define specialized streams for specific
applications. Programs that read and write streams can be
coded without explicit knowledge of the source or
destination medium.

Communications. Network communications require
substantial software support beyond the low-level device
drivers. Cedar includes a complete implementation of the
experimental "Pup" internetwork protocols described by
Boggs et al in [5]. Lower levels of the Pup package provide
a basic datagram (packet-level) service. Higher levels
implement asynchronous terminal emulation, a file transfer
protocol, a remote procedure call facility, and a range of
information utilities, such as time and name lookup services.

Of the higher-level protocols, the most important for
new Cedar applications is the communications suppo?t for
remote procedure calls (RPC). Ordinary calls to procedures
through specified interfaces execute on remote machines,
returning any results to the caller as usual. The
implementation is based on stub routines that field the
client's calls locally. A stub routine composes procedure
parameters into data packets, handles the reliable
communication of requests to the remote site, then removes
any result values from incoming packets for return to the
caller. Corresponding stub routines at the remote site
reconstruct the parameters, complete the linkage to the
actual procedure implementations, and compose the results
into packets. The Cedar RPC package, described by Birrell
and Nelson in [3], performs two functions: it automatically
constructs both sets of stub routines from the interface
definitions, and it provides the underlying algorithms that
complete the calls reliably, efficiently, and securely (using
optional DES encryption techniques). Cedar RPC builds
its protocols directly on the datagram-level of the Pup
package.

To date, we have produced three major Cedar systems
that use RPC for all their communications: a
transaction-based file server, an experimental telephone
service, and a "Compute Server". All three are described
further in §2.5. Furthermore, implementations of RPC for
other languages and programming environments are
beginning to extend the range of services that Cedar
applications can provide or use.

Terminal Most Cedar applications are content with the
higher-level display-management and user input facilities
supplied by Viewers and TIP (§2.4). However, more radical
applications may need to use the display screen or input
devices in a conflicting way - t o try out a new window
package, for example. The Terminal interface provides a
clean abstraction to the display, keyboard, and mouse.
There may be several instances of Terminal, each with its
own full-screen bitmap and optional color frame display

memory. Operations are available to switch the use of the
physical hardware (and thus the entire contents of the
screen) among the Terminal instances. The standard Cedar
screen is obtained through the use of just one Terminal
instance; another is employed to drive a much simpler user
interface while the system is being loaded.

Running programs. At the "top" of the Nucleus are two
final components. The Loader provides the capability to
load additional components into a running Cedar
environment. (The Nucleus is loaded and initialized using
booting methods outside the scope of this paper.) The
Checkpoint~Rollback component permits the user to save
the present Cedar environment (that is, the contents of
virtual memory) in a checkpoint file, as well as to restore
("roll back") a machine to the state represented by such a
file. It takes several minutes longer to initialize a Cedar
system "'from scratch" than to roll back to a configuration
into which the user has loaded a selected set of development
tools and commonly-used applications. The Rollback has
become the conventional way to restart Cedar.

2.4 Life Support

The Life Support division provides standard user
interaction facilities such as a screen manager, a text editor,
command and expression interpreters, and program
development and management tools. Many of the Life
Support components are quite large, providing functions
directly to Cedar users or applications programmers; in this
sense they resemble user applications or packages more than
operating system components. They are given a division of
their own because their functions are vital to providing a
complete working environment for users, and because the
standard Cedar initialization procedure automatically
includes them. Components above the Life Support level
are selected and included in the system by individual users.

From this level on, it is relatively easy to experiment
with alternative components, either by replacing existing
components with variants, or simply by including the
alternatives in private configurations and ignoring the
system-provided components. A more complete discussion
of these techniques appears in Sections 3.1 and 3.4.

Useful Packages. During the implementation of Cedar,
many generally useful packages have been produced.
Examples include packages for sorting arbitrary values, for
maintaining symbol tables, and for managing queues of
user-invoked commands. These packages can be thought
of as extensions of the basic "Cedar machine." As their
numbers increase, they will make programming in Cedar
increasingly convenient.

Inscript and TIP Tables, The user communicates with Cedar
by typing, by moving the mouse, and by clicking mouse
buttons. The lnscript package buffers time-stamped
versions of these input events. If an application has special
high-performance user input requirements, such as the need
to react in real time to the trajectory of the mouse-driven
cursor, it can use the lnscript package directly and
independently to extract the input events from the buffered
stream. This works better than direct sampling of the
hardware by individual applications, because the lnscript
package collects and time-stamps the events using clocked

235

interrupts; it is therefore less likely that events will be
missed or that confusion about the timing of events will
occur. Each client of Inscript must determine which of the
input events are intended for it and what their semantics
are, ignoring those intended for other clients.

Although the Inscript package can be used directly,
most applications are satisfied to allow user actions to be
interpreted by the Terminal Input Processor, or TIP. TIP
interprets lnscript input events based on easy-to-write
specifications called TIP tables. For each event or each
event sequence (such as clicking a mouse button twice in
succession or depressing a key for a long time), a TIP table
entry specifies a procedure to carry out the semantics of the
event. Standard rules determine the choice of which TIP
table to invoke for each event, as well as which screen
region to include as a parameter to the procedure.

A high-priority process called the notifier interprets
input events according to the current set of TIP tables. A
typical TIP procedure creates a new process to carry out
the desired action~ then returns immediately so that the
notifier can react to the next event. In this way, the user
can initiate or control many concurrent applications;
furthermore, programs can be written in a way that does
not preempt the user's ability to choose from moment to
moment which application to talk to.

Default TIP tables define standard behavior for the
basic Cedar user interfaces. Specialized TIP tables support
the special input needs of advanced applications (such as
drawing programs). User-specified TIP tables give the user
some ability to custom-tailor any existing application.

Abstract Machine. An original goal for Cedar was to
combine a compiled, strongly-typed language with the
interpretive symbolic power of lnterlisp or Smalltalk. The
Abstract Machine is a step in this direction. Its facilities
are all ultimately based on the symbol tables and program
graphs that the compiler, binder, and program loaders
produce. Its primary use at present is in support of ordinary
Cedar applications that serve as interactive interpreters,
debugging tools, performance monitoring, and other tools
for presenting program data in a form sensible to users.

The Abstract Machine (AM) implementation is based
on the following concepts:

• Runtime types. The unique type tags that label
allocated objects are also used by all the abstract
machine interfaces as runtime type values.

• Program control. The AMEvents interface provides a
set of low-level operations for setting breakpoints and
for tracing program flow.

• Type information. The AMTypes interface provides
procedural access to the names and structure of data
types, including a complete set of operations for
analyzing the internal structure of composite types.

• Value manipulation. Other AMTypes procedures
permit examination and modification of runtime
values. The association between the referents of REF
variables and their type tags can be made safely and
automatically by the system; for other values, the
associations are "based on TRUSTED program
assertions. These operations support interpretive
programs that can operate on arbitrary data structures;

they are always significantly more expensive than the
corresponding compiled Cedar statements operating
directly on the same objects.

• Program and process structure information. The
AMModel interface provides similar facilities for
investigating program structure: the makeup of
procedures in terms of their embedded blocks, of
program modules in terms of their procedures, and of
configurations in terms of their program modules and
subconfigurations. A description of the loaded
configurations and their associated global information
within a running Cedar system is also available
through AMModel. Using the AMProcess interface,
one can enumerate the active processes, suspend or
resume the operation of selected processes, and locate
the top activation record for a given process.

• Multiple virtual memory access. AM uses the
WorldVM interface for all references to runtime values
and to runtime program and process structures.
WorldVM supports symbolic access to the local
address space, to a worldswap environment (a
restartable memory image saved on disk) or to a
remote environment (accessed using network
communications). The arms-length methods are
infrequently used, but they are invaluable when the
local methods fail (see §2.4).

Imager. Cedar applications rely on the power and flexibility
of high-resolution bitmapped display terminals. In earlier
Xerox systems, system support for interactive graphics was
limited to low-level bitmap operations, such as the RasterOp
(BitBlt) function described by Newman and Sproull in [28].
While it is possible in Cedar to manipulate bitmaps directly,
most applications instead use the Imager package, which
provides support for the presentation of such graphical
images as multiple-font text, lines, curves, closed outlines,
and sampled images. These images can be scaled, rotated,
translated, and clipped to arbitrary rectangular boundaries
by providing the package with simple specifications.
Programs can render images in a device-independent fashion
on color or black and white display devices, or on a variety
of laser printers.

Viewers. Most applications are intended to be used in a
cooperative fashion, sharing the display real estate with
concurrent applications; they do this using viewers. Viewers
are Cedar's display windows: rectangular regions whose
positions and overall sizes are managed by the Viewers
package, but whose contents are the business of the
applications that create them. The Viewers package
redisplays the contents of each viewer, based on
client-supplied specifications, whenever its contents, size, or
location changes. Viewers can also be "closed"; they then
appear at the bottom of the screen as icons (small evocative
pictures). It uses TIP tables to provide the connections
between the user's input actions and the application-specific
functions, serializing these actions when the user types faster
than the actions can be performed.

In actuality, there is a hierarchy of viewers. Within
the top-level viewers we have been discussing here, one
may nest subviewers-perhaps to provide a subwindow
whose contents must be scrolled separately, a subwindow

236

whose contents is provided by some other application, or
an area which must otherwise be managed differently from
other information displayed in the viewer. Subviewers may
be quite small. For example, the menu buttons that appear
in each top-level viewer are represented as small subviewers.

Top-level Cedar viewers never overlap, but instead
occupy two adjacent columns, each sharing the available
height with other viewers assigned to the same column. (If
an auxiliary color display is available, a third column of
viewers can appear on it.) Viewers can either allow their
height to vary to share the available space equitably, or can
insist on some fixed or minimum size that they must occupy.
The user can override the assigned widths of the columns
and the heights of individual viewers. This tiled design was
implemented as an experiment whose objectives were to
minimize user window scaling and positioning commands
and to achieve high-performance screen updating; the
underlying graphics facilities would also support the more
common overlapping-window model.

The Viewers package also serves as a point of
integration for Cedar applications. Viewer instances are
assigned to viewer classes. A viewer's class determines its
display and user interface behavior. Programmers can create
viewers as members of standard system classes, or can define
their own viewer classes. A viewer can also be associated
with a custom TIP table, and with other attachments that
customize its operation.

Tioga. Tioga is the tree-structured text editor used to create
Cedar programs and formatted documents. Nodes,
corresponding approximately to paragraphs, and their text
content can be decorated with user-specified style and font
information controlling their displayed and/or printed
appearance. Tioga is a galley editor; it does not provide
automatic support for page makeup.

Tioga displays its files in text viewers, making extensive
use of TIP tables to simplify the specification of the user
interface. Tioga implements a simple postfix language in
which its operations are expressed. This language specifies
the meanings of the interactive editing operations, command
abbreviations, and other prerecorded sequences of editing
actions.

Apart from its value for editing documents, Tioga is an
important Cedar resource, since it can be used in any text
viewer. This means that applications like command
language interpreters and specialized display tools can
employ Tioga's well-understood user interface and
text-manipulation features. It also means that text and
attributes can be freely copied among viewers. For example,
one can record the results of a command in a file, or invoke
a command by copying it from a "recipe-book" document,
using only the mouse-driven text-editing operations of
Tioga.

Although Tioga does not understand Cedar syntax, we
find that using Tioga as a program editor has several
important benefits. First, viewing programs as formatted
documents with common stylistic conventions makes them
easier to read and share. Furthermore, Tioga's flexible
search commands, combined with a small number of
connections to the Cedar Abstract Machine, allow it to
approach the usefulness of many special-purpose program

development tools found in other current programming
environments:

• Simple pattern-matching allows Tioga's abbreviation
expansion command to construct easily-filled-in
templates for language constructs and procedure call
parameters. Tioga's node structure and its level
hierarchy allow the suppression of detail for a larger
contextual view and the manipulation of entire
constructs as units. These capabilities provide many
of the advantages of modern syntax-directed editors
[17, 37, 10].

• Tioga also performs the use-to-definition portion of
the Masterscope functions in lnterlisp [39]. A selection
of the form interface.item may be used to request a
new viewer displaying the file that defines
(implements) the item, scrolled to the item's definition.
(If an implementation of interface has been loaded,
AMModel functions are used to locate the
implementation's file name; otherwise, Tioga makes a
guess based on program naming conventions.)
Unfortunately, mapping from an item's definition to
its uses is beyond Tioga's capabilities; it would require
the capabilities of Cedar system modelling, a
partially-implemented extension to the DF Package
(see §3.1).

• The Blit debugger [8] constructs menus of
currently-visible procedure, variable, and field names
to ease user input. Tioga's client interface permits the
Cedar debugger to show a breakpoint or error location
as a highlighted region in a source file viewer; the
user can thus see legal procedure and variable names
in context. By using the ability to copy text freely
among viewers, the user can copy desired names to
the debugger area.

Teitelman's Tour through Cedar [38] includes many
examples of the various uses of Tioga and Viewers. Those
interested in an expanded treatment of the lmager, Viewers,
and Tioga are referred to [1].

Compiler, Binder, and Loader. The Cedar compiler verifies
the correct use of data types both within modules and across
module boundaries. In addition to machine code for each
module, the compiler produces symbol tables and statement
maps for use by the Abstract Machine. The binder, also a
separate batch application, produces larger configurations
of modules from individually-compiled modules and
previously-bound configurations. It extends the compiler's
strong type checking by ensuring that the names and time
stamps of exported interfaces match those specified by the
components that import them: Some of the binder's
capabilities reappear in the Cedar loader program, which
loads modules and bound configurations into a running
system, resolving the remaining imported references.

Command Tool. Cedar Life Support includes a conventional
command interpreter in the form of a text viewer into which
the user types commands and the system responds with
results. The command syntax, an amalgam derived both
from UNIX [6] and from earlier Xerox systems, includes
provisions for redirecting command output to another
destination (usually a file or a pipe to a process executing
a concurrent command), and for accepting command input

237

from another source (also usually a file or a pipe). [UNIX
is a registered trademark of AT&T Bell Laboratories.]

The Command Tool provides a small number of
built-in commands, primarily for running programs and for
examining and manipulating local and remote file
directories through the services of FS (list, delete, copy, and
the like). As applications are started, they may register
additional commands with the Command Tool, supplying
procedures that extend the set of available operations.
Commands are usually executed sequentially, or in a
tightly-coupled fashion using pipes, but it is also possible
to invoke a command such that it runs concurrently, using
a separate viewer for its input and output activities. The
user may also create more than one Command Tool, then
issue commands in each that may run concurrently.

Source-Level Debugging. The Abstract Machine and the
Tioga editor form the basis for several standard tools that
collectively provide interactive source-level debugging: an
interpreter for expressions in the Cedar language, which can
be called from a program or driven directly by the user (for
instance, in response to a breakpoint); a tool for exhibiting
the state of all the running processes; commands for setting
and clearing breakpoints in the compiled code; and so on.
In addition, specialized diagnostic routines can be built for
specific purposes, calling on the facilities of the Abstract
Machine. Debugging can be performed in any address
space that the WorldVM interface can reach (local,
worldswap, or remote Cedar systems). The non-local access
methods can be used to debug a memory environment that
has been too severely damaged to respond to debugging
commands, or to debug Nucleus components.

Version Management. The DF Package plays an important
role in managing the thousands of files comprising the
Cedar system, as well as managing personal files. A DF
file describes a package or program by listing the file names
of its components, fully qualified with their network
locations and create dates. The DF Package operates on
DF files to retrieve (establish attachments in the local file
name directory) the files listed in a DF file from their
remote file servers; to store changed versions of the files on
remote file servers and update the DF file to refer to the
new files; and to verify that a DF file specifies all of the
files (with correct versions) that are needed to construct the
package. In addition to the list of files comprising a package,
a DF file may specify files to be imported from other DF
files. These files, while not part of the package, are required
by it; the DF Package will retrieve them as well. Thus a
DF file can specify all of the files needed to compile, bind,
and test a package it describes. DF files are also suitable
for describing versions of any item consisting of a collection
o f files, such as the sections and figures o f a paper.

The concepts underlying DF files have been extended
to serve as a full description of a running program. These
system models can form the basis for recompilation, runtime
module replacement, and answers to queries about a
program's structure (similar to Lisp's Masterscope) [33, 21].
A variant of the DF Package has also been adapted for use
in the Xerox Development Environment (XDE) [35].

2.5 Applications

By now it should be clear that any distinction between
"the system" and "the applications" is a matter o f
convenience, as is the assignment of components to
particular levels, Components that are originally developed
as applications are often evaluated, modified, and
incorporated into lower levels, usually into the Life Support
division. Others are more clearly user programs providing
explicit functions supporting specialized needs. Space
would not permit the complete enumeration of the Cedar
applications produced to date, even if we knew what they
were. Here we catalog a set of applications that are
representative of the range of activities Cedar can support.

Cedar includes a number of database-related
applications. Alpine is a transaction-based network file
service, written in Cedar, and running on a dedicated
Dorado [7] . Cypress is an entity-relationship database
package that runs in a user's workstation but stores its
database on Alpine servers [9] . Walnut is an electronic
mail system that operates in conjunction with the Grapevine
message transport mechanism [2], using Cypress and Alpine
to manage each user's messages. Whiteboards turns a viewer
into an electronic "blackboard", where subviewers of various
kinds (text, iconic viewers, graphic viewers) can be arranged
by the user.

Cedar applications in the area of computer graphics
include a program for producing full-page color illustrations
(Griffin), a system for manipulating three-dimensional
synthesized graphical objects (SolidViews), programs for
processing scanned images, and programs for driving
experimental printers [1].

In the communications area, the Etherphone system
includes a server and individual workstation programs
supporting an experimental telephone and voice recording
system that uses Ethernet communications to transmit voice
[34]. The Compute Server is a framework, built upon RPC,
that coordinates the assignment and execution of computing
tasks to processors with available compute cycles [16].

An assortment of other Cedar-based applications exist.
Hardware designers have produced a suite of VLSI design,
simulation, and analysis tools in Cedar. The Spy (a
descendant of the Mesa Spy [25]) is a tool that monitors
CPU usage, memory allocation, or page fault performance.
Celtics is an interactive execution-trace tool.

The sources for the current version of Cedar (Cedar
6.0) occupy more than 17 million bytes of disk storage.
There are over 1500 program source files, more than 400,000
lines of source code, approximately 150 DF files, and over
100 separate configurations. This enumeration includes Life
Support and the most common applications. Although
Cedar continues to grow, the tools for managing its size and
complexity seem to be keeping up.

3. Di scuss ion

Cedar, as an operating system and as a programming
environment, is the direct descendant o f earlier Xerox
systems. The progression began with a simple system for
the Alto, using the BCPL language and basing its structure

238

on the notion of an open architecture [22]. When the Mesa
language was developed for the Alto, its implementors also
produced a faithful rendering of the Alto/BCPL system
components, without extending its concepts. The next major
development was the Mesa-based Pilot operating system
[30] and its associated Tajo programming environment [35,
40], designed for use with a second generation of
workstations that included memory mapping and larger
physical memories.

Early versions of Cedar were built on a Pilot base,
adopting a number of important ideas from more
traditionally interactive language systems, notably Interlisp
and Smalltalk, in order to achieve some of the Cedar
objectives. Later revisions have benefited not only from
observations of shortcomings in the earlier attempts, but
also from approaches found in the Xerox Development
Environment (XDE). XDE is a product, marketed by the
Xerox Office Systems Division, that has been developed as
an extension to the Pilot/Tajo system.

Cedar has also borrowed from more conventional
current operating systems, among them UNIX. But there
are also some significant differences, leading to markedly
different methods for achieving some desirable properties.
In fact, neither Cedar nor any of the systems with which
we can most usefully compare it (Interlisp-D, Smalltalk-80,
UNIX) achieve all these properties equally well.

In the overview we described the major components of
Cedar, choosing an order that progressed from the low-level
"virtual machine" capabilities to the more important user
applications. Here we concentrate on the overall structure
of the system: what it is, why it is that way, and what
facilities have been provided in the language and in the
environment to support the development of programs. We
will address this issue through a discussion of the following
topics:

• Structuring Methods: The approach that was used to
structure the components of Cedar-language
attributes, memory management components, and
structuring philosophies that were used to achieve the
system objectives.

• Structural Choices: A discussion of the careful design
decisions that led to the ordering of components
within Cedar.

• Comparisons." Areas of similarity and difference
between the architectures of Cedar and selected other
programming environments, identifying valuable
features that should be considered for inclusion in
future Cedar systems.

• Program Development Methods: A brief discussion of
the effects of Cedar's structure upon program
development.

3.1 Structuring Methods

The influence of ,41to/BCPL: an open system approach

Much of the design philosophy of Cedar can be traced
back to the BCPL-based system designed in the mid-1970's
for the Alto personal computer. The designers of the
Alto/BCPL system called it an open system, contrasting it
with conventional multi-user operating systems, which they

termed closed [221.
A closed system, as defined in the Alto/BCPL report,

has hardware memory protection, generally in the form of
hardware support for separate address spaces for the
operating system routines and for each user application.
The operating system provides user programs with special'
methods for invoking a fixed set of operations. The routines
used to provide these operations, unless they are also
explicitly exported as system operations, are not available
directly to client programs.

The Cedar open operating system is essentially a
collection of program modules (containing sets of related
procedures) sharing the machine's single address space. The
important aspects of this open approach are:

• Operating system routines can be called as ordinary
Cedar procedures. There is no sharp boundary
between client programs and system routines.

• The components of Cedar are carefully arranged into
layers. Higher-level layers are built on the capabilities
of lower-level ones.

• The components in one layer may only call procedures
located in the same or lower layers. This restriction
is unfortunately enforced only by convention,
although violations often result in system errors. (In
the Alto system, it was possible to free the memory
occupied by unneeded higher-level layers for other
uses; inadvertent upward calls had disastrous results.
In Cedar, disabling failures can occur due to the order
in which components are loaded or initialized.)

• This structure differs from the virtual machine concept,
in which each level of a system is:implemented entirely
in terms of the abstractions provided by the next-lower
one. The difference is that, in open systems such as
Cedar, the lower-level modules remain directly
available to clients at all higher levels. An application
can generally choose to use components at any level
or to replace them with custom-built components
(which can still use the standard lower-level
components).

The influence of Mesa: strong typing and interfaces

Alto/13CPL was a useful open system, but it had many
shortcomings. BCPL is a typeless language that provides
many opportunities for errors that the type systems of Mesa
(and thus Cedar) would prevent. Mesa's strong type
checking has demonstrably improved the reliability and the
ease of development of programs produced for Xerox
processors [141.

Mesa's interfaces are very useful in describing and
delimiting the capabilities supplied by a particular system
component. Further, configurations provide a concrete way
to describe components within the language and to identify
the interfaces that each component implements. With
configurations, one can also use private copies of standard
system components, possibly binding them to different
versions of the interfaces they import, without fear of the
name conflicts or undetected binding errors that made this
kind of thing risky in the Alto/BCPL world. As we will
see in §3.4, tools such as Tioga and Viewers can even be

239

used to develop their successors, by judicious use of the
configuration language.

Mesa's interfaces and configurations do not provide a
complete descriptive tool for the structure of Cedar. Export
lists identify the public and private interfaces of a
component, but there is no provision for enforcing the
restriction against upward calls. The prototype system
modelling language of Lampson and Schmidt [21] is a more
powerful specification tool for defining system structure
than is the existing configuration language, but it would
also need to be extended in order to make the layered
structure and its corresponding constraints explicit. This is
a topic for additional research.

Mesa processes, protected by monitors [20], may
preempt each other at any time, permitting rapid service
for high-priority processes and for time-slice scheduling
algorithms. These lightweight preemptive processes account
in large measure for the success of the multi-tasking
capabilities of both XDE and Cedar.

The influence of Smalltalk and lnterlisp: safe storage

Cedar's primary contribution to the evolution of this
family of open systems is safe storage. None of its
predecessors are immune to the catastrophic damage or
eventually-fatal storage leaks that result from improper
pointer management- the kinds of unrecoverable mishaps
that traditional "'closed" systems were designed to protect
against. Where traditional systems confine such damage to
the process or job that causes it, Cedar's aim is to prevent
the damage entirely, through its combination of
compile-time and runtime tes ts-a technique that is known
to work well in lnterlisp and Smailtalk implementations.
Admittedly, storage leaks, while infrequent, can still occur
in the safe subs~*, of Cedar between invocations of the
trace-and-sweep garbage collector (due to the inability of
the incremental garbage collector to reclaim cyclic
structures), and occasionally because of the conservative
scan optimization.

Many applications have now been developed using only
Cedar's safe subset. These programs required far less
diligence and attention to the details of memory
management than their earlier counterparts did.
Furthermore, algorithms that make heavy use of storage
allocation tend to be significantly shorter and easier to read.

In addition to the direct protection benefits of safe
storage, we have been pleased by some additional
flexibilities that automatic storage management permits. In
systems without garbage collection one must deal with the
ownership of objects, especially parameters to procedures.
For example, a routine that prints text ROPEs might be
supplied either with a fixed value, whose storage should not
be released since it will be used repeatedly, or with a
constructed value, whose lifetime need not extend beyond
the completion of the printing routine. The client must
either surround the call with allocation-management
statements, or must somehow charge the printing routine
with the responsibility for managing the disposition of the
parameter's storage; either method is clumsy.

Cedar ROPEs are arbitrary-length but immutable text
strings whose convenient operations and efficiency have led
to their widespread use at all levels of the system. ROPEs

could not have been implemented without automatic storage
management.

One way for a high-level client procedure to thwart the
policy forbidding direct upward calls is to supply a
procedure value as the parameter to a lower-level service
procedure. If the supplied procedure is to be called during
the execution of the service procedure (perhaps defining an
action to be performed for every element produced by a
generic enumeration procedure), it is known as a call-back
procedure. Often it is useful to nest the call-back procedure
definition within the client procedure, so that it may
examine or alter the state of the original client. If the
service procedure stores away the supplied procedure for
later invocation when specified conditions arise, the supplied
procedure is known as a registered procedure (these cannot
be nested, since the client may return before they are
invoked). Since the client supplies the procedure, there is
a reasonable guarantee that the higher-level component
exists and is initialized. Good examples of registered
procedures are the routines that extend the set of operations
available to the Command Tool.

It is not immediately obvious, but automatically-
managed storage increases the value and safety of call-back
and registered procedures, because it provides additional
flexibility in the kinds of values that can be exchanged
through these procedures. In systems without safe storage,
concern over the lifetime of explicitly-managed storage
objects has led to restrictions on the use of procedure
variables in system calls. In closed systems, difficulties in
establishing the proper memory environment generally
prohibit the use of either registration or call-back
procedures.

in Cedar, the storage management operations are
atomic with respect to all but the highest-priority processes
(which are not permitted to invoke these operations). Thus,
the powerful preemptive-process capabilities of Mesa have
been preserved in Cedar without threatening the safety
guarantees.

3.2 Structural Choices

Every major revision of Cedar has included careful
attention to the layered structure of its components. Each
time, new attempts were made to produce a clean, sensible
organization satisfying a number of potentially-conflicting
objectives:

• The components located lowest in the structure should
have the fewest dependencies on other components,
so that there need not be violations of the policies
prohibiting calls to higher levels.

• For the same reason, there should be no "loops"
(mutual dependencies) among components.

• The components located lowest in the structure should
provide the most important and widely-used system
functions.

• Subject to the above objectives, components should
occupy positions as high in the structure as possible.
This makes them easier to develop and maintain, and
allows them to use more of the system's capabilities.

Ideally, then, the components with the fewest dependencies

240

must also be the most widely-needed ones in order to avoid
conflicts in meeting these goals, in recent versions of Cedar
(beginning with Cedar 5.0), these objectives appear to have
been met particularly well. The main reason for this is that
Cedar 5.0 included a rewrite of the virtual memory, disk,
file, and directory packages that eliminated many of the
undesirable dependencies. Cedar 5.0 and its successors also
make heavier use of registered procedures, which permit
upward calls to higher-level components when necessary.
Non-critical parts of programs can then reside at a higher
level.

Additionally, Cedar programmers have been
encouraged first to construct packages with well-defined
Cedar interfaces describing their functionality, then if
appropriate to produce user interface programs
(viewer-based tools, Command Tool commands, often both)
that call on the packages. While a package may have to be
located fairly low in the structure, its user interfaces (which
must depend on large numbers of other system resources)
can be moved much higher. A good example is the Abstract
Machine (located in Life Support) and the myriad
debugging applications that depend on it.

Components that do not have access to t h e basic
memory management facilities-in Cedar, VM and Safe
Storage-are at a significant disadvantage. They must be
very carefully written, and they are often very difficult to
understand or change. These components should therefore
be located as low in the structure as possible. From Cedar
5.0 onward, the only program above the Cedar Machine
that does not use virtual memory is the VM implementation
itself. Even device drivers and the Disk package, which are
located below VM, can use virtual memory locations, based
on methods described in §2.2. VM is so low in the structure
that it cannot even find the disk file used to back up
memory: when the File Package initializes, it calls VM to
inform it of the backing file location. The simple design of
VM makes this possible, since file directories or even file
concepts are not required to get VM to work.

Safe Storage resides just above VM, having been moved
much lower in the structure than was possible in the earlier
Pilot-based versions of Cedar. Because of this, nearly all of
the system components are written in the safe subset of the
Cedar language, resulting in increased reliability and
convenience. The location of Safe Storage also enables
most programs to use the Cedar data types that depend on
collectible storage, including ROPE, ATOM, LIST, and
STREAM.

In earlier Cedar systems, parts of the IO package had
to be located above the Abstract Machine, because some of
its advanced features, such as printing a REF ANY. needed
AMTypes functions. This was unfortunate, since the simpler
features of IO were widely used. In Cedar 5.0, IO was
moved to its present position in the Nucleus, by arranging
for the Abstract Machine implementation to supply the
procedures needed for the advanced features as registered
procedures. Components between IO and the Abstract
Machine must merely avoid the advanced features, at least
until the Abstract Machine has been initialized.

The placement of other components in the Nucleus
and Life Support divisions follow similar reasoning based
on the structure objectives stated above. Facilities such as
Tioga appear within Life Support at a level that might seem

surprisingly low, until one realizes their central importance
in the implementation of most Cedar user interfaces.

At the higher levels, the applications are not as tightly
interrelated, and the precise layering is not as important.
The main problem at these levels is finding an acceptable
initialization order for interrelated programs, or in
connecting them in such a way that the initialization order
does not matter.

There are problems in moving programs to lower
positions. One of these is that the debugging and error
handling tools depend upon much of the system (including
at least the Abstract Machine, FS, File, Safe Storage, Imager,
Viewers and Tioga). Local debugging for these packages is
delicate, so the worldswap debugger or a remote debugger
rtmning on another machine must often be used when
working in this region.

3.3 Comparisons

To put Cedar in perspective, we will compare its
structure with those of a small number of programming
environments that were not in Cedar's direct evolutionary
chain, looking at both the similarities and the differences in
their designs. Some of the differences are inherent, while
others provide insights that could lead to future
developments in Cedar. We will look at the two systems
from which Cedar has borrowed most heavily: lnterlisp-D
and Smalltalk-80. We also include a discussion of UNIX,
a traditional system whose ideas have influenced Cedar
significantly.

There are a number of important programming
environment features that we are not considering in this
paper: programs as data, fast turnaround for program
changes during system development, and the specifics of
the user interface. We concentrate instead on structural
aspects.

lnterlisp- D

Interlisp is a dialect of Lisp, initially an application
program running in the Tenex operating system [4]. Since
Interlisp provides a single global name space, and since
virtually all of the system except the lowest-level primitives
and the access to operating system facilities are written in
Interlisp, the design is inherently an open one. However,
the input/output facilities and wholesale memory
management facilities were limited to whatever the Tenex
system provided.

More recently, Interlisp has been transported to Xerox
personal workstations, including the Dorado and Dandelion.
It has been enhanced with a powerful display and window
management package (based on earlier prototype work using
Tenex Interlisp with Altos as terminals), reappearing as
lnterlisp-D [17]. Interlisp-D should be classed as an open
system, in the sense that all of the components comprising
the system are available to client programs.

All Lisp dialects rely centrally on automatic
management of their list structures; the clear success of Lisp
garbage-collection methods led us to add them to Cedar.
When programs use only the basic functional primitives of
Lisp, they are inherently safe. To handle concurrent
processing, lnterlisp-D includes a simple non-preemptive

241

process scheduler with no semaphore or monitoring
facilities. Errors in process synchronization cannot interfere
with proper memory management, but one must exercise
care to avoid races and deadlocks.

A running Lisp system has no identifiable component
structure or explicit layering, but rather contains a vast
collection of individual procedures. Of course, the user
documentation does present the system in an orderly
fashion, clustering groups of related procedures according
to their purpose.

Smalltalk-80

Smalltalk systems, from Smalltalk-72 through the
present Smalltalk-80, have also evolved towards a greater
degree of openness. As with Interlisp, the parts of the
systems written in Smalltalk are universally available, since
Smalltalk operates in a global name space. And like
lnterlisp, the amount of the system written in Smalltalk has
increased as the implementation became more efficient.
Now virtually any aspect of Smalltalk is available to
programmers except a very small kernel.

Smalltalk systems have always required automatic
memory management, dealing with allocated objects more
complex than those of [nterlisp. Objects are represented as
variable-sized records containing embedded object
references. These implementations provided a partial
existence-proof for the kind of memory management Cedar
needed. The overall safety of Smalltalk-80 is thus similar
to that of Cedar and lnterlisp-D. The process-management
facilities are quite similar to those in lnterlisp-D.

The object-oriented approach exemplified by
Smalltalk-80 was also a goal of Cedar, a goal so far only
partly met. The present Mesa and Cedar languages now
include some simple syntactic constructs that allow the
programmer to invoke a set of procedures associated with
a particular data type using an object-oriented notation.
Many Cedar facilities use this syntax, but the construction
and management of such objects are the responsibility of
each programmer. Moreover, neither the Cedar language
nor the system provides any support for the important
Smalltalk-80 notion of class inheritance: specific object
classes specified as extensions to the specifications of more
general ones. Class inheritance is an orthogonal structuring
approach to the explicit layering of Cedar components; it
deals with the relationships between implementations of
related object types rather than the relationships between
callers and callees. Classes and class inheritance are
important concepts that might benefit strongly-typed
languages like Cedar.

Although the Smalltalk-80 implementation does not
exhibit an explicit layering of components, it does have
effective means for clustering the operations belonging to
each component-as collections of operations implemented
by a particular class. In fact, the Smalltalk-80 system
supports further organization of operations within a class,
encouraging the programmer to group these operations into
more specifically-defined categories. This is also an idea
that could be used to advantage in Cedar.

UNIX

We have chosen UNIX as an example of what we have
called a closed operating system, which relies on hardware
memory protection to partition the code and data used by
the system for its operation from those of the user processes,
and similarly to protect user processes from each other. The
closed approach has disadvantages which led to the
development of open systems like Cedar, but it also has
important advantages.

Disadvantages:

• The clear boundary between the application and the
system is apparent in the application programs, usually
appearing explicitly as a system call of some kind.
Subcomponents of the system facilities are often not
directly available to applications.

• Applications that run as parts of an integrated system
often benefit from the ability to share memory. In
particular, the management of the shared screen-view
within systems like Cedar are heavily dependent on
shared memory. System performance and
programming convenience suffer when applications
are forced to take a more arms-length approach to
information-sharing.

• Changing the operating system to provide new or
different functions is not as straightforward as it is in
Cedar. (However, we should point out that since
UNIX sources are generally available and compre-
hensible, it is possible to customize a UNIX system.)

Advantages:

• A user process cannot readily interfere with the
operation of the system or another process, whatever
the inherent safety of the programs running in the
process.

• User applications can be terminated and their memory
and other resources entirely reclaimed as easily as they
can be loaded and started.

• Multiple address spaces make it easier to support more
than one programming language or environment on
the same machine; detailed memory-management
decisions (which are the primary difficulties in getting
languages to coexis0 are left to the individual
processes in their individual address spaces.

• Debuggers can run in protected processes, using
system-provided facilities for accessing the target
memory and other runtime state, which can be
completely frozen during the debugging activity.
Cedar's local debugging can break down due to
process deadlock or failure in the safety mechanisms;
one must then resort to remote debugging or
worldswap debugging, both fairly clumsy methods
(although perhaps less clumsy than the methods
available for debugging the UNIX kernel when
troubles arise there).

We believe that the advantages of closed systems are
important. Combining the advantages of both approaches
to programming environment design, beginning with either
base, is an important topic for future research.

242

3.4 Program Development Methods

One of the goals of Cedar was to provide for fast
turnaround from small program changes, in general, this
would have required methods for directly replacing an
object module with a new version, reestablishing the
bindings to its imported components and to its clients. This
capability does not yet exist within Cedar.

Instead, Cedar programmers have employed two main
techniques for developing new versions of program modules
or configurations. The simplest method is replacement:
producing a new instance of the system using the new
module version instead of the old one. It is usually more
convenient, when possible, to augment the system, adding
new instances of a module so that multiple versions exist
concurrently. In the latter instance, it might be necessary
to hide the new module within a configuration that does
not export all of the module's interfaces, to avoid name
conflicts or improper binding.

A Cedar system is constructed by making a boot file
from the Cedar language components of the Nucleus and
Cedar Machine levels. When this file is booted, it reads a
boot configuration file that contains a list of programs that
will comprise the Life Support division. There is a default
configuration file, but the user may supply a substitute.
Similarly, each user supplies a file (the user profile) that
specifies which Applications level programs to load once
the Life Support components have been initialized. During
normal system operation, the user can load additional
programs, usually by issuing requests to the Command Tool.

When replacement is necessary, the level of the module
determines how hard it is to replace. If it is part of the
Cedar Machine or in the Nucleus, a new boot file must be
constructed and the workstation rebooted (five minutes to
build and boot on a Dorado). If the module is in Life
Support, the boot configuration file must be altered to
include the new version (two minutes to boot). If the
software is at the Applications level, one need only perform
a Rollback operation to produce a version of the system
that does not contain the module before running the new
version (one minute).

It is possible to augment the system with a new module
version whenever neither version will interfere with the
other's proper operation. If the new module exports a new
version of any existing interfaces, it must be hidden in
(bound into) configuration that does not export them. One
loads the new version of the module or the hiding
configuration, reloads any higher-level modules that depend
on it, then tests the addition. Since old versions are not
being removed, an occasional Rollback operation must be
performed to produce a ~clean" version of the system. Most
programs are developed this way.

An instructive example of augmentation involved a
recent revision of the lmager: the new one supports
improved device independent graphics, but it is
incompatible with the old one. During testing, its
developers wanted to use tools based on the released
versions of Viewers and Tioga to debug the new version.
They constructed a configuration that contained new
versions of the lmager, Viewers, Tioga, and TIP, but which
exported none of their interfaces to the system at large.
They had to include a few additional programs (including

lnscript) that were not sufficiently reentrant to be shared
with the existing tools. When the test configuration was
started from the CommandTool, it obtained a new "virtual
terminal" from the Terminal Package. They could switch
the real terminal between the virtual terminals by typing
special function keys, providing access to both the old world
and the new one. They were able to use the standard
system viewers and debuggers to examine and debug the
new packages from the normal display, switching the virtual
terminal to the new world in order to interact with it and
view the effects.

These methods do not eliminate the need for a more
general module replacement facility, but they have proven
remarkably effective.

4. Summary

in this paper, we have described the major parts of the
Cedar programming environment. We have shown how
strong typing and explicitly-specified interfaces help support
the layered architecture of Cedar. We have stressed the
system layering, which is designed to reduce compilation
dependencies and to make important system components
available to the largest possible number of clients.

Throughout, we have emphasized the contribution of
safe storage (incremental garbage collection, runtime type
discrimination, generic references, and runtime symbolic
access) to the cleanliness of Cedar's structure, as well as to
its convenience and reliability.

Experience with Cedar's predecessors, with earlier
versions of Cedar, and with other open systems have
contributed to its architecture, as have important features
derived other environments, including Smalltalk-80,
Interlisp-D, and UNIX. In Cedar, we have attempted to
integrate these traditions into one programming
environment.

Acknowledgments

Cedar has been a massive undertaking, so far,
consuming well over fifty person-years of design and
implementation effort. There is not space to name them
all, but we felt it important to acknowledge the major
contributors, and even that is a long list! The lbllowing
people were primarily responsible for the conceptual
development, implementation, and project management of
Cedar: Russ Atkinson, Andrew Birrell, Mark Brown, Bob
Hagmann, Butler Lampson, Roy Levin, Scott McGregor,
Jim Morris, Bill Paxton, Michael Plass, Paul Rovner, Ed
Satterthwaite, Eric Schmidt, Mike Schroeder, Larry Stewart,
Ed Taft, Bob Taylor, Warren Teitelman, John Warnock,
and Doug Wyatt. Upwards of fifty people have made
significant contributions, either officially or as creative users.
To those contributors who were not mentioned explicitly,
please accept our apologies and appreciation.

We would like to thank Rick Beach, Luis Felipe
Cabrera, Pavel Curtis, Carl Hauser, Michael Plass, and Larry
Stewart for their careful reading and helpful comments

243

during the preparation of this report, and Subhana Menis
for her usual professional editing and formatting assistance.

References

l. R. Beach. "Experience with the Cedar Programming Environment
for Computer Graphics Research," Graphics Interface 84.

2. A. Birrell, R. Levin, R. Needham, and M. Schroeder. "Grapevine:
An Exercise in Distributed Computing," CACM 25, 4, Apt 82.

3. A. Birrell and B. Nelson. "Implementing Remote Procedure Call,"
ACM TOCS 2, 1, Feb 84.

4. D. Bobrow, J. Burchfiel, D. Murphy, and R. Tomlinson. "TENEX:
a Paged Time Sharing System for the PDP-10," CACM 15, 3, Mar
72, 135-143.

5. D. Boggs, 1. Shoch, E. Taft, and R. Metcalfe. "'Pup: An
lnternetwork Architecture," IEEE Transactions on Communications
28, 4, April 80, 612-624.

6. S. Bourne. "The UNIX Shell," Bell System Technical Journal 57,
6, Part 2, July-Aug 78. 1971-90.

7. M. Brown, K. Kolling, and E. Taft. The Alpine File System, Xerox
PARC Report CSL-84-4, 1984.

8. T. Cargill. "Debugging C Programs with the BliC' AT&T Bell
Laboratories Technical Journal 63, 8, Part 2, 1984, 1633-48.

9. R.G.G. Cattell. Design and implementation of a relationship-
entity-datum data model Xerox PARC Report CSL-83-4, May 83.

10. N. Delisle, D. Menicosy, and M. Schwartz. "Viewing a
Programming Environment as a Single "Fool," Proc. of ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments. Apr 84, 49-56.

11. P. Deutsch and D. Bobrow. "An Efficient, Incremental, Automatic
Garbage Collector," CACM 19, 7, July 76.

12. P. Deutsch and E. Taft. Requirements for an Experimental
Programming Environment, Xerox PARC Report CSL-80-10, 1980.

13. J. Donahue. "Integration Mechanisms in Cedar," Proc. of ACM
SIGPLAN 85 Symposium on Programming Languages and
Programming Environments, June 85.

14. C. Geschke, J. Morris, and E. Satterthwaite. "Early Experience with
Mesa," CACM 20, 8, Aug 77.

15. A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation, McGraw-Hill, 1983.

16. R. Hagmann. Process Server: Sharing Processing Power in a
Workstation Environment, in preparation.

17. Interlisp Reference Manual Xerox Corporation, Oct 83.
18. R. Johnsson and J. Wick. "An Overview of the Mesa Processor

Architecture," Proc. of Symposium on Architectural Support for
Programming Languages and Operation Systems, Apr 82 (SIGPLAN
Notices 17, 4, Mar 82).

19. B. Lampson and K. Pier; B. Lampson, G. McDaniel. and S.
Ornstein; D. Clark, B. Lampson, and K. Pier. The Dorado: A High
Performance Personal Computer, Three Papers, Xerox PARC Report
CSL-81-1, Jan 81.

20. B. Lampson and D. Redell. "Experience with Processes and
Monitors in Mesa," CACM 23, 2, Feb 80, 105-1[7.

21. B. Lampson and E. Schmidt. "Organizing Software in a Distributed
Environment," Proc. of SIGPLAN 83 Symposium on Programming
Language Issues" in Software ,Systems, San Francisco, June 83.

22. B. Lampson and R. Sproull. "'An Open System for a Single-User
Machine," Proc, of the Seventh Symposium on Operation Systems
Principles, Dec 79, 98-105.

23. H. Lauer and E. Satterthwaite, "The Impact of Mesa on System
Design," Proc. of the 4th Int7 Conference on Software Engineeriilg,
Munich, Sept 79.

24. E. MeCreight. "The Dragon Computer System: An Early
Overview," in Proc. of the NATO Advanced Study Institute on
Microarchitecture of VLSI Computers. Urbino, Italy, July 84.

25. G. McDaniel. "The Mesa Spy: An Interactive "Fool for Performance
Debugging," Proc. of 1982 ACM SIGMETRICS Conference on
Measurement and Modleing of Computer Systems, Aug 82.

26. R. Metcalfe and D. Boggs; R. Crane and E. Taft; J. Shoch and J.

Hupp. The Ethernet Local Network: Three Reports, Xerox PARC
Report CSL-80-2, Feb 80.

27. J. Mitchell. Mesa Language Manual, Xerox PARC Report
CSL-79-3, 1979.

28. W. Newman and R. Sproull. Principles of Interactive Computer
Graphics, 2nd ed., McGraw-Hill, 1979.

29. S. Owicki. "Making the World Safe for Garbage Collection," POPL
8, Jan 81.

30. D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones,
H. Murray, and S. Purcell. "Pilot: An Operating System for a
Personal Computer," CACM 23, 2, Feb 80.

31. D. Ritchie and K. Thompson, "The UNIX Time-Sharing System,"
Bell System Technical Journal 57, 6, Part 2, July-Aug 78, 1905-30.

32. P. Rovner. On Adding Garbage Collection and Runtime Types to a
Strongly-Typed, Statically-Checked. Concurrent Language. Xerox
PARC Report CSI=84-7.

33. E. Schmidt. Controlling Large Software Development in a
Distributed Enviromnent, PhD Thesis, U,C. Berkeley 1982; also
available as Xerox PARC Report CSL-82-7, 1982.

34. L. Stewart, D. Swinehart, and S. Ornstein. "Adding Voice to an
Office Computer Network," Proc. of GlobeCom 83, IEEE
Communications Society Conference, Nov 83.

35, R. Sweet. "'The Mesa Programming Environment," Proc. of ACM
SIGPLAN 85 Symposium on Programming l,anguages attd
Programming Environments, June 85.

36. R. Sweet, J. Sandman, Jr, "Empirical Analysis of the Mesa
Instruction Set," Proc. of Symposium on Architectural Support fi~r
Programming Languages and Operation Systems. Apr 82 (SIGPI AN
Notices 17, 4, Mar 82).

37. T. Teitelbaum and 7". Reps. "The Comell Program Synthesizer: A
Syntax-Directed Programming Environment," CACM 24, 0 Sept
81, 563-573.

38. W. Teitelman. "A "['our Through Cedar," IEEE Software. April
84,

39. W. Teitelman and L. Masinter. "The Interlisp Programming
Environment," Computer 14, 4, 1981, 25-33.

40. D, Wallace. Tajo Functional Specification. Version 6.0, Xerox
internal document (Oct 801.

244

