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The Tyranny of the Clock 

INTRODUCTION – STATIC ELECTRICITY 

I once experimented with a big CMOS power transistor. It was rated for about 

5 amps and about 20 volts. To try it out I used a car battery for power and a light bulb 

from an automobile brake light as a load. The big CMOS transistor served as a switch to 

turn the light bulb on or off. I left the gate terminal of the transistor unconnected. 

To turn the light on, I touched the positive terminal of the battery with one 

hand and the gate terminal of the transistor with my other hand. My body conducted 

positive charge to the gate, turning on the transistor and lighting the light. To my 

surprise, when I let go the light stayed on. The light would stay on for 15 seconds or so, 

but gradually drifted towards OFF as the static charge on the transistor gate gradually 

drained away. Touching the negative battery terminal and the gate turned the light out. 

This experiment shows vividly that a CMOS transistor is a voltage controlled 

current source. The CHARGE on the gate of a transistor controls the flow of current 

between its source and drain. Moreover, unless removed, the charge will remain in 

place for a relatively long time.  

Of course, this is the idea behind today!s common DRAM memories. We 

store tiny charges on tiny wires where they remain for a few milliseconds. By refreshing 

them often enough we can store enormous numbers of bits in a very small space. 

But logic designers tend to forget this important property of CMOS circuits. If 

you put a charge on a wire it will stay there, at least for a time that is very long 

compared to logic speeds. Moreover that charge will control the behavior of any 

transistor whose gate is attached to the wire. Instead, designers tend to think that only a 

flip-flop can store a bit of data. Only the electrical designers of DRAMs and CCDs 

regularly make good use of static electric charges. So remember: EVERY WIRE IS A 

POTENTIAL STORAGE ELEMENT. 
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WIRES CONSUME POWER 

Every wire is a storage element. What does it store? It stores electric charge. 

One may think that a logic circuit sets the voltage of its output terminal. NOT SO, it 

merely delivers current to the output terminal to either add or remove charge from that 

output wire. To add charge, the logic circuit draws current, and therefore energy, from 

the power supply just as my body took charge from the car battery. Some of the energy 

from the power supply remains stored on the output wire in the form of charge; some is 

lost in the transistors of the logic gate, just as the resistance of my arms consumed a 

tiny amount of energy. To remove charge, the logic circuit drains the charge from the 

wire, thus consuming all the energy stored on the wire and dissipating it as heat.  

Obviously it takes more energy to charge the greater capacitance of a longer 

wire than the smaller capacitance of a short one. In fact, the length of wire charged and 

discharged each second accounts for almost all of the energy the chip uses, and all that 

energy ends up as heat.  

WIRES ARE SLOW 

Designers, quite correctly, think of the charge on a “short” wire as spreading 

instantly throughout the wire. Even so, it takes time for the logic circuits to charge or 

discharge the wire and whatever may be connected to that wire. In well-designed 

circuits, the wires usually account for at least half of the delay. Novice designers often 

forget that their circuits must also put charge on the wire; the result is slow circuits. 

But electricity moves through “long” integrated circuit wires relatively slowly. 

Integrated circuit wires have both resistance and capacitance all along their length. I 

think of the charge put into a wire as spreading through the wire much as heat spreads 

through a metal bar; indeed, the equations are the same. Imagine yourself holding one 

end of a silver spoon while I heat the other end with a candle. Eventually you!ll get 

uncomfortable as your end heats up. The delay in a “long” integrated circuit wire grows 

as the square of the length of the wire rather than linearly. Boosters or repeaters at 

intervals along the wire can hasten delivery.  

WIRES COST MONEY 

Wires cost money because they account for more than half of the processing 

steps in a “logic” chip. Such a chip may have about a dozen layers of wire. The logic 

transistors hide underneath the wires. It!s the wires that set the size of the chip. The 

very regular wiring patterns of DRAM chips permit cost savings by using only two or 

three wiring layers.  

Wires cost design time because they must fit. After designing the logic, an 

abstract mathematical task, one then faces the geometric task of where to place the 

logic and how to route the wires. That task, called “place and route,” comes near the 

end of the chip design. It!s never pleasant, because it faces a little-recognized geometric 
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growth law: as the number of things to connect increases, not only does the number of 

wires increase, but also the average length of each wire increases. This is the same 

truth that creates traffic congestion in big cities but not in country towns.  

But it!s even worse for the integrated circuit designer, because he must place 

his wires in such a way that each and every signal arrives “on time” to meet the tyranny 

of the clock. Because the delay in each wire increases with the square of its length, the 

designer must put “repeaters” in longer wires, and that adds area, making the chip 

larger. My notion is that the layout of a modern chip is an impossible task; a few 

exceptions to that impossibility do actually reach production.  

Of course, these difficulties delay the schedule, and that costs money too.  

REVOLUTION – AKA PARADIGM SHIFT 

Like all tyranny, the tyranny of the clock stems from the range over which we 

choose to subject ourselves to the tyrant!s authority. “Revolution” is the word used for 

the behavior of a people fed up with political tyranny. Recall “Taxation without 

representation,” and “Liberté, Egalité, Fraternité.”  

“Paradigm Shift” is a way to escape from technical tyranny. The Defense 

Advanced Research Projects Agency (DARPA) is fond of seeking paradigm shifts, 

believing that their investment in high-risk, high-reward projects may lead to new ways 

of thinking about and solving problems. I thought you might like to see a “Paradigm 

Shift” right before your eyes. – Roll the film.  

I do love a good pun. But seriously, what is the real problem? It!s the tyranny 

of the clock. We impose that tyranny on ourselves by choosing to treat geometrically 

separated events as simultaneous. The “simultaneous” fiction helps designers think 

about complex concurrent tasks by dividing time into periods. It's the kind of help that 

students get from 55-minute class periods for scheduling classes. Is the 55-minute hour 

the right time increment for all teaching? The best class I ever took had a six-hour 

laboratory every Monday with lunch optional. Class periods are common because they 

make scheduling possible, not because they improve learning. 

I promote the idea that we let things happen at their own natural pace. I!ll start 

by describing one system I!m working on: MERGE SORT. I want to sort long lists of 

numbers as fast as I can deliver them to the sorter.  

I have found, empirically, that my logic takes about twice as long to decide 

which of two numbers is the larger than it takes to stream a data element to the sorter. 

In 90 nm CMOS, for example, I can make an on-chip network that will move data at 4 

GHz, or about 250 psec per data element, but comparison takes about 400 psec. Were I 

to use a clocked circuit, 250 psec would be a very fast clock indeed. Typical 90 nm 

chips run at 1 GHz or slower.  



An Asynchronous Research Center Document ARC# 2012-is15 

ARC# 2012-is15 printed on July 11, 2012 at 11:22 page 4 

 An Asynchronous Research Center Document 

Multiple comparator circuits are an obvious answer. But each comparison in a 

merge sort depends on the result of the previous comparison, so how can we do 

comparisons in parallel? 

My plan is to do some comparisons that might be useful “on speculation.” 

Instead of two comparison circuits, I suggest using four. The four circuits will compare 

the first two numbers in each list with the first two in the other list. Each comparison can 

start as soon as suitable data arrive. Only one of those comparisons produces an 

immediately useful answer, namely the one comparing the first number from each list. 

The other comparisons may or may not prove useful. 

Choosing the first output advances one of the input lists. This renders useless 

the comparison of that element to the second member of the other list. Yes, we wasted 

that comparison, but we saved time because the next useful comparison got started 

before the choice was made. The next useful comparison is already half finished.  

Of course, it takes N*logN comparisons to sort N numbers. I propose to put 

logN of my comparison units in series so that I can sort N numbers in linear time. I!ll also 

need some local storage between stages to store the pairs of sorted lists that are inputs 

to each stage. The first comparator merges pairs of lists-of-one, producing sorted lists of 

two numbers each. The next stage merges pairs of lists-of-two, producing sorted lists of 

four numbers each, and so on. The intermediate storage holds the first output list and 

then feeds it on for comparison with the second output list. The final comparator merges 

a pair of lists-of-N/2 elements to produce the final sorted list of N elements. FIFO 

memories can form the intermediate storage.  

The total storage required is, of course, N values, because all N values must 

have entered the sorting system before the greatest of them can emerge. The latency of 

the system is (N) + (logN) because the final element can enter only after the preceding 

N-1 have entered and the final element must then pass through logN stages. A system 

to sort 1000 numbers, for example, takes only slightly longer than the time it takes to put 

the 1000 numbers into the sorter.  

Let us consider a fact about this sorter that I didn!t at first notice. Suppose the 

comparison time is T: how much speedup do we get by using four sorting circuits in 

parallel? It!s not a factor of four, because half of the steps are wasted. My first guess 

was that the time per element would be T/2. Surprisingly, the speedup turns out to be a 

bit more than a factor of 2. The reason is that we can abort the wasted comparisons 

before they complete, and so we waste less than half of the available comparison time.  

SOME LESSONS IN ASYNCHRONY 

Let us talk for a minute about self-timed First In First Out (FIFO) memories. 

Software people and many hardware designers think a FIFO has three parts: a block of 

addressable memory, a write pointer, and a read pointer. Here are some things such a 

FIFO must do: 1) Its read and write actions compete for memory cycles. 2) It must 
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resolve simultaneous read and write requests. 3) Binary pointer values count up or 

down. 4) A decoder converts binary pointer values into one-out-of-N signals to address 

the memory. 5) Data values flow from input to memory cells. And 6) data values flow 

from memory cells to output. Have I got all that right? It!s hard to design such a device 

and be sure it works correctly. 

Now let!s consider a self-timed FIFO. It has a series of storage locations 

through which data elements flow in sequence. There are no pointers. There is no 

decoder. There is no input vs. output contention: input and output are entirely 

concurrent.  

The algorithm for such a FIFO is trivial. It!s essentially the behavior I would 

have in a bucket brigade. I can act only if I have no bucket and my predecessor proffers 

me his bucket. When I act I do three things, 1) I capture the bucket of water, 2) I empty 

my predecessor!s hands, and 3) I proffer the bucket to my successor. This is the basic 

pipeline equation. The algorithm requires only one single AND function to detect when 

to act and enough amplification to do the necessary actions.  

My predecessor must be FULL and I must be EMPTY for me to accept fresh 

data. It!s incredibly simple. Maybe we!ll do a KLA at this point. 

The important thing is to know the difference between FULL and EMPTY. The 

circuits we promote at the ARC use a single wire to “remember” this essential piece of 

state. Not surprisingly we call it a “state wire.” A circuit we call GasP acts when it 

detects the FULL and EMPTY state of its two adjacent state wires. When it acts it does 

exactly the three things I mentioned before. 1) It causes data latches to capture the 

data, 2) it drives the predecessor state wire, which was FULL, to the EMPTY state, and 

3) it drives the successor state wire, which was EMPTY, to FULL. Notice that this FIFO 

requires N+1 wires to carry N bits of data plus their FULL or EMPTY state.  

Another way of looking at a GasP circuit is that it!s part of a ring oscillator. 

Everybody knows that three or five, or any larger odd number, of CMOS inverters in a 

ring will oscillate. The AND logic in the GasP circuit couples adjacent rings to coordinate 

their actions. The state wires remember the state of a partial oscillation for later 

completion. All self-timed circuits use the interrupted actions of coupled ring oscillators.  

GasP circuits take the unusual step of driving each state wire from both ends. 

Remember that the wire itself is the storage. I like the “HI is FULL” convention. With this 

convention, each GasP circuit drives its output state wire HI and its input state wire LO. 

Each state wire is driven HI at its input end and LO at its output end. We take care to 

avoid ever driving both directions at once. That!s made easy by the simple fact that an 

AND function is always quicker turning off than it is turning on. A small “keeper” circuit 

prevents the charge on the state wire from gradually leaking away. 

Our preferred GasP circuits run at the speed of a five-inverter ring oscillator. 

In 90nm technology that!s about 4 GHz. We use a form we call 6/4 GasP that has 
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forward latency of 6 gate delays and reverse latency of 4 gate delays. We choose to 

make forward latency greater than reverse latency because copying data forward is a 

real action whereas moving an empty space backwards changes only a state wire. The 

sum of forward and reverse latency is cycle time. We choose cycle time to be 10, the 

cycle time of a five-inverter ring oscillator. GasP circuits with a cycle time of 10 are 

possible with forward and reverse latencies of all values from 1 to 9; there are design 

cases where we might want to use another one of these over our default 6/4 GasP form.  

MORE CONSERVATIVE LOGIC 

Those who prefer to drive wires from only one end use a different FULL and 

EMPTY protocol. They need two state wires rather than one, and so sending N bits 

requires N+2 wires. The sender signals the presence of data on a “forward” or “request” 

wire. The receiver signals acceptance of data on the “reverse” or “acknowledge” wire. 

Micropipelines, my 1988 Turing award paper, outlined a “two phase” or 

“transition” protocol for the request and acknowledge wires. Each transition of the 

request wire indicates the presence of a new data element. Up transitions have exactly 

the same meaning as down transitions. That!s exactly what today is called “Double Data 

Rate” or DDR signaling. Today!s DDR protocols with source clocking are exactly what 

you get if you omit the acknowledge wires. The acknowledge wires provide a double 

data rate acceptance signal that permits self-timed operation.  

Because the request and acknowledge wires change just once for each data 

element, the state is FULL when the request and acknowledge differ in state and 

EMPTY when they match. The logic for a FIFO with this protocol is exactly the same as 

for GasP, but must first compute FULL or EMPTY from the two pairs of state wires. That 

requires an XOR gate that GasP can safely omit. Another form of asynchronous pipeline 

we use, called “Click,” includes the XOR gates and uses N+2 wires. Click circuits are 

readily implemented using only standard cell libraries. Indeed the inventors of Click 

intended their circuits to fit as easily as possible into standard design flows. One of 

them, Willem Mallon, now works with us in the ARC.  

Those who object to the transition signaling, double data rate, or two-phase 

protocols are free to use a four-phase protocol on the request and acknowledge wires. 

In the four-phase protocol, only rising transitions carry meaning; falling transitions are 

ignored. There!s been much literature devoted to how best to get rid of the meaningless 

falling transitions with the least increase in the complexity of the logic. 

CANOPY GRAPHS 

It is handy to think about asynchronous pipelines in terms of a “Canopy 

Graph.” The canopy graph is named after its tent-like shape. It plots throughput 

vertically and occupancy horizontally. We often measure pipeline circuits by making a 

racetrack ring pipeline and sending data elements around it like racecars.  
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I was surprised to figure out that 6/4 GasP rings work with any number of 

stages, even or odd. Because I knew that a ring oscillator must have an odd number of 

stages, I initially made my GasP rings with an odd number of stages, just in case. Only 

later did I realize that 6/4 GasP rings with either even or odd numbers of stages work 

equally well. Moreover, one can easily initialize a 6/4 GasP ring with any number of data 

elements from none to its full capacity. Some other FIFO control circuits introduce 

protocol polarity issues that limit either the number of stages that can form a ring or the 

number of initially full elements such a ring can hold.  

Figure 1 shows measured and predicted canopy graphs for an 11-stage GasP 

ring pipeline. If the ring is empty, there!s no throughput. If the ring is entirely full, there!s 

likewise no throughput. A single data element, or one empty space, produces some 

throughput. Two data elements or two empty spaces provide twice as much throughput. 

Notice that this ring of 6/4 GasP elements gets more throughput from each vacancy 

than from each data element. The greater reverse throughput happens because 6/4 

GasP can move an empty space backwards in four time units but takes six time units to 

copy data forward. In between completely empty and completely full there!s an 

occupancy that achieves maximum throughput. Because bubbles move faster than 

data, maximum throughput for 6/4 GasP requires the pipeline to be about 60% full.  

GasP NETWORKS 

Building a pipeline network requires two special kinds of GasP modules: the 

addressable branch and the demand merge. The addressable branch GasP module has 

one input and two outputs. It sends data elements to the right or left according to an 

address bit carried with the data payload. I designed my addressable branch GasP 

module to run just as fast as an ordinary FIFO GasP module.  

The demand Merge module has two inputs and one output. Like a freeway 

merge, it applies the rule of “first-come-first-served” to the two incoming channels. The 

demand merge module requires arbitration because the two inputs might arrive “exactly” 

at the same time. I designed my demand merge GasP module to run at the same speed 

as an ordinary FIFO GasP module except in the very unlikely case of a near tie, which is 

slower. 

Figure 2 shows the canopy graph for two rings of 100 GasP stages each that 

share a 50-stage center section. The first stage of the center section is a demand merge 

module; the last stage of the center section is an addressable branch module. The two 

rings form a kind of infinity symbol; we named the test chip Infinity.  

Notice that Infinity!s canopy graph is flat on top. Usually a flat top indicates a 

slow stage, and suspicion naturally fell on my demand merge module. But it was a 

careful design and shouldn!t cause such trouble. Careful examination revealed that a 

few long wires are responsible for the flat top. Prasad Joshi, then a Master!s student at 

USC under Peter Beerel, back-annotated the long wire lengths to re-calculated the 
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logical effort of the driving GasP modules and was thus able to predict the delay 

variation observed by the chip experiment.  

COMPUTER ARCHITECTURE 

Why, you may ask, did I spend seven pages on preamble before getting to 

the important subject of computer architecture? I wanted to set the stage by saying what 

I know to be true: we can build outstandingly fast self-timed on-chip data networks. They 

can branch and they can merge in whatever patterns you choose. In effect, we have the 

elements of a self-timed freeway system for data. Data elements can travel though such 

a network like trucks on the freeways, carrying routing information with them. In 90 nm 

technology the throughput is about 4 billion data elements per second. Because forward 

latency is only 6/10 of cycle time, each data element reaches about 6.6 billion branch 

points per second. I take as a given that on-chip communication can be fast and flexible.  

The computer architect today is faced with the problem of how to fill a silicon 

chip with useful circuitry. The no-brainer choice is to replicate over and over what we 

already know how to build, namely a microprocessor core. This is called “multi-core.” I 

think multi-core is a bad idea. Why? 

For one thing we can!t run all those processors concurrently because running 

them together will melt the chip. For another thing, even if we could run them all at once, 

the chip lacks sufficient memory bandwidth to keep them all busy. And for a final thing, 

our software friends haven!t a clue about how to use five processors together, let alone 

50 or 100. The only good thing about multi-core is that step and repeat will fill the chip 

with circuitry – it!s truly a “no-brainer.”  

A recent paper by a Stanford group led by Horowitz points out an obvious 

truth: special purpose hardware can do computations faster and use less energy than 

general purpose hardware. One easy way to see “why” is that general-purpose 

hardware must “fetch the algorithm from memory.” General-purpose hardware must 

read software instructions to control its actions. Special purpose hardware has a 

narrower scope of capability, but avoids the energy and time cost of generality.  

My proposal is that we put relatively few general-purpose microprocessors on 

a chip. That will leave a big open space to fill. Let!s fill the remaining space with special 

purpose hardware. Now we can start the important discussion about which special 

purpose hardware to include. The machine will be very good at the things built into it, 

and no worse than a big multi-core chip at everything else.  

WHICH SPECIAL PURPOSE DEVICES 

It shouldn!t be hard to guess at the top ten special purpose choices. Graphics 

provides a rich set of algorithms that we already know how to build into silicon. Matrix 

arithmetic is a part of that, and again we know much that could be useful. I!m  going to 

spend my time talking about some less obvious choices. 
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Sorting is my prime candidate. I remember the old days when tape-to-tape 

sorting speed was an essential feature of many machines. I believe that a low-energy, 

high-speed sorting system could have major impact on many tasks. If sorting were fast 

and inexpensive, at least some “pointer chasing” tasks could be converted to sorting 

tasks. I!ve talked already about fast sorting. 

Crypto is another obvious candidate. Well-known algorithms could be built 

into the hardware – security should depend only on the key. Indeed, one might think of 

encrypting and decrypting as a routine part of memory access to minimize the time and 

area over which data and program are “in the clear.”  

Memory access is a rather less obvious choice. There have been several 

proposals to provide more indirection in memory access to facilitate garbage collection. 

How much energy could we save by checking memory accesses on a block-by-block 

rather than on a word-by-word basis? Array access mechanisms with stride and extent 

built into hardware could reduce software time and energy for the low level tasks 

required to step addresses through memory, to say nothing of relieving pressure on 

register space. Think of a special purpose memory access device able to execute your 

choice of a few different access patterns at little or no cost to software. 

Full-precision floating point is another option. Adding a million floating-point 

numbers accurately is difficult because the sum one computes may depend on the order 

of addition. A proper sum prevents a large value from overwhelming the contributions of 

many small values. Instead of sorting the numbers first, notice that the 11-bit exponent 

of a double-precision floating-point number is only 2048 positions. Double-precision 

floating-point numbers carry a 53-bit mantissa. Thus a fixed-point accumulator 

containing 2048 + 53 = 2101 bits can hold all double-precision floating-point values. 

Moreover, a 2101-bit accumulator is only a tiny part of a modern chip. It can add 

floating-point numbers with full precision by converting each to its fixed-point form 

before adding. The accumulator could use a carry-save form to conserve time and 

energy. Converting a sum back to floating-point notation will require carry resolution and 

normalization. If you allow me to do the easy cases fast and the harder cases more 

slowly, I!m sure I can produce any number of efficient ways to convert back to the 

standard floating-point form.  

SELF-TIMING AND COMPUTER ARCHITECTURE 

A notion of “data-absent” appears in many advanced programming 

languages. A String in Java can hold zero or more characters. A List of Names can 

have the type List<Name> and yet be empty. That!s a typed kind of emptiness. Yet the 

registers of my computer, r0 to r15, for example, have no concept of either type or 

emptiness. Might there be value in making “empty” a first class register value? 

I think so. For example empty registers might serve for communication. 

Suppose the machine instruction: add r0, r1 -> r2 finds r1 empty. Such an instruction 
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might stall until r1 gets a value. Because memory fetch takes so long, many score 

boarding schemes have a way to mark a register as “pending” until a value returns from 

memory. A similar approach might let programs communicate if one program could fill 

and another program could drain the register in question. 

Including EMPTY or FULL markers in a register is reminiscent of the FIFO 

discussion we shared earlier. Recall that a shared value that can be either EMPTY or 

FULL provides the essence of pipelining. I remind you that the UNIX pipe is one of the 

least painful forms of concurrency known to the programming world.  

A critical part of computer architecture is how to access a large register file 

with only a few bits of register address. Sparc uses “register windows” for just that 

purpose. Groups of registers form a stack with push and pop operations that bring 

different groups into play. Register windows allow a 5 bit register address to choose 

from more than 2**5 registers, albeit not all at the same time. 

Let us think of alternate register addressing schemes. Let us think of such 

schemes as providing virtual registers much as a memory map provides virtual memory. 

Such a scheme might map five-bit virtual register addresses into eight-bit real register 

addresses. Thought of as virtual addressing, would register windows be your scheme of 

choice? 

My scheme of choice would put a FIFO of registers at each register address. 

If each such FIFO were eight registers long, a five-bit register address, for instance, 

could access 2**5 FIFOs, each 8 registers long, for a total of 2**8 registers, albeit not all 

at once. Instructions accessing a FIFO would require extra bits to copy, consume or 

recirculate values from a FIFO. I note that a FIFO register is ideal for register renaming 

in loops.  

To implement FIFO registers requires a way to represent EMPTY or FULL. 

Such an architecture must offer a way to stall when attempting to write into a FULL 

FIFO or when attempting to read from an EMPTY FIFO. Such FIFO registers might be 

ideal for decoupling different phases of a software system, just as the UNIX pipe uses 

buffer memories to provide time independence to the piped processes. 

A FINAL WORD ABOUT ENERGY 

Clock gating is an important tool for reducing the energy consumption of a 

running computer. Clock gating avoids wasting energy on unnecessary clock signals to 

idle parts of the machine. Synchronous systems require elaborate logic to decide when 

to omit clock signals. 

The pipelines I!ve been talking about here offer clock gating for free. They 

produce only those timing signals necessary for copying. When data enter a 

communication channel, a state wire changes state to announce that the data are 

ready. If and only if latches can capture the data, a GasP circuit produces a suitable 
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timing signal that serves the role of a clock. Clock gating is truly free. Moreover, 

because we depend on timing only for local signals, clock skew is a non-problem.  

In our laboratory at Portland State University we!ve begun to explore another 

power-saving measure called “power gating.” Power gating avoids not only unnecessary 

energy consumption of unused clock signals, but also unnecessary energy loss to 

leakage of idle circuit elements. Power gating reduces the supply voltage to idle circuits 

to reduce their leakage and consequent energy loss. 

We!ve found power gating remarkably easy to implement in GasP. Power 

need be applied to a circuit only when it is in use OR in anticipation of impending use. 

That OR function is remarkably like the AND function already in each GasP module. 

Moreover, one of our students has simulations showing that the OR function and some 

additional drivers can turn power on before it!s needed. I love this idea because it's a 

remarkably simple solution to a problem that, at first, seemed hard.  

SIMPLICITY 

Simplicity is a necessary concomitant of reliability. Unfortunately some 

manufacturers think this too high a price to pay.  Sir C.A.R. (Tony) Hoare, KBE. 

The best Science and Engineering find simple answers. It has been my 

pleasure to observe close up the birth of a number of simple solutions. Here are five 

examples: 

1) Henri Gouraud noticed that simple linear shading could hide the edges of a 

polygonal surface from the human eye thus producing an illusion of smooth 

surface. This simple idea is the basis of his PhD thesis.  

2) Mark Raibert noticed that an automated pogo stick could use three entirely 

independent feedback systems to achieve stable operation. The first adds energy 

to keep the bouncing height constant. The second uses the hip joint during flight to 

ready the foot position for the next landing: placing the foot behind or in front of the 

balance point speeds or retards forward motion. The third uses the hip joint when 

the foot is on the ground to adjust the attitude of the body. Mark!s promotion to a 

tenured faculty position followed from the simplicity of this idea. 

3) I noticed a mathematical relationship between the complexity of a logic 

gate and its loss of ability as an electrical amplifier. I named this simple idea 

“Logical Effort.” Because doing logic and driving electrical loads are mathematically 

equivalent, one can easily choose transistor strengths for near-optimum 

performance. David Harris, Bob Sproull and I published a book on the subject. 

4) Scott Fairbanks and I noticed that self-timed pipelines require only a single 

AND function. We called the resulting circuit family GasP. Great performance 
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results from this simple observation because the Logical Effort of GasP circuits is 

very small.  

5) It now appears that power gating may yield to an equally simple solution. If 

so, we may be able easily to save energy in a variety of pipeline circuits.  
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Dock: Throughput vs Occupancy 
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