
Unclassified

Technical Repor No. 296

1. E. Stithedlan

,Sketchpad: A Man-Machine

Graphical

Communication System,

~jasu 16

Lincoln Lalboatory.
41ASSACHUIU5TTS WtRVTUTB O1 TIZUNOLOOY

Unclassified,

Unclassified

The work repotte in dthi oument was peformed at
Umlnui L~aoratory, a meim 1w roreearch opeate by
MASOAchttUN hU&%ftut Of Technology, with the JOWn

tjý he US.j Nayad AMr rorie aaade

NPLEAFpno mat momUR

Pr iseo In ire to det& hsw docesud
ulu hs Itw olmS2w~agded

Uticlassified '

Unclassified
C• • •/,•24'7

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

(2SKETCHPAD: A MAN-MACHINE GRAPHICAL

COMMUNICATION SYSTEM

I. E. SUTHERLAND

Group 51

IF ES D -TD Y 31'

(H) Q JAýNUARY 196

LEXINGTON MASSACHUSETTS

Unclassified 7
i

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM*

ABSTRACT

The Sketchpad system uses drawing as a novel means of communicating with a computer. The system
contains input, output, and computation programs that enable it to interpret information drawn
directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathe-
matical and animatea drawings; it is a general-purpose system. Sketchpod has shown the most use-
fulness as an aid to the understanding of processes, such as the motion of linkages, which can be
described with pictures. Sketchpod also makes it easy to draw highly repetitive or highly accurate
drawings and to change drawings previously drawn with it. The many drawings in this report, in-
cluding legends and labels, w'sre all made with Sketchpad.

A Sketchpad user sketches directly on a computer display with a "light pen!' The light pen is used
both to position parts of the drawing on the display and to point to them to change them. A set of
push buttons controls the changes to be made, such as "erase" or "move!' Except for legends, no
written language is used.

Information sketched can include straight line segments and circle arc'i. Arbitrary symbols may be
defined from any collection of line segments, circle arcs, and previously defined symbols. A user
may define and use as many syn,6bos as he wishes. Any change in the definition of a symbol is at
once seen wherever that symbol appears.

Sketchpod stores explicit information about the topology of a drawing. If the user moves one vertex
of a polygon, both adjacent sides will be moved. If the user moves a symbol, all lines attached to
that symbol will auiomatically move to stoyattached to it. The topological connections of the draw-
ing ore automatically indicated by the user as he sketches. Since Sketchpad is able to accept topo-
logical information from a human being in a picture language perfectly natural to the human, it can
be used as an input program for computation programs which require topological data, e.g., circuit
simulators.

Sketchpad itself is able to move parts of the drawing around to meet new conditions which the user
may apply to them. The user indicates conditions with the light pen and push buttons. For example,
to make two lines parallel, he successively points to the lines with the light pen and presses a but-
ton. The conditions themselves are displayed on the drawing so that they may be erased or changed
with the light pen language. Any combination of conditions can be definedas a composite condition
and applied in one step.

It is easy to odd entirely new types of conditions to Sketchpod's vocabulary. Since the conditions
can involve anything computable, Sketchpad can be used for a very wide range of problems. For
example, Sketchpod has been used to find the distribution of forces in the members of truss bridges
drawn with it.

Sketchpad drawings are stored in the computer in a speciaily designed "ring" structure. The ring
structure features rapid processing of topological information with no searching at all. The basic
operations used in Sketchpod for manipulating the ring structure are described.

* This report is based on a thesis of the some title submitted to the Department of Electrical Engi-

neering at the Massachusetts Institute of Technology on 7 January 1963, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

iii

ACKNOWLEDGMENT

I am indebted to Professors Claude E. Shannon and Marvin Minsky for their help

and advice throughout the course of this research. Their helpful suggestions at

several critical times gave Sketchpad much of its present character.

Special thanks are due to Professor Steven A. Coons of the Mechanical Engi-

neering Department and to Douglas T. Ross of the Electronic Systems Laboratory

at M. 1. T. Even though I was outside their Computer Aided Design group, they

gave at least as unstintingly of their time and ideas as if I had been their only

concern.

I owe a great debt to the M. 1. T. Lincoln Laboratory for the tremendous support

it afforded me. I wish to thank Wesley A. Clark and Jack L. Mitchell for mak-

ing the TX-2 computer available to me and for providing help to make the spe-

cial equipment I needed. I appreciate the helpful suggestions and interest that

they and all the members of Group 51 provided. SpecIalthanks are due Leonard

M. Hantman for the additions he made to Sketchpad.

The Research Laboratory of Electronics at M. I. T. provided me with office space

and congenial office mates whose discussion and interest I greatly appreciate.

Finally, I wish to thank Lawrence G. Roberts, who was a constant source of an-

swers to specific questions I had, both about the best ways to program TX-2 and

about the mathematics of difference equations and matrix manipulations.

IV

TABLE OF CONTENTS

Abstract
Acknowledgment iv
Glossary viii

CHAPTER I - INTRODUCTION

A. An Introductory Example I

B. Interpretation of the Introductory Example 6

C. Implications of the Introductory Example 7

D. Sketchpad and the Design Process 8

E. Present Usefulness 9

CHAPTER 2- HISTORY OF SKETCHPAD 11

CHAPTER 3 - RING STRUCTURE 15

A. N-Component Elements i5

B. Mnemonics and Conventions 15

C. Reverse Indexing 17
D. Ring Structure 17

E. Human Representation of Ring Structure 19

F. Basic Operations 19

G. Generation of New Elements 21
H. Booby Traps 21

I. Generic Structure: Hierarchies 23

J. Expanding Sketchpad 24

CHAPTER 4 - LIGHT PEN 25

A. Construction of Light Pen 25

B. Pen Tracking 27

C. Demonstrative Use of Pen 27

D. Demonstrative Language 29

E. Pseudo Pen Location 31

CHAPTER 5 - DISPLAY GENERATION 33

A. Marking of Display File 33

B. Coordinate Systems 35

C. Transformations and Scale Factors 35

D. Inside-Out and Outside-In Display 36

E. Coordinate Conversion and Edge Detection 37

F. The Service Program: Line and Circle Generation 37

G. Circle Closure 38

H. Display Programs 39

v

I . Display of Abstractions 41

J. Empty Displays 42

K. The As-Yet-Undreamt-of-Things that Will Be Displayed 42

CHAPTER 6 - RECURSIVE FUNCTIONS 43

A. Push-Down Lists 43

B. Dependent and Independent Elements 44

C. Recursive Deleting 44

D. Recursive Merging 45

E. Instances 46

F. Instances as Variables 47

G. Recursive Display of Instances 47

H. Attachers and Instances 48

I . Recursive Moving 49

CHAPTER 7 - BUILDING A DRAWING: THE COPY FUNCTION 51

A. Drawing vs Moving 51

B. Atomic Operations 51

C. Generalization of Atomic Operations 52

D. Copying Instances 53

E. The Mechanics of Copying 54

CHAPTER 8 - CONSTRAINT SATISFACTION 55

A. Definition of a Constraint Type 55

B. Numerical Definition of Constraints 56

C. Linearization of Constraints 57

D. The Relaxation Method 57

E. Least-Mean-Squares Fit to Linearized Constraints 58

F. One-Pass Method 58

CHAPTER 9 - EXAMPLES AND CONCLUSIONS A

A. Patterns 6t

B. Linkages 63

C. Dimensioning of Drawings 65

D. Bridges 65

E. Artistic Drawings 66

F. Electrical Circuit Diagrams 67

G. Conclusions 67

H. Future Work 70

I . Hardware 70

Vi

APPENDIX A - CONSTRAINT DESCRIPTIONS 73

APPENDIX B - PUSH BUTTON CONTROLS 75

APPENDIX C - STRUCTURE OF STORAGE BLOCKS 77

APPENDIX D - RING OPERATION MACRO INSTRUCTIONS 81

APPENDIX E - PROPOSAL FOR AN INCREMENTAL CURVE
DRAWING DISPLAY 83

APPENDIX F - MATHEMATICS OF LEAST-MEAN-SQUARES FIT 86

APPENDIX G - A BRIEF DESCRIPTION OF TX-2 88

I. In-Out 88

II. "Configured" Data Processing 88

III. The Smaller Virtues 89

IV. Summary of Vital Statistics for the TX-2 (December 1962) 90

V. In-Out Equipment 90

BIBLIOGRAPHY 91

vii

GLOS8ARY

4-thing A four-component variab.: text, O~igts, or instance.

Aim To place the light pen so that light from the picture part
aimed at falls on the photocell and so that the center of the
light pen field of view is sufficiently close to the picture
part.

Atomic Axiomatic, fundamental, built in. The atomic constraints
are listed in Appendix A. The atomic operations are each
controlled by a push button listed in Appendix B.

Attacher For instances, a particular point designated in the master
for which in the instance the light pen will have a particular
affinity. Also the related point created in the picture con-
taining the instance when the instance was created.

For copyLng, any drawing part designated in the definition
picture. Attachers may be recursively merged with ob tec
pilcture parts when the definition is copied.

Balance The property of equal weight among constraints obtained by
making erro in a constraint equal to displacement.

Block A set of consecutive registers used to represent a picture
part. An n-component element.

Chicken A subordinate ring member composed of two registers, one
of which references the block containing the hen for this ring.
The other references the next and previous chickens in the
ring.

Circle A circle arc. A full circle is a circle arc 3600 or more in
length.

Constraint A specific storage representation of a relationship between
variables which limits the freedom of the variables, i.e.,
reduces the number of degrees of freedom of the system.
Also, constraint is sometimes used to mean a type of con-
straint, as in "there are seventeen atomic constraints.*

Constraint The process of moving variables so that all the conditions
satisfaction on them embodied in the constraints are met. It is not

always possible.

Copying Duplication in storage of the ring structure of a definition
picture. A copy is not to be confused with an instance.
Any instance may be changed into a copy by dismembering.

Dcfinition A master picture. Especially a picture to be used for
copying, usually containing a combination of atomic con-
straints. Also the error computation routine associated
with a constraint.

Delete To erase. Deleted blocks become garbage.

Digits A set of five decimal digits pius sign, with leading zeros
suppressed. As a variable, digits may be moved, rotated,
or made larger on the display. The particular value displayed
Is that of an associated scalar and may be changed only by
molng the scalar.

viii

Dismembering The process of changing an instance into a rgpy by creating
in the ring structure a duplicate of the internal structure of
the instance's master and removing the instance. A dis-
membered instance becomes a group of lines, etc., which
may be individually move. , deleted, etc. Dismembering
peels off only one layer of instance at a time.

Dummy variable A particular two-component variable used to locate the arms
of a constraint when it is first created. Dummy variables
may Mergt with any other kind of variable, leaving any at-
tached constraints applying to that variable. Display for a
dummy variable is X.

Error The number computed by the definition subroutine for a con-
strain•. Error is zero if the constraint is satisfied and grows
monotonically as the constrained variables are moved.

File A storage structure. A file may be in either list form or
table form. Also a collection of magnetic tape records.

Free A variable which has so few constraints on it that it may
be moved to satisfy all of them. Such a variable will be
in the FREEDOMS King.

Garbage Free storage inside the range of storage addresses being
ased to represent the drawing.

Hen A pair of registers in a block used to indicate the first
and last references made to that block by the chickens be-
longing in the hen's ring. Also called a key.

Instance A fixed geometry subpicture represented very compactly in
storage by reference to a master and indication by four num-
bers of the sizc, rotation, and location of the subpicture.
Internal structure of an instance is visible and may contain
other instances, but since it is identical in appearance to the
master it cannot be changed without changing the master. Ex-
cept for size, rotation, and location, all instances of one
master look the same.

Key See ben.

Line A line segment. No representation for a line of infinite
length exists in Sketchpad.

Line segment A topological thing connecting two points. Contains no nu-
merical information. Sometimes called a line.

List A parttulat form of storage structure in which each element
stores not only the information pertinent to it but also the
address of the next element. Not to be confused with a table.

Location A position in the coordinate system represented by a pair of
coordinates. Not to be confused with a point which has a lo-
cation. Also the address of a particular piece of information
in storage.

Master A picture used to define the visible internal structure of an
Instance.

ix

Merging Combination of two storage blocks to Identify two picture
parts, which must be of like type, permanently. The re-
sult of a merger of variables takes on the value of the
historically older variable. In the ring structure, merg-
ing makes one block out of two, reducing the other to
garhage. In certain cases merging is recursive.

Moving Changing the numerical information stored in a variable.
Moving a poin.t stores a new coordinate location over the
previous one. Moving an instance, text, or digits includes
size change and rotation. Moving a scalar implies changing
its value but does not change the position of Its display.
Moving is also the state a thing is in when it is attached to
the light pen; It may be stationary on the display. Moving
is not to be confused with relocating.

N-component A particular form of storage in which various properties
element of each object represented are stored in consecutive reg-

isters. Also the block of registers representingan object.

Numbers See scalars and dgiLts. Number often refers to digits and
scalars collectively. Also the binary numbers stored for
a variable.

Object A particular picture currently being worked on. Especially
picture a complicated picture of particular interest to a user as

opposed to a definition or master picture which is to be used
as a portion of the object picture.

Older The older of two blocks is the one with the lowest-numbered
address, illustrated higher on the page. Since new blocks
are taken from the free space in addresses numbered higher
than the drawing storage, an older block was usually created
sooner.

Picture A storage device to collect together related drawing parts.
"A "sheet of paper." Also the lines, points, instances, and
constraints, etc., that are drawn in the picture, collectively.
Pictures are numbered so that any one may be called to
appear on the display. Within the limits of storage, as many
pictures as desired may be set up and used.

Point A specific representation in the ring structure used as an
end point for a line segment. Not to be confused with loca-
tion or spot. Also as a verb, to aim at something with the
Iight pen.

Pnlnter A storagý rcglstcr that contains t~hc lu•.atlujt uf aluAher
storage register rather than numerical data. Such a reg-
ister is said to point to the register whose address it
contains.

Pseudo pen A location near the axis of the light pen that is used as the
location "point of the pencil," The pseudo pen location lies exactly

on an existing point or line or circle or at the intersection
of lines if the pen is aimed at them. -

Relocating Changing the address at which a particular block is stored
in memory. Not to be confused with movin.

Result The single thing which remains after two things have been
metrged.

x

Ring A set of poInters that closes on itself. In Sketchpad, all
rings point both forward and back. A ring is composed of
one hen and many chickens.

Ring structure The type of storage structure used to represent the

drawing's topology. See ring.

Satisfy See constraint satisfaction.

Scalar A one-component vector whose value can be displayed by
a set of digits. For display of the scalar Itself a* is used.

Spot One of the bright dota on the display. Not to be confused
with point or location.

Table A form of storage structure in which successive pieces of
information are stored in successive registers in memory.
Tables are the "conventional" form of storage. See also
lit and ring structure.

Termination The process of taking things out of the moving state.
Termination is usually accomplished by giving a flick of
the light pen. Pressing "stop" also terminates. Upon
termination, merging may take place.

Texts Lines of textual material typed in and appearing in a
standard type style on the picture. Text is treated as a
four-component variable.

Tie An attacher.

Value The particular information stored in the numerical portion
of a variable; e.g., the location of a point. Especially the
value of a scalar as opposed to the location of the set of djigtjs
displaying this value.

Variable A picture part that contains numerical information. Scalars,points, instance s, texts, digits and dummy 9 are the
only variables at present. Also used to denote a type of
variable.

xi

SKETCHPAD: A MAN-MACHINE GRAPHICAL
COMMUNICATION SYSTEM

CHAPTER 1
INTRODUCTION

The Sketchpad system makes it possible for a man and a computer to converse rapidly

through the medium of line drawings. Heretofore, most interaction between men and computers

has been slowed down by the need to reduce all communication to written statements that can be

typed; in the past, we have been writing letters to rather than conferring with our computers.

For many types of communication, such as describing the shape of a mechanical part or the con-

nections of an electrical circuit, typed statements can prove cumbersome. The Sketchpad sys-

tem, by eliminating typed statements (except for legends) in favur of line drawings, opens up a

new area of man-machine communication.

The decision to implement a drawing system reflected our feeling that knowledge of the fa-

cilities which would prove useful could be obtained only by actually trying them. The decision

to implement a drawing system did not mean, however, that brute force techniques were to be

used to computerize ordinary drafting tools; it was implicit in the research nature of the work

that simple new facilities should be discovered which, when implemented, should be useful in a

wide range of applications, preferably including some unforeseen ones. It has turned out that the

properties of a computer drawing are entirely different from those of a paper drawing not only

because of the accuracy, ease of drawing, and speed of erasing provided by the computer, but

also (and primarily) because drawing parts can be moved around on a computer drawing without
being erased. Had a working system not been developed, our thinking would have been too

strongly influenced by a lifetime of drawing on paper for us to discover many of the useful serv-

ices that the computer can provide.

As the work has progressed, several simple and very widely applicable facilities have been
discovered and implemented. They provide a subpicture capability for including arbitrary syrn-

bols on a drawing, a constraint capability for relating the parts of a dra-ving in any computable

way, and a definition copying capability for hiulding complex relationships from comnbinations

of simple atomic constraints! When combined with the ability to point at picture parts given by
the demonstrative light pen language, the subpicture, constraint, and definition copying capa-

bilities produce a system of extraordinary power. As was hoped at the outset, the system is

useful in a wide range of applications, and unforeseen uses are being discovered.

A. AN INTRODUCTORY EXAMPLE

To understand what is possible with the system at present, let us consider using it to draw

the hexagonal pattern of Fig. I.t. We will issue specific commands with a set of push buttons,

* Terms with speciolized meanings are listed in the Glosmry, p.viii.

FIGURE 1.1] HEXAGONAL PATTERN

turn functions on and off with switches, indicate position information and point to existing drawing

parts with the light pen, rotate and magnify picture parts by turning knobs, and observe the draw-

ing on the display system. This equipment, provided at Lincoln Laboratory's TX-Z computer,1

is shown in Fig. 1.2. When our drawing is complete it may be inked on paper, as were all the

drawings in the report (including legends and labels), by the plotter2 shown in Fig. 1.3. It is our

intent to show with this example what the computer can do to help us draw. We will leave the de-

tails of how it performs its functions for the chapters which follow.

If we point the light pen at the display system and press a button called "draw," the computer

will construct a straight line segment* which stretches like a rubber band from the initial to the

present location of the pen, as shown in Fig. 1.4. Additional presses of the button will produce

additional lines until we have made six, enough for a single hexagon. To close the figure we re-

turn the light pen to near the end of the first line drawn, where it will "lock on" to the end ex-

actly. A sudden flick of the pen terminates drawing, leaving the closed irrPgifler hpxagon shown

in Fig. 1.5A.

To make the hexagon regular, we can inscribe it in a circle. To draw the circle we place

the light pen where the center is to be and press the button "circle center," leaving behind a cen-

ter point. Now, choosing a point on the circle (which fixes the radius), we press the button

"draw" again, this time getting a circle arc* whose length only is controlled by light pen position

as shown in Fig. 1.4.

Next we move the hexagon into the circle by pointing to a corner of the hexagon and press-

ing the button "move" so that the corner follows the light pen, stretching two rubber band line

* The terms "circle" and "line" may be used in place of "circle arc" and "line segment," respectively, since a
full circle in Sketchpad is a circle arc of 360 or mare degrees and no Infinite line can be drawn.

Figure 1.2. TX-2 operating area - Sketchpad in use. On the display can be seen part of a bridge

similar to that shown in Fig. 9.6. The author Is holding the light pen. The push buttons used to
control specific drawing functions are on the box in front of the author. Part of the bank of toggle
switches can be seen behind the author. The size and position of the part of the total picture seen
on the display is obtained by means of the four black knobs just above the table.

3

44

Figure 1.3. Plotter used with Sketchpod. A digital and analog control system makes the plotter
draw straight lines and circles either under direct control of the TX-2 or off-line from punched
paper tape.

4

-START DRAW

PATH DF LIGH

LINE SEGMENT DRAWN .

TERMINATE-./

PATH OF LIGHT PEN

START DRAW .-.

CIRCLE CENTER -ý
1411I~j@blIARC OýBTAINED-

TERMINATE--

F I GURE 1.4.A. SIX SIDED FIGIRE B. TO BE INSCRIBED IN CIRCLE LINE AND C I RCLE DRAWING

D D0
C. BY MOVING EACH CORNER D. ON TO CIRCLE

0
E. MAKE SIDES EQUAL F. ERASE CIRCLE

G. CALL 7 HEXAGON.S . IOIN CORNERS

FIGURE 1.5, ILLUSTRATIVE EXAMPLE

7;5

segments behind it. By pointing to the circle and giving the termination flick, we indicate that

the corner is to lie on the circle. Each corner is in this way moved onto the circle at roughly

equal spacing around it as shown in Fig. t.5D.

We have indicated that the vertices of the hexagon are to lie on the circle, and they will re-

main on the circle throughout our further manipulations. If we also insist that the sides of the

hexagon be of equal length, a regular hexagon will be coy structed. This we can do by pointing

to one side and pressing the "copy" button, and then to another side and giving the termination

flick. The button, in this case, copies a definition of equal-length lines and applies it to the lines

indicated. We have said, in effect, make this line equal in length to that line. We indicate that

all six lines are equal in length by five such statements, The computer satisfies all existing

conditions (if it is possible) whenever we turn on a toggle switch. This done, we have a complete

regular hexagon inscribed in a circle. We can erase the entire circle by pointing to any part of

it and pressing the "delete" button. The completed hexagon is shown in Fig. t.SF.

To make the hexagonal pattern of Fig. 1.1, we wish to attach a large number of hexagons to-

gether by their corners; therefore, we designate the six corners of our hexagon as attachment

points by pointing to each and pressing a button. We now file away the basic hexagon and begin

work on a fresh "sheet of paper" by changing a switch setting. On the new sheet we assemble,

by pressing a button to create each hexagon as a subpicture, six hexagons around a central sev-

enth in approximate position as shown in Fig. 1.5G. Subpictures may be positioned, each in its

entirety, with the light pen, rotated or scaled with the knobs, and fixed in position by the pen-

flick termination signal, but their internal shape is fixed. By pointing to the corner of one hex-

agon, pressing a button, and then pointing to the corner of another hexagon, we can fasten the

corners together, because they have been dev :gnated as attachment points. If we attach two

corners of each outer hexagon to the appropriate corners of the inner hexagon, the seven are

uniquely related, and the computer will reposition them as shown in Fig. 1.5H, An entire group

of hexagons, once assembled, can be treated as a symbol. The entire group can be called up on

another "sheet of paper" as a subpicture and assembled with other groups or with single hexagons

to make a very large pattern. Using Fig. 1.5H seven times we get the pattern of Fig. 1.1. Con-

structing the pattern of Fig. 1.1 takes less than five minutes with the Sketchpad system.

B. INTERPRETATION OF THE INTRODUCTORY EXAMPLE

In the introductory example above we have seen how to draw lines and circles and how to

move existing parts of the drawing around. We used the light pen both to position parts of the

drawing and to point to existing parts. For example, we pointed to thp circle to erase it, and

while drawing the sixth line, we pointed to the end of the first line drawn to close the hexagon.

We also saw in action the very general subpicture, constraint, and definition copying capabilities

of the system.

(1) Subpicture. The original hexagon might just as well have been anything
else: a picture of a transistor, a roller bearing, an airplane wing, a
letter, or an entire figure for this report. Any number of different sym-
bols may be drawn, in terms of other simpler symbols if desired, and
any symbol may be used as often as desired.

(2) Constraint. When we asked that the vertices of the hexagon lie on the
circle we were making use of a basic relationship between picture parts
that is built into the system. We have included in the system basic rela-
tionships (atomic constraints) to make lines vertical, horizontal, parallel,
or perpendicular; to make points lie on lines or circles; to make symbols

6

appear upright, vertically above one another or of equal size; and to
relate symbols to other drawing parts such as points and lines. It is
so easy to program new constraint types that the set of atomic con-
straints was expanded from five to the seventeen listed in Appendix A
in a period of about two days; specialized constraint types may be added
as needed.

(3) Definition copying. In the introductory example we asked that the sides
of the hexagon be equal in length by pressing a button while pointing to
the side in question. Here we were using the definition copying capa-
bility of the system. Had we defined a composite operation such as to
make two lines both parallel and equal in length, we could have applied
it just as easily. The number of operations which can be defined from
the basic constraints applied to various picture parts is almost unlim-
ited. Useful new definitions are drawn regularly; they are as simple as
horizontal lines and as complicated as dimension lines complete with
arrowheads and a number which indicates the length of the line correctly.
The definition copying capability makes using the constraint capability
easy.

C. IMPLICATIONS OF THE INTRODUCTORY EXAMPLE

As we have seen in the introductory example, drawing with the Sketchpad system is different

from drawing with an ordinary pencil and paper. Most important of all, the Sketchpad drawing

itself is entirely different from the trail of carbon left on a piece of paper. Information about

how the drawing is tied together, as well as the information which gives the drawing its particular

appearance, is stored in the computer. Since the drawing is tied together, it will keep a useful

appearance even when paits of it are moved. For example, when we moved the corners of the

hexagon onto the circle, the lines next to each corner were automatically moved so that the closed

topology of the hexagon was preserved. Again. since we indicated that the corners of the hexagon

were to lie on the circle, they remained on the circle throughout our further manipulations.

It is this ability to store information relating the parts of a drawing to each other that makes

Sketchpad most useful. For example, the linkage shown in Fig. 1.6 was drawn with Sketchpad in

just a few minutes. Constraints were applied to the linkage to keep the length of its various

members constant. Rotation of the short central link is supposed to move the left end of the

S108 10§;3]

FIGURE 1.6.
FOUR POSITIONS OF LINKAGE
NUMBER SHO1WS LENGTH OF DOTTED LINE

7

dotted line vertically. Since exact information about the properties of the linkage has been stored

in Sketchpad, it is possible to observe the motion of the entire linkage when the short central link

is rotated. The value of the number in Fig. 1.6 was constrained to indicate the length of the dotted

line, so that the actual motion can be compared with the vertical line at the right of the linkage.

One can observe that for all positions of the linkage the length of the dotted line is constant, dem-

onstrating that this is indeed a straight-line linkage, Other examples of moving drawings made

with Sketchpad may be found in the final chapter.

Sketchpad stores not only the relationships of various parts of the drawing, but also the struc-

ture of the subpicture used. For example, the storage for the hexagonal pattern of Fig. 1.4 indi-

cates that this pattern is made up of smaller patterns which are in turn made up of smaller pat-

terns which are composed of single hexagons. If the master hexagon is changed, the entire ap-

pearance of the hexagonal pattern will be changed. The structure of the pattern will, of course,

be the same. For example, if we change the basic hexagon into a semicircle, the fish-scale

pattern shown in Fig. 1.7 instantly results.

T: 51: 21=41

FIGURE 1.7,

'-\AND >-',ON SAME LATTICE

Since Sketchpad stores the structure of a drawing, a Sketchpad drawing explicitly indicates

similarity of symbols. In an electrical drawing, for example, all transistor symbols are created

from a single master transistor drawing. If some change in the basic transistor symbol is

made, this change appears at once in all transistor symbols without further effort. Most impor-

tant of all, the computer "knows" that a "transistor" is intended at that place in the circuit. It

has no need to interpret the collection of lines which we would easily recognize as a transistor

symbol. Since Sketchpad stores the topology of the drawing, as we saw in closing the hexagon,

one indicates both what a circuit looks like and its electrical connections when one draws it with

Sketchpad. One can see that the circuit connections are stored because moving a component

automatically moves any wiring on that component to maintain the correct connections. Sketchpad

circuit drawings will soon be used as inputs for a circuit simulator. Having drawn a circuit one

will find out its electrical properties.

D. SKETCHPAD AND THE DESIGN PROCESS

Construction of a drawing with Sketchpad is itself a model of the design process. The loca-

tions of the points and lines of the drawing model the variables of a design, and the geometric

constraints applied to the points and lines of the drawing model the design constraints which

limit the values of design variables, The ability of Sketchpad to satisfy the geometric constraints

applied to the parts of a drawing models the ability of a good designer to satisfy all the design

conditions imposed by the limitations of his materials, cost, etc. In fact, since designers in

8

many fields produce nothing themselves but a drawing of a part, design conditions may well be

thought of as applying to the drawing of a part rather than to the part itself. If such design con-

ditions were added to Sketchpad's vocabulary of constraints, the computer could assist a user not

only in arriving at a neat drawing, but also in arriving at a sound design.

E. PRESENT USEFULNESS

At the outset of the research no one had ever drawn engineering drawings directly on a com-

puter display with nearly the facility now possible, and consequently no one knew what it would

be like. We have now accumulated about a hundred hours of experience in actually making draw-

ings with a working system. As shown in the final chapter, computer drawing techniques have

been applied to a variety of problems. As more and more applications have been made it has

become clear that the properties of Sketchpad drawings make them most useful in four broad

areas:

(1) For making small changes to existing drawings. Each time a drawing is
made, a description of that drawing is stored in the computer in a form
that is readily transferred to magnetic tape. Thus, as time passes, a
library of drawings will develop, parts of which may be used in other draw-
ings at only a fraction of the investment of time that was put into the orig-
inal drawing. Since a drawing stored in the computer may contain ex-
plicit representation of design conditions in its constraints, manual change
of a critical part will automatically result in appropriate changes to related
parts.

(2) For gaining scientific or engineering understanding of operations that can
be described graphically. The description of a drawing stored in the
Sketchpad system is more than a collection of static drawing parts, lines
and curves, etc. A drawing in the Sketchpad system may contain ex-
plicit statements about the relations between its parts so that as one part
is changed the implications of this change become evident throughout the
drawing. It is possible, as we saw in Fig. 1.6. to give the property of
fixed length to lines so as to study mechanical linkages, observing the
path of some parts when others are moved.

As we saw in Fig. 1.7, any change made in the definition of a subpicture
is at once reflected in the appearance of that subpicture wherever it may
occur. By making such changes, understanding of the relationships of
complex sets of subpictures can be gained. For example, one can study
how a change in the basic element of a crystal structure is reflected
throughout the crystal.

(3) As a topological input device for circuit simulators, etc. Since the ring
structure storage of Sketchpad reflects the topology of any circuit or
diagram, it can serve as an input for many network or circuit simulating
programs, The additional effort required to draw a circuit completely
from scratch with the Sketchpad system may well bc rccompenrcd if the
properties of the circuit are obtainable through simulation of the circuit
drawn.

(4) For highly repetitive drawings. The ability of the computer to reproduce
any drawn symbol anywhere at the press of a button, and to recursively
include subpictures within subpictures makes it easy to produce drawings
which are composed of huge numbers of parts all similar in shape. Great
interest in doing this comes from people in such fields as memory develop-
ment and micrologic where vast numbers of elements are to be generated
at once through photographic processes. Master drawings of the repetitive
patterns necessary can be easily drawn. Here again, the ability to change
the individual element of the repetitive structure and have the change at
once brought into all subelements makes it possible to change the elements
of an array without redrawing the entire array.

Those readers who are primarily interested in the application of Sketchpad are invited to

turn next to Chapter 9, p. 6 1, for additional examples and conclusions.

9

CHAPTER 2
HISTORY OF SKETCHPAD

When work on Sketchpad began, the application of computers to geometric problems was not

new. Development of the APT (Automatically Programmed Tool) through which a computer is

able to control a milling machine to produce a complex metal part had evolved many useful geo-

metric manipulation techniques. However, little practical work had been done in the application

of computers to line drawings in spite of the fact that display systems and light pens were rela-

tively common.

But the availability of computer-controlled display systems and particularly of light pen de-

vices for manual input made it almost inevitable that computers would one day be involved in

engineering drawing. People at M.I.T., for example, had long talked of such an application, and

for two or three years there had been an EAI (Electronic Associates Incorporated) plotter. at

Lincoln Laboratory, where interest in the project had faded for lack of a user.

At the end of the summer of 1960, 1 learned that there was considerable interest at Lincoln

Laboratory in making a computer "more approachable" through advanced use of displays, but it

was not until I became familiar with the use of display and light pen while working on the TX-0

computer at M.I.T. during the winter of 1960- 1961 that I began to realize how fruitful the appli-

cation of computers to making line drawings might be.

Late in April 1961 1 made arrangements to use the TX-2 computer at Lincoln Laboratory in

an investigation of computer drawing techniques. Many design featurest useful for my purpose

had already been incorporated into the TX-2,* seemingly with just such a project in mind. More-

over, some preliminary drawing work 3 had already been done on TX-2, and this was demon-

strated for me in May. During the months that followed I devised a curve-tracing program and

some of the first notions about interlaced and twinkled display. Then, late in the summer of

1961, a project to connect an ink-line-on-paper plotting system to TX-2 was revived.

Thus it was that in the fall of 1961 work began in earnest on a drawing system for TX-2.

In the early fall I perfected my light pen tracking programs and subroutines for displaying

straight lines and presenting a portion of the total picture on the display at increased magnifi-

cation, In early November 1961, my first light-pen-controlled drawing program was working.

It is significant that at this time the concept of "strong conditions" governed attempts to give

geometric nicety to the drawing. For example, lines could be drawn parallel or perpendicular

to existing lines but carried no permanent trace of the relationship other than the accident of

their position. This eaily effort in effect provided the T-square and triangle capabilities of con-

ventional drafting.t An attempt to include circle capability in the system, however, showed that

the "strong conditions" notion that simulated the conventional tools of drafting was not adequate

for computer drawing.

*Whatever success the Sketchpad effort has had can in no small measure be traced to the use of TX-2, which is
described briefly in Appendix G. TX-2'$ 70,000 word memory, 64 index registers, flexible input-output con-
trol and liberal supply of manual intervention facilities such as toggle switches, shaft encoder knobs, and push
buttons all contributed to the speed with which ideas could be tried and accepted or rejected. Moreover, since
TX-2 was an experimental machine, minor modifications could be made to match it better to the problem. For
example, a push button register was installed at my request. Now that we know what drawing on a computer is
like, much smaller machines can be used for practical applications.

t Somewhat before my first effort was working, Welden Clark of Bolt Beranek and Newman demonstrated a sim-
ilar progam to me on the PDP-l computer.4

iI

In December 1961, and during the first part of 1962, then, I began working on the problems

of display generation for circles (outlined in Chapter 5) that finally resulted in the full new capa-

bility of the computer-aided drafting system. The circle-generating subroutine gave great diffi-

culty, especially in the details of edge detection and closure. At about this same time I started

work on the ring struct6re representation of the drawing outlined in Chapter 3; the preliminary

drawing effort of November 1961 had used conventional table storage. By the first of February

1962, the ring structure was in use, but without the generic blocks that give it its present flexi-

bility. Intersection programs for lines and circles had been written and debugged, and the sec-

ond generation drawing program could be begun.

In making the second generation drawing program, explicit representation of constraints

and automatic constraint satisfaction were to be included. I learned of the matrix method de-

scribed in Appendix F for finding the minimum-mean-square-error solution to linear equations

from Lester D. Earnest of the MITRE Corporation and obtained a macro, SOLVE, from

Lawrence G. Roberts that did the arithmetic involved. 5 Armed with the tools for representing

and doing arithmetic for constraints, I went ahead with programming.

In the first attempt at representing constraints I made two basic errors that have subse-

quently been corrected. First, I provided that the constraints be tied not only to the variables

constrained but also to related nonvariables. Fur example, the horizontal constraint not 3nly

referred (as it should) to tie two end points of a line, but also to the line itself. It was impos-

sible to make points have the same y-coordinate without having a line between them; deletion of

the line deleted the constraint as well. In more recent work, constraints refer only to variables,

so that lines need not be present to make points have the same y-cuordinatc.

The second error in constraint representation was in the numerical computation of the rela-

tionship represented by the constraint. At first I insisted that, for any constrained variable,

it must be possible to compute directly the linear equation of best fit to the constraint. That is,

for each constraint on a variable the equation of a line could be found along which the constraint

would be satisfied, or nearly so. Not only was it difficult to compute the equation of such a line,

a process that required a special-purpose program for each type of constraint, but also my lack

of regard for the niceties of the scale factor of the computed equation resulted in instabilities in

the constraint satisfaction process. Whereas for the relaxation procedure to operate properly

it is necessary to remove "energy" from the system at each stage, my computations for certain

cases added energy. It was early summer of 1962 before definition of the mathematical proper-

ties of constraint types in terms of a subroutine for computing directly the error introduced by

a constraint not only cured the instability troublcs but also made it easy to add new constraint

types.
Along with the new capabilities of the constraint satisfaction programs and the extensive use

to be made of constraints, the second generation drawing program included for the first time the

recursive instance expansion that made possible instances within instances. The trials of getting

systems to work are many; one which stands out in my mind was that instances within instances

rotated in the wrong direction when the outer instance was rotated. Neither were the things I

tried to do always correct. For example, the initial instance expansion routine forced each in-

stance of a picture to be smaller than the master drawing for that instance. I have since come

to appreciate the value of having some normalizing factor in products so that all fixed-point num-

bers can be treated as signed fractions in the range - I > x >, 1, representing the fraction of full-

scale deflection on the coordinate system in question.

I2

In late March 1962, I discovered that points could be related to Instances through the use of

two linear equations relating the coordinates of the point to the four components of the instance

position. Once I was armed with this new information, the difficulties I had been having with at-

tachers on instances yielded to the same general format used for other constraints. It became

possible for a single instance to have as many attachers as desired, each of which could serve as

attachment point for any number of instances.

The first actual programming of the mnaze-solving high-speed constraint satisfaction methods

proposed much earlier began about March 1962. I had not had enough experience before that time

with the ring structui e to undertake the extensive ring manipulations required for this part of the

work. The development of the ring manipulation macros shown in Appendix D was started in

connection with the maze-solving routines.

By Memorial Day 1962, the second version of Sketchpad was considered working well enough

that a motion picture was made showing the various drawing manipulations possible. It was pos-

sible to draw line segments and circle arcs and point to them to erase them or move the points

on which they depend. A limited number of constraints were available which could make lines

horizontal or vertical, force points to lie on lines or circles, and relate instances to their at-

tachment points. Constraint satisfaction was achieved primarily by relaxation, but for certain

simple cases the maze-solving methods would give more rapid results. It was possible to see

that sketching could indeed be done on the computer.

Not yet available were display for points or constraints, or any notion of digits, text, sca-

lars and dummy variables. It was almost impossible to add new constraint types to the system,

and even had they been added, the recursive merging and the definition copying capability were

not available to apply them easily to the object picture. Sketchpad at this stage was a nice dem-

onstration and toy, but as yet it lacked the richness of detail now available.

During the late spring of 1962, then, enough experience had been gained with computer draw-

ings to realize that more capabilities were needed. Supplied with photographs of the latest devel-

opments, I could approach a great many people in an effort to get new ideas to carry the work on

to a successful conclusion. Out of such discussions came the notions of copying definitions and

of recursive merging which are, to me, the most important contributions of the Sketchpad sys-

tem. Also out of these talks came the conviction that a generic structure would be necessary if

the system were to be made easy to expand. On 9 June 1962, all this new information was co-

ordinated in the inception of an entirely new system, which has grown with relatively little change

into the final version described here. Had I the work to do again, I could start afresh with the

sure knowledge that generic structure, separation of subroutines into general-purpose ones ap-

plying to all types of picture parts and others specific to particular types of picture parts, as

well as unlimited applicability of functions (e.g., anything should be movable) would more than

recompense the effort involved in achieving them.

Toward the end of summer, 1962, the third and final version of Sketchpad was beginning to

show remarkable power. I had the good fortune at this time to obtain the services of a Lincoln

Laboratory staff programmer, who added innumerable service functions (such as magnetic tape

manipulation routines) to the system, shortened and improved my original ring manipulation

macros, and added plotting programs to Sketchpad through which the figures in this paper

were made. Thus, toward the end of summer the plotting system began to be able to give

usable output.

13

Computer time began to be spent less and less on program debugging and more and more on

applications of the system. It was possible to provide preliminary services to other people, so

a user group was formed and informal instruction was given in the use of Sketchpad. A library

taoe was obtained and has ever since been collecting pictures for possible future use. The user

group experience showed that relatively new users with no programming knowledge could produce

simple drawings with the system if a skilled user prepared the building blocks necessary. For

example, a secretary designed and drew an alphabet with the aid of a 10 X 10 raster of points to

use as end points. Both the raster and the alphabet are now a part of the library.

Even now, however, there are possibilities for application of the system not yet even

dreamed of. The richness of the possibilities of the definition copying function, and the new types

of constraints that might easily be added to the system for special purposes suggest that further

application will create a new body of knowledge concerning system application. For example,

the bridge design examples shown at the end of this paper were not antiripated.

There arc, of course, limitations to the system. In Chapter 9 improvements are suggested;

some are minor changes, but some are major additions that would change the entire character of

the system. It is to be hoped that future work will far surpass my effort.

14

CHAPTER 3
RING STRUCTURE

The Sketchpad system stores information about drawings in two separate fo~ms. One is a

table of display spot coordinates designed to make display as rapid as possible; the other is a

file designed to contain the topology of the drawing. The topological file is set up in a specially

designed ring structure which will form the major subject of this chapter. The ring structure

was designed to permit rearrangement of the data storage structure for editing pictures with a

minimum of file searching, and to permit rapid constraint satisfaction and display file genera-

tion. The ring structure was not intended to pack the requiked information into the smallest

possible storage space. We felt that we could write faster running programs in less time by

including some redundancy in the ring structure. This was considered more important than

the ability to store huge drawings. Moreover, the large storage capacity of the TX-2 did not

force storage conservation. The particular form of the ring structure chosen has led to some

of the most interesting features of the system simply because the changes required to keep the

ring structure consistent led to useful facilities such as recursive merging, discussed in

Chapter 6.

A. N-COMPONENT ELEMENTS

In the drawings made by the Sketchpad system there are large populations of relatively few

types of entities with very little variation in format between entities of each type. For example,

an entire drawing may be composed of line segments and end points, each line segment connect-

ing exactly two end points, and each point having exactly two coordinates. Because of this uni-

formity within each given type of entity, it is possible to set up a standard storage format for

each type of entity with standardized locations for information about the various properties

which entities of that particular type usually have. Each entity, therefore, is represented in

the computer as an n-component element, that is, by a block of n consecutive registers in

storage, each of which contains a specific kind of information about that element. For example,

the coordinates of a point are always stored in the ith and jth registers of its n-component ele-

ment or block. Similarly, the nth and mth registers of a line block always contain the addresses

of the start and end point blocks for that line, as Fig. 3.1 shows. Particular numericai locations

for various pieces of information are shown in Appendix C.

B. MNEMONICS AND CONVENTIONS

In using n-component elements it has been found useful to give symbolic names to the vari-

ous registers of each element so that the actual numerical locations of various kinds of informa-

tion need not be remembered. Thus, for example, the coordinates of a point are stored in the

PVALth (for Point VALue) and PVAL + Ist registers of its n-component element. Since all

programming for Sketchpad is done in a symbolic programming language in terms of mnemonics,

it is easy to rearrange the internal format of any kind of n-component element by changing the

numerical values assigned to the mnemonic symbols used within that kind of element. In the

figures in this report, symbolic locations of pieces of data within n-component elements are

shown to the right of the data. Actual register addresses are shown to the left of the data. The

position of particular pieces of data may change from figure to figure as it becomes necessary

LINE

POINT A UP
POINT B LEP

POINT A POINT POINI B OINT

X COM lNAE PVAL X CPMINAE FVAL
V COMIpNATE V COORINATE

FIGURE 3.1. N-COMPONENT ELEMENTS

to illustrate the structure more fully, but the mnemonic address will indicate which data are

being shown.

Although the use of mnemonics gives complete flexibility to the format of n-component

elements, certain conventions were followed in implementing Sketchpad and in the figures of

this report.

(1) The location of an n-component element is the address of its first
(lowest-numbered) register;

(2) The first component of the element (the contents of its first register)
is used to indicate the type of element;

(3) All numerical information such as values of coordinates is located at
the end (highest-numbered locations) of the element.

In the figures, higher-numbered registers run down the page, making the location of an

element the address of its top register. Such element locations are indicated by symbolic

names to the left of the n-component element or contained within components of other elements

which make reference to them.

Most of the components of the n-component elements in the Sketchpad system are pointers

containing addresses of other elements. Such pointers indicate topological information such

as the Pnd points of a linc scgmeit. If an n-component element is to be relocated in storage,

that is, if the information it contained is to be stored in some other registers to compact the

storage structure prior to saving it on magnetic tape, the contents of any topological component

referring to the element which is to be relocated must be changed to refer to the new location.

However, relocation of an element in storage should not change the appearance of the picture

represented, so numerical information such as the coordinates of points or the size of subpictures

must not be changed. Segregation of numerical information at the end of the n-component element

facilitates the relocation of elements.

Gross transfers of the entire storage structure can be accomplished by treating all topolog-

ical pointers as relative to some basic address. In Sketchpad, for example, a topological

pointer to an n-component element contains not the absolute computer address of that element,

t6

but the location of the n-component element relative to the first address of the storage area,

LIST. At various times it has been necessary to change the location of the storage area, giving

LIST a different value. The use of relative pointers proves useful for intermachine communica-

tion also, making it possible to store a given data structure anywhere in memory. In the illus-

trations, however, the relative pointing is suppressed, as if LIST = 0.

C. REVERSE INDEXING

Suppose that index register a contains the relative location of the n-component element for

a line segment and that we desire to know the coordinates of that line's start point (LSP), The

address of the start point block may be found in the LSPth entry of the line block as shown in

Fig. 3.1. We can pick up this address using reverse indexing by the instruction

LDA a LSP + LIST

and load the accumulator from the LSPth entry of the block pointed to byindex register a. LIST

enters in because pointers are relative. Now if we transfer the contents of the accumulator to

index register f and perform the instruction
LDA 0 PVAL + LIST ,

the X coordinate of the start point of the line will be placed in the accumulator.

Note that in these instructions we used the index register to indicate which n-component

element was being considered and the address portion of the instructions to. indicate the specific

component selected. This is called "reverse indexing" to distinguish it from "normal" indexing,

in which the index register indicates the ith entry of the table referred to in the address portion

of the instruction. The only normal thing about "normal" indexing, however, is the widespread

inclusion in computers of an instruction which increments an index register and transfers

control to a specified location if the index register has not yet reached some specified value,

usually zero. The 709's TIX instruction is typical.

A valuable characteristic of the TX-Z for implementing the Sketchpad system turned out to

be its ability to reset an index register from a register indicated by the contents of another

index register (or even the prior contents of the index register to be reset!). TX-2's accumu-

lator is not used in this index register processing. A special symbolism was built into the

compiler to make it easy to use double index instructions; the instruction

RSX P I a LSP + LIST

puts into P the address of the start point of the line pointed to by index register a. The

Sketchpad program consists in large part of such instructions.

D. RING STRUCTURE

The basic n-component element structure described above has been somewhat expanded in

the implementation of Sketchpad so that all references made to a particular n-component ele-

ment or block are collected together by a string of pointers which originates within that block.

For example, all the line segments which terminate on a particular point may be found by

following a string of pointers which starts within the point block. This string of pointers closes

on Itself; the last pointer points back to the first. Moreover, the string points both ways to

t7

T7 OF ELEMENT

KEY OR HENI FORWARD DIRECTION

AAAA
I CHICKEN CHICKEN CHICKEN

6888 CCCC DDDD LLCCC I 5W

PUT\IN LAST

FIGURE 3.2. BASIC RING STRUCTURE

AAAA EI~IIA
KEY OR HENI

AAAA AAAH IKEN A
ccc I 1" 0

AA ONIBBBB CHA7ICKENIK7TKBBSBBI AAAA I ,AAAA
FIGURE 3.3.
LINE SEGMENT AND END POINTS
IN RING STRUCTURE NOTATION FIGURE 3.4.

ZERO AND ONE MEMBER RINGS

Is

make it easy to find both the next and the previous memher of the string in case some change

must be made in them.

The ring structure, then, assigns two registers to each component in the n-component ele-

ment. One is used for the direct reference shown in Fig. 3.1; the other register is used to

string similar references together. The basic ring consists of two kinds of register pairs, the

"hen" and "chicken." The hen pair is contained within a block which will be referred to, for

example, in a point block, while the chicken pair is contained in a block making reference to

another, for example, a line block making reference to the point. The chickens which belong

to a particular hen constitute all the references made to the block containing the hen. Figure 3.2

shows a typical ring; the inserting operation and ordering shown will be explained below.

Appendix C shows how the hen and chicken blocks are arranged in different kinds of elements.

Figure 3.3 shows the complete structure for a line segment and two end points with the appropri-

ate rings shown.

The mnemonic for a component is taken to be the upper (lower numbered) oi the register

pair. The ring collecting ties, of course, are relative to LIST, but this has been suppressed

in the illustrations. The part of the upper register not occupied by the chicken pointer contains

a number which indicates how far this particular element is from the top of the n-component

element. This is the small negative number showing in Fig. 3.3. It is used to find the top of a

block when a component of it has been found as a member of a ring.

E. HUMAN REPRESENTATION OF RING STRUCTURE

In representing ring structures the chickens should be thought of as beside the hens, and

perhaps slightly below them, but not directly below them. The reason for this is that in the

ring registers, regardless of whether in a hen or a chicken, the left half of one register points

to another register whose right half always points back. By placing all such registers in a row,

this feature is clearly displayed. Moreover, the meaning of placing a new chicken "to the left

of" an existing chicken or the hen is absolutely clear. The convention of going "forward"

around a ring by progressing to the right in such a representation is clear, as is the fact that

putting in new chickens to the left of the hen puts them "last," as shown in Fig. 3.2. Until this

representation was adopted, confusion prevailed because there was no precise meaning for

"first," "last," "forward," "left of," or "before."

F. BASIC OPERATIONS

The basic ring structure operations are:

(1) Inserting a new chicken into a ring at some specified location,
usually first or last.

(2) Removing a chicken from a ring.

(3) Putting all the chickens of one ring, in order, into another at some
specified location, usually first or last.

(4) Performing some auxiliary operation on each member of a ring
in either forward or reverse order.

These basic ring structure operations are implemented by short sections of program

defined as MACRO instructions in the compiler language. By suitable treatment of zero- and

one-member rings, that is, of hens with no chickens or only one, as shown in Fig. 3.4, the basic

operation programs operate without making special cases. As stated in the macro language,

19

12 110 POINT

-21 oooo

-41 0000 PLS

_1L1 0000

0 PVAL
0

FIGURE 3.5. FRESH POINT BLOCK'

FREEI -II-23ii

FIGURE 3.6.
COMPACTING THE RING STRUCTURE

20

the basic operations become trivially easy to use. For example,

PUTL S LSP x a - PLS x P

puts the LSP (Line Start Point) entry of the line block pointed to by index resiger a into the

ring whose hen is the PLS (Point Line Sentry) of the point indicated by index register P, thus

making P the start point of a. If Ox" is read as "of" and "-I' is read as ninto," the macro

statement almost make sense in English. The format and function of all the ring manipulation

macro instructions used in Sketchpzd can be found in Appendix D.

G. GENERATION OF NEW ELEMENTS

Subroutines are used for setting up new n-component elements in free spaces in the storage

structure. These subroutines place the distance-to-the-top numbers in alternate registers as

required and clear out the components so that each is an empty ring as shown in Fig. 3.5. As

parts of the drawing are deleted, the registers which were used to represent them become free,

indicated by placing them in the FREES ring. Data for new n-component elements could be put

into these free registers if sufficiently long continuous blocks of free storage were available,

but Sketchpad is not at present equipped to do this. Rather, new components are set up at the

end of the storage area, lengthening it, while free blocks are allowed to accumulate. Garbage

collection periodically compacts the storage structure by removal of the free blocks and reloca-

tion of the information above them (that is, information in higher-numbered registers illustrated

lower on the page) as shown in Fig. 3.6. A drawing can be stored on magnetic tape much more

compactly if all internal free registers have been removed.

H. BOOBY TRAPS

Every system devised for programming on computers has little problem areas which give

humans more trouble than other parts; the ring structure organization and operations are no

exception. As indicated above, the visualization of the ring as a row of elements aids greatly

in understanding the basic operations. The use of relative addressing, while giving great power

for data communication, gave the programmer considerable difficulty because the term LIST

must often but not always be added to or subtracted from the address portion of instructions.

It took months before all the nuances of these problems were learned.

By far the greatest difficulty concerned processes which change the ring structure while

other operations are taking place on it. For example, there must be two versions of the basic

macro which permits auxiliary operations to be performed on all the members of a ring in turn.

One version, LGORR (Leonard's GO Round the ring to the Right), performs the auxiliary opera-
tion on one ring member while remembering the next ring member so that if the auxiliary opera-

tion deletes the current ring member the next one has already been found. Another version of the

basic macro, LGORRI (LGORR Insertable), remembers which ring member the auxiliary opera-

tion is being performed on so that if the auxiliary operation puts a new member into the ring

next to the current one, the new one will not be overlooked. Neither macro will function prop-

erly if both the current and the next ring members are deleted simultaneously by the auxiliary

function.

Early in the research, the multiple sequence nature of the TX-2 was utilized to provide

immediate updating of the ring structure when push-button commands were given by the user.

21

24 Z Z4 VARIABL:S TYPE

-2 0000 SPECB

TYPEWRITER CODE NAME NAME
SUBROUTINE ENTRY DISPLAY

FIT SCOPE AROUND IT HOWBIG
APPLY TRANSFORMATION MOVIT

24.16.. SIZE

NORMAL PICTURE KIND KIND
FOUR COMPONENTS TUPLE
VALUE AT IVAL VARLOC

FIGURE 3.7.

NSTANCFS GENERIC BLOCK

(UNIVERSE __

VARIABLES HOLDR COSTAINTS TOPOS

WIS I W
mm

FIGURE 3.8. GENERIC STRUCTURE

z2

Trouble arose if the display generation program was working in the ring structure at thc instant

that it changed. It is now clear that multiple sequencing and data channels must be used only to

transmit information into the computer and not to process the ring structure, a job properly

left to the main computation stream. Main computation stream ring manipulation has implica-

tions for future machine design, since most of the ring manipulations can be performed with

index arithmetic alone without tying up the main arithmetic element which meanwhile could be

of use to someone else. Perhaps several machines could share a single powerful arithmetic

element if they did the bulk of their processing with index arithmetic.

I. GENERIC STRUCTURE: HIERARCHIES

The organization of the elements of the drawing into types has facilitated the generalization

of the programs which comprise the Sketchpad system. The effort toward generality came

relatively late in the research effort because i did not at first appreciate the power that a general

approach could bring. Considerable reprogramming was done, however, to include as much

generality as possible. Those subroutines which had to do with a single kind of drawing part

were collected together and specifically labeled, both in the coding sheets and block diagrams

(but, most important, in the mind) as belonging to that particular kind of entity. The remainder

of the program was left completely general.

The general part of the program will perform a few basic operations on any drawing part,

calling for help from routines specific to particular types of parts when that is necessary. For

example, the general program can show any part on the display system by calling the appropriate

display subrdutine. Similarly, the general program is able to relocate objects on the display,

making use of specific routines only to apply a transformation to the various kinds of objects.

Again, the general program will satisfy any numerical constraints applied to the drawing by the

user, calling on specific subroutines only to compute the error introduced into the system by a

particular constraint.

The greatest virtue of the clear-cut separation of the general and the specific is that it

makes it easy to change the details of specific parts of the program to get quite different results

or to expand the system without any need to change the general parts. This was most dramati-

cally brought out when generality was finally achieved in the constraint display and satisfaction

routines and new types of constraints were constructed literally at fifteen-minute intervals.

In the data storage structure, the separation of general and specific is accomplished by

collecting all things of one type together as chickens which belong to a ngeneric" hen. The

generic hen contains all the information which makes this type of thing different from all other

types of things. Thus, the data storage structure itself contains all the specific information,

leaving only general programs for the rest of the system. A typical generic block is shown in

Fig. 3.7.

The generic blocks are further gathered together under supergeneric or generic-generic

blocks according to four categories, Variables, Topologicals, Constraints, and Holders, as

shown in Fig. 3.8. All picture parts which have numerical information are ultimately gathered

together under the VARIABLES block by way of their own generic blocks. Ideally the VARI-

ABLES block should in some way indicate that there was numerical information, bit the general-

ity has not been carried as far as this yet. Space for information about the number of components

of a variable (which is unnecessary for the topological entities) could be omitted from the generic

23

blocks for lines and circles. At present, all generic blocks still carry space for all the infor-

mation in any of them simply for historical reasons. This accounts for the spaces seen in

Fig. 3.7.

For the sake of completeness, the four broad categories of things, the generic-generic

blocks, are brought together under the UNIVERSE block, which, as a special case, is always

located at the exact start of the storage structure, relative address 1. The UNIVERSE block

belongs to no higher block. I considered making it belong to itself so that continued upward

searching through the generic structure would appear to reach an unending string of UNIVERSE

blocks, but I could find no solid reason for so doing. Further work may develop one, of course.

J. EXPANDING SKETCHPAD

Addition of new types of things to the Sketchpad system's vocabulary of picture parts re-

quires only the construction of a new generic block (about 20 registers) and the writing of ap-

propriate subroutines for that thing. The subroutines might be easy to w-ite, as they usually

are for new constraints, or difficult to write, as for adding ellipse capability, but at least the

task of adding a new ability to the system is finite and well-defined. Before the generic structure

was clarified, it was almost impossible to add the instructions required to handle a new type of

element.

24

CHAPTER 4
LIGHT PEN

In Sketchpad the light pen is time-shared between the functions of coordinate input for

positioning picture parts on the drawing and demonstrative input for pointing to existing pic-

ture parts to make changes. Although almost any kind of coordinate input device could be used

instead of the light pen for positioning, the demonstrative input uses the light pen optics as a

sort of analog computer to remove from consideration all but a very few picture parts which hap-

pen to fall within its field of view, thus saving considerable program time. Drawing systems

using storage display devices of the Memotron type may not be practical because of the loss of

this analog computation feature.

A. CONSTRUCTION OF LIGHT PEN

The light pen is a hand-held photocell which will report to the computer whenever a spot on

the display system falls within its small field of view. The housing for the photocell is about the

size of a fountain pen and is manipulated much like a pen or pencil, hence the name. Many dif-

ferent varieties of light pens have been built, including large cumbersome ones in the days before

miniaturization, to be replaced by transistorized versions, and recently by fiber optic pens con-

nected by a flexible light pipe to a photocell mounted inside the computer frame. The particular

pen used for the Sketchpad system consists of a photodiode and transistor preamplifier mounted

in the pen housing and connected to the computer by a length of small coaxial cable, as shown in

Figs. 4.1 and 4.2. It is used by Sketchpad primarily because its operation is relatively independ-

ent of the distance it is held from the computer display, since it has a cylindrical field of view.

Since spots on the display system are intensified one after another in time sequence, whether

or not each spot is seen by the pen is individually reported just after intensification of that spot.

The light pen amplifier is designed so that the pen is sensitive only to the bright blue flash of the

first intensification of a display spot and not to the dim yellow afterglow. The amplifier output is

strobed only when a display spot has been intensified to minimize room light pickup. Although

some computers require an interrogation of a pen flip-flop to find out whether a spot was seen,

TX-2 uses the interruption of a sequence change to.indicate this fact. Thus, if a series of

points is displayed on the scope by a set of data transfer instructions, and one of these points

falls under the field of view of the pen, subsequent instructions will be performed in the light

pen sequence rather than in the display sequence until the light pen sequence is finished. Thus

it is unnecessary to interrogate the pen specifically for each display spot, because the inter-

ruption of sequence changing serves as an automatic notification that a spot was seen. For pen

tracking, where a program branch is made for every spot displayed, interruption by the pen re-

quires more program instructions than would a specific bit-testing instruction, but for the de-

monstrative use of the pen where any spot of the background display may fall within the pen's

field of view but is relatively unlikely to do so, the interruption is a real advantage.

*TX-2's light pen Is treated as an input device separate from its display. See Appendix G.

Z5

Phiotograph courtesy of N.I.T. Electronic
Systems Laboratory.

Figure 4.1. Light pn.

CATHODE RAY TUBE SCREEN

DBISGLAYDPONT) SHUTTER BUTTON CONNECTOR

FIELD-F-VIEWDIODE ROTATE SAWREL TO MOVE DIOD EMVA E

PREAMPLIFIER

Drawing courtesy of M.L.T. Electronic
Systems Laboratory.

Figure 4.2. Construction of light pan. This drawing was mods by conventional methiods.

26

B. PEN TRACKING

The light pen and its connecting cable report to the computer immediately after any dis-

play spot that lies within the pen's view has been shown. By displaying a cross-like pattern

and noticing which spots fall within the light pen's view, the computer can follow the motions

of the light pen around the screen. In order to follow normal motions of a hand-held light pen

it was found necessary to redisplay the tracking cross about 100 times per second, at a rate of

I millisecond per display. When the cross is being "dragged" across the screen at the maxi-

mum speed I have achieved, successive crosses are displayed about 0.2 inch apart and the

maximum pen speed is thus 20 inches per second, which has proved quite enough for the ex-

periments conducted. If the light pen is moved faster, the tracking cross will fall entirely

outside its field of view and tracking will be lost. The loss of tracking is used as the so-called

termination signal for all pen tracking operations.

Early in the system development some effort was expended trying to reduce the computer

time spent in pen tracking. An attempt was made to have the computer predict the location of

the pen based on its past locations so that a longer time might elapse between display of track-

ing crosses. The assumptions of constant velocity,

Xt = (Xt- I - Xt-2) + X t-t Yt = (Yt-tI - Yt-2) + Y t-1 (4-1t)

and constant acceleration,

Xt = 3(Xt-/I- Xt-2) + X t-3 Yt = 3(Yt-I - Yt-2) + Y t-3 (4-2)

where successive pen positions are denoted by subscripts, were tried. A pictorial represen-

tation of these assumptions is shown in Fig. 4. 3. An attempt was made to combine various types

of prediction according to the speed of motion of the pen, but all such efforts met with difficult

stability problems and were interfering with more important parts of the research. Therefore,

I decided to accept the ten percent of time lost to tracking in order to proceed to more interest-

ing things. Other workers, notably Rolland Silvers of the MITRE Corporation, report better

success with predictive tracking, giving numbers like three percent loss.

Different methods of establishing the exact location of the light pen have been tried using

many different shapes of display. For example, the displays shown in Fig. 4.4 all seem to be

about the same with regard to time taken to establish pen position and accuracy. As far as I

know, no one has taken into account the motion of the pen during the tracking display period.

I use the logarithmic scan with four arms.

To initially establish pen tracking, the Sketchpad user must inform the computer of an ini-

tial pen location. This has come to be known as "inking-up" and is done by "touching" any ex-

isting line or spot on the display whereupon the tracking cross appears. If no picture has yet

been drawn, the letters INK are always displayed for this purpose.

C. DEMONSTRATIVE USE OF PEN

During the remaining 90 percent of the time that the light pen and display system are free

from the tracking chore, spots are very rapidly displayed to exhibit the drawing being built,

and thus the lines and circles of the drawing appear. The light pen is sensitive to these spots

and reports any which fall within its field of view by the interruption of a sequence change

before another spot can be shown. The table within the computer memory which holds the

27

CONSTANT VELOCITY o '

00 I- ,

CONSTANT ACCELERATION "

FIGURE 4.3.
PREDICTIVE PEN TRACKING

000

0.0000 00
0 0 0 0

I a.
RANDOM POINTS

FIGURE 4.4.
DISPLAYS FOR PEN TRACKING

ADDRE.S OF PART

FIGURE 4.5.
ADDRESS IN DISPLAY REGISTER

28

coordinates of the spots also contains a tag on each one as shown in Fig. 4.5 so that the picture

part to which this spot belongs may be identified if the spot should be seen by the pen.

A table of all such picture parts which fall within the light pen's field of view is assembled

during one complete display cycle. At the end of a display cycle, this table contains all the pic-

ture parts that could even remotely be considered as being "aimed at." During the next display

cycle a new table is assembled which, at the end of that cycle, will replace the one then in use.

Thus, two storage spaces are provided, one for assembling a complete table of display parts

seen, the other for holding the complete table from the last display cycle so that the aiming

computation described below in the sections on demonstrative language and pseudo pen location

may avoid using a partially complete table. Note that since the display of the TX-2 is independ-

ent of the computations going on, the aiming computation may occur in the middle of a display

cycle.

Because of the relatively long time that a complete display cycle for a complicated drawing

may take, the aiming computation, by using information from the previous complete display

cycle, took excessive time to "become aware" of picture parts newly aimed at by the pen. There-

fore, it is required that any display part seen by the light pen which is not yet in the table being

built for the current display cycle be pit not only in that table, but also in the table for the pre-

vious display cycle if not already there. This speeds up the process of locking onto elements of

the drawing. Similarly, the information from a previous display cycle may contain many pre-

viously seen drawing parts which are not currently within the light pen's field of view, espe-

cially if the light pen has moved an appreciable distance since the last complete display cycle.

One might attempt to detect large pen displacements during a display cycle and indicate that the

old light pen information is too obsolete to use if such displacements occur. However, I have

often found it handy to slide appreciable distances along a line or curve, in which case the

light pen information is not made entirely obsolete. Therefore, no such obsolescence-by-

displacement routine has been incorporated into the Sketchpad system.

D. DEMONSTRATIVE LANGUAGE

The table of picture parts falling within the field of view of the light pen, assembled during

a complete display cycle, contains all the picture parts which might form the object of a state-

ment of the type:

apply function F to__ ;

e.g., erase this line (circle, etc.). Since the 1/2-inch-diameter field of view of the light

pen is relatively large with respect to the precision with which it may be manipulated by the

user and located by the computer, the Sketchpad system will reject any such possible demon-

strative object which is farther from the center of the light pen than some small minimum dis-

tance; about 1/8 inch was found to be suitable. Although it is easy to compute the distance from

the center of the light pen field to a line segment or circle arc, it is not possible to compute the

distance from the light pen field center to a piece of text or a complicated symbol represented

as an instance. For every kind of picture part some method must be provided for computing its

distance from the light pen center or indicating that this computation cannot be made.

The distance from an object seen by the light pen to the center of the light pen field is used

to decrease the size of the light pen field for aiming purposes. A light pen with two concentric

fields of view, a small innerone for demonstrative purposes, and a larger outer one for tracking

29

would make this computation unnecessary and would give better discrimination between objects

for which no distance computation exists. Lack of this discrimination is now a problem. Design

of such a pen is easy, and consideration of its development for any future large-scale use of en-

gineering drawing programs should be given serious consideration.

After eliminating all possible demonstrative objects which lie outside the smaller effective

field of view, the Sketchpad system considers objects topologically related to the ones actually

seen. End points of lines and attachment points of instances are especially important, but ob-

jects on which constraints operate, or the value of a number as opposed to the digits which rep-

resent this value, may also be considered. Such related objects may not specifically appear in

the drawing, but it must be possible to refer to them easily. If any such object is sufficiently

close to the center of the light pen field, it is added to the tabic of possible demonstrative objects

even though it may have no display and, therefore, was not seen by the light pen.
As described above, the aiming or demonstrative program first eliminates from further con-

sideration objects which are too far from the center of the light pen field to reduce the effective

size of the field for aiming purposes. Next it brings into consideration unseen objects related to

the objects actually seen. After these two procedures, the number of objects still under consid-

eration determines the further course of action. If no objects remain under consideration, noth-

ing is being aimed at. If one object remains, it is the demonstrative object and the light pen is

said to be "at" it; e.g., the pen is at a point, at (on) a line, at (on) a circle, or at a symbol

(instance). If two objects remain, it may be possible to compute an intersection of them. If the

intersection is sufficiently close to the pen position, the pen is "at" the intersection. With two

or more objects remaining, the closest object is chosen if such a choice is meaningful; if not,

no object is pointed at; i.e., there is no demonstrative object.
The above consideration of the demonstrative program has been left vague and general pur-

posely to point out that the specific types of objects being used in a drawing differ only in the de-

tails of how the various computations are made. For example, although the Sketchpad system

is not now able to do anything with curves other than circle ar'cs and line segments, the demon-

strative program requirements to add conic sections to the system as it stands involve only

the addition of computation procedures for the distance from the pen location to the conic, rou-

tines for computing the intersection of conics with conics, lines, and circles, and some indica-

tion of what topologically related objects, e.g., foci, need be considered. Figure 4.6 outlines

the various regions within which the pen must lie to be considered "at" a line segment, a circle

arc, their end points, or their intersection. The relative sizes of the error tolerated in the

"nsufficiently close to" statements above are indicated as well. The error tolerated is a fixed

distance on the display so that confusion because objects appear too close together can usually

be resolved by enlarging the drawing as described in Chapter 5.

The organization of the demonstrative program in Sketchpad is in the form of a set of spe-

cial cases at present. That is, the program itself tests to see whether it is dealing with a line

or circle or point or instance and uses different special subroutines accordingly. This organi-

zation remains for historical reasons but is not to be considered ideal at all. A far better ar-

rangement is to have within the generic block for a type of picture part all subroutines neces-

sary for it.

30

AT LINE

AT INTERSECTION
A•-'; -T CIRCLE

•' ••-"AT POINT

FIGURE 4.6.
OPERATION OF PSEUDO PEN LOCATION

E. PSEUDO PEN LOCATION

The demonstrative program computes for its own use the location on a picture part seen by

the light pen nearest the center of the pen's field of view. It also computes the location of the

intersection of two picture parts. Thus, when the demonstrative program decides which object

or intersection the light pen is at, an appropriate pseudo pen location has also been computed.

If no object has been named as demonstrative object, the pseudo pen location is taken to be the

actual pen location. The statements "at a line," "at a circle," and "at a point" take on true sig-

nificance, for the pseudo pen location will indeed be at these objects.

The pseudo pen location is displayed as a bright dot which locates itself ordinarily at the

center of the pen tracking cross. It is easy to tell when the demonstrative object is a line,

circle, point, or intersection, because this bright dot locks onto the picture part and becomes

temporarily independent of the exact pen location. The pseudo pen location or bright dot is used

as the point of the pencil in all drawing operations; for example, if a point is being moved, it

moves with the pseudo pen location. As the light pen is moved into the areas outlined in Fig.4.6

and the pen locks onto existing parts of the drawing, any moving picture parts jump to their new

locations as the pseudo pen location moves to lie on the appropriate picture part. The pseudo

pen location at the instant that a new line or circle is created is used as the coordinates of the

fixed end of that line or circle.

With just the basic drawing creation and manipulation functions of draw, move, and delete,

and the power of the pseudo pen location and demonstrative language programs, it is possible

to make fairly extensive drawings. Most of the constructions normally provided by straight

edge and compass are available in highly accurate form. Most important, however, the pseudo

pen location and demonstrative language give the means for entering the topological properties

of a drawing into the machine.

31

CHAPTER 5
DISPLAY GENERATION

The display system, or "scope," on the TX-2 is a ten-bit-per-axis electrostatic deflection

system able to display spots at a maximum rate of about 100,000 per second. A display instruc-

tion permits a single spot to be shown on the display at any one of slightly more than a million

places, requiring 20 bits of information to specify the position of the spot, The multiple sequence

design of the TX-2 makes it convenient to permit the display system to operate at its own speed.

The display will request memory cycles whenever they are required to transmit more information

to it, but the time actually taken in displaying a spot will not be lost, for the rest of the TX-2

may be involved with other operations meanwhile. It has been found useful, therefore, to store

the locations of all the spots of a drawing in a large table in memory and to produce the drawing

by disp!lying from this table. The display system, then, sees the rest of Sketchpad as 32,000

words of core storage. The rest of the Sketchpad is able to compute and store spot coordinates

in the display table without regard to the timing of the display system.

The display spot coordinates are stored one to a memory word. The display subprogram

displays each in turn, taking 20 microseconds each so that some time will be left over for com-

putation. It instead of displaying each spot successively, the display program displays every

eighth in a system of interlace, the flicker of the display is reduced greatly, but lines appear to

be composed of crawling dots. For large displays made up mostly of lines such an interlace is

useful. However, for repetitive patterns of short lines, the effect may be that the entire drawing

seems to dance because of synchronization between the interlace and the repetitive nature of the

pattern. The interlace may be turned on or off under user control by means of a toggle switch,

Early display work with the display file led to the discovery by the author and others that if

the spots were displayed at random, a twinkling picture resulted which is pleasing to the eye and

avoids flicker entirely (Fig. 5.A). However, small detail is lost because of the eye's inability to

separate the pattern from the random twinkle unless the pattern is gross. Twinkling, like inter-

lace, is under user control by a toggle switch. Twinkling is accomplished by scrambling the

order of the display spot locations in the display file. To do this, each successive entry is ex-

changed with an entry taken at random until every entry has been exchanged at least once. Need-

less to say, whether a scrambled file is displayed successively or by interlace makes no dif-

ference to its twinkling appearance.

A. MARKING OF DISPLAY FILE

Of the 36 bits available to store each display spot in the display file, 20 are required to give

the coordinates of that spot for the display system, and the remaining 16 are used to give the

address of the n-component element which is responsible for adding that spot to the display.

Thus, all the spots in a line are tagged with the ring structure address of that line, and all the

spots in an instance are tagged as belonging to that instance. The tags are used to identify the

particular part of the drawing being aimed at by the light pen for demonstrative statements. (See

Chapter 4, Fig. 4.5. p. 28.)

If a part of the drawing is being moved by the light pen, its display spots will be recomputed

as quickly as possible to show it in successive positions. The display spots for such moving

parts are stored at the end of the display file so that the display of the many nonmoving parts

33

-T-t L

Figure 5. 1. Twinkling display. Displaying the spots of a large display in random sequence
makes the display appear to "iwinkle." This photograph was exposed only long enough to
show about half the spots of a twinkling display. It conveys the impression of a twinkling
display as well as any still picture can. The curves are of the equation x4 - x2 + y2 = a 2

for several values of a. They were drawn by another program rather than by Sketchpad.

34

need not be disturbed. Moving parts are made invisible to the light pen so that the demonstrative

and pseudo pen location computations described in Chapter 4 will not "lock onu to parts moving

along with the pen.

B. COORDINATE SYSTEMS

The coordinate system of the TX-2 display system has origin at the center of the scope and

requires ten bits of deflection information located at the left of 18-bit computer subwords for each

axis. Treatment if these numbers as signed fractions of full scope deflection leads to the most

natural programming because of the fixed-point, signed-fraction nature of the TX-2 multiply and

divide instructions. The scope coordinate system is natural to the ability of the TX-2 to perform

arithmetic operations simultaneously on two 18-bit half-words. It is not suitable for representing

variables with more than two components, nor is the precision available in 18 bits adequate for

all the operations to which the Sketchpad system is applicable.

For convenience in representing many com.ponent variables and for more than 18-bit pre-

cision, Sketchpad uses an internal coordinate system for drawing representation divorced from

the representation required by the display system. This internal system is called the "page"

coordinate system. in thinking of the drawings in Sketchpad, the page coordinates are considered

fixed. A page-to-scope transformation gives the ability to view on the scope any portion of the

page desired, at any degree of magnification, as if through a magnifying glass. The magnification

feature of the scope window-into-the-page makes it possible to draw the fine details of a drawing.

The range of magnification available (2000) makes it possible to work, in effect, on a 7-inch

square portion of a drawing about 1/4 mile on a side.

C. TRANSFORMATIONS AND SCALE FACTORS

The page coordinate system is intended for internal use only and will always be translated

into display or plotter coordinates by the output display subroutines. Therefore, it is impractical

to assign any absolute scale factor to the page coordinate system itself; it is meaningless to ask

how big the page is. It is, however, very important to know how big the visible representations

of Sketchpad drawings will be, for one must make drawings in the correct sizes if one is to com-

municate with machine shops. Dimensions indicated on the drawing must correspond to the di-

mensions of the drawing in its final form if full-size drawings are to be produced. The computer's

only concern with the actual size of the page coordinate system is to know what decimal number

should be displayed for the value of a certain distance in page coordinates. As Sketchpad now

stands, the value is such that one-to-one scale drawings can be produced on the plotter if dimen-

sions are read in units of thousandths of an inch.

Page coordinates, then, are dimensionless signed fractions, 36 bits long, which are con-

sidered fixed when considering drawing representations. In order to avoid the troubles of over-

flow, it is made difficult for the user to generate page coordinates with values in the most signif-

icant six or seven bits of the 36 allowed. This is done by artificially limiting the maximum part

of the page displayed on the scope to 1/256 of the page's linear dimension. The 29 or 30 bits of

precision which remain are sufficient for all applications. The maximum magnification of the

display is also limited so that the "grain of the page coordinates cannot show on the display.

The 2000-to-one scale change mentioned above remains.

35I
I

A scale factor for the display controls the size of the square which will appear on the scope.
The actual number saved is the half-length of the side of the square, called SCSZ for SCope Si~e

as shown in Fig. 5.2. Also saved are the page coordinates of the center of the scope square. By

changing these numbers the portion of the page shown on the scope may be changed in size and

moved, but not rotated.

vEE.

PAGE COORDINATES

FIGURE 5.2. COORDINATE SYSTEMS

The shaft position encoder knobs below the scope (see Fig. 1 .2, p. 3) are used to control the
scale factor and square positioning numbers indicated above. Rotation of the knobs tells the pro-
gram to change the display scale factor or the portion of the page displayed. In order to obtain
smooth operation at every degree of magnification, unit knob rotations produce changes in the
scope size and position numbers proportional to the existing scope size number. SCSZ. Rotation
of the scale change knob, therefore, causes exponential increase or decrease in SCSZ and this
results in apparent linear change in the view on the scope.

D. INSIDE-OUT AND OUTSIDE-IN DISPLAY

How the direction of rotation of the knobs affects the translation of the display is important
from the human factors point of view. It is possible to think of moving the scope window above
the page or moving the drawing beneath the window. Since to the user the scope is physically
there, and no sense of body motion accompanies motion of the window, the knobs turn in such a
way that the operator thinks tie is moving the drawing behind his window: rotation to the right
results in picture motion to the right or up. Similarly, rotation of another knob to the right re-
sults in rotation of picture objects to the right as seen by the user. No such convenient manner

of thinking about the scale knob has been found. Users adjust to either sense of change with about

36

the same amount of difficulty; the most frequent user so far (the author) must still try the knob

before being sure which way it should be turned.

The translation knobs were used primarily to locate a portion of the picture in the center of

the scope so that it could be enlarged for detailed examination. To make centering easier, a

special function was provided which relocates the picture so that the immediately preceding light

pen position is centered. The knobs are now used for fine positioning of the picture to make the

scope display all of an area which just barely fits inside it. The light pen could perhaps be used

to control scope size and positioning without reference to the knobs at all, perhaps with a coarse

and fine control. The question of what controls are best suited to humans is wide open for in-

vestigation.

E. COORDINATE CONVERSION AND EDGE DETECTION

The reason for having the page-scope transformation in terms of the location of the scope

center and the size of the scope is that this form makes it very easy to transform page coordi-

nates into scope coordinates:

PAGE COORDINATE - CENTER OF SCOPE = 2COPE COORDINATE
SCOPE SIZE

The process of division will yield overflow if the point converted does not lie on the scope. How-

ever, one can little afford the time that application of this transformation to each and every spot

in a line would require. It is necessary, therefore, to compute which portion(s) of a curve will

appear on the scope, and generate ONLY those portions for the human to see. The edge detec-

tion problem is the problem of finding suitable end points for the portion of a curve which appears

on the scope.

In concept the edge detection problem is trivial. In terms of program time for lines and

circles the problem is a small fraction of the total computational load of the system, but in terms

of program debugging difficulty the problem was a major one. For example, the computation of

the intersection of a circle with any of the edges of the scope is easy, but computation of the in-

tersection of a circle with all four cdges may result in as many as eight intersections, some

pairs of which (the scope corners) may be identical. Now which of these intersections are ac-

tually to be used as starts of circle arcs?

F. THE SERVICE PROGRAM: LINE AND CIRCLE GENERATION

As the Sketchpad system now exists, all displays are generated from straight line segments,

circle arcs, and single points. The details of generating the specific display spots for each of

these types of display is relegated to a "service" program. The service program also contains

the actual display subprogrant for displaying the spots and retains control over the input and out-

put to the display file. The service program takes care of the transformation of coordinates

from page coordinates to scope coordinates and computes the portion of the line, circle, or point

to be shown, if any. Since these service functions have been working correctly, further pro-

gramming is not required to make reference to the details of scope size, position, coordinate

transformation, or display. For example, the routine which displays text on the scope uses

the line and circle service programs to compose each letter.

The independence of the bulk of the program from the specifics of display is a very valuable

asset for future expansion and change to the system. For example, when a line drawing scope

37

capability was added to the TX-Z, only the service program needed to be changed to accommodate

it. Moreover, other people can and do use the service subroutines in their programs. The con-

cept of independent parts divided by independence of function pervades the Sketchpad system; being

forced to divide the program into several binary portions because it was, in toto, too big to handle,

I divided it in the uoat natural places I could find.

The actual generation of the lines and circles for the present spot display scope in accom-

plished by means of the difference equations:

xi = xi-I +Ax

Yi = Yi-1 +AY (5-1)

for lines, and

z
xi = X1 - 2 + R (yi- 1 -Y d

Yi = Yi-2 - X (xi- x -- Xc (5-2)

for circles, where subscript i indicates successive display spots, subscript c indicates the

circle center, and R is the radius of the circle in Scope Units. In implementing these difference

equations in the program, the fullest possible use is made of the coordinate arithmetic capability

of the TX-2 so that both the x and y equation computations are performed in parallel on 18-bit

subwords. Including marking the points in the display file with the appropriate code for the ring

structure block to which they belong (two instructions), and indexing, the program loops contain

five instructions for lines and ten for circles. About 3/4 of the total Sketchpad computation time

is spent doing these 15 instructions!

G. CIRCLE CLOSURE

It is an unfortunate property of difference equation approximation to differential equations

that the tiny errors introduced by the finite approximation may accumulate to produce gross no-

ticeable errors. Although the difference equation (5-2) listed above for circle generation may

seem more complicated than necessary, it is the small details of the equation that make it usable.

Considerable effort was required to find an equation which produced circles faithfully and could

be implemented to take advantage of the parallel 18-bit arithmetic available in the TX-2. Other

equations tried either generated logarithmic spirals due to mathematical inadequacies, required

more than 18-bit precision to operate accurately, or required serial processing of the x and y

equations, which would consume more time.

For example, the difference equations

i xi- + i (Yi -I-Yd)

Yi= Yyi - t (xi- -xc) d (5-3)

produce a logarithmic spiral which grows (about w X step size) in "radius" each turn. This spiral
divergence is predicted theoretically and is unrelated to any roundoff error. It could be avoided

by using the equations

38

= R (X + I7i 1x-1 + Yi-I -- Yd})

= R Yi-- xit -)) (5-4)

but the term r,/s + is so little different from unity for the usual values of R that it cannot

be represented in 18 bits. A simple change in Eq. (5-3) results in the equations

x i = xi1-1 + -R (Yi - - Yc)

Yi = Yi- -- R (xi - '(55)

where a new position of x is used to generate the next position of y. Equations (5-5) approximate

a circle well enough, and are known to close exactly both in theory and when implemented, but

because the x and y equations are dissimilar, they cannot make use of TX-Z 's ability to do two

18-bit additions at once. Note, however, that Eqs. (5-5) are ideally suited for implementation

on machines which can perform only one addition at a time. In fact, Sketchpad uses Eq. (5-5)

to generate the sine and cosine functions used for rotations.

H. DISPLAY PROGRAMS

The display programs for line and cfrcle segments are simply the line and circle drawing

subroutines plus a small program which extracts the pertinent numerical information from the

ring structure to locate the line or circle segment properly. A similar routine for drawing dotted

lines and dotted circles would be useful - the same manipulations that apply to lines and circles

could be applied to the dotted curves as well. To be consistent with the existing programs; the

dotted line program would use the line or circle drawing subroutine many times, once for each

dot. Although this would be somewhat inefficient in that the values of &x and &y in (5-1) would

be recomputed each time, it could be made to work with minimum programming difficulty. Al-

ternatively, a special dotted line subroutine could be written. This would be especially appro-

priate if output devices were used for which dotting could be accomplished in a special way as.

for example, lifting the plotter pen periodically while it is tracing a curve.

Another variation on lines and circles would permit making lines of various weights or with

different styles of dots: center lines and the like. These could each be put into the system as

a different type of line, or all could be treated as a single type with some numerical specification

of the line characteristics. For example, two scalars might be used to indicate approximate

dot frequency and the ratio of dot length to dot period. A single scalar might specify the line

weight. It is important that the properties of such a scalar would be the unitless properties of

ratios, invariant under changes to the scale of the drawing and the transformations of instances.

The existing scalar with the dimension of length would not serve.

Text, to put legends on a drawing, in displayed by means of special tables which indicate

the locations of line and circle segments to make up the letters and numbers. Each piece of

text appears in a single line, not more than 36 characters in length, of equally spaced characters

which can be changed by typing. Digits to display the value of an indicated scalar at any position

and in any size and rotation are formed from the same type face as text. It is possible to display

39

up to five decimal digits with sign; binary to decimal conversion is provided, and leading zeros

are suppressed. Whatever transformation is applied to the magnification of subpictures applies

also to the value displayed by the digits. Digits which indicated lengths when a subpicture was

originally drawn remain correct however it is used. Digits are intended for making size notation@

on drawings by means of dimension lines.

The instance, as will be described more fully in Chapter 6, behaves as a single entity. The

display spots which represent all the internal parts of an instance must be marked with the ad-

dress of the instance block rather than with the address of the actual line or circle blocks which

are the indirect cause of the spots. The instance expansion program makes use of the line, circle,

number, and text display programs and itself to expand the internal structure of the instance. A

marker is used so that during expansion of an instance, display spots retain the instance marking.

Expansion of instances may be a most time-consuming job. When just the existence of an

instance is important, but not its internal character, one can display a frame around the instance

without having its internal structure show. The framing and expansion of instances are individ-

ually controlled by toggle switches. The instance frame is a square drawn around the outline of

the instance, that is, the smallest square which fits around the master of the instance in upright

position. The size and location of this square are computed whenever a drawing is filed away,

provided that no instances of the drawing exist. In fact, the drawing is relocated so that the cen-

ter of the frame is always at the origin of the page coordinate system. This is done so that the

coordinate system of an instance will have its origin at about the center of the instance, If in-

stances of the picture exist, the program refrains from relocating picture origin, because to do

so would slightly relocate all instances of the picture in the other direction.

The instance expansion routine does some edge detection in a crude way to avoid spending

inordinate amounts of time deciding that each line and circle in an instance grossly off the scope

is individually off the scope. Instances are not expanded unless there is a fair chance that some

part of them will appear. The instance outline box is used for this purpose; the instance is not

expanded if its center is more than 1.5 times as far from the scope edge as its box size. Since

the relatively new addition of avoiding recomputation of box size and translation of a picture if

instances of it exist, it is possible to have parts of an instance extend any distance outside their

box. Therefore, instance parts might disappear inexplicably. This has, however, never been

observed in practice.

A more complete treatment of the size of an instance for edge detection which would cure

the difficulties outlined above could be made. One would compute not only the size of the smallest

outlining square each time an uninstanced drawing is filed away, but also the size of the smallest

surrounding circle each time the drawing is filed away, whether or not it is instanced. The

smallest circle would be used to determine whether a particular instance was worth expanding

at all, or, if the entire circle was contained on the scope, it would indicate that further edge de-

tection would be entirely unnecessary. In computing the smallest enclosing circle, needless to

say, subpictures would be considered only as objects which occupy their smallest enclosing circle;

internal structure of instances would be ignored. Whereas now only the smallest enclosing box

can be seen, in the proposed more complete treatment either the smallest enclosing square or

circle could be displayed.

40

I. DISPLAY OF ABSTRACTIONS

The usual picture for human consumption displays only lines, circles, text, digits, and

instances. However, certain very useful abstractions represented in the ring structure storage

give the drawing the properties desired by the user. For example, the fact that the start and end

points of a circle arc should be equidistant from the circle's center point is represented in storage

by a constraint block. For a user to manipulate these abstractions, it must be possible for each

abstraction to be seen on the display if desired. Not only does displaying abstractions make it

possible for the human user to know that they exist, but displaying abstractions also makes it

possible for him to aim at them with the light pen and, for example, erase them. The light pen

demonstrative language described in Chapter 4 is sufficient for making all changes to objects

or abstractions which can be displayed. To make Sketchpad's light pen language universal, all

objects and abstractions represented in Sketchpad's ring structure can be displayed. To avoid

confusion, the display for particular types of objects may be turned on or off selectively by toggle

switchcc. Thus, for example, one can turn on a display of constraints as well as or instead of

the lines and circles which are normally seen.

If their selection toggle switch is on, constraints are displayed as shown in Fig. 5.3. The

central circle and letter are of fixed size on the scope regardless of the drawing scale factor

and are located at the average location of the variables constrained. The four arms of a con-

straint extend from the top, right side, bottom, and left side of the circle to the first, second,

third, and fourth variables constrained, respectively. If fewer than four variables are con-

strained, excess arms are omitted. In Fig. 5.3 the constraints are shown applied to "dummy

variables," each of which shows as X.

P C

FIGURE 5.3.
DISPLAY OF CONSTRAINTS

Two difficulties are encountered with this representation of constraints:

(1) The constraint diagrams tend to overlap one another when a geometric
figure has several constraints applied to it.

(2) One character is not enough to display all the symbols and mnemonics
one would like to have for his constraints.

A more desirable arrangement would let the user draw the constraint representation diagrams

in the same way he makes other drawings, permitting him to invent whatever mnemonics he

41

could draw. It would also be helpful to be able to relocate the body of a constraint representation

at will to avoid the unfortunate and confusing overlapping. How io locate it without explicit in-

structions would, however, be a problem. Moreover, the constraint, having a position itself,

would have to be treated as a variable and might be used to constrain itself, compounding an al-

ready complicated situation. Alternatively, instead of locating the circle and letter at the center

of the variables, one could locate them at random nearby. Any confusion of constraints could then

be clarified by recomputing the display file to get a new set of random locations.

Another abstraction that can be displayed if desired is the value of a set of digits. The value

of a set of digits is stored as a variable separate from the digits themselves. Moving digits

means relocating them on the drawing or rotating them. Making the digits bigger means just

that, increasing the type size. But making the value bigger changes the particular digits seen

and not the type size. The value of a set of digits, a scalar, appears as a # connected to the

digits which display it by as many lines as there are sets of digits and located at the average

location of these sets, as shown in Fig. 5.4. Since there is usually only one set of digits dis -

playing the value of a scalar, the * is usually superimposed on it and connected to it by a zero-

length line which looks like a dot. The major difficulty with this display is that values which

have no digits all lie exactly on top of one another at the origin.

_, OSAS1INT ROS 0161" MenW35'

FIGURE 5.4.
DISPLAY OF SCALAR AND DIGITS

J. EMPTY DISPLAYS

The frames which may be put around instances can be thought of as abstractions of the exis

ence as opposed to the appearance of the instance. Moreover, since it is possible to make an

instance of a picture and then erase the lines in the master picture, it is possible to have an in-

stance with no appearance at all, an empty instance. Before instance framing was possible, such

empty instances were inaccessible to the light pen and likely to be forgotten by the user because

they could not show on the display. At the present time it is possible to lose only text; a line

of text composed entirely of spaces does not show.

K. THE AS-YZT-UNDREAMT-OF THINGS THAT WILL BE DISPLAYED

The organization of Sketchpad display as a set of display subroutines with identical external

properties makes it possible to add new kinds of displays to the system with the greatest ease.

At present, the need for dotted lines and circles, including center lines, dark lines, etc., and the

need for a ratio type of unitless scalar for representing angles and proportions is clear. Conic

sections would be useful. What other kinds of things may become useful forsipecial purposes is

as yet unknown; Sketchpad attempts to be big enough to incorporate anything easily.

42

CHAPTER 6
RCURSUZV FUNCTIONS

In the process of making the Sketchpad system operate, a few very general functions were

developed which make no reference at all to the specific types of entities on which they operate.

These general functions give the Sketchpad system the ability to operate on a wide range of prob-
lems. The motivation for making the functions as general as possible came from the desire to

get as much return as possible from the programming effort involved. For example, the general
function for expanding instances makes it possible for Sketchpad to handle any fixed geometry

subpicture. The rewards that come from implementing general functions are so great that the

author has become reluctant to write any programs for specific jobs.
Each of the general functions implemented in the Sketchpad system abstracts, in some sense,

some common property of pictures independent of the specific subject matter of the pictures

themselves. For example, the instance expansion program is a representation of the fact that
pictures from many fields contain subpictures with relatively fixed appearance. It is not claimed

that the general functions described in this chapter form a complete set, that is, abstract all the

common properties of pictures. There is a definite need for a general-purpose function for mak-
ing topological changes to a drawing. Such a general-purpose system is necessary, for example,

to put fillets and rounds on corners, or to define a vocabulary of dotted lines which could be

"unreeled," as it were, to any desired length. Nevertheless, the power obtained from the small
set of generalized functions in Sketchpad is one of the most important results of the research.

The recursive functions in use in the Sketchpad system are, in the order of their develop-

ment:

(t) Expansion of instances, making it possible to have subpictures within
subpictures to as many levels as desired.

(2) Recursive deletion, whereby removal of certain picture parts will re-
move other picture parts in order to maintain consistency in the ring
structure.

(3) Recursive merging, whereby combination of two similar picture parts
forces combination of similarly related other picture parts, making
possible application of complex definitions to an object picture.

(4) Recursive moving, wherein moving certain picture parts causes the dis-
play of appropriately related picture parts to be regenerated automati-
cally.

A. PUSH-DOWN LIT

A common method of keeping track of the recursion process is to use a "push-down list,"

a device much like a sinking table used in cafeterias to hold dishes so that as a dish is removed

the next is ready. Each of the entries of a push-down list references the next, so that if one is

removed, the location of the next will be available. A peculiarity of the Sketchpad system is that
these push-down lists are formed directly in the data storage structure and not separately by the

program. This guarantees that if the data storage structure fits in memory, it may be made

fully recursive without risk that the push-down information will overflow the space available for
it. Insofar as possible, Sketchpad uses parts of the data structure otherwise used for other pur-

poses to perform the push-down function.
Chapter 3 and Appendix C describe the ring structure used for primary picture storage in

the Sketchpad system and show the relationships between various kinds of blocks. In this section

43

as little reference as possible will be made to the exact nature of the blocks involved, because

by avoiding reference to specific structure the functions considered may be made applicable to

any specific structure. By way of example, however, some specific cases will be mentioned;

bear in mind that these are meant only to be illustrative.

B. DEPENDENT AND INDEPENDENT ELEMENTS

Certain picture elements depend in a vital way for their existence, display, and properties

on other elements. For example, a line segment must reference two end points between which

it is drawn; a set of digits must reference a scalar which indicates the value to be shown. In

three dimensions it might be that a surface is represented as connecting four lines which in turn

depend on end points. If a particular thing depends on something else there will be in the depend-

ent thing a reference by pointer to the thing depended upon. In the ring structure used in Sketch-

pad, there will be a ring with a "hen" pair in the thing depended on and at least one "chicken"

pair in a dependent thing. For example, a ring will connect a point with all lines which use it as

an end point; the chicken pairs of this ring, being in the blocks for the lines in question, point to

the point as an end point of the lines.

Since there may be any number of rings passing through a given block, a particular block

may depend on some other blocks and simultaneously be depended on by others. Such a block

contains both hens and chickens. In particular, all blocks contain at least one chicken which in-

dicates by a reference to a generic block the type of thing represented. Some things are other-

wise totally depended upon (e.g., points); some things are totally dependent (e.g., lines); and

some both depend and are depended on (e.g., instances).

C. RECURSIVE DELETING

Consistency is of course maintained if a single thing upon which no other thing depends is

deleted. To accomplish this, all chicken pairs in its block are removed from their correspond-

ing rings. The registers which comprised a deleted block are declared "free" by their addition

to the FREES storage ring. In the Sketchpad system, line segments are entirely dependent and

may be deleted without affecting anything else. However, deleting a line may leave end points on

the drawing with no lines attached to them. A special button is provided for removing all such

useles" points from the drawing.

If a thing upon which other things depend is deleted, the dependent things must be deleted

also. For example, if a point is to be deleted, all lines which terminate on the point must also

be deleted. Otherwise, where would these lines end? Similarly, deletion of a variable requires

deletion of all constraints on that variable; a constraint must have variables to act on. Three-

dimensional surfaces might be made to depend on lines which depend on points; if so, deletion

of a point would require deletion of a line which would in turn require deletion of a surface. In

Sketchpad, deleting a scalar forces deletion of all digits displaying its value, which will force

deletion of all constraints holding the digits in position. Although the scalar-digits-constraint

chain is the longest one in Sketchpad, the programs could handle longer chains if they existed.

The recursiveness of deletion brings with it the difficulty that one deletion may cause any

number of deletions. It may therefore be difficult to follow the ring structure during deletions.

For example, suppose that everything in a particular picture Is to be deleted, a facility which

is provided. The program applies the delete routine to the first thing in the picture, say a point,

44

and then to the next thing in the picture, say a line which terminated on the point. The normal

macro mentioned in Chapter 3 for applying functions to all the members of a ring, LGORR, can-

not be used, for at the time the next ring member is to be located, both it and the current ring

member may be so much meaningless free storage. To delete everything in a picture, Sketchpad

again and again deletes the first thing in the picture, thus chewing away until the picture is gone.

The push-down list for recursive deletion is formed with the pair of registers which normally

indicates what type of thing a block represents. As soon as it is found that a block must be de-

leted, it is declared "dead" by placing its TYPE pair in a generic ring called DEADS. The first

dead thing is then examined to see if it forces other things to be declared dead, which is done

until no more dead things are generated by the first dead thing. The first dead thing is then de-

clared "free" and the new first dead thing is examined in exactly the same way until no more dead

things exist. The DEADS ring, through registers which normally indicate type, serves as the

push-down list.

D. RECURSIVE MERGING

The single most effective tool for constructing drawings, when combined with the definition

copying function described in Chapter 7, is the ability to merge picture parts recursively. The

recursive merging function makes possible such statements as "this thing is to be related to that

thing in such and such a way." The relationship may be treated as applying to things which it re-

lates only indirectly. For example, we shall soon see how one line may be made parallel to an-

other even though the parallelism constraint applies only to the locations of their end points.

Similarly, a set of digits can be forced to display the length of a line, even though the constraint

involved refers to the end points of the line and the value of the digits rather than to the line or

the digits themselves. The recursive merging function makes it meaningful to combine anything

with anything else of the same type regardless of whether the things are dependent on other things

or depended on by others.

If two things of the same type which are independent are merged, a single thing of that type

results, and all things which depended on either of the merged things depend on the result* of

the merger. For example, if two points are merged, all lines which previously terminated on

either point now terminate on the single resulting point. In Sketchpad, if a thing is being moved

with the light pen and the termination flick of the pen is given while aiming at another thing of the

same type, the two things will merge. Thus, if one moves a point to another point and terminates,

the points will merge, connecting all lines which formerly terminated on either. This makes it

possible to draw closed polygons.

If two things of the same type which depend on other things are merged, the things depended

on by one will be forced to merge, respectively, with the things depended on by the other. The

result* of merging two dependent things depends respectively on the results* of the mergers it

forces. For example, if two lines are merged, the resultant line must refer to only two end

points, the results of merging the pairs of end points of the original lines. All lines which ter-

minated on any of the four original end points now terminate on the appropriate one of the re-

maining pair. More important and useful, all constraints which applied to any of the four original

end points now apply to the appropriate one of the remaining pair. This makes it possible to speak

*The "rult" of a merger is a single thing of the same type as the merged things.

45

A. 0MVImI DKtFIuIIII N I. PIClIM To CISWIM

C. WINITI CWPIW D. FIR1ST LOWIM

E. SM LINE .NOW MIAINTS SATISII

FIGURE 6.1. APPLYING TWO CONSTRAINTS
INDIRECTLY TO TWO LINES
'(:PARALEL IS ei ll EAL LSI61

of line segments as being parallel even though (because line segments contain no numerical in-

formation to be constrained) the parallelism constraint must apply to their end points and not to

the line segments themselves. If we wish to make two lines both parallel and equal in length,

the steps outlined in Fig. 6.1 make it possible. More obscure relationships between dependent

things may u easily be defined and applied. For example, constraint complexes can be defined

to make line segments be collinear, to make a line be tangent to a circle, or to make the values

represented by two sets of digits be equal.

E. INSTANCES

The most effective tool provided in the Sketchpad system for creating large complex draw-

ings quickly and easily is the instance, Instances are recursively expanded so that they may

contain other instances to give an exponential growth of picture produced with respect to effort

expended. Instances may have attachment points and therefore may connect points topologically

much as line segments do. For example, an instance of a resistor may connect two points both

electrically and geometrically on the drawing. An instance also has the properties of a four-

component variable: numbers are stored in each instance block to indicate where, how big, and

in what rotation that instance is to appear on the picture. It took some time to reconcile the

topological properties of instances with their properties as variables.

The block of registers which represents an instance is remarkably small considering that it

may generate a display of any complexity. For the purposes of display, the instance block makes

reference to a picture by means of its chicken in a ring which ties a picture to all its instances.

46

The instance will appear on the display as a figure geometrically similar to the picture of which
it is an instance, but at a location, size, and rotation indicated by the four numbers which consti-
tute the Ovaluem of the instance. An important omission as this is written is the ability to make
mirror images. Right- and left-handed figures must now be treated separately, whereas the in-
stance should indicate whether a right- or left-handed version of the master is to be shown.

F. INSTANCES AS VARIABLES

The four numbers which specify the size, rotation, and location of the instance are considered
numerically as a four-dimensional vector. In certain computations, the value of a variable is
changed was little as possible" if there is no need to change it further. The distance measured in
the case of instances is the square root of the sum of the squares of the four components. For
this reason, and for simplicity in the use of the fixed-point arithmetic of the TX-2, it is impor-
tant that the four numbers used to represent the vector be of about the same order of magnitude.
The particular numbers chosen are the coordinates of the center of the instance and the actual
size of the instance as it appears on the drawing times the sine and cosine of the rotation angle
involved. In a typical drawing these four numbers have reasonably similar ranges of variation.

In our early work we attempted to use the position and the sine and cosine of the rotation angle

times the reductio in size from the master picture in order to avoid the normalization of master
picture size implicit in the above paragraph. This not only prevented having instances larger
than their masters because of the fixed-point arithmetic, but also made distance in the four-
dimensional space meaningless. No attempt was ever made to use the size and rotation numbers
independently.

The transformations of coordinates represented by the above paragraphs are:

Poor Exd] =[i z2 + [i:] (6-i)
Yd -i2 iI YM 1 4

Better ri = + (6-2)

[Yd -i Iii LYm/Sm1 24

where

Xd' Yd = display location in page coordinates,

Xm' Ym = master location in page coordinates,

m= size of master picture in page coordinates,

i i' 1 4 z 4 vector in instance, - i < ii < + 1.

0. RECUDVWe DUPLAY OF DISTANCES

In displaying an instance of a picture, reference must be made to the picture itself to find

out what picture parts are to be shown. The picture referred to may contain instances, however,
requiring further reference, and so on until a picture is found which contains no instances.

47

I

A recursive program performs this function. At each stage in the recursion, any picture parts

displayed must be relocated so that they will appear at the correct position, size and rotation on

the display. Thus, at each stage of the recursion, some transformation of the form of Eq. (6-2)

is applied to all picture parts before displaying them. If an instance is encountered, the trans-

formation represented by its value must be adjoined to the existing transformation for display of

parts within it. When the expansion of an instance within an instance is finished, the transfor-

mation must be restored for continuation at the higher level.

To avoid the difficulties of taking an inverse transformation, the old transformation is saved

in registers provided for that purpose in the picture block of the picturc bcing expanded. Thus,

the current transformation is stored in program registers and is being used, whereas the pre-

vious transformation is saved in the picture blocK currently being expanded. The push-down list

is provided also by indicating in the picture block being expanded the particular instance thereof

which is responsible for this expansion of the pictture. The first picture to be displayed starts

with no transformation at all. Thus, if it contains itself as an instance, one recursion is possible,

saving the old transformation in the picture block and saving the address of the instance respon-

sible for the expansion in the picture block as well. Subsequent recursions will be prevented,

however, because no instance is expanded if the picture of which it is an instance already belongs
on the push-down list. It would be possible to expand such circular instances further by provid-

ing some suitable termination condition such as reaching a level too small to show on the display.

However, since thc instances might get larger rather than smaller, termination conditions are

far from simple.

H. ATTACHERS AND DISTANCES

Many symbols used must be integrated into the rest of the drawing by attaching lines to the

symbols at appropriate points, or by attaching the symbols directly to each other as if by zero-

length lines. For example, circuit symbols must be wired up, geometric patterns made by fit-

ting shapes together, or mechanisms composed of links tied together appropriately. An instance

may have any number of tie points, and, conversely, a point may serve as tie for any number of

instances.

An "instance-point" constraint block is used to relate an instance to each of its tie points.

An instance-point constraint is satisfied only when the point bears the same relationship to the

instance that a point in the master picture for that instance bears to the master picture coordinate

system. Instance-point constraints are treated as a special case when an instance is moved so

that tie points always move with their instance, and lines terminating on the tie points move as

well. Each instance-point constraint makes reference to both the instance and its tie points by

means of chickens,

To use a point as an attacher of an instance, the point must be designated as an attacher in

the master drawing of the instance. For example, when one first draws a resistor, the ends of

the resistor must be designated as attachers if wiring is to be attached. When an instance is

created by pressing the "instance" button, toggle switches tell what picture the instance is to re-

fer to. Along with the instance element are created a point and an instance-point constraint for

each attacher. These points are bona fi& points in the object picture but are not automatically

attachers of the object picture. If they are to be used as attachers when the object picture is in-

stanced, they must be designated anew. Thus, of the three attachers of the transistor, it is pos-

sible to select one or two to be the attachers of a flip-flop.

48

The entire internal structure of the instance Is suppressed as far as the light pen is concern-

ed except for the attachers. Thus, even on a dense circuit drawing it is possible to connect ele-

ments with ease because at the highest level of instance only the designated attachers will hold

the attention of the light pen program. Usually there are only a few attachers for each block no

matter how complicated it is internally, so it is generally obvious which one to use.

I. RECURSIVE MOVING

At first only variables could be moved. Moving a variable means to change somehow the num-

bers stored as the components of the variable, usually to make the display for the variable follow

light pen motions. A moving point, for example, will be firmly attached to the pseudo pen posi-

tion, while a moving piece of text faithfully follows light pen displacements so that the part of the

text which was under the pen when the "move" button was pressed remains under the pen. For

variables with more than two components, moving is partly controlled by the pen and partly by

knobs. For example, the moving text can be made larger or rotated by two of the knobs.

The advent of the recursive merging and the definition copying functions made it clear that

one should be able to move anything regardless of whether or not it is variable. To move a non-

variable, a recursive process is used to find whatever variables may be basic to the thing being

moved. For example, if a line is to be moved, the end points on which it depends must be moved.

All objects which are being moved are put in a ring whose hen is in the MOVINGS generic block.

The object actually attached to the light pen is first in the ring. Upon termination only this first

object in the MOVINGS ring may be merged with other objects.

The numerical operation of moving is accomplished by the standard transformation procedure.

The small transformation due to light pen position change and knob rotation since the last pro-

gram iteration is converted to the form of Eq. (6-2) and placed in the standard location. Each ob-

ject in the MOVINGS ring is transformed by it. The generic block for each type of object, of

course, contains the subroutine to apply the transformation to such objects. The generic block

for lines, for example, indicates that no transformation need be applied to the line because it von-

tains no numerical values and will automatically be moved when its end points are moved.

Moving objects must be invisible to the light pen. Since the light pen aims at anything within

its field of view, it would otherwise aim at a moving object and a jerky motion would result. Mo-

tion would only happen when the pen's field of view passed beyond the object being moved. More-

over, the display for moving objects must be recomputed regularly for the benefit of the human

user, but the unmoving background need not be recomputed. The display spot coordinates for ob-

jects being recomputed is placed last in the display file, above (in higher-numbered registers)

the fixed background display so that it may be recomputed without disturbing the rest of the dis-

play file. The light pen program rejects any spots seen by the pen which come from these high

display file locations. Needless to say, the entire display file must be recomputed once to elim-

inate the former traces of the newly moving objects.

49

CHAPTER 7
BUILDING A DRAWING: THU COPY FUNCTION

As experimentation with drawing systems for the computer progressed, the basic drawing

operations evolved into their present form. At the outset, the very general picture and relation-
ship defining capability of the copy and recursive merging functions were unknown, so consid-

erable power had to be built directly into the system. Now, of course, it would be possible to

use much simpler atomic operations to draw simple pictures embodying many of the notions now

treated as atomic.

A. DRAWING VS MOVING

An idea that was difficult for the author to grasp was that there is no state of the system

that can be called 'drawing." Conventionally, of course, drawing is an active process which
leaves a trail of carbon on the paper. With a computer sketch, however, any line segment is

straight and can be relocated by moving one or both of its end points. In particular, when the

button 'draw' is pressed, a new line segment and two new end points are set up in storage, and
one of the line's end points is left attached to the light pen so that subsequent pen motions will

move the point. The state of the system is then no different from its state whenever a point is

being moved.
Similarly, to draw a circle, one creates a center point when the button "circle centers is

pressed, and creates in the ring structure a circle block and its start and end points when the

button 'draws is pressed with a circle center defined. The end point of the circle arc is left

attached to the light pen to move with subsequent pen motions. Since the start and end points

of a circle arc should be equidistant from its center point, an equal distance constraint is cre-

ated along with the circle but could be subsequently deleted without deleting the circle.

B. ATOMIC OPERATIONS

In general, when creating new points to serve as the start of line segments and circle arcs

or centers for circle arcs, an existing point is used if the pen is aimed at one when the new point
would be generated. Thus, if one aims at the end of an existing line segment and presses "draw'

the new line segment will use the existing point instead of setting up another point which has

the same coordinates. Later motion of this point will move both lines attached to it; the ring

structure storage reflects the intended topology of the drawing. Similarly, if one is moving a

point and gives a termination signal while aiming at another point, these two points wil be

merged, again reflecting the intended drawing topology.

We have seen that a constraint is set up to indicate that the start and end points of a circle

arc should be equidistant from its center whenever a new circle arc is drawn. Similarly, con-

straints to indicate that a point should lie on a line or circle are automatically set up if a point

is either created while the pen is pointing to the line or circle or moved onto the line or circle.

The constraints, of course, do not apply to the line or circle itself but to- the points on which it

depends. If the light pen is aimed at the intersection of line segments, two "point-on-line' con-
straints will be set up for a point created or left there, one for each intersecting line. Three

or more line segments may be forced to pass through a single point by moving that point onto

them successively to set up the appropriate constraints. Constraint satisfaction will then move

St

the lines so that all of them pass through the point. In order to avoid cluttering up the ring

structure with redundant constraints, the point-on-line and point-on-circle constraints are set

up only if the point is not already so constrained.

C. GENERALIZATION OF ATOMIC OPERATIONS

The atomic operations described above make it possible to create in the ring structure new

picture components and relate them topologically. The atomic operations are, of course, lim-

ited to creating points, lines, circles, point-on-line and point-on-circle constraints. (The

point-on-circle constraint is the same type as that used to keep the circle's start and end points

equidistant from its center.) Since implementation of the copy function it has become possible

to create any combination of picture parts and constraints in the ring structure. The recursive

merging function makes it possible to relate this set of picture parts to any existing parts. For

example, if a line segment and its two end points are copied into the object picture, the action of

the "draw' button may be exactly duplicated in every respect. Along with the copied line, how-

ever, one might copy as well a constraint to make the line horizontal, or two constraints to make

it both horizontal and three inches long, or any other variation one cares to put into the ring

structure to be copied.

When one draws a definition picture to be copied, certain portions of it to be used in relating

it to other object picture parts are designated as "attachers." Anything at all may be designated:

for example, points, lines, circles, text, even constraints! The rules used for combining points

when the "draw" button is pressed are generalized so that for copying a picture, the last-

designated attacher is left moving with the light pen. The next-to-last-designated attacher is

recursively merged with whatever object the pen is aimed at when the copying occurs, if that

object is of like type. Previously designated attachers are recursively merged with previously

designated object picture parts, if of like type, until either the supply of designated attachers or

the supply of designated object picture parts is exhausted. The last-designated attacher may be

recursively merged with any other object of like type when the termination flick is given. Nor-

mally only two designated attachers are used because it is hard to keep track of additional ones.

The order in which attachers are designated is important because it is in this order that they

will be treated. If a mistake is made in ordering the attachers, redesignation of an attacher

puts it last in the order. As this is written, there is no way to undesignate an attacher except

by deleting it, an oversight which should be corrected.

If the definition picture to be copied consists of a line segment with end points as attachers

and a horizontal constraint between the end points, as shown in Fig. 7.IA, the result of pressing

the "copyN button will appear to the user exactly like that of pressing the "draw" button. One

end point of the line will be left behind and one will follow the light pen. Subsequent constraint

satisfaction will, however, make the line horizontal.

If the definition picture consists of two line segments, their four end points, and a con-

straint on the points which makes the lines equal in length, and if the two lines are designated as

attachers as shown in Fig. 7. IB, then copying enables the user to make any two lines equal in

length. If the pen is aimed at a line when "copy" is pushed, the first of the two copied lines

merges with it (taking its position and never actually being seen). The other copied line is left

moving with the light pen and will merge with whatever other line the pen is aimed at when ter-

mination occurs. Since merging is recursive, the copied equal-length constraint will apply to

S2

LINE. ATTAiNER 2
I-|-14hdl

POINT. ATTADOWt 2

PO:INTý ATTAGIER I

A. HORIZONTAL LINE LINE. AITACIE I

B. EQUAL LENGTH LINES

POINT. ATTACU 21

1POINT. ATTACI0E I

INSTUNC-fOINT COiSTRINTdY'
ECNSIRAINTS am INSTNiCE- E (I)

C. PARTLY FLEXIBLE ARROW

INSTANCE. ATTACNMR2
11NSTANCE IATTACHER I

D. PRE-YOINED INSTANCES

FIGURE 7.1.
DEFINITIONS TO COPY

the desired pair of object picture lines. If no lines are aimed at. of course, the copied picture

parts are seen at once with the scale factor so reduced that the entire copied picture takes up

about A of the display area.
If the picture to be copied consists of the erect constraint and the full-size constraint, both

applying to a single dummy variable which is the attacher, copying produces a useful constraint

complex attached to the pen for subsequent application to any desired instance. With only one

attacher, the instance constrained is the one the pen is aimed at when termination occurs,

D. COPYING INSTANCES

As we saw in Chapter 6 the internal structure of an instance is entirely fixed. The internal

structure of a copy, however, is entirely variable. An instance always retains its identity as a

single part of the drawing; one can delete only an entire instance. Once a definition picture is

copied, however, the copy loses all identity as a unit; individual parts of it may be deleted at

will.

One might expect that there was intermediate ground between the fixed-internal-structure

instance and the loose-internal-structure copy. One might wish to produce a collection of pic-

ture parts, some of which were fixed internally and some of which were not. The entire range

of variation between the instance and the copy can be constructed by copying instances.

53I .$

For example, the arrow shown in Fig. 7. IC can be copied into an object picture to result in

a fixed-internal-structure diamond arrowhead with a flexible tail. As the definition in Fig. 7.IC

is set up, drawing lines with diamond arrowheads is just like drawing ordinary lines. One aims

the light pen where the tail is to end, presses "copy* and moves off with an arrowhead following

the pen. The diamond arrowhead in this case will remain horizontal.

Copying prejoined instances can produce vast numbers of joined instances very easily. For

example, the definition in Fig. 7. ID, when repetitively copied, will result in a row of joined dia-

monds of equal size. In this case the instances themselves are attachers. Although each press

of the "copy" button copies two new instances into the object picture, one of these is merged with

the last instance in the growing row. In the final row, therefore, each instance carries all the

constraints which w'nre applied to either of the instances in the definition. This is why only one

of the instances in Fig. 7. ID carries the erect constraint. Notice also that although the diamond

is normally a two-attacher instance, each of the diarnonds in Fig. 7.1D carries only one attacher.

The other has been deleted so that each instance in the final row of diamonds will obtain only one

right and one left attacher, one fron, each of the copied instances.

E. THE MECHANICS OF COPYING

Needless to say, when a piece of ring structure is copied the definition picture used is not

destroyed; the copying procedure reproduces its ring structure elsewhere in memory. However,

the reproduction is not just a duplication of the numbers in some registers. The parts of the def-

inition drawing to be copied may be topologically related, and the parts of the copy must be re-

lated to each other in the same way rather than to the parts of the master. Worse yet, some

parts of the definition may be related to things which are not being copied. For example, an in-

stance is related to the master picture of which it is an instance, and the copy of the instance

must be related to the same master picture, not to a copy of it.

To copy a picture, space to duplicate all the elements of the picture is allocated in the free

registers at the end of the ring structure. Each of the new elements is tied into its appropriate

generic block ring by its TYPE component. Each new element is placed in this ring adjacent to

the element it is a copy of. That is, for each element in the master a duplicate element is set

up adjacent to it in the generic ring for that type of element. Appropriate scaled values are

given to copied variables. The various references in the definition elements are then examined

to see whether they refer to things that have been copied. If they do, the corresponding compo-

nents of the copied elements are made to refer to the appropriate cpe!d elements. On the other

hand, if a definition element refers to something which has not been copied, its copy refers to

the same element that its definition does.

When the complete copy has been made, the copies of all but the last-designated of the at-

tachers are recursively merged with the designated portions of the object picture. The last-

designated attacher is fastened to the light pen with the recursive moving function. The last-

designated attacher may later merge with another picture part,

54

CHAPTER 8
CONSTRAINT SATISFACTION

The major feature which distinguishes a Sketchpad drawing from a paper and pencil drawing
is the user's ability to specify to Sketchpad mathematical conditions on parts of his drawing al-
ready finished which will be automatically satisfied by the computer to make the drawing take the
exact shape desired. For example, to draw a square, any quadrilateral is created by sloppy
light pen manipulation, closure being assured by the pseudo light pen position and merging of
points. The sides of this quadrilateral may then be specified to be equal in length and any angle
may be required to be a right angle. Given these conditions, the computer will complete a
square. Given an additional specification, say the length of one side, the computer will create

a square of the desired size.
The process o; modifying a drawing to meet new conditions applied to it after it is already

partially complete is very much like the process a designer goes through in turning a basic Idea
into a finished design. As new requirements on the various parts of the design are thought of,
small changes arc made to the size or other properties of parts to meet the new conditions. By
making Sketchpad able to find new values for variables which satisfy the conditions imposed, it
is hoped that designers can be relieved of the need for much mathematical detail. The effort
expended in making the definition af constraint types as general as possible was aimed at making
design constraints and geometric constraints equally easy to add to the system. To date, how-
ever, Sketchpad is more of a model of the design process than a complete designer's aid, both
because it is limited to two dimensions and because little advanced application has as yet been
made of it.

The work on constraint satisfaction has been successful as far as it has been taken. The
constraint definition and satisfaction programs generalize easily to three dimensions; in fact,
constraint satisfaction for instances is even now treated as a four-dimensional problem. The
high-speed maze solving technique for constraint satisfaction described below works well where
constraints have been specified unredundantly. There is much room for improvement in the re-
laxation process and in making the *intelligent" generalizations that permit humans to capitalize
on symmetry and eliminate redundancy.

A. DEFRNTION OF A CONSTRAINT TYPE

Each constraint type is entered into the system as a generic block indicating the various
properties of that particular constraint type. Generic blocks for constraints need not be given
symbolic programming names since virtually no reference is made to particular constraint types
in the program. The generic block tells how many variables are constrained, which of these
variables may be changed in order to satisfy the constraint, how many degrees of freedom are
removed from the constrained variables, and a code letter for human reference to this constraint
type.

Any number of variables may be related by a constraint, but the display for constraints (see
Chapter 5) will be ambiguous if more than four variables are indicated, so no constraints relate
more than four variables. Of these variables, some may be referenced only. The routine which
satisfies the constraint by changing the values of some of the variables is forbidden to satisfy
the constraint by changing a "for reference only" variable. For example, a constraint could be
implemented which would make its first variable equal to its second by changing the first to

1 55

match the second, but not the reverse. This kind of one-way constraint is useful because it

speeds up the relaxation procedure by forcing re-evaluation of variables in a specified order.

For example, the constraint which makes the value of a number equal to the change in length of

a bridge beam, thus indicating the force carried by the beam, is one-way. It would be pointless

to have an erroneous value of the indicator affect in any way the relaxation procedure for the

bridge. Again, the constraint which relates a point to an instance in such a way that the point

maintains the same relationship to the instance that an original point in the master picture had

to the master picture, uses the original point "for reference only" to discover just what the cor-

rect relationship is. Thus the end terminal on a resistor will always stay at the end of the re-

sistor. It would be out of keeping with the fixed geometry nature of instances to have the internal

details of the instance changed to make it fit into some awkward position.

The one-way constraint, however, can lead to instabilities in the constraint satisfaction pro-

cedure. For example, if two scalars were each specified to be twice the value of the other, with

reference made only to the smaller,

A - ZB ,

B - ZA (8-t)

both variables would grow without bound, assuming, at each iteration, values four times as big

as before. If, however, a similar condition were set up with normal two-way constraints, the

values of the variables would approach zero, a correct and stable result. Since the number of

one-way constraints is small and they are designed for and used in special applications only,

very little instability trouble of this kind has been observed. Future users who add one-way con-

straints, however, are warned to be cautious of the instabilities which may result.

B. NUMERICAL DEFINITION OF CONSTRAINTS

After the first stumblings of trying to define a constraint type in terms of the equations of

lines along which the constrained variables should lie to satisfy the constraint, the numerical

definition of constraints directly in terms of an error was devised. By using an error definition

and considering the square of the error as an energy, one not only reflects directly the intent of

the relaxation process, but also makes it easy to write the defining subroutines for new con-

straint types.

The defining subroutine for a constraint type is a subroutine which will compute, for the

existing values of the variables of a particular constraint of that type, the error introduced into

the system by that particular constraint. For example, the defining subroutine for making points

have the same x-coordinate (to make a line between them vertical) computes the difference in

their x-coordinates. What could be simpler? The computed error is a scalar which the con-

straint satisfaction routine will attempt to reduce to zero by manipulation of the constrained

variables. The computation of the error may be nonlinear or time dependent, or it may involve

parameters not a part of the drawing, such as the setting of toggle switches, etc. The flexibility

of computation subroutines for defining constraints is tremendous.

In order to avoid overflow difficulties, the partial derivative of the error with respect to

the value of any of the components of a constrained variable must be less than two. In order to

make the constraints work well together, they must be balanced; that is, the partial derivative

of error with respect to displacement must be nearly equal for all constraint types. I have

56

arbitrarily tried to make the error subroutines compute an error nearly proportional to the

distance by which a variable is removed from its proper position. In other words, many of the
existing constraint computation subroutines make the partial derivative approximately unity.

C. LINEARIZATION OF CONSTRAINTS

The method described below for finding the least-mean-squares fit to a group of constraints

requires that a linear equation be given for each constraint. To find the linear equation which

best approximates the possibly nonlinear constraint for the present values of the variables, the

error computed by the subroutine is noted for several slightly different values of the variables.

The equation

AK (xi - Xio) = -So ,(8-2)

where xi represents the components of the variable, E is the computed error, and subscript o

denotes initial value, is used as the linear best fit. Actually, the coefficients computed are I the

values shown in Eq. (8-2) to permit error to be equal to displacement without generating overflow.

Some constraints ntay remove more than one degree of freedom from the variables con-

strained. For example, the constraint which locates one thing exactly midway between two others

removes two degrees of freedom. Such constraints must have as many error computation sub-
routines as there are degrees of freedom lost, since each subroutine results in a single linear

equation. A subroutine which computes the distance from a variable to its correct location with-

out regard to the number of degrees of freedom being removed will cause erratic results. A
correct subroutine pair for constraining one thing to lie between two others computes both how

far out of line the center thing is and, separately, I the difference in the distances from the cen-
ter object to the two outer ones (I is put in to meet the maximum derivative requirement).

D. THE RELAXATION METHOD

When the one-pass method of satisfying constraints to be described later fails, the Sketchpad

system falls back on the reliable but slow method of relaxation to reduce the errors indicated by
the various computation subroutines to smaller and smaller values. For simple constructions

such as the hexagun illustrated in Fig. 1.5, p. 5, the relaxation procedure is sufficiently fast to

be useful. However, for complex systems of variables, especially dircctly connected instances,

relaxation is unacceptably slow. Fortunately, it is for j,,st such directly connected instances

that the one-pass method shows the most striking success.

The relaxation method of satisfying conditions is as follows. Choose a variable. Re-
evaluate it to reduce the total error introduced by all constraints in the system. Choose another

variable and repeat. Note that since each step makes some net reduction of total error, there
will be monotonic decrease of error and thus stability is assured. Since re-evaluating a variable

will change only the error introduced by the constraints which apply to that variable, only the

changes in the errors introduced by these constraints need be considered. Other variables, and

therefore the errors of constraints applying only to them, will remain constant. Sketchpad's

ring structure makes it easy to consider all constraints applying to a particular variable since

all such constraints are collected together in a ring whose hen is in the variable.

It in important in the relaxation method that, at each step, the very latest computed values
of all variables be used for error computations. From the point of view of the program, this

57

means that only one value for each variable need be stored, each being updated in turn. Former

values not only may, but must be discarded. It is also important that the change in error ob-

tained by completely satisfying a constraint by moving one of its variables be identical to the

change in error to be obtained by completely satisfying it by moving another of its variables.

The error computing subroutine definition for a constraint computes the same error for a con-

straint no matter which of its variables is to be moved. My original instability troubles with

constraint satisfaction came from insufficient care in meeting this condition.

E. LEAST-MEAN-SQUARES FIT TO LINEARIZED CONSTRAINT8

In implementing the relaxation method above, it is important to be able to find quickly a new

value for a variable which reduces the total error introduced by the constraints on that variable.

In particular, the linearized form of the constraints results in a set of linear equations for the

variable, each of which must be satisfied as nearly as possible. Unfortunately, there may be

any number of linear equations applying to a particular variable and these may be either inde-

pendent but incomplete, independent and complete, or redundant and overdefining. A general

arithmetic macro, SOLVE, for finding the best value for a set of equations has been devised.

SOLVE converts the given equations into an independent set of equations whose solution will

be a point of minimum-mean-squared error for the original set. It is not always possible to

solve the independent set of equations uniquely, and if it is not, SOLVE finds that solution which

results in the minimum change from the existing value of the variable. The mathematical dis-

cussion pertinent to SOLVE is given in Appendix F. I am indebted to Lawrence G. Roberts for

providing me with the basic SOLVE program.

Seen from the outside, then, the linearization program and SOLVE make it possible for

Sketchpad to find a new value for any variable in order to more nearly meet the conditions indi-

cated by constraints. Repeated application of these programs to variables, in sequence, imple-

ments the relaxation process. Application of these programs to selected variables in order to

detect the number and degree of independence of constraints is used as an important part of the

one-pass constraint satisfaction method.

F. ONE-PASS METHOD

Sketchpad can often find an order in which the variables of a drawing may be re-evaluated

to completely satisfy all the conditions on them in just one pass. For the cases in which the one-

pass method works, it is far better than relaxation: it gives correct answers at once; relaxation

may not give a correct solution in any finite time. Sketchpad can find an order in which to re-

evaluate the variables of a drawing for most of the common geometric constructions. Ordering

is also found easily for the mechanical linkages illustrated in Chapter 9. However, ordering

cannot be found for the bridge-truss problems illustrated in Chapter 9.

The way in which the one-pass method works is simple in principle and was easy to imple-

ment as soon as the nuances of the ring structure manipulations were understood. To visualize

the one-pass method, consider the variables of the drawing as places, and the constraints re-

lating variables as passages through which one might pass from one variable to another. Varia-

bles are adjacent to each other in the maze formed by the constraints if there is a single con-

straint which constrains them both. Variables are totally unrelated if there is no path through

the constraints by which one could pass from one to the other.

58

Suppose that some variable can be found which has so few constraints applying to it that it

can be re-evaluated to completely satisfy all of them. Such a variable we shall call a NfreeN

variable. As soon as a variable is recognized as free, the constraints which apply to it are re-

moved from further consideration because the free variable can be used to ratisfy them. Re-

moving theme constraints, however, may make adjacent variables free. Recognition of these new

variables as free removes further constraints from consideration and may make other adjacent

variables free, and so on throughout the maze of constraints. The manner in which freedom

spreads is much like the method used in Moore's algorithm7 to find the shortest path through a

maze. Having found that a collection of variables is free, Sketrhpad will re-evaluate them in the

reverse order, saving the first-found free variable until last. In re-evaluating any particular

free variable, Sketchpad uses only those constraints which were present when that variable was

found to be free.

In the ring structure representation of the drawing, all variables found to be free are placed

in a special ring called the FREEDOMS ring. (Note that the FREE ring is used for empty spaces

in storage and has nothing to do with freedom in the present sense.) Each variable placed on the

FREEDOMS ring has associated with it, by extra ties, those constraints which it will be used to

satisfy. The order in which variables should appear in the FREEDOMS ring need be computed

only when the constraint conditions change. For a given set of conditions the same ordering will

serve for finding many satisfactory values. For example, as part of a linkage is moved with the

light pen, the ordering first established for the linkage serves until the conditions change,

59

CHAPTER 9
EXAMPLES AND CONCLUSIONS

In the first chapter we saw, as; an introduction to the system, some simple examples of
Sketchpad drawings. In the body of this report we have seen many drawings, all of which, ex-
cept the drawing of the light pen (Fig. 4.2), were drawn with Sketchpad especially to be included

here. In this chapter we shall consider a wider variety of examples in somewhat more dotail.
The examplcs in thia chapter were all taken from the library tape and thus serve to illustrate

not only how the Sketchpad system can be used, but also how it actually has been used so far,
We conclude from these examples that Sketchpad drawings can bring invaluable understand-

ing to a user. For drawings where motion of the drawing or analysis of a drawn problem is of
value to the user, Sketchpad excels. For highly repetitive drawings or drawings where accuracy
is required, Sketchpad is sufficiently faster than conventional techniques to be worthwhile. For

drawings which merely communicate with shops, it is probably better to use conventional paper
and pencil.

A. PATTERNS

The instance facility outlined in Chapter I enables one to draw any symbol and duplicate its
appearance anywhere on an object drawing at the push of a button. The symbols drawn can in-

clude other symbols to any desired depth. This makes it possible to generate huge numbers of
identical shapes; if at each stage two of the previous symbols are combined to double the num-

ber of basic shapes present, in twenty steps one million objects are produced.
The hexagonal pattern we saw in Fig. 1. 1 (p. 2) is one example of a highly repetitive draw-

ing. The hexagonal pattern was first drawn in response to a request for hexagonal "graph" paper.
About 900 hexagons were plotted on a single 30 X 30-inch plotter page. It took about half an hour

to generate the 900 hexagons, including the time taken to determine how to do it. Plotting them
took about 25 minutes. Professional draftsmen estimated that it would take them two days to

produce a similar pattern.
The instance facility also made it easy to produce long lengths of the zigzag pattern shown

in Fig. 9.1. As the figure shows, a single "zig" was duplicated in multiples of five and three, etc.
Five hundred zigs were generated in a single row. Four such rows were plotted one-half inch

apart to be used for producing a printed circuit delay line. Total time taken was about 45 min-
utes fo. constructing the figure and about 15 minutes to plot it.

In both the zigzag pattern of Fig. 9. 1 and the hexagonal pattern of Fig. 1. 1, the various sub-

pictures were fastened together by attachment points. In the hexagonal pattern, each corner of
the basic hexagon was attached to the corners of adjacent hexagons. The position of any hexagon

was then completely determined by the position of any other, In the zigzag pattern of Fig. 9. 1,
however, only a single att~tchment was made between adjacent zigzags. Additional constraints
were applied to all instances to keep them erect and of the same size.

A somewhat less repetitive pattern to be used for encoding the time in a digital clock in
shown in Fig. 9.2. Each cross in the figure marks the position of a hole. The holes will be placed
so that a binary coded decimal (BCD) number will indicate the time.

Sketchpad was first used in the BCD clock project to produce 60 radial lines spaced 6" apart.
To do this, a single 6" wedge was produced by first trisecting a right angle to obtain a 300 wedge

j. 61

F IGURE 9. 1.
ZIG-ZAG FOR DELAY LINE

FIGURE 3.2.
BCD ENCODER FOR CLOCK

Fgur. 9.3. Three-h. linkage. The pfth of foar points an the contral link
are ramcl. This Is.a 15-soecancl tine expoure afa maving Skstd*pa &awing.

and then cutting the 30" wedge into five parts. The relaxation procedure was used in each case

to make three or five sketched-in chords equal in length. Making the 6" wedge took an inexperi-

enced user less than half an hour, including instruction time. The author has constructed other

wedges as small as 1/128 of a circle in five minutes. All such wedges become a part of the

library.

The 6" wedge has three attachment points. By attaching five of the wedges to one another,

and then attaching three groups of five, a quadrant can be constructed. Fitting together four

quadrants gives a complete circle based entirely on the single 6" wedge. The advantage of con-

structing a full circle composed of 60 wedges is that any lines drawn in the original 6" wedge

will appear 60 times around the circle with no further effort on the part of the user, In the BCD

clock project, sixty radial lines were produced in this way.

Using the sixty radial lines plotted for him, the BCI) clock designer marked with pencil ap-

proximately where the crosses should be placed to obtain BCD coding. Returning to Sketchpad

we put a pattern of dots in the 6" wedge, so that in the full circle rings of dots appeared which

could be aimed at with the light pen. It was then an easy matter to place a cross exactly on each

of the desired dots. Total time for placing crosses was 20 minutes, most of which was spent

trying to interpret the sketch.

B. LINKAGES

By far the most interesting application of Sketchpad so far has been drawing and moving

linkages. We saw in Chapter I the straight-line linkage of Peaucellier (Fig. 1.6, p. 7). The

ability to draw and then move linkages opens up a new field of graphical manipulation that has

never before been available. It is remarkable how even a simple linkage can generate complex

motions. For example, the linkage shown in Fig. 9.3 has only three moving parts. In this link-

age a central . link is suspended between two links of different lengths. As the shorter link ro-

tates, the longer one oscillates, as can be seen in the multiple exposure. The ,L link is not

shown in Fig. 9.3 in such a way that the motion of four points on the upright, part of the . may

be seen. These are the four curves at the top of the figure.

To make the three-bar linkage, an instance shaped like the t was drawn and given six at-

tachers, two at its joints with the other links and four at the places whose paths were to be ob-

served. Connecting the I.-shaped subpicture onto a linkage composed of three lines with fixed

length created the picture shown. The driving link was rotated by turning a knob below the scope.

The total time required to construct the linkage was five minutes.

Sketchpad can make linkages that one would hardly think of constructing out of actual links

and pins. For example, a Sketchpad sliding joint is ideal, whereas to actually build a sliding

joint is relatively difficult, Again, it is possible to make two widely separated links be of equal

length by applying an appropriate constraint, but to build such a linkage would be impossible.

A linkage that would be difficult to build physically is shown in Fig. 9.4A. This linkage is

based on the complete quadrilateral. The three circled points and the two lines which extend

out of the top of the picture to the right and left are fixed. Two moving lines are drawn from the

lower circled points tb the intersections of the long fixed lines with the driving lever. The inter-

section of these two moving lines (one must be extended) has a box around it. It can be shown

theoretically that this linkage produces a conic section which passes through the place labeled

"point on curve$ and is tangent to the two lines marked "tangent." Figure 9.4B shows a time

exposure of the moving point in many positions. The straight dotted lines are the paths of other,

63

I-I!- Uiat I 1-11 -Ill I

Figure 9.4. Conic drawing linkage. As t+e "driving lever" is moved, the point shown
with a box around It traces a conic section. This conic con be seen in the time exposure.

zz 4=
FIGURE 9.5. DIMENSION LINES-

8GI -MEANS TENSION

FIGURE 9. 6.
TRUSS UNDER LOAD

64

less interesting points, The first time, this linkage was drawn and working in fifteen minutes.

Since then we have rebuilt it time and again until now we can produce it from scratch in about

three minutes.

C. DIMENSIONING OF DRAWINGS

For many applications, it is important that a Sketchpad drawing be made in the correct size.

For example, the BCD clock pattern shown in Fig, 9.2 was plotted exactly t2 inches in diameter for

the actual application. In fact, the precision of the plotter is such that its plotted output can be

used directly as a layout in many cases. But the size of a drawing as seen on the computer dis-

play is variable. To make it possible to have an absolute scale in drawings, a constraint is pro-

vided which forces the value displayed by a set of digits to indicate the distance between two points

on the drawing. The distance is indicated in thousandths of an inch for "full size" plotted output.

This distance-indicating constraint is used to make the number in a dimension line. Many

other constraints are used to make the arrowheads at the end of the line "parallel" to the dimen-

sion line and to make enough space in the line for the dimension number. In one sense, the di-

mension line is a complicated linkage; like a linkage it can be moved around while retaining its

properties. For example, the arrowheads stay the same size even when the dimension line is

made longer. A dimension line with small arrowheads is a part of the library. This line is

suitable for dimensions of the order of a few inches. A three-four-five triangle dimensioned

with this line is shown in Fig. 9.5.

To produce the three-four-five triangle of Fig. 9.5, three vertical and four horizontal line

segments were made the same length. After these lines were erased, the three correctly posi-

tioned corners of the triangle were dimensioned. Putting in a dimension line is as easy as draw-

ing any other line. One points to where one end is to be left, copies the definition of the dimen-

sion line by pressing the "copy" button, and then moves the light pen to where the other end of

the dimension line is to be. The size of the three-four-five triangle was adjusted so that even

dimensions appeared. At other sizes, of course, the ratio of the dimensions was correct but not

so easy to recognize at a glance. Total time required to produce the dimensioned three-four-five

triangle was three minutes, exclusive of time taken to produce the library version of the dimen-

sion line. The first dimension line took about fifteen minutes to construct, but that need never

be repeated.

D. BRIDGES

One of the most important potential applications of Sketchpad is as an input program for

other computation programs. The ability to place lines and circles graphically, when coupled

with the ability to obtain accurately computed results pictorially displayed, should bring about a

revolution in computer application. In Sketchpad we have a highly effective graphical input tool.

It happens that the relaxation analysis built into Sketchpad is exactly the kind of analysis used

for many engineering problems. By using Sketchpad's relaxation procedure we were able to

demonstrate analysis of the force distribution in the members of a pin-connected truss. We do

n claim that the analysis represented in the next series of illustrations is accurate to the last

significant digit. What we do claim is that a graphical input coupled to some kind of computation

which is in turn coupled to graphical output is a truly powerful tool for education and design.

In Fig. 9.6 is shown a truss bridge supported at each end and loaded in the center. To draw

this figure, one bay of the truss (shown below the bridge) was first drawn with enough constraints

65

to make it geometrically accurate. These constraints were then deleted and each member was

made to behave like a bridge beam. A bridge beam is constrained to maintain constant length,

but any change in length is indicated by an associated number. Under the assumption that each

bridge bean has a cross-sectional area proportional to its length, the numbers represent the

forces in the beams. The basic bridge beam definition (consisting of two constraints and a num-

ber) may be copied and applied to any desired line in a bridge picture. Each desired bridge

member was changed from a line into a full bridge beam by pointing to it and pressing the "copy"

button.

By using the bridge bay six times we constructed the complete bridge, The loading line and

the one missing end member were put in separately. The six-bay unloaded truss bridge is part

of the library. It took less than ten minutes to draw completely. After applying a load where

desired, and attaching supports, one can observe the forces in the various members. It takes

about 30 seconds for new force values to be computed. The bridge shown in Fig. 9.6 has both

outside lower corners fixed in position. Normally, of course, a bridge would be fixed only at

one end and thus free to move sideways at the other end.

Having drawn a basic bridge shape, one can experiment with various loading conditions and

supports in order to observe the effect of making minor modifications. For example, in Fig. 9.7

is shown an arch bridge supported both as a three-hinged arch (two supports) and as a cantilever

(four supports). For nearly identical loading conditions, the distribution of forces is markedly

different in these two cases.

FIGURE 9.7. CANTILEVER AND ARCH BRIDGES

E. ARTISTIC DRAWINGS

Sketchpad need not be restricted to engineering drawings. Since motion can be put into

Sketchpad drawings, it might be exciting to try making cartoons. The capability of Sketchpad to

store previously drawn information on magnetic tape means that every cartoon component ever

drawn is available for future use. If the almost identical but slightly different frames that are

required for making a motion-picture cartoon could be produced semiautomatically, the entire

Sketchpad system could justify itself economically in yet another way.

66

One way of cartooning is by substitution. For example, the girl "Nefertitem shown in

Fig. 9.8 can be made to wink by changing the three types of eyes on her otherwise eyeless face.

Doing this on the computer display has amused many visitors.

A second method of cartooning is by motion. A stick figure could be made to pedal a bicycle

by appropriate application of constraints. Similarly, Nefertite's hair could be made to swing.

This is the usual form of cartooning seen in movies.

Aside from its economics as a teaching or amusement device, cartooning can bring the in-

sights which are the prime value of Sketchpad drawings. The girl seen in Fig. 9.9 was traccd

from a photograph into the Sketchpad system. The photograph was read into the computer by a

facsimile machine used in another project and shown in outline on the computer display. This

outline was then traced with wax pencil on the display face. Later, with Sketchpad in the com-

puter, the outline was made into a Sketchpad drawing by tracing the wax line with the light pen.

Once the tracing was on magnetic tape many things could be done with it. In particular, the

eyes and mouth were erased to leave the featureless face which may also be seen in Fig. 9.9.

Returning to the tracing and erasing everything except the mouth, and tnen everything except an

eye, we obtained features. In refitting the features to the blank face we discovered that, although

the original girl was a sweet looking miss, an entirely different character appears if her mouth

is made larger as in Fig. 9. 10. Using a computer to partially automate an artistic process has

brought me, a nonartist, some understanding of the effect of certain features on the appearance

of a face. The understanding that can be gained from computer drawings is more valuable than

mere production of a drawing for shop use.

F. ELECTRICAL CIRCUIT DIAGRAMS

Electrical engineers are, of course, interested in making circuit diagrams. It is not sur-

prising that Sketchpad should be applied to this task. Unfortunately, electrical circuits require

a great many symbols which have not yet been drawn properly with Sketchpad and are therefore

not in the library. After some time is spent working on the basic electrical symbols, it may be

easier to draw circuits. So far, however, circuit drawing has been a failure.

The circuits shown in Fig. 9.11 are parts of an analog switching scheme. It can be seen that

the more complicated circuits are made up of simpler symbols and circuits. It is very difficult,

however, to plan far enough ahead to know what composites of circuit symbols will be useful as

subpictures of the final circuit. The simple circuits shown in Fig. 9.11 were compounded into a

big circuit involving about 40 transistors. Including much trial and error, the time taken by a

new user (for the big circuit not shown) was ten hours. At the end of that time the circuit was

still not complete in every detail and he decided it would be better to draw it by hand after all.

G. CONCLUSIONS

The circuit experience points out the most important fact about computer drawings. It is

worthwhile to make drawings on the computer only if you get something more out of the drawing

than just a drawing. In the repetitive patterns we saw in the first examples, precision and ease

of constructing great numbers of parts were valuable. In the linkage examples, we were able

to gain an understanding of the behavior of a linkage as well as its appearance. In the bridge

examples we got design answers which were worth far more than the computer time put into them.

We are as yet a long way from being able to produce routine drawings with the computer.

67

17777777

FIGURE 9.8.L

WINKING GIRL AND COMPONENTS

FIGURE 9.9.
GIRL TRACED FROM PHOTOGRAPH

68

GIRL WITH FEATURES CHANGED

T~I

FIGURE 99.10.

CIRCUIT D!AGRAMS

F 69

H. F=uURE WORK

The methods outlined in this report generalize nicely to three-dimensional drawing. In
fact, work on a complete "Sketchpad Three" which will let the user communicate solid objects
to the computer has already begun. A forthcoming thesis by Timothy Johnson of the Mechanical

Engineering Department at M.I.T. will describe this work. When Johnson is finished it should
be possible to aim at a particular place in the three-dimenslonal drawing through two-dimensional
perspective views presented on the display. Johnson is completely bypassing the problem of con-
verting several two-dimensional drawings into a three-dimensional shape. Drawing will be in
three-dimensions from the start. No two-dimensional representation will ever be stored.

Work is also proceeding on direct conversion of photographs into line drawings, Roberts re-

ports a computer program able to recognize simple objects in photographs well enough to pro-
duce three-dimensional line drawings of them. Roberts is storing his drawings in the ring struc-

ture described in Chapter 3 so that his results will be compatible with the three-dimensional

version of Sketchpad.
Much room is left in Sketchpad itself for improvements. Some improvements are minor,

such as including mirror-image subpictures. Some improvements should be made to suit

Sketchpad to particular uses that come up. For example, it is so interesting to study the path
of particular points on. a linkage that Sketchpad should be able to store and later display the path

of chosen points.
More major improvements of the same order and power as the existing definition copying

capability can be foreseen. At present, Sketchpad is able to add defined relationships to an exist-

ing object drawing. A method should be devised for defining and applying changes which involve
removing some parts of the object drawing as well as adding new ones. Such a capability would

permit one to define what rounding off a corner means. Then, by pointing at any corner and

applying that definition, one could round off any corner. Sketchpad cannot now do this because
rounding off a corner involves disconnecting the two lines which form the corner from the corner

point and then putting a small circular arc between them.

I. HARDWARE

Sketchpad has pointed out some weaknessen in present computer hardware. A proposal for
a linc drawing display which would greatly surpass the capability of the spot display now in use

is given in Appendix E. Such a display would not only provide flicker-free display to the user,

but would also relieve the computer of the burden it now carries in computing successive spots
in the display.

Sketchpad makes two conflicting demands on the light pen. On the one hand, the pen must
have a fairly large field of view for ease of tracking. On the other hand, it should have a small

field of view for aiming at objects. It should be possible to build a pen with two concentric fields
of view which would report to the computer separately.

The arithmetic element of the computer is not used in the ring structure processing which

forms a large part of Sketchpad. On the other hand, the index registers and their associated
arithmetic are used extensively. This suggests that several users could share an arithmetic

element if sufficiently powerful index arithmetic were made available to each of them.

70

REFERENCES

1. W.A. Clark, at l. "The Lincoln TX-2 Computer,~' Report 6M-4968, Lincoln
Laboratory, M.1. T. (1 April 1957), not generally available; see also Proc.
Western Joint Computer Conference, Los Angeles, Cal ifornia (February 1957),
p.'143 .

2. Electronic Associates Incorporated, "Handboo for Vorlpiotter Models 205S ond
205T, PACE," Long Branch, New Jersey (15 June 1959).

3. H. H. Loomis, Jr., *Graphical Manipulation Tschnique Using the Lincoln TX-2
Camputer," 51 G-001 7 [U), Lincoln Laboratory, M.1. T. (10 November 1960),
ASTIA 247861, H-226.

4. J. C. R. Lickl ider ond W. E. Clark, "On-Line Man-Computer Communication,"
Proc. AFIPS Spring Joint Computer Conference 21, 113 (1962).

5. L. G. Roberts, "Machine Perception of Three Dimensional Sol ids," Ph.D. Thesis,
Deportmenit of Electrical Engineering, M.1. T. (February 1963), unpublished.

6. D. T. Ross, 'A Generalized Technique for Symbol Manipulation and Nu&merical
Calculation," Commun. Assoc. Camp. Mach. 4, 147 (1961).

7. E.F. Moore, "On the Shotest Path Through a Maze, Proc. Int'l Symposium on
the Theory of Switching, Harvard Annals 3, 285 (1959).

APPENDIX A
CONSTRAINT DESCRIPTIONS

Variable
Code Types Description

43 point Point bears same relation to in-
T instance stance that (point) bears to its pic-

(point) ture.
GENERATED AUTOMATICALLY

X WITH INSTANCES

33 p-thing Three things are collinear.
L p-thing Note: no distinction made about

L p-thing ordering of variables.
GENERATED AUTOMATICALLY
WHEN POINTS ARE CREATED
ON LINES

r 22 p-thing Distance from first to second is
C p-thing equal to distance from first to third.

p-thing (First is circle center.)GENERATED AUTOMATICALLY
WHEN POINTS ARE CREATED
ON CIRCLES

E24 4-thing Thing is erect or on its side.E

27 p-thing First thing is directly above orH p-thing below, or directly beside second
thing. (Horizontal or vertical line.)
GENERATED AUTOMATICALLY
FOR ANY LINE BY HORV BUTTON

30 4-thing 4-thing is "parallel" to line be-
I p-thing tween p-things. Parallel to

p-thing horizontal line means upright.
(Used to set angle of text.)

34 p-thing Distance from first thing to second
M p-thing is 1/3, 1/2, 1, 2, 3, times distance

p-thing from third to fourth.p-thing

42 4-thing First thing is 1/3, 1/2, 1, 2, 3
S 4-thing times size of second thing.

73

Variable
Code Types Description

23 scalar Value of scalar equals distance be-
D p-thing tween things in inches.

p-thing

21 scalar Value of scalar equals size of thing

* B 4-thing in inches.

25 instance Instance is full size, i.e., the same
F size as its master picture.

47 p-thing . First thing is at midpoint of other
X p-thing two; e.g., dimension in dimension

p-thing line is at center of line.

06 4-thing Thing is 1/32, 1/16, 1/8, t/4, 1/2
6 or I inch in over-all size.

37 p-thing Line from first to second would be
P P p-thing parallel or perpendicular to line

p-thing from third to fourth. (Lines need
p-thing not be there.)

-13185 ~
36 4-thing p-thing will be next to 4-thing with
0 p-thing enough space for 5-digit number,

e.g., to create space in dimension
line.

46 p-thing Distance between things is main-
W p-thing tained at what it was last time meta

of tog 22 was down. USES META
OF TOG 22, e.g., for bridges and
linkages.

50 scalar Value of scalar is equal to change in
Y (p-thing) distance between p-things since meta

(p-thing) of tog 22 was down, sign considered,
e.g., to display forces in beams.
USES META OF TOG 22.

74

APPENDIX B
PUSH BUTTON CONTROLS

Button Name Bit Number Function

Draw 1.8 Creates a new straight-line segment or circle arc. The
end of the line or arc is left attached to light pen.

Circle 1.7 The center of a circle is left where the pen is pointing.
center The next thing drawn will be a circle arc.
Move 2.1 Object pointed at moves with light pen.

Delete 1.3 Object pointed at is removed from drawing.

Instance 2.4 Instance of picture whose number is in toggle register
25 is created.

Copy 20 3.6 These four buttons copy definition picture indicated in
Copy 21 3.1 toggle registers 20 to 23, respectively, These buttons
Copy 22 2.5 can be set up to create equal-length lines, dimension
Copy 23 1.9 lines, etc. Any four functions can be available at once.

Stop 1.6 Leaves moving object wherever it is. Merges moving
object if aiming at object of like type. Same as termi-
nation flick of the pen.

Text 4.3 Creates line of text consisting only of the letter X.
Typing while a piece of text is moving adds to the text
displayed.

Number 3.7 Creates a new set of digits and a scalar which is its
value. Digits are left moving.

Hold 4.9 Ensures that the following pen flick will not be taken as
a termination signal. Used ta set pen aside for typing
text.

Garbage 1.1 If pen is tracking, recenters picture so that the place
the pen is pointing at will be in the center. If pen is
not tracking, compacts ring structure by removing
garbage.

Constraint 2.8 Creates a new constraint of the type numbered in toggle
register 25. Dummy variables are created. Constraint
is left moving.

Horv 2.9 Applies horizontal or vertical constraint to line aimed
at. Choice is based on 45" cutoff.

Designate 2.2 Designates object. Used for copying a definition picture
with three or more ties.

Tie 2.6 Object pointed at is an attacher of this picture.

Fix 3.3 This object must not move during constraint satisfaction.
Moving an object with the light pen unfixes it.

Unfix 2.7 Unfixes and undesignates all fixed and designated objects.

IBM 4.3 Reads tape record. The number of the record on tape is
given in toggle 26. Typewriter confirms successful
reading or writing.

Library 3.9 Reads a record from the TX-2 library tape. Address of
record is given in toggle register 27. Typewriter con-
firms.

Library Special start Writes a record on library tape. Typewriter confirms.
write point
Change 2.3 Moving instance or instance pointed at is changed to type
instance indicated in toggle register 25. Can change resistor into

diode, etc.

75

Button Name Bit Number Function

Dismember 4.4 Instance pointed at is reduced one level, i.e., its internal

structure on the next level becomes usable.

Order 4.6 Lines are put in better order for plotting.

Disorder 4.5 Lines are put in worst order for plotting.

Punch 4.7 Punches plotter tape for object picture.

Plot 4.8 Plots object picture.

The following dangerous functions operate only if "meta" button (4.10) is pressed as well.

Delete 1.2 All constraints in object picture are deleted.
constraints

Delete 1.4 All unattached points in object picture are deleted.
points

Delete 1.5 Entire object picture is deleted.
picture

IBM 4.3 Write IBM tape record. Typewriter confirms.

76

APPENDIX C
STRUCTURE OF STORAGE BLOCKS

,C) = Chicken (S) = Start of subroutine Spare register
= Hen - z Ring part of component (} = Data part of block

Type
of Block Structure Remarks

Universe All these short generic blocks use the same
Variables TYPE (C) format. TYPE in a chicken (C) which con-
Holders- nects the block to its next-higher level in
Constraints SPECB (H) the generic structure (see Fig. 3.8). SPECB
Topos - is the hen (H) collecting the TYPE blocks in

NAME the next-lower level. TYPE and SPECB
Frees serve this purpose in all blocks where they
Deads appear. NAME contains a four-letter type-
Movings writer code name for each generic block.
Curpics Counting lines, one finds that TYPE = 0,
Freedoms SPECB = 2, and NAME = 4.
Fixeds
Desigs
Mergers
Works

Lines TYPE (C) Generic blocks for lines, circles and•
Circles (picture blocks.)
Pictures SPECB (H)INAME

DISPLAY (S) Display subroutine.
HOWBIG (S) Fit scope around this thing.

MOVIT (S) Apply transformation to this thing (degenerate).
SIZE Length of line, circle and picture blocks.

KIND Put these in PPART or PICBLKS of a
picture block.

Scalars TYPE (C) /Generic blocks for various kinds of\
Points - (variables. /
Instances SPECB (H)
Texts
Digits NAME
Dummies DISPLAY (S)

HOWBIG (S)

MOVIT (S) Apply transformation to this thing.
SIZE
WHERE (S) Find position of thing on display.
KIND
TUPLE Number components in vector.
VARLOC Location of first vector component in block.

Hov TYPE (C) Generic blocks for various constraint
Porp types.
etc. SPECB (H)
etc. N

NAME
DISPLAY (S)
HOWBIG (S) Degenerate. (Does nothing.)

MOVIT (S) Degenerate.
SIZE
CONLET Letter to appear in display.
KIND

77

of Coek Structure Remark.

COMP (S) Error computing subrwttine.
NCON Number degrees of freedom removed.
CHVAR Number of changeable variables.

Picture TYPE (C) (Specific picture block.)

PICBLKS (H) Abstractions in picture. KIND of generic
block tells if a thing is an abstraction.

PPART (H) Picture parts. Lines, circles, instances,
texts, and digits in picture.

PWHOS (C) Put into SPECB of Curpics ring if this
is current picture.

PPARTM (H) Moving parts of picture,

PATAP (H) Attachers of this picture.

PINS (H) Instances of this picture.

PSIZE Over-all size of this picture.
PNAME 36-bit "name" for this picture.
PSAVE Space to save transformation when re-Si cursively expanding instances.

Line TYPE (C) (Specific line block.)

ATATAP (C) Put into PATAP of picture if this line
is an attacher.

BWHOS (C) Which picture this thing belongs to.

VORD (C) Put into SPECB of Movings if this line
is moving.

LSP (C) Start point of line. Goes into PLS ring
of point.

LEP (C) End point of line.

Circle TYPE (C) (Specific circle block.)

ATATAP. (C)

BWHOS (C)

VORD (C)

CSP (C) Start point of circle arc.

CEP (C) End point of circle are.

CIRCEN (C) - Center point of circle.

CVALJ Angle of circle arc (to avoid ambiguity).
Radius of circle (to save recomputation).

Point TYPE (C) (Specific point block.)

ATATAP (C)

BWHOS (C)

78

of' ok Struct mak
VORD (C) Put in SPECB of Freedoms during maze-

solving constraint satisfaction.

VFLW (H) Constraints which this variable will
be used to satisfy.

VCON (H) Constraints on this variable,

PLS (H) Lines and circles on this point.

IPCOTP (H) Instance-point constraints which use
this point for reference only.

PVALJ X-coordinate of point.
Y-coordinate of point.

Instance TYPE (C) Specific instance block. Size of inistance
is half the size of enclosing box.

ATATAP (C)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

IWHAT (C) What picture this is an instance of.

[IVAL] Size times cosine of rotation.
Size times sine of rotation.
X-coordinate.
Y -coordinate.

Text TYPE (C) /Particular lines of text. Size of text is\
- half height of letters. Position of text

ATATAP (C) is center of first letter in the line.

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

TVAL Size times cosine of rotation.
"* Size times sine of rotation.

"X-coordinate."* Y -coordinate.
TXTS Text to be shown, four letters per

"register. typewriter codes.

if

Dummy TYPE (C) (Particular dummy variable.)

ATATAP {C)

BWHOS (C)

79

Type
of Block Structure . Remarks

VORD (C)

VFLW (H)

VCON (H)

ITPVAL X-coordinate.
Y -coordinate.

Digits TYPE (C) (A particular set of digits. Size of digits\(is half the height of figures.)
ATATAP (C)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

NTOSHOW (C) Scalar whose value is to be shown.

NVAL| Size times cosine of rotation.
Size times sine of rotation.
X-position.
Y-position.

Scalar TYPE (A particular scalar block.)

ATATAP (C)

BWHOS (C)

VORD (C)

VFLW (H)

VCON (H)

SSHOW (H) Digits showing this scalar's value.

SSVAL 1 Value of scalar.

Constraint TYPE (C) /All constraint blocks have same format.
(If fewer than four variables, block will be)

ATATAP (C) kshorter and VARIATION will be moved up.)

BWHOS (C)

CVTS, VORD (C) Variable used to satisfy this constraint
in maze-solving method.

VARI First constrained variable.

VARZ Second constrained variable.

VAR3

VAR4

VARIATIONI Code for variations within a constraint

I- type; e.g.. horizontal or vertical.

so

APPENDM D
RING OPERATION MACRO INSTRUCTIONS

The macro instructions listed in this appendix are used to implement the basic ring operations

listed in Chapter 3. Only the format is given here, since to list the machine instructions gener-
ated would be of value only to persons familiar with the TX-Z instruction code. In each case the
macro name is followed by dummy variables separated by nonalphabetic symbols. The dummy
variables XR and XR2 refer to index registers that contain the address of the block which con-
tains the ring element being worked on. The terms N of XR or NxXR mean the Nth element of
the block pointed to by index register XR, for example, the LSP (line start point) register of the
line block pointed to by index register a.

LTAKEmN xXR

Take N of XR out of whatever ring it is in. The ring is reclosed. If N of
XR is not in a ring, LTAKE does nothing. N of XR must not be a hen with
chickens.

PUTL5N x XR-MxXR2

PUTR*J xXR-MxXR2

Put N of XR into the ring of which M of XRZ is a member. N of XR is
placed to the left (PUTL) or right (PUTR) of M of XR2. M of XR2 may
be either a hen or a chicken. N of XR must not already belong to a ring.

MOVELON x XR-M x XR2
MOVER-N xXR-M x XR2

Combination of LTAKE and PUTL (PUTR). Assumes that both N of XR and
M of XRZ are in the same ring. Intended for reordering a ring.

CHGRLN x XR-M x XR2

CHGRRsN xXR-.M x XR2

Combination of LTAKE and PUTL (PUTR). N of XR and M of XRZ may be
in different rings.

LGORREN xXRUXR2- SUSR-LEXIT

LGORLEN x XR-XR2-- SUNR-LEXIT

Go around the ring of which N of XR is the hen. Exit to subroutine SUBR
once for each ring member. The address of the top of the block to which
each ring member belongs is put in XR before starting the subroutine. XRZ
is used as a working index register. The subroutine may destroy the contents
of both XR and XR2. The subroutine may delete individual members of the
ring provided recursive deletion does not delete additional ring members.
The subroutine must not generate new ring members. Jump to LEXIT
when finished with the ring. Go around the ring to the right (LGORR) or
left (LGORL).

SI

LGOARMINx XR '-M SUSR-LEXIT

LGORLIEN XXR-R-$R-,LEXIT

Same ams LOORR except that the subroutine may generate new members in
the ring. The subroutine must not delete the current member of the ring.
New members will be visited if they are put in the ring later in sequence.

COMBHRqN xXR-M x XR2

COMHL§N xXR-M xXR2

The members of the ring whose hen is at N of XR are placed in the ring of
which M of XRZ is a member. N of XR must not be empty. The new mem-
bers are placed to the right (COMBHR) or left (COMBHL) of M of XR2. M
of XR2 may be either a hen or a chicken. N of XR is left empty.

I s2

APPENDIX Z

PROPOSAL FOR AN INCREMENTAL CURVE DRAWING DISPLAY

In the course of the work with Sketchpad it has become all too clear that the spot-by-spot

display now in use is too slow for comfortable observation of drawings of reasonable size.

Moreover, having the central machine compute and store all the spots for the display is a waste

of general-purpose capacity that might better be applied to other jobs. As a solution to these

difficulties I propose that a special-purpose incremental computer be used to generate the suc-

cessive spots of the display at high speed. The central machine would provide only a minimum

of information about each curve to be drawn; e.g., end points of lines and start, center and arc

length of circle arcs,
The technology of incremental computers is well developed, but so far as I know, no one

has yet applied it directly to the problem of computer display systems. Basically, the incre-

mental computer works by adding one register to another succesaively and detecting any over-

flows or underflows that may be generated. Certain registers are incrementcd conditionally on

the result of overflow or underflow generation.

In the system shown in Fig. E.i, the x and y increment registers are added to the x and

y remainder registers and overflows or underflows (dotted lines) are used to increment the

beam position of the display. A counter (not shown) is provided to limit the length of the straight

line generated. The unit would request more information from the computer after the appro-

priate number of additions. For drawing straight lines on a IoZ4 X 1024 raster display, each

increment register should contain 10 bits plus sign, that is, iI bits in all; the remainder

X REMA NDER +

----- (X COP)E

i IY ~~INCREMNT -- 5OP

FIGURE E, 1.
DDA FOR DRAWING LINES

I, 83

FIGREMANER2

!,1

X INREEN

IX
FRGAU E

I Y REMAINDER 3.__-

EY INCREENT......

I Y CURVATrURE ,,- 2

F IGURE E .2.
DDA FOR UPRIGHT CONICS

FIGURE E.3.

DDA FOR THE GENERAL CONIC

54

registers should contain 10 bits with no sign, and the counter should contain 10 bits.

To understand how the system of Fig. E.I operates, consider that its x increment register

contains the largest possible positive number and that its y increment contains one half that

value. The x addition would result in overflow nearly every iteration, whereas the y addition

would result in overflow only on alternate additions; thus, a line would be drawn up and to the

right with a slope of i/2.
The usual practice in incremental computers is to be able to step the increment registers

up or down by a single unit according to whether overflow or underflow is produced in another

addition. In the sybtem shown in Fig. E.2, the @ is an adder-subtractor that can increase or

decrease the increment register by the amount stored in the curvature register. The & adds

or subtracts if overflow or underflow is generated in the other addition. Overflow or underflow

is signaled to the (a adder along the dotted paths shown in Fig. E.2.

Use of the conditional adder permits a curvature to be specified so that curves can be

drawn. The system shown in Fig. E.2 will draw straight lines if the numbers in the curvature

registers are zero, circles if the numbers are equal and opposite in sign, ellipses if the num-

bers are unequal and unlike in sign, and hyperbolas if the numbers are like in sign. The el-

lipses and hyperbolas are generated, however, with axes parallel to the coordinate axes of the

display.

Theory and simulation show that just as in the incremental equation used for generating

circles (see Chapter 5), the latest value of increment must be used if the curve is to close.

Therefore, the additions cannot all occur at once; the order shown in Fig. E.2 by the numbers

I through 4 next to the adders makes the circles and ellipses close. In a serial device it is

possible to do the four additions in just two add times by having only a one-bit time delay I-e-

tween the two additions for each coordinate, i.e., @9 just before 0.

Circles can be drawn with radii from about one scope unit to a straight line according to

the numbers put in the curvature registers. Simulation shows that if each of the increment and

curvature registers contains 17 bits plus sign, or 18 bits in all, and the remainder contains 17

bits without sign, the largest radius circle that can be drawn is just noticeably different from

a straight line after having passed fully across a 1024 X 1024 raster display. The simulation

program for this test is less than 100 instructions long and requires, of course, no multiply

or divide. Simulation of larger incremental computers on small general-purpose digital com-

puters should be an effective way to get complex numerical answers quickly and easily.

If the system shown in Fig. E.2 is duplicated twice, as shown in Fig. E.3, a general conic

section drawing capability is obtained. I am indebted to Larry M. Delfs for pointing out that

the display incrementing outputs of the two systems should be added together. The full system

of Fig. E.3 can draw not only'arbitrary conic sections but a host of interesting cycloidal curves.

For drawing the simple straight lines and circles, the two halves of the system would be loaded

with identical numbers to gain a twofold speed advantage.

A trial design using 20-megacycle serial logic and 36-bit delay lines available commercially

showed that the full system would be able to generate new display points at 0.9 microsecond

each for lines and circles and at slightly slower rates (but not half-speed) for complicated conics.

This corresponds to a writing rate of about 10,000 inches per second. Some saving in cost

could be expected if longer delay lines were used and a corresponding slower operation speed

were tolerated. It appears possible to get similar performance from a parallel scheme.

1'"8

APPENDIX F
MATHEMATICS OF LEABT-MEAN-IQUARES FIT

The result obtained in this appendix is well known and is repeated here only for reference,
Suppose we have P equations in N unknowns:

N
Z a.x.=c t i P ; orAX-C

j=1

If P is larger than N there will, in general, be no exact solution. We wish to find the values
for the unknowns that minimize the sum of the squared errors of the equations. The error in

the ith equality is given by

N
Ei (aijxj - ci) (F-Z)

j=t

and the total squared error by

Et -f Z (aljxj) - cl (F-3)

1=1 j=i

We wish to minimize Et, so we take partials with respect to each x. and set all these equal to
zero. For a particular xj called xk,

- ex Z (ailj X) - ci (F-4)

Since the partial of a sum is equal to the sum of the partials,

" -- 1j=I

or since

88 2Q __Q Q
ax e~ x

P9EN 1 1
Z 2 (aax1 -X C [(a ixj)-C (F-6)

Oxk i=1 RO jrI

Now the last part of Eq. (F-6) is a sum of terms like a, 2 x2 ... only one of which involves xk

at all: namely, aik~ k Therefore,

2 •
=2 N (aIxi) -l(ak) (F-7)

i=1 J-1

$6

which, when met equal to zero gives:

SrN

0 = • (aikaijxj) - a(c (F-S)
int

or

P N PZ, Z aik aij, ; Z 'ikCi (F-9)
i=1 j=1 j=t

Changing the order of summation, we obtain

N /P \ (

ik afiaJ X aikci)(-o

which in matrix notation becomes

ATAX = ATC (F-ti)

ATA is a square matrix of order N. Thus, a system of any number of linear equations can be

reduced to a simpler system whose solution is the value of the variables for least-squares fit

to the original set of equations.

If the original equations are equations in two unknowns, a plot of (F-2) with error squared

in the upward direction is a parabolic valley. Since any vertical section of a parabolic valley

will be a parabola, and the sum of any two parabolas is likewise a parabola, a plot of (F-3) can

at most be an elliptic paraboloid. The equations (F-10) and (F-1t) resulting from the method

described here represent the locus of locations where contour lines of the elliptic paraboloid

are parallel to the axes. The intersection of these loci, the solution of Eq. (F-ti), is the lowest

point in the elliptic paraboloid, the least-mean-squares fit to Eq. (F-i).

{87

APPENDIX 0
A BRIEF DESCRIPTION OF TX-2*

At first glance, TX-2 is an ordinary single-address, binary digital computer with an unu-

sually large memory. It is an experimental machine - many of its in-out devices are not com-
mercially available. On closer inspection, one finds it has some important innovations - at

least they were innovations at the t.me TX-2 was built (1956).

The distinctive features of TX-2 are: ..

(1) Simultaneous use of in-out machines through interleaved programs.

(2) Flexible, "configured" data processing.

Some other virtues include:

(1) Automatic memory and arithmetic overlap.

(2) A "bit"-sensing instruction (i.e., the operand is one bit!).

(3) Addressable arithmetic element registers.

(4) Especially flexible in-out.

(5) 64 index registers.

(6) Indirect (i.e., deferred) addressing.

(7) Magnetic tape auxiliary storage.

I. IN-OUT

The phrase "simultaneous use of in-out machines" should be taken quite literally. It does

not mean simultaneous control, Each unit has its own buffer register and only one of these can

be processed by TX-2 at any given instant. It is the relative speed that is important. For

example, the in-out instruction that "fills" the display scope buffer takes no more than 10 micro-

secords, but the display itself takes from 20 to 100 microseconds, i.e., up to ten times as long.

While the display is busy, the computer can compute the next datum, of course, but it can also

initiate other in-out transfers. In practice, since most in-out units are much slower than their

associated programs, the computer spends a significant percentage of the time just waiting (in

"Limbo"), even when several devices are in use. Interleaved initiation of in-out data transfers

is partly automatic and partly program-controlled. Each in-out routine is independently coded

and is operated by TX-2 arrnrding to its "priority." Each unit has a "flag flip-flop" to indicate

to control that it is ready for further attention. When a unit is ready for further attention its

routine will be operated unless another unit of higher priority also needs attention. An index

register is reserved for each In-out unit and is used as a "place-keeper" when its routine is

not being operated. The sharing among in-out routines of storage, index memory, and the

arithmetic element is the programmer's responsibility.

11. "CONFIGURED" DATA PROCESSING

The "normal" word length for TX-2 is 36 bits. For many applications 18 or 9 bits would

suffice, and in some cases each piece of data requires the same processing. Configuration

•y exuandsr Vwuisburgi.

88

control permits "fracture" of the normal word into two 18-bit pieces, four 9-bit pieces, or one
27-bit and one 9-bit. These wsubwords" are completely independent - for example, there are
separate overflow indicators. In addition to "fracture" there is "activity" and "quarter permu-

tation." Any quarter word can be made "inactive," i.e., inoperative. The 9-bit quarters of a
datum from memory may be rearraiged (permuted) before use. There are eight standard permu-
tations - for example, the right half of memory can be used with the left half of the arithmetic

element. Nine bits are required for complete configuration specification. Since only 5 bits are

available for this specification in each instruction word, a special 32-word, 9-bit thin-film

memory is addressed by each instruction that processes data directly. A complete change to
any of 32 configurations is therefore possible from instruction to instruction.

Mf THE SMALLER VIRTUES

Overlap:- TX-2 has two core memories - "SO memory, a vacuum-tube-driven 65,536-word
core memory, and "TO memory, a transistor-driven 4096-word core memory about 20 percent

faster. Instruction readout can be done concurrently with the previous data readout if program
and data are in separate memories.

The use of the arithmetic element is also overlapped. Instructions that follow a multiply
or divide operation will be carried out during the arithmetic time if they make no reference to

the arithmetic element. The overlap is entirely automatic and may be ignored if the program-
.mer chooses. A careful programmer can gain speed by doing indexing after multiply or divide
and by putting program and data in separate memories.

Bit-Sensing Instruction:- One instruction - SKM - uses a single bit of any memory word

as its operand. Control bits provide 32 variations of skipping, setting, clearing, and/or
complementing the selected bit. This instruction can also cycle the whole word to the right

one place if desired.

Addressable AT-ithmetic Element:- Seventeen bits of the TX-Z instruction word are re-

served for addressing an operand. This would allow a 131,072-word memory. TX-2 has only
69,632 registers of core storage. The toggle switch and plugboard memories, the real-time

clock register, the knob register (shaft encodEr), and the arithmetic element registers use 55

of the remaining addressing capability. The arithmetic element registers are therefore part

of the memory system and can be addressed; e.g., one can add the accumulator to itself.

Flexible In-Out:- The TX-2 user must program each and every datum transfer. The lack

of complex automatic in-out controls may seem to be a burden, but the simplicity of the system
gives the programmer much more precise and variable control than automatic systems provide.

For example, coordination of separate in-out units such as display and light pen is possible.
Moreover, it is relatively easy to attach new in-out machines as they become available.

Index Memory and Indirect Addressing:- Of the 64 index registers, one must devote a few
to each in-out unit's program. With all 21 in-out devices in use concurrently, each program

would have two index registers for normal programming use. In practice, one seldom uses

more than half a dosen in-out units, and each routine would then have nine - clearly a luxury.
Indirect addressing provides a me ,s for indexing normally nonindexable instructions, or for
double-indexing normal instructions.

89

Magnetic Tape Auxiliary Storage:- Each TX-2 magnetic tape unit stores about 70 million

bits, 34 times the capacity of the core memory system. Like a magnetic drum, the tape is

addressable. It can be read in either direction at any speed from 60 to 600 ips (inches per

second), and can be searched at a maximum of 1200 Ips. It is used at present primarily for

program storage. "Turn around time," i.e., the time required to save one program and read

in a different one, is seldom more than 2 minutes and often less than 30 seconds. (The read-in

time, once the desired section of the tape is found, is about 12 seconds for 69,632 words.) A

standard IBM 729 tape unit is also available.

IV. SUMMARY OF VITAL STATISTICS FOR THE TX-2 (December 1962)

Word length 36 bits, plus parity bit. plus debugging tag bit

Memory 256 X 256-core 65,536 words 6.0-1"ec cycle time
64 X 64-core 4,096 words 4.4-psec cycle time

Toggle switch 16 words

Plugboard 32 words

Auxiliary memory Magnetic tape 2+ million words, 70+ million bits per unit
(Z units in use, total of 10 planned)

Tape speeds Selectable 60 to 300 inches/sec, search at 1000 inches/sec
(i.e., about 1600 to 8000 36-bit words/sec)

V. IN-OUT EQUIPMENT

Input Paper tape reader: 400 to 2000 6-bit lines/sec

Z keyboards - Lincoln Writer 6-bit codes

Random number generator, average 57.6 psec
per 9-bit number

IBM magnetic tape (Model 729 M6)

Miscellaneous pulse inputs, 9 channels, push buttons
or other source
Analog input, Epaco Datrac, nominal 11-bit sample,
27 kilocycle maximum rate

2 light pens - work with either scope or both on one

Special memory Real-time clock
registers 4 shaft encoder knobs, 9 bits each

592 toggle switches (16 registers)

37 push buttons; any or all can be pushed at once

Output Paper tape punch, 300 6-bit lines/sec
2 typewriters, "10 characters/sec

IBM magnetic tape (729 M6)

Miscellaneous pulse/light/relay contacts, 9 channels
(low rates)

Xerox printer, 1300 characters/sec

2 display scopes, 7 X 7-inch usable area,
1024 X '024 raster

Large board pen and ink plotter, 29 x 29-inch plotting
area, I5 inches/sec slew speed. Off-line paper-tape
control as well as direct computer control.

90

DIDUOGRAPHY

Clark, W.A., et al., "The Lincoln TX-2 Computer," Report 6M-4968, Lincoln
Laboratory, M.I.T. (I April 1957), not generally available; see also Proc.
Western Joint Computer Conference (February 1957), p. 143.

Coons, S. A., "Notes on Graphical Input Methods," Memorandum 8436-M-17,

Dynamic Analysis and Control Laboratory, Department of Mechanical Engineering,
M.I.T. (4 .'Aay 1960).

Electronic Associates, Incorporated, "Handbook for Variplotter Models 205S and
205T, PACE," Long Branch. New Jersey (15 June 1959).

Gilmore, J.T., Jr., and R. E. Savell, "The Lincoln Writer," Group Report 51-8
[U], Lincoln Laboratory, M.I.T. (6 October 1959), pp.4-6, ASTIA 235247, H-61.

Johnson, T. E., "Sketchpad III: Three Dimensional Graphical Communication
with a Digital Computer," S. M. Thesis, Department of Mechanical Engineering,
M.I.T. (June 1963), to be issued as Report ESL-TM-173, Electronic Systems
Laboratory, M.I.T.

Johnston, L. E., "A Graphical Input Device and Shape Description Interpretation
Routines," Memorandum to Professor R.W. Mann, Department of Mechanical
Engineering, M.I.T. (4 May 1960).

Licklider, J.C. R., "Man-Computer Symbiosis," Trans. IRE, PGHFE HFE-1,
4 (1960).

Licklider, J. C. R., and W. E. Clark, nOn-Line Man-Computer Communication,"
Proc. AFIPS Spring Joint Computer Conference ?L, 113 (1962).

Loomis, H. H., Jr., "Graphical Manipulation Techniques Using the Lincoln TX-2
Computer," 51G-0017 [U], Lincoln Laboratory, M.I.T. (10 November t960).
ASTIA 247861, H-226.

Meyer, C. S.. "A Digital Computer Representation of the lAnear, Constant
Parameter Electric Network," Report 8436-TM-3, Electronic Systems Labo-
ratory, M.I.T. (August 1960).

Moore, E. F., "On the Shortest Path Through a Maze," Proc. Int'l Symposium
on the Theory of Switching, Harvard Annals ,3, 285 (1959).

Perlis, A. J., and C. Thornton, "Symbol Manipulation by Threaded Lists,"
Commun. Assoc. Comp. Mach. 2, t95 (1960).

Roberts, L. G., "Machine Perception of Three Dimensional Solids." Ph. D.
Thesis, Department of Electrical Engineering, M.I.T. (February 1963).

Ross, D. T., "A Generalized Techniquc for Symbol Manipulation and Numerical
Calculation," Commun. Assoc. Comp. Mach. 4, 147 (1961).

", "An Algorithmic Theory of Language," Report ESL-TM-t56,
Electronic Systems Laboratory, M.I.T. (November 1962); also to be published
in 1963 in J. Assoc. Comp. Mach.

",Rtsum6 Notes on Bootstrap Picture Language Lectures," private
communication (26 January 1962).

Ross, D. T., and J. E. Ward, "Picture and Pushbutton Languages," Chapter 8
of tnvestiations In C ,tsrAided -- es mJg, Interim Engineering Report
8436-IR-1, Electronic Systems Laboratory, M.I.T. (30 May 1960), p. 75.

Southwell, R. V., Relaxation Methods in Enga gn2S g •A~cg (Oxford University
Press, London, t940).

91

rf

Stotz, R., "Specialized Coriputer Equipment for Generation and N il;elay of Three-
Dimensional Curvilinear Flures," il. M. Thesis, Department of F e..trical Engi-
neering, M.I.T. (January 1963); to le issued as Report l'SL-TIM- 7, Electronic
Systems Laboratory, M.I.T.

Vanderburgh. A., Jr., "TC-Z Users Handbook," Lincoln Manua, N-j. 1S, Lin. :'n
Laboratory. M.I.T. (July i961), not jenerally available.

Walsh, J. F., and A. F. Srdth, "Computer Utilization," Int'rini E-,,inmei in:. ftq.or
6873-IR-t0 and ii, Elect:'onic Systems Laboratory, M.I.T. 130 N ,venier 1959),
pp. 57-70.

Ward, J. E., "A Manual Intervention Facility," Chapter 9 of Invest gations in
Computer-Aided Desig$. Interim Engineering Report 8436-IR- 1, 1lectronle
Sys•tems Laboratory, M.I..T. (30 May ; 960), p. 9 3 .

For convenience in ordering copies of Lincoln Laboritory reprts

cited In this document, each reference is followed by its Am TA

number. In addition, Unclassifi3d (released) reports have also

been assigned Hayden serials (dee Ignated H-), indicating tmt ,'hey

are obtainaNle, at cost, as micrnfilm or photoprint copiei f "om

the Microreproduction Laboratory, Hayden Memorial Libritry,

M.I.T.. CE.mbridge 39. Massachutetts.

I

4
'4

'4

