Microelectronics
and Computer Science

The functional architecture of the computer has traditionally been

shaped by the size of specialized components and concepts of how

people think. Microelectronics is now eliminating these constraints

by Ivan E. Sutherland and Carver A. Mead

( :omputer science has grown up in
an era of computer technologies
in which wires were cheap and

switching elements were expensive. In-

tegrated-circuit technology reverses the
cost situation, making switching ele-
ments essentially free and leaving wires
as the only expensive component. In an
integrated circuit the “wires,” actually
conducting paths, are expensive because
they occupy most of the space and con-
sume most of the time. Between inte-
grated circuits the wires, which may be
flat conducting paths on a printed circuit
board, are expensive because of their
size and delaying effect. Computer theo-
ry is just beginning to take the cost re-
versal into consideration. As a result
computer design has not yet begun to
take advantage of the full range of capa-
bilities implicit in microelectronics. As
we learn to understand the changed rela-
tive costs of logic and wiring and to take
advantage of the possibilities inherent in

large-scale integration we can expect a

real revolution in computation, not only

in the forms of computing machines but
also in the theories on which their design
and use are founded.

Why is it that computation theory
needs to be revised? Suppose one sets
out to develop some theories of compu-
tation, hoping to put them to work
toward two ends: to establish upper
bounds on what is computable and to
serve as a guide to the design and use of
computing machines. Such theories
would presumably also advance under-
standing of computation processes and
perhaps shed light on the nature of
knowledge and thought. The theories
might be based purely on mathematical
reasoning or might also be based on fun-
damental physical principles. By mathe-
matical reasoning alone one can prove
many things about computers without
resorting to physical principles. Only by
attending to physical principles, how-
ever, can one make more quantitative

210

statements about how long a computer
of given physical dimensions must take
to accomplish a given process, based on
the fact that information cannot move
around in the computer faster than the
speed of light and that it takes a certain
amount of matter, energy and space to
represent one bit, or binary digit, of in-
formation with a given reliability.

omputer science as it 1s practiced to-

day is based almost entirely on
mathematical reasoning. It is concerned
with the logical operations that take
place in computing devices. It touches
only lightly on the necessity to distribute
logic devices in space, a necessity that
forces one to provide communication
paths between them. Computer science
as it is practiced today has little to say
about how the physical limitations to
such communications bound the com-
plexity of the computing tasks a physi-
cally realizable computer can accom-
plish.

That is so in part because anyone who
thinks of a computer as a logical ma-
chine that performs logical, numerical
or algebraic operations on data will nat-
urally think of the machine in terms of
the mathematical notation relevant to
those fields. In such notations the sym-
bol x written in one place on the page is
identical in meaning with the symbol x
written in another place on the page.
The idea that communication in space is
required if such values are to be identi-
cal as represented in a computer storage
device has no place in the notation. The
notation itself focuses attention on the
logical operations, reflecting the fact
that human beings think most effective-
ly about only one thing at a time. A
mathematical proof is a sequence of
steps we absorb over a period of time,
and it is easiest to think of computing
devices that also do only one thing at a
time. The sequential approach to math-
ematics is not required inside a comput-

er, but the mathematical approach we
normally take to problems does not en-
courage us to think of approaches other
than sequential ones for the solution of
problems. Nearly all computers in oper-
ation today perform individual steps on
individual items of data one after anoth-
er in time sequence.

It was appropriate to ignore the costs
of communication when logic elements
were slow and expensive and wires were
relatively fast and cheap. Sequential
machines are appropriate to such tech-
nologies because they can be built with
a minimum number of switching ele-
ments. We have been led—by natural in-
clination, by our accustomed notations
for mathematics and by technology—to
develop a style of computing machines
and a body of computing theory both of
which are rendered obsolete by integrat-
ed-circuit technology. We have been
able to ignore the limitations placed by
physical principles on communications
inside computers because those commu-
nications did not slow down our opera-
tions appreciably and were only a small
part of the cost of the machines we built.
By making logic elements essentially
free and leaving communication cost
the dominant factor, integrated-circuit
technology forces us into a revolution
not only in the kinds of machines we
build but also in their theoretical basis.

Developing a new theoretical basis

“OM” CIRCUIT, an experimental microproc-
essor designed by the authors at the California
Institute of Technology, is notable for its high
degree of regularity, which makes it possible
to pack more logic and memory functions on
the chip. The main body of the chip (omitting
the communication interfaces at top and bot-
tom) is made up of 16 nearly identical col-
umns in four groups of four; each column rep-
resents one bit of a 16-bit computer. About
40 percent of the chip (lower portion) is mem-
ory; middle 20 percent is the “shifter” section
and top 20 percent is the arithmetic section.



B
e L o
ST




for computer science will not be easy;
indeed, the task has been put off in part
because it is very difficult to combine
notions of logic with notions of topolo-
gy, time, space and distance, as a new
theory will require. In this article we
shall outline some of the elements such
a theory must include, first by examin-
ing the inadequacies of a simple existing
theory applicable to small logic net-
works. Then we shall see how the chang-
es in the relative costs of wiring and log-
ic must change the nature of the com-

puters built in the future. Finally we
hope to outline some elements we feel
belong in a theory of computation ap-
propriate to the new structures. Such a
theory will be quite unlike the present
basis of computer science, and so we
feel justified in describing as revolution-
ary the effect of integrated-circuit tech-
nology both on the design of computing
machines and on the intellectual frame-
work within which such machines are
exploited.

Most computer-science curriculums

INTERCONNECTIONS among the logic elements of an integrated
circuit have become more expensive than the elements themselves.
Moreover, as the complexity of a randomly wired array of elements
increases, the interconnections become longer and more numerous.

212

include a course in switching theory,
even though it is largely irrelevant to
the present-day practice of computer
design. Switching theory, which was de-
veloped to help design the relay-operat-
ed switching networks of automatic tele-
phone systems, provided guides that en-
abled a designer to formulate a network
with the minimum number of relays for
accomplishing some given logical oper-
ation. It has been extended to the design
of networks of newer kinds of logic ele-
ments, for example a logic network with

Even at modest levels of complexity “wiring” occupies most of the
available space on an integrated-circuit chip. This is a comparatively
simple integrated circuit dating from about 1971. Note that the linear
connectors running between active elements occupy most of the space.



CHIP IN WAFER, UNTESTED

;
f
f
}
T
T
i
5
I
T
1
T

2
T
t
T
T
I
}
T
T
T
!
|
|
{
1
|

\Ej\_‘g

TESTING AND YIELD PER GOOD CHIP

SPACE ON PRINTED- CIRCUIT BOAHD

/MJJJ J—f \

I ==

SHARE OF BACK PANEL AND WIRING
SHARE OF CABINET AND POWER SUPPLY

I
—
———
—
=

=

pgoooong =
[
U
0
[
0

—
10O
A -

COST OF AN INTEGRATED CIRCUIT is a small part of the cost of a complete system. As
is shown here, the cost of a single typical integrated-circuit die in a wafer is only 10 cents,
Given about a 20 percent yield of good chips, after packaging and testing each good chip costs
$1.60. Assuming that 100 chips are assembled on each of 20 printed-circuit boards, the cost per
chip is almost doubled by each chip’s share of board, back panel, cabinet and power supply.

214

AVERAGE COST

$ .10

1.00

.50

1.00

.15
.20

CUMULATIVE COST
$ 10

1.60

2.60

2.75
2.95

the minimum number of conventional
logic gates.

There is no guarantee, however, that
such a minimum-number network will
occupy the minimum space in an inte-
grated circuit or perform its task in the
minimum time. Integrated-circuit de-
signers find they can often add transis-
tors to a design and thereby save space
or time, because adding to the minimum
number may simplify the pattern of
conductors in the design and may speed
up its operation. Switching theory does
minimize the number of switching com-
ponents, but it ignores the cost and delay
of the communication paths. In today’s
technology the area of a circuit devoted
to communication between elements
usually far exceeds the area devoted to
switching elements, and communication
delays are much longer than logic de-
lays. What is needed, therefore, is a the-
ory that minimizes the cost of computa-
tional tasks, considering not only the
cost in area and time of the switching
elements but also the much larger area
and time costs of transporting data from
one place to another. Because switching
theory as it is known today is based on
an obsolete cost function it is largely
useless for the design of integrated cir-
cuits.

Switching theory is even less useful at
the level of design where one is combin-
ing integrated circuits into a larger sys-
tem. In most cases it costs much more to
test, package and interconnect integrat-
ed circuits than to manufacture the cir-
cuits themselves. These costs are largely
independent of the particular function
of the circuit involved. Even if the cost
of the circuits is ignored, communica-
tion from one integrated-circuit chip to
another is much slower than communi-
cation on a single chip. Given a cata-
logue of standard circuits, there is great
motivation to introduce more complex
integrated circuits because fewer of
them are required, so that the large cost
of mounting and interconnecting them
isreduced. In fact, designers often speci-
fy integrated circuits containing super-
fluous elements because there is no cost
advantage to eliminating the unneeded
switching elements. Switching theory
has nothing to say about these impor-
tant issues of cost and speed.

Although the cost of communication
has so far found no real place in the
theoretical results of computer science,
it does play a role in the thinking of
practical designers. Seymour Cray, the
designer of many of the most powerful
computers, cites the “thickness of the
mat” and “getting rid of the heat” as the
two major problems of machine design.
It is obvious that controlling the geome-
try of the interconnections is essential. If
connections can be made to follow regu-
lar patterns, they can be produced by
less expensive methods and can also be



THICK MAT OF WIRES covers the back panel of a large general-purpose computer, in this
case the Cray Research, Inc.,, CRAY-1. Moving data over the wires takes time and costs mon-
ey, and the thickness of the mat makes repairs difficult. Arranging elements of a computer
so that wires are all parallel would greatly reduce the complexity and thickness of the mat.

REGULARITY is a characteristic of memory circuits and of certain arithmetic circuits, such
as this 16-bit multiplier array made by TRW Inc. The chip, about .28 inch square, contains
more than 18,000 transistors and resistors. Regularity makes for high logic-element density.

216

made to occupy less space and so be
faster.

If the geometry of interconnection
paths is not carefully controlled. the
space required for them grows more
than linearly as the number of logic ele-
ments to be connected is increased. This
nonlinear growth comes about because
bigger systems require more wires.
which are on the average also longer.
Because the interconnection paths grow
both in number and in length the total
area or volume devoted to communica-
tion becomes disproportionately larger:
to interconnect twice as many randomly
placed devices requires four times as
much communication space. To accom-
modate greater wiring space larger
printed circuit boards must have wider
spacing between components than small
boards have; Los Angeles suffers more
from freeway congestion than Plains,
Ga., does.

Not only do longer communication
paths occupy a disproportionate
amount of space but also they function
more slowly than short ones. That is be-
cause signals traveling even at the speed
of light take some time to travel down
a path and also because longer paths
store more energy. (Inside integrated
circuits the speed limit set by the speed
of light is not yet an important issue be-
cause the distances are short compared
with the switching times of the logic ele-
ments; the energy-storage delays, how-
ever, are important.) Before a signal
path can be switched from one electrical
state to another, the energy stored in the
path must be removed and converted
into heat. One must either design a larg-
er driving circuit to provide for the larg-
er power required to switch long wires
quickly or suffer the delays of passing
the larger amounts of energy through a
less powerful driver. More powerful
drivers must themselves be driven, and
they are therefore not only larger in area
but also inherently slower than small
drivers.

Moreover, the heat generated by the
more powerful drivers must be dissipat-
ed in some structure, which itself occu-
pies space. It is quite possible that the
signaling energies required in a given
technology and the size of the structures
provided to dissipate heat may set an
upper limit to the complexity of the sys-
tems that can be built in that technology.
Above such a limit the increase in wire
length required to provide the space to
house what is required to drive longer
wires may exceed the original increase
in length of wires that was made possi-
ble by the larger drivers! There is so far
no theory addressing the limits to speed
and complexity that may be imposed by
this possibility.

The disproportionate growth of inter-
connections can be avoided by building



UTHERL AN

a

H

g

H
-
'l

3

i

PRINTED-CIRCUIT BOARDS can also be designed to minimize
the preponderance of communication paths. Regularity decreases the
amount of wiring (fop). A five-by-seven-inch board of irregular logic
made by the Evans & Sutherland Computer Corporation (fop left)
is compared with a more regular memory board of the same size (fop
right). The larger the board, the greater the preponderance of wiring.

An 8Y,-by-10-inch board, the Digital Equipment Corporation’s
LSI-11 microcomputer, shows how much area is occupied on a con-
ventional large board by communication paths (botfom). If the close
packing characteristic of the regularly wired memory circuits that
can be seen in the top right portion of board could have been attained
throughout the board, the board would have been only half as big.

217



<r aUs -

CENTRAL CARD
PROCESSING MEMORY DISPLAY TERMINAL PRINTER
UNIT READER

COMMUNICATION “BUS” connects a computer’s central processing unit to memory mod-
ules and other peripheral units (fop). It is typically a flat cable of between 20 and 100 long wires
that are tapped as they pass through each of the connected units. Photograph shows Digital
Equipment Corporation’s UNIBUS (wide, light-colored flat cable) connecting two disk mem-
ory units (zpper left) with central processing unit (fower right) of DEC’s PDP-11/40 computer.

218

very regular patterns of interconnec-
tion. There is already a trend toward
very regular wiring patterns for inte-
grated circuits and the interconnections
among circuits. Read-only memories,
for example, implement complex and ir-
regular logic functions with a simple
and very regular integrated circuit pat-
tern. This regularity is desirable not
only because it makes the specification
of such functions simple but also be-
cause it may be the most efficient layout
from an interconnection point of view.
We believe regular patterns of wiring
will play an increasing role in future de-
signs. In part, computer science will be-
come the study of the regularity of these
structures.

he architecture of a typical comput-

er includes a single logical process-
ing element that communicates with a
random-access memory through 20 to
100 long wires combined into a “bus,”
which, like its namesake, provides pub-
lic transportation for data but is actually
more like a telephone party line. The
communication bus is often a flexible
cable 50 to 100 feet long. A signaling
protocol is specified for the bus so that
all the units to which it is connected
communicate in a common way and
avoid interfering with one another. The
great advantage of a bus structure in a
computer is that any unit connected to
the bus can communicate directly with
all other units. Moreover, the protocol
and the bus structure may survive sever-
al generations of hardware develop-
ment, so that a line of computing equip-
ment can adopt new storage devices,
new input-output units and even new
processing elements. In addition, the
number of switching elements devoted
to communication in each unit on the
bus is minimized because each unit
needs to communicate with only the one
bus to send messages anywhere.

The drawback of the bus structure is
that it provides a communication bottle-
neck. Consider a typical computer with,
say, one million words (32 million bits)
of integrated-circuit storage built out of
2,048 circuits that store some 16,000
bits each. Any one reference to memory
can potentially sense the values of 128
bits on each of the 2,048 integrated cir-
cuits constituting the memory. Of these
quarter-million bits to which access is
obtained on the integrated circuits only
2,048 (one from each integrated circuit)
are delivered outside the integrated-cir-
cuit package, and of these 2,048 only 32
are delivered over the communication
bus to the logical processing unit of the
computer. It is assumed that the com-
munication bus connects the memory
and the logical processing unit; we as-
sert that in fact it separates them. Each
memory access in a large computer
wastes access to many thousands of bits



TYPICAL MEMORY CHIP has 16,384 bits arranged ina 128 > 128
array (fop). An entire row of 128 bits can be accessed at one time,
but a selector enables only a single bit to pass to an output pin (dark
color). A typical memory system is made up of 2,048 such chips, say
64 groups of 32 (bottom). Only 32 chips can place their outputs on

the 32 wires that join the bus to the central processor. Of the 262,144
(128 X 2,048) bits that moved less than a millimeter on each chip, only
2,048 moved three millimeters to get off their chip and only 32 moved
a meter to the processor. In other words, the bus utilizes only about
an eight-thousandth of the memory chips’ available “bandwidth.”

219



INPUT OUTPUT
i

“PIPELINE” PROCESSOR is one of three kinds of parallel processor, illustrated on this page,
that have been effective. In a pipeline processor data are passed along from one specialized
processing element to the next, with each element performing a successive operation on the
data. The pipeline is analogous to an assembly line: all operations are conducted simultaneous-
ly but not on the same material. The pipeline configuration is optimum as long as the same
basic type of operation is to be performed; it is less effective when the operations are variable.

b i 3 ) e e e i

T
'
'
'
!
1
I
1
I
1
I
1
1
I
1
'

ARRAY PROCESSOR is effective when much identical processing is to be done on many
items of data. All the processors receive the same instructions, like a company of soldiers drill-
ing “by the numbers.” The limitation here is that individual computations must depend only
on the data in a particular element and its immediate neighbors. This can be effective, however,
in operations such as weather simulation, where local atmospheric interactions are significant.

COMMUNICATION PATH

1 l ! l l l

INDEPENDENT PROCESSORS connected by a communication path constitute the most
flexible arrangement for parallel execution of different operations. Tasks are given to each
processor as is required, as they are to the individual workers in a cottage industry, The system
works best when each element can do much processing and need not communicate much with
other elements; bottlenecks develop when tasks require elements to wait for the party line.

220

by selecting only a few bits to send over
the memory bus to the central process-
ing unit. This waste is tolerated for two
reasons. First, it simplifies our concep-
tion of the machine and matches it to
our natural inclination to do one thing at
a time. Second, it provides a single, sim-
ple interface between various parts of
the machine.

We pay a high price for this conve-
nience. In an age when memories and
logical processing elements were made
by different technologies, we had little
choice. Now, however, with the silicon
integrated circuit dominating both the
memory and the logical processing tasks
in computers, there is little justification
for continuing to accept such waste.
Now it is possible to distribute the mem-
ory bus over many thousands of inte-
grated circuits, in effect giving each log-
ic element the memory it needs by mov-
ing information less than a millimeter
from memory to processing facilities lo-
cated together in the same integrated
circuits on each of many thousands of
chips. We are just beginning to explore
systems with this unconventional archi-
tecture. To employ them effectively we
must learn how to match the complexi-
ties of given problems to the simple
fixed patterns of communication pro-
vided in the systems we can build.

Machines in which large numbers of
logic elements operate simulta-
neously are called parallel processors.
(To some extent, to be sure, every com-
puting machine is a parallel processor.
The separate bits that together represent
a number are moved simultaneously on
parallel communication paths; binary
addition is performed by an adder cir-
cuit that operates on all the bits of the
number at once; multiplication is per-
formed either by sequential addition or,
in faster models, by including a number
of separate adder circuits and operating
them in parallel. Levels of parallelism
above basic arithmetic, however, are
rare in today’s computers.) The simplest
form of real parallel processing now
available has a few independent proces-
sors operating on a common memory;
a typical large computing system has
from two to a few dozen processors at
work. Typically, however, these proces-
sors serve quite independent functions
and their very existence may be hidden
from the user. For example, a separate
processor may be involved in communi-
cation with the user’s keyboard, in oper-
ating magnetic-tape or magnetic-disk in-
put-output units or in scheduling the re-
sources of the central processor. Such
“multiprocessing” systems have little
impact on the user’s algorithms.

Three kinds of systems that can truly
be classed as parallel processors have
been built. In one of them, the “pipeline”
processor, several processing elements,



each of which is specialized for some

~N <

v
3 8 1 5 4 6 particular task, are connected in se-
¥ ¥ quence. The work to be processed flows
B 3 8 1 5 4 6 7 through these processors much as work-
N pieces move along an assembly line.
3 8 1 5 4 6 7 Communication is simple because in-
v formation flows along a fixed pathway
D 3 _® 1 5 4 6 7 and has only a short distance to move

between processing steps. A pipeline
processor gains efficiency for the same
reasons an assembly line does: functions
3 6 7 are specialized and communications are
minimized. Pipelining enables the arith-
3 6 7 metic sections of very fast computers to
process sequences of numbers with a
3 6 7 high overall speed. Pipeline processors
are less effective where the tasks to be

3 6 7 performed are highly variable.
In a second form of parallel processor
3 6 7 many identical processing elements are
brought to bear on separate parts of a
: 3 6 7 problem under the control of a single
instruction sequence. Several such ma-
! i chines have been built, of which the
largest and best known is ILLIAC IV.
@ //C? 2 \11[ A modern parallel processor of this type

1
v

—x
3]
=

n
€< n<—

m
(=)
R
%\
-
(2]
PPN s
¢
& o e me® E))(—mé—l\:ém ro
(=)}
~

was proposed at a recent Rand Corpora-

tion workshop on hydrodynamic simu-

lations. In this hypothetical machine

there would be 10,000 processors, each
e with arithmetic capability and memory,
2 3 ; : : )
J ¥ each built on a single integrated circuit
2

and all under the command of a com-

vy mon instruction device. All the proces-
sors would execute commands in rigid

lock-step. The processors would be ar-
ranged in a square array, 100 X 100,
and each would communicate data only
with adjacent processors to its north,
south, east and west in the array, with
relatively slow bit-serial communica-
tion on a single wire in each direction.
We estimate that such a machine would
6 7 take about five microseconds to com-
v municate a single 64-bit number from
4 8 6 7 one processor to its neighbor, which is

very slow by today’s standards. Of
course, it could communicate 10,000

D€ ®
~N e

~

PEe—prEe—pESn
o <o

v

4
v “QUICKSORT?” is a typical sequential algo-
/@ rithm for arranging numbers in ascending or-
7 der. Numbers pointed to by arrows are com-
4« pared with the number farthest to the left. If
i\ the pointer farthest to the right indicates a
4 5 number greater than the reference value (row
\L ‘L A), it is advanced to the left until it rests on
4 5 a number less than the reference value (O).
Then the left pointer is advanced to the right
\l; d; until it rests on a number greater than the ref-
K® 6 7 erence value (D). At that stage the numbers
e - v v pointed to are interchanged (E-G). The proc-
6 ess is continued until the pointers rest on the
/® same number (K); at that stage all numbers to
g right of pointers are greater than the reference
value, and all numbers to left are less than or
N equal to it. The same algorithm is then applied
6 8 to each subset; to complete the sorting illus-
trated here requires five more steps than are

7 6 8 shown. To sort n numbers requires n(logon)
\l, \l, comparisons of numbers that may be stored in

7 6 8 distant locations, The communication cost is
| L1  the dominant cost of executing the algorithm.

222



224

3 8. e 5. 4 2 6 7
ot -
> ><_ v v
I o T av” TRg 2 6 7
el e T
17 g as”” /‘H““‘a 2“”/’{“”"‘*5 ﬂ;’ ‘i’
\(\*-n .:‘>//
1 \:ls( 4 p& Ty 5 ‘115’ 7
V V S P e v v
1 3 24 T « Thag 6 7

1 2 3
v v v
1 2 3

SRR

PARALLEL EXECUTION speeds the sorting task. In this algorithm adjacent members of
number pairs are compared and are interchanged if the left-hand member is larger than the
right-hand one. (In the first row a “pair” is defined as two numbers the left one of which is in
an even column; in the second row the left member of each pair is in an odd column, and so on
alternatingly.) Sorting the entire set requires n2/2 comparisons, always of nearby numbers, In-
terchange sorting has been considered slow, but if comparison and interchange elements are at-
tached to each memory element in integrated circuits, comparisons required for one sweep can
be accomplished in one memory cycle and the sorting can be completed in n cycles at most.

such numbers in any one five-microsec-
ond period. It would also take about five
microseconds to perform a multiplica-
tion, but again it could perform 10,000
multiplications in that time, for an aver-
age rate of two billion multiplications
per second. Machines such as this one
are called array processors or single-in-
struction-stream, multiple-data-stream
machines. They are most suitable for
highly regular tasks such as hydrody-
namic computations, numerical simula-
tion of the weather and the inversion of
large matrixes.

A third type of parallel processor is
one where separate, independent proc-
essors under separate, self-contained
control structures perform independent
parts of the task, communicating data
and instructions as is required. The ad-
vent of the microprocessor has, of
course, suggested to many people the
possibility of making systems consisting
of thousands of separate microproces-
sors and having them work in concert on
large tasks. Few such multiple-instruc-
tion-stream, multiple-data-stream ma-
chines have been built, and their proper-
ties are poorly understood.

The challenge in designing or using a
parallel processor of any of these
three types lies in discovering ways in
which simple patterns of communica-
tion within the processor can be made to
match the communication tasks inher-
ent in the problem being solved. As in-
tegrated-circuit technology progresses
there will be individual circuits of in-
creasing speed and complexity. No re-
lief is in sight, however, for the costs and
delays inherent in communicating infor-
mation from one circuit to another. To
provide better communication will re-
quire more connections to the integrated

circuit, a bigger housing for it, more or
larger communication-driving circuits
and consequently more heat dissipation.
To obtain maximum performance from
large computing systems programmers
will have to face up to the limitations
on communication that are imposed
by physical reality. High-performance
communication cannot be provided
from every element to every other ele-
ment; the programmer will have to
match his formulation of the problem to
the available communication paths. Al-
though this is a difficult task, success in
accomplishing it will provide unprece-
dented processing power.

We believe that just as an important
part of today’s computer science con-
cerns itself with sequences of instruc-
tions distributed in time, so an impor-
tant aspect of computer science in the
future will be the study of sets of com-
munications distributed in space. If
processors can communicate only with
their nearest neighbors, what kinds of
arrangements are possible? Obviously
one can wire processors in a linear
string. Such processors can operate in
the pipeline fashion described above,
with each one passing data along to the
next, or by performing common opera-
tions under command from a central in-
struction device. Such near-neighbor
connections are highly effective for
tasks such as sorting, in which the local
communication of data suffices. Alter-
natively, one can connect processors in
an array, with each processor having
more than two neighbors. Such arrays
have a basic structure much like the
structure of a crystal, and various forms
of local communication are possible. In
our laboratory at the California Insti-
tute of Technology we are considering
the properties of the different communi-



226

cation paths that might be included in
such structures.

Some years ago R. S. Gaines and C.
Y. Lee, who were then working at Bell
Laboratories, described three types of
interconnection path. One kind of inter-
connection has connections that are

common to all processors; it is effective
for sending commands to the processors
and for “broadcasting” to all processors
certain values that may be important in
the course of a computation. A second
kind of communication path enables
each processor to “talk” simultaneously

[ ) L) A L]
7 > OUTPUT
) ) T
) x 7
) L) [ L INSTRUCTIONS
T ] L3 T
[} L ) L
) i o %

= OUTPUT

INSTRUCTIONS

WIRES THAT INTERCONNECT MODULES of an array processor can be exploited in
three distinct ways. One type of connection “broadcasts” information from a control center to all
modules (gray). A second type (black) moves information from a selected module to a con-
trol destination, one module at a time (heavy black line). A third type passes data from each
module to its nearest neighbor (color); in this case all the modules can “talk” at the same time.

IR

TWO SUBTYPES of the third type of wiring are in common use. In one subtype (top) informa-
tion passes into a module during one step, is processed and then passed on to the next module
during the next step. The other subtype (bottom) is designed merely to “discover” something
about a module (or a number of modules collectively) and to do so quickly: information is
moved past a module unchanged during a single processing step, provided that the module is in
a specified state. Such wiring might discover, for example, where the 9’s are in a parallel adder.



228

to its neighbors. Such a path can handle
the communications required in pipelin-
ing or, if each processor has its own stor-
age function, open up a space anywhere
in the store by moving information
simultaneously away from the location
of the desired gap. A third kind of com-
munication path enables the processing
elements to say something collectively
about their results. Such a path can indi-
cate whether no processor, one proces-
sor or more than one contains a given
condition, which of the processors con-
tains the smallest value or which are be-
tween the beginning and end of a partic-
ular string.

In our laboratory we have taken on
the task of building and using some sim-
ple parallel processors involving one-,
two- and three-dimensional intercon-
nection patterns. We hope to learn more
about the relation of communication
paths to the performance of such proc-
essors. We have become convinced that
the performance of parallel processors
can depend critically on the design of
communication paths that enable proc-
essing elements to make collective state-
ments about their actions. Without such
paths how does one find the smallest val-
ue stored in the array? How can one
identify the set of processors that lie be-
tween two processors with designated
properties? How does one obtain an-
swers from a number of processors in
sequence when more than one of them
has something to report? Such paths are
electrically complex. Either they in-
volve each local processor as the driving
element in a “global” communication
task or they require intermediate cir-
cuitry specialized for collecting such in-
formation, and such intermediate cir-
cuitry inevitably introduces time delays
and cost. The best structures for this
kind of communication appear to be
similar to those in the carry circuits of
fast parallel adders, but the communica-
tion costs of such circuits have not yet
been adequately analyzed.

cornerstone of computer science to-
day is the theoretical analysis of se-
quential algorithms. There is a large and
growing body of theory for selecting ef-
ficient algorithms for sequential ma-
chines. This body of theory, as one
might expect, focuses on algorithms that
minimize the number of logical opera-
tions required to accomplish some task.
For example, it has been shown that for
putting numbers into sequence, “quick-
sort” algorithms are the best to use be-
cause they require only n(logsn) com-
parisons. This body of theory assumes
that all data elements in storage are
equally accessible and that the move-
ment of data is free.
Data eclements in storage are never
really equally accessible, although they
can arbitrarily be made equally inacces-

sible in a random-access device by mak-
ing the access time for all elements as
slow as the time required for the most
inaccessible element. Because informa-
tion in a random-access storage device
must be moved over long distances the
data rate in a random-access storage de-
vice of a given technology is inevitably
lower than what can be achieved with a
more orderly sequential-access mecha-
nism. Moreover, transporting data from
a memory cell to a comparison circuit
is never really free; in most machines
the transportation time far exceeds the
comparison time. And so, for example,
an analysis of algorithms seeking to
show that a particular sorting algorithm
is best is based on giving what may be a
less than optimum machine the task of
performing that algorithm; given a dif-
ferent structure, sorting might be done
much faster.

Work on the theory of algorithms has
not yet focused on the true relation of
computing costs to communication
costs. Given that one starts with a blank
piece of silicon and is free to place wires,
logic gates and so on anywhere one
chooses, what choices should one make
to accomplish a given computation task
in the least time or on the smallest possi-
ble area of silicon? We have no basis at
all for making sensible choices as to the
computing structures we should build.
We do have a large body of experience
with a particular structure: sequential
machines with random-access storage.
It may be that such machines are effec-
tive because overall they best match a
wide variety of computing tasks. There
is mounting evidence, however, that a
parallel structure can outperform the
standard computer by many orders of
magnitude on tasks that are suitable for
parallel execution. As such unconven-
tional structures have appeared, a wider
range of tasks is being discovered for
which they are suitable. Certainly one
would expect to obtain better perform-
ance by paying attention to the real costs
of systems, which is to say to communi-
cation, than by simply considering the
cost—now an almost vanishing cost—of
logical processing.

We believe adequate theories that ac-
count properly for the costs of commu-
nication will be an important guide for
designing the machines that have been
made possible by the integrated-circuit
revolution. We believe such theories
will have their basis in the study of reg-
ularity, so that computer science will
come to include a body of theory akin to
that of topology or crystallography. Al-
though such a development is revolu-
tionary in some ways, it is essentially a
continuation of the search for regularity
in all programming tasks. Computer sci-
entists will simply add geometric regu-
larity to the logical regularity they have
already come to know and value.



