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Abstract

We propose a new language feature, a program history, that significantly reduces bookkeeping
code in imperative programs. A history represents previous program state that is not explicitly
recorded by the programmer. By reducing bookkeeping, programs are more convenient to
write and less error-prone. Example program histories include a list that represents all the
values previously assigned to a given variable, an accumulator that represents the sum of values
assigned to a given variable, and a counter that represents the number of times a given loop has
iterated. Many program histories can be implemented with low overhead.

1 Introduction

We propose a new programming language feature, a program history, that makes writing programs
more convenient by eliminating tedious bookkeeping code in imperative programs. A program
history captures aspects of past program state implicitly, thereby freeing the programmer from
many error-prone and program-cluttering bookkeeping chores.

(Imperative programming languages have been criticized for requiring too much bookkeeping
for many years [1]. Backus proposed the functional programming paradigm as an alternative that
could eliminate such bookkeeping, but as yet, the functional paradigm has not achieved widespread
use.)

We illustrate program histories with code to average the values in a list.

Without program histories With program histories
p = aList;
sum = 0;
count = 0;
while (p != NULL) {

count += 1;
sum += p->value;
p = p->tail;

}
print("average %f\n", sum/count);

p = aList;
while (p != NULL) {

x = p->value;
p = p->tail;

}
print("average %f\n", sum<x>/length<x>);
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In the example, the notation <x> indicates the “history of x”, which is the sequence of values
assigned to x.1 We envision many functions such as sum, length, min, max, etc. being defined
for histories. By eliminating explicit bookkeeping code—like initializing and updating accumulator
values—histories make programs shorter and simpler.

Program histories are motivated by the ease with which novice spreadsheet users can manipulate
data. Spreadsheets make iteration implicit by having operations over rows or columns. Our program
histories provide a similar functionality by explicitly exposing the history of values of a variable to
the programmer for direct or aggregate manipulation (e.g., sum, average, etc. [6]).

Histories are not limited to logs of values assigned to a variable. Consider the problem of
printing a comma-separated list of values. Normally, this requires explicitly maintaining a flag or
counter to distinguish the first loop iteration from the rest.

Without program histories With program histories
p = aList;
firstTime = true;
while (p != NULL) {

if (firstTime) {
firstTime = false;

} else {
printf(", ");

}
printf("%d", p->value);
p = p->tail;

}

p = aList;
while (p != NULL) {

if (count<while> != 1) {
printf(", ");

}
printf("%d", p->value);
p = p->tail;

}

The notation count<while> refers to the iteration count of the while loop. (More precisely,
the number of times the loop has begun execution.) We use the name “while” as a predefined
name that refers to the innermost while loop.

Histories provide programmers with convenient access to past program state. To maintain the
same information explicitly—without histories—requires substantial effort. Even when program-
mers must maintain this historical program state (as with the examples above), the necessary
bookkeeping code is a burden. Program histories liberate programmers from these chores.

We believe that program histories can have efficient implementations. For instance, if average
is the only function computed on <x>, then a compiler could generate code that simply maintains
the sum and count of the assignments to x—which is the optimal solution. Typically, with a
small amount of analysis, using histories will add little or no additional overhead over the explicit
approach.

Program histories are part of a our broader research goal, which is to improve programming
language design in ways that make writing programs more convenient. We believe that program-
mer convenience is significantly under-emphasized in most language design. For many programs
and programmers, the time to write a program is the most critical consideration. Programming
environments (like Visual Basic’s) and programming languages (like Perl and Tcl) are successful, in
part, because they require less programming effort than alternatives. Languages like Ada support

1All uses of <> in this paper refer strictly to histories and are not to be interpreted as C++ templates.
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programming-in-the-large, while our goal is to support programming-in-a-hurry. By eliminating
bookkeeping and unnecessary code, program histories improve programmer convenience. Program
histories complement another innovation for programmer convenience that we have proposed, which
we call programming shorthands [7].

In the remainder of this paper, we more carefully introduce the concept of program histories and
motivate their use with examples. Our goal is not to advocate a particular set of history features
or a particular syntax for using them, but to explore their possible applications.

2 Name-bound Histories

Many histories are associated with programmer-named entities. Two obvious candidates for name-
bound histories are program variables and functions, both of which exhibit time-varying behavior.
Histories capture this behavior by exposing the sequence of values directly to the programmer. The
history of a variable, x, denoted <x>, is the sequence of values that have been assigned to x since
the start of program execution. Likewise, the history of a function, f, denoted <f>, is the sequence
of values that f has returned.

The simplest way to access a history is to treat it as a list with indexing: <x>[i] represents
the ith element of <x> (i.e., the ith value assigned to x). Similarly, length<x> would represent
the number of values in the history.

The utility of histories increases with the number of built-in operations defined over them. Just
as spreadsheets contain many functions that operate over rows or columns, histories benefit from
a similar set of built-in operations.

Reduction operations that compute summaries of the history would include sum, length, min,
max, mean, trimmedMean, variance, mode, etc. We illustrate the use of these operations with
further examples.

To compute the maximum value of an element of an array:

Without program histories With program histories
int max = a[0];
for (i = 0; i < ARRAY_SIZE; i++) {

if (max < a[i]) {
max = a[i];

}
}
printf("Max is %f\n", max);

for (i = 0; i < ARRAY_SIZE; i++) {
x = a[i];

}
printf("Max is %f\n", max<x>);

To print out a list of values read from input:
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Without program histories With program histories
intVector list;
while (!eof(aFile)) {

int x = read(aFile);
list.append(x);

}
for (i = 0; i < list.length(); i++) {

printf("%d %f", i, list[i]);
}

while (!eof(aFile)) {
x = read(aFile);

}
for (i = 0; i < length<x>; i++) {

printf("%d %f", i, <x>[i]);
}

Some uses of histories do not lend themselves to side-by-side comparisons of code. For example,
the code required to determine whether or not a variable has ever been assigned a value (i.e., if it is
initialized), could require maintaining a flag at every possible assignment location. With histories,
the code is simple:

printf("x %s been assigned", length<x> == 0 ? "has not" : "has");

Likewise, the history of outcomes of function calls is often of interest to programmers. For
example, the following prints the number of warning messages issued by reporting the number of
calls to the function warning.

printf("%d warning message(s) printed", length<warning>);

Note that to maintain this information explicitly would require tedious bookkeeping that maintained
a global variable. That variable would have to be incremented either at all call sites, or within the
routine itself.

To count the number of input records read while processing a file (assuming the function gets
was used):

printf("%d lines of input read", length<gets>);

Often, programmers may be interested in less than a complete variable history, such as the
values assigned to a variable inside a specific loop. As a result, we define a function on all histories,
reset that resets the history to a null sequence.

3 Syntax-bound Histories

Some program entities with history do not have programmer-defined names. Locations within a
program have simple histories: how many times has program execution visited this location? We
use the operation count to refer to the number of times a program point has been executed.

We propose a simple scheme for naming program points based on user-defined labels. If a
programmer wants to refer to the history of a control construct, they label the construct. For
example, the following code demonstrates one way to compute how many times a portion of program
guarded by a conditional has executed.
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Without program histories With program histories
int counter = 0;
while (...) {

if (test(x)) {
counter += 1;
x = f(x);

}
}
printf("count: %d", counter);

while (...) {
if (test(x)) {

label:
x = f(x);

}
}
printf("count: %d", count<label>);

While this technique works, it is a bit cumbersome. To eliminate the need for extraneous labels,
we leverage the syntax of the language by allowing the programmer to refer to parts of a compound
statement. For example, the following program prints out how many times the then and else
branches of the conditional are executed:

Without program histories With program histories
int thenCount = 0;
int elseCount = 0;

if (x > 0) {
thenCount += 1;
y = dx + dy;

} else {
elseCount += 1;
y = dx - dy;

}
printf("then: %d, else: %d",

thenCount,
elseCount);

posTest:
if (x > 0) {

y = dx + dy;
} else {

y = dx - dy;
}

printf("then: %d, else: %d",
count<posTest.then>,
count<posTest.else>);

In the example above, the names posTest.then and posTest.else refer to the then and else
components of the named if statement—each with its own history.

For another example, we simplify a common numerical calculation idiom. Numerical computa-
tions often limit loop iterations to avoid diverging computations. With a syntax-bound history—
associated with the while loop—no explicit count is necessary:

Without program histories With program histories
int limit = 0;
x = f(0);
do {

limit += 1;
x = f(x);
if (limit > 10000) break;

} while (abs(x - prev<x>) > epsilon);

x = f(0);
do {

x = f(x);
if (count<while> > 10000) break;

} while (abs(x - prev<x>) > epsilon);
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Histories of program points provide an effective tool for program introspection, profiling, and
debugging. With histories, it is very easy for a programmer to write a function profiler that
reports the number of calls to every function in the program. Likewise, it is easy to determine how
many objects were allocated (by counting calls to malloc, for example), or to determine whether
the number of allocations equals the number of deallocations. By making these data easier to
accumulate, histories enable programmers to exploit this information.

4 Generalizations of Histories

Program histories conveniently expose temporal aspects of program execution that are typically
unavailable to the programmer. In this section, we generalize the histories described in the previous
sections. We note that in many cases, the advantages one gets from the proposed generalizations
may not clearly outweigh the increase in complexity and implementation overhead they impose. We,
therefore, do not specifically advocate any of these generalizations, but suggest them as interesting
opportunities for future work.

4.1 Generalizing the Notion of History

Section 2 defines the history of a variable to be the sequence of values that are assigned to it. We
can generalize this idea by considering the history to be the sequence of definitions. Specifically,
each element in the sequence of definitions becomes a tuple containing the following information:

• value: As before, the actual value assigned.

• location: The program location where the assignment occurred.

• timestamp: The time when the assignment is made.

The location information could be used to answer such questions as “What value was assigned
to x the last time it was updated at this source coordinate?” or “How many times was variable x
updated at source coordinate y?”. The timestamp information—measured in CPU cycles, elapsed
time, absolute time, etc.—provides valuable profiling information.

4.2 Generalizing Function Call Histories

Function call histories may be similarly generalized. Function call tracing, in which function ar-
guments and return values are displayed, is a feature commonly provided by debuggers, especially
for interpreted languages such as Lisp [4]. Function histories can be extended to include additional
information about each call, including the arguments, call site, time of the call, etc.

4.3 Computing Queries on Histories

Given that histories represent a collection, it is natural to consider mechanisms for querying and
filtering the collection. For example, one may be interested in knowing if the value of a variable
was ever less than zero. If histories include information about where the definition occurred, one
may be interested in only those assignments that occurred at a particular source coordinate (e.g.,
one may wonder “Did this assignment ever result in x being less than zero?”).
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4.4 Associating Histories with Arbitrary Expressions

Programmers may not only be interested in the value of a specific variable, but in the history of
how two or more variables are related. For example, one might express the minimum value of the
expression x − y over a computation using the syntax min<x-y>. The semantics of such a history
would be that the history is extended and a new sequence value added whenever the value of either
x or y change.

4.5 Associating Histories with Call Sites

Individual call sites can also have program histories. Suppose that you want to search a list for a
value and report how many comparisons were required before the value was found:

p = aList;
while (p != NULL) {

x = p.head();
match:
found = equal(p.head, key);
if (found) break;
p = p.tail();

}
print("searching required %d probes\n", length<match:equal>);

The history <match:equal> is the sequence of values returned by equal at location match. This
history limits the history to a call-site, rather than the function’s global history.

4.6 Reference Histories

One can imagine a history that represents the sequence of values read from a particular variable.
The length of this sequence gives profiling feedback regarding how hot this variable is.

4.7 Histories of Dynamically Allocated Objects

The histories of heap-allocated objects are also interesting. Naming heap objects requires care,
but is not difficult. Does <ptr> refer to the history of ptr or the history of what ptr refers to
on the heap? Histories of heap-allocated objects would have many uses. They could be used to
profile heap object usage. Programmers might also be interested in knowing what heap objects are
allocated and then never referenced at all—a surprisingly frequent situation (e.g., see Seidl’s data
in [8]).

5 Implementation

Maintaining a list that represents the complete history of all values ever assigned to every variable
is impractical. Even maintaining a list for a single variable can be impractical if that variable
is assigned many values. (One can easily find examples of loops that would generate enormous
histories.) Fortunately, useful operations on program histories, such as computing the average over
a numeric variable’s history, can be computed by maintaining a simple accumulator. In fact, all
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“reduction” operations can be computed with a single accumulator (e.g., sum, count, max, etc.).
Implementing reduction operations requires only updating the accumulator at all assignments to
the given variable. The overhead is no greater than the overhead of the explicit computation.

For more general kinds of histories and operations on them, many implementation questions
remain open research issues. In future work, we intend to consider these problems in greater detail
to better understand their implementation issues.

6 Related Work

Program histories cannot easily be reproduced using functional abstraction because variable up-
dates, for example, are typically scattered widely throughout a program text. Similarly, object-
oriented techniques provide little help towards implicitly providing the benefits of program histories.

Active variables are a language mechanism that allows procedures to be invoked whenever a
variable is read or written [2]. As such, the active variable mechanism could be used to implement
some of the aspects of programming histories that we have described. Program histories differ
from active variables in that they are a higher-level language feature intended for the specific
purpose of making programming more convenient by providing implicit computation. In addition,
program histories generalize beyond variables to procedure function calls and syntactic program
entities. SNOBOL’s trapped variables provide benefits similar to those of active variables, but do
not anticipate the benefits of program histories [5].

Several programming languages expose variable history directly as a consequence of their de-
sign. To date, the languages in this class have been side-effect free languages that use histories as
a way to integrate the imperative nature of variable update in loops in a side-effect free way. Lan-
guages in this class include Szymanski’s Equational Programming Language (EPL) [9] and Derby’s
EQ [3]. While these languages provide mechanisms akin to program histories, the emphasis differs
from our emphasis on improving programmer convenience in imperative programming languages.
Furthermore, the languages do not attempt to generalize variable histories to syntactic constructs.

7 Summary

We have proposed program histories as a language feature for reducing bookkeeping in programs.
Program histories expose temporal aspects of program execution that would otherwise require
explicit bookkeeping code. We have presented simple examples of program histories that make
programming more convenient and have simple and efficient implementations. We discuss how the
simple examples of program histories might generalize.
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