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Foreword 

The Gears of 

My Childhood 

BEFORE I WAS two years old I had developed an intense involve- 
ment with automobiles. The names of car parts made up a very 
substantial portion of my vocabulary: I was particularly proud of 
knowing about the parts of the transmission system, the gearbox, 
and most especially the differential. It was, of course, many years 
later before I understood how gears work; but once I did, playing 
with gears became a favorite pastime. I loved rotating circular ob- 
jects against one another in gearlike motions and, naturally, my 
first "erector set" project was a crude gear system. 

I became adept at turning wheels in my head and at making 
chains of cause and effect: "This one turns this way so that must 
turn that way s o . . . "  I found particular pleasure in such systems as 
the differential gear, which does not follow a simple linear chain of 
causality since the motion in the transmission shaft can be distrib- 
uted in many different ways to the two wheels depending on what 
resistance they encounter. I remember quite vividly my excitement 
at discovering that a system could be lawful and completely com- 
prehensible without being rigidly deterministic. 

I believe that working with differentials did more for my math- 
ematical development than anything I was taught in elementary 
school. Gears, serving as models, carried many otherwise abstract 
ideas into my head. I clearly remember two examples from school 
math. I saw multiplication tables as gears, and my first brush with 
equations in two variables (e.g., 3x + 4y = 10) immediately evoked 
the differential. By the time I had made a mental gear model of the 
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relation between x and y, figuring how many teeth each gear need- 
ed, the equation had become a comfortable friend. 

Many years later when I read Piaget this incident served me as a 
model for his notion of assimilation, except I was immediately 
struck by the fact that his discussion does not do full justice to his 
own idea. He talks almost entirely about cognitive aspects of as- 
similation. But there is also an affective component. Assimilating 
equations to gears certainly is a powerful way to bring old knowl- 
edge to bear on a new object. But it does more as well. I am sure 
that such assimilations helped to endow mathematics, for me, with 
a positive affective tone that can be traced back to my infantile ex- 
periences with cars. I believe Piaget really agrees. As I came to 
know him personally I understood that his neglect of the affective 
comes more from a modest sense that little is known about it than 
from an arrogant sense of its irrelevance. But let me return to my 
childhood. 

One day I was surprised to discover that some adults---even most 
adults---did not understand or even care about the magic of the 
gears. I no longer think much about gears, but I have never turned 
away from the questions that started with that discovery: How 
could what was so simple for me be incomprehensible to other peo- 
ple? My proud father suggested "being clever" as an explanation. 
But I was painfully aware that some people who could not under- 
stand the differential could easily do things I found much more dif- 
ficult. Slowly I began to formulate what I still consider the funda- 
mental fact about learning: Anything is easy if you can assimilate 
it to your collection of models. If you can't, anything can be pain- 
fully difficult. Here too I was developing a way of thinking that 
would be resonant with Piaget's. The understanding of learning 
must be genetic. It must refer to the genesis of knowledge. What an 
individual can learn, and how he learns it, depends on what models 
he has available. This raises, recursively, the question of how he 
learned these models. Thus the "laws of learning" must be about 
how intellectual structures grow out of one another and about how, 
in the process, they acquire both logical and emotional form. 

This book is an exercise in an applied genetic epistemology ex- 
panded beyond Piaget's cognitive emphasis to include a concern 
with the affective. It develops a new perspective for education re- 
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search focused on creating the conditions under which intellectual 
models will take root. For the last two decades this is what I have 
been trying to do. And in doing so I find myself frequently remind- 
ed of several aspects of my encounter with the differential gear. 
First, I remember that no one told me to learn about differential 
gears. Second, I remember that there was feeling, love, as well as 
understanding in my relationship with gears. Third, I remember 
that my first encounter with them was in my second year. If any 
"scientific" educational psychologist had tried to "measure" the ef- 
fects of this encounter, he would probably have failed. It had pro- 
found consequences but, I conjecture, only very many years later. 
A "pre- and post-" test at age two would have missed them. 

Piaget's work gave me a new framework for looking at the gears 
of my childhood. The gear can be used to illustrate many powerful 
"advanced" mathematical ideas, such as groups or relative motion. 
But it does more than this. As well as connecting with the formal 
knowledge of mathematics, it also connects with the "body knowl- 
edge," the sensorimotor schemata of a child. You can be the gear, 
you can understand how it turns by projecting yourself into its 
place and turning with it. It is this double relationship~both ab- 
stract and sensory~that  gives the gear the power to carry powerful 
mathematics into the mind. In a terminology I shall develop in lat- 
er chapters, the gear acts here as a transitional object. 

A modern-day Montessori might propose, if convinced by my 
story, to create a gear set for children. Thus every child might have 
the experience I had. But to hope for this would be to miss the es- 
sence of the story. I fell in love with the gears. This is something 
that cannot be reduced to purely "cognitive" terms. Something 
very personal happened, and one cannot assume that it would be 
repeated for other children in exactly the same form. 

My thesis could be summarized as: What the gears cannot do the 
computer might. The computer is the Proteus of machines. Its es- 
sence is its universality, its power to simulate. Because it can take 
on a thousand forms and can serve a thousand functions, it can ap- 
peal to a thousand tastes. This book is the result of my own at- 
tempts over the past decade to turn computers into instruments 
flexible enough so that many children can each create for them- 
selves something like what the gears were for me. 
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Introduction 

Computers for 
Children 

JUST A FEW YEARS AGO people thought of computers as ex- 
pensive and exotic devices. Their commercial and industrial uses 
affected ordinary people, but hardly anyone expected computers to 
become part of day-to-day life. This view has changed dramatically 
and rapidly as the public has come to accept the reality of the per- 
sonal computer, small and inexpensive enough to take its place in 
every living room or even in every breast pocket. The appearance of 
the first rather primitive machines in this class was enough to catch 
the imagination of journalists and produce a rash of speculative ar- 
ticles about life in the computer-rich world to come. The main sub- 
ject of these articles was what people will be able to do with their 
computers. Most writers emphasized using computers for games, 
entertainment, income tax, electronic mail, shopping, and banking. 
A few talked about the computer as a teaching machine. 

This book too poses the question of what will be done with per- 
sonal computers, but in a very different way. I shall be talking 
about how computers may affect the way people think and learn. I 
begin to characterize my perspective by noting a distinction be- 
tween two ways computers might enhance thinking and change 
patterns of access to knowledge. 

Instrumental uses of the computer to help people think have 
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been dramatized in science fiction. For example, as millions of 
"Star Trek" fans know, the starship Enterprise has a computer 
that gives rapid and accurate answers to complex questions posed 
to it. But no attempt is made in "Star Trek" to suggest that the hu- 
man characters aboard think in ways very different from the man- 
ner in which people in the twentieth century think. Contact with 
the computer has not, as far as we are allowed to see in these epi- 
sodes, changed how these people think about themselves or how 
they approach problems. In this book I discuss ways in which the 
computer presence could contribute to mental processes not only 
instrumentally but in more essential, conceptual ways, influencing 
how people think even when they are far removed from physical 
contact with a computer (just as the gears shaped my understand- 
ing of algebra although they were not physically present in the 
math class). It is about an end to the culture that makes science 
and technology alien to the vast majority of people. Many cultural 
barriers impede children from making scientific knowledge their 
own. Among these barriers the most visible are the physically bru- 
tal effects of deprivation and isolation. Other barriers are more po- 
litical. Many children who grow up in our cities are surrounded by 
the artifacts of science but have good reason to see them as belong- 
ing to "the others"; in many cases they are perceived as belonging 
to the social enemy. Still other obstacles are more abstract, though 
ultimately of the same nature. Most branches of the most sophisti- 
cated modern culture of Europe and the United States are so deep- 
ly "mathophobic" that many privileged children are as effectively 
(if more gently) kept from appropriating science as their own. In 
my vision, space-age objects, in the form of small computers, will 
cross these cultural barriers to enter the private worlds of children 
everywhere. They will do so not as mere physical objects. This book 
is about how computers can be carriers of powerful ideas and of the 
seeds of cultural change, how they can help people form new rela- 
tionships with knowledge that cut across the traditional lines sepa- 
rating humanities from sciences and knowledge of the self from 
both of these. It is about using computers to challenge current be- 
liefs about who can understand what and at what age. It is about 
using computers to question standard assumptions in developmen- 
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tal psychology and in the psychology of aptitudes and attitudes. It 
is about whether personal computers and the cultures in which they 
are used will continue to be the creatures of "engineers" alone or 
whether we can construct intellectual environments in which people 
who today think of themselves as "humanists" will feel part of, not 
alienated from, the process of constructing computational cultures. 

But there is a world of difference between what computers can 
do and what society will choose to do with them. Society has many 
ways to resist fundamental and threatening change. Thus, this 
book is about facing choices that are ultimately political. It looks at 
some of the forces of change and of reaction to those forces that are 
called into play as the computer presence begins to enter the politi- 
cally charged world of education. 

Much of the book is devoted to building up images of the role of 
the computer very different from current stereotypes. All of us, 
professionals as well as laymen, must consciously break the habits 
we bring to thinking about the computer. Computation is in its in- 
fancy. It is hard to think about computers of the future without 
projecting onto them the properties and the limitations of those we 
think we know today. And nowhere is this more true than in imag- 
ining how computers can enter the world of education. It is not true 
to say that the image of a child's relationship with a computer I 
shall develop here goes far beyond what is common in today's 
schools. My image does not go beyond: It goes in the opposite 
direction. 

In many schools today, the phrase "computer-aided instruction" 
means making the computer teach the child. One might say the 
computer is being used to program the child. In my vision, the 
child programs the computer and, in doing so, both acquires a 
sense of mastery over a piece of the most modern and powerful 
technology and establishes an intimate contact with some of the 
deepest ideas from science, from mathematics, and from the art of 
intellectual model building. 

I shall describe learning paths that have led hundreds of children 
to becoming quite sophisticated programmers. Once programming 
is seen in the proper perspective, there is nothing very surprising 
about the fact that this should happen. Programming a computer 
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means nothing more or less than communicating to it in a language 
that it and the human user can both "understand." And learning 
languages is one of the things children do best. Every normal child 
learns to talk. Why then should a child not learn to "talk" to a 
computer? 

There are many reasons why someone might expect it to be diffi- 
cult. For example, although babies learn to speak their native lan- 
guage with spectacular ease, most children have great difficulty 
learning foreign languages in schools and, indeed, often learn the 
written version of their own language none too successfully. Isn't 
learning a computer language more like the difficult process of 
learning a foreign written language than the easy one of learning to 
speak one's own language? And isn't the problem further com- 
pounded by all the difficulties most people encounter learning 
mathematics? 

Two fundamental ideas run through this book. The first is that it 
is possible to design computers so that learning to communicate 
with them can be a natural process, more like learning French by 
living in France than like trying to learn it through the unnatural 
process of American foreign-language instruction in classrooms. 
Second, learning to communicate with a computer may change the 
way other learning takes place. The computer can be a mathemat- 
ics-speaking and an alphabetic-speaking entity. We are learning 
how to make computers with which children love to communicate. 
When this communication occurs, children learn mathematics as a 
living language. Moreover, mathematical communication and al- 
phabetic communication are thereby both transformed from the 
alien and therefore difficult things they are for most children into 
natural and therefore easy ones. The idea of "talking mathematics" 
to a computer can be generalized to a view of learning mathematics 
in "Mathland"; that is to say, in a context which is to learning 
mathematics what living in France is to learning French. 

In this book the Mathland metaphor will be used to question 
deeply engrained assumptions about human abilities. It is generally 
assumed that children cannot learn formal geometry until well into 
their school years and that most cannot learn it too well even then. 
But we can quickly see that these assumptions are based on ex- 
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tremely weak evidence by asking analogous questions about the 
ability of children to learn French. If we had to base our opinions 
on observation of how poorly children learned French in American 
schools, we would have to conclude that most people were incapa- 
ble of mastering it. But we know that all normal children would 
learn it very easily if they lived in France. My conjecture is that 
much of what we now see as too "formal" or "too mathematical" 
will be learned just as easily when children grow up in the comput- 
er-rich world of the very near future. 

I use the examination of our relationship with mathematics as a 
thematic example of how technological and social processes inter- 
act in the construction of ideas about human capacities. And math- 
ematical examples will also help to describe a theory of how learn- 
ing works and of how it goes wrong. 

I take from Jean Piaget ~ a model of children as builders of their 
own intellectual structures. Children seem to be innately gifted 
learners, acquiring long before they go to school a vast quantity of 
knowledge by a process I call "Piagetian learning," or "learning 
without being taught." For example, children learn to speak, learn 
the intuitive geometry needed to get around in space, and learn 
enough of logic and rhetorics to get around parents~all  this with- 
out being "taught." We must ask why some learning takes place so 
early and spontaneously while some is delayed many years or does 
not happen at all without deliberately imposed formal instruction. 

If we really look at the "child as builder" we are on our way to 
an answer. All builders need materials to build with. Where I am 
at variance with Piaget is in the role I attribute to the surrounding 
cultures as a source of these materials. In some cases the culture 
supplies them in abundance, thus facilitating constructive Piage- 
tian learning. For example, the fact that so many important things 
(knives and forks, mothers and fathers, shoes and socks) come in 
pairs is a "material" for the construction of an intuitive sense of 
number. But in many cases where Piaget would explain the slower 
development of a particular concept by its greater complexity or 
formality, I see the critical factor as the relative poverty of the cul- 
ture in those materials that would make the concept simple and 
concrete. In yet other cases the culture may provide materials but 
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block their use. In the case of formal mathematics, there is both a 
shortage of formal materials and a cultural block as well. The 
mathophobia endemic in contemporary culture blocks many people 
from learning anything they recognize as "math," although they 
may have no trouble with mathematical knowledge they do not per- 
ceive as such. 

We shall see again and again that the consequences of matho- 
phobia go far beyond obstructing the learning of mathematics and 
science. They interact with other endemic "cultural toxins," for ex- 
ample, with popular theories of aptitudes, to contaminate peoples' 
images of themselves as learners. Difficulty with school math is of- 
ten the first step of an invasive intellectual process that leads us all 
to define ourselves as bundles of aptitudes and ineptitudes, as being 

' artistic" or "not artis- "mathematical" or "not mathematical,' " 
tic," "musical" or "not musical," "profound" or "superficial," "in- 
telligent" or "dumb." Thus deficiency becomes identity and learn- 
ing is transformed from the early child's free exploration of the 
world to a chore beset by insecurities and self-imposed restrictions. 

Two major themes~that  children can learn to use computers in 
a masterful way, and that learning to use computers can change 
the way they learn everything else~have shaped my research 
agenda on computers and education. Over the past ten years I have 
had the good fortune to work with a group of colleagues and stu- 
dents at MIT (the LOGO 2 group in the Artificial Intelligence Lab- 
oratory) to create environments in which children can learn to 
communicate with computers. The metaphor of imitating the way 
the child learns to talk has been constantly with us in this work and 
has led to a vision of education and of education research very dif- 
ferent from the traditional ones. For people in the teaching profes- 
sions, the word "education" tends to evoke "teaching," particularly 
classroom teaching. The goal of education research tends therefore 
to be focused on how to improve classroom teaching. But if, as I 
have stressed here, the model of successful learning is the way a 
child learns to talk, a process that takes place without deliberate 
and organized teaching, the goal set is very different. I see the 
classroom as an artificial and inefficient learning environment that 
society has been forced to invent because its informal environments 
fail in certain essential learning domains, such as writing or gram- 
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mar or school math. I believe that the computer presence will en- 
able us to so modify the learning environment outside the class- 
rooms that much if not all the knowledge schools presently try to 
teach with such pain and expense and such limited success will be 
learned, as the child learns to talk, painlessly, successfully, and 
without organized instruction. This obviously implies that schools 
as we know them today will have no place in the future. But it is an 
open question whether they will adapt by transforming themselves 
into something new or wither away and be replaced. 

Although technology will play an essential role in the realization 
of my vision of the future of education, my central focus is not on 
the machine but on the mind, and particularly on the way in which 
intellectual movements and cultures define themselves and grow. 
Indeed, the role I give to the computer is that of a carrier of cultur- 
al "germs" or "seeds" whose intellectual products will not need 
technological support once they take root in an actively growing 
mind. Many if not all the children who grow up with a love and ap- 
titude for mathematics owe this feeling, at least in part, to the fact 
that they happened to acquire "germs" of the "math culture" from 
adults, who, one might say, knew how to speak mathematics, even 
if only in the way that Moliere had M. Jourdain speak prose with- 
out knowing it. These "math-speaking" adults do not necessarily 
know how to solve equations; rather, they are marked by a turn of 
mind that shows up in the logic of their arguments and in the fact 
that for them to play is often to play with such things as puzzles, 
puns, and paradoxes. Those children who prove recalcitrant to 
math and science education include many whose environments 
happened to be relatively poor in math-speaking adults. Such chil- 
dren come to school lacking elements necessary for the easy learn- 
ing of school math. School has been unable to supply these missing 
elements, and, by forcing the children into learning situations 
doomed in advance, it generates powerful negative feelings about 
mathematics and perhaps about learning in general. Thus is set up 
a vicious self-perpetuating cycle. For these same children will one 
day be parents and will not only fail to pass on mathematical germs 
but will almost certainly infect their children with the opposing and 
intellectually destructive germs of mathophobia. 

Fortunately it is sufficient to break the self-perpetuating cycle at 
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one point for it to remain broken forever. I shall show how comput- 
ers might enable us to do this, thereby breaking the vicious cycle 
without creating a dependence on machines. My discussion differs 
from most arguments about "nature versus nurture" in two ways. I 
shall be much more specific both about what kinds of nurturance 
are needed for intellectual growth and about what can be done to 
create such nurturance in the home as well as in the wider social 
context. 

Thus this book is really about how a culture, a way of thinking, 
an idea comes to inhabit a young mind. I am suspicious of thinking 
about such problems too abstractly, and I shall write here with par- 
ticular restricted focus. I shall in fact concentrate on those ways of 
thinking that I know best. I begin by looking at what I know about 
my own development. I do this in all humility, without any implica- 
tion that what I have become is what everyone should become. But 
I think that the best way to understand learning is first to under- 
stand specific, well-chosen cases and then to worry afterward about 
how to generalize from this understanding. You can't think serious- 
ly about thinking without thinking about thinking about some- 
thing. And the something I know best how to think about is math- 
ematics. When in this book I write of mathematics, I do not think 
of myself as writing for an audience of mathematicians interested 
in mathematical thinking for its own sake. My interest is in univer- 
sal issues of how people think and how they learn to think. 

When I trace how I came to be a mathematician, I see much that 
was idiosyncratic, much that could not be duplicated as part of a 
generalized vision of education reform. And I certainly don't think 
that we would want everyone to become a mathematician. But I 
think that the kind of pleasure I take in mathematics should be 
part of a general vision of what education should be about. If we 
can grasp the essence of one person's experiences, we may be able 
to replicate its consequences in other ways, and in particular this 
consequence of finding beauty in abstract things. And so I shall be 
writing quite a bit about mathematics. I give my apologies to read- 
ers who hate mathematics, but I couple that apology with an offer 
to help them learn to like it a little be t t e r~or  at least to change 
their image of what "speaking mathematics" can be all about. 
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In the Foreword of this book I described how gears helped math- 
ematical ideas to enter my life. Several qualities contributed to 
their effectiveness. First, they were part of my natural "landscape," 
embedded in the culture around me. This made it possible for me to 
find them myself and relate to them in my own fashion. Second, 
gears were part of the world of adults around me and through them 
I could relate to these people. Third, I could use my body to think 
about the gears. I could feel how gears turn by imagining by body 
turning. This made it possible for me to draw on my "body knowl- 
edge" to think about gear systems. And finally, because, in a very 
real sense, the relationship between gears contains a great deal of 
mathematical information, I could use the gears to think about for- 
mal systems. I have described the way in which the gears served as 
an "object-to-think-with." I made them that for myself in my own 
development as a mathematician. The gears have also served me as 
an object-to-think-with in my work as an educational researcher. 
My goal has been the design of other objects that children can 
make theirs for themselves and in their own ways. Much of this 
book will describe my path through this kind of research. I begin 
by describing one example of a constructed computational "object- 
to-think-with." This is the "Turtle. ''3 

The central role of the Turtle in this book should not be taken to 
mean that I propose it as a panacea for all educational problems. I 
see it as a valuable educational object, but its principal role here is 
to serve as a model for other objects, yet to be invented. My inter- 
est is in the process of invention of "objects-to-think-with," objects 
in which there is an intersection of cultural presence, embedded 
knowledge, and the possibility for personal identification. 

The Turtle is a computer-controlled cybernetic animal. It exists 
within the cognitive minicultures of the "LOGO environment," 
LOGO being the computer language in which communication with 
the Turtle takes place. The Turtle serves no other purpose than of 
being good to program and good to think with. Some Turtles are 
abstract objects that live on computer screens. Others, like the 
floor Turtles shown in the frontispiece are physical objects that can 
be picked up like any mechanical toy. A first encounter often be- 
gins by showing the child how a Turtle can be made to move by 
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typing commands at a keyboard. F O R W A R D  100 makes the Tur- 
tle move in a straight line a distance of 100 Turtle steps of about a 
millimeter each. Typing RIGHT 90 causes the Turtle to pivot in 
place through 90 degrees. Typing P E N D O W N  causes the Turtle to 
lower a pen so as to leave a visible trace of its path while PENUP 
instructs it to raise the pen. Of course the child needs to explore a 
great deal before gaining mastery of what the numbers mean. But 
the task is engaging enough to carry most children through this 
learning process. 

The idea of programming is introduced through the metaphor of 
teaching the Turtle a new word. This is simply done, and children 
often begin their programming experience by programming the 
Turtle to respond to new commands invented by the child such as 
SQUARE or T R I A N G L E  or SQ or TRI or whatever the child 
wishes, by drawing the appropriate shapes. New commands once 
defined can be used to define others. For example just as the house 
in Figure 1 is built out of a triangle and a square, the program for 
drawing it is built out of the commands for drawing a square and a 
triangle. Figure 1 shows four steps in the evolution of this program. 
From these simple drawings the young programmer can go on in 
many different directions. Some work on more complex drawings, 
either figural or abstract. Some abandon the use of the Turtle as a 
drawing instrument and learn to use its touch sensors to program it 
to seek out or avoid objects. 4 Later children learn that the comput- 
er can be programmed to make music as well as move Turtles and 
combine the two activities by programming Turtles to dance. Or 
they can move on from floor Turtles to "screen Turtles," which 
they program to draw moving pictures in bright colors. The exam- 
ples are infinitely varied, but in each the child is learning how to 
exercise control over an exceptionally rich and sophisticated "mi- 
cro-world." 

Readers who have never seen an interactive computer display 
might find it hard to imagine where this can lead. As a mental ex- 
ercise they might like to imagine an electronic sketchpad, a com- 
puter graphics display of the not-too-distant future. This is a televi- 
sion screen that can display moving pictures in color. You can also 
"draw" on it, giving it instructions, perhaps by typing, perhaps by 

12 



Introduction 

speaking, or perhaps by pointing with a wand. On request, a palette 
of colors could appear on the screen. You can choose a color by 
pointing at it with the wand. Until you change your choice, the 
wand draws in that color. Up to this point the distinction from tra- 
ditional art materials may seem slight, but the distinction becomes 
very real when you begin to think about editing the drawing. You 
can "talk to your drawing" in computer language. You can "tell" it 
to replace this color with that. Or set a drawing in motion. Or make 
two copies and set them in counterrotating motion. Or replace the 
color palette with a sound palette and "draw" a piece of music. 
You can file your work in computer memory and retrieve it at your 
pleasure, or have it delivered into the memory of any of the many 
millions of other computers linked to the central communication 
network for the pleasure of your friends. 

That all this would be fun needs no argument. But it is more 
than fun. Very powerful kinds of learning are taking place. Chil- 
dren working with an electronic sketchpad are learning a language 
for talking about shapes and fluxes of shapes, about velocities and 
rates of change, about processes and procedures. They are learning 
to speak mathematics, and acquiring a new image of themselves as 
mathematicians. 

In my description of children working with Turtles, I implied 
that children can learn to program. For some readers this might be 
tantamount to the suspension of disbelief required when we enter a 
theater to watch a play. For them programming is a complex and 
marketable skill acquired by some mathematically gifted adults. 
But my experience is very different. I have seen hundreds of ele- 
mentary school children learn very easily to program, and evidence 
is accumulating to indicate that much younger children could do so 
as well. The children in these studies are not exceptional, or rather, 
they are exceptional in every conceivable way. Some of the children 
were highly successful in school, some were diagnosed as emotion- 
ally or cognitively disabled. Some of the children were so severely 
afflicted by cerebral palsy that they had never purposefully manip- 
ulated physical objects. Some of them had expressed their talents 
in "mathematical" forms, some in "verbal" forms, and some in ar- 
tistically "visual" or in "musical" forms. 
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Of course these children did not achieve a fluency in program- 
ming that came close to matching their use of spoken language. If 
we take the Mathland metaphor seriously, their computer experi- 
ence was more like learning French by spending a week or two on 
vacation in France than like living there. But like children who 
have spent a vacation with foreign-speaking cousins, they were 
clearly on their way to "speaking computer." 

When I have thought about what these studies mean I am left 
with two clear impressions. First, that all children will, under the 
right conditions, acquire a proficiency with programming that will 
make it one of their more advanced intellectual accomplishments. 
Second, that the "right conditions" are very different from the kind 
of access to computers that is now becoming established as the 
norm in schools. The conditions necessary for the kind of relation- 
ships with a computer that I will be writing about in this book re- 
quire more and freer access to the computer than educational plan- 
ners currently anticipate. And they require a kind of computer 
language and a learning environment around that language very 
different from those the schools are now providing. They even re- 
quire a kind of computer rather different from those that the 
schools are currently buying. 

It will take most of this book for me to convey some sense of the 
choices among computers, computer languages, and more general- 
ly, among computer cultures, that influence how well children will 
learn from working with computation and what benefits they will 
get from doing so. But the question of the economic feasibility of 
free access to computers for every child can be dealt with immedi- 
ately. In doing so I hope to remove any doubts readers may have 
about the "economic realism" of the "vision of education" I have 
been talking about. 

My vision of a new kind of learning environment demands free 
contact between children and computers. This could happen be- 
cause the child's family buys one or a child's friends have one. For 
purposes of discussion here (and to extend our discussion to all so- 
cial groups) let us assume that it happens because schools give ev- 
ery one of their students his or her own powerful personal comput- 
er. Most "practical" people (including parents, teachers, school 
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principals, and foundation administrators) react to this idea in 
much the same way: "Even if computers could have all the effects 
you talk about, it would still be impossible to put your ideas into 
action. Where would the money come from?" 

What these people are saying needs to be faced squarely. They 
are wrong. Let's consider the cohort of children who will enter kin- 
dergarten in the year 1987, the "Class of 2000," and let's do some 
arithmetic. The direct public cost of schooling a child for thirteen 
years, from kindergarten through twelfth grade is over $20,000 to- 
day (and for the class of 2000, it may be closer to $30,000). A con- 
servatively high estimate of the cost of supplying each of these chil- 
dren with a personal computer with enough power for it to serve 
the kinds of educational ends described in this book, and of upgrad- 
ing, repairing, and replacing it when necessary would be about 
$1,000 per student, distributed over thirteen years in school. Thus, 
"computer costs" for the class of 2,000 would represent only about 
5 percent of the total public expenditure on education, and this 
would be the case even if nothing else in the structure of education- 
al costs changed because of the computer presence. But in fact 
computers in education stand a good chance of making other as- 
pects of education cheaper. Schools might be able to reduce their 
cycle from thirteen years to twelve years; they might be able to 
take advantage of the greater autonomy the computer gives stu- 
dents and increase the size of classes by one or two students with- 
out decreasing the personal attention each student is given. Either 
of these two moves would "recuperate" the computer cost. 

My goal is not educational economies: It is not to use computa- 
tion to shave a year off the time a child spends in an otherwise un- 
changed school or to push an extra child into an elementary school 
classroom. The point of this little exercise in educational "budget 
balancing" is to do something to the state of mind of my readers as 
they turn to the first chapter of this book. I have described myself 
as an educational utopian~not because I have projected a future 
of education in which children are surrounded by high technology, 
but because I believe that certain uses of very powerful computa- 
tional technology and computational ideas can provide children 
with new possibilities for learning, thinking, and growing emotion- 
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ally as well as cognitively. In the chapters that follow I shall try to 
give you some idea of these possibilities, many of which are depen- 
dent on a computer-rich future, a future where a computer will be 
a significant part of every child's life. But I want my readers to be 
very clear that what is "utopian" in my vision and in this book is a 
particular way of using computers, of forging new relationships be- 
tween computers and people~that  the computer will be there to be 
used is simply a conservative premise. 
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Chapter I 

Computers 
and Computer 
Cultures 

IN MOST contemporary educational situations where children 
come into contact with computers the computer is used to put chil- 
dren through their paces, to provide exercises of an appropriate lev- 
el of difficulty, to provide feedback, and to dispense information. 
The computer programming the child. In the LOGO environment 
the relationship is reversed: The child, even at preschool ages, is in 
control: The child programs the computer. And in teaching the 
computer how to think, children embark on an exploration about 
how they themselves think. The experience can be heady: Thinking 
about thinking turns the child into an epistemologist, an experience 
not even shared by most adults. 

This powerful image of child as epistemologist caught my imagi- 
nation while I was working with Piaget. in 1964, after five years at 
Piaget's Center for Genetic Epistemology in Geneva, I came away 
impressed by his way of looking at children as the active builders of 
their own intellectual structures. But to say that intellectual struc- 
tures are built by the learner rather than taught by a teacher does 
not mean that they are built from nothing. On the contrary: Like 
other builders, children appropriate to their own use materials they 
find about them, most saliently the models and metaphors suggest- 
ed by the surrounding culture. 
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Piaget writes about the order in which the child develops differ- 
ent intellectual abilities. I give more weight than he does to the in- 
fluence of the materials a particular culture provides in determin- 
ing that order. For example, our culture is very rich in materials 
useful for the child's construction of certain components of numeri- 
cal and logical thinking. Children learn to count; they learn that 
the result of counting is independent of order and special arrange- 
ment; they extend this "conservation" to thinking about the proper- 
ties of liquids as they are poured and of solids which change their 
shape. Children develop these components of thinking precon- 
sciously and "spontaneously," that is to say without deliberate 
teaching. Other components of knowledge, such as the skills in- 
volved in doing permutations and combinations, develop more slow- 
ly, or do not develop at all without formal schooling. Taken as a 
whole this book is an argument that in many important cases this 
developmental difference can be attributed to our culture's relative 
poverty in materials from which the apparently "more advanced" 
intellectual structures can be built. This argument will be very dif- 
ferent from cultural interpretations of Piaget that look for differ- 
ences between city children in Europe or the United States and tri- 
bal children in African jungles. When I speak here of "our" culture 
I mean something less parochial. I am not trying to contrast New 
York with Chad. I am interested in the difference between precom- 
puter cultures (whether in American cities or African tribes) and 
the "computer cultures" that may develop everywhere in the next 
decades. 

I have already indicated one reason for my belief that the com- 
puter presence might have more fundamental effects on intellectual 
development than did other new technologies, including television 
and even printing. The metaphor of computer as mathematics- 
speaking entity puts the learner in a qualitatively new kind of rela- 
tionship to an important domain of knowledge. Even the best of 
educational television is limited to offering quantitative improve- 
ments in the kinds of learning that existed without it. "Sesame 
Street" might offer better and more engaging explanations than a 
child can get from some parents or nursery school teachers, but the 
child is still in the position of listening to explanations. By contrast, 
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when a child learns to program, the process of learning is trans- 
formed. It becomes more active and self-directed. In particular, the 
knowledge is acquired for a recognizable personal purpose. The 
child does something with it. The new knowledge is a source of 
power and is experienced as such from the moment it begins to 
form in the child's mind. 

I have spoken of mathematics being learned in a new way. But 
much more is affected than mathematics. One can get an idea of 
the extent of what is changed by examining another of Piaget's 
ideas. Piaget distinguishes between "concrete" thinking and "for- 
mal" thinking. Concrete thinking is already well on its way by the 
time the child enters the first grade at age 6 and is consolidated in 
the following several years. Formal thinking does not develop until 
the child is almost twice as old, that is to say at age 12, give or take 
a year or two, and some researchers have even suggested that many 
people never achieve fully formal thinking. I do not fully accept 
Piaget's distinction, but I am sure that it is close enough to reality 
to help us make sense of the idea that the consequences for intellec- 
tual development of one innovation could be qualitatively greater 
than the cumulative quantitative effects of a thousand others. Stat- 
ed most simply, my conjecture is that the computer can concretize 
(and personalize) the formal. Seen in this light, it is not just an- 
other powerful educational tool. It is unique in providing us with 
the means for addressing what Piaget and many others see as the 
obstacle which is overcome in the passage from child to adult 
thinking. I believe that it can allow us to shift the boundary sepa- 
rating concrete and formal. Knowledge that was accessible only 
through formal processes can now be approached concretely. And 
the real magic comes from the fact that this knowledge includes 
those elements one needs to become a formal thinker. 

This description of the role of the computer is rather abstract. I 
shall concretize it, anticipating discussions which occur in later 
chapters of this book, by looking at the effect of working with com- 
puters on two kinds of thinking Piaget associates with the formal 
stage of intellectual development: combinatorial thinking, where 
one has to reason in terms of the set of all possible states of a sys- 
tem, and self-referential thinking about thinking itself. 
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In a typical experiment in combinatorial thinking, children are 
asked to form all the possible combinations (or "families") of 
beads of assorted colors. It really is quite remarkable that most 
children are unable to do this systematically and accurately until 
they are in the fifth or sixth grades. Why should this be? Why does 
this task seem to be so much more difficult than the intellectual 
feats accomplished by seven and eight year old children? Is its logi- 
cal structure essentially more complex? Can it possibly require a 
neurological mechanism that does not mature until the approach of 
puberty? I think that a more likely explanation is provided by look- 
ing at the nature of the culture. The task of making the families of 
beads can be looked at as constructing and executing a program, a 
very common sort of program, in which two loops are nested: Fix a 
first color and run through all the possible second colors, then re- 
peat until all possible first colors have been run through. For some- 
one who is thoroughly used to computers and programming there is 
nothing "formal" or abstract about this task. For a child in a com- 
puter culture it would be as concrete as matching up knives and 
forks at the dinner table. Even the common "bug" of including 
some families twice (for example, red-blue and blue-red) would be 
well-known. Our culture is rich in pairs, couples, and one-to-one 
correspondences of all sorts, and it is rich in language for talking 
about such things. This richness provides both the incentive and a 
supply of models and tools for children to build ways to think about 
such issues as whether three large pieces of candy are more or less 
than four much smaller pieces. For such problems our children ac- 
quire an excellent intuitive sense of quantity. But our culture is rel- 
atively poor in models of systematic procedures. Until recently 
there was not even a name in popular language for programming, 
let alone for the ideas needed to do so successfully. There is no 
word for "nested loops" and no word for the double-counting bug. 
Indeed, there are no words for the powerful ideas computerists re- 
fer to as "bug" and "debugging." 

Without the incentive or the materials to build powerful, con- 
crete ways to think about problems involving systematicity, chil- 
dren are forced to approach such problems in a groping, abstract 
fashion. Thus cultural factors that are common to both the Ameri- 

22 



Computers and Computer Cultures 

can city and the African village can explain the difference in age at 
which children build their intuitive knowledge of quantity and of 
systematicity. 

While still working in Geneva I had become sensitive to the way 
in which materials from the then very young computer cultures 
were allowing psychologists to develop new ways to think about 
thinking. ~ In fact, my entry into the world of computers was moti- 
vated largely by the idea that children could also benefit, perhaps 
even more than the psychologists, from the way in which computer 
models seemed able to give concrete form to areas of knowledge 
that had previously appeared so intangible and abstract. 

I began to see how children who had learned to program comput- 
ers could use very concrete computer models to think about think- 
ing and to learn about learning and in doing so, enhance their pow- 
ers as psychologists and as epistemologists. For example, many 
children are held back in their learning because they have a model 
of learning in which you have either "got it" or "got it wrong." But 
when you learn to program a computer you almost never get it 
right the first time. Learning to be a master programmer is learn- 
ing to become highly skilled at isolating and correcting "bugs," the 
parts that keep the program from working. The question to ask 
about the program is not whether it is right or wrong° but if it is 
fixable. If this way of looking at intellectual products were general- 
ized to how the larger culture thinks about knowledge and its ac- 
quisition, we all might be less intimidated by our fears of "being 
wrong." This potential influence of the computer on changing our 
notion of a black and white version of our successes and failures is 
an example of using the computer as an "object-to-think-with." It 
is obviously not necessary to work with computers in order to ac- 
quire good strategies for learning. Surely "debugging" strategies 
were developed by successful learners long before computers exist- 
ed. But thinking about learning by analogy with developing a pro- 
gram is a powerful and accessible way to get started on becoming 
more articulate about one's debugging strategies and more deliber- 
ate about improving them. 

My discussion of a computer culture and its impact on thinking 
presupposes a massive penetration of powerful computers into peo- 
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pie's lives. That this will happen there can be no doubt. The calcu- 
lator, the electronic game, and the digital watch were brought to us 
by a technical revolution that rapidly lowered prices for electronics 
in a period when all others were rising with inflation. That same 
technological revolution, brought about by the integrated circuit, is 
now bringing us the personal computer. Large computers used to 
cost millions of dollars because they were assembled out of millions 
of physically distinct parts. In the new technology a complex circuit 
is not assembled but made as a whole, solid ent i ty~hence the term 
"integrated circuit." The effect of integrated circuit technology on 
cost can be understood by comparing it to printing. The main ex- 
penditure in making a book occurs long before the press begins to 
roll. It goes into writing, editing, and typesetting. Other costs occur 
after the printing" binding, distributing, and marketing. The actual 
cost per copy for printing itself is negligible. And the same is true 
for a powerful as for a trivial book. So, too, most of the cost of an 
integrated circuit goes into a preparatory process; the actual cost of 
making an individual circuit becomes negligible, provided enough 
are sold to spread the costs of development. The consequences of 
this technology for the cost of computation are dramatic. Comput- 
ers that would have cost hundreds of thousands in the 1960s and 
tens of thousands in the early 1970s can now be made for less than 
a dollar. The only limiting factor is whether the particular circuit 
can fit onto what corresponds to a "page"- - tha t  is to say the "sili- 
con chips" on which the circuits are etched. 

But each year in a regular and predictable fashion the art of 
etching circuits on silicon chips is becoming more refined. More 
and more complex circuitry can be squeezed onto a chip, and the 
computer power that can be produced for less than a dollar in- 
creases. I predict that long before the end of the century, people 
will buy children toys with as much computer power as the great 
IBM computers currently selling for millions of dollars. And as for 
computers to be used as such, the main cost of these machines will 
be the peripheral devices, such as the keyboard. Even if these do 
not fall in price, it is likely that a supercomputer will be equivalent 
in price to a typewriter and a television set. 

There really is no disagreement among experts that the cost of 
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computers will fall to a level where they will enter everyday life in 
vast numbers. Some will be there as computers proper, that is to 
say, programmable machines. Others might appear as games of 
ever-increasing complexity and in automated supermarkets where 
the shelves, maybe even the cans, will talk. One really can afford to 
let one's imagination run wild. There is no doubt that the material 
surface of life will become very different for everyone, perhaps 
most of all for children. But there has been significant difference of 
opinion about the effects this computer presence will produce. I 
would distinguish my thinking from two trends of thinking which I 
refer to here as the "skeptical" and the "critical." 

Skeptics do not expect the computer presence to make much dif- 
ference in how people learn and think. I have formulated a number 
of possible explanations for why they think as they do. In some 
cases I think the skeptics might conceive of education and the ef- 
fect of computers on it too narrowly. Instead of considering general 
cultural effects, they focus attention on the use of the computer as 
a device for programmed instruction. Skeptics then conclude that 
while the computer might produce some improvements in school 
learning, it is not likely to lead to fundamental change. In a sense, 
too, I think the skeptical view derives from a failure to appreciate 
just how much Piagetian learning takes place as a child grows up. 
If a person conceives of children's intellectual development (or, for 
that matter, moral or social development) as deriving chiefly from 
deliberate teaching, then such a person would be likely to under- 
estimate the potential effect that a massive presence of computers 
and other interactive objects might have on children. 

The critics, 2 on the other hand, do think that the computer pres- 
ence will make a difference and are apprehensive. For example, 
they fear that more communication via computers might lead to 
less human association and result in social fragmentation. As 
knowing how to use a computer becomes increasingly necessary to 
effective social and economic participation, the position of the un- 
derprivileged could worsen, and the computer could exacerbate ex- 
isting class distinctions. As to the political effect computers will 
have, the critics' concerns resonate with Orwellian images of a 
1984 where home computers will form part of a complex system of 
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surveillance and thought control. Critics also draw attention to po- 
tential mental health hazards of computer penetration. Some of 
these hazards are magnified forms of problems already worrying 
many observers of contemporary life; others are problems of an es- 
sentially new kind. A typical example of the former kind is that our 
grave ignorance of the psychological impact of television becomes 
even more serious when we contemplate an epoch of super TV. The 
holding power and the psychological impact of the television show 
could be increased by the computer in at least two ways. The con- 
tent might be varied to suit the tastes of each individual viewer, 
and the show might become interactive, drawing the "viewer" into 
the action. Such things belong to the future, but people who are 
worried about the impact of the computer on people already cite 
cases of students spending sleepless nights riveted to the computer 
terminal, coming to neglect both studies and social contact. Some 
parents have been reminded of these stories when they observe a 
special quality of fascination in their own children's reaction to 
playing with the still rudimentary electronic games. 

In the category of problems that are new rather than aggravated 
versions of old ones, critics have pointed to the influence of the al- 
legedly mechanized thought processes of computers on how people 
think. Marshall McCluhan's dictum that "the medium is the mes- 
sage" might apply here: If the medium is an interactive system that 
takes in words and speaks back like a person, it is easy to get the 
message that machines are like people and that people are like ma- 
chines. What this might do to the development of values and self- 
image in growing children is hard to assess. But it is not hard to see 
reasons for worry. 

Despite these concerns I am essentially optimistic~some might 
say utopian~about the effect of computers on society. I do not dis- 
miss the arguments of the critics. On the contrary, I too see the 
computer presence as a potent influence on the human mind. I am 
very much aware of the holding power of an interactive computer 
and of how taking the computer as a model can influence the way 
we think about ourselves. In fact the work on LOGO to which I 
have devoted much of the past ten years consists precisely of devel- 
oping such forces in positive directions. For example, the critic is 
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horrified at the thought of a child hypnotically held by a futuristic, 
computerized super-pinball machine. In the LOGO work we have 
invented versions of such machines in which powerful ideas from 
physics or mathematics or linguistics are embedded in a way that 
permits the player to learn them in a natural fashion, analogous to 
how a child learns to speak. The computer's "holding power," so 
feared by critics, becomes a useful educational tool. Or take an- 
other, more profound example. The critic is afraid that children 
will adopt the computer as model and eventually come to "think 
mechanically" themselves. Following the opposite tack, I have in- 
vented ways to take educational advantage of the opportunities to 
master the art of deliberately thinking like a computer, according, 
for example, to the stereotype of a computer program that proceeds 
in a step-by-step, literal, mechanical fashion. There are situations 
where this style of thinking is appropriate and useful. Some chil- 
dren's difficulties in learning formal subjects such as grammar or 
mathematics derive from their inability to see the point of such a 
style. 

A second educational advantage is indirect but ultimately more 
important. By deliberately learning to imitate mechanical thinking, 
the learner becomes able to articulate what mechanical thinking is 
and what it is not. The exercise can lead to greater confidence 
about the ability to choose a cognitive style that suits the problem. 
Analysis of "mechanical thinking" and how it is different from oth- 
er kinds and practice with problem analysis can result in a new de- 
gree of intellectual sophistication. By providing a very concrete, 
down-to-earth model of a particular style of thinking, work with 
the computer can make it easier to understand that there is such a 
thing as a "style of thinking." And giving children the opportunity 
to choose one style or another provides an opportunity to develop 
the skill necessary to choose between styles. Thus instead of induc- 
ing mechanical thinking, contact with computers could turn out to 
be the best conceivable antidote to it. And for me what is most im- 
portant in this is that through these experiences these children 
would be serving their apprenticeships as epistemologists, that is to 
say learning to think articulately about thinking. 

The intellectual environments offered to children by today's cul- 
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tures are poor in opportunities to bring their thinking about think- 
ing into the open, to learn to talk about it and to test their ideas by 
externalizing them. Access to computers can dramatically change 
this situation. Even the simplest Turtle work can open new oppor- 
tunities for sharpening one's thinking about thinking: Program- 
ming the Turtle starts by making one reflect on how one does one- 
self what one would like the Turtle to do. Thus teaching the Turtle 
to act or to "think" can lead one to reflect on one's own actions and 
thinking. And as children move on, they program the computer to 
make more complex decisions and find themselves engaged in re- 
flecting on more complex aspects of their own thinking. 

In short, while the critic and I share the belief that working with 
computers can have a powerful influence on how people think, I 
have turned my attention to exploring how this influence could be 
turned in positive directions. 

I see two kinds of counterarguments to my arguments against 
the critics. The first kind challenges my belief that it is a good 
thing for children to be epistemologists. Many people will argue 
that overly analytic, verbalized thinking is counterproductive even 
if it is deliberately chosen. The second kind of objection challenges 
my suggestion that computers are likely to lead to more reflective 
self-conscious thinking. Many people will argue that work with 
computers usually has the opposite effect. These two kinds of ob- 
jections call for different kinds of analysis and cannot be discussed 
simultaneously. The first kind raises technical questions about the 
psychology of learning which will be discussed in chapters 4 and 6. 
The second kind of objection is most directly answered by saying 
that there is absolutely no inevitability that computers will have the 
effects I hope to see. Not all computer systems do. Most in use to- 
day do not. In LOGO environments I have seen children engaged 
in animated conversations about their own personal knowledge as 
they try to capture it in a program to make a Turtle carry out an 
action that they themselves know very well how to do. But of 
course the physical presence of a computer is not enough to insure 
that such conversations will come about. Far from it. In thousands 
of schools and in tens of thousands of private homes children are 
right now living through very different computer experiences. In 
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most cases the computer is being used either as a versatile video 
game or as a "teaching machine" programmed to put children 
through their paces in arithmetic or spelling. And even when chil- 
dren are taught by a parent, a peer, or a professional teacher to 
write simple programs in a language like BASIC, this activity is 
not accompanied at all by the kind of epistemological reflection 
that we see in the LOGO environments. So I share a skepticism 
with the critics about what is being done with computation now. 
But I am interested in stimulating a major change in how things 
can be. The bottom line for such changes is political. What is hap- 
pening now is an empirical question. What can happen is a techni- 
cal question. But what will happen is a political question, depend- 
ing on social choices. 

The central open questions about the effect of computers on chil- 
dren in the 1980s are these: Which people will be attracted to the 
world of computers, what talents will they bring, and what tastes 
and ideologies will they impose on the growing computer culture? I 
have described children in LOGO environments engaged in self- 
referential discussions about their own thinking. This could happen 
because the LOGO language and the Turtle were designed by peo- 
ple who enjoy such discussion and worked hard to design a medium 
that would encourage it. Other designers of computer systems have 
different tastes and different ideas about what kinds of activities 
are suitable for children. Which design will prevail, and in what 
sub-culture, will not be decided by a simple bureaucratic decision 
made, for example, in a government Department of Education or 
by a committee of experts. Trends in computer style will emerge 
from a complex web of decisions by Foundations with resources to 
support one or another design, by corporations who may see a mar- 
ket, by schools, by individuals who will decide to make their career 
in the new field of activity, and by children who will have their own 
say in what they pick up and what they make of it. People often ask 
whether in the future children will program computers or become 
absorbed in pre-programmed activities. The answer must be that 
some children will do the one, some the other, some both and some 
neither. But which children, and most importantly, which social 
classes of children, will fall into each category will be influenced by 
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the kind of computer activities and the kind of environments cre- 
ated around them. 

As an example, we consider an activity which may not occur to 
most people when they think of computers and children: the use of 
a computer as a writing instrument. For me, writing means making 
a rough draft and refining it over a considerable period of time. My 
image of myself as a writer includes the expectation of an "unac- 
ceptable" first draft that will develop with successive editing into 
presentable form. But I would not be able to afford this image if I 
were a third grader. The physical act of writing would be slow and 
laborious. I would have no secretary. For most children rewriting a 
text is so laborious that the first draft is the final copy, and the skill 
of rereading with a critical eye is never acquired. This changes dra- 
matically when children have access to computers capable of ma- 
nipulating text. The first draft is composed a t  the keyboard. Cor- 
rections are made easily. The current copy is always neat and tidy. 
I have seen a child move from total rejection of writing to an in- 
tense involvement (accompanied by rapid improvement of quality) 
within a few weeks of beginning to write with a computer. Even 
more dramatic changes are seen when the child has physical handi- 
caps that make writing by hand more than usually difficult or even 
impossible. 

This use of computers is rapidly becoming adopted wherever 
adults write for a living. Most newspapers now provide their staff 
with "word processing" computer systems. Many writers who work 
at home are acquiring their own computers, and the computer ter- 
minal is steadily displacing the typewriter as the secretary's basic 
tool. The image of children using the computer as a writing instru- 
ment is a particularly good example of my general thesis that what 
is good for professionals is good for children. But this image of how 
the computer might contribute to children's mastery of language is 
dramatically opposed to the one that is taking root in most elemen- 
tary schools. There the computer is seen as a teaching instrument. 
It gives children practice in distinguishing between verbs and 
nouns, in spelling, and in answering multiple-choice questions 
about the meaning of pieces of text. As I see it, this difference is 
not a matter of a small and technical choice between two teaching 
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strategies. It reflects a fundamental difference in educational phi- 
losophies. More to the point, it reflects a difference in views on the 
nature of childhood. I believe that the computer as writing instru- 
ment offers children an opportunity to become more like adults, in- 
deed like advanced professionals, in their relationship to their intel- 
lectual products and to themselves. In doing so, it comes into head- 
on collision with the many aspects of school whose effect, if not 
whose intention, is to "infantilize" the child. 

Word processors can make a child's experience of writing more 
like that of a real writer. But this can be undermined if the adults 
surrounding that child fail to appreciate what it is like to be a writ- 
er. For example, it is only too easy to imagine adults, including 
teachers, expressing the view that editing and re-editing a text is a 
waste of time ("Why don't you get on to something new?" or "You 
aren't making it any better, why don't you fix your spelling?"). 

As with writing, so with music-making, games of skill, complex 
graphics, whatever: The computer is not a culture unto itself but it 
can serve to advance very different cultural and philosophical out- 
looks. For example, one could think of the Turtle as a device to 
teachelements of the traditional curriculum, such as notions of an- 
gle, shape, and coordinate systems. And in fact, most teachers who 
consult me about its use are, quite understandably, trying to use it 
in this way. Their questions are about classroom organization, 
scheduling problems, pedagogical issues raised by the Turtle's in- 
troduction, and especially, about how it relates conceptually to the 
rest of the curriculum. Of course the Turtle can help in the teach- 
ing of traditional curriculum, but I have thought of it as a vehicle 
for Piagetian learning, which to me is learning without curriculum. 

There are those who think about creating a "Piagetian curricu- 
lum" or "Piagetian teaching methods." But to my mind these 
phrases and the activities they represent are contradictions in 
terms. I see Piaget as the theorist of learning without curriculum 
and the theorist of the kind of learning that happens without delib- 
erate teaching. To turn him into the theorist of a new curriculum is 
to stand him on his head. 

But "teaching without curriculum" does not mean spontaneous, 
free-form classrooms or simply "leaving the child alone." It means 
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supporting children as they build their own intellectual structures 
with materials drawn from the surrounding culture. In this model, 
educational intervention means changing the culture, planting new 
constructive elements in it and eliminating noxious ones. This is a 
more ambitious undertaking than introducing a curriculum 
change, but one which is feasible under conditions now emerging. 

Suppose that thirty years ago an educator had decided that the 
way to solve the problem of mathematics education was to arrange 
for a significant fraction of the population to become fluent in (and 
enthusiastic about) a new mathematical language. The idea might 
have been good in principle, but in practice it would have been ab- 
surd. No one had the power to implement it. Now things are differ- 
ent. Many millions of people are learning programming languages 
for reasons that have nothing to do with the education of children. 
Therefore, it becomes a practical proposition to influence the form 
of the languages they learn and the likelihood that their children 
will pick up these languages. 

The educator must be an anthropologist. The educator as an- 
thropologist must work to understand which cultural materials are 
relevant to intellectual development. Then, he or she needs to un- 
derstand which trends are taking place in the culture. Meaningful 
intervention must take the form of working with these trends. In 
my role of educator as anthropologist I see new needs being gener- 
ated by the penetration of the computer into personal lives. People 
who have computers at home or who use them at work will want to 
be able to talk about them to their children. They will want to be 
able to teach their children to use the machines. Thus there could 
be a cultural demand for something like Turtle graphics in a way 
there never was, and perhaps never could be, a cultural demand for 
the New Math. 

Throughout the course of this chapter I have been talking about 
the ways in which choices made by educators, foundations, govern- 
ments, and private individuals can affect the potentially revolution- 
ary changes in how children learn. But making good choices is not 
always easy, in part because past choices can often haunt us. There 
is a tendency for the first usable, but still primitive, product of a 
new technology to dig itself in. I have called this phenomenon the 
QWERTY phenomenon. 
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The top row of alphabetic keys of the standard typewriter reads 
QWERTY. For me this symbolizes the way in which technology 
can all too often serve not as a force for progress but for keeping 
things stuck. The QWERTY arrangement has no rational explana- 
tion, only a historical one. It was introduced in response to a prob- 
lem in the early days of the typewriter: The keys used to jam. The 
idea was to minimize the collision problem by separating those keys 
that followed one another frequently. Just a few years later, gener- 
al improvements in the technology removed the jamming problem, 
but QWERTY stuck. Once adopted, it resulted in many millions of 
typewriters and a method (indeed a full-blown curriculum) for 
learning typing. The social cost of change (for example, putting the 
most used keys together on the keyboard) mounted with the vested 
interest created by the fact that so many fingers now knew how to 
follow the QWERTY keyboard. QWERTY has stayed on despite 
the existence of other, more "rational" systems. On the other hand, 
if you talk to people about the QWERTY arrangement they will 
justify it by "objective" criteria. They will tell you that it "opti- 
mizes this" or it "minimizes that." Although these justifications 
have no rational foundation, they illustrate a process, a social pro- 
cess, of myth construction that allows us to build a justification for 
primitivity into any system. And I think that we are well on the 
road to doing exactly the same thing with the computer. We are in 
the process of digging ourselves into an anachronism by preserving 
practices that have no rational basis beyond their historical roots in 
an earlier period of technological and theoretical development. 

The use of computers for drill and practice is only one example 
of the QWERTY phenomenon in the computer domain. Another 
example occurs even when attempts are made to allow students to 
learn to program the computer. As we shall see in later chapters, 
learning to program a computer involves learning a "programming 
language." There are many such languages~for example, FOR- 
TRAN, PASCAL, BASIC, SMALLTALK, and LISP, and the 
lesser known language LOGO, which our group has used in most of 
our experiments with computers and children. A powerful 
QWERTY phenomenon is to be expected when we choose the lan- 
guage in which children are to learn to program computers. I shall 
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argue in detail that the issue is consequential. A programming lan- 
guage is like a natural, human language in that it favors certain 
metaphors, images, and ways of thinking. The language used 
strongly colors the computer culture. It would seem to follow that 
educators interested in using computers and sensitive to cultural in- 
fluences would pay particular attention to the choice of language. 
But nothing of the sort has happened. On the contrary, educators, 
too timid in technological matters or too ignorant to attempt to in- 
fluence the languages offered by computer manufacturers, have ac- 
cepted certain programming languages in much the same way as 
they accepted the QWERTY keyboard. An informative example is 
the way in which the programming language BASIC 3 has estab- 
lished itself as the obvious language to use in teaching American 
children how to program computers. The relevant technical infor- 
mation is this: A very small computer can be made to understand 
BASIC, while other languages demand more from the computer. 
Thus, in the early days when computer power was extremely ex- 
pensive, there was a genuine technical reason for the use of BA- 
SIC, particularly in schools where budgets were always tight. To- 
day, and in fact for several years now, the cost of computer 
memory has fallen to the point where any remaining economic ad- 
vantages of using BASIC are insignificant. Yet in most high 
schools, the language remains almost synonymous with program- 
ming, despite the existence of other computer languages that are 
demonstrably easier to learn and are richer in the intellectual bene- 
fits that can come from learning them. The situation is paradox- 
ical. The computer revolution has scarcely begun, but is already 
breeding its own conservatism. Looking more closely at BASIC 
provides a window on how a conservative social system appropri- 
ates and tries to neutralize a potentially revolutionary instrument. 

BASIC is to computation what QWERTY is to typing. Many 
teachers have learned BASIC, many books have been written about 
it, many computers have been built in such a way that BASIC is 
"hardwired" into them. In the case of the typewriter, we noted how 
people invent "rationalizations" to justify the status quo. In the 
case of BASIC, the phenomenon has gone much further, to the 
point where it resembles ideology formation. Complex arguments 
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are invented to justify features of BASIC that were originally in- 
cluded because the primitive technology demanded them or be- 
cause alternatives were not well enough known at the time the lan- 
guage was designed. 

An example of BASIC ideology is the argument that BASIC is 
easy to learn because it has a very small vocabulary. The surface 
validity of the argument is immediately called into question if we 
apply it to the context of how children learn natural languages. 
Imagine a suggestion that we invent a special language to help chil- 
dren learn to speak. This language would have a small vocabulary 
of just fifty words, but fifty words so well chosen that all ideas 
could be expressed using them. Would this language be easier to 
learn? Perhaps the vocabulary might be easy to learn, but the use 
of the vocabulary to express what one wanted to say would be so 
contorted that only the most motivated and brilliant children would 
learn to say more than "hi." This is close to the situation with BA- 
SIC. Its small vocabulary can be learned quickly enough. But using 
it is a different matter. Programs in BASIC acquire so labyrinthine 
a structure that in fact only the most motivated and brilliant 
("mathematical") children do learn to use it for more than trivial 
ends. 

One might ask why the teachers do not notice the difficulty chil- 
dren have in learning BASIC. The answer is simple: Most teachers 
do not expect high performance from most students, especially in a 
domain of work that appears to be as "mathematical" and "for- 
mal" as programming. Thus the culture's general perception of 
mathematics as inaccessible bolsters the maintenance of BASIC, 
which in turn confirms these perceptions. Moreover, the teachers 
are not the only people whose assumptions and prejudices feed into 
the circuit that perpetuates BASIC. There are also the computer- 
ists, the people in the computer world who make decisions about 
what languages their computers will speak. These people, generally 
engineers, find BASIC quite easy to learn, partly because they are 
accustomed to learning such very technical systems and partly be- 
cause BASIC's sort of simplicity appeals to their system of values. 
Thus, a particular subculture, one dominated by computer engi- 
neers, is influencing the world of education to favor those school 
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students who are most like that subculture. The process is tacit, un- 
intentional" It has never been publicly articulated, let alone evalu- 
ated. In all of these ways, the social embedding of BASIC has far 
more serious consequences than the "digging in" of QWERTY. 

There are many other ways in which the attributes of the subcul- 
tures involved with computers are being projected onto the world of 
education. For example, the idea of the computer as an instrument 
for drill and practice that appeals to teachers because it resembles 
traditional teaching methods also appeals to the engineers who de- 
sign computer systems: Drill and practice applications are predict- 
able, simple to describe, efficient in use of the machine's resources. 
So the best engineering talent goes into the development of com- 
puter systems that are biased to favor this kind of application. The 
bias operates subtly. The machine designers do not actually decide 
what will be done in the classrooms. That is done by teachers and 
occasionally even by carefully controlled comparative research ex- 
periments. But there is an irony in these controlled experiments. 
They are very good at telling whether the small effects seen in best 
scores are real or due to chance. But they have no way to measure 
the undoubtedly real (and probably more massive) effects of the bi- 
ases built into the machines. 

We have already noted that the conservative bias being built into 
the use of computers in education has also been built into other 
new technologies. The first use of the new technology is quite natu- 
rally to do in a slightly different way what had been done before 
without it. It took years before designers of automobiles accepted 
the idea that they were cars, not "horseless carriages," and the pre- 
cursors of modern motion pictures were plays acted as if before a 
live audience but actually in front of a camera. A whole generation 
was needed for the new art of motion pictures to emerge as some- 
thing quite different from a linear mix of theater plus photography. 
Most of what has been done up to now under the name of "educa- 
tional technology" or "computers in education" is still at the stage 
of the linear mix of old instructional methods with new technol- 
ogies. The topics I shall be discussing are some of the first probings 
toward a more organic interaction of fundamental educational 
principles and new methods for translating them into reality. 

We are at a point in the history of education when radical 
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change is possible, and the possibility for that change is directly 
tied to the impact of the computer. Today what is offered in the 
education "market" is largely determined by what is acceptable to 
a sluggish and conservative system. But this is where the computer 
presence is in the process of creating an environment for change. 
Consider the conditions under which a new educational idea can be 
put into practice today and in the near future. Let us suppose that 
today I have an idea about how children could learn mathematics 
more effectively and more humanely. And let us suppose that I 
have been able to persuade a million people that the idea is a good 
one. For many products such a potential market would guarantee 
success. Yet in the world of education today this would have little 
clout: A million people across the nation would still mean a minor- 
ity in every town's school system, so there might be no effective 
channel for the million voices to be expressed. Thus, not only do 
good educational ideas sit on the shelves, but the process of inven- 
tion is itself stymied. This inhibition of invention in turn influences 
the selection of people who get involved in education. Very few 
with the imagination, creativity, and drive to make great new in- 
ventions enter the field. Most of those who do are soon driven out 
in frustration. Conservatism in the world of education has become 
a self-perpetuating social phenomenon. 

Fortunately, there is a weak link in the vicious circle. Increasing- 
ly, the computers of the very near future will be the private proper- 
ty of individuals, and this will gradually return to the individual the 
power to determine patterns of education. Education will become 
more of a private act, and people with good ideas, different ideas, 
exciting ideas will no longer be faced with a dilemma where they 
either have to ,,sell" their ideas to a conservative bureaucracy or 
shelve them. They will be able to offer them in an open market- 
place directly to consumers. There will be new opportunities for 
imagination and originality. There might be a renaissance of think- 
ing about education. 
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Chapter 2 

Mathophobia: 
The Fear of 
Learning 

PLATO WROTE over his door, "Let only geometers enter." 
Times have changed. Most of those who now seek to enter Plato's 
intellectual world neither know mathematics nor sense the least 
contradiction in their disregard for his injunction. Our culture's 
schizophrenic split between "humanities" and "science" supports 
their sense of security. Plato was a philosopher, and philosophy be- 
longs to the humanities as surely as mathematics belongs to the 
sciences. 

This great divide is thoroughly built into our language, our 
worldview, our social organization, our educational system, and, 
most recently, even our theories of neurophysiology. It is self-per- 
petuating: The more the culture is divided, the more each side 
builds separation into its new growth. 

I have already suggested that the computer may serve as a force 
to break down the line between the "two cultures." I know that the 
humanist may find it questionable that a "technology" could 
change his assumptions about what kind of knowledge is relevant 
to his or her perspective of understanding people. And to the scien- 
tist dilution of rigor by the encroachment of "wishy-washy" hu- 
manistic thinking can be no less threatening. Yet the computer 
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presence might, I think, plant seeds that could grow into a less dis- 
sociated cultural epistemology. 

The status of mathematics in contemporary culture is one of the 
most acute symptoms of its dissociation. The emergence of a "hu- 
manistic" mathematics, one that is not perceived as separated from 
the study of man and "the humanities," might well be the sign that 
a change is in sight. So in this book I try to show how the computer 
presence can bring children into a more humanistic as well as a 
more humane relationship with mathematics. In doing so I shall 
have to go beyond discussion of mathematics. I shall have to devel- 
op a new perspective on the process of learning itself. 

It is not uncommon for intelligent adults to turn into passive ob- 
servers of their own incompetence in anything but the most rudi- 
mentary mathematics. Individuals may see the direct consequences 
of this intellectual paralysis in terms of limiting job possibilities. 
But the indirect, secondary consequences are even more serious. 
One of the main lessons learned by most people in math class is a 
sense of having rigid limitations. They learn a balkanized image of 
human knowledge which they come to see as a patchwork of terri- 
tories separated by impassable iron curtains. My challenge is not to 
the sovereignty of the intellectual territories but to the restrictions 
imposed on easy movement among them. I do not wish to reduce 
mathematics to literature or literature to mathematics. But I do 
want to argue that their respective ways of thinking are not as sep- 
arate as is usually supposed. And so, I use the image of a Math- 
land~where mathematics would become a natural vocabulary~to 
develop my idea that the computer presence could bring the hu- 
manistic and mathematical/scientific cultures together. In this 
book, Mathland is the first step in a larger argument about how the 
computer presence can change not only the way we teach children 
mathematics, but, much more fundamentally, the way in which our 
culture as a whole thinks about knowledge and learning. 

To my ear the word "mathophobia" has two associations. One of 
these is a widespread fear of mathematics, which often has the in- 
tensity of a real phobia. The other comes from the meaning of the 
stem "math." In Greek it means "learning" in a general sense.* In 

*The original meaning is present in the word "polymath," a person of many learnings. A 
less well-known word with the same stem which I shall use in later chapters is "mathetic," 
having to do with learning. 
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2 Units 

our culture, fear of learning is no less endemic (although more fre- 
quently disguised) than fear of mathematics. Children begin their 
lives as eager and competent learners. They have to learn to have 
trouble with learning in general and mathematics in particular. In 
both senses of "math" there is a shift from mathophile to matho- 
phobe, from lover of mathematics and of learning to a person fear- 
ful of both. We shall look at how this shift occurs and develop some 
idea of how the computer presence could serve to counteract it. Let 
me begin with some reflections on what it is like to learn as a child. 

That children learn a great deal seems so obvious to most people 
that they believe it is scarcely worth documenting. One area in 
which a high rate of learning is very plain is the acquisition of a 
spoken vocabulary. At age two very few children have more than a 
few hundred words. By the time they enter first grade, four years 
later, they know thousands of words. They are evidently learning 
many new words every day. 

While we can "see" that children learn words, it is not quite as 
easy to see that they are learning mathematics at a similar or 
greater rate. But this is precisely what has been shown by Piaget's 
life-long study of the genesis of knowledge in children. One of the 
more subtle consequences of his discoveries is the revelation that 
adults fail to appreciate the extent and the nature of what children 
are learning, because knowledge structures we take for granted 
have rendered much of that learning invisible. We see this most 
clearly in what have come to be known as Piagetian "conserva- 
tions" (see Figure 2). 

1 Unit I 
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For an adult it is obvious that pouring liquid from one glass to 
another does not change the volume (ignoring such little effects as 
drops that spilled or remained behind). The conservation of volume 
is so obvious that it seems not to have occurred to anyone before 
Piaget that children of four might not find it obvious at all.* A sub- 
stantial intellectual growth is needed before children develop the 
"conservationist" view of the world. The conservation of volume is 
only one of many conservations they all learn. Another is the con- 
servation of numbers. Again, it does not occur to most adults that a 
child must learn that counting a collection of objects in a different 
order should yield the same result. For adults counting is simply a 
method of determining how many objects "there are." The result of 
the operation is an "objective fact" independent of the act of count- 
ing. But the separation of number from counting (of product from 
process) rests on epistemological presuppositions not only unknown 
to preconservationist children, but alien to their worldview. These 
conservations are only part of a vast structure of "hidden" math- 
ematical knowledge that children learn by themselves. In the intu- 
itive geometry of the child of four or five, a straight line is not nec- 
essarily the shortest distance between two points, and walking 
slowly between two points does not necessarily take more time than 
walking fast. Here, too, it is not merely the "item" of knowledge 
that is missing, but the epistemological presupposition underlying 
the idea of "shortest" as a property of the path rather than of the 
action of traversing it. 

None of this should be understood as mere lack of knowledge on 
the part of the children. Piaget has demonstrated how young chil- 
dren hold theories of the world that, in their own terms, are per- 
fectly coherent. These theories, spontaneously "learned" by all 
children, have well-developed components that are not less "math- 
ematical," though expressing a different mathematics, than the one 
generally accepted in our (adult) culture. The hidden learning pro- 
cess has at least two phases: Already in the preschool years every 
child first constructs one or more preadult theorizations of the 

*People have lived with children for a long time. The fact that we had to wait for Piaget 
to tell us how children think and what we all forget about our thinking as children is so re- 
markable that it suggests a Freudian model of "cognitive repression." 
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world and then moves toward more adultlike views. And all this is 
done through what I have called Piagetian learning, a learning pro- 
cess that has many features the schools should envy: It is effective 
(all the children get there), it is inexpensive (it seems to require 
neither teacher nor curriculum development), and it is humane 
(the children seem to do it in a carefree spirit without explicit ex- 
ternal rewards and punishments). 

The extent to which adults in our society have lost the child's 
positive stance toward learning varies from individual to individual. 
An unknown but certainly significant proportion of the population 
has almost completely given up on learning. These people seldom, 
if ever, engage in deliberate learning and see themselves as neither 
competent at it nor likely to enjoy it. The social and personal cost is 
enormous: Mathophobia can, culturally and materially, limit peo- 
ple's lives. Many more people have not completely given up on 
learning but are still severely hampered by entrenched negative be- 
liefs about their capacities. Deficiency becomes identity: "I can't 
learn French, I don't have an ear for languages;" "I could never be 
a businessman, I don't have a head for figures;" "I can't get the 
hang of parallel skiing, I never was coordinated." These beliefs are 
often repeated ritualistically, like superstitions. And, like supersti- 
tions, they create a world of taboos; in this case, taboos on learning. 
In this chapter and chapter 3, we discuss experiments that demon- 
strate that these self-images often correspond to a very limited re- 
ality~usually to a person's "school reality." In a learning environ- 
ment with the proper emotional and intellectual support, the 
"uncoOrdinated" can learn circus arts like juggling and those with 
"no head for figures" learn not only that they can do mathematics 
but that they can enjoy it as well. 

Although these negative self-images can be overcome, in the life 
of an individual they are extremely robust and powerfully self-rein- 
forcing. If people believe firmly enough that they cannot do math, 
they will usually succeed in preventing themselves from doing 
whatever they recognize as math. The consequences of such self- 
sabotage is personal failure, and each failure reinforces the original 
belief. And such beliefs may be most insidious when held not only 
by individuals, but by our entire culture. 
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Our children grow up in a culture permeated with the idea that 
there are "smart people" and "dumb people." The social construc- 
tion of the individual is as a bundle of aptitudes. There are people 
who are "good at math" and people who "can't do math." Every- 
thing is set up for children to attribute their first unsuccessful or 
unpleasant learning experiences to their own disabilities. As a re- 
suit, children perceive failure as relegating them either to the group 
of "dumb people" or, more often, to a group of people "dumb at x" 
(where, as we have pointed out, x often equals mathematics). 
Within this framework children will define themselves in terms of 
their limitations, and this definition will be consolidated and rein- 
forced throughout their lives. Only rarely does some exceptional 
event lead people to reorganize their intellectual self-image in such 
a way as to open up new perspectives on what is learnable. 

This belief about the structure of human abilities is not easy to 
undermine. It is never easy to uproot popular beliefs. But here the 
difficulty is compounded by several other factors. First, popular 
theories about human aptitudes seem to be supported by "scientif- 
ic" ones. After all, psychologists talk in terms of measuring apti- 
tudes. But the significance of what is measured is seriously ques- 
tioned by our simple thought experiment of imagining Mathland. 

Although the thought experiment of imagining a Mathland 
leaves open the question of how a Mathland can actually be cre- 
ated, it is completely rigorous as a demonstration that the accepted 
beliefs about mathematical aptitude do not follow from the avail- 
able evidence. ~ But since truly mathophobic readers might have 
trouble making this experiment their own, I shall reinforce the ar- 
gument by casting it in another form. Imagine that children were 
forced to spend an hour a day drawing dance steps on squared pa- 
per and had to pass tests in these "dance facts" before they were al- 
lowed to dance physically. Would we not expect the world to be full 
of "dancophobes"? Would we say that those who made it to the 
dance floor and music had the greatest "aptitude for dance"? In 
my view, it is no more appropriate to draw conclusions about math- 
ematical aptitude from children's unwillingness to spend many 
hundreds of hours doing sums. 

One might hope that if we pass from parables to the more rigor- 
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ous methods of psychology we could get some "harder" data on the 
problem of the true ceilings of competence attainable by individ- 
uals. But this is not so: The paradigm in use by contemporary edu- 
cational psychology is focused on investigations of how children 
learn or (more usually) don't learn mathematics in the "anti-Math- 
land" in which we all live. The direction of such research has an 
analogy in the following parable: 

Imagine someone living in the nineteenth century who felt the need to 
improve methods of transportation. He was persuaded that the route to 
new methods started with a deep understanding of the existing prob- 
lems. So he began a careful study of the differences among horse- 
drawn carriages. He carefully documented by the most refined methods 
how speed varied with the form and substance of various kinds of axles, 
bearings, and harnessing techniques. 

In retrospect, we know that the road that led from nineteenth-cen- 
tury transportation was quite different. The invention of the auto- 
mobile and the airplane did not come from a detailed study of how 
their predecessors, such as horse-drawn carriages, worked or did 
not work. Yet, this is the model for contemporary educational re- 
search. The standard paradigms for education research take the ex- 
isting classroom or extracurricular culture as the primary object of 
study. There are many studies concerning the poor notions of math 
or science students acquire from today's schooling. There is even a 
very prevalent "humanistic" argument that "good" pedagogy 
should take these poor ways of thinking as its starting point. It is 
easy to sympathize with the humane intent. Nevertheless I think 
that the strategy implies a commitment to preserving the tradition- 
al system. It is analogous to improving the axle of the horse-drawn 
cart. But the real question, one might say, is whether we can invent 
the "educational automobile." Since this question (the central 
theme of this book) has not been addressed by educational psychol- 
ogy, we must conclude that the "scientific" basis for beliefs about 
aptitudes is really very shaky. But these beliefs are institutionalized 
in schools, in testing systems, and in college admissions criteria and 
consequently, their social basis is as firm as their scientific basis is 
weak. 

From kindergarten on, children are tested for verbal and quanti- 
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tative aptitudes, conceived of as "real" and separable entities. The 
results of these tests enter into the social construction of each child 
as a bundle of aptitudes. Once Johnny and his teacher have a 
shared perception of Johnny as a person who is "good at" art and 
"poor at" math, this perception has a strong tendency to dig itself 
in. This much is widely accepted in contemporary educational psy- 
chology. But there are deeper aspects to how school constructs apti- 
tudes. Consider the case of a child I observed through his eighth 
and ninth years. Jim was a highly verbal and mathophobic child 
from a professional family. His love for words and for talking 
showed itself very early, long before he went to school. The matho- 
phobia developed at school. My theory is that it came as a direct 
result of his verbal precocity. I learned from his parents that Jim 
had developed an early habit of describing in words, often aloud, 
whatever he was doing as he did it. This habit caused him minor 
difficulties with parents and preschool teachers. The real trouble 
came when he hit the arithmetic class. By this time he had learned 
to keep "talking aloud" under control, but I believe that he still 
maintained his inner running commentary on his activities. In his 
math class he was stymied: He simply did not know how to talk 
about doing sums. He lacked a vocabulary (as most of us do) and a 
sense of purpose. Out of this frustration of his verbal habits grew a 
hatred of math, and out of the hatred grew what the tests later con- 
firmed as poor aptitude. 

For me the story is poignant. I am convinced that what shows up 
as intellectual weakness very often grows, as Jim's did, out of intel- 
lectual strengths. And it is not only verbal strengths that under- 
mine others. Every careful observer of children must have seen 
similar processes working in different directions: For example, a 
child who has become enamored of logical order is set up to be 
turned off by English spelling and to go on from there to develop a 
global dislike for writing. 

The Mathland concept shows how to use computers as vehicles 
to escape from the situation of .Jim and his dyslexic counterpart. 
Both children are victims of our culture's hard-edged separation 
between the verbal and the mathematical. In the Mathland we 
shall describe in this chapter, Jim's love and skill for language 
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could be mobilized to serve his formal mathematical development 
instead of opposing it, and the other child's love for logic could be 
recruited to serve the development of interest in linguistics. 

The concept of mobilizing a child's multiple strengths to serve all 
domains of intellectual activity is an answer to the suggestion that 
differing aptitudes may reflect actual differences in brain develop- 
ment. It has become commonplace to talk as if there are separate 
brains, or separate "organs" in the brain, for mathematics and for 
language. According to this way of thinking, children split into the 
verbally and the mathematically apt depending on which brain or- 
gans are strongest. But the argument from anatomy to intellect re- 
flects a set of epistemological assumptions. It assumes, for exam- 
ple, that there is only one route to mathematics and that if this 
route is "anatomically blocked," the child cannot get to the desti- 
nation. Now, in fact, for most children in contemporary societies 
there may indeed be only one route into "advanced" mathematics, 
the route via school math. But even if further research in brain bi- 
ology confirms that this route depends on anatomical brain organs 
that might be missing in some children, it would not follow that 
mathematics itself is dependent on these brain organs. Rather, it 
would follow that we should seek out other routes. Since this book 
is an argument that alternate routes do exist, it can be read as 
showing how the dependency of function on brain is itself a social 
construct. 

Let us grant, for the sake of argument, that there is a special 
part of the brain especially good at performing the mental manipu- 
lations of numbers we teach children in school, and let's call it the 
MAD, or "math acquisition device. ''2 On this assumption it would 
make sense that in the course of history humankind would have 
evolved methods of doing and of teaching arithmetic that take full 
advantage of the MAD. But while these methods would work for 
most of us, and so for society as a whole, reliance on them would be 
catastrophic for an individual whose MAD happened to be dam- 
aged or inaccessible for some other (perhaps "neurotic") reason. 
Such a person would fail at school and be diagnosed as a victim of 
"dyscalculia." And as long as we insist on making children learn 
arithmetic by the standard route, we will continue to "prove" by 
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objective tests that these children really cannot "do arithmetic." 
But this is like proving that the deaf children cannot have language 
because they don't hear. Just as sign languages use hands and eyes 
to bypass the more usual speaking organs so, too, alternative ways 
of doing mathematics that bypass the MAD may be as good as, 
even if different from, the usual ones. 

But we do not have to appeal to neurology to explain why some 
children do not become fluent in mathematics. The analogy of the 
dance class without music or dance floor is a serious one. Our edu- 
cation culture gives mathematics learners scarce resources for 
making sense of what they are learning. As a result our children 
are forced to follow the very worst model for learning mathematics. 
This is the model of rote learning, where material is treated as 
meaningless; it is a dissociated model. Some of our difficulties in 
teaching a more culturally integrable mathematics have been due 
to an objective problem: Before we had computers there were very 
few good points of contact between what is most fundamental and 
engaging in mathematics and anything firmly planted in everyday 
life. But the computer~a mathematics-speaking being in the midst 
of the everyday life of the home, school, and workplace~is able to 
provide such links. The challenge to education is to find ways to ex- 
ploit them. 

Mathematics is certainly not the only example of dissociated 
learning. But it is a very good example for precisely the reason that 
many readers are probably now wishing that I would talk about 
something else. Our culture is so mathophobic, so math-fearing, 
that if I could demonstrate how the computer can bring us into a 
new relationship to mathematics, I would have a strong foundation 
for claiming that the computer has the ability to change our rela- 
tion to other kinds of learning we might fear. Experiences in Math- 
land, such as entering into a "mathematical conversation," give the 
individual a liberating sense of the possibilities of doing a variety of 
things that may have previously seemed "too hard." In this sense, 
contact with the computer can open access to knowledge for people, 
not instrumentally by providing them with processed information, 
but by challenging some constraining assumptions they make about 
themselves. 
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The computer-based Mathland I propose extends the kind of 
natural, Piagetian learning that accounts for children's learning a 
first language to learning mathematics. Piagetian learning is typi- 
cally deeply embedded in other activities. For example, the infant 
does not have periods set aside for "learning talking." This model 
of learning stands in opposition to dissociated learning, learning 
that takes place in relative separation from other kinds of activities, 
mental and physical. In our culture, the teaching of mathematics in 
schools is paradigmatic of dissociated learning. For most people, 
mathematics is taught and taken as medicine. In its dissociation of 
mathematics, our culture comes closest to caricaturing its own 
worst habits of epistemological alienation. In LOGO environments 
we have done some blurring of boundaries: No particular computer 
activities are set aside as "learning mathematics." 

The problem of making mathematics "make sense" to the learn- 
er touches on the more general problem of making a language of 
"formal description" make sense. So before turning to examples of 
how the computer helps give meaning to mathematics, we shall 
look at several examples where the computer helped give meaning 
to a language of formal description in domains of knowledge that 
people do not usually count as mathematics. In our first example 
the domain is grammar, for many people a subject only a little less 
threatening than math. 

Well into a year-long study that put powerful computers in the 
classrooms of a group of "average" seventh graders, the students 
were at work on what they called "computer poetry." They were 
using computer programs to generate sentences. They gave the 
computer a syntactic structure within which to make random 
choices from given lists of words. The result is the kind of concrete 
poetry we see in the illustration that follows. One of the students, a 
thirteen-year-old named Jenny, had deeply touched the project's 
staff by asking on the first day of her computer work, "Why were 
we chosen for this? We' re not the brains." The study had deliber- 
ately chosen children of "average" school performance. One day 
Jenny came in very excited. She had made a discovery. "Now I 
know why we have nouns and verbs," she said. For many years in 
school Jenny had been drilled in grammatical categories. She had 
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never understood the differences between nouns and verbs and ad- 
verbs. But now it was apparent that her difficulty with grammar 
was not due to an inability to work with logical categories. It was 
something else. She had simply seen no purpose in the enterprise. 
She had not been able to make any sense of what grammar was 
about in the sense of what it might be for. And when she had asked 
what it was for, the explanations that her teachers gave seemed 
manifestly dishonest. She said she had been told that "grammar 
helps you talk better." 

INSANE RETARD MAKES BECAUSE SWEET SNOOPY SCREAMS 
SEXY WOLF LOVES THATS WHY THE SEXY LADY HATES 
UGLY MAN LOVES BECAUSE UGLY DOG HATES 
MAD WOLF HATES BECAUSE INSANE WOLF SKIPS 

SEXY RETARD SCREAMS THATS WHY THE SEXY RETARD 

HATES 
THIN SNOOPY RUNS BECAUSE FAT WOLF HOPS 
SWEET FOGINY SKIPS A FAT LADY RUNS 

Jenny's Concrete Poetry 

In fact, tracing the connection between learning grammar and 
improving speech requires a more distanced view of the complex 
process of learning language than Jenny could have been given at 
the age she first encountered grammar. She certainly didn't see any 
way in which grammar could help talking, nor did she think her 
talking needed any help. Therefore she learned to approach gram- 
mar with resentment. And, as is the case for most of us, resentment 
guaranteed failure. But now, as she tried to get the computer to 
generate poetry, something remarkable happened. She found her- 
self classifying words into categories, not because she had been told 
she had to but because she needed to. In order to "teach" her com- 
puter to make strings of words that would look like English, she 
had to "teach" it to choose words of an appropriate class. What she 
learned about grammar from this experience with a machine was 
anything but mechanical or routine. Her learning was deep and 
meaningful. Jenny did more than learn definitions for particular 
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grammatical classes. She understood the general idea that words 
(like things) can be placed in different groups or sets, and that do- 
ing so could work for her. She not only "understood" grammar, she 
changed her relationship to it. It was "hers," and during her year 
with the computer, incidents like this helped Jenny change her im- 
age of herself. Her performance changed too; her previously low to 
average grades became "straight A's" for her remaining years of 
school. She learned that she could be "a brain" after all. 

It is easy to understand why math and grammar fail to make 
sense to children when they fail to make sense to everyone around 
them and why helping children to make sense of them requires 
more than a teacher making the right speech or putting the right 
diagram on the board. I have asked many teachers and parents 
what they thought mathematics to be and why it was important to 
learn it. Few held a view of mathematics that was sufficiently co- 
herent to justify devoting several thousand hours of a child's life to 
learning it, and children sense this. When a teacher tells a student 
that the reason for those many hours of arithmetic is to be able to 
check the change at the supermarket, the teacher is simply not be- 
lieved. Children see such "reasons" as one more example of adult 
double talk. The same effect is produced when children are told 
school math is "fun" when they are pretty sure that teachers who 
say so spend their leisure hours on anything except this allegedly 
fun-filled activity. Nor does it help to tell them that they need 
math to become scientists~most children don't have such a plan. 
The children can see perfectly well that the teacher does not like 
math any more than they do and that the reason for doing it is sim- 
ply that it has been inscribed into the curriculum. All of this erodes 
children's confidence in the adult world and the process of educa- 
tion. And I think it introduces a deep element of  dishonesty into 
the educational relationship. 

Children perceive the school's rhetoric about mathematics as 
double talk. In order to remedy the situation we must first ac- 
knowledge that the child's perception is fundamentally correct. The 
kind of  mathematics foisted on children in schools is not meaning- 
ful, fun, or even very useful. This does not mean that an individual 
child cannot turn it into a valuable and enjoyable personal game. 
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For some the game is scoring grades; for others it is outwitting the 
teacher and the system. For many, school math is enjoyable in its 
repetitiveness, precisely because it is so mindless and dissociated 
that it provides a shelter from having to think about what is going 
on in the classroom. But all this proves is the ingenuity of children. 
It is not a justification for school math to say that despite its intrin- 
sic dullness, inventive children can find excitement and meaning in 
it. 

It is important to remember the distinction between mathemat- 
ics~a vast domain of inquiry whose beauty is rarely suspected by 
most nonmathematicians~and something else which I shall call 
math or school math. 

I see "school math" as a social construction, a kind of 
QWERTY. A set of historical accidents (which shall be discussed 
in a moment) determined the choice of certain mathematical topics 
as the mathematical baggage that citizens should carry. Like the 
QWERTY arrangement of typewriter keys, school math did make 
some sense in a certain historical context. But, like QWERTY, it 
has dug itself in so well that people take it for granted and invent 
rationalizations for it long after the demise of the historical condi- 
tions that made sense of it. Indeed, for most people in our culture it 
is inconceivable that school math could be very much different: 
This is the only mathematics they know. In order to break this vi- 
cious circle I shall lead the reader into a new area of mathematics, 
Turtle geometry, that my colleagues and I have created as a better, 
more meaningful first area of formal mathematics for children. 
The design criteria of Turtle geometry are best understood by look- 
ing a little more closely at the historical conditions responsible for 
the shape of school math. 

Some of these historical conditions were pragmatic. Before elec- 
tronic calculators existed it was a practical social necessity that 
many people be "programmed" to perform such operations as long 
division quickly and accurately. But now that we can purchase cal- 
culators cheaply we should reconsider the need to expend several 
hundred hours of every child's life on learning such arithmetic 
functions. I do not mean to deny the intellectual value of some 
knowledge, indeed, of a lot of knowledge, about numbers. Far from 
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it. But we can now select this knowledge on coherent, rational 
grounds. We can free ourselves from the tyranny of the superficial, 
pragmatic considerations that dictated past choices about what 
knowledge should be learned and at what age. 

But utility was only one of the historical reasons for school math. 
Others were of a mathetic nature. Mathetics is the set of guiding 
principles that govern learning. Some of the historical reasons for 
school math had to do with what was learnable and teachable in 
the precomputer epoch. As I see it, a major factor that determined 
what mathematics went into school math was what could be done 
in the setting of school classrooms with the primitive technology of 
pencil and paper. For example, children can draw graphs with pen- 
cil and paper. So it was decided to let children draw many graphs. 
The same considerations influenced the emphasis on certain kinds 
of geometry. For example, in school math "analytic geometry" has 
become synonymous with the representation of curves by equa- 
tions. As a result every educated person vaguely remembers that 
y = x z is the equation of a parabola. And although most parents 
have very little idea of why anyone should know this, they become 
indignant when their children do not. They assume that there must 
be a profound and objective reason known to those who better un- 
derstand these things. Ironically, their mathophobia keeps most 
people from trying to examine those reasons more deeply and thus 
places them at the mercy of the self-appointed math specialists. 
Very few people ever suspect that the reason for what is included 
and what is not included in school math might be as crudely tech- 
nological as the ease of production of parabolas with pencils! This 
is what could change most profoundly in a computer-rich world: 
The range of easily produced mathematical constructs will be vast- 
ly expanded. 

Another mathetic factor in the social construction of school 
math is the technology of grading. A living language is learned by 
speaking and does not need a teacher to verify and grade each sen- 
tence. A dead language requires constant "feedback" from a teach- 
er. The activity known as "sums" performs this feedback function 
in school math. These absurd little repetitive exercises have only 
one merit: They are easy to grade. But this merit has bought them 
a firm place at the center of school math. In brief, I maintain that 
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construction of school math is strongly influenced by what seemed 
to be teachable when math was taught as a "dead" subject, using 
the primitive, passive technologies of sticks and sand, chalk and 
blackboard, pencil and paper. The result was an intellectually inco- 
herent set of topics that violates the most elementary mathetic 
principles of what makes certain material easy to learn and some 
almost impossible. 

Faced with the heritage of school, math education can take two 
approaches. The traditional approach accepts school math as a giv- 
en entity and struggles to find ways to teach it. Some educators use 
computers for this purpose. Thus, paradoxically, the most common 
use of the computer in education has become force-feeding indi- 
gestible material left over from the precomputer epoch. In Turtle 
geometry the computer has a totally different use. There the com- 
puter is used as a mathematically expressive medium, one that 
frees us to design personally meaningful and intellectually coherent 
and easily learnable mathematical topics for children. Instead of 
posing the educational problem as "how to teach the existing 
school math," we pose it as "reconstructing mathematics," or more 
generally, as reconstructing knowledge in such a way that no great 
effort is needed to teach it. 

All "curriculum development" could be described as "recon- 
structing knowledge." For example, the New Math curriculum re- 
form of the sixties made some attempt to change the content of 
school math. But it could not go very far. It was stuck with having 
to do sums, albeit different sums. The fact that the new sums dealt 
with sets instead of numbers, or arithmetic in base two instead of 
base ten made little difference. Moreover, the math reform did not 
provide a challenge to the inventiveness of creative mathematicians 
and so never acquired the sparkle of excitement that marks the 
product of new thought. The name i t se l f~"New M a t h " ~ w a s  a 
misnomer. There was very little new about its mathematical con- 
tent: It did not come from a process of invention of children's 
mathematics but from a process of trivialization of mathemati- 
cian's mathematics. Children need and deserve something better 
than selecting out pieces of old mathematics. Like clothing passed 
down to the younger siblings, it never fits comfortably. 

Turtle geometry started with the goal of fitting children. Its pri- 
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mary design criterion was to be appropriable. Of course it had to 
have serious mathematical content, but we shall see that appropria- 
bility and serious mathematic thinking are not at all incompatible. 
On the contrary: We shall end up understanding that some of the 
most personal knowledge is also the most profoundly mathemat- 
ical. In many ways mathematics~for  example the mathematics of 
space and movement and repetitive patterns of act ion~is  what 
comes most naturally to children. It is into this mathematics that 
we sink the tap-root of Turtle geometry. As my colleagues and I 
have worked through these ideas, a number of principles have given 
more structure to the concept of an appropriable mathematics. 
First, there was the continuity principle: The mathematics must be 
continuous with well-established personal knowledge from which it 
can inherit a sense of warmth and value as well as "cognitive" com- 
petence. Then there was the power principle" It must empower the 
learner to perform personally meaningful projects that could not be 
done without it. Finally there was a principle of cultural reso- 
nance: The topic must make sense in terms of a larger social con- 
text. I have spoken of Turtle geometry making sense to children. 
But it will not truly make sense to children unless it is accepted by 
adults too. A dignified mathematics for children cannot be some- 
thing we permit ourselves to inflict on children, like unpleasant 
medicine, although we see no reason to take it ourselves. 
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Chapter 3 

Turtle Geometry: 

A Mathematics 
Made for Learning 

TURTLE G E O M E T R Y  is a different style of doing geometry, just 
as Euclid's axiomatic style and Descartes's analytic style are differ- 
ent from one another. Euclid's is a logical style. Descartes's is an 
algebraic style. Turtle geometry is a computational style of 
geometry. 

Euclid built his geometry from a set of fundamental concepts, 
one of which is the point. A point can be defined as an entity that 
has a position but no other propert ies~it  has no color, no size, no 
shape. People who have not yet been initiated into formal math- 
ematics, who have not yet been "mathematized," often find this no- 
tion difficult to grasp, and even bizarre. It is hard for them to re- 
late it to anything else they know. Turtle geometry, too, has a 
fundamental entity similar to Euclid's point. But this entity, which 
I call a "Turtle," can be related to things people know because un- 
like Euclid's point, it is not stripped so totally of all properties, and 
instead of being static it is dynamic. Besides position the Turtle has 
one other important property: It has "heading." A Euclidean point 
is at some p lace~i t  has a position, and that is all you can say about 
it. A Turtle is at some place~i t ,  too, has a posi t ion~but  it also 
faces some direction~its heading. In this, the Turtle is like a per- 
s o n ~ I  am here and I am facing no r th~or  an animal or a boat. 
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And from these similarities comes the Turtle's special ability to 
serve as a first representative of formal mathematics for a child. 
Children can identify with the Turtle and are thus able to bring 
their knowledge about their bodies and how they move into the 
work of learning formal geometry. 

To see how this happens we need to know one more thing about 
Turtles: They are able to accept commands expressed in a language 
called TURTLE TALK. The command FORWARD causes the 
Turtle to move in a straight line in the direction it is facing (see 
Figure 3). To tell it how far to go, FORWARD must be followed 
by a number: FORWARD 1 will cause a very small movement, 
FORWARD 100 a larger one. In LOGO environments many chil- 
dren have been started on the road to Turtle geometry by introduc- 
ing them to a mechanical turtle, a cybernetic robot, that will carry 
out these commands when they are typed on a typewriter keyboard. 
This "floor Turtle" has wheels, a dome shape, and a pen so that it 
can draw a line as it moves. But its essential properties~position, 
heading, and ability to obey TURTLE TALK commands~are  the 
ones that matter for doing geometry. The child may later meet 
these same three properties in another embodiment of the Turtle: a 
"Light Turtle." This is a triangular-shaped object on a television 
screen. It too has a position and a heading. And it too moves in re- 
sponse to the same TURTLE TALK commands. Each kind of Tur- 
tle has its strong points: The floor Turtle can be used as a bulldozer 
as well as a drawing instrument; the Light Turtle draws bright-col- 
ored lines faster than the eye can follow. Neither is better, but the 
fact that there are two carries a powerful idea: Two physically dif- 
ferent entities can be mathematically the same (or "isomorphic"). 1 

The commands FORWARD and BACK cause a Turtle to move 
in a straight line in the direction of its heading: Its position 
changes, but its heading remains the same. Two other commands 
change the heading without affecting the position" RIGHT and 
LEFT cause a Turtle to "pivot," to change heading while remain- 
ing in the same place. Like FORWARD, a turning command also 
needs to be given a number~an  input message~to say how much 
the Turtle should turn. An adult will quickly recognize these num- 
bers as the measure of the turning angle in degrees. For most chil- 
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dren these numbers have to be explored, and doing so is an exciting 
and playful process. 

A square can be produced by the commands 

FORWARD 100 
RIGHT 90 
FORWARD 100 
RIGHT 90 
FORWARD 100 
RIGHT 90 
FORWARD 100 
RIGHT 90 

FD 100 
RT 100 
FD 100 
ERASE 1 

RT10 
LT 10 
LT 10 
FD 100 
RT 100 
LT 10 

RT 100 
LT 10 
FD 100 
RT 40 
FD 100 
RT 90 
FD 100 

(note the abbreviations to reduce typing) 

• (this undoes the effect of the previous command) 

(fiddling the turtle in search of the right angle) 

(gets there faster this time) 

Figure 3 
An Actual Transcript of a Child's Early Attempt at a Square 
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Since learning to control the Turtle is like learning to speak a 
language it mobilizes the child's expertise and pleasure in speaking. 
Since it is like being in command, it mobilizes the child's expertise 
and pleasure in commanding. To make the Turtle trace a square 
you walk in a square yourself and describe what you are doing in 
TURTLE TALK. And so, working with the Turtle mobilizes the 
child's expertise and pleasure in motion. It draws on the child's 
well-established knowledge of "body-geometry" as a starting point 
for the development of bridges into formal geometry. 

The goal of children's first experiences in the Turtle learning en- 
vironment is not to learn formal rules but to develop insights into 
the way they move about in space. These insights are described in 
TURTLE TALK and thereby become "programs" or "proce- 
dures" or "differential equations" for the Turtle. Let's look closely 
at how a child, who has already learned to move the Turtle in 
straight lines to draw squares, triangles, and rectangles, might 
learn how to program it to draw a circle. 

Let us imagine, then, as I have seen a hundred times, a child who 
demands: How can I make the Turtle draw a circle? The instructor 
in a LOGO environment does not provide answers to such ques- 
tions but rather introduces the child to a method for solving not 
only this problem but a large class of others as well. This method is 
summed up in the phrase "play Turtle." The child is encouraged to 
move his or her body as the Turtle on the screen must move in or- 
der to make the desired pattern. For the child who wanted to make 
a circle, moving in a circle might lead to a description such as: 
"When you walk in a circle you take a little step forward and you 
turn a little. And you keep doing it." From this description it is 
only a small step to a formal Turtle program. 

TO CIRCLE REPEAT [FORWARD 1 RIGHT 1] 

Another child, perhaps less experienced in simple programming 
and in the heuristics of "playing Turtle," might need help. But the 
help would not consist primarily of teaching the child how to pro- 
gram the Turtle circle, but rather of teaching the child a method, a 
heuristic procedure. This method (which includes the advice 
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summed up as "play Turtle") tries to establish a firm connection 
between personal activity and the creation of formal knowledge. 

In the Turtle Mathland anthropomorphic images facilitate the 
transfer of knowledge from familiar settings to new contexts. For 
example, the metaphor for what is usually called "programming 
computers" is teaching the Turtle a new word. A child who wishes 
to draw many squares can teach the Turtle a new command that 
will make it carry out in sequence the seven commands used to 
draw a square as is shown in Figure 3. This can be given to the 
computer in several different forms among which are" 

TO SQUARE 
FORWARD 100 
RIGHT 90 
FORWARD 100 
RIGHT 90 
FORWARD 100 
RIGHT 90 
FORWARD 100 
END 

TO SQUARE 
REPEAT 4 

FORWARD 100 
RIGHT 90 

END 

TO SQUARE 'SIZE 
REPEAT 4 

FORWARD :SIZE 
RIGHT 90 

END 

Similarly we can program an equilateral triangle by: 
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TO TRIANGLE 
FORWARD 100 
RIGHT 120 
FORWARD 100 
RIGHT 120 
FORWARD 100 
END 

TO TRIANGLE :SIDE 
REPEAT 3 

FORWARD :SIDE 
RIGHT 1200 

END 

These alternative programs achieve almost the same effects but 
informed readers will notice some differences. The most obvious 
difference is in the fact that some of them allow figures to be 
drawn with different sizes: In these cases the command to draw the 
figure would have to be SQUARE 50 or SQUARE 100 rather than 
simply SQUARE. A more subtle difference is in the fact that some 
of them leave the Turtle in its original state. Programs written in 
this clean style are much easier to understand and use in a variety 
of contexts. And in noticing this difference children learn two kinds 
of lessons. They learn a general "mathetic principle," making com- 
ponents to favor modularity. And they learn to use the very power- 
ful idea of "state." 

The same strategy of moving from the familiar to the unknown 
brings the learner into touch with some powerful general ideas" for 
example, the idea of hierarchical organization (of knowledge, of or- 
ganizations, and of organisms), the idea of planning in carrying 
through a project, and the idea of debugging. 

One does not need a computer to draw a triangle or a square. 
Pencil and paper would do. But once these programs have been 
constructed they become building blocks that enable a child to cre- 
ate hierarchies of knowledge. Powerful intellectual skills are devel- 
oped in the process~a point that is most clearly made by looking 
at some projects children have set for themselves after a few ses- 
sions with the Turtle. Many children have spontaneously followed 
the same path as Pamela. She began by teaching the computer 
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SQUARE and TRIANGLE as described previously. Now she saw 
that she can build a house by putting the triangle on top of the 
square. So she tries: 

TO HOUSE 
SQUARE 
TRIANGLE 
END 

But when she gives the command HOUSE, the Turtle draws 
(Figure 4.)" 

Flsure 4 

The triangle came out inside the square instead of on top of it! 
Typically in math class, a child's reaction to a wrong answer is to 

try to forget it as fast as possible. But in the LOGO environment, 
the child is not criticized for an error in drawing. The process of de- 
bugging is a normal part of the process of understanding a pro- 
gram. The programmer is encouraged to study the bug rather than 
forget the error. And in the Turtle context there is a good reason to 
study the bug. It will pay off. 

There are many ways this bug can be fixed. Pamela found one of 
them by playing Turtle. By walking along the Turtle's track she 
saw that the triangle got inside the square because its first turning 
move in starting the triangle was a right turn. So she could fix the 
bug by making a left-turning triangle program. Another common 
way to fix this bug is by inserting a RIGHT 30 between SQUARE 
and TRIANGLE. In either case the amended procedure makes the 
following picture (Figure 5). 
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Figure 5 

The learner sees progress, and also sees that things are not often 
either completely right or completely wrong but, rather, are on a 
continuum. The house is better but still has a bug. With a little 
more playing Turtle this final bug is pinned down and fixed by do- 
ing a RIGHT 90 as the first step in the program. 

¢ 

Some children use program building blocks to make concrete 
drawings such as HOUSE. Others prefer more abstract effects. For 
example, if you give the command SQUARE, pivot the Turtle with 
a RIGHT 120, do SQUARE again, pivot the TURTLE with RT 
120 or with RT 10, do SQUARE once more and keep repeating, 
you get the picture in Figure 6a. A smaller rotation gives the pic- 
ture in Figure 6b. 

Fisure 6a Fisure6b 
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These examples show how the continuity and the power princi- 
ples make Turtle geometry learnable. But we wanted it to do some- 
thing else as well, to open intellectual doors, preferably to be a car- 
rier of important, powerful ideas. Even in drawing these simple 
squares and stars the Turtle carried some important ideas: angle, 
controlled repetition, state-change operator. To give ourselves a 
more systematic overview of what children learn from working 
with the Turtle we begin by distinguishing between two kinds of 
knowledge. One kind is mathematical: The Turtles are only a small 
corner of a large mathematical subject, Turtle geometry, a kind of 
geometry that is easily learnable and an effective carrier of very 
general mathematical ideas. The other kind of knowledge is mathe- 
tic: knowledge about learning. First we shall look more closely at 
the mathetic aspects of the Turtle experience and then turn to its 
more technically mathematical side. Of course, the two overlap. 

We introduced Turtle geometry by relating it to a fundamental 
mathetic principle: Make sense of what you want to learn. Recall 
the case of Jenny, who possessed the conceptual prerequisites for 
defining nouns or verbs but who could not learn grammar because 
she could not identify with this enterprise. In this very fundamental 
way grammar did not make sense to her. Turtle geometry was spe- 
cifically designed to be something children could make sense of, to 
be something that would resonate with their sense of what is impor- 
tant. And it was designed to help children develop the mathetic 
strategy: In order to learn something, first make sense of it. 

The Turtle circle incident illustrates syntonic learning. ~ This 
term is borrowed from clinical psychology and can be contrasted to 
the dissociated learning already discussed. Sometimes the term is 
used with qualifiers that refer to kinds of syntonicity. For example, 
the Turtle circle is body syntonic in that the circle is firmly related 
to children's sense and knowledge about their own bodies. Or it is 
ego syntonic in that it is coherent with children's sense of them- 
selves as people with intentions, goals, desires, likes, and dislikes. A 
child who draws a Turtle circle wants to draw the circle; doing it 
produces pride and excitement. 

Turtle geometry is learnable because it is syntonic. And it is an 
aid to learning other things because it encourages the conscious, 
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deliberate use of problem-solving and mathetic strategies. Math- 
ematician George Polya ~ has argued that general methods for solv- 
ing problems should be taught. Some of the strategies used in Tur- 
tle geometry are special cases of Polya's suggestions. For example, 
Polya recommends that whenever we approach a problem we 
should run through a mental checklist of heuristic questions such 
as: Can this problem be subdivided into simpler problems? Can this 
problem be related to a problem I already know how to solve? Tur- 
tle geometry lends itself to this exercise. The key to finding out how 
to make a Turtle draw a circle is to refer to a problem whose solu- 
tion is known very well indeed--the problem of walking in a circle. 
Turtle geometry provides excellent opportunities to practice the art 
of splitting difficulties. For example, HOUSE was made by first 
making SQUARE and TRIANGLE. In short, I believe that Turtle 
geometry lends itself so well to Polya's principles that the best way 
to explain Polya to students is to let them learn Turtle geometry. 
Thus, Turtle geometry serves as a carrier for the general ideas of a 
heuristic strategy. 

Because of Polya's influence, it has often been suggested that 
mathematics teachers pay explicit attention to heuristics or "pro- 
cess" as well as to content. The failure of this idea to take root in 
the educational system can be explained partially by the paucity of 
good situations in which simple and compelling models of heuristic 
knowledge can be encountered and internalized by children. Turtle 
geometry is not only particularly rich in such situations, it also 
adds a new element to Polya's advice: To solve a problem look for 
something like it that you already understand. The advice is ab- 
stract; Turtle geometry turns it into a concrete, procedural princi- 
ple: Play Turtle. Do it yourself In Turtle work an almost inex- 
haustible source of "similar situations" is available because we 
draw on our own behavior, our own bodies. So, when in trouble, we 
can play Turtle. This brings Polya's adviCe down to earth. Turtle 
geometry becomes a bridge to Polya. The child who has worked ex- 
tensively with Turtles becomes deeply convinced of the value of 
"looking for something like it" because the advice has often paid 
off. From these successes comes the confidence and skill needed to 
learn how to apply the principle in situations, such as most of those 
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encountered in school math, where similarities are less evident. 
School math, though elementary in terms of its arithmetic content, 
is a relatively advanced subject for the exercise of Polya's 
principles. 

Arithmetic is a bad introductory domain for learning heuristic 
thinking. Turtle geometry is an excellent one. By its qualities of ego 
and body syntonicity, the act of learning to make the Turtle draw 
gives the child a model of learning that is very much different from 
the dissociated one a fifth-grade boy, Bill, described as the way to 
learn multiplication tables in school" "You learn stuff like that by 
making your mind a blank and saying it over and over until you 
know it." Bill spent a considerable amount of time on "learning" 
his tables. The results were poor and, in fact, the poor results them- 
selves speak for the accuracy of Bill's reporting of his own mental 
processes in learning. He failed to learn because he forced himself 
out of any relationship to the mater ial~or  rather, he adopted the 
worst relationship, dissociation, as a strategy for learning. His 
teachers thought that he "had a poor memory" and had even dis- 
cussed the possibility of brain damage. But Bill had extensive 
knowledge of popular and folk songs, which he had no difficulty re- 
membering, perhaps because he was too busy to think about mak- 
ing his mind a blank. 

Current theories about the separation of brain functions might 
suggest that Bill's "poor memory" was specific to numbers. But the 
boy could easily recount reference numbers, prices, and dates for 
thousands of records. The difference between what he "could" and 
"could not" learn did not depend on the content of the knowledge 
but on his relationship to it. Turtle geometry, by virtue of its con- 
nection with rhythm and movement and the navigational knowl- 
edge needed in everyday life, allowed Billy to relate to it more as he 
did to songs than to multiplication tables. His progress was spec- 
tacular. Through Turtle geometry, mathematical knowledge Billy 
had previously rejected could enter his intellectual world. 

Now we turn from mathetic to mathematical considerations. 
What mathematics does one learn when one learns Turtle geome- 
try? For the purposes of this discussion we distinguish three classes 
of mathematical knowledge, each of which benefits from work with 
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Turtles. First, there is the body of knowledge "school math" that 
has been explicitly selected (in my opinion largely by historical ac- 
cident) as the core of basic mathematics that all citizens should 
possess. Second, there is a body of knowledge (let me call it "proto- 
math") that is presupposed by school math even though it is not ex- 
plicitly mentioned in traditional curricula. Some of this knowledge 
is of a general "social" nature: for example, knowledge that bears 
on why we do mathematics at all and how we can make sense of 
math. Other knowledge in this category is the kind of underlying 
structure to which genetic epistemology has drawn the attention of 
educators: deductive principles such as transitivity, the conserva- 
tions, the intuitive logic of classifications, and so on. Finally, there 
is a third category: knowledge that is neither included in nor pre- 
supposed by the school math but that ought to be considered for in- 
clusion in the intellectual equipment of the educated citizen of the 
future. 

I think that understanding the relations among the Euclidean, 
the Cartesian, and the differential systems of geometry belongs to 
this third category. For a student, drawing a Turtle circle is more 
than a "common sense" way of drawing circles. It places the child 
in contact with a cluster of ideas that lie at the heart of the calcu- 
lus. This fact may be invisible to many readers whose only encoun- 
ter with calculus was a high school or college course where "calcu- 
lus" was equated with certain formal manipulations of symbols. 
The child in the Turtle circle incident was not learning about the 
formalism of calculus, for example that the derivative of x n is nx n-l, 
but about its use and its meaning. In fact the Turtle circle program 
leads to an alternative formalism for what is traditionally called a 
"differential equation" and is a powerful carrier of the ideas be- 
hind the differential. This is why it is possible to understand so 
many topics through the Turtle; the Turtle program is an intuitive 
analog of  the differential equation, a concept one finds in almost 
every example of  traditional applied mathematics. 

Differential calculus derives much of its power from an ability to 
describe growth by what is happening at the growing tip. This is 
what made it such a good instrument for Newton's attempts to un- 
derstand the motion of the planets. As the orbit is traced out, it is 
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the local conditions at the place where the planet now finds itself 
that determine where it will go next. In our instructions to the Tur- 

tle, FORWARD 1, RIGHT TURN 1, we referred only to the dif- 
ference between where the Turtle is now and where it shall momen- 
tarily be. This is what makes the instructions differential. There is 
no reference in this to any distant part of space outside of the path 
itself. The Turtle sees the circle as it goes along, from within, as it 
were, and is blind to anything far away from it. This property is so 
important that mathematicians have a special name for it: Turtle 
geometry is "intrinsic." The spirit of intrinsic differential geometry 

is seen by looking at several ways to think about a curve, say, the 
circle. For Euclid, the defining characteristic of a circle is the con- 
stant distance between points on the circle and a point, the center, 
that is not itself part of the circle. In Descartes's geometry, in this 
respect more like Euclid's than that of the Turtle, points are situat- 
ed by their distance from something outside of them, that is to say 
the perpendicular coordinate axes. Lines and curves are defined by 
equations connecting these coordinates. So, for example, a circle is 
described as: 

(x-a) 2 + (y-b) 2= R 2 

In Turtle geometry a circle is defined by the fact that the Turtle 
keeps repeating the act" FORWARD a little, TURN a little. This 
repetition means that the curve it draws will have "constant curva- 
ture," where curvature means how much you turn for a given for- 
ward motion. 4 

Turtle geometry belongs to a family of geometries with proper- 
ties not found in the Euclidean or Cartesian system. These are the 
differential geometries that have developed since Newton and have 
made possible much of modern physics. We have noted that the 
differential equation is the formalism through which physics has 
been able to describe the motion of a particle or a planet. In chap- 
ter 5, where we discuss this in more detail, we shall also see that it 
is the appropriate formalism to describe the motion of an animal or 
the evolution of an economy. And we shall come to understand 
more clearly that it is not by coincidence that Turtle geometry has 
links both to the experience of a child and to the most powerful 
achievements in physics. For the laws of motion of the child, 
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though less precise in form, share the mathematical structure of 
the differential equation with the laws of motion of planets turning 
about the sun and with those of moths turning about a candle 
flame. And the Turtle is nothing more or less than a reconstruction 
in intuitive computational form of the qualitative core of this math- 
ematical structure. When we return to these ideas in chapter 5, we 
shall see how Turtle geometry opens the door to an intuitive grasp 
of calculus, physics, and mathematical modeling as it is used in the 
biological and social sciences. 

The effect of work with Turtle geometry on some components of 
school math is primarily relational or affective: Many children 
have come to the LOGO lab hating numbers as alien objects and 
have left loving them. In other cases work with the Turtle provides 
specific intuitive models for complex mathematical concepts most 
children find difficult. The use of numbers to measure angles is a 
simple example. In the Turtle context children pick this ability up 
almost unconsciously. Everyone~including the few first graders 
and many third graders we have worked with~emerges from the 
experience with a much better sense of what is meant by 45 degrees 
or 10 degrees or 360 degrees than the majority of high school stu- 
dents ever acquire. Thus, they are prepared for all the many formal 
topics~geometry, trigonometry, drafting, and so on--in which the 
concept of angle plays a central part. But they are prepared for 
something else as well, an aspect of the use of angular measure in 
our society to which the school math is systematically blind. 

One of the most widespread representations of the idea of angle 
in the lives of contemporary Americans is in navigation. Many mil- 
lions navigate boats or airplanes or read maps. For most there is a 
total dissociation between these live activities and the dead school 
math. We have stressed the fact that using the Turtle as meta- 
phorical carrier for the idea of angle connects it firmly to body ge- 
ometry. We have called this body syntonicity. Here we see a cul- 
tural syntonicity: The Turtle connects the idea of angle to 
navigation, activity firmly and positively rooted in the extraschool 
culture of many children. And as computers continue to spread into 
the world, the cultural syntonicity of Turtle geometry will become 
more and more powerful. 
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A second key mathematical concept whose understanding is fa- 
cilitated by the Turtle is the idea of a variable: the idea of using a 
symbol to name an unknown entity. To see how Turtles contribute 
to this, we extend the program for Turtle circles into a program for 
Turtle spirals (Figure 7). 

f 

lIt 'l 

Figure 7 

Look, for example, at the coil spiral. Like the circle, it too can be 
made according to the prescription: Go forward a little, turn a lit- 
tle. The difference between the two is that the circle is "the same 
all the way" while the spiral gets flatter, "less curvy," as you move 
out from the middle. The circle is a curve of constant curvature. 
The curvature of the spiral decreases as it moves outward. To walk 
in a spiral one could take a step, then turn, take a step, then turn, 
each time turning a little less (or stepping a little more). To trans- 
late this into instructions for the Turtle, you need some way to ex- 
press the fact that you are dealing with a variable quantity. In 
principle you could describe this by a very long program (see Fig- 
ure 8) that would specify precisely how much the Turtle should 
turn on each step. This is tedious. A better method uses the concept 
of symbolic naming through a variable, one of the most powerful 
mathematical ideas ever invented. 
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TO SPI  

F O R W A R D  10 

R I G H T  90 

F O R W A R D  15 

R I G H T  90 

F O R W A R D  20 

R I G H T  90 

F O R W A R D  25 

R I G H T  90 

F O R W A R D  30 

R I G H T  90 

F O R W A R D  35 

R I G H T  90 

F O R W A R D  40 

R I G H T  90 

F O R W A R D  45 

R I G H T  90 

F O R W A R D  50 

R I G H T  90 

F O R W A R D  55 

R I G H T  90 

F O R W A R D  60 
R I G H T  90 
F O R W A R D  65 

R I G H T  90 

TO C O I L  

F O R W A R D  5 

R I G H T  5 

F O R W A R D  5 

R I G H T  5 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 * .95 * .95 * .95 
F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 * .95 * .95 * .95 * .95 

F O R W A R D  5 

R I G H T  5 * .95 * .95 * .95 * .95 * .95 * .95 * .95 * .95 

F O R W A R D  5 

etc. 

etc. 

Figure 8 
How NOT to Draw Spirals 

In TURTLE TALK, variables are presented as a means of com- 
munication. What we want to say to the Turtle is "go forward a lit- 
tle step, then turn a certain amount, but I can't tell you now how 
much to turn because it will be different each time." To draw the 
"squiral" we want to say "go forward a certain distance, which will 
be different each time, and then turn 90." In mathematical lan- 
guage the trick for saying something like this is to invent a name 
for the "amount I can't tell you." The name could be a letter, such 
as X, or it could be a whole word, such as ANGLE OR DIS- 
TANCE. (One of the minor contributions of the computer culture 
to mathematics is its habit of using mnemonic words instead of sin- 
gle letters as names for variables.) To put the idea of variable to 
work, TURTLE TALK allows one to create a "procedure with an 
input." This can be done by typing: 
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TO STEP DISTANCE 
FORWARD DISTANCE 
RIGHT 90 
END 

The command STEP 100 will make the Turtle go forward 100 
units and then turn right 90 degrees. Similarly STEP 110 will 
make it go forward 110 units and then turn 90 degrees. In LOGO 
environments we encourage children to use an anthropomorphic 
metaphor: The command STEP invokes an agent (a "STEP man") 
whose job is to issue two commands, a FORWARD command and 
a RIGHT command, to the Turtle. But this agent cannot perform 
this job without being given a message a number that will be 
passed on to the "FORWARD man" who will pass it on to the 
Turtle. 

The procedure STEP is not really very exciting, but a small 
change will make it so. Compare it with the procedure SPI, which 
is exactly the same except for having one extra line: 

TO SPI DISTANCE 
FORWARD DISTANCE 
RIGHT 90 
SPI DISTANCE + 5 
END 

The command SPI 100 invokes a SPI agent and gives it the input 
message 100. The SPI agent then issues three commands. The first 
is just like the first command of the STEP agent: Tell the Turtle to 
go forward 100 units. The second tells the Turtle to turn right. 
Again there is nothing new. But the third does something extraor- 
dinary. This command is SPI 105. What is its effect? It tells the 
Turtle to go forward 105 units, tells the Turtle to turn right 90, and 
then issues the command SPI 110. Thus we have a trick called "re- 
cursion" for setting up a never-ending process whose initial steps 
are shown in figure 9. 

Of all ideas I have introduced to children, recursion stands out as 
the one idea that is particularly able to evoke an excited response. I 
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Flsure 9b 
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think this is partly because the idea of going on forever touches on 
every child's fantasies and partly because recursion itself has roots 
in popular culture. For example, there is the recursion riddle: If 
you have two wishes what is the second? (Two more wishes.) And 
there is the evocative picture of a label with a picture of itself. By 
opening the rich opportunities of playing with infinity the cluster of 
ideas represented by the SPI procedure puts a child in touch with 
something of what it is like to be a mathematician. Another aspect 
of living a mathematical experience is illustrated by figure 9b 
where we see how a curious mathematical phenomenon can be ex- 
plored by varying the angle in the SPI procedure. Angles close to 
90 produce a surprising emergent phenomenon: The arms of the 
galaxy like twisted squirals were not actually programmed into the 
procedure. They come as a shock and often motivate long explora- 
tions in which numerical and geometric thinking intertwines with 
aesthetics. 

In the LOGO environment new ideas are often acquired as a 
means of satisfying a personal need to do something one could not 
do before. In a traditional school setting, the beginning student en- 
counters the notion of variable in little problems such as: 

5 + X = 8. What is X? 

Few children see this as a personally relevant problem, and even 
fewer experience the method of solution as a source of power. They 
are right. In the context of, their lives, they can't do much with it. 
In the LOGO encounter, the situation is very much different. Here 
the child has a personal need: To make a spiral. In this context the 
idea of a variable is a source of personal power, power to do some- 
thing desired but inaccessible without this idea. Of course, many 
children who encounter the not~ion of variable in a traditional set- 
ting do learn to use it effectively. But it seldom conveys a sense of 
"mathpower," not even to the mathematically best and brightest. 
And this is the point of greatest contrast between an encounter 
with the idea of variables in the traditional school and in the 
LOGO environment. In LOGO, the concept empowers the child, 
and the child experiences what it is like for mathematics to enable 
whole cultures to do what no one could do before. 

If the use of a variable to make a spiral were introduced as an 

74 



Turtle Geometry: A Mathematics Made for  Learning 

isolated example to "illustrate" the "concept of mathpower," it 
would have only a haphazard chance of connecting with a few chil- 
dren (as gears connected with me). But in Turtle geometry it is not 
an isolated example. It is typical of how all mathematical knowl- 
edge is encountered. Mathpower, one might say, becomes a way of 
life. The sense of power is not only associated with immediately ap- 
plicable methods such as the use of angular measure of variables, 
but also with such concepts as "theorem" or "proof" or "heuristic" 
or "problem-solving method." In using these concepts, the child is 
developing ways to talk about mathematics. And it is to this devel- 
opment of mathematical articulateness we now turn. 

Consider a child who has already made the Turtle draw a square 
and a circle and would now like to draw a triangle with all three 
sides equal to 100 Turtle steps. The form of the program might be: 

TO TRIANGLE 
REPEAT 3 

FORWARD 100 
RIGHT SOMETHING 

END 

But for the Turtle to draw the figure, the child needs to tell it more. 
What is the quantity we called SOMETHING? For the square we 
instructed the Turtle to turn 90 degrees at each vertex, so that the 
square program was: 

TO SQUARE 
REPEAT 4 

FORWARD 100 
RIGHT 90 

END 

Now we can see how Polya's precept, "find similarities," and Tur- 
tle geometry's procedural principle, "play Turtle," can work to- 
gether. What is the same in the square and the triangle? If we play 
Turtle and "pace out" the trip that we want the Turtle to take, we 
notice that in both cases we start and end at the same point and 
facing the same direction. That is, we end in the state in which we 
started. And in between we did one complete turn. What is differ- 
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ent in the two cases is whether our turning was done "in three 
goes" or "in four goes." The mathematical content of this idea is as 
powerful as it is simple. Priority goes to the notion of the total 
t r ip--how much do you turn all the way around? 

The amazing fact is that all total trips turn the same amount, 
360 degrees. The four 90 degrees of the square make 360 degrees, 
and since all the turning happens at the corner the three turns in a 
triangle must each be 360 degrees divided by three. So the quantity 
we called S O M E T H I N G  is actually 120 degrees. This is the propo- 
sition of "The Total Turtle Trip Theorem." 

If a Turtle takes a trip around the boundary of any area and ends up in 
the state in which it started, then the sum of all turns will be 360 
degrees. 5 

Part and parcel of understanding this is learning a method of using 
it to solve a well-defined class of problems. Thus the child's en- 
counter with this theorem is different in several ways from memo- 
rizing its Euclidean counterpart" "The sum of the internal angles of 
a triangle is 180 degrees." 

First (at least in the context of LOGO computers), the Total 
Turtle Trip Theorem is more powerful: The child can actually use 
it. Second, it is more general: It applies to squares and curves as 
well as to triangles. Third, it is more intelligible: Its proof is easy to 
grasp. And it is more personal: You can "walk it through," and it is 
a model for the general habit of relating mathematics to personal 
knowledge. 

We have seen children use the Total Turtle Trip Theorem to 
draw an equilateral triangle. But what is exciting is to watch how 
the theorem can accompany them from such simple projects to far 
more advanced ones~the  flowers in the boxes that are reproduced 
in the center of the book show a project a little way along this path. 
For what is important when we give children a theorem to use is 
not that they should memorize it. What matters most is that by 
growing up with a few very powerful theorems one comes to appre- 
ciate how certain ideas can be used as tools to think with over a 
lifetime. One learns to enjoy and to respect the power of powerful 
ideas. One learns that the most powerful idea of all is the idea of 
powerful ideas. 
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What follows is a hypothetical conversation be- 

tween two children who are working and playing 

with the computer. These and other experiments 

can happen every day and they do. 



APLAN 

Let's make the computer draw a flower like this. 

~r ~ 
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FIND RESOURCES 

I II _ II I . I 

~ D o  you have any programs we could use? 

~ Y e s ,  there's that quarter circle thing I made last week. 
~ S h o w  me. 

I I II , I I 

~ I t  draws quarter circles starting wherever the turtle is. 
~ I t  needs an input to tell it how big. 



TRY SOMETHING 

~ L e t ' s  make a petal by putting two QCIRCLES together. 

~ O K .  What size? 
~ H o w  about 50? 

AFIRSTBUG 

~ I t  didn't work. 
~ O f  course! Two QCIRCLES make a semicircle. 



FIX THE BUG 

~ W e  have to turn the Turtle between QCIRCLES. 
~ T r y  120 °. 
~ O K ,  that worked for triangles. 
~ A n d  let's hide the Turtle by typing HIDETURTLE. 

I I I '  I I I I I  I I II I 

IT'S A BIRD! 

~ W h a t ' s  going on? 
Try a right turn. 



Why don't we just stick with the bird? We could make 

a flock. 

~ Y o u  do that. I want my flower. 

- W e  could do the flower, then the flock. 

QC I RCLE .58 
RIGHT 12B 
F~C I RCLE 

. . . . . . .  

IT'S A FISH! 
I ~ I I I I  IIII I I  I I I I  I I I  I I I  I II I I I I I I  I I II I 

The right turn is better. 

..... But we don't know how much to turn. 

We could try some more numbers. 

Or we could try some mathematics. 

l 



MATH TO THE RESCUE 

D o  you know about the Total Turtle Trip Theorem? You 
think about the Turtle going all around the petal and 
add up all the turns. 360 ° . 

z 

p 

~ A l l  around is 360. 
~ E a c h  QCIRCLE turns it 90. That makes 180 for 

two QCIRCLES. 
~ 3 6 0  altogether. Take away 180 for the QCIRCLES. 

That leaves 180 for the pointy parts. 90 each. 
~ S o  we should do RIGHT 90 at each point. 
~ L e t ' s  try. 

I 



A WORKING PROCEDURE 

U 
_ I i I I I. II  

Four make a flower. 
_ _ 

I I I I I I I 

~ T h a t ' s  more like a propeller. 

~ S o  try ten. 



A BUILDING BLOCK 

~ T y p i n g  all that ten times hurts my fingers. 
~ W e  can use REPEAT. 

I II II I I II I I I  

There it is! 
~ B u t  it's too big. 

All we have to do is change the 50 in PETAL. 
Make it 25. 

I I I 



_ _ I . I I III  I i F 

~ I f  we let PETAL have an input we can make big or 
small flowers. 

~ T h a t ' s  easy. Just do TO P E T A L  SIZE 
Q C I R C L E  SIZE, and so on. 

~ B u t  I bet we'd get bugs if we try that. Let's try plain 
25 first. 

~ T h e n  we can make a superprocedure to draw a plant. 

BUILDING UP 



ENDS BECOME MEANS 
~ l  have a great procedure for putting several together. It's 

called SLIDE. 
You just go, PLANT SLIDE PLANT SLIDE 
PLANT SLIDE. 

_ I I  II I I1  II IIII I IIII I ii i i i  iii ii i i i i i i i  ii ii 

/k 

TO SLIDE DISTANCE 
PEN UP 
RIGHT 90 
FORWARD DISTANCE 
LEFT 90 
PEN DOWN END 

TRYING THE NEW TOOL 

I I I I il I ¸ I I II IIII I II  I I I i i 



, It would be better with small ones and big ones. 

So, change the procedure to accept inputs. 

• And if we use R A N D O M  we can make a garden. 

I I I I I " I I I I I I  I I I I I I 

/ 

r ! ~'-,..,._1 

< ] I 



~ M y  next project is a flock of birds. 
~ M a y b e  we'll put the birds and flowers together. 
~ M a y b e .  

I I III I I I I  I I  I I  III I II  I I I  II I II I I I IIII I 

I I I I I I  I I I  I I  I 



SERENDIPITY 

~ M a k e  a flock by doing BIRD SLIDE BIRD SLIDE. 
~ I  want six birds, and I'm going to use REPEAT. 

That's funny. I wanted 6 birds all the same way up. 
~ B u t  it's neat. If we debug it, we should keep a copy 

like this. 

BIRD 
SLIDE 
BIRD ~ 

2 i 

,,-Walk through it like the Tur 
, It starts facing n o r t h . . ,  draws a b i r d . . ,  now it's "~ 

facing e a s t . . ,  that's the bug. \ 
And the fifth is on top of the first. / 



~ I f  you want to fix the bug, bring the Turtle around to 
face north after doing the bird. 

~ A n d  let's make them smaller. 

II II II I I I I I  I I IIII II I I I T 

T H E  E N D  

Here's the flock. 

A N D  . . 



I I II I II I F I I 1 

~ I t ' s  not finished. Let's give the flock inputs and put sever- 
al together. 

rc 

,.r l , , . r  X e" i ,  

, . / /  r 
, , / . , "  ,; f : 

How can we make them fly? 
I found something neat. In BIRD use SPIN instead 

of R I G H T . . .  it's got bugs, but it is pretty. 



• . . A B E G I N N I N G  

The next phase of the project will produce the 

most spectacular effects as the birds go into mo- 

tion. But the printed page cannot capture either 

the product or the process: the serendipitous dis- 

coveries, the bugs, and the mathematical in- 

sights all require movement to be appreciated. 

Reflecting on what you are missing leads me to 

another description of something new the com- 

puter offers a child" the opportunity to draw in 

motion, indeed to doodle-and even to scribble 

with movement as well as with lines. Perhaps 

they will be learning, as they do so, to think 

more dynamically. 





Chapter 4 

Languages 
for Computers 
and for People 

The Centipede was happy quite 
Until the toad in fun 
Said, Pray which leg comes after which? 
This wrought her mind to such a pitch 
She lay distracted in a ditch 
Considering how to run 

mAnonymous 

THE CENTIPEDE STORY is disturbing. We usually like to think 
that thinking and understanding are, by definition, good things to 
do, and that, in particular, they are useful in learning. But the 
centipede came to grief by thinking about her own actions. Would 
the same thing happen to us? Does this mean we should give up 
thinking about ourselves? In fact, in our "rational" culture, the no- 
tion that thinking impedes action, even that thinking impedes 
learning, is quite prevalent. It is our usual way of talking about 
learning to ride a bicycle: "Keep trying---one day you'll just 'get 
it' "is standard parental advice to children struggling with the two- 
wheeler. 

Many philosophers have developed the idea that some knowledge 
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cannot be described in words or grasped by conscious thought. The 
idea was brought into recent curriculum reforms by advocates of 
active learning and given theoretical support by J. S. Bruner's I in- 
fluential classification of ways of knowing" Some knowledge is rep- 
resented as action, some as image, and only the third category as 
symbols. Bruner has asserted that "words and diagrams" are "im- 
potent" to represent certain kinds of knowledge which are only re- 
presentable as action. In this chapter I try to develop a more flexi- 
ble perspective on these problems. 

My perspective is more flexible because it rejects the idea of the 
dichotomy verbalizable versus nonverbalizabl¢. No knowledge is 
entirely reducible to words, and no knowledge is entirely ineffable. 
My perspective is more flexible also in recognizing a historical di- 
mension" An important component in the history of knowledge is 
the development of techniques that increase the potency of "words 
and diagrams." What is true historically is also true for the individ- 
ual: An important part of becoming a good learner is learning how 
to push out the frontier of what we can express with words. From 
this point of view the question about the bicycle is not whether or 
not one can "tell" someone "in full" how to ride but rather what 
can be done to improve our ability to communicate with others 
(and with ourselves in internal dialogues) just enough to make a 
difference to learning to ride. The central theme of this chapter is 
the development of descriptive languages for talking about learn- 
ing. We shall focus particular attention on one of the kinds of 
learning that many people believe to be best done by "just doing 
i t " ~ t h e  learning of physical skills. Our approach to this is the ex- 
act opposite of the way schools treat "physical education"~as a 
nonintellectual subject. Our strategy is to make visible even to chil- 
dren the fact that learning a physical skill has much in common 
with building a scientific theory. 

With this realization comes many benefits. First, I know from 
work in the LOGO laboratory that it means more effective learn- 
ing of physical skills. 2 Without this direct benefit, seeking to "moti- 
vate" a scientific idea by drawing an analogy with a physical activ- 
ity could easily degenerate into another example of "teacher's 
double talk." But if we can find an honest place for scientific think- 
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ing in activities that the child feels are important and personal, we 
shall open the doors to a more coherent, syntonic pattern of 
learning. 

In this chapter I show that this can be done and suggest that re- 
lating science to physical skills can do much more for learning sci- 
ence than providing what educators like to call a "motivation." It 
can potentially place children in a position of feeling some identifi- 
cation with scientists through knowing that scientists use formal 
descriptive languages and knowing that they too can use such lan- 
guages as tools for learning physical skills~juggling for example. 
The idea is to give children a way of thinking of themselves as "do- 
ing science" when they are doing something pleasurable with their 
bodies. If children could see Descartes's invention of coordinate ge- 
ometry as something not totally alien to their own experiences of 
daily life, this could not only make Descartes more meaningful but, 
at the same time, help the children come to see themselves as more 
meaningful. 

Let us look a bit more closely at what our culture thinks about 
learning physical skills. It is no more consistent regarding this than 
it is regarding the mathematics of more "abstract" subjects we dis- 
cussed earlier. Although the popular wisdom and much of educa- 
tional psychology may agree that learning physical skills is a do- 
main where "conscious" thinking doesn't help, people who make 
sports their livelihood don't always agree. Some of the most suc- 
cessful coaches put great effort.into analyzing and verbalizing the 
movements that must be learned and perfected. One sports- 
writer, Timothy Gallwey, has turned popular sensitivity to this con- 
tradiction into publishing success. In his book Inner Tennis he of- 
fers some suggestions for a way out of the dilemma. Gallwey en- 
courages the learner to think of himself as made up of two selves: 
an analytic, verbal self and a more holistic, intuitive one. It is ap- 
propriate, he argues, that now one and now the other of these two 
selves should be in control; in fact, an important part of the learn- 
ing process is teaching each "self" to know when to take over and 
when to leave it to the other. 

Gallwey's description of the negotiation and transactions that go 
with successful learning is unusual in educational circles. In the 
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choice between analytic and holistic modes of thinking, he gives 
control to the learner. This is very different from what usually hap- 
pens in curriculum design for schools. Curriculum reformers are 
often concerned about the choice between verbal and nonverbal, 
experimental learning. But their strategy is usually to make the 
choice from above and build it into the curriculum. Gallwey's strat- 
egy is to help learners learn how to make the choice for themselves, 
a perspective that is in line with the vision already suggested of the 
child as epistemologist, where the child is encouraged to become 
expert in recognizing and choosing among varying styles of 
thought. 

Taking Timothy Gallwey as an example is not an endorsement of 
everything he says. Most of his ideas strike me as problematic. But 
I think he is quite right in recognizing that people need more struc- 
tured ways to talk and think about the learning of skills. Contem- 
porary language is not sufficiently rich in this domain. 

In a computer-rich world, computer languages that simulta- 
neously provide a means of control over the computer and offer 
new and powerful descriptive languages for thinking will undoubt- 
edly be carried into the general culture. They will have a particular 
effect on our language for describing ourselves and our learning. 
To some extent this has already occurred. It is not uncommon for 
people with no knowledge of computers to use such concepts as "in- 
put," "output," and "feedback" to describe their own mental pro- 
cesses. We shall give an example of this process by showing how 
programming concepts can be used as a conceptual framework for 
learning a particular physical skill, namely, juggling. Thus we look 
at programming as a source of descriptive devices, that is to say as 
a means of strengthening language. 

Many scientific and mathematical advances have served a simi- 
lar linguistic function by giving us words and concepts to describe 
what had previously seemed too amorphous for systematic thought. 
One of the most striking examples of the power of descriptive lan- 
guage is the genesis of analytic geometry, which played so decisive 
a role in the development of modern science. 

Legend has it that Descartes invented analytic geometry while 
lying in bed late one morning observing a fly on the ceiling. We can 
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imagine what his thinking might have been. The fly moving hither 
and thither traced a path as real as the circles and ellipses of Eu- 
clidean mathematics, but one that defied description in Euclidean 
language. Descartes then saw a way to grasp it: At each moment 
the fly's position could be described by saying how far it was from 
the walls. Points in space could be described by pairs of numbers; a 
path could be described by an equation or relationship that holds 
true for those number pairs whose points lie on the path. The po- 
tency of symbols took a leap forward when Descartes realized how 
to use an algebraic language to talk about space, and a spatial lan- 
guage to talk about algebraic phenomena. Descartes's method of 
coordinate geometry born from this insight provided tools that sci- 
ence has since used to describe the paths of flies and planets and 
the "paths" of the more abstract objects, the stuff of pure 
mathematics. 

Descartes's breakthrough has much in common with the experi- 
ence of the child in the Turtle circle episode. The child, we recall, 
was explicitly looking for a way to describe the process of walking 
in a circle. In LOGO this description takes a very simple form, and 
the child has to invent only the description. Descartes had to do 
more. But in both cases the reward is the ability to describe ana- 
lytically something that until then was known in a global, perceptu- 
al-kinesthetic way. Neither the child nor Descartes suffered the 
fate of the centipede: Both could walk in circles as well after know- 
ing how to describe their movements analytically as before. 

But Descartes's formalism, powerful as it is for describing pro- 
cesses in the world of physics, is not what is needed for describing 
processes in the world of physical skills. 

Using calculus to describe juggling or how a centipede walks 
would indeed be confusing. Attempts to use such descriptions in 
learning physical skills very likely would leave the learner lying 
with feverish mind in the nearest ditch. This mode of formal de- 
scription is not matched to this task. But other formalisms are. 

The field of education research has not worked in the direction 
of developing such formalisms. But another research community, 
that of computer scientists, has had (for its own reasons) to work 
on the problem of descriptive languages and has thereby become an 
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unexpected resource for educational innovation. Computers are 
called upon to do many things, and getting a computer to do some- 
thing requires that the underlying process be described, on some 
level, with enough precision to be carried out by the machine. Thus 
computer scientists have devoted much of their talent and energy to 
developing powerful descriptive formalisms. One might even say 
that computer science is wrongly so called: Most of it is not the sci- 
ence of computers, but the science of descriptions and descriptive 
languages. Some of the descriptive formalisms produced by com- 
puter science are exactly what are needed to get a handle on the 
process of learning a physical skill. Here we demonstrate the point 
by choosing one important set of ideas from programming: the con- 
cept of structured programming, which we shall illustrate by the 
learning experience of a fifth grader in a LOGO environment. 

Keith had set himself the goal of making the computer draw a 
stick figure as in the box GOAL (see Figure 10a). 

Figure tOa 
Goal 

His plan was to start with one foot and draw the Turtle strokes il- 
lustrated in the box SEQUENCE. In doing so he is using an image 
familiar in his precomputational culture, where he has learned to 
do connect-the-dots drawing and to describe his activities in a step- 
by-step way. So it is perfectly natural for him to adopt this method 
here. The task seemed simple if somewhat tedious. He wrote (Fig- 
ure 10b): 
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TO MflN 
FORWflRD 300 
RIGHT 120 
FORWARD 300 
RIGHT 180 
FORWBRD 300 
LEFT 120 
FORWRRD 300 
LEFT 120 
FORWF~D 300 

RIGHT 180 
FORWARD 300 
RIGHT 120 
FORWARD 300 
RIGHT 180 
FORWflRD 300 
LEFT 120 
FORWflRD 150 
LEFT 45 
FORWARD 50 
RIGHT 90 
FORWARD 50 
RIGHT 90 
FORWARD 50 
RIGHT 90 
FORWARD 50 
END 

Languages for Computers and for People 

FIEure rob Fisure 10c 
BuEEed Man 

What appeared on the screen was the totally unexpected drawing 
of the BUGGED MAN (see Figure 10c). What went wrong? 

Keith was prepared for surprises of this sort. As mentioned earli- 
er, one of the mainstays of the LOGO environment is the cluster of 
concepts related to "bugs" and "debugging." One does not expect 
anything to work at the first try. One does not judge by standards 
like "right--you get a good grade" and "wrong--you get a bad 
grade." Rather one asks the question: "How can I fix it?" and to 
fix it one has first to understand what happened in its own terms. 
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Only then can we make it happen on our terms. But in this situa- 
tion Keith was unable to figure out what had happened. He had 
written his program in such a way that it was extremely difficult to 
pinpoint his error. Where was the bug in his program? What error 
could cause such a wild transformation of what he had intended? 

In order to understand his predicament we contrast his program 
with a different strategy of programming known as "structured 
programming." Our aim is to subdivide the program into natural 
parts so that we can debug programs for each part separately. In 
Keith's long, featureless set of instructions it is hard to see and trap 
a bug. By working with small parts, however, bugs can be confined 
and more easily trapped, figured out. In this case a natural subdivi- 
sion is to make a program to draw a V-shaped entity to use for 
arms and legs and another to draw a square for the head. Once 
these "subprocedures" have been written and tested, it is extremely 
easy to write the "superprocedure" to draw the stick figure itself. 
We can write an extremely simple program to draw the stick 
figure: 

TO M A N  
VEE 
FORWARD 50 
VEE 
F O R W A R D  25 
HEAD 
END 

This procedure is simple enough to grasp as a whole. But of course 
it achieves its simplicity only by making the assumption that the 
commands VEE and HEAD are understood by the computer. If 
they are not, the next step must be to define VEE and HEAD. We 
can do this in the same style of always working with a procedure 
we can understand as a whole. For example: 
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TO VEE 
RIGHT 120 
LINE 50 
RIGHT 120 
LINE 50 
RIGHT 120 
END 

(In this program we assume we have defined the command LINE, 
which causes the Turtle to go forward and come back.) 

To make this work we next define LINE: 

TO LINE :DISTANCE 
FORWARD :DISTANCE 
BACK :DISTANCE 
END 

Since the last procedure uses only innate LOGO commands, it will 
work without further definitions. To complete MAN we define 
HEAD by: 

TO HEAD 
RIGHT 45 
SQUARE 20 
END 

Robert, a seventh grader, expressed his conversion to this style of 
programming by exclaiming: "See, all my procedures are mind- 
sized bites." Robert amplified the metaphor by comments such as: 
"I used to get mixed up by my programs. Now I don't bite off more 
than I can chew." He had met a powerful idea: It is possible to 
build a large intellectual system without ever making a step that 
cannot be comprehended. And building with a hierarchical struc- 
ture makes it possible to grasp the system as a whole, that is to say, 
to see the system as "viewed from the top." 

Keith, the author of the nonstructured MAN program, had been 
exposed to the idea of using subprocedures but had previously re- 
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sisted it. The "straight-l ine" form of program corresponded more 

closely to his familiar ways of doing things. He had experienced no 
compelling need for structured programming until the day he could 

not debug his M A N  program. In LOGO environments we have 

seen this happen time and again. When a child in this predicament 
asks what to do, it is usually sufficient to say: "You know what to 

do!" And often the child will say, sometimes tr iumphantly,  some- 

times sheepishly: "I guess I should turn it into subprocedures?" 

The "right way" was not imposed on Keith; the computer gave him 
enough flexibility and power so that  his exploration could be genu- 

ine and his own. 
These two styles of approaching the planning and working out of 

a project are pervasive. They can be seen by observing styles of 
learning "physical" as well as "intellectual" skills. Consider, for 
example, the case of two fifth graders who learned both program- 
ming and physical skills in our children's learning laboratory. 

Michael is strong, athletic, a "tough kid" in his own eyes. Paul is 
more introverted, studious, slightly built. Michael does poorly at school 
and Paul does well, so when Paul got on faster in work with the com- 
puter, moving quickly into quite complex structured programming pro- 
cedures, neither one was surprised. After several weeks Michael was 
still able to write programs only in the straight-line style. There was no 
doubt that he possessed all the necessary concepts to write more elabo- 
rate programs, but he was held back by a classical and powerful resis- 
tance to using subprocedures. 

At this time both began to work on stilt walking. Michael's strategy 
was to fix in his mind a model of stilt walking in sequential form: "Foot 
on the bar, raise yourself up, foot on the other bar, first foot for- 
w a r d . . . "  When attempting to do it led to a rapid crash, he would 
bravely start again and again and again, confident that he would even- 
tually succeed, which in fact he did. But, to the surprise of both of 
them, Paul got there first. 

Paul's strategy was different. He began in the same way but when he 
found that he was not making progress he tried to isolate and correct 
part of the process that was causing trouble: "the bug." When you step 
forward you tend to leave the stilt behind. This bug, once identified, is 
not hard to eradicate. One trick for doing so is to think of taking the 
step with the stilt rather than with the foot and let the stilt "carry" the 
foot. This is done by lifting the stilt with the arm against the foot. The 
analogy with his approach to programming was so apparent to Paul 
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that this might have been a case of "transfer" from the programming 
work to learning this physical skill. 

Actually, it is more likely that both situations drew on long-standing 
features of his general cognitive style. But the experience with LOGO 
did enable Paul to articulate these aspects of his style. The relation be- 
tween programming and stilt walking was even clearer in Michael's 
case. It was only through this analogy that he came to recognize explic- 
itly the difference between his and Paul's style of going about the stilt 
walking! In other words the experience of programming helped both 
boys obtain a better grasp of their own actions, a more articulated sense 
of themselves. 

The generality of the idea of structured programming as a ma- 
thetic principle, that is to say an aid to learning, will become more 
apparent through the next example, which describes the process in- 
volved in learning another physical skill~juggling. We do not 
choose it at random. The Turtle circle was a good carrier for learn- 
ing mathematics "with one's body." Juggling turns out to be an 
equally good carrier for learning a body skill "with mathematics." 
Of course, the picture is more complicated and also more interest- 
ing because in both cases the process works in both directions, from 
computational metaphor to body language and back again. In pass- 
ing through an experience of Turtle geometry, children sharpen 
their sense of their bodies and their physical movements as well as 
their understanding of formal geometry. And theoretical ideas 
about structured programs, when couched in juggling t e rms~rea l  
body t e rms~ take  on new concreteness and power. In both cases, 
knowledge takes on the quality we have characterized as syntonic. 

There are many different kinds of juggling. When most people 
think of juggling, they are thinking about a procedure that is called 
"showers juggling." In showers juggling balls move one behind the 
other in a "circle" passing from left to right at the top and from 
right to left at the bottom (or vice versa). This takes two kinds of 
throws: a short, low throw to get the balls from one hand to the oth- 
er at the bottom of the "circle" (near the hands), and a long, high 
throw to get the balls to go around the top of the circle. (See Figure 
11.) 

Cascade juggling has a simpler structure. There is no bottom of 
the circle; balls travel in both directions over the upper arc. There 
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Showers Cascade 
Figure 11 

Two Forms of Juggling 

is only one kind of toss: a long and high one. (See Figure 11.) Its 
simplicity makes it a better route into juggling as well as a better 
example for our argument. Our guiding question is this: Will some- 
one who wishes to learn cascade juggling be helped or hindered by 
a verbal, analytic description of how to do it? The answer is" It all 
depends. It depends on what materials the learner has for making 
analytic descriptions. We use cascade juggling to show how good 
computational models can help construct "people procedures" that 
improve performance of skills and how reflection on those people 
procedures can help us learn to program and to do mathematics. 
But, of course, s o m e  verbal descriptions will confuse more than 
they will help. Consider, for example, the description: 

1. Start with balls 1 and 2 in the left hand and ball 3 in the right. 
2. Throw ball 1 in a high parabola to the right hand. 
3. When ball 1 is at the vertex throw ball 3 over to the left hand in a 

similar high parabola, but take care to toss ball 3 under the trajec- 
tory of ball 1. 

4. When ball 1 arrives at the right hand and ball 3 is at the vertex, 
catch ball 1 and throw ball 2 in a trajectory under that of ball 3, 
and so on. 

This description is basically a brute-force straight-line program. It 
is not a useful description for the purpose of learning. People out- 
side the computer culture might say it is too much like a computer 
program, "just one instruction after another." It is like certain pro- 
grams, for example Keith's first MA N  program. But we have seen 
that stringing instructions together without good internal structure 
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is not a good model for computer programming either, and we shall 
see that the techniques of structured programming that are good 
for writing programs are also good as mathetic descriptions of 
juggling. 

Our goal is to create a people procedure: TO JUGGLE. As a 
first step toward defining this procedure we identify and name sub- 
procedures analogous in their role to the subprocedures Keith used 
in drawing his stick figure (TO VEE, TO HEAD, TO LINE). In 
the case of juggling, a natural pair of subprocedures is what we call 
TOSSRIGHT and TOSSLEFT. Just as the command VEE was 
defined functionally by the fact that it causes the computer to place 
a certain V-shaped figure on the screen, the command TOSS- 
RIGHT given to our apprentic.e juggler should "cause" him to 
throw a ball, which we assume he is holding in his left hand, over to 
the right hand. 

But there is an important difference between programming TO 
MAN and programming TO JUGGLE. The programmer of TO 
MAN need not worry about timing, but in setting up the procedure 
for juggling we must worry about it. The juggler must perform the 
actions TOSSRIGHT and TOSSLEFT at appropriate moments in 
a cycle, and the two actions will have to overlap in time. Since we 
have chosen to include the catching phase in the same subproce- 
dure as the throwing phase, the procedure TOSSRIGHT is meant 
to include catching the ball when it comes over to the right hand. 
Similarly, TOSSLEFT is a command to throw a ball from the right 
hand over to the left and catch it when it arrives. 3 

Since most people can perform these actions, we shall take 
TOSSLEFT and TOSSRIGHT as given and concentrate on how 
they can be combined to form a new procedure we shall call TO 
JUGGLE. Putting them together is different in one essential way 
from the combination of subprocedures TO VEE and TO HEAD 
to make the procedure TO MAN. TOSSLEFT might have to be 
initiated before the action initiated by the previous TOSSRIGHT 
is completed. In the language of computer science, this is expressed 
by saying that we are dealing with parallel processes as opposed to 
the strictly serial processes used in drawing the stick figure. 

To describe the combination of the subprocedures we introduce a 
new element of programming: The concept of a "WHEN DE- 
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MON." This is illustrated by the instruction: WHEN HUNGRY 
EAT. In one version of LOGO this would mean: Whenever the 
condition called HUNGRY happens, carry out the action called 
EAT. The metaphor of a "demon" expresses the idea that the com- 
mand creates an autonomous entity within the computer system, 
one that remains dormant until a certain kind of event happens, 
and then, like a demon, it pounces out to perform its action. The 
juggling act will use two such WHEN DEMONS. 

Their definitions will be something like: 

WHEN something TOSSLEFT 
WHEN something TOSSRIGHT 

To fill the blanks, the "somethings," we describe two conditions, 
or recognizable states of the system, that will trigger the tossing 
action. 

At a key moment in the cycle the balls are disposed about like 
this (Figure 12): 

e 

~~L .... 
Left Hand Right Hand 

Figure 12 

But this diagram of the state of the system is incomplete since it 
fails to show in which direction the top ball is flying. To complete it 
we add arrows to indicate a direction (Figure 13a) and obtain two 
state descriptions (Figures 13b and 13c). 
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Figure 13a 

Figure 13b 
TOPRIGHT: The ball is at the top and is moving to the right 

,ll ~ "  

Figure 13c 
TOPLEFT: The ball is at the top and is moving to the left 

If we assume, reasonably, that the juggler can recognize these 
two situations, the following formalism should be self-explanatory: 

109 



M I N D S T O R M S  

TO KEEP J U G G L I N G  

W H E N  T O P R I G H T  T O S S R I G H T  

W H E N  T O P L E F T  T O S S L E F T  

or even more simply: 

TO KEEP J U G G L I N G  

W H E N  TOPX TOSSX 

which declares that  when the state T O P R I G H T  occurs, the right 

hand should initiate a toss and when T O P L E F T  occurs, the left 

hand should initiate a toss. A little thought will show that this is a 

complete description: The juggling process will continue in a self- 

perpetuating way since each toss creates a state of the system that 
triggers the next toss. 

How can this model that turned juggling into a people procedure 
be applied as a teaching strategy? First, note that the model of jug- 
gling made several assumptions: 

1. that the learner can perform TOSSRIGHT and TOSSLEFT 
2. that she can recognize the trigger states TOPLEFT and 

TOPRIGHT 
3. that she can combine these performance abilities according to the 

definitions of the procedure TO KEEP JUGGLING 

Now, we translate our assumptions and our people procedure 
into a teaching strategy. 

STEP 1: Verify that the learner can toss. Give her one ball, ask her to 
toss it over into the other hand. This usually happens smoothly, but we 
will see later that a minor refinement is often needed. The spontaneous 
procedure has a bug. 

STEP 2: Verify that the learner can combine tosses. Try with two balls 
with instructions" 

TO CROSS 
TOPRIGHT 
WHEN TOPRIGHT TOSSLEFT 
END 
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This is intended to exchange the balls between left and right hands. 
Although it appears to be a simple combination of TOSSLEFT and 
TOSSRIGHT, it usually does not work immediately. 

STEP 3. Look for bugs in the toss procedures. Why doesn't TO 
CROSS work? Typically we find that the learner's ability to toss is not 
really as good as it seemed in step 1. The most common deviation or 
"bug" in the toss procedure is following the ball with the eyes in doing 
a toss. Since a person has only one pair of eyes, their engagement in the 
first toss makes the second toss nearly impossible and thus usually ends 
in disaster with the balls on the floor. 

STEP 4. Debugging. Assuming that the bug was following the first ball 
with the eyes, we debug by returning our learner to tossing with one 
ball without following it with her eyes. Most learners find (to their 
amazement) that very little practice is needed to be able to perform a 
toss while fixing the eyes around the expected apex of the parabola 
made by the flying ball. When the single toss is debugged, the learner 
again tries to combine two tosses. Most often this now works, although 
there may still be another bug to eliminate. 

STEP 5. Extension to three balls. Once the learner can smoothly ex- 
ecute the procedure we called CROSS, we go on to three balls. To do 
this begin with two balls in one hand and one in the other (Figure 14). 

Ball 2 is tossed as if executing CROSS, ignoring ball 1. The TOSS- 
RIGHT in CROSS brings the three balls into a state that is ready for 
KEEP JUGGLING. The transition from CROSS to KEEP JUG- 
GLING presents a little difficulty for some learners, but this is easily 
overcome. Most people can learn to juggle in less than half an hour by 
using this strategy. 

Variants of this teaching strategy have been used by many 

L O G O  teachers and studied in detail by one of them, Howard Aus- 

tin, who took the analysis of juggling as the topic of his Ph.D. the- 

sis. There is no doubt that  the strategy is very effective and little 

doubt as to the cause: The use of programming concepts as a de- 

scriptive language facilitates debugging. 

In our description of drawing a stick figure and of learning to 

juggle, a central theme was how debugging is facilitated by the use 

of an appropriate description of a complex process. In both cases 
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Figure 14 

Cascade Juggling 

the description reflected a representation of the process in modular 
form, that is to say broken up into natural, functional units, and 
catching the bug was helped by containing it within as narrow a set 
of boundaries as possible. The worst conditions for debugging are 
created when several bugs are present simultaneously. The debug- 
ging process is especially effective if the modules are small enough 
for it to be unlikely that any one contains more than one bug. 
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The difficulties produced by multiple bugs are well illustrated by 
what happens when beginners try to learn juggling by the brute- 
force approach. In fact (just as Michael learned to walk on stilts) 
they often succeed, usually after hours of frustrating attempts to 
keep three balls in the air without yet being able to cross two. But it 
takes them a long time to learn. When Howard Austin looked 
closely at the actions of the learner, he saw the same bugs that we 
described in our rational strategy approach, for example, the eye- 
following bug. In the course of very many repetitions, so-called 
"trial and error learning" will shape a behavior that works. By 
sheer chance, the eyes will happen to move a little less on one toss. 
Like other animals, human beings have learning mechanisms that 
are capable of picking up on such events and increasing the prob- 
ability that they will happen again. Eventually, the bugs are ironed 
out and the subject learns to juggle. People are capable of learning 
like rats in mazes. But the process is slow and primitive. We can 
learn more, and more quickly, by taking conscious control of the 
learning process, articulating and analyzing our behavior. 

The fact that computational procedures enhance learning does 
not mean that all repetitive processes can be magically removed 
from learning or that the time needed to learn juggling can be re- 
duced to almost nothing. It always takes time to trap and eliminate 
bugs. It always takes time to learn necessary component skills. 
What can be eliminated are wasteful and inefficient methods. 
Learning enough juggling skill to keep three balls going takes 
many hours when the learner follows a poor learning strategy. 
When a good one is adopted the time is greatly reduced, often to as 
little as twenty or thirty minutes. 

Children often develop a "resistance" to debugging analogous to 
the resistance we have seen to subprocedurizing. I have seen this in 
many childrens' first sessions in a LOGO environment. The child 
plans to make the Turtle draw a certain figure, such as a house or 
stick man. A program is quickly written and tried. It doesn't work. 
Instead of being debugged, it is erased. Sometimes the whole pro- 
ject is abandoned. Sometimes the child tries again and again and 
again with admirable persistence but always starting from scratch 
in an apparent attempt to do the thing "correctly" in one shot. The 
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child might fail or might succeed in making the computer draw the 
picture. But this child has not yet succeeded in acquiring the strate- 
gy of debugging. 

It is easy to empathize. The ethic of school has rubbed off too 
well. What we see as a good program with a small bug, the child 
sees as "wrong," "bad," "a mistake." School teaches that errors 
are bad; the last thing one wants to do is to pore over them, dwell 
on them, or think about them. The child is glad to take advantage 
of the computer's ability to erase it all without any trace for anyone 
to see. The debugging philosophy suggests an opposite attitude. Er- 
rors benefit us because they lead us to study what happened, to un- 
derstand what went wrong, and, through understanding, to fix it. 
Experience with computer programming leads children more effec- 
tively than any other activity to "believe in" debugging. 

Contact with the LOGO environment gradually undermines 
long-standing resistances to debugging and subprocedurizing. 
Some people who observe the childrens' growing tolerance for their 
"errors" attribute the change of attitude to the LOGO teachers 
who are matter-of-fact and uncritical in the presence of programs 
the child sees as "wrong." I think that there is something more fun- 
damental going on. In the LOGO environment, children learn that 
the teacher too is a learner, and that everyone learns from 
mistakes. 

A group of twelve fifth graders had had several hours a week of 
LOGO experience since the beginning of the term in September. 
Early in December the group decided on a collective project. A me- 
chanical Turtle would be programmed to write "Merry Christmas" 
on huge paper banners that would be strung in the school corridors. 
An ideal project. The letters of the alphabet were divided up 
among members of the group. Each would write programs for two 
or three letters, for decorative drawings, and for whole messages, 
using the letter programs as subprocedures. 

But snowstorms and other disruptions delayed the work; and 
when the last week of school arrived the banners had not yet been 
made. The instructor in charge of the group decided to break a 
general rule and to do some of the programming herself. She 
worked at home without a Turtle so when she came in the next 
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morning she had a collection of un-debugged programs. She and 
the children would debug them together. The instructor and a child 
were on the floor watching a Turtle drawing what was meant to be 
a letter R, but the sloping stroke was misplaced. Where was the 
bug? As they puzzled together the child had a revelation: "Do you 
mean," he said, "that you really don't know how to fix it?" The 
child did not yet know how to say it, but what had been revealed to 
him was that he and the teacher had been engaged together in a re- 
search project. The incident is poignant. It speaks of all the times 
this child entered into teachers' games of "let's do that together" 
all the while knowing that the collaboration was a fiction. Discov- 
ery cannot be a setup; invention cannot be scheduled. 

In traditional schoolrooms, teachers do try to work collaborative- 
ly with children, but usually the material itself does not spontane- 
ously generate research problems. Can an adult and a child genu- 
inely collaborate on elementary school arithmetic? A very 
important feature of work with computers is that the teacher and 
the learner can be engaged in a real intellectual collaboration; to- 
gether they can try to get the computer to do this or that and un- 
derstand what it actually does. New situations that neither teacher 
nor learner has seen before come up frequently and so the teacher 
does not have to pretend not to know. Sharing the problem and the 
experience of solving it allows a child to learn from an adult not 
"by doing what teacher says" but "by doing what teacher does." 
And one of the things that the teacher does is pursue a problem un- 
til it is completely understood. The LOGO environment is special 
because it provides numerous problems that elementary schoolchil- 
dren can understand with a kind of completeness that is rare in or- 
dinary life. To appreciate the point more fully it may be useful to 
rethink the simple examples of debugging discussed earlier. 
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We have discussed the program: 

TO HOUSE 
SQUARE 
TRIANGLE 
END 

TO SQUARE 
REPEAT 4 

FORWARD 100 
RIGHT 90 

END 

TO TRIANGLE 
REPEAT 3 

FORWARD 100 
RIGHT 120 

END 

But this program contains a bug and draws the triangle inside the 
square instead of on it. Why? It might seem mysterious at first to a 
child. But you can figure out "why the Turtle did that dumb thing" 
by following through on a already well-known piece of heuristic ad- 
vice: Play Turtle. Do it yourself but pretend to be as dumb as the 
Turtle. Finding out why the Turtle did it almost immediately sug- 
gests a way to fix it. For example, some say: "The Turtle turned 
into the square because TRIANGLE says RIGHT TURN." A 
cure (one of several equally simple ones) is inherent in this diagno- 
sis: Make a triangle procedure with left turns. 

Similarly an adult who thought he could make the Turtle draw a 
triangle by REPEAT [FORWARD 100 RIGHT TURN 60] 
would be astonished to see a hexagon appear. But it is possible to 
"get into" the program and see why this happens. Moreover, it is 
possible to introspect and see how the bug came from a very super- 
ficial understanding of the most common statement of Euclid's tri- 
angle theorem: "The sum of the angles of a triangle is 180 
degrees." 

A child (and, indeed, perhaps most adults) lives in a world in 
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which everything is only partially understood: well enough perhaps, 
but never completely. For many, understanding the Turtle's action 
so completely that there is nothing more to say about it is a rare, 
possibly unique, experience. For some it is an exhilarating one: We 
can see this by the children's eagerness to explain what they have 
understood. For all it is a better model of the crispness of analytic 
knowledge than most people ever encounter. 

The reader might object that far from understanding the Turtle 
"fully" a child programmer hardly understands at all the complex 
mechanisms at work behind the scenes whenever a Turtle carries 
out a LOGO command. Are we in fact in danger of mystifying 
children by placing them in an environment of sophisticated tech- 
nology whose complexities are only partially understood by ad- 
vanced computer scientists? 

These concerns bring us back full circle to the issues with which 
this chapter began. For example, I proposed a description of jug- 
gling in the form of a simple program. But the same concern arises: 
Does the description in procedural language grasp the essence of 
the process of juggling or does it mystify by covering over the com- 
plexities of the juggling? 

These questions are very general and touch on fundamental is- 
sues of scientific method. Newton "understood" the universe by re- 
ducing whole planets to points that move according to a fixed set of 
laws of motion. Is this grasping the essence of the real world or hid- 
ing its complexities? Part of what it means to be able to think like a 
scientist is to have an intuitive understanding of these epistemologi- 
cal issues and I believe that working with Turtles can give children 
an opportunity to get to know them. 

It is in fact easy for children to understand how the Turtle de- 
fines a self-contained world in which certain questions are relevant 
and others are not. The next chapter discusses how this idea can be 
developed by constructing many such "microworlds," each with its 
own set of assumptions and constraints. Children get to know what 
it is like to explore the properties of a chosen microworld undis- 
turbed by extraneous questions. In doing so they learn to transfer 
habits of exploration from their personal lives to the formal domain 
of scientific theory construction. 
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The internal intelligibility of computer worlds offers children the 
opportunity to carry out projects of greater complexity than is usu- 
ally possible in the physical world. Many children imagine complex 
structures they might build with an erector set or fantasize about 
organizing their friends into complex enterprises. But when they 
try to realize such projects, they too soon run into the unintelligible 
limitations of matter and people. Because computer programs can 
in principle be made to behave exactly as they are intended to, they 
can be combined more safely into complex systems. Thus, children 
are able to acquire a feel for complexity. 

Modern science and engineering have created the opportunity 
for achieving projects of a degree of complexity scarcely imagin- 
able until recently. But science teaches us the power of simplicity 
as well and I end the chapter with what I find to be a moving story 
of a child who learned something of this in a particularly simple 
but personally important experience. 

Deborah, a sixth grader who had problems with school learning, 
was introduced to the world of screen Turtles by being shown how 
they could obey the commands FORWARD, LEFT and RIGHT. 
Many children find the fact that these commands can be assigned 
any number an exhilarating source of power and an exciting area 
of exploration. Deborah found it frightening, the reaction she had 
to most of what she did at school. In her first few hours of Turtle 
work she developed a disturbing degree of dependence on the in- 
structor, constantly asking for reassurance before taking the small- 
est exploratory step. A turning point came when Deborah decided 
to restrict her Turtle commands, creating a microworld within the 
microworld of Turtle commands. She allowed herself only one 
turning command: RIGHT 30. To turn the Turtle through 90 de- 
grees, she would repeat RIGHT 30 three times and would obtain 
the effect of LEFT 30 by repeating it eleven times. To an onlooker 
it might seem tedious to obtain simple effects in such complicated 
ways. But for Deborah it was exciting to be able to construct her 
own microworld and to discover how much she could do within its 
rigid constraints. She no longer asked permission to explore. And 
one day, when the teacher offered to show her a "simpler way" to 
achieve an effect, she listened patiently and said, "I don't think I'll 
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do it that way." She emerged when she was ready, several weeks 
later, with a new sense of confidence that showed itself not only in 
more ambitious Turtle projects but in her relationship to every- 
thing else she did in school. I like to see in Deborah's experience a 
small recapitulation of how the success of such thinkers as Coper- 
nicus and Galileo allowed people to break away from superstitious 
dependencies that had nothing in themselves to do with physics. In 
both cases~in  Deborah's personal history and in the history of 
Western though t~ the  success of a mathematical theory served 
more than an instrumental role: It served as an affirmation of the 
power of ideas and the power of the mind. 

119 



Chapter 5 

Microworlds: 

Incubators for 
Knowledge 

I HAVE DEFINED mathetics as being to learning as heuristics is 
to problem solving: Principles of mathetics are ideas that illuminate 
and facilitate the process of learning. In this chapter we focus on 
two important mathetic principles that are part of most people's 
common-sense knowledge about what to do when confronted with a 
new gadget, a new dance step, a new idea, or a new word. First, re- 
late what is new and to be learned to something you already know. 
Second, take what is new and make it your own: Make something 
new with it, play with it, build with it. So for example, to learn a 
new word, we first look for a familiar "root" and then practice by 
using the word in a sentence of our own construction. 

We find this two-step dictum about how to learn in popular, 
common-sense theories of learning: The procedure described for 
learning a new word has been given to generations of elementary 
schoolchildren by generations of parents and teachers. And it also 
corresponds to the strategies used in the earliest processes of learn- 
ing. Piaget has studied the spontaneous learning of children and 
found both steps at work~ the  child absorbs the new into the old in 
a process that Piaget calls assimilation, and the child constructs his 
knowledge in the course of actively working with it. 
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But there are often roadblocks in the process. New knowledge 
often contradicts the old, and effective learning requires strategies 
to deal with such conflict. Sometimes the conflicting pieces of 
knowledge can be reconciled, sometimes one or the other must be 
abandoned, and sometimes the two can both be "kept around" if 
safely maintained in separate mental compartments. We shall look 
at these learning strategies by examining a particular case in which 
a formal theory of physics enters into sharp conflict with common- 
sense, intuitive ideas about physics. 

One of the simplest of such conflicts is raised by the fundamental 
tenet of Newton's physics: A body in motion will, if left alone, con- 
tinue to move forever at a constant speed and in a straight line. 
This principle of "perpetual motion" contradicts common experi- 
ence and, indeed, older theories of physics such as Aristotle's. 

Suppose we want to move a table. We apply a force, set the table 
in motion, and keep on applying the force until the table reaches 
the desired position. When we stop pushing, the table stops. To our 
superficial gaze, the table does not behave like a Newtonian object. 
If it did, textbooks tell us, one push would set it in motion forever 
and a counteracting force would be needed to stop it at the desired 
place. 

This conflict of ideal theory and everyday observation is only one 
of several roadblocks to the learning of Newtonian physics. Others 
derive from difficulties in applying the two mathetic principles. Ac- 
cording to the first, people who want to learn Newtonian physics 
should find ways to relate it to something they already know. But 
they may not possess any knowledge to which it can be effectively 
related. According to the second, a good strategy for learning 
would be to work with the Newtonian laws of motion, to use them 
in a personal and playful fashion. But this too is not so simple. One 
cannot do anything with Newton's laws unless one has some way to 
grab hold of them and some familiar material to which they can be 
applied. 

The theme of this chapter is how computational ideas can serve 
as material for thinking about Newton's laws. The key idea has al- 
ready been anticipated. We saw how formal geometry becomes 
more accessible when the Turtle instead of the point is taken as the 
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building block. Here we do for Newton what we did for Euclid. 
Newton's laws are stated using the concept of "a particle," a math- 
ematically abstract entity that is similar to a point in having no size 
but that does have some other properties besides position: It has 
m a s s  and ve loc i t y  or, if one prefers to merge these two, it has m o -  

m e n t u m .  In this chapter we enlarge our concept of Turtle to in- 
clude entities that behave like Newton's particles as well as those 
we have already met that resemble Euclid's points. These new Tur- 
tles, which we call Dynaturtles, are more dynamic in the sense that 
their state is taken to include two velocity components in addition 
to the two geometric components, position and heading, of the pre- 
viously discussed geometry Turtles. And having more parts to the 
state leads to requiring a slightly richer command language: TUR- 
TLE TALK is extended to allow us to tell the Turtle to set itself 
moving with a given velocity. This richer TURTLE TALK imme- 
diately opens up many perspectives besides the understanding of 
physics. Dynaturtles can be put into patterns of motion for aesthet- 
ic, fanciful, or playful purposes in addition to simulating real or in- 
vented physical laws. The too narrowly focused physics teacher 
might see all this as a waste of time: The real job is to understand 
physics. But I wish to argue for a different philosophy of physics 
education. It is my belief that learning physics consists of bringing 
physics knowledge into contact with very diverse personal knowl- 
edge. And to do this we should allow the learner to construct and 
work with transitional systems that the physicist may refuse to rec- 
ognize as physics. ~ 

Most physics curricula are similar to the math curriculum in 
that they force the learner into dissociated learning patterns and 
defer the "interesting" material past the point where most students 
can remain motivated enough to learn it. The powerful ideas and 
the intellectual aesthetic of physics is lost in the perpetual learning 
of "prerequisites." The learning of Newtonian physics can be taken 
as an example of how mathetic strategies can become blocked and 
unblocked. We shall describe a new "learning path" to Newton 
that gets around the block: a computer-based interactive learning 
environment where the prerequisites are built into the system and 
where learners can become the active, constructing architects of 
their own learning. 
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Let us begin with a closer look at the problem of prerequisites. 
Someone who wanted to learn about aerodynamics might lose in- 
terest upon seeing the set of prerequisites including mechanics and 
hydrodynamics that follow an exciting course description in a col- 
lege catalogue. If one wants to learn about Shakespeare, one finds 
no list of prerequisites. It seems fair to assume that a list of prereq- 
uisites is an expression of what educators believe to be a learning 
path into a domain of knowledge. The learning path into aerody- 
namics is mathematical, and, as we have seen in our culture, math- 
ematical knowledge is bracketed, treated as "special"~spoken of 
only in special places reserved for such esoteric knowledge. The 
nonacademic learning environments of most children provide little 
impetus to that mathematical development. This means that 
schools and colleges must approach the knowledge of aerodynamics 
along exceedingly formal learning paths. The route into Shake- 
speare is no tess complex, but its essential constitutive elements are 
part of our general culture: It is assumed that many people will be 
able to learn them informally. The physics microworld we shall de- 
velop, the physics analog of our computer-based Mathland, offers a 
Piagetian learning path into Newtonian laws of motion, a topic 
usually considered paradigmatic of the kind of knowledge that can 
only be reached by a long, formalized learning path. Newtonian 
thinking about motion is a complex and seemingly counterintuitive 
set of assumptions about the world. Historically, it was long to 
evolve. And in terms of individual development, the child's interac- 
tion with his environment leads him to a very different set of per- 
sonal beliefs about motion, beliefs that in many ways are closer to 
Aristotle's than to Newton's. After all, the Aristotelian idea of mo- 
tion corresponds to the most common situation in our experience. 
Students trying to develop Newtonian thinking about motion en- 
counter three kinds of problems that a computer microworld could 
help solve. First, students have had almost no direct experience of 
pure Newtonian motion. Of course, they have had some. For exam- 
ple, when a car skids on ao icy road it becomes a Newtonian object: 
It will, only too well, continue in its state of motion without outside 
help. But the driver is not in a state of mind to benefit from the 
learning experience. In the absence of direct and physical experi- 
ences of Newtonian motion, the schools are forced to give the stu- 
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dent indirect and highly mathematical experiences of Newtonian 
objects. There movement is learned by manipulating equations 
rather than by manipulating the objects themselves. The experi- 
ence, lacking immediacy, is slow to change the student's intuitions. 
And it itself requires other formal prerequisites. The student must 
first learn how to work with equations before using them to model 
a Newtonian world. The simplest way in which our computer 
microworld might help is by putting students in a simulated world 
where they have direct access to Newtonian motion. This can be 
done when they are young. It need not wait for their mastery of 
equations. Quite the contrary: Instead of making students wait for 
equations, it can motivate and facilitate their acquisition of equa- 
tional skills by providing an intuitively well understood context for 
their use. 

Direct experience with Newtonian motion is a valuable asset for 
the learning of Newtonian physics. But more is needed to under- 
stand it than an intuitive, seat-of-the-pants experience. The student 
needs the means to conceptualize and "capture" this world. Indeed, 
a central part of Newton's great contribution was the invention of a 
formalism, a mathematics suited to this end. He called it "flux- 
ions"; present-day students call it "differential calculus." The Dy- 
naturtle on the computer screen allows the beginner to play with 
Newtonian objects. The concept of the Dynaturtle allows the stu- 
dent to think about them. And programs governing the behavior of 
Dynaturtles provide a formalism in which we can capture our oth- 
erwise too fleeting thoughts. In doing so it bypasses the long route 
(arithmetic, algebra, trigonometry, calculus) into the formalism 
that has passed with only superficial modification from Newton's 
own writing to the modern textbook. And I believe it brings the stu- 
dent in closer touch with what Newton must have thought before 
he began writing equations. 

The third prerequisite is somewhat more subtle. We shall soon 
look directly at statements of what is usually known as Newton's 
laws of motion. As we do, many readers will no doubt recall a sense 
of unease evoked by the phrase "law of motion." What kind of a 
thing is that? What other laws of motion are there besides New- 
ton's? Few students can answer these questions when they first en- 
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counter Newton, and I believe that this goes far toward explaining 
the difficulty of physics for most learners. Students cannot make a 
thing their own without knowing what kind of a thing it is. There- 
fore, the third prerequisite is that we must find ways to facilitate 
the personal appropriation not only of Newtonian motion and the 
laws that describe it, but also of the general notion of laws that de- 
scribe motion. We do this by designing a series of microworlds. 

The Turtle World was a microworld, a "place," a "province of 
Mathland," where certain kinds of mathematical thinking could 
hatch and grow with particular ease. The microworld was an incu- 
bator. Now we shall design a microworld to serve as an incubator 
for Newtonian physics. The design of the microworld makes it a 
"growing place" for a specific species of powerful ideas or intellec- 
tual structures. So, we design microworlds that exemplify not only 
the "correct" Newtonian ideas, but many others as well" the 
historically and psychologically important Aristotelian ones, the 
more complex Einsteinian ones, and even a "generalized law-of- 
motion world" that acts as a framework for an infinite variety of 
laws of motion that individuals can invent for themselves. Thus 
learners can progress from Aristotle to Newton and even to Ein- 
stein via as many intermediate worlds as they wish. In the descrip- 
tions that follow, the mathetic obstacles to Newton are overcome: 
The prerequisites are rooted in personal knowledge and the learner 
is involved in a creative exploration of the idea and the variety of 
laws of motion. 

Let us begin to describe the microworld by starting with New- 
ton's three laws, stated here "formally" and in a form that readers 
do not have to understand in detail: 

0 

3. 

Every particle continues in a state of rest or motion with constant 
speed in a straight line unless compelled by a force to change that 
state. 
The net unbalanced force (F) producing a change of motion is 
equal to the product of the mass (m) and the acceleration (a) of 
the particle: F=ma. 
All forces arise from the interaction of particles, and whenever a 
particle acts on another there is an equal and opposite reaction on 
the first. 
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As we have noted, children's access to these laws is blocked by 
more than the recondite language used to state them. We analyze 
these roadblocks in order to infer design criteria for our 
microworld. A first block is that children do not know anything else 
like these laws. Before being receptive to Newton's laws of motion, 
they should know some other laws of motion. There must be a first 
example of laws of motion, but it certainly does not have to be as 
complex, subtle, and counterintuitive as Newton's laws. More sen- 
sible is to let the learner acquire the concept of laws of motion by 
working with a very simple and accessible instance of a law of mo- 
tion. This will be the first design criterion for our microworld. The 
second block is that the laws, as stated, offer no footholds for learn- 
ers who want to manipulate them. There is no use they can put 
them to outside of end-of-chapter schoolbook exercises. And so, a 
second design criterion for our microworlds is the possibility of ac- 
tivities, games, art, and so on, that  make activity in the 
microworlds matter. A third block is the fact that the Newtonian 
laws use a number of concepts that are outside most people's expe- 
rience, the concept of "state," for example. Our microworld will be 
designed so that all needed concepts can be defined within the ex- 
perience of that world. 

As in the case of the geometry Turtle, the physics Turtle is an in- 
teractive being that can be manipulated by the learner, providing 
an environment for active learning. But the learning is not "active" 
simply in the sense of interactive. Learners in a physics microworld 
are able to invent their own personal sets of assumptions about the 
microworld and its laws and are able to make them come true. 
They can shape the reality in which they will work for the day, they 
can modify it and build alternatives. This is an effective way to 
learn, paralleling the way in which each of us once did some of our 
most effective learning. Piaget has demonstrated that children 
learn fundamental mathematical ideas by first building their own, 
very much different (for example, preconservationist) mathemat- 
ics. And children learn language by first learning their own 
("baby-talk") dialects. So, when we think of microworlds as incu- 
bators for powerful ideas, we are trying to draw upon this effective 
strategy: We allow learners to learn the "official" physics by allow- 
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ing them the freedom to invent many that will work in as many in- 
vented worlds. 

Following Polya's principle of understanding the new by asso- 
ciating it with the old, let us reinterpret our microworld of Turtle 
geometry as a microworld of a special kind of physics. We recast 
the laws by which Turtles work in a form that parallels the Newto- 
nian laws. This gives us the following "Turtle laws of motion." Of 
course, in a world with only one Turtle, the third law, which deals 
with the interaction among particles, will not have an analog. 

, 

Every Turtle remains in its state of rest until compelled by a 
TURTLE COMMAND to change that state. 
a. The input to the command FORWARD is equal to the Turtle's 
change in the POSITION part of its state. 
b. The input to the command RIGHT TURN is equal to the 
Turtle's change of the HEADING part of its state. 

What have we gained in our understanding of Newtonian phys- 
ics by this exercise? How can students who know Turtle geometry 
(and can thus recognize its restatement in Turtle laws of motion) 
now look at Newton's laws? They are in a position to formulate in 
a qualitative and intuitive form the substance of Newton's first two 
laws by comparing them with something they already know. They 
know about states and state-change operators. In the Turtle world, 
there is a state-change operator for each of the two components of 
the state. The operator FORWARD changes the position. The op- 
erator TURN changes the heading. In physics, there is only one 
state-change operator, called force. The effect of force is to change 
velocity (or, more precisely, momentum). Position changes by it- 
self. 

These contrasts lead students to a qualitative understanding of 
Newton. Although there remains a gap between the Turtle laws 
and the Newtonian laws of motion, children can appreciate the sec- 
ond through an understanding of the first. Such children are al- 
ready a big step ahead in learning physics. But we can do more to 
close the gap between Turtle and Newtonian worlds. We can de- 
sign other Turtle microworlds in which the laws of motion move 
toward a closer approximation of the Newtonian situation. 
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To do this we create a class of Turtle microworlds that differs in 
the properties that constitute the state of the Turtle and in the op- 
erators that change these states. We have formally described the 
geometry Turtle by saying that its state consists of position and ve- 
locity and that its state-change operators act independently of these 
two components. But there is another way, perhaps a more power- 
ful and intuitive way, to think about it. This is to see the Turtle as a 
being that "understands" certain kinds of communication and not 
others. So, the geometry Turtle understood the command to change 
its position while keeping its heading and to change its heading 
while keeping its position. In the same spirit, we could define a 
Newtonian Turtle as a being that can accept only one kind of or- 
der, one that will change its momentum. These kinds of description 
are in fact the ones we use in introducing children to microworlds. 
Now let us turn to two Turtle microworlds that can be said to lie 
between the geometry and Newtonian Turtles. 

VELOCITY TURTLES 

The state of a velocity Turtle is POSITION AND VELOCITY. 
Of course, since velocity is defined as a change in position, by defi- 
nition the first component of this state is continuously changing 
(unless VELOCITY is zero). So, in order to control a velocity Tur- 
tle, we only have to tell it what velocity to adopt. We do this by one 
state-change operator, a command called SETVELOCITY.  

ACCELERATION TURTLES 

Another Turtle, intermediate between the geometry Turtle and 
the Turtle that could represent a Newtonian particle, is an accel- 
eration Turtle. Here, too, the state of the Turtle is its position and 
velocity. But this time the Turtle cannet understand such a com- 
mand as "Take on such-and-such a velocity". It can only take 
instructions of the form "Change your velocity by x, no matter 
what your velocity happens to be." This Turtle behaves like a New- 
tonian particle with an unchangeable mass. 
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Thus, the sequence of turtles~geometry Turtle to velocity Tur- 
tle to acceleration Turtle to Newtonian Turtle--constitutes a path 
into Newton that is resonant with our two mathetic principles. 
Each step builds on the one before in a clear and transparent way, 
satisfying the principle of prerequisites. As for our second mathetic 
principle~"use it, play with i t "~ t he  case is even more dramatic. 
Piaget showed us how the child constructs a preconservationist and 
then a conservationist world out of the materials (tactile, visual, 
and kinesthetic) in his environment. But until the advent of the 
computer, there were only very poor environmental materials for 
the construction of a Newtonian world. However, each of the 
microworlds we described can function as an explorable and ma- 
nipulable environment. 

In Turtle geometry, geometry was taught by way of computer 
graphics projects that produce effects like those shown in the de- 
signs illustrating this book. Each new idea in Turtle geometry 
opened new possibilities for action and could therefore be exper- 
ienced as a source of personal power. With new commands such as 
SETVELOCITY and CHANGE VELOCITY, learners can set 
things in motion and produce designs of ever-changing shapes and 
sizes. They now have even more personal power and a sense of 
"owning" dynamics. They can do computer animation~there is a 
new, personal relationship to what they see on television or in a pin- 
ball gallery. The dynamic visual effects of a TV show, an animated 
cartoon, or a video game now encourage them to ask how they 
could make what they see. This is a different kind of question than 
the one students traditionally answer in their "science laboratory." 
In the traditional laboratory pedagogy, the task posed to the chil- 
dren is to establish a given truth. At best, children learn that "this 
is the way the world works." In these dynamic Turtle microworlds, 
they come to a different kind of understanding~a feel for why the 
world works as it does. By trying many different laws of motion, 
children will find that the Newtonian ones are indeed the most eco- 
nomical and elegant for moving objects around. 

All of the preceding discussion has dealt with Newton's first two 
laws. What analogs to Newton's third law are possible in the world 
of Turtles? The third law is only meaningful in a microworld of in- 
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teractive entities~particles for Newton, Turtles for us. So let us 
assume a microworld with many Turtles that we shall call TUR- 
TLE 1, TURTLE 2, and so on. We can use TURTLE TALK to 
communicate with multiple Turtles if we give each of them a name. 
So we can use commands such as: TELL TURTLE 4 SETVE- 
LOCITY 20 (meaning "Tell Turtle number 4 to take on a velocity 
of 20). 

Newton's third law expresses a model of the universe, a way to 
conceptualize the workings of physical reality as a self-perpetuat- 
ing machine. In this vision of the universe, all actions are governed 
by particles exerting forces on one another, with no intervention by 
any outside agent. In order to model this in a Turtle microworld, 
we need many Turtles interacting with each other. Here we shall 
develop two models for thinking about interacting Turtles: linked 
Turtles and linked Dynaturtles. 

In the first model we think of the Turtles as giving commands to 

one another rather than obeying commands from the outside. They 
are l inked Turtles. Of course, Turtles can be linked in many ways. 
We can make Turtles that directly simulate Newtonian particles 
linked by simulated gravity. This is commonly done in LOGO labo- 
ratories, where topics usually considered difficult in college physics 
are translated into a form accessible to junior high school students. 
Such simulations can serve as a springboard from an elementary 
grasp of Newtonian mechanics to an understanding of the motion 
of planets and of the guidance of spacecraft. They do this by mak- 
ing working with the Newtonian principles an active and personally 
involving process. But to "own" the idea of interacting particles 
or "linked Tur t les"~the  learner needs to do more. It is never 
enough to work within a given set of interactions. The learner needs 
to know more than one example of laws of interaction and should 
have experience inventing new ones. What are some other exam- 
ples of linked Turtles? 

A first is a microworld of linked Turtles called "mirror Turtles." 
We begin with a "mirror Turtle" microworld containing two Tur- 
tles linked by the rules: Whenever either is given a FORWARD 
(or BACK) command, the other does the same; whenever either is 
given a RIGHT TURN (or LEFT TURN) command, the other 
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does the opposite. This means that if the two Turtles start off fac- 
ing one another, any Turtle program will cause their trips to be 
mirror images of one another's. Once the learner understands this 
principle, attractive Kaleidoscope designs can easily be made. 

A secorid microworld of linked Turtles, and one that is closer to 
Newtonian physics, applies these mirror linkages to velocity Tur- 
tles. No static images printed on this page could convey the visual 
excitement of these dynamic kaleidoscopes in which brightly col- 
ored points of light dance in changing and rotating paths. The end 
product has the excitement of art, but the process of making it in- 
volves learning to think in terms of the actions and reactions of 
linked moving objects. 

These linked Turtle microworlds consolidate the learner's experi- 
ence of the three laws of motion. But we have asserted that multi- 
pie microworlds also provide a platform for understanding the idea 
of a law of motion. A student who has mastered the general con- 
cept of a law of motion has a new, powerful tool for problem solv- 
ing. Let's illustrate with the Monkey Problem. 

A monkey and a rock are attached to opposite ends of a rope that is 
hung over a pulley. The monkey and the rock are of equal weight and 
balance one another. The monkey begins to climb the rope. What hap- 
pens to the rock? 

I have presented this problem to several hundred MIT students, all 
of whom had successfully passed rigorous and comprehensive intro- 
ductory physics courses. Over three quarters of those who had not 
seen the problem before gave incorrect answers or were unable to 
decide how to go about solving it. Some thought the position of the 
rock would not be affected by the monkey's climbing because the 
monkey's mass is the same whether he is climbing or not; some 
thought that the rock would descend either because of a conserva- 
tion of energy or because of an analogy with levers; some guessed it 
would go up, but did not know why. The problem is clearly "hard." 
But this does not mean that it is "complex." I suggest that its diffi- 
culty is explicable by the lack of something quite simple. When 
they approach the problem, students ask themselves: "Is this a 
'conservation-of-energy' problem?" "Is this a 'lever-arm' prob- 
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lem?" and so on. They do not ask themselves: "Is this a 'law-of-mo- 
tion' problem?" They do not think in terms of such a category. In 
the mental worlds of most students, the concepts of conservation, 
energy, lever-arm, and so on, have become tools to think with. They 
are powerful ideas that organize thinking and problem solving. For 
a student who has had experience in a "laws-of-motion" 
microworld this is true of "law of motion." Thus this student will 
not be blocked from asking the right question about the monkey 
problem. It is a law-of-motion problem, but a student who sees 
laws of motion only in terms of algebraic formulas will not even ask 
the question. For those who pose the question, the answer comes 
easily. And once one thinks of the monkey and the rock as linked 
objects, similar to the ones we worked with in the Turtle 
microworld, it is obvious that they must both undergo the same 
changes in state. Since they start with the same velocity, namely 
zero, they must therefore always have the same velocity. Thus, if 
one goes up, the other goes up at the same speed. 2 

We have presented microworlds as a response to a pedagogical 
problem that arises from the structure of knowledge" the problem 
of prerequisites. But microworlds are a response to another sort of 
problem as well, one that is not embedded in knowledge but in the 
individual. The problem has to do with finding a context for the 
construction of "wrong" (or, rather, "transitional") theories. All of 
us learn by constructing, exploring, and theory building, but most 
of the theory building on which we cut our teeth resulted in theo- 
ries we would have to give up later. As preconservationist children, 
we learned how to build and use theories only because we were al- 
lowed to hold "deviant" views about quantities for many years. 
Children do not follow a learning path that goes from one "true po- 
sition" to another, more advanced "true position." Their natural 
learning paths include "false theories" that teach as much about 
theory building as true ones. But in school false theories are no 
longer tolerated. 

Our educational system rejects the "false theories" of children, 
thereby rejecting the way children really learn. And it also rejects 
discoveries that point to the importance of the false-theory learning 
path. Piaget has shown that children hold false theories as a neces- 
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sary part of the process of learning to think. The unorthodox theo- 
ries of young children are not deficiencies or cognitive gaps, they 
serve as ways of flexing cognitive muscles, of developing and work- 
ing through the necessary skills needed for more orthodox theoriz- 
ing. Educators distort Piaget's message by seeing his contribution 
as revealing that children hold false beliefs, which they, the educa- 
tors, must overcome. This makes Piaget-in-the-schools a Piaget 
backward~backward because children are being force-fed "cor- 
rect" theories before they are ready to invent them. And backward 
because Piaget's work puts into question the idea that the "correct" 
theory is superior as a learning strategy. 

Some readers may have difficulty seeing the child's nonconserva- 
tionist view of the world as a kind of theory building. Let's take an- 
other example. Piaget asked preschool children, "What makes the 
wind?" Very few said, "I don't know." Most children gave their 
own personal theories, such as, "The trees made the wind by wav- 
ing their branches." This theory, although wrong, gives good evi- 
dence for highly developed skill in theory building. It can be tested 
against empirical fact. Indeed there is a strong correlation between 
the presence of wind and the waving of tree branches. And children 
can perform an experiment that makes their causal connection 
quite plausible. When they wave their hands near their faces, they 
make a very noticeable breeze. Children can imagine this effect 
multiplied when the waving object is not a small hand but a giant 
tree, and when not one but many giant trees are waving. So, the 
trees of a dense forest should be a truly powerful wind generator. 

What do we say to a child who has made such a beautiful the- 
ory? "That's great thinking, Johnny, but the theory is wrong" con- 
stitutes a put-down that will convince most children that making 
one's own theories is futile. So, rather than stifling the children's 
creativity, the solution is to create an intellectual environment less 
dominated than the school's by the criteria of true and false. 

We have seen that microworlds are such environments. Just as 
students who prefer to do their programming using Newtonian 
Turtles with third law interaction are making Newton their own, 
children making a spectacular spiral in a non-Newtonian micro- 
world are no less firmly on the path toward understanding Newton. 
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Both are learning what it is like to work with variables, to think in 
terms of ratios of dissimilar qualities, to make appropriate approxi- 
mations, and so on. They are learning mathematics and science in 
an environment where true or false and right or wrong are not the 
decisive criteria. 

As in a good art class, the child is learning technical knowledge 
as a m e a n s  to get to a creative and personally defined end. There 
will be a product. And the teacher as well as the child can be genu- 
inely excited by it. In the arithmetic class the pleasure that the 
teacher shows at the child's achievement is genuine, but it is hard 
to imagine teacher and child showing delight over a product. In the 
LOGO environment it happens often. The spiral made in the Tur- 
tle microworld is a new and exciting creation by the ch i ld~he  may 
even have "invented" the way of linking Turtles on which it is 
based. 

The teacher's genuine excitement about the product is communi- 
cated to children who know they are doing something consequen- 
tial. And unlike in the arithmetic class, where they know that the 
sums they are doing are just exercises, here they can take their 
work seriously. If they have just produced a circle by commanding 
the Turtle to take a long series of short forward steps and small 
right turns, they are prepared to argue with a teacher that a circle 
is really a polygon. No one who has overheard such a discussion in 
fifth-grade LOGO classes walks away without being impressed by 
the idea that the truth or falsity of theory is secondary to what it 
contributes to learning. 
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Powerful Ideas in 

Mind-Size.Bites 
"I  love your microworlds but is it physics? I 

don't  say it is not. But how can I decide?" 

- - A  teacher 

A COMMON DISTINCTION between two ways of knowing is 
often expressed as "knowing-that" versus "knowing-how" or as 
"propositional knowledge" versus "procedural knowledge" or again 
as "facts" versus "skills." In this chapter we talk about some of the 
many kinds of knowing that cannot be reduced to either term of 
this dichotomy. Important examples from everyday life are know- 
ing a person, knowing a place, and knowing one's own states of 
mind. In pursuit of our theme of using the computer to understand 
scientific knowing as rooted in personal knowing, we shall next look 
at ways in which scientific knowledge is more similar to knowing a 
person than similar to knowing a fact or having a skill. In this, we 
shall be doing something similar to how we used the Turtle to build 
bridges between formal geometry and the body geometry of the 
child. Here, too, our goal is to design conditions for more syntonic 
kinds of learning than those favored by the traditional schools. In 
previous chapters we have explored a paradox: Although most of 
our society classifies mathematics as the least accessible kind of 
knowledge, it is, paradoxically, the most accessible to children. In 
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this chapter we shall encounter a similar paradox in the domain of 
science. We shall look at ways in which the thinking of children has 
more in common with "real science" than "school science" has 
with the thinking either of children or of scientists. And once more 
we shall note a double paradox in the way computers enter into and 
influence this state of affairs. The introduction of the computer can 
provide a way out of the paradoxes, but it usually is used in ways 
that exacerbate them by reinforcing the paradoxical ways of think- 
ing about knowledge, of thinking about "school math" and "school 
science." 

Mathetically sophisticated adults use certain metaphors to talk 
about important learning experiences. They talk about getting to 
know an idea, exploring an area of knowledge, and acquiring sen- 
sitivity to distinctions that seemed ungraspably subtle just a little 
while ago. 

I believe that these descriptions apply very accurately to the way 
children learn. But when I asked students in grade schools to talk 
about learning, they used a very different kind of language, refer- 
ring mainly to facts they had learned and skills they had acquired. 
It seems very clear that school gives students a particular model of 
learning; I believe it does this not only through its way of talking 
but also through its practices. 

Skills and the discrete facts are easy to give out in controlled 
doses. They are also easier to measure. And it is certainly easier to 
enforce the learning of a skill than it is to check whether someone 
has "gotten to know" an idea. It is not surprising that schools em- 
phasize learning skills and facts and that students pick up an image 
of learning as "learning that" and "learning how." 

Working in Turtle microworlds is a model for what it is to get to 
know an idea the way you get to know a person. Students who work 
in these environments certainly do discover facts, make proposi- 
tional generalizations, and learn skills. But the primary learning 
experience is not one of memorizing facts or of practicing skills. 
Rather, it is getting to know the Turtle, exploring what a Turtle 
can and cannot do. It is similar to the child's everyday activities, 
such as making mudpies and testing the limits of parental author- 
i ty~al l  of which have a component of "getting to know." Teachers 
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often set up situations in which they claim that children are actual- 
ly getting to know this or that concept even though they might not 
realize it. Yet the Turtle is different~it  allows children to be delib- 
erate and conscious in bringing a kind of learning with which they 
are comfortable and familiar to bear on math and physics. And, as 
we have remarked, this is a kind of learning that brings the child 
closer to the mathetic practice of sophisticated adult learners. The 
Turtle in all its forms (floor Turtles, screen Turtles and Dynatur- 
ties) is able to play this role so well because it is both an engaging 
anthropomorphizable object and a powerful mathematical idea. As 
a model for what mathematical and scientific learning is about, it 
stands in sharp contrast to the methodology described by the fifth 
grader, Bill (mentioned in chapter 3), who told me that he learned 
math by making his mind a blank and saying it over and over. 

For me, getting to know a domain of knowledge (say, Newtonian 
mechanics or Hegelian philosophy) is much like coming into a new 
community of people. Sometimes one is initially overwhelmed by a 
bewildering array of undifferentiated faces. Only gradually do the 
individuals begin to stand out. On other occasions one is fortunate 
in quickly getting to know a person or two with whom an important 
relationship can develop. Such good luck may come from an intu- 
itive sense for picking out the "interesting" people, or it may come 
from having good introductions. Similarly, when one enters a new 
domain of knowledge, one initially encounters a crowd of new 
ideas. Good learners are able to pick out those who are powerful 
and congenial. Others who are less skillful need help from teachers 
and friends. But we must not forget that while good teachers play 
the role of mutual friends who can provide introductions, the actual 
job of getting to know an idea or a person cannot be done by a third 
party. Everyone must acquire skill at getting to know and a person- 
al style for doing it. 

Here we use an example from physics to focus the image of a do- 
main of knowledge as a community of powerful ideas, and in doing 
so take a step toward an epistemology of powerful ideas. Turtle 
microworlds illustrate some general strategies for helping a new- 
comer begin to make friends in such a community. A first strategy 
is to ensure that the learner has a model for this kind of learning; 
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working with Turtles is a good one. This strategy does not require 
that all knowledge be "Turtle-ized" or "reduced" to computational 
terms. The idea is that early experience with Turtles is a good way 
to "get to know" what it is like to learn a formal subject by "get- 
ting to know" its powerful ideas. I made a similar point in chapter 
2 when I suggested that Turtle geometry could be an excellent do- 
main for introducing learners to Polya's ideas about heuristics. 
This does not make heuristic thinking dependent on turtles or com- 
puters. Once Polya's ideas are thoroughly "known," they can be 
applied to other domains (even arithmetic). Our discussion in chap- 
ter 4 suggested that theoretical physics may be a good carrier for 
an important kind of meta-knowledge. If so, this would have impor- 
tant consequences for our cultural view of its role in the lives of 
children. We might come to see it as a subject suitable for early ac- 
quistion not simply because it explicates the world of things but be- 
cause it does so in a way that places children in better command of 
their own learning processes. 

For some people taking physics as a model for how to analyze 
problems is synonymous with a highly quantitative, formalistic ap- 
proach. And indeed, the story of what has happened when such dis- 
ciplines as psychology and sociology have taken physics as a model 
has often had unhappy endings. But there is a big difference in the 
kind of physics used. The physics that had a bad influence on social 
sciences stressed a positivistic philosophy of science. I am talking 
about a kind of physics that places us in firm and sharp opposition 
to the positivistic view of science as a set of true assertions of fact 
and of "law." The propositional content of science is certainly very 
important, but it constitutes only a part of a physicist's body of 
knowledge. It is not the part that developed first historically, it is 
not a part that can be understood first in the learning process, and 
it is, of course, not the part I am proposing here as a model for re- 
flection about our own thinking. We shall be interested in knowl- 
edge that is more qualitative, less completely specified, and seldom 
stated in propositional form. If students are given such equations as 
f = m a ,  E = I R ,  o r  P V  = R T  as the primary models of the knowl- 
edge that constitutes physics, they are placed in a position where 
nothing in their own heads is 1 kely to be recognized as "physics." 
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We have already seen that this is the kind of thing that puts them 
at very high risk as learners. They are on the road to dissociated 
learning. They are on the road to classifying themselves as incapa- 
ble of understanding physics. A different sense of what kind of 
knowledge constitutes physics is obtained by working with Turtles: 
Here a child, even a child who possesses only one piece of fragmen- 
tary, incompletely specified, qualitative knowledge (such as "these 
Turtles only understand changing velocities") can already do some- 
thing with it. In fact, he or she can start to work through many of 
the conceptual problems that plague college students. The frag- 
ment of knowledge can be used without even knowing how to repre- 
sent velocities quantitatively! It is of a kind with the intuitive and 
informal but often very powerful ideas that inhabit all of our heads 
whether we are children or physicists. 

This use of the computer to create opportunities for the exercise 
of qualitative thinking is very different from the use of computers 
that has become standard in high school physics courses. There it is 
used to reinforce the quantitative side of physics by allowing more 
complex calculations. Thus it shares some of the paradox we have 
already noted in the use of new technologies to reinforce education- 
al methods whose very existence is a reflection of the limitations of 
the precomputer period. As previously mentioned, the need for drill 
and practice in arithmetic is a symptom of the absence of condi- 
tions for the syntonic learning of mathematics. The proper use of 
computers is to supply such conditions. When computers are used 
to cure the immediate symptom of poor scores in arithmetic, they 
reinforce habits of dissociated learning. And these habits which ex- 
tend into many areas of life are a much more serious problem than 
weakness in arithmetic. The cure may be worse than the disease. 
There is an analogous argument about physics. Traditional physics 
teaching is forced to overemphasize the quantitative by the acci- 
dents of a paper-and-pencil technology which favors work that can 
produce a definite "answer." This is reinforced by a teaching sys- 
tem of using "laboratories" where experiments are done to prove, 
disprove, and "discover" already known propositions. This makes it 
very difficult for the student to find a way to constructively bring 
together intuitions and formal methods. Everyone is too busy fol- 
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lowing the cookbook. Again, as in the case of arithmetic, the com- 
puter should be used to remove the fundamental problem. How- 
ever, as things are today, the established image of school physics as 
quantitative and the established image of the computer reinforce 
each other. The computer is used to aggravate the already too- 
quantitative methodology of the physics classes. As in the case of 
arithmetic drill and practice, this use of the computer undoubtedly 
produces local improvements and therefore gets the stamp of ap- 
proval of the educational testing community and of teachers who 
have not had the opportunity to see something better. But through- 
out this book we have been developing the elements of a less quan- 
titative approach to computers in education. Now we directly ad- 
dress the concerns this shift in direction must raise for a serious 
teacher of physics. 

The quotation at the beginning of this chapter was spoken in 
some anguish by a teacher who manifestly liked working with Tur- 
tles but could not reconcile it with what she had come to define as 
"doing physics". The situation reflects a permanent dilemma faced 
by anyone who wishes to produce radical innovation in education, 
Innovation needs new ideas. I have argued that we should be pre- 
pared to undertake far-reaching reconceptualizations of classical 
domains of knowledge. But how far can this go? Education has a 
responsibility to tradition. For example, the job of the community 
of English teachers must be to guide their students to the language 
and literature as it exists and as it developed historically. They 
would be failing in their duty if instead they invented a new lan- 
guage, wrote their version of poetry, and passed on to the next gen- 
eration these fabricated entities in the place of the traditional ones. 
The concern of the teacher worried about whether working with 
Turtles is "really learning physics" is very serious. 

Is work with Turtles analogous to replacing Shakespeare by 
"easier," made-up literature? Does it bring students into contact 
with the intellectual products of Galileo, Newton, and Einstein or 
merely with an idiosyncratic invention that is neither marked by 
greatness nor tested by time? The question raises fundamental 
problems, among them" What is physics? And what is the potential 
influence of computation on understanding it? 
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Most curriculum designers have easy answers to these questions. 
They define elementary physics as what is taught in schools. Occa- 
sionally they move material usually taught in college down to high 
school, or bring in new topics of the same kind as the old. For ex- 
ample, modern particles are mentioned and the textbooks show 
schematically how a nuclear reactor works. Even the more vision- 
ary curriculum reformers stayed within the conceptual framework 
defined by equations, quantitative laws, and laboratory experi- 
ments. Thus, they could feel secure that they were really "teaching 
physics." The possibility opened by the computer of a new kind of 
activity and of a new relationship to ideas poses problems of re- 
sponsibility toward the cultural heritage. I take this responsibility 
seriously but cannot feel that I serve it by taking shelter behind the 
existing curriculum. One cannot accept this shelter without seri- 
ously considering the question of whether school science is not al- 
ready in the position of the hypothetical English teacher who 
taught an ersatz form of English because it seemed to be more 
teachable. I believe that this is the case. 

In chapter 5, I suggested that it is "school physics" rather than 
"Turtle physics" that betrays the spirit of "real physics." Here I 
pursue my argument by talking about components of physics that 
are even further removed than Dynaturtles from the traditional 
curriculum. These are very general, usually qualitative, intuitive 
ideas or "frames" used by physicists to think about problems be- 
fore they can even decide what quantitative principles apply. 

I ask readers who may not be familiar with such qualitative 
thinking in physics to follow a hypothetical conversation between 
two great physicists. 

Many millions of students have grown up believing that Galileo 
refuted Aristotle's expectation that the time taken for an object to 
fall to the ground is proportional to its weight by dropping cannon- 
balls from the tower of Pisa. Galileo's experiment is supposed to 
have proved that except for minor perturbations due to air resis- 
tance, a heavy and a light cannonball would, if dropped together, 
reach the ground together. In fact it is extremely unlikely that Ga- 
lileo performed any such experiment. But whether he did or did not 
is less interesting than the fact that he would not have had the 
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slightest doubt about the outcome of the experiment. In order to 

convey a sense of the kind of thinking that could have given him 

this assurance, we shall go through a hypothetical dialog between 

two imaginary characters,  G A L  and ARI.  

GAL: Look, your theory has got to be wrong. Here's a two-pound and a 
one-pound ball. The two-pound ball takes two seconds to fall to the 
ground. Tell me, how long do you think the one-pound ball would 
need? 

ARI: I suppose it would take four seconds. Anyway, much more than 
two seconds. 

GAL: I thought you would say that. But now please answer another 
question. I am about to drop two one-pounders simultaneously. How 
long will the pair of them take to reach the ground? 

ARI: That's not another question. I gave my opinion that one-pound 
balls take four seconds. Two of them must do the same. Each falls 
independently. 

GAL: You are consistent with yourself if two bodies are two bodies, not 
one. 

ARI: As they a r e . , ,  of course. 
GAL: But now if I connect them by a gossamer t h r ead . . ,  is this now 

two bodies or one? Will it (or they) take two seconds or four to fall 
to the ground? 

ARI: I am truly confused. Let me think . . . .  It's one body, but then it 
should fall for four seconds before reaching the earth. But then this 
would mean that a thread finer than silk could slow down a furiously 
falling ball of iron. It seems impossible. But if I say it is two bodies 
. . .  I am in deep trouble. What is a body? How do I know when one 
becomes two? And if I cannot know then how sure can I be of my 
laws of falling bodies? 

From a strictly logical point of view, GAL's  argument  is not abso- 

lutely compelling. One can imagine "fixes" for ARI ' s  theory. For 

example, he could propose that  the time taken might depend on the 

form as well as the weight of the body. This would allow him the 

possibility that  a two-pound body made of two cannonballs and 

gossamer threads fall more slowly than a two-pound sphere of iron. 

But in fact the kind of argument  used by GAL is subversive of the 

kind of theory expounded by ARI,  and historically, it is highly 

plausible that  the great  conversion from Aristotelian thinking was 

fueled by such arguments.  No single a rgument  could by itself con- 
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vert Aristotle, for whom the theory of falling objects was an ele- 
ment in a mutually supporting web. But as GAL's way of thinking 
gained currency, the Aristotelian system was eroded. Indeed I con- 
tend that arguments of this kind, as opposed to the apparently 
more compelling arguments from precise facts and equations, play 
an essential role in the evolution of thinking, both on the historical 
scale of the evolution of science itself and on the personal scale of 
the development of the individual learner. 

ARI would have been far better able to defend himself had GAL 
argued from specific facts or calculations, which might allow quib- 
bles about their conditions of applicability and allow themselves to 
be compartmentalized. The hard punch of GAL's argument comes 
from the fact that it mobilizes ARI's own intuitions about the na- 
ture of physical objects and about the continuity of natural effects 
(thinner than silk versus furiously falling iron). To a logician this 
argument might seem less compelling. But as empathetic fellow 
humans we find ourselves squirming in confusion with ARI. 

There is a lot to be learned by thinking through the issues raised 
by this dialogue, simplistic as it is. First we note that GAL is not 
just being cleverer than ARI" He knows something that ARI seems 
not to know. In fact, if we look carefully we see that GAL skillfully 
deploys several powerful ideas. Most striking is his principal idea of 
looking at a two-pound object as made up of two one-pound ob- 
jects, seeing the whole as additively made of whatever parts we 
care to divide it into. Stated abstractly this idea sounds trivial in 
some contexts and simply false in others: We are used to being re- 
minded that "the whole is more than the sum of its parts." But we 
should not treat it as a proposition to be judged by the criterion of 
truth and falsity. It is an idea, an intellectual tool, and one that has 
proved itself to be enormously powerful when skillfully used. 

GAL's idea is powerful and is part of the intellectual tool kit of 
every modern mathematician, physicist, or engineer. It is as impor- 
tant in the history and in the learning of physics as the kind of 
knowledge that fits into propositions or equations. But one would 
not know this from looking at textbooks. GAL's idea is not given a 
name, it is not attributed to a historical scientist, it is passed over in 
silence by teachers. Indeed, like most of intuitive physics, this 
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knowledge seems to be acquired by adult physicists through a pro- 
cess of Piagetian learning, without, and often in spite of, deliberate 
classroom teaching. Of course, my interest in recognizing the exis- 
tence of these informally learned, powerful intuitive ideas is not to 
remove them from the scope of Piagetian learning and place them 
in a curriculum" There are other ways to facilitate their acquisition. 
By recognizing their existence we should be able to create condi- 
tions that will foster their development, and we certainly can do a 
lot to remove obstacles that block them in many traditional learn- 
ing environments. 

GAL's dialogue with ARI has something to teach us about one 
of the most destructive blocks to learning: the use of formal reason- 
ing to put down intuitions. 

Everyone knows the unpleasant feeling evoked by running into a 
counterintuitive phenomenon where we are forced, by observation 
or by reason, to acknowledge that reality does not fit our expecta- 
tions. Many people have this feeling when faced with the perpetual 
motion of a Newtonian particle, with the way a rudder turns a 
boat, or with the strange behavior of a toy gyroscope. In all these 
cases intuition seems to betray us. Sometimes there is a simple 
"fix"; we see that we made a superficial mistake. But the interest- 
ing cases are those where the conflict remains obstinately in place 
however much we ponder the problem. These are the cases where 
we are tempted to conclude that "intuition cannot be trusted." In 
these situations we need to improve our intuition, to debug it, but 
the pressure on us is to abandon intuition and rely on equations in- 
stead. Usually when a student in this plight goes to the physics 
teacher saying, "I think the gyroscope should fall instead of stand- 
ing upright," the teacher responds by writing an equation to prove 
that the thing stands upright. But that is not what the student 
needed. He already knew that it would stay upright, and this 
knowledge hurt by conflicting with intuition. By proving that it will 
stand upright the teacher rubs salt in the wound but does nothing 
to heal it. What the student needs is something quite different: bet- 
ter understanding of himself, not of the gyroscope. He wants to 
know why his intuition gave him a wrong expectation. He needs to 
know how to work on his intuitions in order to change them. We 
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see from the dialogue that GAL is an expert at how to manipulate 
intuitions. He does not force ARI into rejecting intuition in favor of 
calculation. Rather he forces him to confront a very specific aspect 
of his intuitive thinking: how he thinks about objects. One suspects 
from the dialogue that GAL is used to understanding objects by 
thinking of them as composed of parts, or subobjects, while ARI is 
used to thinking of objects more globally, as undivided wholes with 
global properties such as shape and weight. 

We might seem to have strayed far from our discussion of com- 
puters. But the interaction between GAL and ARI is close to an 
important kind of interaction between children and computers and 
between children and instructors via computers. GAL tried to 
make ARI confront and work through his intuitive ways of think- 
ing about objects, and ARI might be skillful enough to do so. But 
what can children do to confront their intuitions? 

Of course the question is rhetorical in that I know that children 
think a great deal about their thinking. They do worry about their 
intuitions. They do confront them and they do debug them. If they 
did not the idea of making them do so would indeed be utopian. 
But since they do it already, we can provide materials to help them 
do it better. 

I see the computer as helping in two ways. First, the computer 
allows, or obliges, the child to externalize intuitive expectations. 
When the intuition is translated into a program it becomes more 
obtrusive and more accessible to reflection. Second, computational 
ideas can be taken up as materials for the work of remodeling intu- 
itive knowledge. The following analysis of a well-known puzzle is 
used to illustrate how a Turtle model can help bridge the gap be- 
tween formal knowledge and intuitive understanding. We have seen 
many examples in incidents where children work with computers. 
Here I shall convey a sense of what this means by inviting you to 
work on a situation where your intuitions will come into conflict. 

The purpose in working on the problem is not to "get the right 
answer," but to look sensitively for conflict between different ways 
of thinking about the problem: for example, between two intuitive 
ways of thinking or between an intuitive and a formal analysis. 
When you recognize conflicts, the next step is to work through 
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them until you feel more comfortable. When I did this, I found that 
the Turtle model was extremely helpful in resolving some of the 
conflicts. But my reaction is undoubtedly shaped by my positive 
feelings about Turtles. 

Imagine a string around the circumference of the earth, which 
for this purpose we shall consider to be a perfectly smooth sphere, 
four thousand miles in radius. Someone makes a proposal to place 
the string on six-foot-high poles. Obviously this implies that the 
string will have to be longer. A discussion arises about how much 
longer it would have to be. Most people who have been through 
high school know how to calculate the answer. But before doing so 
or reading on try to guess" Is it about one thousand miles longer, 
about a hundred, or about ten? 

Figure 15 

The figure shows a string around the earth supported by poles of 
greatly exaggerated height. Call the radius of the earth R and the 
height of the poles h. The problem is to estimate the difference in 
length between the outer circumference and the true circumference. 
This is easy to calculate from the formula: 

CIRCUMFERENCE = 2~ × RADIUS 

$o the difference must be 

2~(R'l'h) - 2 ~ R  

which is simply 2:h.  

But the challenge here is to "intuit" an approximate answer rather 
than to "calculate" an exact one. 



Powerful Ideas in Mind-Size Bites 

Most people who have the discipline to think before calculat- 
i n g ~ a  discipline that forms part of the know-how of debugging 
one's intuitions~experience a compelling intuitive sense that "a 
lot" of extra string is needed. For some the source of this conviction 
seems to lie in the idea that something is being added all around 
the twenty-four thousand miles (or so) of the earth's circumfer- 
ence. Others attach it to more abstract considerations of propor- 
tionality. But whatever the source of the conviction may be it is 
"incorrect" in anticipating the result of the formal calculation, 
which turns out to be a little less than forty feet. The conflict be- 
tween intuition and calculation is so powerful that the problem has 
become widely known as a teaser. And the conclusion that is often 
drawn from this conflict is that intuitions are not to be trusted. In- 
stead of drawing this conclusion, we shall attempt to engage the 
reader in a dialog in order to identify what needs to be done to alter 

this intuition. 
As a first step we follow the principle of seeking out a similar 

problem that might be more tractable. And a good general rule for 
simplification is to look for a linear version. Thus we pose the same 
problem on the assumption of a "square earth." 

J 

Figure 16a 

The string on poles is assumed to be at distance h from the square. 
Along the edges the string is straight. As it goes around the corner it 
follows a circle of radius h. The straight segments of the string have 
the same length as the edges of the square. The extra length is all at 
the corners, in the four quarter-circle pie slices. The four quarter cir- 
cles make a whole circle of radius h. So the "extra string" is the cir- 
cumference of this circle, that is to say 2~rh. 
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f 

J 
Figure 16b 

Increasing the size of the square does not change the quarter-circle 
pie slices. So the extra string needed to raise a string from the ground 
to height h is the same for a very small square earth as for a very large 
one. 

The diagram gives us a geometric way to see that the same 
amount of extra string is needed here as in the case of the circle. 
This is itself quite startling. But more startling is the fact that we 
can see so directly that the size of the square makes no difference 
to how much extra string is needed. We could have calculated this 
fact by formula. But doing so would have left us in the same diffi- 
culty. By "seeing" it geometrically we can bring this case into line 
with our intuitive principle: Extra string is needed only where the 
earth curves. Obviously no extra string is needed to raise a straight 
line from the ground to a six-foot height. 

Unfortunately, this way of understanding the square case might 
seem to undermine our understanding of the circular case. We have 
completely understood the square but did so by seeing it as being 
very much different from the circle. 

But there is another powerful idea that can come to the rescue. 

This is the idea of intermediate cases: When there is a conflict be- 
tween two cases, look for intermediates, as GAL in fact did in con- 
structing a series of intermediate objects between the two one- 
pound balls and one two-pound ball. But what is intermediate 
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Y 

Figure 17 
In the octagon, too, the "extra string" is all in the pie slices at the 

corners. If you put them together they form a circle of radius h. As in 
the case of the square, this circle is the same whether the octagon is 
small or big. What works for the square (4-gon) and for the octagon 
(8-gon) works for the 100-gon and for the 1000-gon. 

between a square and a circle? Anyone who has studied calculus or 
Turtle geometry will have an immediate answer: polygons with 
more and more sides. So we look at Figure 17, which show strings 
around a series of polygonal earths. We see that the extra string 
needed remains the same in all these cases and, remarkably, we see 
something that might erode the argument that the circle adds 
something all around. The 1000-gon adds something at many more 
places than the square, in fact two hundred fifty times as many 
places. But it adds less, in fact one two hundred fiftieth at each of 
them. 

Now will your mind take the jump? Like GAL, I have said noth- 
ing so far to compel this crucial step by rigorous logic. Nor shall I. 
But at this point some people begin to waver, and I conjecture that 
whether they do or not depends on how firm a commitment they 
have made to the idea of polygonal approximations to a circle. For 
those who have made the polygonal representation their own, the 
equivalence of polygon and circle is so immediate that intuition is 
carried along with it. People who do not yet "own" the equivalence 
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between polygonal representation and circle can work at becoming 
better acquainted with it, for example, by using it to think through 

other problems. 
The following problem is taken from Martin Gardner 's  book, 

Mathematical Carnival: 

'If one penny rolls around another penny without slipping how many 
times will it rotate in making one revolution? One might guess the an- 
swer to be one, since the moving penny rolls along an edge equal to its 
own circumference, but a quick experiment shows that the answer is 
two; apparently the complete revolution of the moving penny adds an 
extra rotation.' 1 

Again there is a conflict between the intuitive guess (one revolu- 

tion) and the result of more careful investigation. How can one 

bring one's intuition into line? 
The same strategy works here as for the string around the earth 

problem. Roll a penny around a square without slipping. You will 
no t i ce tha t  it behaves quite differently as it rolls along the sides 
than when it pivots around the corners. It is easy to see that  the to- 
tal rotation at the four corners combined is 360 ° . This remains true 

for any polygon, however many sides it has and however big it is. 

And once more, the crucial step becomes the passage from the 
polygon to a Turtle circle to a true circle. 

I am not suggesting that one more exercise will change your in- 

tuition of circularity. Here too, as in the case of Aristotle's physics, 
the particular piece of knowledge is part of a large network of mu- 
tually supportive ways of thinking. I am suggesting that you keep 
this new way of thinking in mind for awhile, looking for opportuni- 
ties to use it as you might look for opportunities to introduce a new 
friend to old ones. And even then, I have no way of knowing wheth- 

er you want to change your intuition of circularity. But if it is to 
change I think that the process I am suggesting here is the best, 

perhaps the only, way whether it is adopted deliberately or simply 

happens unconsciously. 
I want you to go away from this book with a new sense of a 

child's value as a thinker, even as an "epistemologist" with a notion 
of the power of powerful ideas. But I also realize that these images 
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might seem abstract and even irritating to some of you, perhaps es- 
pecially those of you who teach children. 

For example, a third-grade teacher who spends many frustrating 
hours every day trying to teach thirty-six children to write gram- 
matical sentences and to do arithmetic might view my suggestions 

about Turtle geometry, physics microworlds, and cybernetics as far 
removed from reality, as far removed as was Marie Antoinette 
when she suggested that those who were starving for bread should 
eat cake. How are the powerful ideas we have discussed related to 
what most schools see as their bread-and-butter work, that is to 
say, the basic skills? 

A first connection works through the attitude of the learner. You 
can't learn bread-and-butter skills if you come to them with fear 
and the anticipation of hating them. When children who will not let 
a number into their head fail to learn arithmetic, the remedy must 

be developing a new relationship with numbers. Achieving this 
can put children in a positive relationship to anything else that they 
will recognize as being of the same kind. This can be school math- 
ematics. 

Kim was a fifth-grade girl who invariably came out on the bottom on 
all school arithmetic tests. She hated math. In a LOGO environment 
she became engrossed in programming. She designed a project that 
maintained a special database to store information about her family 
tree. One day a visiting educator remarked to her that "computers 
made math fun." Kim looked up from her work and said very angrily: 
"There ain't nothin' fun in math." The instructor in her class had not 
thought it advisable to discuss with her whether what she was doing 
with the computer was "math." Clearly, anything that was good was 
definitionally not math. But by the end of the year Kim made the con- 
nection herself and decided that mathematics was neither unpleasant 
nor difficult. 

Getting to know (and like) mathematics as you get to know (and 
like) a person is a very pertinent image of what happened in this 

case. Computers can also contribute to the learning of bread-and- 
butter arithmetic by changing our perception of what it is about, of 
what powerful ideas are most important in it. School arithmetic, 
generally thought of as a branch of number theory, might better be 
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thought of as a branch of computer science. Difficulties exper- 
ienced by children are not usually due to deficiencies in their notion 
of number but in failing to appropriate the relevant algorithms. 
Learning algorithms can be seen as a process of making, using, and 
fixing programs. When one adds multidigit numbers one is in fact 
acting as a computer in carrying through a procedure something 
like the program in Figure 18. 

1. 
2. 
3. 
4. 
5. 

, 

Set out numbers following conventional format. 
Focus attention on the rightmost column. 
Add as for single digit numbers. 
If result < 10 record results. 
If result in rightmost column was equal to or greater than 10, then 
record rightmost digit and enter rest in next column to left. 
Focus attention one column to left. 
Go to line 3. 

, , , 
_ 

Figure 18 

Q 

To get better at this sort of activity one needs to know more 
about, and feel more comfortable with, the ways of procedures. 
And this, of course, is what a good computer experience allows. 

These remarks should be put in the context of our earlier discus- 
sion about the difference between the New Math curriculum re- 
form of the 1960s and the kind of enrichment the computer culture 
can bring to mathematics. In chapter 2 we dealt with one impor- 
tant reason for the failure of the New Math: It did not ameliorate 
our society's alienated relationship with number. On the contrary, 
it aggravated it. We now see a second reason for the failure of the 
New Math. It tried to root the teaching of math in number theory, 
set theory, or logic instead of facing the conceptual stumbling 
blocks that children really experience: Their lack of knowledge 
about programming. Thus the authors of the New Math misunder- 
stood the source of children's problems. This misunderstanding is 
harmful in several ways. It is harmful insofar as it seeks to improve 
the child's understanding of arithmetic by drill in irrelevant areas 
of knowledge. It is also harmful insofar as it imparts an inappropri- 
ate value system into mathematics education. The pure mathemati- 
cian sees the idea of number as valuable, powerful, and important. 
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The details of procedure are seen as superficial and uninteresting. 
Thus the child's difficulties are referred back to abstract difficul- 
ties with the notion of number. The computer scientist takes a more 
direct approach. Trouble with adding is not seen as symptomatic of 
something else; it is trouble with the procedure of adding. For the 
computerist the procedure and the ways it can go wrong are fully 
as interesting and as conceptual as anything else. Moreover, what 
went wrong, namely the bugs, are not seen as mistakes to be avoid- 
ed like the plague, but as an intrinsic part of the learning process. 

Ken was a fifth grader who added 35 and 35 and got 610. His 
bug was showing clearly. Since 32 plus 32 is 64, then 35 plus 35 
should be 610. Ken was brought into a better relationship with 
mathematics when he learned to see his mistake as a trick that 
mathematical formalisms play on us. The French can say seventy 
as soixante dix, "sixty-ten," but although they can write sixty-five 
as 65, they cannot write sixty-ten as 610. This symbol has been pre- 
empted to mean something else. 

Ken might superficially appear to have had bad intuitions about 
numbers. But this is quite wrong as a diagnosis. When asked "If 
you had thirty-five dollars and you got thirty-five dollars more, 
would you have $610.00," his answer was an emphatic, "No way." 
When asked how much he would have, he returned to his paper cal- 
culation, crossed off the zero from 610, and came up with the new 
answer of 61, which intuitively is not so far off. His problem is not 
bad intuition or notion of number. From a computerist's point of 
view one can recognize several difficulties, each of which is under- 
standable and correctable. 

First, he dissociates the operation of the procedure from his gen- 
eral store of knowledge. A better procedure would have an "error 
check" built into it. Since he could recognize the error when 
prompted, he certainly should have been capable of setting up the 
procedure to include prompting himself. Second, when he found 
the error he did not change, or even look at, the procedure, but 
merely changed the answer. Third, my knowledge of Ken tells me 
why he did not try to change the procedure. At the time of this inci- 
dent he did not recognize procedures as entities, as things one could 
name, manipulate, or change. Thus, fixing his procedures is very 
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far indeed from his awareness. The idea of procedures as things 
that can be debugged is a powerful, difficult concept for many chil- 
dren, until they have accumulated experience in working with 
them. 

I have seen children like Ken get over this kind of dimculty after 
some experience writing programs in a LOGO environment. But 
why don't children learn a procedural approach from daily life? 
Everyone works with procedures in everyday life. Playing a game 
or giving directions to a lost motorist are exercises in procedural 
thinking. But in everyday life procedures are lived and used, they 
are not necessarily reflected on. In the LOGO environment, a pro- 
cedure becomes a thing that is named, manipulated, and recog- 
nized as the children come to acquire the idea of procedure. The ef- 
fect of this for someone like Ken is that everyday-life experience of 
procedures and programming now becomes a resource for doing 
formal arithmetic in school. Newton's laws of motion came alive 
when we used computational metaphor to tie them to more person- 
al and conceptually powerful things. Geometry came alive when we 
connected it to its precursors in the most fundamental human expe- 
rience: the experience of one's body in space. Similarly, formal 
arithmetic will come alive when we can develop links for the indi- 
vidual learner with its procedural precursors. And these precursors 
do exist. The child does have procedural knowledge and he does use 
it in many aspects of his life, whether in planning strategies for a 
game of tic-tac-toe or in giving directions to a motorist who has lost 
his way. But all too often the same child does not use it in school 
arithmetic. 

The situation is exactly like the one we met in the dialog between 
ARI and GAL and in the use of the Turtle circle model to change 
the intuition of circularity brought to bear on the string and coin 
problems. In all these cases, we are interested in how a powerful 
idea is made part of intuitive thinking. I do not know a recipe for 
developing a child's intuition about when and how to use procedur- 
al ideas, but I think that the best we can do is what is suggested by 
the metaphor of getting to know a new person. As educators we can 
help by creating the conditions for children to use procedural 
thinking effectively and joyfully. And we can help by giving them 
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access to many concepts related to procedurality. This is achieved 
through the conceptual content of LOGO environments. 

In this book I have clearly been arguing that procedural thinking 
is a powerful intellectual tool and even suggested analogizing one- 
self to a computer as a strategy for doing it. People often fear that 
using computer models for people will lead to mechanical or linear 
thinking: They worry about people losing respect for their intu- 
itions, sense of values, powers of judgment. They worry about in- 
strumental reason becoming a model for good thinking. I take these 
fears seriously but do not see them as fears about computers them- 
selves but rather as fears about how culture will assimilate the 
computer presence. The advice "think like a computer" could be 
taken to mean always think about everything like a computer. This 
would be restrictive and narrowing. But the advice could be taken 
in a much different sense, not precluding anything, but making a 
powerful addition to a person's stock of mental tools. Nothing is 
given up in return. To suggest that one must give up an old method 
in order to adopt a new one implies a theory of human psychology 
that strikes me as naive and unsupported. In my view a salient fea- 
ture of human intelligence is the ability to operate with many ways 
of knowing, often in parallel, so that something can be understood 
on many levels. In my experience, the fact that I ask myself to 
"think like a computer" does not close off other epistemologies. It 
simply opens new ways for approaching thinking. The cultural as- 
similation of the computer presence will give rise to a computer lit- 
eracy. This phrase is often taken as meaning knowing how to pro- 
gram, or knowing about the varied uses made of computers. But 
true computer literacy is not just knowing how to make use of com- 
puters and computational ideas. It is knowing when it is appropri- 
ate to do so. 

155 



Chapter 7 

Logo's Roots: 
Piaget and A/ 

THE READER has already met a variety of learning situations 
'drawn together by a common set of ideas about what makes for ef- 
fective learning. In this chapter we turn directly to these ideas and 
to the theoretical sources by which they are informed. Of these we 
focus on two: first, the Piagetian influence, and second, the influ- 
ence of computational theory and artificial intelligence. 

I have previously spoken of "Piagetian learning," the natural, 
spontaneous learning of people in interaction with their environ- 
ment, and contrasted it with the curriculum-driven learning char- 
acteristic of traditional schools. But Piaget's contribution to my 
work has been much deeper, more theoretical and philosophical. In 
this chapter I will present a Piaget very different from the one most 
people have come to expect. There will be no talk of stages, no em- 
phasis on what children at certain ages can or cannot learn to do. 
Rather I shall be concerned with Piaget the epistemologist, as his 
ideas have contributed toward the knowledge-based theory of 
learning that I have been describing, a theory that does not divorce 
the study of how mathematics is learned from the study of math- 
ematics itself. 

I think these epistemological aspects of Piaget's thought have 
been underplayed because up until now they offered no possibilities 
for action in the world of traditional education. But in a computer- 
rich educational environment, the educational environment of the 
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next decade, this will not be the case. In chapter 5 and in the devel- 
opment of the Turtle idea itself we saw examples of how an episte- 
mological inquiry into what is fundamental in a sector of math- 
ematics, the mathematics of differential systems, has already paid 
off in concrete, effective educational designs. The Piaget of the 
stage theory is essentially conservative, almost reactionary, in em- 
phasizing what children cannot do. I strive to uncover a more revo- 
lutionary Piaget, one whose epistemological ideas might expand 
known bounds of the human mind. For all these years they could 
not do so for lack of a means of implementation, a technology 
which the mathetic computer now begins to make available. 

The Piaget as presented in this chapter is new in another sense as 
well. He is placed in a theoretical framework drawn from a side of 
the computer world of which we have not spoken directly, but 
whose perspectives have been implicit throughout this book, that of 
artificial intelligence, or AI. The definition of artificial intelligence 
can be narrow or broad. In the narrow sense, AI is concerned with 
extending the capacity of machines to perform functions that 
would be considered intelligent if performed by people. Its goal is 
to construct machines and, in doing so, it can be thought of as a 
branch of advanced engineering. But in order to construct such ma- 
chines, it is usually necesary to reflect not only on the nature of 
machines but on the nature of the intelligent functions to be 

performed. 
For example, to make a machine that can be instructed in natu- 

ral language, it is necessary to probe deeply into the nature of lan- 
guage. In order to make a machine capable of learning, we have to 
probe deeply into the nature of learning. And from this kind of re- 
search comes the broader definition of artificial intelligence: that of 
a cognitive science. In this sense, AI shares its domain with the 
older disciplines such as linguistics and psychology. But what is dis- 
tinctive in AI is that its methodology and style of theorizing draw 
heavily on theories of computation. In this chapter we shall use this 
style of theorizing in several ways" first, to reinterpret Piaget; sec- 
ond, to develop the theories of learning and understanding that in- 
form our design of educational situations; and third, in a somewhat 
more unusual way. The aim of AI is to give concrete form to ideas 
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about thinking that previously might have seemed abstract, even 
metaphysical. It is this concretizing quality that has made ideas 
from AI so attractive to many contemporary psychologists. We 
propose to teach AI to children so that they, too, can think more 
concretely about mental processes. While psychologists use ideas 
from AI to build formal, scientific theories about mental processes, 
children use the same ideas in a more informal and personal way to 
think about themselves. And obviously I believe this to be a good 
thing in that the ability to articulate the processes of thinking en- 
ables us to improve them. 

Piaget has described himself as an epistemologist. What does he 
mean by that? When he talks about the developing child, he is real- 
ly talking as much about the development of knowledge. This state- 
ment leads us to a contrast between epistemological and psycho- 
logical ways of understanding learning. In the psychological 
perspective, the focus is on the laws that govern the learner rather 
than on what is being learned. Behaviorists study reinforcement 
schedules, motivation theorists study drive, gestalt theorists study 
good form. For Piaget, the separation between the learning process 
and what is being learned is a mistake. To understand how a child 
learns number, we have to study number. And we have to study 
number in a particular way: We have to study the structure of 
number, a mathematically serious undertaking. This is why it is not 
at all unusual to find Piaget referring in one and the same para- 
graph to the behavior of small children and to the concerns of theo- 
retical mathematicians. To make more concrete the idea of study- 
ing learning by focusing on the structure of what is learned, we 
look at a very concrete piece of learning from everyday life and see 
how different it appears from a psychological and from an episte- 
mological perspective. 

We will consider learning to ride a bicycle. If we did not know 
better riding a bicycle would seem to be a really remarkable thing. 
What makes it possible? One could pursue this question by study- 
ing the rider to find out what special attributes (speed of reaction, 
complexity of brain functioning, intensity of motivation) contribute 
to his performance. This inquiry, interesting though it might be, is 
irrelevant to the real solution to the problem. People can ride bicy- 
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cles because the bicycle, once in motion, is inherently stable. A bi- 
cycle without a rider pushed off on a steep downgrade will not fall 
over; it will run indefinitely down the hill. The geometrical con- 
struction of the front fork ensures that if the bicycle leans to the 
left the wheel will rotate to the left, thus causing that bicycle to 
turn and produce a centrifugal force that throws the bicycle to the 
right, counteracting the tendency to fall. The bicycle without a rid- 
er balances perfectly well. With a novice rider it will fall. This is 
because the novice has the wrong intuitions about balancing and 
freezes the position of the bicycle so that its own corrective mecha- 
nism cannot work freely. Thus learning to ride does not mean 
learning to balance, it means learning not to unbalance, learning 
not to interfere. 

What we have done here is understand a process of learning by 
acquiring deeper insight into what was being learned. Psychologi- 
cal principles had nothing to do with it. And just as we have under- 
stood how people ride bicycles by studying bicycles, Piaget has 
taught us that we should understand how children learn number 
through a deeper understanding of what number is. 

Mathematicians interested in the nature of number have looked 
at the problem from different standpoints. One approach, associat- 
ed with the formalists, seeks to understand number by setting up 
axioms to capture it. A second approach, associated with Bertrand 
Russell, seeks to define number by reducing it to something more 
fundamental, for example, logic and set theory. Although both of 
these approaches are valid, important chapters in the history of 
mathematics, neither casts light on the question of why number is 
learnable. But there is a school of mathematics that does do so, al- 
though this was not its intention. This is the structuralism of the 
Bourbaki school. ~ Bourbaki is a pseudonym taken by a group of 
French mathematicians who set out to articulate a uniform theory 
for mathematics. Mathematics was to be one, not a collection of 
subdisciplines each with its own language and line of development. 
The school moved in this direction by recognizing a number of 
building blocks that it called the "mother structures." These struc- 
tures have something in common with our idea of microworlds. 
Imagine a microworld in which things can be ordered but have no 
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other properties. The knowledge of how to work the world is, in 
terms of the Bourbaki school, the mother structure of order. A sec- 
ond microworld allows relations of proximity, and this is the moth- 
er structure of topology. A third has to do with combining entities 
to produce new entities; this is the algebraic microstructure. The 
Bourbaki school's unification of mathematics is achieved by seeing 
more complex structures, such as arithmetic, as combinations of 
simpler structures of which the most important are the three moth- 
er structures. This school had no intention of making a theory of 
learning. They intended their structural analysis to be a technical 
tool for mathematicians to use in their day-to-day work. But the 
theory of mother structures is a theory of learning. It is a theory of 
how number is learnable. By showing how the structure of arithme- 
tic can be decomposed into simpler, but still meaningful and coher- 
ent, structures, the mathematicians are showing a mathetic path- 
way into numerical knowledge. It is not surprising that Piaget, who 
was explicitly searching for a theory of number that would explain 
its development in children, developed a similar, parallel set of con- 
structs, and then, upon "discovering" the Bourbaki school was able 
to use its constructs to elaborate his own. 

Piaget observed that children develop coherent intellectual struc- 
tures that seemed to correspond very closely to the Bourbaki moth- 
er structures. For example, recall the Bourbaki structure of order; 
indeed, from the earliest ages, children begin to develop expertise 
in ordering things. The topological and algebraic mother structures 
have similar developmental precursors. What makes them learn- 
able? First of all, each represents a coherent activity in the child's 
life that could in principle be learned and made sense of indepen- 
dent of the others. 

Second, the knowledge structure of each has a kind of internal 
simplicity that Piaget has elaborated in his theory of groupements, 
and which will be discussed in slightly different terms later. Third, 
although these mother structures are independent, the fact that 
they are learned in parallel and that they share a common formal- 
ism are clues that they are mutually supportive; the learning of 
each facilitates the learning of the others. 

Piaget has used these ideas to give an account of the develop- 
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ment of a variety of domains of knowledge in terms of a coherent, 
lawful set of structures as processes within the child's mind. He de- 
scribes these internal structures as always in interaction with the 
external world, but his theoretical emphasis has been the internal 
events. My perspective is more interventionist. My goals are educa- 
tion, not just understanding. So, in my own thinking I have placed 
a greater emphasis on two dimensions implicit but not elaborated 
in Piaget's own work: an interest in intellectual structures that 
could develop as opposed to those that actually at present do devel- 
op in the child, and the design of learning environments that are 
resonant with them. The Turtle can be used to illustrate both of 
these interests: first, the identification of a powerful set of math- 
ematical ideas that we do not presume to be represented, at least 
not in a developed form, in children; second, the creation of a tran- 
sitional object, the Turtle, that can exist in the child's environment 
and make contact with the ideas. As a mathematician I know that 
one of the most powerful ideas in the history of science was that of 
differential analysis. From Newton onward, the relationship be- 
tween the local and the global pretty well set the agenda for math- 
ematics. Yet this idea has had no place in the world of children, 
largely because traditional access to it depends on an infrastructure 
of formal, mathematical training. For most people, nothing is more 
natural than that the most advanced ideas in mathematics should 
be inaccessible to children. From the perspective I took from Pia- 
get, we would expect to find connections. So we set out to find 
some. But finding the connections did not simply mean inventing a 
new kind of clever, "motivating" pedagogy. It meant a research 
agenda that included separating what was most powerful in the 
idea of differential from the accidents of inaccessible formalisms. 
The goal was then to connect these scientifically fundamental 
structures with psychologically powerful ones. And of course these 
were the ideas that underlay the Turtle circle, the physics 
microworlds, and the touch-sensor Turtle. 

In what sense is the natural environment a source of micro- 
worlds, indeed a source for a network of microworlds? Let's narrow 
the whole natural environment to those things in it that may serve 
as a source for one specific microworld, a microworld of pairing, of 
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one-to-one correspondence. Much of what children see comes in 
pairs: mothers and fathers, knives and forks, eggs and egg cups. 
And they, too, are asked to be active constructors of pairs. They are 
asked to sort socks, lay the table with one place setting for each 
person, and distribute candies. When children focus attention on 
pairs they are in a self-constructed microworld, a microworld of 
pairs, in the same sense as we placed our students in the micro- 
worlds of geometry and physics Turtles. In both cases the relevant 
microworld is stripped of complexity, is simple, graspable. In both 
cases the child is allowed to play freely with its elements. Although 
there are constraints on the materials, there are no constraints on 
the exploration of combinations. And in both cases the power of the 
environment is that it is "discovery rich." 

Working with computers can make it more apparent that chil- 
dren construct their own personal microworlds. The story of Deb- 
orah at the end of chapter 4 is a good example. LOGO gave her the 
opportunity to construct a particularly tidy microworld, her 
"RIGHT 30 world." But she might have done something like this 
in her head without a computer. For example, she might have de- 
cided to understand directions in the real world in terms of a simple 
set of operations. Such intellectual events are not usually visible to 
observers, any more than my algebra teachers knew that I used 
gears to think about equations. But they can be seen if one looks 
closely enough. Robert Lawler, a member of the Massachusetts In- 
stitute of Technology LOGO group, demonstrated this most clearly 
in his doctoral research. Lawler set out to observe everything a six- 
year-old child, his daughter Miriam, did during a six-month period. 
The wealth of information he obtained allowed him to piece togeth- 
er a picture of the microstructure of Miriam's growing abilities. 
For example, during this period Miriam learned to add, and Lawler 
was able to show that this did not consist of acquiring one logically 
uniform procedure. A better model of her learning to add is that 
she brought into a working relationship a number of idiosyncratic 
microworlds, each of which could be traced to identifiable, previous 
experiences. 

I have said that Piaget is an epistemologist, but have not elabo- 
rated on what kind. Epistemology is the theory of knowledge. The 
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term epistemology could, according to its etymology, be used to 
cover all knowledge about knowledge, but traditionally it has been 
used in a rather special way; that is, to describe the study of the 
conditions of validity of knowledge. Piaget's epistemology is con- 
cerned not with the validity of knowledge but with its origin and 
growth. He is concerned with the genesis and evolution of knowl- 
edge, and marks this fact by describing his field of study as "genet- 
ic epistemology." Traditional epistemology has often been taken as 
a branch of philosophy. Genetic epistemology works to assert itself 
as a science. Its students gather data and develop theories about 
how knowledge developed, sometimes focusing on the evolution of 
knowledge in history, sometimes on the evolution of knowledge in 
the individual. But it does not see the two realms as distinct" It 
seeks to understand relations between them. These relations can 
take different forms. 

In the simplest case the individual development is parallel to the 
historical development, recalling the biologists' dictum, ontogeny 
recapitulates phylogeny. For example, children uniformly represent 
the physical world in an Aristotelian manner, thinking, for exam- 
ple, that forces act on position rather than on velocities. In other 
cases, the relation is more complex, indeed to the point of reversal. 
Intellectual structures that appear first in a child's development are 
sometimes characteristic not of early science but of the most mod- 
ern science. So, for example, the mother structure topology appears 
very early in the child's development, but topology itself appeared 
as a mathematical subdiscipline only in modern times. Only when 
mathematics becomes sufficiently advanced is it able to discover its 
own origins. 

In the early part of the twentieth century, formal logic was seen 
as synonymous with the foundation of mathematics. Not until 
Bourbaki's structuralist theory appeared do we see an internal de- 
velopment in mathematics that opened the field up to "remember- 
ing" its genetic roots. And through the work of genetic epistemol- 
ogy, this "remembering" puts mathematics in the closest possible 
relationship to the development of research about how children 
construct their reality. 

Genetic epistemology has come to assert a set of homologies be- 
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tween the structures of knowledge and the structures of the mind 
that come into being to grasp this knowledge. Bourbaki's mother 
structures are not simply the elements that underly the concept of 
number; rather, homologies are found in the mind as it constructs 
number for itself. Thus, the importance of studying the structure of 
knowledge is not just to better understand the knowledge itself, but 
to understand the person. 

Research on the structure of this dialectical process translates 
into the belief that neither people nor knowledge~including math- 
emat ics~can  be fully grasped separately from the other, a belief 
that was eloquently expressed by Warren McCulloch, who, togeth- 
er with Norbert Wiener, should have credit for founding cybernet- 
ics. When asked, as a youth, what question would guide his scien- 
tific life, McCulloch answered: "What  is a man so made that he 
can understand number and what is number so made that a man 
can understand it?" 

For McCulloch as for Piaget, the study of people and the study 
of what they learn and think are inseparable. Perhaps paradoxical- 
ly for some, research on the nature of that inseparable relationship 
has been advanced by the study of machines and the knowledge 
they can embody. And it is to this research methodology, that of 
artificial intelligence, that we now turn. 

In artificial intelligence, researchers use computational models 
to gain insight into human psychology as well as reflect on human 
psychology as a source of ideas about how to make mechanisms 
emulate human intelligence. This enterprise strikes many as illogi- 
cal: Even when the performance looks identical, is there any reason 
to think that underlying processes are the same? Others find it il- 
licit: The line between man and machine is seen as immutable by 
both theology and mythology. There is a fear that we will dehu- 
manize what is essentially human by inappropriate analogies be- 
tween our "judgments" and those computer "calculations." I take 
these objections very seriously, but feel that they are based on a 
view of artificial intelligence that is more reductionist that any- 
thing I myself am interested in. A brief parable and some only half- 
humored reasoning by analogy express my own views on the 
matter. 
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Men have always been interested in flying. Once upon a time, scientists 
determined to understand how birds fly. First they watched them, hop- 
ing to correlate the motion of a bird's wings with its upward movement. 
Then they proceeded to experiment and found that when its feathers 
were plucked, a bird could no longer fly. Having thus determined that 
feathers were the organ of flight, the scientists then focused their ef- 
forts on microscopic and ultramicroscopic investigation of feathers in 
order to discover the nature of their flight-giving power. 

In reality our current understanding of how birds fly did not come 
through a study narrowly focused on birds and gained nothing at 
all from the study of feathers. Rather, it came from studying phe- 
nomena of different kinds and requiring different methodologies. 
Some research involved highly mathematical studies in the laws of 
motion of idealized fluids. Other research, closest to our central 
point here, consisted of building machines for "artificial flight." 
And, of course, we must add to the list the actual observation of 
bird flight. All these research activities synergistically gave rise to 
aeronautical science through what we understand of the "natural  
flight" of birds and the "artificial flight" of airplanes. And it is in 
much the same spirit that I imagine diverse investigations in math- 
ematics and in machine intelligence to act synergistically with psy- 
chology in giving rise to a discipline of cognitive science whose 
principles would apply to natural and to artificial intelligence. 

It is instructive to transpose to the context of flying the common ob- 
jections raised against AI. This leads us to imagine skeptics who would 
say, "You mathematicians deal with idealized fluids--the real atmo- 
sphere is vastly more complicated," or "You have no reason to suppose 
that airplanes and birds work the same wayabirds have no propellors, 
airplanes have no feathers." But the premises of these criticisms are 
true only in the most superficial sense" the same principle (e.g., Ber- 
noulli's law) applies to real as well as ideal fluids, and they apply 
whether the fluid flows over a feather or an aluminum wing. 

Workers in the "cognitive studies" branch of AI do not share 
any one way of thinking about thinking, any more than traditional 
psychologists do. For some, the computer model is used to reduce 
all thinking to the formal operations of powerful deductive systems. 
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Aristotle succeeded in formulating the deductive rules for a small 
corner of human thinking in such simple syllogisms as "If all men 
are mortal and Socrates is a man, then Socrates is mortal." In the 
nineteenth century, mathematicians were able to extend this kind 
of reasoning to a somewhat larger but still restricted area. But only 
in the context of computational methods has there been a serious 
attempt to extend deductive logic to cover all forms of reasoning, 
including common-sense reasoning and reasoning by analogy. 
Working with this kind of deductive model was very popular in the 
early days of AI. In recent years, however, many workers in the 
field have adopted an almost diametrically opposed strategy. In- 
stead of seeking powerful deductive methods that would enable sur- 
prising conclusions to be drawn from general principles, the new 
approach assumes that people are able to think only because they 
can draw on larger pools of specific, particular knowledge. More 
often than we realize, we solve problems by "almost knowing the 
answer" already. Some researchers try to make programs be intel- 
ligent by giving them such quantities of knowledge that the greater 
part of solving a problem becomes its retrieval from somewhere in 
the memory. 

Given my background as a mathematician and Piagetian psy- 
chologist, I naturally became most interested in the kinds of com- 
putational models that might lead me to better thinking about pow- 
erful developmental processes: the acquisition of spatial thinking 
and the ability to deal with size and quantity. The rival ap- 
proaches~deductive and knowledge based~tended to address per- 
formance of a given intellectual system whose structure, if not 
whose content, remained static. The kind of developmental ques- 
tions I was interested in needed a dynamic model for how intellec- 
tual structures themselves could come into being and change. I be- 
lieve that these are the kind of models that are most relevant to 
education. 

The best way I know to characterize this approach is to give a 
sample of a theory heavily influenced by ideas from computation 
that can help us understand a specific psychological phenomenon: 
Piagetian conservation. We recall that children up until the age of 
six or seven believe that a quantity of liquid can increase or de- 
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crease when it is poured from one container to another. Specifical- 
ly, when the second container is taller and narrower than the first, 
the children unanimously assert that the quantity of liquid has in- 
creased. And then, as if by magic, at about the same age, all chil- 
dren change their mind" They now just as unequivocally insist that 
the amount of liquid remains the same. 

Many theories have been advanced for how this could come to 
pass. One of them, which may sound most familiar because it 
draws on traditional psychological categories, attributes the pre- 
conservationist position to the child's being dominated by "appear- 
ances." The child's "reason" cannot override how things "seem to 
be." Perception rules. 

Let us now turn to another theory, this time one inspired by com- 
putational methods. Again we ask the question" Why does height in 
a narrow vessel seem like more to the child, and how does this 
change? 

Let us posit the existence of three agents in the child's mind, 
each of which judges quantities in a different "simple-minded" 
way.* The first, A ho~,~, judges the quantity of liquids and of anything 
else by its vertical extent. A,o~,, is a practical agent in the life of the 
child. It is accustomed to comparing children by standing them 
back to back and of equalizing the quantities of Coca-Cola and 
chocolate milk in children's glasses. We emphasize that A ,o,~,t does 
not do anything as complicated as "perceive" the quantity of liq- 
uid. Rather, it is fanatically dedicated to an abstract principle: 
Anything that goes higher is more. 

There is a second agent, called A~,~, that judges by the horizon- 
tal extent. It is not as "practiced" as A~o,~,i. It gets its chance to 
judge that there is a lot of water in the sea, but in the mind of the 
child this principle is less "influential" than A~o,,,,. 

Finally, there is an agent called A,~,o~, that says that the quanti- 
ties are the same because once they were the same. A,~,o~y seems to 
speak like a conservationist child, but this is an illusion. A ~,or, has 

* The computational perspective on conservation that follows is a highly schematized and 
simplified overview of how this phenomenon would be explained by a theory, "The Society of 
Mind," being developed by Marvin Minsky and the author and to be discussed in our forth- 
coming book. 

167 



M I N D S T O R M S  

no understanding and would say the quantity is the same even if 
some had indeed been added. 

In the experiment with the preconservationist child, each of the 
three agents makes its own "decision" and clamors for it to be 
adopted. As we know, A ~o,,~,'s voice speaks the loudest. But this 
changes as the child moves on to the next stage. 

There are three ways, given our assumption of the presence of 
agents, for this change to take place. A~o~, and A ~  could become 
more "sophisticated," so that, for example, A ~oi~, would disqualify 
itself except when all other things are equal. This would mean that 
A h~ght would only step forward to judge by height those things that 
have equal cross sections. Second, there could be a change in "se- 
niority," in prerogative: A ~,~,o~, could become the dominant voice. 
Neither of these two modes of change is impossible. But there is a 
third mode that produces the same effect in a simpler way. Its key 
idea is that A~o~, and Awidth neutralize one another by giving contra- 
dictory opinions. The idea is attractive (and close to Piaget's own 
concept of grouplike compositions of operations) but raises some 
problems. Why do all three agents not neutralize one another so 
that the child would have no opinion at all? The question is an- 
swered by a further postulate (which has much in common with 
Piaget's idea that intellectual operators be organized into groupe- 
ments). The principle of neutralization becomes workable if 
enough structure is imposed on the agents for A~o~,, and A widt h to be 
in a special relationship with one another but not with A,~to~y. We 
have seen that the technique of creating a new entity works power- 
fully in programming systems. And this is the process we postulate 
here. A new entity, a new agent comes into being. This is A g¢om, 

which acts as the supervisor for A ~o,~, and A~,,~. In cases where 
A ~o,,,t and A~t~ agree, A,oom passes on their message with great "au- 
thority." But if they disagree, A~oo~ is undermined and the voices of 
the underlings are neutralized. It must be emphasized that A~oom is 
not meant to "understand" the reasons for decision making by 
A,o,,~, and A~dt h. Ag~o m knows nothing except whether they agree and, 
if so, in which direction. 

This model is absurdly oversimplified in suggesting that even so 
simple a piece of a child's thinking (such as this conservation) can 
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be understood in terms of interactions of four agents. Dozens or 
hundreds are needed to account for the complexity of the real pro- 
cess. But, despite its simplicity, the model accurately conveys some 
of the principles of the theory: in particular, that the components of 
the system are more like people than they are like propositions and 
their interactions are more like social interactions than like the op- 
erations of mathematical logic. This shift in perspective allows us 
to solve many technical problems in developmental psychology. In 
particular, we can understand logical learning as continuous with 
social and bodily learning. 

I have said that this theory is inspired by a computational meta- 
phor. One might ask how. The "theory" might appear to be noth- 
ing but anthropomorphic talk. But we have already seen that anth- 
ropomorphic descriptions are often a step toward computational 
theories. And the thrust of the society-of-mind theory is that agents 
can be translated into precise computational models. As long as we 
only think about these agents as "people," the theory is circular. It 
explains the behavior of people in terms of the behavior of people. 
But, if we can think of the agents as well-defined computational en- 
tities similar to the subprocedures VEE, LINE, and HEAD in the 
procedure MAN, everything becomes clearer. We saw even in 
small programs how very simple modules can be put together to 
produce complex results. 

This computational argument saves the society-of-mind theory 
from the charge of relying on a vicious circle. But it does not save it 
from being circular: On the contrary, like recursive programs in the 
style of the procedure SPI of chapter 3, the theory derives much of 
its power from a constructive use of "circular logic." A traditional 
logician looking at how SPI was defined by reference to SPI might 
have objected, but the computer programmers and genetic episte- 
mologists share a vision in which this kind of self-reference is not 
only legitimate but necessary. And both see it as having an element 
of paradox that is only very partially captured by noting how chil- 
dren use their "inferior" logic to construct the "superior" logic of 
their next phase of development. To an increasing extent through- 
out his long career Piaget has emphasized the importance for intel- 
lectual growth of children's ability to reflect on their own thinking. 
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The "mathetic paradox" lies in the fact that this reflection must be 
from within the child's current intellectual system. 

Despite its oversimplified, almost metaphorical status, the four- 
agent account of conservation captures an element of the paradox. 
A mathematical logician might like to impose on A ho~t and A w~dt~ a 
superior agent capable of calculating, or at least estimating, vol- 
ume from height and cross-section. Many educators might like to 
impose such a formula on the child. But this would be introducing 
an element alien to the pre-conservationist child's intellectual sys- 
tem. Our A,oom belongs firmly in the child's system. It might even be 
derived from the model of a father not quite succeeding in impos- 
ing order on the family. It is possible to speculate, though I have no 
evidence, that the emergence of conservation is related to the 
child's oedipal crisis through the salience it gives to this model. I 
feel on firmer ground in guessing that something like A,~om can be- 
come important because it so strongly has the two-sided relation- 
ship that was used to conceive the Turtle: It is related both to struc- 
tures that are firmly in place, such as the child's representation of 
authority figures, and to germs of important mathematical ideas, 
such as the idea of "cancellation." 

Readers who are familiar with Piaget's technical writings will 
recognize this concept germ as one of the principles in his "group- 
ments." They may therefore see our model as not very different 
from Piaget's. In a fundamental sense they would be right. But a 
new element is introduced in giving a special role to computational 
structures: The theme of this book has been the idea of exploiting 
this special role by giving children access to computational cul- 
tures. If, and only if, these have the right structure they may great- 
ly enhance children's ability to represent the structures-in-place in 
ways that will mobilize their conceptual potential. 

To recapitulate our reinterpretation of Piaget's theory makes 
three points. First, it provides a specific psychological theory, high- 
ly competitive in its parsimony and explanatory power with others 
in the field. Second, it shows us the power of a specific computa- 
tional principle, in this case the theory of pure procedures, that is, 
procedures that can be closed off and used in a modular way. 
Third, it concretizes my argument about how different languages 
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can influence the cultures that can grow up around them. Not all 
programming languages embody this theory of pure procedures. 
When they do not, their role as metaphors for psychological issues 
is severely biased. The analogy between artificial intelligence and 
artificial flying made the point that the same principles could un- 
derlie the artificial and natural phenomena, however different 
these phenomena might appear. The dynamics of lift are funda- 
mental to flight as such, whether the flyers are of flesh and blood 
or of metal. We have just seen a principle that may be fundamental 
both to human and artificial intelligence: the principle of epistemo- 
logical modularity. There have been many arguments about wheth- 
er the ideal machine for the achievement of intelligence would be 
analog or digital, and about whether the brain is analog or digital. 
From the point of view of the theory I am advancing here, these ar- 
guments are beside the point. The important question is not wheth- 
er the brain or the computer is discrete but whether knowledge is 
modularizable. 

For me, our ability to use computational metaphors in this way, 
as carriers for new psychological theories, has implications con- 
cerning where theories of knowledge are going and where we are 
going as producers and carriers of knowledge. These areas are not 
independent. In earlier chapters it was suggested that how we think 
about knowledge affects how we think about ourselves. In particu- 
lar, our image of knowledge as divided up into different kinds leads 
us to a view of people as divided up according to what their apti- 
tudes are. This in turn leads to a balkanization of our culture. 

Perhaps the fact that I have spoken so negatively about the bal- 
kanization of our culture and so positively about the modulariza- 
tion of knowledge requires some clarification. When knowledge can 
be broken up into "mind-size bites," it is more communicable, 
more assimilable, more simply constructable. The fact that we di- 
vide knowledge up into scientific and humanistic worlds defines 
some knowledge as being a priori uncommunicable to certain kinds 
of people. Our commitment to communication is not only expressed 
through our commitment to modularization, which facilitates it, 
but through our attempt to find a language for such domains as 
physics and mathematics, which have as their essence communica- 
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tion between constructed entities. By restating Newton's laws as 
assertions about how particles (or "Newtonian Turtles") communi- 
cate with one another, we give it a handle that can be more easily 

grabbed by a child or by a poet. 
Consider another example of how our images of knowledge can 

subvert our sense of ourselves as intellectual agents. Educators 
sometimes hold up an ideal of knowledge as having the kind of 
coherence defined by formal logic. But these ideals bear little 
resemblance to the way in which most people experience them- 
selves. The subjective experience of knowledge is more similar to 
the chaos and controversy of competing agents than to the certi- 
tude and orderliness of p's implying q's. The discrepancy between 
our experience of ourselves and our idealizations of knowledge has 
an effect" It intimidates us, it lessens the sense of our own compe- 
tence, and it leads us into counterproductive strategies for learning 
and thinking. 

Many older students have been intimidated to the point of drop- 
ping out, and what is true for adults is doubly true for children. We 
have already seen that despite their experience of themselves as 
theory builders, children are not respected as such. And these con- 
tradictions are compounded by holding out an ideal of knowledge 
to which no one's thinking conforms. Many children and college 
students who decide "I can never be a mathematician or a scien- 
tist" are reflecting a discrepancy between the way they are led to 
believe the mathematician must think and the way they know they 
do. In fact the truth is otherwise: Their own thinking is much more 
like the mathematician's than either is like the logical ideal. 

I have spoken of the importance of powerful ideas in grasping 
the world. But we could hardly ever learn a new idea if every time 
we did we had to totally reorganize our cognitive structures in or- 
der to use it or if we even had to insure that no inconsistencies had 
been introduced. Although powerful ideas have the capacity to help 
us organize our way of thinking about a particular class of prob- 
lems (such as physics problems), we don't have to reorganize our- 
selves in order to use them. We put our skills and heuristic strate- 
gies into a kind of tool box--and while their interaction can, in the 
course of time, give rise to global changes, the act of learning is it- 
self a local event. 
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The local nature of learning is seen in my description of the ac- 
quisition of conservation. The necessary agents entered the system 
locally; their top goals were in contradiction with each other; the 
agent that finally reconciles them leaves them in place. There is no 
reason why this "patchwork theory" of theory building should be 
considered appropriate only for describing the learning of children. 
Research in artificial intelligence is gradually giving us a surer 
sense of the range of problems that can be meaningfully solved on 
the pattern we have sketched for the conservation problem: with 
modular agents, each of them simple-minded in its own way, many 
of them in conflict with one other. The conflicts are regulated and 
kept in check rather than "resolved" through the intervention of 
special agents no less simple-minded than the original ones. Their 
way of reconciling differences does not involve forcing the system 
into a logically consistent mold. 

The process reminds one of tinkering; learning consists of build- 
ing up a set of materials and tools that one can handle and manipu- 
late. Perhaps most central of all, it is a process of working with 
what you've got. We're all familiar with this process on the con- 
scious level, for example, when we attack a problem empirically, 
trying out all the things that we have ever known to have worked on 
similar problems before. But here I suggest that working with what 
you've got is a shorthand for deeper, even unconscious learning 
processes. Anthropologist Claude L6vi-Strauss 2 has spoken in simi- 
lar terms of the kind of theory building that is characteristic of 
primitive science. This is a science of the concrete, where the rela- 
tionships between natural objects in all their combinations and re- 
combinations provide a conceptual vocabulary for building scientif- 
ic theories. Here I am suggesting that in the mest fundamental 
sense, we, as learners, are all bricoleurs. 8 This leads us into the sec- 
ond kind of implication of our computational theory of agents. If 
the first implications had to do with impacts on our ideas about 
knowledge and learning, the second have to do with possible im- 
pacts on our images of ourselves as learners. If bricolage is a model 
for how scientifically legitimate theories are built, then we can be- 
gin to develop a greater respect for ourselves as bricoleurs. And of 
course this joins our central theme of the importance and power of 
Piagetian learning. In order to create the conditions for bringing 
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what is now non-Piagetian learning to the Piagetian side, we have 
to be able to act in good faith. We have to feel that we are not de- 
naturing knowledge in the process. 

I end this chapter on cognitive theory and people with a conjec- 
ture. Earlier I said that I would not present Piaget as a theorist of 
stages. But thinking about Piagetian stages does provide a context 
in which to make an important point about a possible impact of a 
computational culture on people. Piaget sees his stages of cognitive 
development as invariable, and numerous cross-cultural investiga- 
tions have seemed to confirm the validity of his belief. In society 
after society, children seem to develop cognitive capacities in the 
same order. In particular, his stage of concrete operations, to which 
the conservations typically belong, begins four or more years earli- 
er than the next and final stage, the stage of formal operations. The 
construct of a stage of concrete operations is supported by the ob- 
servation that, typically, children in our society at six or seven 
make a breakthrough in many realms, and seemingly all at once. 
They are able to use units of numbers, space, and time; to reason 
by transitivity; to build up classificatory systems. But there are 
things they cannot do. In particular, they flounder in situations 
that call for thinking not about how things are but about all the 
ways they could be. Let us consider the following example, which I 
anticipated in the introduction. 

A child is given a collection of beads of different colors, say 
green, red, blue, and black, and is asked to construct all the possi- 
ble pairs of colors: green-blue, green-red, green-black, and then the 
triplets and so on. Just as children do not acquire conservation until 
their seventh year, children around the world are unable to carry 
out such combinatorial tasks before their eleventh or twelfth year. 
Indeed, many adults who are "intelligent" enough to live normal 
lives never acquire this ability. 

What is the nature of the difference between the so-called "con- 
crete" operations involved in conservation and the so-called "for- 
mal" operations involved in the combinatorial task? The names 
given them by Piaget and the empirical data suggest a deep and es- 
sential difference. But looking at the problem through the prism of 
the ideas developed here gives a much different impression. 
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From a computational point of view, the most salient ingredients 
of the combinatorial task are related to the idea of procedure~sys- 
tematicity and debugging. A successful solution consists of follow- 
ing some such procedure as: 

1. Separate the beads into colors. 
2. Choose a color A as color 1. 
3. Form all the pairs that can be formed with color 1. 
4. Choose color 2. 
5. Form all the pairs that can be formed with color 2. 
6. Do this for each color. 
7. Go back and remove the duplicates. 

So what is really involved is writing and executing a program in- 
cluding the all-important debugging step. This observation suggests 
a reason for the fact that children acquire this ability so late: Con- 
temporary culture provides relatively little opportunity for brico- 
lage with the elements of systematic procedures of this type. I do 
not mean to say that there are no such opportunities. Some are en- 
countered; for example, in games where a child can create his own 
"combinatorial microworlds." But the opportunities, the incentives, 
and the help offered the child in this area are very significantly less 
than in such areas as number. In our culture number is richly rep- 
resented, systematic procedure is poorly represented. 4 

I see no reason to doubt that this difference could account for a 
gap of five years or more between the ages at which conservation of 
number and combinatorial abilities are acquired. 

The standard methodology for investigating such hypotheses as 
this is to compare children in different cultures. This has, of course, 
been done for the Piagetian stages. Children at all the levels of de- 
velopment anthropologists have been able to distinguish, and in 
over a hundred different societies from all the continents, have 
been asked to pour liquids and sort beads. In all cases, if conserva- 
tion and combinatorial skills came at all, conservation of numbers 
was evidenced by children five or more years younger than those 

evidencing combinatorial skills. Yet this observation casts no doubt 
on my hypothesis. It may well be universally true of precomputer 
societies that numerical knowledge would be more richly repre- 
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sented than programming knowledge. It is not hard to invent plau- 
sible explanations of such a cognitive-social universal. But things 
may be different in the computer-rich cultures of the future. If 
computers and programming become a part of the daily life of chil- 
dren, the conservation-combinatorial gap will surely close and 
could conceivably be reversed: Children may learn to be systematic 
before they learn to be quantitative! 
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Chapter 8 

Images of the 
Learning Society 

THE VISION I HAVE PRESENTED is of a particular computer 
culture, a mathetic one, that is, one that helps us not only to learn 
but to learn about learning. I have shown how this culture can hu- 
manize learning by permitting more personal, less alienating rela- 
tionships with knowledge and have given some examples of how it 
can improve relationships with other people encountered in the 
learning process: fellow students and teachers. But I have made 
only passing remarks about the social context in which this learn- 
ing might take place. It is time to face (though I cannot answer) a 
question that must be in many readers' minds: Will this context be 
school? 

The suggestion that there might come a day when schools no 
longer exist elicits strong response from many people. There are 
many obstacles to thinking clearly about a world without schools. 
Some are highly personal. Most of us spent a larger fraction of our 
lives going to school than we care to think about. For example, I 
am over fifty and yet the number of my postschool years has 
barely caught up with my preschool and school years. The concept 
of a world without school is highly dissonant with out experiences 
of our own lives. Other obstacles are more conceptual. One cannot 
define such a world negatively, that is by simply removing school 
and putting nothing in its place. Doing so leaves a thought vacuum 
that the mind has to fill one way or another, often with vague but 
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scary images of children "running wild," "drugging themselves," 
or "making life impossible for their parents." Thinking seriously 
about a world without schools calls for elaborated models of the 
nonschool activities in which children would engage. 

For me, collecting such models has become an important part of 
thinking about the future of children. I recently found an excellent 
model during a summer spent in Brazil. For example, at the core of 
the famous carnival in Rio de Janeiro is a twelve-hour-long proces- 
sion of song, dance, and street theater. One troop of players after 
another presents its piece. Usually the piece is a dramatization 
through music and dance of a historical event or folk tale. The lyr- 
ics, the choreography, the costumes are new and original. The level 
of technical achievement is professional, the effect breathtaking. 
Although the reference may be mythological, the processions are 
charged with contemporary political meaning. 

The processions are not spontaneous. Preparing them as well as 
performing in them are important parts of Brazilian life. Each 
group prepares separately~and competitiveiy~in its own learning 
environment, which is called a samba school. These are not schools 
as we know them; they are social clubs with memberships that may 
range from a few hundred to many thousands. Each club owns a 
building, a place for dancing and getting together. Members of a 
samba school go there most weekend evenings to dance, to drink, to 
meet their friends. 

During the year each samba school chooses its theme for the 
next carnival, the stars are selected, the lyrics are written and re- 
written, the dance is choreographed and practiced. Members of the 
school range in age from children to grandparents and in ability 
from novice to professional. But they dance together and as they 
dance everyone is learning and teaching as well as dancing. Even 
the stars are there to learn their difficult parts. 

Every American disco is a place for learning as well as for danc- 
ing. But the samba schools are very different. There is a greater so- 
cial cohesion, a sense of belonging to a group, and a sense of com- 
mon purpose. Much of the teaching, although it takes place in a 
natural environment, is deliberate. For example, an expert dancer 
gathers a group of children around. For five or for twenty minutes 
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a specific learning group comes into existence. Its learning is delib- 
erate and focused. Then it dissolves into the crowd. 

In this book we have considered how mathematics might be 
learned in settings that resemble the Brazilian samba school, in set- 
tings that are real, socially cohesive, and where experts and novices 
are all learning. The samba school, although not "exportable" to an 
alien culture, represents a set of attributes a learning environment 
should and could have. Learning is not separate from reality. The 
samba school has a purpose, and learning is integrated in the school 
for this purpose. Novice is not separated from expert, and the ex- 
perts are also learning. 

LOGO environments are like samba schools in some ways, un- 
like them in other ways. The deepest resemblance comes from the 
fact that in them mathematics is a real activity that can be shared 
by novices and experts. The activity is so varied, so discovery-rich, 
that even in the first day of programming, the student may do 
something that is new and exciting to the teacher. John Dewey ex- 
pressed a nostalgia for earlier societies where the child becomes a 
hunter by real participation and by playful imitation. Learning in 
our schools today is not significantly part icipatory~and doing 
sums is not an imitation of an exciting, recognizable activity of 
adult life. But writing programs for computer graphics or music 
and flying a simulated spaceship do share very much with the real 
activities of adults, even with the kind of adult who could be a hero 
and a role model for an ambitious child. 

LOGO environments also resemble samba schools in the quality 
of their human relationships. Although teachers are usually pre- 
sent, their interventions are more similar to those of the expert 
dancers in the samba school than those of the traditional teacher 
armed with lesson plans and a set curriculum. The LOGO teacher 
will answer questions, provide help if asked, and sometimes sit 
down next to a student and say: "Let me show you something." 
What is shown is not dictated by a set syllabus. Sometimes it is 
something the student can use for an immediate project. Some- 
times it is something that the teacher has recently learned and 
thinks the student would enjoy. Sometimes the teacher is simply 
acting spontaneously as people do in all unstructured social situa- 
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tions when they are excited about what they are doing. The LOGO 
environment is like the samba school also in the fact that the flow 
of ideas and even of instructions is not a one-way street. The envi- 
ronment is designed to foster richer and deeper interactions than 
are commonly seen in schools today in connection with anything 
mathematical. Children create programs that produce pleasing 
graphics, funny pictures, sound effects, music, and computer jokes. 
They start interacting mathematically because the product of their 
mathemetical work belongs to them and belongs to real life. Part of 
the fun is sharing, posting graphics on the walls, modifying and ex- 
perimenting with each other's work, and bringing the "new" prod- 
ucts back to the original inventors. Although the work at the com- 
puter is usually private it increases the children's desire for 
interaction. These children want to get together with others en- 
gaged in similar activities because they have a lot to talk about. 
And what they have to say to one another is not limited to talking 
about their products: LOGO is designed to make it easy to tell 
about the process of making them. 

By building LOGO in such a way that structured thinking be- 
comes powerful thinking, we convey a cognitive style, one aspect of 
which is to facilitate talking about the process of thinking. LOGO's 
emphasis on debugging goes in the same direction. Students' bugs 
become topics of conversation; as a result they develop an articu- 
late and focused language to use in asking for help when it is need- 
ed. And when the need for help can be articulated clearly, the help- 
er does not necessarily have to be a specially trained professional in 
order to give it. In this way the LOGO culture enriches and facili- 
tates the interaction between all participants and offers opportuni- 
ties for more articulate, effective, and honest teaching relation- 
ships. It is a step toward a situation in which the line between 
learners and teachers can fade. 

Despite these similarities, LOGO environments are not samba 
schools. The differences are quite fundamental. They are reflected 
superficially in the fact that the teachers are professionals and are 
in charge even when they refrain from exerting authority. The stu- 
dents are a transitory population and seldom stay long enough to 
make LOGO's long-term goals their own. Ultimately the differ- 
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ence has to do with how the two entities are related to the sur- 
rounding culture. The samba school has rich connections with a 
popular culture. The knowledge being learned there is continuous 
with that culture. The LOGO environments ' are artificially main- 
tained oases where people encounter knowledge (mathematical and 
mathetic) that has been separated from the mainstream of the sur- 
rounding culture, indeed which is even in some opposition to values 
expressed in that surrounding culture. When I ask myself whether 
this can change, I remind myself of the social nature of the ques- 
tion by remembering that the samba school was not designed by re- 
searchers, funded by grants, nor implemented by government ac- 
tion. It was not made. It happened. This must be true too of any 
new successful forms of associations for learning that might 
emerge out of the mathetic computer culture. Powerful new social 
forms must have their roots in the culture, not be the creatures of 
bureaucrats. 

Thus we are brought back to seeing the necessity for the educa- 
tor to be an anthropologist. Educational innovators must be aware 
that in order to be successful they must be sensitive to what is hap- 
pening in the surrounding culture and use dynamic cultural trends 
as a medium to carry their educational interventions. 

It has become commonplace to say that today's culture is 
marked by a ubiquitous computer technology. This has been true 
for some time. But in recent years, there is something new. In the 
past two years, over 200,000 personal computers have entered the 
lives of Americans, some of them originally bought for business 
rather than recreational or educational purposes. What is impor- 
tant to the educator-as-anthropologist, however, is that they exist 
as objects that people see, and start to accept, as part of the reality 
of everyday life. And at the same time that this massive penetra- 
tion of the technology is taking place, there is a social movement 
afoot with great relevance for the politics of education. There is an 
increasing disillusion with traditional education. Some people ex- 
press this by extreme action, actually withdrawing their children 
from schools and choosing to educate them at home. For most, 
there is simply the gnawing sense that schools simply aren't doing 
the job anymore. I believe that these two trends can come together 

181 



M I N D S T O R M S  

in a way that would be good for children, for parents, and for learn- 
ing. This is through the construction of educationally powerful 
computational environments that will provide alternatives to tradi- 
tional classrooms and traditional instruction. I do not present 
LOGO environments as my proposal for this. They are too primi- 
tive, too limited by the technology of the 1970s. The role I hope 
they fill is that of a model. By now the reader must anticipate that 
I shall say an object-to-think-with, that will contribute to the essen- 
tially social process of constructing the education of the future. 

LOGO environments are not samba schools, but they are useful 
for imagining what it would be like to have a "samba school for 
mathematics." Such a thing was simply not conceivable until very 
recently. The computer brings it into the realm of the possible by 
providing mathematically rich activities which could, in principle, 
be truly engaging for novice and expert, young and old. I have no 
doubt that in the next few years we shall see the formation of some 
computational environments that deserve to be called "samba 
schools for computation." There have already been attempts in this 
direction by people engaged in computer hobbyist clubs and in run- 
ning computer "drop-in centers." 

In most cases, although the experiments have been interesting 
and exciting, they have failed to make it because they were too 
primitive. Their computers simply did not have the power needed 
for the most engaging and shareable kinds of activities. Their vi- 
sions of how to integrate computational thinking into everyday life 
was insufficiently developed. But there will be more tries, and more 
and more. And eventually, somewhere, all the pieces will come to- 
gether and it will "catch." One can be confident of this because 
such attempts will not be isolated experiments operated by re- 
searchers who may run out of funds or simply become disillusioned 
and quit. They will be manifestations of a social movement of peo- 
ple interested in personal computation, interested in their own chil- 
dren, and interested in education. 

There are problems with the image of samba schools as the locus 
of education. I am sure that a computational samba school will 
catch on somewhere. But the first one will almost certainly happen 
in a community of a particular kind, probably one with a high den- 

182 



Images of the Learning Society 

sity of middle-income engineers. This will allow the computer sam- 
ba school to put down "cultural roots," but it will, of course, also 
leave its mark on the culture of the samba school. For people inter- 
ested in education in general, it will be important to trace the life 
histories of these efforts: How will they affect the intellectual de- 
velopment of their school-age participants? Will we see reversals of 
Piagetian stages? Will they develop pressures to withdraw from 
traditional schools? How will local schools try to adapt to the new 
pressure on them? But as an educational utopian I want something 
else. I want to know what kind of computer culture can grow in 
communities where there is not already a rich technophilic soil. I 
want to know and I want to help make it happen. 

Let me say once more, the potential obstacle is not economic and 
it is not that computers are not going to be objects in people's ev- 
eryday lives. They eventually will. They are already entering most 
workplaces and will eventually go into most homes just as TV sets 
now do, and in many cases initially for the same reasons. The ob- 
stacle to the growth of popular computer cultures is cultural, for 
example, the mismatch between the computer culture embedded in 
the machines of today and the cultures of the homes they will go 
into. And if the problem is cultural the remedy must be cultural. 

The research challenge is clear. We need to advance the art of 
meshing computers with cultures so that they can serve to unite, 
hopefully without homogenizing, the fragmented subcultures that 
coexist counterproductively in contemporary society. For example, 
the gulf must be bridged between the technical-scientific and hu- 
manistic cultures. And I think that the key to constructing this 
bridge will be learning how to recast powerful ideas in computa- 
tional form, ideas that are as important to the poet as to the 
engineer. 

In my vision the computer acts as a transitional object to medi- 
ate relationships that are ultimately between person and person. 
There are mathophobes with a fine sense of moving their bodies, 
and there are mathophiles who have forgotten the sensory motor 
roots of their mathematical knowledge. The Turtle establishes a 
bridge. It serves as a common medium in which can be recast the 
shared elements of body geometry and formal geometry. Recasting 
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juggling as structured programming can build a bridge between 
those who have a fine mathetic sense of physical skills and those 
who know how to go about organizing the task of writing an essay 
on history. 

Juggling and writing an essay seem to have little in common if 
one looks at the product. But the processes of learning both skills 
have much in common. By creating an intellectual environment in 
which the emphasis is on process we give people with different 
skills and interests something to talk about. By developing expres- 
sive languages for talking about process and by recasting old 
knowledge in these new languages we can hope to make transpar- 
ent the barriers separating disciplines. In the schools math is math 
and history is history and juggling is outside the intellectual pale. 
Time will tell whether schools can adapt themselves. What is more 
important is understanding the recasting of knowledge into new 
forms. 

In this book we have seen complex interactions between new 
technologies and the recasting of the subject matters. When we dis- 
cussed the use of the computer to facilitate learning Newton's laws 
of motion, we did not attempt to "computerize" the equations as 
they are found in a classical textbook. We developed a new concep- 
tual framework for thinking about motion. For example, the con- 
cept of Turtle enabled us to formulate a qualitative component of 
Newtonian physics. The resulting reconceptualizing would be valid 
without a computer; its relation to the ,computer is not at all reduc- 
tionist. But it is able to take advantage of the computer in ways in 
which other conceptualizations of physics could not, and thus gain 
in mathetic power. Thus, the whole process involves a dialectical 
interaction between new technologies and new ways of doing phys- 
ics. The logic of these interactions is seen very clearly by looking at 
another item from my collection of good models for thinking about 
education. 

Twenty years ago, parallel skiing was thought to be a skill at- 
tainable only after many years of training and practice. Today, it is 
routinely achieved during the course of a single skiing season. 
Some of the factors that contributed to this change are of a kind 
that fit into the traditional paradigms for educational innovation. 
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For example, many ski schools use a new pedagogical technique 
(the graduated length m e t h o d ~ G L M )  in which one first learns to 
ski using short skis and then gradually progresses to longer ones. 
But something more fundamental happened. In a certain sense 
what new skiers learn today so easily is not the same thing that 
their parents found so hard. All the goals of the parents are 
achieved by the children: The skiers move swiftly over the moun- 
tain with their skis parallel, avoiding obstacles and negotiating sla- 
lom gates. But the movements they make in order to produce these 
results are quite different. 

When the parents learned to ski, both vacation skiers and Olym- 
pic champions used turning techniques based on a preparatory 
counterrotation, thought to be necessary for parallel turns. The re- 
alization that more direct movements could produce a more effec- 
tive turn was a fundamental discovery, and it rapidly transformed 
skiing, both for the vacation skier and the champion. For the novice 
the new techniques meant more rapid learning, for the champion it 
meant more efficient movements, for the fashionable skier it meant 
more opportunities for elegant movements. Thus, at the heart of 
the change is a reconceptualization of skiing itself, not a mere 
change in pedagogy or technology. But in order to have a complete 
picture, we must also recognize a dialectical interaction between 
the content, the pedagogy, and the technology. For as ski move- 
ments were changing, skis and boots were changing too. New plas- 
tics allowed boots to become lighter and more rigid, and skis could 
be made more or less flexible. The direction of these changes was 

.so synergistic with the new ski techniques that many ski instructors 
and ski writers attributed the change in skiing to the technology. 
Similarly, the use of short skis for instruction happened to be so 
highly adaptable to the new technology that many people sum up 
the ski revolution as the "move to GLM." 

I like to think about the "ski revolution" because it helps me to 
think about the very complex junction we are at in the history of 
the "computer revolution." Today we hear a lot of talk about how 
"computers are coming" and a lot of talk about how they will 
change education. Most of the talk falls into two categories, one 
apparently "revolutionary" and the other "reformist." For many 
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revolutionaries, the presence of the computer will in itself produce 
momentous change: Teaching machines in the homes and computer 
networks will make school (as we know it) obsolete; reconceptuali- 
zations of physics are the furthest things from their minds. For the 
reformists, the computer will not abolish schools but will serve 
them. The computer is seen as an engine that can be harnessed to 
existing structures in order to solve, in local and incremental mea- 
sures, the problems that face schools as they exist today. The re- 
formist is no more inclined than the revolutionary to think in terms 
of reconceptualizing subject domains. 

Our philosophy, both implicit and explicit, tries to avoid the two 
common traps: commitment to technological inevitability and com- 
mitment to strategies of incremental change. The technology itself 
will not draw us forward in any direction I can believe in either 
educationally or socially. The price of the education community's 
reactive posture will be educational mediocrity and social rigidity. 
And experimenting with incremental changes will not even put us 
in a position to understand where the technology is leading. 

My own philosophy is revolutionary rather than reformist in its 
concept of change. But the revolution I envision is of ideas, not of 
technology. It consists of new understandings of specific subject do- 
mains and in new understandings of the process of learning itself. It 
consists of a new and much more ambitious setting of the sights of 
educational aspiration. 

I am talking about a revolution in ideas that is no more reducible 
to technologies than physics and molecular biology are reducible to 
the technological tools used in the laboratories or poetry to the 
printing press. In my vision, technology has two roles. One is heu- 
ristic: The computer presence has catalyzed the emergence of 
ideas. The other is instrumental: The computer will carry ideas into 
a world larger than the research centers where they have incubated 
up to now. 

I have suggested that the absence of a suitable technology has 
been a principle cause of the past stagnation of thinking about edu- 
cation. The emergence first of large computers and now of the mi- 
crocomputer has removed this cause of stagnation. But there is an- 
other, secondary cause that grew like algae on a stagnant pond. We 
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have to consider whether it will disappear with the condition that 
allowed its growth, or whether, like QWERTY, it will remain to 
strangle progress. In order to define this obstacle and place it in 
perspective, we shall pick out one of the salient ideas presented in 
earlier chapters and consider what besides technology is needed to 
implement it. 

Out of the crucible of computational concepts and metaphors, of 
predicted widespread computer power and of actual experiments 
with children, the idea of Piagetian learning has emerged as an im- 
portant organizing principle. Translated into practical terms this 
idea sets a research agenda concerned with creating conditions for 
children to explore "naturally" domains of knowledge that have 
previously required didactic teaching; that is, arranging for the 
children to be in contact with the "material"~physical or ab- 
stract~they can use for Piagetian learning. The prevalence of 
paired things in our society is an example of "naturally" occurring 
Piagetian material. The Turtle environments gave us examples of 
"artificial" (that is, deliberately invented) Piagetian material. 
Pairings and Turtles both owe their mathetic power to two attri- 
butes: Children relate to them, and they in turn relate to important 
intellectual structures. Thus pairing and Turtles act as transitional 
objects. The child is drawn into playing with pairs and with the 
process of pairing and in this play pairing acts as a carrier of pow- 
erful ideas~or of the germs from which powerful ideas will grow 
in the matrix of the child's active mind. 

The attributes the Turtle shares with pairing might seem simple, 
but their realization draws upon a complex set of ideas, of kinds of 
expertise, and of sensitivities that can be broken down, though 
somewhat artificially, into three categories: knowledge about com- 
puters, knowledge about subject domains, and knowledge about 
people. The people knowledge I see as necessary to the design of 
good Piagetian material is itself complex. It includes the kinds of 
knowledge that are associated with academic psychology in all its 
branches~cognitive, personality, clinical, and so on--and also the 
more empathetic kinds possessed by creative artists and by people 
who "get along with children." In articulating these prerequisites 
for the creation of Piagetian material, we come face to face with 
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what I see as the essential remaining problem in regard to the fu- 
ture of computers and education: the problem of the supply of peo- 
ple who will develop these prerequisites. 

This problem goes deeper than a mere short supply of such peo- 
ple. The fact that in the past there was no role for such people has 
been cast into social and institutional concrete; now there is a role 
but there is no place for them. In current professional definitions 
physicists think about how to do physics, educators think about 
how to teach it. There is no recognized place for people whose re- 
search is really physics, but physics oriented in directions that will 
be educationally meaningful. Such people are not particularly wel- 
come in a physics department; their education goals serve to 
trivalize their work in the eyes of other physicists. Nor are they 
welcome in the education school~there, their highly technical lan- 
guage is not understood and their research criteria are out of step. 
In the world of education a new theorem for a Turtle microworld, 
for example, would be judged by whether it produced a "measur- 
able" improvement in a particular physics course. Our hypothetical 
physicists will see their work very differently, as a theoretical con- 
tribution to physics that in the long run will make knowledge of the 
physical universe more accessible, but which in the short run would 
not be expected to improve performance of students in a physics 
course. Perhaps, on the contrary, it would even harm the student if 
injected as a local change into an educational process based on a 
different theoretical approach. 

This point about what kind of discourse is welcome in schools of 
education and in physics departments is true more generally also. 
Funding agencies as well as universities do not offer a place for any 
research too deeply involved with the ideas of science for it to fall 
under the heading of education and too deeply engaged in an edu- 
cational perspective for it to fall under the heading of science. It 
seems to be nobody's business to think in a fundamental way about 
science in relation to the way people think and learn it. Although 
lip service has been paid to the importance of science and society, 
the underlying methodology is like that of traditional education: 
one of delivering elements of ready-made science to a special audi- 
ence. The concept of a serious enterprise of making science for the 
people is quite alien. 
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The computer by itself cannot change the existing institutional 
assumptions that separate scientist from educator, technologist 
from humanist. Nor can it change assumptions about whether sci- 
ence for the people is a matter of packaging and delivery or a prop- 
er area of serious research. To do any of these things will require 
deliberate action of a kind that could, in principle, have happened 
in the past, before computers existed. But it did not happen. The 
computer has raised the stakes both for our inaction and our ac- 
tion. For those who would like to see change, the price of inaction 
will be to see the least desirable features of the status quo exagger- 
ated and even more firmly entrenched. On the other hand, the fact 
that we will be in a period of rapid evolution will produce footholds 
for institutional changes that might have been impossible in a more 
stable period. 

The emergence of motion pictures as a new art form went hand 
in hand with the emergence of a new subculture, a new set of pro- 
fessions made up of people whose skills, sensitivities, and philos- 
ophies of life were unlike anything that had existed before. The 
story of the evolution of the world of movies is inseparable from the 
story of the evolution of the communities of people. Similarly, a 
new world of personal computing is about to come into being, and 
its history will be inseparable from the story of the people who will 
make it. 
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Epilogue: 

The Mathematical 

Unconscious 

REPRINTED HERE as an epilogue is my first discussion, writ- 
ten a few years ago, o f  an idea that developed into a central theme 
of  this book." My rejection o f  the dichotomy opposing a stereotypi- 
cally "'disembodied" mathematics to activities engaging a ful l  
range o f  human sensitivities.* In the book I discuss this theme in 
the context o f  Turtle geometry. In the following pages the reader 
will find this theme embedded in reflections on the sources of  
mathematical pleasure. 

It is deeply embedded in our culture that the appreciation of 
mathematical beauty and the experience of mathematical pleasure 
are accessible only to a minority, perhaps a very small minority, of 
the human race. This belief is given the status of a theoretical prin- 
ciple by Henri Poincar6, who has to be respected not only as one of 
the seminal mathematical thinkers of the century but also as one of 
the most thoughtful writers on the epistemology of the mathemat- 
ical sciences. Poincar6 differs sharply from prevalent trends in cog- 
nitive and educational psychology in his view of what makes a 
mathematician. For Poincar6 the distinguishing feature of the 
mathematical mind is not logical but aesthetic. He also believes, 

*I would like to thank the editors of the MIT press for their permission to reprint this es- 
say which originally appeared as "Poincar6 and the Mathematical Unconscious" in Judith 
Wechsler, ed., Aesthetics In Science (Cambridge, Mass.: MIT Press, 1978). I also want to 
thank Judith Wechsler for encouraging me to write this essay (which began as a guest lec- 
ture in one of her classes at MIT) and for much else as well. 
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but this is a separate issue, that this aesthetic sense is innate: Some 
people happen to be born with the faculty of developing an appre- 
ciation of mathematical beauty, and those are the ones who can be- 
come creative mathematicians. The others cannot. 

This essay uses Poincar~'s theory of mathematical creativity as 
an organizing center for reflections on the relationship between the 
logical and the extralogical in mathematics and on the relationship 
between the mathematical and the nonmathematical in the spec- 
trum of human activities. The popular and the sophisticated wings 
of our culture almost unanimously draw these dichotomies in hard- 
edged lines. Poincare's position is doubly interesting because in 
some ways he softens, and in some ways sharpens, these lines. They 
are softened when he attributes to the aesthetic an important func- 
tional role in mathematics. But the act of postulating a specifically 
mathematical aesthetic, and particularly an innate one, sharpens 
the separation between the mathematical and the nonmathemati- 
cal. Is the mathematical aesthetic really different? Does it have 
common roots with other components of our aesthetic system? 
Does mathematical pleasure draw on its own pleasure principles or 
does it derive from those that animate other phases of human life? 
Does mathematical intuition differ from common sense in nature 
and form or only in content? 

These questions are deep, complex, and ancient. My daring to 
address them in the space of a short essay is justified only because 
of certain simplifications. The first of these is a transformation of 
the questions, similar in spirit to Jean Piaget's way of transforming 
philosophical questions into psychogenetic ones to which experi- 
mental investigations into how children think become refreshingly 
relevant. By so doing, he has frequently enraged or bewildered phi- 
losophers, but has enriched beyond measure the scientific study of 
mind. My transformation turns Poincar6's theory of the highest 
mathematical creativity into a more mundane but more managea- 
ble theory of ordinary mathematical (and possibly nonmathemati- 
cal) thinking. 

Bringing his theory down to earth in this way possibly runs the 
risk of abandoning what Poincar~ himself might have considered to 
be most important. But it makes the theory more immediately rel- 
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evant, perhaps even quite urgent, for psychologists, educators, and 
others. For example, if Poincar6's model turned out to contain ele- 
ments of a true account of ordinary mathematical thinking, it could 
follow that mathematical education as practiced today is totally 
misguided and even self-defeating. If mathematical aesthetics gets 
any attention in the schools, it is as an epiphenomenon, an icing on 
the mathematical cake, rather than as the driving force which 
makes mathematical thinking function. Certainly the widely prac- 
ticed theories of the psychology of mathematical development 
(such as Piaget's) totally ignore the aesthetic, or even the intuitive, 
and concentrate on structural analysis of the logical facet of math- 
ematical thought. 

The destructive consequences of contemporary mathematics 
teaching can also be seen as a minor paradox for Poincar6. The fact 
that schools, and our culture generally, are so far from being nur- 
turant of nascent mathematical aesthetic sense in children causes 
Poincar~'s major thesis about the importance of aesthetics to un- 
dermine the grounds for believing in his minor thesis, which asserts 
the innateness of such sensibilities. If Poincar6 is right about aes- 
thetics, it becomes only too easy to see how the apparent rareness 
of mathematical talent could be explained without appeal to 
innateness. 

These remarks are enough to suggest that the mundane transfor- 
mation of Poincar6's theory might be a rich prize for educators 
even if it lost all touch with the processes at work in big mathemat- 
ics. But perhaps we can have the best of both worlds. By adopting, 
as we shall, a more experiential mode of discussion through which 
theories about mathematical thinking can be immediately con- 
fronted with the reader's own mental processes, we do not, of 
course, renounce the possibility that the mathematical elite share 
similar experiences. On the contrary, that part of Poincar6's think- 
ing which will emerge as most clearly valid in the ordinary context 
resonates strongly with modern trends which, in my view, consti- 
tute a paradigm shift in thinking about the foundations of math- 
ematics. The concluding paragraphs of my essay will illustrate this 
resonance in the case of the Bourbaki theory of the structure of 
mathematics. 
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My goal here is not to advance a thesis with crisp formulations 
and rigorous argument, and it is certainly not to pass judgment on 
the correctness of Poincar6's theory. I shall be content (this is my 
second major simplification) to suggest to nonmathematical read- 
ers perceptions of, and a discourse about, mathematics which will 
place it closer than is commonly done to other experiences they 
know and enjoy. The major obstacle to doing so is a projection of 
mathematics which greatly exaggerates its logical face, much as 
the Mercator projection of the globe exaggerates the polar regions 
so that on the map northern Greenland becomes more imposing 
than equatorial Brazil. Thus our discussion will be aimed at distin- 
guishing and relating what I shall call the extralogical face of 
mathematics and its logical face. I shall ignore distinctions which 
ought to be made within these categories. Mathematical beauty, 
mathematical pleasure, and even mathematical intuition will be 
treated almost interchangeably insofar as they are representatives 
of the extralogical. And, on the other side, we shall not separate 
such very different facets of the logical as the formalists' emphasis 
on the deductive process, Bertrand Russell's reductionist position 
(against which Poincar~ fought so savagely), and Alfred Tarski's 
set theoretic semantics. These logical theories can be thrown to- 
gether insofar as they have in common an intrinsic, autonomous 
view of mathematics. They deal with mathematics as self-con- 
tained, as justifying itself by formally defined (that is, mathemat- 
ical) criteria of validity, and they ignore all reference of mathemat- 
ics to anything outside itself. They certainly ignore phenomena of 
beauty and pleasure. 

There is no theoretical tension in the fact that mathematical lo- 
gicians ignore, as long as they do not deny, the extralogical. No one 
will call into question either the reality of the logical face of math- 
ematics or the reality of mathematical beauty or pleasure. What 
Poincar~ challenges is the possibility of understanding mathemat- 
ical activity, the work of the mathematician solely, or even primar- 
ily, in logical terms without reference to the aesthetic. Thus his 
challenge is in the field of psychology, or the theory of mind, and, 
as such, has wider reverberations than the seemingly specialized 
problem of understanding mathematical thinking: His challenge 
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calls into question the separation within psychology of cognitive 
functions, defined by their opposition to considerations of affect, of 
feeling, of sense of beauty. 

I shall, on the whole, side with Poincar6 against the possibility of 
a "purely cognitive" theory of mathematical thinking but express 
reservations about the high degree of specificity he attributes to 
the mathematical. But first I must introduce another of the themes 
of Poincar6's theory. This is the role and the nature of the 
unconscious. 

As the aesthetic versus the logical leads us to confront Poincar6 
with cognitive psychology, so the unconscious versus the conscious 
leads to a confrontation with Freud. Poincar6 is close to Freud in 
clearly postulating two minds (the conscious and the unconscious) 
each governed by its own dynamic laws, each able to carry out dif- 
ferent functions with severely limited access to the other's activi- 
ties. As we shall see, Poincar~ is greatly impressed by the way in 
which the solution to a problem on which one has been working at 
an earlier time often comes into consciousness unannounced, and 
almost ready-made, as if produced by a hidden part of the mind. 
But Poincar~'s unconscious is very different from Freud's. Far 
from being the site of prelogical, sexually charged, primary pro- 
cesses, it is rather like an emotionally neutral, supremely logical, 
combinatoric machine. 

The confrontation of these images of the unconscious brings us 
back to our questions about the nature of mathematics itself. The 
logical view of mathematics is definitionally discorporate, detached 
from the body and molded only by an internal logic of purity and 
truth. Such a view would be concordant with Poincar6's neutral un- 
conscious rather than with Freud's highly charged, instinct-ridden 
dynamics. But Poincar6 himself, as I have already remarked, re- 
jects this view of mathematics; even if it could be maintained 
(which is already dubious) as an image of the finished mathemat- 
ical product, it is totally inadequate as an account of the productive 
process through which mathematical truths and structures emerge. 
In its most naive form the logical image of mathematics is a deduc- 
tive system in which new truths are derived from previously derived 
truths by means of rigorously reliable rules of inference. Although 
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less naive logicist theses cannot be demolished quite so easily, it is 
relevant to notice the different ways in which this account of math- 
ematics can be criticized. It is certainly incomplete since it fails to 
explain the process of choice determining how deductions are made 
and which of those made are pursued. It is misleading in that the 
rules of inference actually used by mathematicians would, if ap- 
plied incautiously, quickly lead to contradictions and paradoxes. 
Finally, it is factually false as a description in that it provides no 
place for the as yet undebugged partial results with which the actu- 
al mathematician spends the most time. Mathematical work does 
not proceed along the narrow logical path of truth to truth to truth, 
but bravely or gropingly follows deviations through the surround- 
ing marshland of propositions which are neither simply and wholly 
true nor simply and wholly false. 

Workers in artificial intelligence have patched up the first of 
these areas of weakness, for example, by formalizing the process of 
setting and managing new problems as part of the work of solving a 
given one. But if the new problems and the rules for generating 
them are cast in logical terms, we see this as, at best, the replace- 
ment of a static logic by a dynamic one. It does not replace logic by 
something different. The question at issue here is whether even in 
the course of working on the most purely logical problem the math- 
ematician evokes processes and sets problems which are not them- 
selves purely logical. 

The metaphor of wandering off the path of truth into surround- 
ing marshlands has the merit, despite its looseness, of sharply stat- 
ing a fundamental problem and preoccupation of Poincar6's: the 
problem of guidance, or one might say, of "navigation in intellectu- 
al space." If we are content to churn out logical consequences, we 
would at least have the security of a safe process. In reality, accord- 
ing to Poincar~, the mathematician is guided by an aesthetic sense: 
In doing a job, the mathematician frequently has to work with 
propositions which are false to various degrees but does not have to 
consider any that offend a personal sense of mathematical beauty. 

Poincar~'s theory of how the aesthetic guides mathematical work 
divides the work into three stages. The first is a stage of deliberate, 
conscious analysis, If the problem is difficult, the first stage will 
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never, according to Poincar~, yield the solution. Its role is to create 
the elements out of which the solution will be constructed. A stage 
of unconscious work, which might appear to the mathmatician as 
temporarily abandoning the task or leaving the problem to incu- 
bate, has to intervene. Poincar~ postulates a mechanism for the in- 
cubation. The phenomenological view of abandonment is totally 
false. On the contrary, the problem has been turned over to a very 
active unconscious which relentlessly begins to combine the ele- 
ments supplied to it by the first, conscious state of the work. The 
unconscious mind is not assumed to have any remarkable powers 
except concentration, systematic operation, and imperviousness to 
boredom, distractions, or changes of goal. The product of the un- 
conscious work is delivered back to the conscious mind at a mo- 
ment which has no relation to what the latter is doing. This time 
the phenomenological view is even more misleading since the fin- 
ished piece of work might appear in consciousness at the most sur- 
prising times, in apparent relation to quite fortuitous events. 

How does the unconscious mind know what to pass back to the 
conscious mind? It is here where Poincar6 sees the role of the aes- 
thetic. He believes, as a matter of empirical observation, that ideas 
passed back are not necessarily correct solutions to the original 
problem. So he concludes that the unconscious is not able to rigor- 
ously determine whether an idea is correct. But the ideas passed up 
do always have the stamp of mathematical beauty. The function of 
the third stage of the work is to consciously and rigorously examine 
the results obtained from the unconscious. They might be accepted, 
modified, or rejected. In the last case the unconscious might once 
more be called into action. We observe that the model postulates a 
third agent in addition to the conscious and unconscious minds. 
This agent is somewhat akin to a Freudian censor; its job is to scan 
the changing kaleidoscope of Unconscious patterns allowing only 
those which satisfy its aesthetic criteria to pass through the portal 
between the minds. 

Poincar~ is describing the highest level of mathematical creativ- 
ity, and one cannot assume that more elementary mathematical 
work follows the same dynamic processes. But in our own striving 
toward a theory of mathematical thinking we should not assume 
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the contrary either, and so it is encouraging to see even very limited 
structural resemblances between the process as described by Poin- 
car6 and patterns displayed by nonmathematicians whom we asked 
to work on mathematical problems in what has come, at MIT, to 
be called "Loud Thinking," a collection of techniques designed to 
elicit productive thought (often in domains, such as mathematics, 
they would normally avoid) and make as much of it as possible ex- 
plicit. The example that follows illustrates aspects of what the very 
simplest kind of aesthetic guidance of thought might be. The sub- 
jects in the experiment clearly proceed by a combinatoric, such as 
that which Poincar6 postulates in his second stage, until a result is 
obtained which is satisfactory On grounds that have at least as 
much claim to be called aesthetic as logical. The process does differ 
from Poincar~'s description in that it remains on the conscious lev- 
el. This could be reconciled with Poincar6's theory in many ways: 
One might argue that the number of combinatorial actions needed 
to generate the acceptable result is too small to require passing the 
problem to the unconscious level, or that these nonmathematicians 
lack the ability to do such work unconsciously. In any case, the 
point of the example (indeed, of this essay as a whole) is not to de- 
fend Poincar6 in detail but to illustrate the concept of aesthetic 
guidance. 

The problem on which the subjects were asked to work was the 
proof that the square root of 2 is irrational. The choice is particu- 
larly appropriate here because this theorem was selected by the 
English mathematician G. H. Hardy as a prime example of math- 
ematical beauty, and consequently it is interesting, in the context of 
a nonelitist discussion of mathematical aesthetics, to discover that 
many people with very little mathematical knowledge are able to 
discover the proof if emotionally supportive working conditions en- 
courage them to keep going despite mathematical reticence. The 

• following paragraphs describe an episode through which almost all 
the subjects in our investigation passed. To project ourselves into 
this episode, let us suppose that we have set up the equation: 

k/ 2 = p/q where p and q are whole numbers 
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Let us also suppose that we do not really believe that X/~ can 
be so expressed. To prove this, we seek to reveal something bizarre, 
in fact contradictory, behind the impenetrably innocent surface im- 
pression of the equation. We clearly have to do with an interplay of 
latent and manifest contents. What steps help in such cases? 

Almost as if they had read Freud, many subjects engage in a 
process of mathematical "free association," trying in turn various 
transformations associated with equations of this sort. Those who 
are more sophisticated mathematically need a smaller number of 
tries, but none of the subjects seem to be guided by a prevision of 
where the work will go. Here are some examples of transformations 
in the order they were produced by one subject: 

= p / q  
V ' - ~ × q = p  

p = ~ / - 2 X q  
( = 

2 = if~q2 
f f  = 2q 2 

All subjects who have become more than very superficially in- 
volved in the problem show unmistakable signs of excitement and 
pleasure when they hit on the last equation. This pleasure is not de- 
pendent on knowing (at least consciously) where the process is 
leading. It happens before the subjects are able to say what they 
will do next, and, in fact, it happens even in cases where no further 
progress is made at all. And the reaction to p2 = 2q2 is not merely 
affective; once this has been seen, the subjects scarcely ever look 
back at any of the earlier transformations or even at the original 
equations. Thus there is something very special about p2 = 2q2. 
What is it? We first concentrate on the fact that it undoubtedly has 
a pleasurable charge and speculate about the sources of the charge. 
What is the role of pleasure in mathematics? 

Pleasure is, of course, often experienced in mathematical work, 
as if one were rewarding oneself when one achieves a desired goal 
after arduous struggle. But it is highly implausible that this actual 
equation was anticipated here as a preset goal. If the pleasure was 
that of goal achievement, the goal was of a very different, less for- 
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mal, I would say "more aesthetic" nature than the achievement of 
a particular equation. To know exactly what it is would require 
much more knowledge about the individual subjects than we can 
include here. It is certainly different from subject to subject and 
even multiply overdetermined in each subject. Some subjects ex- 
plicitly set themselves the goal: "Get rid of the square root." Other 
subjects did not seem explicitly to set themselves this goal but were 
nevertheless pleased to see the square root sign go away. Others, 
again, made no special reaction to the appearance of 2 = p2/q2 un- 
til this turned into p2 = 2q2. My suggestion is that the elimination 
of the root sign for the obvious, simple, instrumental purpose is 
only part of a more complex story: The event is resonant with sev- 
eral processes which might or might not be accessible to the con- 
scious mind and might or might not be explicitly formulated as 
goals. I suggest, too, that some of these processes tap into other 
sources of pleasure, more specific and perhaps even more primitive 
than the generalized one of goal attainment. To make these sugges- 
tions more concrete, I shall give two examples of such pleasure- 
giving processes. 

The first example is best described in terms of the case frame 
type of calculus of situations characterizing recent thinking in arti- 
ficial intelligence. The original equation is formalized as a situation 
frame with case slots for "three actors," of which the principle or 
"subject" actor is V"-2. The other two actors, p and q, are subordi- 
nate dummy actors whose roles are merely to make assertions 
about the subject actor. When we turn the situation into p2 = 2q2, 
it is as sharply different as in a figure/ground reversal or the re- 
placement of a screen by a face in an infant's perception of peek-a- 
boo. Now p has become the subject, and the previous subject, X/~, 
has vanished. Does this draw on the pleasure sources that make in- 
fants universally enjoy peek-a-boo? 

The other example of what might be pleasing in this process 
comes from the observation that 2 has not vanished away complete- 
ly without trace. The 2 is still visible in p~ = 2q2! However, these 
two occurences of 2 are so very different in role that identifying 
them gives the situation a quality of punning, or "condensation" at 
least somewhat like that which Freud sees as fundamental to the 
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effectiveness of wit. The attractiveness and plausibility of this sug- 
gestion comes from the possibility of seeing condensation in very 
many mathematical situations. Indeed, the very central idea of 
abstract mathematics could be seen as condensation: The "ab- 
stract" description simultaneously signifies very different "con- 
crete" things. Does this allow us to conjecture that mathematics 
shares more with jokes, dreams, and hysteria than is commonly 
recognized? 

It is of course dangerous to go too far in the direction of present- 
ing the merits of p2 = 2q2 in isolation from its role in achieving the 
original purpose, which was not to titillate the mathematical plea- 
sure senses but to prove that 2 is irrational. The statement of the 
previous two paragraphs needs to be melded with an understanding 
of how the work comes to focus on p2 = 2q2 through a process not 
totally independent of recognizing it as a subgoal of the supergoal 
of proving the theorem. How do we integrate the functional with 
the aesthetic? The simplest gesture in this direction for those who 
see the eminently functional subgoal system as the prime mover is 
to enlarge the universe of discourse in which subgoals can be for- 
mulated. Promoting a subordinate character (that is, p) on the 
problem scene to a principal role is, within an appropriate system 
of situation frames, as well-defined a subgoal as, say, finding the 
numerical solution of an equation. But we are now talking about 
goals which have lost their mathematical specificity and may be 
shared with nonmathematical situations of life or literature. Taken 
to its extreme, this line of thinking leads us to see mathematics, 
even in its detail, as an acting out of something else: The actors 
may be mathematical objects, but the plot is spelled out in other 
terms. Even in its less extreme forms this shows how the aesthetic 
and the functional can enter into a symbiotic relationship of, so to 
speak, mutual exploitation. The mathematically functional goal is 
achieved through a play of subgoals formulated in another, non- 
mathematical discourse, drawing on corresponding extramathema- 
tical knowledge. Thus the functional exploits the aesthetic. But to 
the extent we see (here in a very Freudian spirit) the mathematical 
process itself as acting out premathematical processes, the reverse 
is also true. 
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These speculations go some (very little) way toward showing 
how " "' Pomcare s mathematical aesthetic sentinel could be reconciled 
with existing models of thinking to the enrichment of both. But the 
attempt to do so very sharply poses one fundamental question 
about the relationship between the functional and the aesthetic and 
hedonistic facets not only of mathematics but of all intellectual 
work. What is it about each of these that makes it able to serve the 
other? Is it not very strange that knowledge, or principles of appre- 
ciation, useful outside of mathematics, should have application 
within? The answer must lie in a genetic theory of mathematics. If 
we adopt a Platonic (or logical) view of mathematics as existing in- 
dependently of any properties of the human mind, or of human ac- 
tivity, we are forced to see such interpretations as highly unlikely. 
In the remaining pages I shall touch on a few more examples of 
how mathematics can be seen from a perspective which makes its 
relationship to other human structures more natural. We begin by 
looking at another episode of the story about the square root of 2. 

Our discussion of p2 = 2q2 was almost brutally nonteleological in 
that we discussed it from only one side, the side from which it 
came, pretending ignorance of where it was going. We now remedy 
this by seeing how it serves the original intention of the work, 
which was to find a contradiction in the assumption V' 2 = p/q. It 
happens that there are several paths one can take to this goal. Of 
these I shall contrast two which differ along a dimension one might 
call "gestalt versus atomistic" or "aha-single-flash-insight versus 
step-by-step reasoning." The step-by-step form is the more classi- 
cal (it is attributed to Euclid himself) and proceeds in the following 
manner. We can read off from p2 = 2qZ that p2 is even. It follows 
that p is even. By definition this means that p is twice some other 
whole number which we can call r. So: 

p =  2r 
pZ = 4r 2 

2q z = 4r 2 
qZ = 2r ~ 

remember: p2 = 2q2(!) 

and we deduce that q is also even. But this at last really is manifest- 
ly bizarre since we chose p and q in the first place and could, had 
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we wished, have made sure that they had no common factor. So 
there is a contradiction. 

Before commenting on the aesthetics of this process, we look at 
the "flash" version of the proof. It depends on having a certain per- 
ception of whole numbers, namely, as unique collections of prime 
factors: 6 = 3 × 2 and 36 = 3 × 3 × 2 × 2. If you solidly possess 
this frame for perceiving numbers, you probably have a sense of 
immediate perception of a perfect square (36 or p2 or q2) as an 
even set. If you do not possess it, we might have to use step-by-step 
arguments (such as let p = pap2.. ,  p~, so that p 2 =  p~p~p2p2... 
p~p~), and this proof then becomes even more atomistic and certain- 
ly less pleasing than the classical form. But if you do see (or train 
yourself to see) p2 and q2 as even sets, you will also see p2 = 2q2 as 
making the absurd assertion that an even set (pZ) is equal to an odd 
set (q2 and one additional factor: 2). Thus given the right frames 
for perceiving numbers, p2 = 2q2 is (or so it appears phenomeno- 
logically) directly perceived as absurd. 

Although there is much to say about the comparative aesthetics 
of these two little proofs, I shall concentrate on just one facet of 
beauty and pleasure found by some subjects in our experiments. 
Many people are impressed by the brilliance of the second proof. 
But if this latter attracts by its cleverness and immediacy, it does 
not at all follow that the first loses by being (as I see it) essentially 
serial. On the contrary, there is something very powerful in the way 
one is captured and carried inexorably through the serial process. I 
do not merely mean that the proof is rhetorically compelling when 
presented well by another person, although this is an important fac- 
tor in the spectator sport aspect of mathematics. I mean rather that 
you need very little mathematical knowledge for the steps to be 
forced moves, so that once you start on the track you will find that 
you generate the whole proof. 

One can experience the process of inevitability in very different 
ways with very different kinds of affect. One can experience it as 
being taken over in a relationship of temporary submission. One 
can experience this as surrender to mathematics, or to another per- 
son, or of one part of oneself to another. One can experience it not 
as submission but as the exercise of an exhilarating power. Any of 

202 



The Mathematical Unconscious 

these can be experienced as beautiful, as ugly, as pleasurable, as re- 
pulsive, or as frightening. 

These remarks, although they remain at the surface of the phe- 
nomenon, suffice to cast serious doubt on Poincar6's reasons for be- 
lieving that the faculty for mathematical aesthetic is inborn and in- 
dependent of other" components of the mind. They suggest too 
many ways in which factors of a kind Poincar6 does not consider 
might, in principle, powerfully influence whether an individual 
finds mathematics beautiful or ugly and which kinds of mathemat- 
ics he will particularly relish or revile. To see these factors a little 
more clearly, let us leave mathematics briefly to look at an example 
from a very sensitive work of fiction: Robert Pirsig's Zen and the 
Art of Motorcycle Maintenance. The book is a philosophical novel 
about different styles of thought. The principal character, who nar- 
rates the events, and his friend John Sutherland are on a motorcy- 
cling vacation which begins by riding from the east coast to Mon- 
tana. Some time before the trip recounted in the book, John 
Sutherland had mentioned that his handlebars were slipping. The 
narrator soon decided that some shimming was necessary and pro- 
posed cutting shim stock from an aluminum beer can. "I thought 
this was pretty clever myself," he says, describing his surprise at 
Sutherland's reaction which brought the friendship close to rup- 
ture. To Sutherland the idea was far from clever; it was unspeak- 
ably offensive. The narrator explains: "I had had the nerve to pro- 
pose repair of his new eighteen-hundred-dollar BMW, the pride of 
a half-century of German mechanical finesse, with a piece of old 
beer can!" But for the narrator there is no conflict; on the contrary: 
"Beer can aluminum is soft and sticky as metals go. Perfect for the 
application . . .  in other words any true German mechanic with half 
a century of mechanical finesse behind him, would have concluded 
that this particular solution to this particular technical problem 
was perfect." The difference proves to be unbridgeable and emo- 
tionally explosive. The friendship is saved only by a tacit agreement 
never again to discuss maintenance and repair of the motorcycles 
even though the two friends are close enough to one another and to 
their motorcycles to embark together on the long trip described in 
the book. 
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Sutherland's reaction would be without consequence for our 
problem if it showed stupidity, ignorance, or an idiosyncratic quirk 
about ad hoc solutions to repair problems. But it goes deeper than 

any of these. Pirsig's accomplishment is to show us the coherence in 
many such incidents. This accomplishment is quite impressive. Pir- 
sig presents us with materials so rich that we can use them to ap- 
preciate kinds of coherence implicit in the incidents which are rath- 
er different from the one advanced by Pirsig himself. Here I want 
to touch briefly on two analogies between the story of Sutherland 
and the shim stock and issues we have discussed about mathemat- 
ics" first, the relationship between aesthetics and logic in thinking 
about mathematics as well as motorcycles, and second, the lines of 
continuity and discontinuity between mathematics or motorcycles 
and everything else. 

It is clear from the shim stock incident itself, and much more so 
from the rest of the book, that the continuity between man, ma- 
chine, and natural environment is very different for each of Pirsig's 
characters and that these differences deeply affect their aesthetic 
appreciation. For the narrator, the motorcycle is continuous with 
the world not only of beer cans but more generally the world of 
metals (taken as substance). In this world, the metal's identity is 
not reducible to a particular embodiment of the metal in a motor- 
cycle or in a beer can. Nor can any identity be reduced to a par- 
ticular instance of it. For Sutherland, on the contrary, this continu- 
ity is not merely invisible, but he has a strong investment in 
maintaining the boundaries between what the narrator sees as su- 
perficial manifestations of the same substance. 

For Sutherland, the motorcycle is not only in a world apart from 
beer cans; it is even in a world apart from other machines, a fact 
that enables him to relate without conflict to this piece of technol- 
ogy as a means to escape from technology. We could deepen the 
analysis of the investments of these two characters in their respec- 
tive positions by noting their very different involvements in work 
and society. The narrator is part of industrial society (he works for 
a computer company) and is forced to seek his own identity (as he 
seeks the identity of metal) in a sense of his substance which lies 
beyond the particular form into which he has been molded. Like 
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malleable metal, he is something beyond and perhaps better than 
the form which is now imposed on him. He certainly does not de- 
fine himself as a writer of computer manuals. His friend Suther- 
land on the other hand is a musician and is much more able to take 
his work as that which structures his image of himself in the same 
way that he takes a motorcycle as a motorcycle and a beer can as a 

beer can. 
We need not pursue these questions of essence and accident 

much further to make the important point, and a point which is 
widely ignored: If styles of involvement with motorcycle mainte- 
nance are so intricately interwoven with our psychological and so- 
cial identities, one would scarcely expect this to be less true about 
the varieties of involvements of individuals with mathematics. 

These ideas about the relationship of mathematical work with 
the whole person were illuminated earlier in this book by Turtle ge- 
ometry, as it is used with the LOGO programming language. These 
experiments express a critique of traditional school mathematics 
(which applies no less to the so-called new math than to the old). A 
description of traditional school mathematics in terms of the con- 
cepts we have developed in this essay would reveal it to be a carica- 
ture of mathematics in its depersonalized, purely logical, "formal" 
incarnation. Although we can document progress in the rhetoric of 
math teachers (teachers of the new math are taught to speak in 
terms of "understanding" and "discovery"), the problem remains 

because of what they are teaching.* 
In Turtle geometry we create an environment in which the 

child's task is not to learn a set of formal rules but to develop suffi- 
cient insight into the way he moves in space to allow the transposi- 
tion of this self-knowledge into programs that will cause a Turtle to 
move. By now the reader of this book is very familiar with the po- 
tential of this cybernetic animal. But what I would like to do here is 
recall and underscore two closely related aspects of Turtle geome- 
try which are directly relevant to the concerns of this essay. The 
first is the development of an ego-syntonic mathematics, indeed, of 
a "body-syntonic" mathematics; the second is the development of a 

*The following paragraphs have been modified for continuity with this book. 
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context for mathematical work where the aesthetic dimension 
(even in its narrowest sense of "the pretty") is continually placed in 
the forefront. 

We shall give a single example which illuminates both of these 
aspects: an example of a typical problem that arises when a child is 
learning Turtle geometry. The child has already learned how to 
command the Turtle to move forward in the direction that it is fac- 
ing and to pivot around its axis, that is, to turn the number of de- 
grees right or left that the child has commanded. With these com- 
mands the child has written programs which cause the Turtle to 
draw straight line figures. Sooner or later the child poses the ques- 
tion: "How can I make the Turtle draw a circle?" In LOGO we do 
not provide "answers," but encourage learners to use their own 
bodies to find a solution. The child begins to walk in circles and dis- 
covers how to make a circle by going forward a little and turning a 
little, by going forward a little and turning a little. Now the child 
knows how to make the Turtle draw a circle: Simply give the Turtle 
the same commands one would give oneself. Expressing "go for- 
ward a little, turn a little" comes out in Turtle language as RE- 
PEAT [FORWARD 1 RIGHT TURN 1]. Thus we see a process 
of geometrical reasoning that is both ego syntonic and body syn- 
tonic. And once the child knows how to place circles on the screen 
with the speed of light, an unlimited palette of shapes, forms, and 
motion has been opened. Thus the discovery of the circle (and, of 
course, the curve) is a turning point in the child's ability to achieve 
a direct aesthetic experience through mathematics. 

In the above paragraph it sounds as though ego-syntonic math- 
ematics was recently invented. This is certainly not the case and, 
indeed, would contradict the point made repeatedly in this essay 
that the mathematics of the mathematician is profoundly personal. 
It is also not the case that we have invented ego syntonic math- 
ematics for children. We have merely given children a way to reap- 
propriate what was always theirs. Most people feel that they have 
no "personal" involvement with mathematics, yet as children they 
constructed it for themselves. Jean Piaget's work on genetic episte- 
mology teaches us that from the first days of life a child is engaged 
in an enterprise of extracting mathematical knowledge from the in- 
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tersection of body with environment. The point is that, whether we 
intend it or not, the teaching of mathematics, as it is traditionally 
done in our schools, is a process by which we ask the child to forget 
the natural experience of mathematics in order to learn a new set 
of rules. 

This same process of forgetting extralogical roots has until very 
recently dominated the formal history of mathematics in the acade- 
my. In the early part of the twentieth century, formal logic was 
seen as synonymous with the foundation of mathematics. Not until 
Bourbaki's structuralist theory appeared do we see an internal de- 
velopment in mathematics which opens mathematics up to "re- 
membering" its genetic roots. This "remembering" was to put 
mathematics in the closest possible relationship to the development 
of research about how children construct their reality. 

The consequences of these currents and those we encountered 
earlier in cognitive and dynamic psychology place the enterprise of 
understanding mathematics at the threshold of a new period her- 
aided by Warren McCulloch's epigrammatic assertion that neither 
man nor mathematics can be fully grasped separately from the oth- 
er. When asked what question would guide his scientific life, 
McCulloch answered: "What  is a man so made that he can under- 
stand number and what is number so made that a man can under- 
stand it?" 
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IN 1964 I moved from one world to another. For the previous five 
years I had lived in Alpine villages near Geneva, Switzerland, 
where I worked with Jean Piaget. The focus of my attention was on 
children, on the nature of thinking, and on how children become 
thinkers. I moved to MIT into an urban world of cybernetics and 
computers. My attention was still focused on the nature of think- 
ing, but now my immediate concerns were with the problem of Ar- 
tificial Intelligence: How to make machines that think? 

Two worlds could hardly be more different. But I made the tran- 
sition because I believed that my new world of machines could pro- 
vide a perspective that might lead to solutions to problems that had 
eluded us in the old world of children. Looking back I see that the 
cross-fertilization has brought benefits in both directions. For sev- 
eral years now Marvin Minsky and I have been working on a gen- 
eral theory of intelligence (called "The Society Theory of Mind") 
which has emerged from a strategy of thinking simultaneously 
about how children do and how computers might think. 

Minsky and I, of course, are not the only workers to have drawn 
on the theory of computation (or information processing) as a 
source of models to be used in explaining psychological phenom- 
ena. On the contrary, this approach has been taken by such people 
as Warren McCulloch, Allen Newell, Herbert Simon, Alan Tur- 
ing, Norbert Wiener, and quite a number of younger people. But 
the point of departure of this book is a point of view~first articu- 
lated jointly with Minsky~that  separates us quite sharply from 
most other members of this company: that is to say, seeing ideas 
from computer science not only as instruments of explanation of 
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how learning and thinking in fact do work, but also as instruments 
of change that might alter, and possibly improve, the way people 
learn and think. 

The book grew out of a project designed to explore this concept 
by giving children access to "the best of computer science" includ- 
ing some of its best technology and some of its best ideas. At the 
heart of the project was the creation of a children's learning envi- 
ronment in the same building that houses MIT's Artificial Intelli- 
gence Laboratory and Laboratory for Computer Science (Project 
MAC). We hoped that by bringing children and people interested 
primarily in children into this world of computers and computer- 
ists, we would create conditions for a flow of ideas into thinking 
about education. 

I shall not try to describe all that happened in the course of this 
project or all that was learned from it, but I shall concentrate on 
some personal reflections. Readers who want to know more about 
the project itself will find pointers to other publications in the notes 
at the end of the book. 

The project is really an experiment in cultural interaction. It set 
out to grow a new "education culture" in an environment permeat. 
ed with a particular form of"computer culture." Too many people 
were involved for me even to know all their names. The inter- 
changes of ideas took place much more in conversations in the qui- 
et of after-midnight hours (for this is a computer culture that does 
not respect the conventional clock cycles) than in organized semi- 
nars or written papers. In early drafts I attempted to chronicle the 
growth of the culture. But it proved too difficult and in the end I 
wrote the book in a very personal style. This has a certain advan- 
tage in allowing me to give freer reign to my own personal interpre- 
tations of ideas and incidents that other participants might well see 
very differently. I hope that it does not obscure my sense of belong- 
ing to a communtity and of expressing a set of shared ideas. I re- 
gret that space does not permit me to show how some of these ideas 
have been picked up by others and elaborated into much more ad- 
vanced forms. 

Marvin Minsky was the most important person in my intellectual 
life during the growth of the ideas in this book. It was from him 
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that I first learned that computation could be more than a theoreti- 
cal science and a practical art" It can also be the material from 
which to fashion a powerful and personal vision of the world. I have 
since encountered several people who have done this successfully 
and in an inspirational way. Of these, one who stands out because 
he has so consistently turned his personal computational vision to 
thinking about children is Alan Kay. During the whole decade of 
the 1970s, Kay's research group at the Xerox Palo Alto Research 
Center and our group at MIT were the only American workers on 
computers for children who made a clear decision that significant 
research could not be based on the primitive computers that were 
then becoming available in schools, resource centers, and education 
research laboratories. For me, the phrase "computer as pencil" 
evokes the kind of uses I imagine children of the future making of 
computers. Pencils are used for scribbling as well as writing, doo- 
dling as well as drawing, for illicit notes as well as for official as- 
signments. Kay and I have shared a vision in which the computer 
would be used as casually and as personally for an even greater di- 
versity of purposes. But neither the school computer terminal of 
1970 nor the Radio ' Shack home computer of 1980 have the power 
and flexibility to provide even an approximation of this vision. In 
order to do so, a computer must offer far better graphics and a far 
more flexible language than computers of the 1970s can provide at 
a price schools and individuals can afford. 

In 1967, before the children's laboratory at MIT had been offi- 
cially formed, I began thinking about designing a computer lan- 
guage that would be suitable for children. This did not mean that it 
should be a "toy" language. On the contrary, I wanted it to have 
the power of professional programming languages, but I also want- 
ed it to have easy entry routes for nonmathematical beginners. 
Wallace Feurzeig, head of the Educational Technology Group at 
the research firm of Bolt Beranek and Newman, quickly recog- 
nized the merit of the idea and found funding for the first imple- 
mentation and trial of the language. The name LOGO was chosen 
for the new language to suggest the fact that it is primarily symbol- 
ic and only secondarily quantitative. My original design of the lan- 
guage was greatly improved in the course of discussions with Dan- 
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iel Bobrow, who had been one of the first graduate students in the 
MIT Artificial Intelligence group, Cynthia Solomon, and Richard 
Grant, all of whom were working at that time at Bolt Baranek and 
Newman. Most subsequent development of the LOGO language, 
which has gone through several rounds of "modernization," took 
place at MIT. Of the very many people who contributed to it I can 
list only a few: Harold Abelson, Bruce Edwards, Andrea diSessa, 
Gary Drescher, Ira Goldstein, Mark Gross, Ed Hardeback, Danny 
Hillis, Bob Lawler, Ron Lebel, Henry Lieberman, Mark Miller, 
Margaret Minsky, Cynthia Solomon, Wade Williams, and Terry 
Winograd. For many years Ron Lebel was the chief systems pro- 
grammer in charge of LOGO development. But the people who 
worked directly on LOGO form only the tip of an iceberg: The in- 
fluence of the MIT community on LOGO went much deeper. 

Our Artificial Intelligence Laboratory has always been near the 
center of a movement, strongly countercultural in the larger world 
of computers, that sees programming languages as heavily invested 
with epistemological and aesthetic commitments. For me this 
"Whorfian" view has been best articulated in the work of three 
computer scientists who were graduate students at the time LOGO 
was in formation" Carl Hewitt, Gerald Sussman, and Terry Wino- 
grad. But it goes back to the founders of the MIT Artificial Intelli- 
gence group, Marvin Minsky and John McCarthy, and owes much 
to the tradition of "hackers" of whom I feel most directly the influ- 
ence of William Gosper and Richard Greenblatt. In the cultural at- 
mosphere created by such people it was as unacceptable for chil- 
dren to enter the computer culture by learning computer languages 
such as BASIC as it would be to confine their access to English po- 
etry to pidgin English translations. 

I have always considered learning a hobby and have developed 
many insights into its nature by cultivating a sensitivity to how I go 
about doing it. Thus, I have perhaps engaged in deliberate learning 
of a wider range of material than most people. Examples of things I 
have learned in this spirit include chapters of science (like thermo- 
dynamics), reading Chinese characters, flying airplanes, cooking in 
various cuisines, performing circus arts such as juggling, and even 
two bouts of living for several weeks with distorting spectacles (on 
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one occasion left-right reversing glasses, on the other a rather com- 
plex prismatic distortion of the visual field). Part of what I found 
so attractive about the Artificial Intelligence community was a 
shared interest in this approach to using one's self as a source of in- 
sight into psychological processes and a particular interest in ob- 
serving oneself engaged in skilled activities. Here again I owe debts 
to many people and am able to single out only those whose contri- 
butions were most salient: Howard Austin, Jeanne Bamberger, Ira 
Goldstein, Bob Lawler, Gerald Sussman, and the graduate students 
who took part in my "loud thinking seminars" where such methods 
were explored. My approach to "loud thinking" acquired greater 
sophistication during a period of collaboration with Donald Schon 
and Benson Snyder and in interaction with a number of psycholo- 
gists including Edith Ackermann, Daniel Bobrow, Howard Gruber, 
Annette Karmiloff-Smith, and Donald Norman. 

All these influences entered into the emergence of a learning/ 
teaching methodology in the computational environments we were 
building for children. The person closest to me in this work was 
Cynthia Solomon. As in the case of Marvin Minsky, my collabora- 
tion with her was so close over so long a period that I find it impos- 
sible to enumerate the substantial contributions she made. Solomon 
was also the first to develop an intellectually coherent methodology 
for training teachers to introduce children to computers and is still 
one of the few people to have approached this problem with the se- 
riousness it deserves. 

Many people contributed ideas about teaching children LOGO. 
Ira Goldstein undertook the difficult problem of developing a theo- 
retical framework for the instructional process and was followed in 
this work by Mark Miller. Others approached teaching in a more 
pragmatic spirit. Special contributions have been made by Howard 
Austin, Paul Goldenberg, Gerianne Goldstein, Virginia Grammar, 
Andree Green, Ellen Hildreth, Kiyoko Okumura, Neil Rowe, and 
Dan Watt. Jeanne Bamberger developed methods for using LOGO 
in musical learning and in increasing teachers' sensitivity to their 
own thinking. 

A central idea behind our learning environments was that chil- 
dren would be able to use powerful ideas from mathematics and 
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science as instruments of personal power. For example, geometry 
would become a means to create visual effects on a television 
screen. But achieving this often meant developing new topics in 
mathematics and science, an enterprise that was possible only be- 
cause we were working within an institution rich in creative math- 
ematical talent. The task is of a new kind: It consists of doing what 
is really original research in mathematics or science but in direc- 
tions chosen because they lead to more comprehensible or more 
learnable forms of knowledge and not for the kinds of reasons that 
typically motivate mathematical research. Many students and fac- 
ulty members at MIT contributed to this work, but two stand out 
as professionals in the area: Harold Abelson, a mathematician, and 
Andrew diSessa, a physicist. 

Many LOGO workers contributed to the aesthetic of the Turtle 
drawings. Those who most influenced me were Cynthia Solomon, 
Ellen Hildreth and Ilse Schenck (who arranged the garden and 
birds in this book). 

In this book I write about children but, in fact, most of the ideas 
expressed are relevant to how people learn at any age. I make spe- 
cific references to children as a reflection of my personal conviction 
that it is the very youngest who stand to gain the most from change 
in the conditions of learning. Most of the children who collaborated 
with us were of mid-elementary school age. Radia Perlman was the 
first to explore techniques for working with much younger children, 
as young as four years of age. Abelson and diSessa have specialized 
in work with older students of high school and college age. Gary 
Drescher, Paul Goldenberg, Sylvia Weir, and Jose Valente are 
among those who have pioneered teaching LOGO to severely 
handicapped children. Bob Lawler carried out the first, and so far 
the only, example of a different kind of learning experiment, a kind 
that I think will become very important in the future. In Lawler's 
study, a child was observed "full time" during a six-month period 
so as to capture not only the learning that took place in contrived 
situations but all the overt learning that took place during that pe- 
riod. I have also been influenced by another study on "natural 
learning" now being conducted as part of research by Lawrence 
Miller for his thesis at Harvard. Both Lawler and Miller provided 
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data for a general intellectual position that underlies this book: The 
best learning takes place when the learner takes charge. Edwina 
Michner's Ph.D. thesis was a learning study of a very different sort, 
an attempt to characterize some of the mathematical knowledge 
that the mathematical culture does not write down in its books. 

I have acknowledged intellectual obligations to many people. I 
have to thank most of them for something else as well: for support 
and for patience with my too often disorganized working style. I 
am deeply grateful to everyone who put up with me, especially 
Gregory Gargarian who had the very difficult jobs of maintaining 
the organization of the LOGO Laboratory and of entering and up- 
dating many successive versions of this book in the computer files. 
In addition to his competence and professionalism, his friendship 
and support have made easier many moments in the writing of this 
book. 

MIT has provided a highly stimulating intellectual environment. 
Its administrative environment is also very special in allowing out- 
of-the-ordinary projects to flourish. Many people have helped in an 
administrative capacity: Jerome Wiesner, Walter Rosenblith, Mi- 
chael Dertouzo s, Ted Martin, Benson Snyder, Patrick Winston, 
Barbara Nelson, Eva Kampits, Jim McCarthy, Gordon Oro, and 
George Wallace come to mind but I am sure there are many others. 
Of these I owe a very special debt to Eva Kampits who was once 
my secretary and is now Dr. Kampits. 

The LOGO project could not have happened without support of 
a different kind than I have mentioned until now. The National 
Science Foundation has supported the work on LOGO since its in- 
ception. I want also to mention some of the Foundation's individ- 
uals whose imaginative understanding made it possible for us to do 
our work: Dorothy Derringer, Andrew Molnar, and Milton Rose. 
The value of the support given by such people is moral as well as 
material, and I would include in this category Marjorie Martus at 
the Ford Foundation, Arthur Melmed at the National Institute of 
Education, Alan Ditman at the Bureau for the Education of the 
Handicapped, and Alfred Riccomi ofTexas Instruments. I would 
also most especially include three individuals who have given us 
moral and material support: Ida Green, Erik Jonsson, and Cecil 
Green all from Dallas, Texas. It has been a particularly rich expe- 
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rience for me to work closely with Erik Jonsson on developing a 
project using computers in the Lamplighter School in Dallas. I 
have come to appreciate his clarity of thought and breadth of vision 
and to think of him as a colleague and a friend. His support for my 
ideas and intolerance of my disorganization helped make this book 
happen. 

John Berlow contributed beyond measure to the writing of this 
book. He came into the picture as an unusually intelligent editor. 
At every phase in the manuscript's development, his critical and 
enthusiastic readings led to new clarity and new ideas. As the pro- 
ject developed he became, for me, more than an editor. He became 
a friend, a dialog partner, a critic, and a model of the kind of read- 
er I most want to influence. When I met John he was without com- 
puter expertise, although his knowledge in other areas provided 
him with an immediate base from which to generate his own ideas 
concerning computers and education. 

There are many people whose contributions cannot be catego- 
rized. Nicholas Negroponte is a constant source of inspiration, in 
part precisely because he defies categorization. I also wish to thank 
Susan Hartnett, Androula Henriques, Barbel Inhelder, A.R. 
Jonckheere, Duncan Stuart Linney, Alan Papert, Dona Strauss 
and I.B. Tabata. And there are a few people with whom disagree- 
ments about how computers should be used have always been valu- 
able: John Seeley Brown, Ira Goldstein, Robert Davis, Arthur 
Leuhrman, Patrick Suppes. If the book can be read as an expres- 
sion of positive and optimistic thinking this must be attributed to 
my mother, Betty Papert. Artemis Papert has helped in so many 
ways that I can only say: Merci. 

Everyone concerned with how children think has an immense 
general debt to Jean Piaget. I have a special debt as well. If Piaget 
had not intervened in my life I would now be a "real mathemati- 
cian" instead of being whatever it is that I have become. Piaget in- 
vested a lot of energy and a lot of faith in me. I hope that he will 
recognize what I have contributed to the world of children as being 
in the spirit of his life enterprise. 

I left Geneva enormously inspired by Piaget's image of the child, 
particularly by his idea that children learn so much without being 
taught. But I was also enormously frustrated by how little he could 
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tell us about how to create conditions for more knowledge to be ac- 
quired by children through this marvelous process of "Piagetian 
learning." I saw the popular idea of designing a "Piagetian Cur- 
riculum" as standing Piaget on his head" Piaget is par excellence 
the theorist of learning without curriculum. As a consequence, I 
began to formulate two ideas that run through this book: (1) sig- 
nificant change in patterns of intellectual development will come 
about through cultural change, and (2) the most likely bearer of 
potentially relevant cultural change in the near future is the in- 
creasingly pervasive computer presence. Although these perspec- 
tives had informed the LOGO project from its inception, for a long 
time I could not see how to give them a theoretical framework. 

I was helped in this, as in many other ways, by my wife Sherry 
Turkle. Without her, this book could not have been written. Ideas 
borrowed from Sherry turned out to be missing links in my at- 
tempts to develop ways of thinking about computers and cultures. 
Sherry is a sociologist whose particular concerns center on the in- 
teraction of ideas and culture formation, in particular how com- 
plexes of ideas are adopted by and articulated throughout cultural 
groups. When I met her she had recently completed an investiga- 
tion of a new French psychoanalytic culture, of how psychoanalysis 
had "colonized" France, a country that had fiercely resisted Freud- 
ian influence. She had turned her attention to computer cultures 
and was thinking about how people's relationships with computa- 
tion influence their language, their ideas about politics, and their 
views of themselves. Listening to her talk about both projects 
helped me to formulate my own approach and to achieve a suffi- 
cient sense of closure in my ideas to embark on this writing project. 

Over the years Sherry has given me every kind of support. When 
the writing would not work out she gave me hours of conversation 
and editorial help. But her support was most decisive on the many 
occasions when I fell out of love with the book or when my confi- 
dence in my resolution to write it flagged. Then, her commitment 
to the project kept it alive and her love for me helped me find my 
way back to being in love with the work. 

SEYMOUR PAPERT 
Cambridge, Massachusetts 

April 1980 
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Introduction 

1. Piaget is at the center of the concerns of this book. I make a slightly unorthodox inter- 
pretation of his theoretical position and a very unorthodox interpretation of the implications 
of his theory for education. The reader who would like to return to the source needs some 
guidance because Piaget has written a large number of books, most of which discuss particu- 
lar aspects of children's development, assuming that the others have been read as a theoreti- 
cal preface. The best short book about Piaget is M. Boden's Piaget (London: Harvester 
Press, 1979). A good starting place for reading Piaget's own texts is with H. E. Gruber and 
J. J. Voneche, eds., The Essential Piaget: An Interpretive Reference and Guide (New York: 
Basic Books, 1977). My own "short list" of books by Piaget that are most readable and pro- 
vide the best philosophical overview of his ideas are: The Child's Conception of the World 
(New York: Harcourt, Brace and Co., 1929); The Child's Conception of Physical Causality 
(New York: Harcourt, Brace and Co., 1932); The Psychology of Intelligence, trans. Mal- 
colm Piercy and D. E. Berlyne (New York: Harcourt, Brace and Co., 1950); The Origins of 
Intelligence in Children, trans. Margaret Cook (London: Routledge and Kegan Paul); Intro- 
duction ~ l'Epist#mologie G~n#tique (Paris: Presses Universitaires de France, 1950); In- 
sights and Illusions in Philosophy, trans. Wolfe Mays (New York: The World Publishing 
Co., 1971); The Grasp of Consciousness, trans. Susan Wedgwood (Cambridge: Harvard 
University Press, 1976). For a critique of the "Piaget Curriculum Developers," of whom I 
have said that they are "standing Piaget on his head," see G. Groen, "The Theoretical Ideas 
of Piaget and Educational Practice," The Impact of Research on Education, ed. P. Suppes 
(Washington D. C.: The National Academy of Education, 1978). 

2. LOGO is the name of a philosophy of education in a growing family of computer lan- 
guages that goes with it. Characteristic features of the LOGO family of languages include 
procedural definitions with local variables to permit recursion. Thus, in LOGO it is possible 
to define new commands and functions which then can be used exactly like primitive ones. 
LOGO is an interpretive language. This means that it can be used interactively. The modern 
LOGO systems have full list structure, that is to say, the language can operate on lists whose 
members can themselves be lists, lists of lists, and so forth. 

Some versions have elements of parallel processing and of message passing in order to fa- 
cilitate graphics programming. An example of a powerful use of list structure is the repre- 
sentation of LOGO procedures themselves as lists of lists so that LOGO procedures can con- 
struct, modify, and run other LOGO procedures. Thus LOGO is not a "toy," a language 
only for children. The examples of simple uses of LOGO in this book do however illustrate 
some ways in which LOGO is special in that it is designed to provide very early and easy en- 
try routes into programming for beginners with no prior mathematical knowledge. The sub- 
set of LOGO containing Turtle commands, the most used "entry route" for beginners, is re- 
ferred to in this book as "TURTLE TALK" to take account of the fact that other computer 
languages, for example SMALLTALK and PASCAL, have implemented Turtles on their 
systems using commands originally developed in the LOGO language. The TURTLE TALK 
subset of LOGO is easily transportable to other languages. 

It should be carefully remembered that LOGO is never conceived as a final product or 
offered as "the definitive language." Here I present it as a sample to show that something 
better is possible. 

217 



Notes 

Precisely because LOGO is not a toy, but a powerful computer language, it requires con- 
siderably larger memory than less powerful languages such as BASIC. This has meant that 
until recently LOGO was only to be implemented on relatively large computers. With the 
lowering cost of memory this situation is rapidly changing. As this book goes to press, proto- 
types of LOGO systems are running on a 48K Apple II system and on a TI 99/4 with ex- 
tended memory. Readers who would like to be kept informed of the status of LOGO imple- 
mentations can write to me at LOGO project, MIT Artificial Intelligence Laborary, 545 
Technology Square, Cambridge, Mass. 02139. See S. Papert et al., LOGO: A Language For 
Learning (Morristown, N.J.: Creative Computing Press, forthcoming, Summer 1980). 

3. The history of the Turtle in the LOGO project is as follows. In 1968-1969, the first 
class of twelve "average" seventh-grade students at the Muzzy Junior High School in Lex- 
ington, Massachusetts, worked with LOGO through the whole school year in place of their 
normal mathematics curriculum. At that time the LOGO system had no graphics. The stu- 
dents wrote programs that could translate English to "Pig Latin," programs that could play 
games of strategy, and programs to generate concrete poetry. This was the first confirmation 
that LOGO was a learnable language for computer "novices." However, I wanted to see the 
demonstration extended to fifth graders, third graders, and ultimately to preschool children. 
It seemed obvious that even if the LOGO language was learnable at these ages, the pro- 
gramming topics would not be. I proposed the Turtle as a programming domain that could 
be interesting to people at all ages. This expectation has subsequently been borne out by ex- 
perience, and the Turtle as a learning device has been widely adopted. Pioneer work in using 
the Turtle to teach very young children was done by Radia Perlman who demonstrated, 
while she was a student at MIT, that four-year-old children could learn to control mechani- 
cal Turtles. Cynthia Solomon used screen Turtles in the first demonstration that first grad- 
ers could learn to program. At the other end of the age spectrum, it is encouraging to see 
that Turtle programming is being used at a college level to teach PASCAL. See Kenneth L. 
Bowles, Problem Solving Using PASCAL (New York: Springer-Verlag, 1977). Controlling 
Turtles has proven to be an engaging activity for retarded children, for autistic children, and 
for children with a variety of "learning disorders." See for example, Paul Goldenberg, Spe- 
cial Technology for Special Children (Baltimore: University Park Press, 1979). Turtles have 
been incorporated into the SMALLTALK computer system at the Xerox Palo Alto Re- 
search Center. See Alan Kay and Adele Goldberg, "Personal Dynamic Media" (Palo Alto, 
Calif.: Xerox, Palo Alto Research Center, 1976). 

4. Touch Sensor Turtle. The simplest touch sensor program in LOGO is as follows: 

TO BOUNCE 
REPEAT 

FORWARD 1 
TEST FRONT.TOUCH 
IFTRUE RIGHT 180 

END 

Comments 
This means repeat all the individual steps 
The turtle keeps moving 
It checks whether it has run into something 
If so, it does an about turn 

This will make the Turtle turn about when it encounters an object. A more subtle and 
more instructive program using the Touch Sensor Turtle is as follows: 

REPEAT 
FORWARD 1 
TEST LEFT.TOUCH 
IFTRUE RIGHT 1 

IFFALSE LEFT 1 

END 

Comments 

Check: Is it touching? 
It thinks it's too 
close and turns away 
It thinks it might 
lose the object so it turns toward 
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This program will cause the Turtle to circumnavigate an object of any shape, provided 
that it starts with its left side in contact with the object (and provided that the object and 
any irregularities in its contour are large compared to the Turtle). 

It is a very instructive project for a group of students to develop this (or an equivalent) 
program from first principles by acting out how they think they would use touch to get 
around an object and by translating their strategies into Turtle commands. 

Chapter 1 

1. The program FOLLOW (See Introduction, note 4) is a very simple example of how a 
powerful cybernetic idea (control by negative feedback) can be used to elucidate a biological 
or psychological phenomenon. Simple as it is, the example helps bridge the gap between 
physical models of "causal mechanism" and psychological phenomenon such as "purpose." 

Theoretical psychologists have used more complex programs in the same spirit to con- 
struet models of practically every known psychological phenomenon. A bold formulation of 
the spirit of such inquiry is found in Herbert A. Simon, Sciences of the Artificial (Cam- 
bridge: MIT Press, 1969). 

2. The critics and skeptics referred to here are distillations from years of public and pri- 
vate debates. These attitudes are widely held, but, unfortunately, seldom published and 
therefore seldom discussed with any semblance of rigor. One critic who has set a good exam- 
ple by publishing his views is Joseph Weizenbaum in Computer Power and Human Reason: 
From Judgment to Calculations (San Francisco: W.H. Freeman, 1976). 

Unfortunately Weizenbaum's book discusses two separate (though related) questions: 
whether computers harm the way people think and whether computers themselves can think. 
Most critical reviews of Weizenbaum have focused on the latter question, on which he joins 
company with Hubert L. Dreyfus, What Computers Can't Do: A Critique of Artificial Rea- 
son (New York: Harper & Row, 1972). 

A lively description of some of the principal participants in the debate about whether 
computers can or cannot think is found in Pamela McCorduck, Machines Who Think (San 
Francisco: W.H. Freeman, 1979). 

There is little published data on whether computers actually affect how people think. 
This question is being studied presently by S. Turkle. 

3. Many versions of BASIC would allow a program to produce a shape like that made by 
the LOGO program HOUSE. The simplest example would look something like this: 

10 PLOT (0,0) 
20 PLOT (100,0) 
30 PLOT (100,100) 
40 PLOT (75,150) 
50 PLOT (0,100) 
60 PLOT (0,0) 
70 END 

Writing such a program falls short of the LOGO program as a beginning programming ex- 
perience in many ways. It demands more of the beginner, in particular, it demands knowl- 
edge of cartesian coordinates. This demand would be less serious if the program, once writ- 
ten, could become a powerful tool for other projects. The LOGO programs SQ, TRI, and 
HOUSE can be used to draw squares, triangles, and houses in any position and orientation 
on the screen. The BASIC program allows one particular house to be drawn in one position. 
In order to make a BASIC program that will draw houses in many positions, it is necessary 
to use algebraic variables as in PLOT (x, y), PLOT (x + 100, y), and so on. As for defining 
new commands, such as SQ, TRI, and HOUSE, the commonly used versions of BASIC ei- 
ther do not allow this at all or, at best, allow something akin to it to be achieved through the 
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use of advanced technical programming methods. Advocates of BASIC" might reply-that: (1) 
these objections refer only to a beginner's experience and (2) these deficiencies of BASIC 
could be fixed. The first argument is simply not true: The intellectual and practical primiti- 
vity of BASIC extends all along the line up to the most advanced programming. The second 
misses the point of my complaint. Of course one could turn BASIC into LOGO or SMALL- 
TALK or anything else and still call it "BASIC." My complaint is that what is being foisted 
on the education world has not been so "fixed." Moreover, doing so would be a little like "re- 
modelling" a wooden house to become a skyscraper. 

Chapter 2 

1. "Gedanken experiments" have played an important role in science, particularly in 
physics. These experiments would encourage more critical attitudes if used more often in 
thinking about education. 

2. There is a joke here. Readers who are not familiar with Noam Chomsky's recent work 
may not get it. Noam Chomsky believes that we have a language acquisition device. I don't: 
the MAD seems no more improbable than the LAD. See N. Chomsky, Reflections on Lan- 
guage (New York: Pantheon, 1976) for his view of the brain as made up of specialized neu- 
rological organs matched to specific intellectual functions. I think that the fundamental 
question for the future of education is not whether the brain is "a general purpose computer" 
or a collection of specialized devices, but whether our intellectual functions are reducible in a 
one-to-one fashion to neurologically given structures. 

It seems to be beyond doubt that the brain has numerous inborn "gadgets." But surely 
these "gadgets" are much more primitive than is suggested by names like LAD and MAD. I 
see learning language or learning mathematics as harnessing to this purpose numerous "gad- 
gets" whose original purpose bears no resemblance to the complex intellectual functions they 
come to serve. 

Chapter 3 

1. Since this book is written for readers who may not know much mathematics, refer- 
ences to specific mathematics are as restrained as possible. The following remarks will flesh 
out the discussion for mathematically sophisticated readers. 

The isomorphism of different Turtle systems is one of many examples of "advanced" 
mathematical ideas that come up in Turtle geometry in forms that are both concrete and 
useful. Among these, concepts from "calculus" are especially important. 

Example 1: Integration. Turtle geometry prepares the way for the concept of line integral by 
the frequent occurrence of situations where the Turtle has to integrate some quantity as it 
goes along. Often the first case encountered by children comes from the need to have the 
Turtle keep track of how much it has turned or of how far it has moved. An excellent Turtle 
project is simulating tropisms that would cause an animal to seek such conditions as warmth, 
or light, or nutrient concentration represented as a field in the form of a numerical function 
of position. It is natural to think of comparing two algorithms by integrating the field quan- 
tity along the Turtle's path. A simple version is achieved by inserting into a program a single 
line such as: CALL (:TOTAL + FIELD) "TOTAL", which means: take the quantity pre- 
viously called "TOTAL," add to it the quantity FIELD and call the result "TOTAL." This 
version has a "bug" if the steps taken by the Turtle are too large or of variable size. By de- 
bugging when such problems are encountered the student moves in a meaningful progression 
to a more sophisticated concept of integral. 

The early introduction of simple version of integration along a path illustrates a frequent 
phenomenon of reversal of what seemed to be "natural" pedagogic ordering. In the tradi- 
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tional curriculum, line integration is an advanced topic to which students come after having 
been encouraged for several years to think of the definite integral as the area under a curve, 
a concept that seemed to be more concrete in a mathematical world of pencil and paper tech- 
nology. But the effect is to develop a misleading image of integration that leaves many stu- 
dents with a sense of being lost when they encounter integrals for which the representation 
as area under a curve is quite inappropriate. 

Example 2: Differential Equation. "Touch Sensor Turtle" (See introduction, note 4) used a 
method that strikes many children as excitingly powerful. A typical first approach to pro- 
gramming a Turtle to circumnavigate an object is to measure the object and build its dimen- 
sions into the program. Thus if the object is a square with side 150 Turtle steps, the program 
will include the instruction FORWARD 150. Even if it works (which it usually does not) 
this approach lacks generality. The program cited in the earlier note works by taking tiny 
steps that depend only on conditions in the Turtle's immediate vicinity. Instead of the "glo- 
bal" operation FORWARD 150 it uses only "local" operations such as FORWARD 1. In 
doing so it captures an essential core of the notion of differential equation. I have seen ele- 
mentary school children who understand clearly why differential equations are the natural 
form of laws of motion. Here we see another dramatic pedagogic reversal: The power of the 
differential equation is understood before the analytic formalism of calculus. Much of what 
is known about Turtle versions of mathematical ideas is brought together in H. Abelson and 
A. diSessa, Turtle Geometry: Computation as a Medium for Exploring Mathematics 
(Cambridge: MIT Press, in press). 

Example 3: Topological Invariant. Let a Turtle crawl around an object "totalizing" its 
turns as it goes: right turns counting as positive, left turns as negative. The result will be 
360 ° whatever the shape of the object. We shall see that this Total Turtle Trip Theorem is 
useful as well as wonderful. 

2. The phrase "ego-syntonic" is used by Freud. It is a "term used to describe instincts or 
ideas that are acceptable to the ego: i.e., compatible with the ego's integrity and with its de- 
mands." (See J. Laplanche and J-B. Pontalis, The Language of Psycho-analysis (New 
York: Norton, 1973.) 

3. G. Polya, How to Solve It (Garden City, N.Y.: Doubleday-Anchor, 1954); Induction 
and Analogy in Mathematics (Princeton, N.J.: Princeton University Press, 1954); and Pat- 
terns of Plausible Inference (Princeton, N.J.: Princeton, 1969). 

4. Usual definitions of curvature look more complex but are equivalent to this one. Thus 
we have another example of an "advanced" concept in graspable form. 

5. If turns can be right or left, one direction must be treated as negative. "Boundary of 
(connected) area" is a simple way of saying "simple closed curve." If the restriction is lifted, 
the sum of turns must still be an integral multiple of 360. 

Chapter 4 

1. Here I am picking a little quarrel with Jerry Bruner. But I share much of what he 
thinks, and this is true not only about language and action, but also about the relationship to 
learning of cultural materials and of teaching. 

The systematic difference betweeen us is seen most clearly by comparing our approaches 
to mathematics education. Bruner, as a psychologist, takes mathematics as a given entity 
and considers, in his particular rich way, the processes of teaching it and learning it. I try to 
make a learnable mathematics. I think that something of the same sort separates us in re- 
gard to language and to culture and leads us to different paradigms for a "theory of learn- 
ing." See J.S. Bruner, Toward a Theory of Instruction (Cambridge: Harvard University 
Press, 1966) and J.S. Bruner et al., Studies in Cognitive Growth (New York: John Wiley, 
1966). 
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2. The most systematic study is in H. Austin, "A Computational Theory of Physical 
Skill" (Ph.D. thesis, MIT, 1976). 

3. These procedures introduce a further expansion in our image of programming. They 
are capable of running simultaneously, "in parallel." An image of programming that fails to 
include this expansion is quite out of touch with the modern world of computation. And a 
child who is restricted to serial programming is deprived of a source of practical and of con- 
ceptual power. This deprivation is felt as soon as the child tries to introduce motion into a 
program. 

Suppose, for example, that a child wishes to create a movie on the computer screen with 
three separate moving objects. The "natural" way to do this would be to create a separate 
procedure for each object and set the three going. "Serial" computer systems force a less 
logical way to do this. Typically, the motions of each object would be broken up into steps 
and a procedure created to run a step of each motion in cyclic order. 

The example shows two reasons why a computer system for children should allow parallel 
computation or "multi-processing." First, from an instrumental point of view, multi-process- 
ing makes programming complex systems easier and conceptually clearer. Serial program- 
ming breaks up procedural entities that ought to have their own integrity. Second, as a mod- 
el of learning serial programming does something worse: It betrays the principle of 
modularity and precludes truly structured programming. The child ought to be able to con- 
struct each motion separately, try it out, debug it, and know that it will work (or almost 
work) as a part of the larger system. 

Multi-processing is more demanding of computational resources than simple serial pro- 
cessing. None of the computers commonly found in schools and homes are powerful enough 
to allow it. Early LOGO systems were "purely serial." More recent ones allow restricted 
forms of multi-processing (such as the WHEN DEMONS described later in this chapter) 
tailored for purposes of programming dynamic graphics, games, and music. The develop- 
ment of a much less restrictive multi-processing language for children is a major research 
goal of the MIT LOGO Group at the time of writing this book. In the work we draw heavily 
on ideas that have been developed in Alan Kay's SMALLTALK language, on Carl Hewitt's 
concepts of "ACTOR" languages and on the Minsky-Papert "Society Theory of Mind." But 
the technical problems inherent in such systems are not fully understood and much more re- 
search may be needed before a concensus emerges about the right way (or set of ways) to 
achieve a really good multi-processing system suitable for children. 

Chapter 5 

1. The most prolific contributor to the development of such systems is Andrea diSessa, 
who is responsible, among many other things, for the term "Dynaturtle." H. Abelson and A. 
diSessa, Turtle Geometry: Computation as a Medium for Exploring Mathematics (Cam- 
bridge: MIT Press, in press). 

2. The discussion of the Monkey Problem uses a computational model. However this 
model is very far from fitting the notion of computation as algorithmic programming built 
into most programming languages. Making this model consists of creating a collection of ob- 
jects and setting up interactions between them. This image of computation, which has come 
to be known as "object-oriented" or "message-passing" programming, was first developed as 
a technical method for simulation programs and implemented as a language called SI- 
MULA. Recently it has drawn much broader interest and, in particular, has become a focus 
of attention in Artificial Intelligence research where it has been most extensively developed 
by Carl Hewitt and his students. Alan Kay has for a long time been the most active advocate 
of object-oriented languages in education. 
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Notes 

Chapter 6 

1. Martin Gardner, Mathematical Carnival (New York: Random House, 1977). 

Chapter 7 

1. For remarks by Piaget on Bourbaki see "Logique et connaissance scientifique," ed. J. 
Piaget, Encyclopidie de la Pleide, vol. 22 (Paris: Gallimard, 1967). 

2. C. L~vi-Strauss, Structural Anthropology, 2 vols. (New York: Basic Books, 1963-76). 
3. L6vi-Strauss uses the word bricolage as a technical term for the tinkering-like process 

we have been discussing. Bricoleur is the word for someone who engages in bricolage. These 
concepts have been developed in a computational context in Robert Lawler, "One Child's 
Learning: An Intimate Study" (Ph.D. thesis, MIT, 1979). 

4. Of course our culture provides everyone with plenty of occasions to practice particular 
systematic procedures. Its poverty is in materials for thinking about and talking about pro- 
cedures. When children come to LOGO they often have trouble recognizing a procedure as 
an entity. Coming to do so, is, in my view, analogous to the process of formation of perma- 
nent objects in infancy and of all the Piagetionly-conserved entities such as number, weight, 
and length. In LOGO, procedures are manipulable entities. They can be named, stored 
away, retrieved, changed, used as building blocks for superprocedures and analyzed into sub- 
procedures. In this process they are assimilated to schematic or frames of more familiar enti- 
ties. Thus they acquire the quality of "being entities." They inherit "concreteness." They 
also inherit specific knowledge. 
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Acceleration Turtles, 128 
Aesthetic, mathematical, 190-206 

inborn sense of, 203 
logic and, 204 

Aesthetic guidance, 195-198 
Aesthetic sense, innate, 190-191 
Aesthetics of physics, 122 
Agents: 

competing, 172 
modular, 173 
theory of, 167-169, 170, 173 

AI, see Artificial intelligence 
Algebraic mother structures, 160 
Analytic geometry, 97, 98-99 
Analytic versus intuitive selves, 97 
Angle, concept of, 68 
Anthropomorphism, 59 
Aristotle, 121, 141-144, 166 
Articulateness, development of mathemat- 

ical, 75-76 
Articulation: 

debugging and, 180 
importance of ability of, 158 

Artificial intelligence (AI), 157-158 
case frame thinking in, 199 
concretizing quality of, 156-157 
deductive systems and, 195 
defined, 157 
epistemological modularity and, 171 
"object-oriented" or "message-oriented" 

programming and, 222n 2 (Ch. 1) 
as research methodology, 164-166 

Assimilation, Piaget's concept of, vii, 120 
Austin, Howard, 111-113 

BASIC, 29, 33-36, 218n 2 
example of program in, 219-220n 3 
pidgin English and, 211 

"Being wrong," 23, 62, 101, 114 
Bernouilli's law, 165 
Biological sciences, 68 
Body geometry, 56 
Body knowledge, viii, 9 
Body syntonicity, 63, 68, 205 
Bourbaki school structuralism, 159-160, 

207 
roots of mathematics and, 163-164 

Bricolage/bricoleur, 173, 175, 223n 3 

Bruner, Jerome, S., classification of ways 
of knowing, 96, 221n 1 (Ch. 4) 

Bugs, 22, 23, 101-102; see also Debugging 
in complex process, 112 
in juggling, 111 
in learning physical skills, 104 
multiple, 112-113 

Calculus, 66-67, 221n 1 (Ch. 3) 
Cartesian geometry, 55, 66-67, 97, 98-99 
Child as builder of intellectual struc- 

tures, 7 
incentives and, 22-23 
materials and, 19, 22-23 
of mathematics, preconservationist and 

conservationist, 126, 129 
of microworlds, 118-119, 162 
teaching without curriculum and, 32 
of theories, 132-134, 172 

Child as epistemologist, 19, 23, 27-28, 98 
Child-computer relationship, 19 

conditions necessary for, 16 
Combinatorial thinking, 21-22, 174-176, 

197 
Computation, samba schools for, 182-! 83 
Computational-method theory of thinking, 

167-169 
Computational model for people proce- 

dures, 106-107 
Computational theory of agents, 173 
Computer(s), 19-37 

child's relationship to, 5-6 
cost of, 17, 23-25, 34 
editing with, 13, 31 
effect of, on children, 29-30 
human mind and, 26-27 
as instrument for drill and practice, 36, 

139 
as instrument of change, 209 
as mediator of relationships, 183-184 
natural communication with, 6-7 
as object-to-think-with, 23 
as pencil, 210 
personal, 24, 181 
in personal lives, 32 
simulative power of, viii 
society and, 25-26 
as teaching instrument, 30-31 
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Computer(s), (continued) 
thinking like, 155 
as writing instrument, 30-31 

Computer cultures, 19-37 
debugging and, 23 
LOGO, see LOGO environment(s) 
programming language and, 34 

"Computer revolution," 185-186 
Computer science, change and, 208-209 
Condensation, idea of, 199-200 
Conservation, Piagetian, 166-167 
Conservation of volume, 20, 41 

four-agent account of, 167-169, 170 
Continuity principle, 54, 63 
Counting: 

learning, 20 
number versus, 41 

Culture(s): 
language influence on, 170-171 
LOGO computer, see LOGO 

environment(s) 
math, 9 
mathophobic, 4 
precomputer, 20, 22-23 
as source of building materials, 7-8 
surrounding samba schools and LOGO 

environments, 181 
Curriculum, learning without, 31-32; see 

also  Piagetian learning 
Curvature, definitions of, 67, 221n 4 

Debugging, 22, 23, 60, 101-102, 175; see 
also  Bugs 

articulation and, 180 
computer cultures and, 23 
description of complex process and, 111- 

113 
of intuition, 114-146, 147-150 
of juggling procedure, 111-112 
philosophy of, 114 
play Turtle and, 116 
of procedures, 153-154 
process of, 61-62 
resistance to, 113-114 

Debugging strategies, improving, 23 
Deductive system(s), 165-166 

mathematics as, 194-195 
Descartes, Ren6, 55, 66-67, 97-99 
Dewey, John, 179 
Differential calculus, 66-67 

touch sensor Turtle and, 221 n 1 (Ch. 3) 
Dissociated learning, 47-48 

physics curricula and, 122, 139 
syntonic learning versus, 63 

Dissociation: 
of mathematics, 39 
as strategy for learning, 65 

Dynaturtles, 122, 124 
linked, 130 

Dyscalculia, 46; see also Mathophobia 

Editing: 
of drawing, 13 
of text, 31 

Education: 
computer use in, 53 
conservatism in, 34-37 
stagnation of thinking about, 186-187 

Educator as anthropologist, 32, 181 
Ego-syntonicity, 63, 68, 205-206 

Freud's concept of, 221n 2 
Electronic sketchpad, 12-13 
Epistemological modularity, 171 
Epistemologist: 

child as, 19, 23, 27-28, 98 
Piaget as, 156-159, 162-163 

Epistemology, genetic, vii-viii, 163, 206- 
207 

Euclid, 55, 66-67 

Floor Turtles, 11-12, 56 
FOLLOW program, 219n 1 
Formalists, 193 
Formalism, 99 

of calculus, 221 n 1 (Ch. 3) 
of Descartes, 99 
descriptive, 99-100 
of Dynaturtles, 124 
mathematical, 153 
of Newton, 124 

FORTRAN, 33 
Freud, Sigmund, 194, 196, 198, 200, 

221n 2 

Galileo, Aristotle, 141-144 
Gallwey, Timothy, 97-98 
Genetic epistemology, vii-viii, 163, 206- 

207 
Genetic theory of mathematics, 201 
Geometry: 

coordinate analytic, 97, 98-99 
Euclidean, Cartesian, and Turtle differ- 

ential systems of, 55, 66-67 
intrinsic differential, 67 
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Grading, technology of, and school math, 
52 

Graduated Length Method, 185 
Grammar, 48-50 
Groupements,  Piaget's theory of, 160, 168, 

170 

"Heading" as property, 55 
Heuristics, 58-59, 64-65 
Human relationships in LOGO environ- 

ments and in samba schools, 179-180 
"Humanities" versus "science," 38 

computer and, 38-39 

Identification, 55-56, 63 
Integrated circuit technology, 24 
Integration, Turtle geometry and, 220- 

221n 1 (Ch. 3) 
Intellectual abilities, development of, 20 
Intermediates, looking for, 148-149 
Intrinsic differential geometry, 67 
Intuition, debugging of, 144-146, 147-150 

Knowing, ways of, 135-137 
Bruner's classification of, 96, 221n 1 

(Ch. 4) 
Knowledge-based model, 166 

Language(s) 
computer, see Programming languages 

Law(s) of motion, 124-125 
idea of, 131 
Newtonian, see Newtonian law(s) of 

motion 
Learning: 

computational procedures and, 113 
dissociated versus syntonic, 63 
fear of, 38-54, 39-40 
genetic understanding of, vii 
of grammar, 48-50 
local nature Of, 172-173 
mathematics made for, 55-95 
of physical skills, 96-100 
teaching versus, 7, 8 
theory of mother structures and, 160 
trial and error, 113-114 
ways of, 136-137, 154-155 

Learning environments, 8-9; see also 
LOGO environment(s) 

Learning pathways: 
into aerodynamics, 123 
into Newtonian motion, 123 
into numerical knowledge, 160 

Learning society, images of, 177-189 
L~vi-Strauss, Claude, 173, 223n 3 
LISP, 33 
Local-global relationship, 161 

learning and, 172 
LOGO, roots of: Piaget and AI, 156-176 
LOGO environment(s), 11 

child-computer relationship in, 19 
culture surrounding, 181 
debugging in, 61-62 
debugging philosophy and, 114 
"learning mathematics" and, 114 
as objects-to-think-with, 182 
personal need in, 74 
samba schools and, 179-I 83 
teacher-child interaction in, 134 
thinking and talking about procedures 

in, 223n 4 
thinking of children in, 28-29 

LOGO language(s), 11 
development of, 210-211 
family of, 217n 2 

"Loud Thinking," 197, 212 

Mass, 122, 125 
Materials for building, 7-8, 20, 32, 187 

Newtonian, 129 
pairs, 7, 22, 161-162, 187 

Math: 
affectiveness of, vii, 68 
New, 53, 152 

"Math acquisition device" (MAD), 46-47, 
200 

Math culture, 9 
Mathematical articulateness, development 

of, 75-76 
Mathematical knowledge, 65-76 

learning of, 40-41 
mathetic knowledge and, 63 
three classes of, 65-66 

Mathematical unconscious, 190-207 
Mathematical work: 

person and, 205-207 
stages of, 195-196 

Mathematics: 
as deductive system, 194-195 
genetic theory of, 201 
as living language, 6 
made for learning, 55-95 
pleasure in, 198-199 
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Mathematics (continued) 
principles of appropriable, 54 
remembering roots of, 163-164, 207 
samba school for, 182 
school math versus, 51 

Mathetic, defined, 39 
Mathetic knowledge, 63-65 
Mathetic principle(s), 52, 120, 129 

structured programming as, 105 
Mathland, 6-7, 43-46 

learning in, 47-48 
"speaking computer" and, 16 
Turtle, 59 

Mathophobia, 8, 9, 38-54 
Mathophobic cultures, 4 
"Mathpower," 74-75 
McCulloch, Warren, 164, 207 
Mechanical thinking, 27 
Memory and dissociation, 65 
Microworld(s), 120-134 

child as builder of, 118-119, 162 
complexity and simplicity in, 117-118 
designing series of, 125-127 
internal intelligibility of, 117-118 
of pairing, 161-162 
Turtle, learning and, 137-138 

Mind-size bites: 
benefits of knowledge in, 171 
powerful ideas in, 135-155 
procedures in, 103 

Mirror Turtles, 130-131 
Modularity, 171, 173 

epistemological, 171 
Momentum, 122 
Monkey Problem, 131-132 
Mother structures, 159-160 
Motion: 

Aristotelian idea of, 123 
idea of law of, 131 
laws of, various, 124-125 
Newtonian, experiences of, 123-124 
Newton's laws of, see Newtonian law(s) 

of motion 
Turtle laws of, 127 

Motivation, 96-97 
Multi-processing, 222n 3 

Nested loops, 22 
New Math, 53, 152 
Newtonian law(s) of motion, 121-122, 184 

blocks to access to, 126 
experiences of, 123-124 
reconceptualizing, 184 
stated, 125 
third, 129-131 

Newtonian physics vs. Aristotelian, 121, 
123 

Newtonian Turtle, 128 
Number: 

nature of, 159-160 
people and, 164, 207 
understanding of, 158, 159-160 

"Objects-to-think-with," 11 
computers as, 23 
LOGO environments as, 182 

Order, mother structure of, 160 

Pairing, microworld of, 161-162 
Pairs as material, 7, 22, 161-162, 187 
Parallel versus serial processes, 107, 222n 3 
Pascal, Blaise, 33, 217n 2 
Pencil and paper technology: 

physics and, 139 
school math and, 52, 221, nl (Ch. 3) 

People procedures: 
computational models and, 106, 107 
as teaching strategy, 110-111 

Pe~ sonal computers, 24, 181 
Physical skills, learning of, 96-100, 104- 

105 
juggling, 105-112 
parallel skiing, 184-185 
stilt walking, 104-105 
tennis (Gallwey on), 97-98 

Physics: 
intuitive, 143-144 
as model in other disciplines, 138 
Newtonian versus Aristotelian, 121, 123 
qualitative thinking in, 139, 141 
teaching of traditional, 139-141 
transitional systems of, 132-133 

Piaget, Jean, 7 
assimilation concept of, vii, 120 
as epistemologist, 156-159, 162-163 
"false theories" of children and, 132- 

134 
groupements theory of, 160, 168, 170 
stage theory of, 157 

Piagetian conservations, 20, 40-41, 166- 
167 

"Piagetian curriculum," 31 
Piagetian learning, 7, 31-32 

importance and power of, 173-174 
as organizing principle, 187 
as pathway into Newtonian motion, 123 
theories of world and, 41-42 

Piagetian stages, 157, 174-176 
reversal of, 176 
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Pirsig, Robert, mathematical aesthetic and, 
203-205 

Play Turtle, 58-59, 64 
debugging and, 116 
Polya's principles and, 75-76 

Poincar6, Raymond, 190-197, 201,203 
mathematical unconscious of, 190-197, 

203 
Polya, George, 64, 127 

play Turtle and, 75-76 
Power principle, 54, 63 
Powerful ideas: 

in mind-size bites, 135-155 
power of, 76, 212-213 
relation of, to teaching basic skills, 151- 

155 
Prerequisites, problem of, 123-124, 132 
Procedural knowledge, 135 
Procedure(s): 

computer experience and, 152-155 
idea of, 154-155, 175 
programming languages and, 171 
thinking and talking about, 223n 4 

Programming: 
"straight-line," 104 
structured, 102-104, 105, 107 

"Programming computers" as teaching 
Turtle, 12, 59-60 

Programming language(s): 
BASIC, 33-36 
cost of, 34 
descriptive, 96, 98-100 

Propositional knowledge, 135 

Qualitative thinking in physics, 139, 141 
QWERTY phenomenon, 32-34, 187 

"school math" as, 51 

Recursion, 71, 74 
Roots of mathematics, remembering, 163- 

164, 207 
Russell, Bertrand, 193 

Samba school(s), 178 
for computation, 182-183 
LOGO environments and, 179-181, 

182-183 
for mathematics, 182 

Schools: 
future of, 177, 182-183, 185-189 
samba, see  samba school(s) 

Screen Turtles, 11-12 
Self-images, negative, 42-43 
Self-referential thinking, 21-22, 169, 171- 

172 
Serial process: 

parallel process versus, 107, 222n 3 
power of, 202 

SIMULA, 222n 2 (Ch. 3) 
SMALLTALK, 33, 217n 2, 222n 3 
Society-of-mind theory, 169, 208 
Spirals, 69-75 

in non-Newtonian microworld, 133-134 
procedures for, 169 

Stage theory of Piaget, 157, 174-176 
State-change operator, 127-128 
"Straight-line" programming, 104 
Structuralism of Bourbaki school, 159-160, 

207 
roots of mathematics and, 163-164 

Structured programming, 102-04, 105, 107 
Subprocedures, 102-104 

in learning physical skills, 104 
resistance to, 103-104 
society-of-mind theory and, 169 

Syllogisms, 166 
Syntonic learning, 63, 97 
Syntonic mathematics, 205-206 
Syntonicity: 

body, 63, 68, 205 
cultural, 68 
ego, 63, 205-206 

Teaching: 
of basic skills, powerful ideas and, 151- 

155 
learning without, 7, 9; see a l so  Piagetian 

learning 
Teaching Turtle, programming as, 12, 59- 

60 
Theory builder, child as, 132-134, 172 
Thinking: 

combinatorial, 21-22, 174-176, 197 
concrete versus formal, 21-22 
intuitive, 154 
about knowledge, 171-172 
linear, 201 
mechanical, 27 
procedural, 155 
self-referential, 21-22, 109, 171-172 
stagnation of, 186-187 
styles of, 27 

Thinking about thinking, 21-22, 27-28, 
169-170 

computational-method theory, 167-169 
deductive and knowledge-based, 165-166 
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Topological invariant, Turtle and, 221n 1 
(Ch. 3) 

Topology, mother structure of, 160 
"Total Turtle Trip Theorem," 76, 221n 1 

(Ch. 3) 
Touch sensor Turtles, 12, 218-219n 4 

differential equation and, 221n 1 (Ch. 3) 
Transitional object, viii, 161 
Transitional theories, 132 
Trial and error learning, 113-114 
Turtle(s), 11, 56 

acceleration, 128 
Dynaturtles, 122, 124 
history of, 218n 3 
mirror, 130-- 131 
multiple, 130-131 
Newtonian, 128 
physics, 126 
touch sensor, 12, 218-219n 4, 221 n 1 

(Ch. 3) 
velocity, 128, 131 

Turtle geometry, 53-54, 55-93, 129 
computer use in, 53 
differential equation and, 221n 1 (Ch. 4) 
as differential geometry, 66-67 
goal of, 53-54 
as heuristic idea carrier, 64 
integration and, 220-221n 1 (Ch. 3) 
momentum and, 128 
person-mathematics relationship and, 

205-207 
Polya's principles and, 64 

relational or affective effect of, 68 
topological invariant and 

Turtle graphics, 11-12, 56 
Turtle laws of motion, 127 
Turtle microworlds, learning and, 137-138 
Turtle physics, 127 
Turtle systems, isomorphism of, 56, 220n 1 

(Ch. 3) 
TURTLE TALK, 56-58, 217n 2 

for multiple turtles, 130 
for Newtonian physics, 122 
variables in, 70 

Unconscious, 
mathematical: 190-207 
role and nature of (Poincar6), 194, 196- 

197 

Variable, concept of, 69-75 
Velocity, 122 
Velocity Turtles, 128, 131 
Volume, conservation of, 20, 41, 166-170 

Weiner, Norbert, 164 
"WHEN DEMONS," 107-108, 222n 3 
Word processors, 30-31 
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