

Computing in the
Middle Ages

A View from the Trenches
1955 - 1983

By

Severo M. Ornstein

© 2002 by Severo M. Ornstein. All rights reserved.

No part of this book may be reproduced, stored in a
retrieval system, or transmitted by any means, electronic,

mechanical, photocopying, recording, or otherwise, without
written permission from the author.

ISBN: 1-4033-1516-7 (Ebook)

ISBN: 1-4033-1517-5 (Softcover)

This book is printed on acid free paper.

1stBooks - rev. 10/15/02

iii

For Charlie and Wes

iv

v

Table of Contents

Preface ..xi

Acknowledgments ...xxi

Introduction.. xxiii

Chapter 1... 1

In which I meet some early computers, write my first programs,
learn a little history, and switch professions

Chapter 2... 22

In which I arrive at Lincoln Lab, am introduced to the wonders
of air defense, security, and other matters, and worry about my
children’s future.

Chapter 3... 28

In which I make some comparisons and mark some contrasts
between “back then” and “now.”

Chapter 4... 47

Enter Sputnik and ARPA, I’m nearly arrested, and a briefcase
blows away. MITRE arises, I switch jobs again, and encounter
various missile problems. A computer is murdered

Chapter 5... 63

A piano enters the lab and comes up against TX-2. DEC is
formed and there is an error on Page 217. Fourier is proven
sound and we land on an aircraft carrier.

vi

Chapter 6 ...74

A moment of skepticism

Chapter 7 ...79

In which I join the TX-2 group and encounter a different
culture and some memorable characters. I simulate another
machine, avoid a fire, and start to dip into hardware

Chapter 8 ...92

The Big Dealers vs. the Little Dealers. We poise for a leap

Chapter 9 ...102

The birth of the LINC. I become a midwife and leave Lincoln

Chapter 10..116

We move to Kendall Square where we accomplish the impossible

Chapter 11..131

Tragedies overtake us; the prime number drop; we move to St.
Louis where we design some new building blocks and encounter
the evil synchronizer bug. I assist in brain surgery

Chapter 12..146

Charlie to the rescue; we take a LINC to Chile and climb down
an elevator shaft. Water juice

Chapter 13..152

Macromodules work; St. Louis is hot; we build the Chasm, and
I depart for Boston

vii

Chapter 14... 156
I join BBN; some comments on ARPA; Encounters with
TENEX; some coffee-tables, and a teletype through the wall.
The ARPANET is born

Chapter 15... 188

The Aloha Network precedes Ethernet; the first microprocessor
appears; we design a true multiprocessor

Chapter 16... 193

China!

Chapter 17... 204

Pluribus struts its stuff

Chapter 18... 210

Chile revisited; changes at BBN; I head for PARC

Chapter 19... 213

A place of character(s); I love my Alto; the imprint of Engelbart;
Thacker’s decision; the importance of tools; an unfortunate
erasure; Bob Taylor—missionary; el Dorado

Chapter 20... 231

Music, music, music; bright students; Mockingbird

Chapter 21... 237

The beginning of the end; CPSR and nuclear wars; clerical
errors and the end of an era

Chapter 22... 244

A review of the bidding

viii

Epilogue...250

Appendix I—The Synchronizer Problem..........................256

Appendix II—The Bit-Map Display...................................261

Bibliography...265

ix

List of Illustrations

1. The author at the Console of TX-2............................... 84

2. The Original LINC Crew... 109

3. Wes Clark Demonstrating the LINC......................... 112

4. Mary Allen ... 120

5. Mish and Howard... 121

6. Charlie .. 123

7. A LINC Kit ... 129

8. Frank Heart with an early IMP 176

9. Alex showing the NCC to some Chinese visitors... 180

10. A meeting in China .. 202

11. The Pluribus Team ... 206

12. Bob Taylor.. 214

13. John, Severo, and Mockingbird 236

x

xi

Preface

You turn the key—the engine comes to life. You press a

button—up goes the window. Another and the antenna
emerges and music washes over you. Still more buttons and
your seat adjusts itself to you, you are warmed, lights come
on, the windshield is scrubbed, the garage door gently rises,
and finally you are on your way. Who could have foreseen
such a world in the days of hand cranks, dust goggles, and
isinglass curtains? And yet somehow we got from there to
here. How did we do it?

In a similar vein one might ask how, given its
monstrous, room-filling forbears, computers such as the
modest one on which I’m presently typing came to be. Surely
not all at once, not overnight. There was no road map. What
paths led through the myriad by-ways that brought us to
this point?

It’s difficult to believe that over the course of a few
decades anything like today’s personal computer could have
evolved from the giant machines1 of the late 1940s and early
‘50s. Except in Mitchell Waldrop’s excellent book (see
Bibliography), the story of how this dramatic change came
about has not been at all well told. Often one gets the
impression that the personal computer revolution began in
the mid 1970s. But that is only when it began to touch the
consciousness of the general public and to blossom into an
industry. By then, the image of the personal computer was
already quite well formed and machines not fundamentally

1 The terms “computer” and “machine” are used interchangeably herein.

xii

different from today’s were already in use in research
laboratories. The real story began many years earlier with
the scientists and engineers of a relatively unknown
laboratory at MIT. They were the originators of much that
has followed and were to spread productively throughout
the evolving computer science community over ensuing
decades.

Many recent so-called computer histories, catering
heavily to the public lust for a peep at the rich and famous,
have explored, ad nauseam, the eccentricities of Bill Gates
and Steve Jobs and their brethren—to the point that they
have become almost mythic figures. Their stories and their
garages have become legendary. But these are Johnny-come-
latelies who have achieved notoriety for the most part not for
innovative science or even for engineering, but rather thanks
to their extraordinary ability to exploit ideas pioneered by
others, to turn them into financial empires. But what about
the pioneers themselves, the ones who did the scientific and
engineering groundwork on which these empires have been
built? Where and who are they? Too often they appear only
in fading photographs, wearing outmoded suits, usually
standing in front of giant machinery that bears no apparent
resemblance to the computers of today.

A few years ago we tuned in hopefully to a four-hour
PBS special that claimed to provide some of the history
behind the computer revolution. But the focus turned out to
be once again on exploiters rather than explorers, and the
history I’d known and experienced was largely ignored or
glossed over. At about the same time, the untimely death of
a dear friend and former colleague, Charlie Molnar,
emphasized how few of us remain who are in a position to
help straighten out the record. Charlie’s death affected me
deeply and reminded me what extraordinary human beings

xiii

I had been privileged to know and work among. And I
thought how little recognition is given to such key people,
thanks to their personal reserve and their preoccupation
with their work rather than the limelight.

I initially set out to write this book because other
histories seemed to ignore or even contradict my thirty-odd
years of experience in the computer field. Developments that
I was sure had marked important milestones were given
short shrift or were overlooked altogether, and forces that
seemed to me to be crucial in setting directions were
sometimes not even mentioned. Debates that had once
almost led to bloodshed, seemed to have been utterly
forgotten once the passage of time had resolved them or
rendered them irrelevant. And finally, for many younger
people, history appeared to have commenced only
yesterday—whereas I was sure I remembered the day before,
and the day before that. Indignantly I set out to put the
record straight.

Then I remembered the fire-lookout.
In 1950, one of my college roommates spent the summer

in a fire-lookout atop a peak in the Cascade range of
Washington. From the lookout a vast mountainous region of
the northwestern U.S. spread out before one, and over the
course of the summer my friend drew a map of what he saw
from his eyrie. Inspecting his map in the fall, and comparing
it to official maps of the same area, we were vastly amused
to discover how distorted his view of matters had been. The
geography near the lookout was spread out and enlarged,
whereas the more distant features were all crowded together
around the fringes of his map. Like the New Yorker
magazine’s cover burlesquing a Manhattanite’s truncated
view of the U.S., my friend’s view of the country
surrounding his lookout was compressed into insignificance.

xiv

Contemplating such myopia, I realized that my version
of computer history would likely turn out to be just as
distorted as all the others—just differently so. Moreover, as I
considered pawing through dusty archives, I began to lose
heart. It looked like a lot of work. Did I really care that
much? Meanwhile I’d made a serious mistake. I’d mentioned
my idea to a number of friends who began egging me on.
What had I let myself in for?

The previous year I had been asked by a former
colleague to give a lecture to his introductory computer
class. Although his class was becoming increasingly
computer literate, they had little or no comprehension of
where the technology they were toying with had come from.
Feeling that some background would not only be salutary
but might even interest them, we agreed that I should try to
summarize my own experiences of thirty years in the field
and discuss the evolution of computer technology from that
vantage point. It seemed a decidedly self-centered approach,
but it had the sizeable advantage that little or no preparation
was required. In the event, the class showed surprising
interest in the history, and a number of the students later
sent messages urging me to write it all down. I was pleased
that I’d piqued their interest, but writing it down seemed
absurd. After all, it was just my own narrow, personal view
of what had happened.

Nonetheless, the seed had been planted and as time
passed I began to understand that one of the things that was
bothering me was the absence of the human theme in the
history of what might be called the “middle-ages” of
computer development—the period between the days when
only a handful of “giant brains” existed and the time when
computers suddenly began to spread like wildfire
throughout the society—roughly the early 1950s to the mid

xv

1980s. De-emphasis of the individual is an important
component of the scientific/technological outlook, and
indeed objectivity is an essential ingredient of all serious
science. But history is not the same thing as science. In
addition to the facts of what happened, there are the often
colorful human stories of how it all came to pass. Ultimately
history is a tale of human endeavor, and as such, it inevitably
captures our interest in ways that purely technical
descriptions cannot.

Another thing that bothered me was the absence, in most
of the histories I’d seen, of a bridge that gave adequate feel
for how and when so many of the things we now take for
granted had come about. These things were not specified in a
book handed down out of the clouds. They arose gradually,
as people’s understanding grew. As part of the generation
(now slowly withering) that did much of the work during
the middle-ages, I decided that perhaps after all I should
follow the urging of my friend’s students and attempt to
record matters as I had experienced them. Those years
formed an important and exciting era in the history of
computing, and although I myself was never a major figure
in the field, I had the good fortune to work alongside others
who were, on a number of projects that have turned out to be
central to the computer revolution.

Despite a swarm of hand-waving vision-painters and
post-hoc vision-claimers, much of the progress that has
occurred in the computer field has arisen simply from
people’s curiosity about the next step—the desire to push the
frontiers—rather than from clear visions of the future. There
are important exceptions, of course, but they are indeed
exceptions rather than the rule. Because one thing leads to
another, evolution and growth have been nearly exponential,
and this has produced the impression that virtually

xvi

everything happened very recently. But many of the crucial
steps and decisions that enabled yesterday’s explosion
actually took place many years earlier.

Of course, the invention of the transistor at Bell
Laboratories in the 1940s and the later development of
integrated circuits were of such profound importance that
without them, my story and most of the world’s computers
would simply not exist. These inventions permitted
computers to become smaller, faster, cheaper, more
powerful, and more reliable. But arriving at today’s personal
computer was not only a matter of making things smaller,
faster, and cheaper. The entire image of computers, what
they were and what they were good for, needed to be
transformed. The very name ‘computer’ itself reflects the
device’s earliest use, and it took many years before the image
of numerical computation as a primary focus began to fade.
Many of the developments that took place during the 1960s
and early ‘70s represented efforts to redefine the way users
would perceive and interact with computers. In the early
‘60s I was deep in the trenches, where the battle to define
and build the earliest personal computer, the LINC, was
taking place. The course pursued by the team with which I
was working was far from the mainstream of that period,
and our trajectory carried us straight through the middle of
many vigorous controversies.

My life, I regret to report, reveals a stunning lack of

single-mindedness. During college, dilettantism seemed
likely to qualify me at best as a ski bum; the notion that I
might one day have a profession, let alone a career, seemed
laughable. Nonetheless, despite the odds, life developed into
a fascinating and rewarding ride. After the lecture to my

xvii

friend’s class, one of his students asked him, “Did that guy
ever make a bad career move?” Pondering this question has
left me somehow depressed. “Career moves” are part of the
paraphernalia of today’s heavily-packaged lifestyle in which
twenty-year-olds are already preparing for retirement. I
realized I’d been fortunate to work in an earlier era when
one could more easily allow the search for interest and/or
fun to guide one’s choices. My own acquaintance with
computers commenced not with design but with
programming, and at the outset I marveled at the ingenuity
of the machines which must, I felt, have been devised by
wizards. Nonetheless, over time, as mystique
metamorphosed into understanding, I gradually shifted into
hardware design and in due course not only assisted in the
birth of a number of different computers, but even taught
courses in machine design at my old alma mater and
elsewhere.

I must have been blessed with a good nose for sensing
where important work was taking place and finding a way
to join the team. I never felt that I was a real innovator,
although it’s not always easy to distinguish major inventions
from the myriad smaller ones that help make the major ones
work. In any case, I found that I was able to make
contributions to these groups as a high-energy enthusiast,
helping to turn ideas into reality. I was delighted to be able
to participate and always felt amply rewarded for those
contributions that I was able to make.

My professional life was filled with numerous and often
colorful characters, many of whom appear in the following
pages. Some of these have been my friends over the better
part of a lifetime. My goal has been merely to show them as
they appeared to me, but not to caricature them, and I hope

xviii

that both they, and others who know or knew them, will find
them honestly, if sometimes bemusedly, portrayed.

In parallel with my professional life, and sometimes
deeply entwined with it, runs the narrative of my personal
life, which naturally affected the course of my career. For the
most part, however, it is not germane to the tale I wish to
tell, so except for brief mention in a few places, I have chosen
to eschew that part of the story. Let me just state briefly that I
have been married three times and have four children and
(at the present writing) four grandchildren. My wife, Laura
Gould, with whom I’ve shared the last twenty-eight years,
was, like me, a sort of maverick computer scientist and
teacher. And like me, in the almost twenty years since we
gave up working in the computer field, she has completely
changed her spots, becoming a writer immersed in the
history of science (but not computer science). My own
interests shifted away from engineering and toward the
humanities, in particular to music which I had once briefly
considered as a possible career.

What is contained herein, then, is a tale laced with
anecdotes and commentary, half way between a personal
memoir and a more general history. Rather than attempting
to give an objective and comprehensive overview—a God’s-
eye view—I have tried instead to describe what it was like to
be in the belly of the beast, to participate with colleagues in
the process of exploration, and to give some idea of where
concepts we now take for granted came from. My own biases
and opinions are writ large throughout and because my own
experience failed to touch many of the important branches of
computer development, they will be found missing here.
This is thus the antithesis of a comprehensive story.
Nonetheless, I hope that from this tale will emerge some idea
of the enormous differences between the computer world of

xix

today and that of the 1950s to the 1980s: and that the reader
will be able to enjoy, and participate vicariously in, some
pieces of the journey that connected the two. Because
computers have so thoroughly invaded the lives of so many
of us, I have particularly wanted this story to be accessible to
everyone, not just computer buffs. I have therefore eschewed
technical descriptions (or committed what some will no
doubt consider egregious simplifications) and tried to paint
images that could have been comprehended by anyone who
might have happened to be at our elbows during that
remarkably critical epoch of computer evolution.

xx

xxi

Acknowledgments

Memory is a fragile vessel to hold even the most

significant events of a lifetime, and in my case considerable
ullage has occurred. I make no apology for this; it is the
natural distillation that time imposes. But as a consequence, I
have found that I needed reconstructive help in places, and
I’ve not hesitated to seek it among friends and colleagues.
However, I have used such material only where it has lent
support to my own sometimes hazy memories, and it is
therefore I who must take sole responsibility for the facts, the
semi-facts, the non-facts, and the outright opinions recorded
here.

To list the many friends who have contributed
reminiscences and helped to adjust my memory would not
only be tedious for me and for you, the reader, but, given the
narrow and personal perspective of this work, could even
prove embarrassing to some who will no doubt prefer to
remain in the shadows. Nonetheless, I feel compelled to
single out two people, Wes Clark and Les Earnest, who read
the manuscript and patiently identified my most serious
misunderstandings and memory lapses. And my wife Laura
Gould provided her usual thorough editing assistance. To
the rest I hereby proffer my blanket thanks for your
encouragement and assistance: without you, my record of
history would have been far less coherent and, in places, less
correct.

xxii

xxiii

Introduction

Life is not an orderly progression, self-contained like a musical

scale or a quadratic equation. For the autobiographer to force his
life and his memories of it into a strictly chronological straight line
is to distort its shape and to fake and falsify his memories. If one is
to try to record one’s life truthfully, one must aim at getting into
the record of it something of the disorderly continuity which makes
it so absurd, unpredictable, bearable.

Leonard Woolf, The Journey Not The Arrival Matters

Spread out across the surface of my desk are several

manuscript versions of the score for a piano quintet that my
father wrote not long before I was born in 1930. The copies
differ slightly in a few places, and my task for this coming
fall is to compare these different versions and, by careful
selection with the assistance of other musicians, enter into
my computer, and thence publish via my laser-printer, what
will no doubt become the Urtext version of this composition.
I’ve been doing this sort of thing for the past decade, in the
course of which I’ve transcribed well over two thousand
pages of my father’s music. In the early part of this century
he was one of America’s best known pianists and a notorious
composer of radical music. He has gained another distinction
in recent years; at the age of 109, he is not only still alive and
well, but lucid and able to convey fascinating images of life
in Paris nearly 100 years ago.

xxiv

Every day as I commence to work, staring out at me
from the surface of my computer’s screen are the side-by-
side figures of me and my oldest chum from college days.
It’s an image, pieced together with the magic of computer
graphics, from a couple of individual photos we snapped of
one another on a recent climbing trip in the Sierra Nevada
mountains. Søren Kierkegaard, the Danish philosopher,
wrote a book entitled Purity of Heart is to Will One Thing. I’m
sure he was right and I wish I possessed purity of heart, but
alas, it is not the way of most lives, including my own.
Instead the life that is revealed behind the smiling faces on
my screen is a messy, steel-wool-like affair, made up of a
jumble of interlacing threads. There are listings and files for
the thousands of pages of music scores on which I’ve been
working; there is the material that comprises what I’m
writing here; there is information about a series of chamber-
music concerts that we hold in our home each year; there are
correspondence and email files containing letters and
messages to and from around the world on a host of
different subjects; there are files concerning our wills and our
accounts and those of our elders whose affairs we must now
handle; there are files that describe and tell how to manage
our property here in a relatively remote wilderness area;
there are recipes, address lists, and so many other things that
it’s quite hopeless even to summarize them.

In fact, it’s frightening to contemplate how dependent I
have become on my computer and its link into the network
that connects me to friends and information around the
world. In honor of that fear I periodically go through a
paroxysm, copying everything onto backup disks and toting
them to the house of a friend that I hope will not be
damaged by the earthquakes, fires, gremlins, etc. that could
jeopardize my precious information here at home.

xxv

It may strike the reader as odd that, in listing the kinds
of material contained in my computer files, there is no
mention of material from the many years I spent actually
engaged in the computer profession. There are indeed a
number of papers in the literature with my name on them,
but they were published before computers and word
processing became commonplace. Most were written in the
old-fashioned way, with pencil and paper, a pink-pearl
eraser, scissors, staples, scotch tape, and an infinitely patient
secretary who turned my hieroglyphics into draft after draft
as the chaos gradually converged toward finished copy.
Those papers, now yellowing somewhere in the bottom of a
desk drawer, give evidence that at one time I played a part in
the evolution of the personal computer, networks, laser
printers, and the like. At the time, although we hoped and
believed that the things we were designing and building
would prove useful, I myself certainly had no idea that I
would ever make the kind of routine and personal use of
such facilities that I now enjoy.

Having lived through these developments, it all seems to
have happened amazingly quickly—and indeed it has. But
not quite as quickly as some people seem to think. So let me
take you back a few dozen years to where, for me, it all
began.

xxvi

Computing in the Middle Ages
A View From the Trenches 1955-1983

1

Chapter 1

In which I meet some early computers,
write my first programs, learn a little history,
and switch professions.

t was the fall of 1954 and as I strolled across the

parking lot on my way to work, I noticed a climbing rope in
the back of a large gray Hudson—the car that looked like an
upside-down bathtub. I jotted down the license number and
later that day, having obtained the owner’s name, I went in
search of him. Like me, Howard Briscoe had been hired as a
geophysicist to work in the exploration department of Gulf
Oil’s Research and Development Company in Pittsburgh,
Pennsylvania. Three years before I’d graduated from
Harvard as a geologist and then spent a year in graduate
school at Berkeley where I’d substituted music for sleep.
After that I’d gone to work as a geophysical trainee with the
Gulf Oil company, which meant working with seismic
surveying crews first in New Mexico and later in
Oklahoma, looking, of course, for oil. By the time I met
Howie I was married, had a young daughter, and was
already bored with the routine work of correlating seismic
records. I’d decided that it should be possible for some sort
of automatic machine to do most of what I was supposed to
be doing and had begun thinking about just what such a
machine would have to do, when the climbing rope
appeared.

Howie was also a geologist by training, but unlike me
he’d had experience with a computer—MIT’s new

I

Severo M. Ornstein

2

Whirlwind2 computer. He’d been a member of the
Whirlwind programming staff, had written Whirlwind’s
symbolic assembler, and later became a member of a group
known as the GAG (Geophysical Analysis Group) in which
he had written a program to process seismic data. Gulf, as
one of the sponsors of the project, had hired Howie to help
them move in similar directions. My thoughts about
automating our work fit right in and we quickly became
friends.

Howie had helped to teach a summer session course
about Whirlwind at MIT and as he began to describe the
machine to me I found myself fascinated. My only previous
brush with a computer had been very indirect, when our
high-school math teacher described to the class his visit to
the ENIAC at the Moore School of the University of
Pennsylvania. He had tried to convey to us the excitement
he felt watching the flashing lights of the world’s putative
first electronic computer, but his enthusiasm fell on the
largely deaf ears of a group of fifteen-year-old boys with
other things on their minds. But now, stimulated by
Howie’s enthusiasm and excellent teaching, and with the
definite purpose of relieving myself and others of tedious,
routine work, I became a well-motivated student. Our
regular work didn’t demand anything like our full
attention, and we spent the rest of the time discussing
computers.

I had previously assumed that computers were only for
the electronically sophisticated, which I certainly was not.
The idea that one needn’t fully understand its electronics

2 Whirlwind, at MIT's Digital Computer Laboratory, was at that time the
world's fastest digital computer.

Computing in the Middle Ages
A View From the Trenches 1955-1983

3

but could treat a computer in purely logical terms, making
it do one’s bidding through a complex sequence of
instructions, was a tremendous and empowering revelation.
I felt I might be able to deal with that.

At that time there was serious debate whether the
future belonged to analog or digital computing. Looking
back with today’s understanding and with today’s
technology, it’s hard to believe that anyone could have
thought that analog computing was a serious contender.
But back then the emphasis was still on numerical
computation and the great diversity of tasks for which
computers would eventually be used could hardly be
foreseen with the technology of those times. The idea that
you could make machines that would run so fast that you
could afford to break computation of continuous functions
up into jillions of tiny individual steps was by no means
universally accepted. The speed of operation had an
enormous impact on the sorts of jobs for which one could
reasonably consider using a machine, and speeds such as
we expect today in every home computer were then all but
inconceivable.

In due course Howie lent me a book about England’s
EDSAC computer (an indirect descendant of the ENIAC)
and I spent some time studying the mysteries of its
“bootstrap code” —the small initial program that runs
when you push the Start button and brings into memory
the much larger program you actually wish to run. The
bootstrap code needed to be extremely compact: the
memory that held it was small and prohibitively expensive,
and it had to be laboriously reloaded, instruction by
instruction, by hand, every time the machine was restarted.
Restarting was pretty frequent in those days because the
electronics were terribly fragile and machines broke down

Severo M. Ornstein

4

with frustrating regularity. Great ingenuity had therefore
been expended on constructing a bootstrap program
consisting of the fewest possible instructions. The initial
program modified itself as it ran by overlaying some of its
instructions with others that it brought in. It thus modified
its own behavior in an extraordinarily clever and confusing
way—like a serpent devouring its own tail, I thought. I’d
never encountered anything like this before and was
genuinely excited. I was also thrilled to find that, with
considerable effort, I was able to unravel it all.

I learned later that because computer memory was such
a scarce and expensive commodity in those days, similar
effort went into compacting almost all programs.
Diabolically clever schemes were worked out for reducing
the size of programs. Devising ways to compact really
important, frequently-used programs was often a group
undertaking with details being worked out at a blackboard,
sometimes over a period of days or weeks. Howie told me
that on one occasion the latest version of a Whirlwind
program that had been heavily worked over was left
overnight on the blackboard. When the programmers
arrived next morning they were horrified to find that an
over-zealous janitor had carefully erased it all. (I was later
to experience a similar catastrophe myself.)

Such cleverness often meant that early programs were
difficult for anyone but the author(s) to comprehend3. As
memory began to be less prohibitively expensive, and as

3 And at the close of the millennium, the entire world trembled in
anticipation of potential disaster stemming from the trick of saving
memory-space by ignoring the first two digits of the year in specifying
dates.

Computing in the Middle Ages
A View From the Trenches 1955-1983

5

programming became more widespread and the size of
programs grew, the need for straightforwardness and
clarity came to dominate the need for compaction.
Eventually an entire sub-discipline, software engineering,
came into being to explore and delineate methods for
enforcing straightforward organization and for improving
clarity in today’s enormously complex programs and
systems.

After I’d mastered the EDSAC’s bootstrap program,
Howie lent me a manual describing Whirlwind and how to
program it. Under his tutelage I worked my way through
the manual and wrote out the suggested exercises. Of
course these programs were never going to be executed
since Whirlwind was hundreds of miles away in
Cambridge, Massachusetts, and remote computing still lay
far in the future. Besides, Whirlwind had far more
important things to do. Mine were just paper exercises
designed to teach one how to write programs. After I
became somewhat proficient, Howie made the startling
announcement that most of the instructions I’d been using
were actually unnecessary and were provided only to save
memory and make programs run faster. He explained that
there were, in fact, only a handful of truly basic instructions
and that all the others could be emulated (i.e., the machine
could be made to perform precisely the same function) by
programs made up only of this basic set. I tested the
validity of this claim by programming one or two of the
more complicated instructions using the basic set, and once
again I was stunned: the bloody thing seemed to consist
almost entirely of sheer ingenuity, balanced atop the merest
pinpoint of material reality. Where would it end? What did
it mean? I was now not only fascinated, I was hooked.

Severo M. Ornstein

6

The Gulf research lab had purchased a “small”
computer (it probably cost upwards of $100,000 which was
serious money in those days) that had a magnetic drum
memory. That means just what it says: the main memory of
the machine consisted of a rapidly rotating drum whose
surface was coated with magnetic material (think mag.
tape) on which the information (data, instructions, etc.)
were written. Thus if you wanted to get at a location that
had just passed under the read heads, you had to wait for a
full revolution until it came by again—not exactly random
access. In order to speed up the running of programs, the
machine had a complex addressing structure that allowed
the programmer to specify where the next sequential
instruction was to be found. I wrote a tiny program or two
for the machine, but I have to confess that the thing about it
I remember best was the large, shallow glass-fronted bin
which held a length of randomly curled up wide magnetic
tape, used for secondary storage. This bin took the place of
reels. Because the tape was allowed to fall into it at random
(but always maintaining its width parallel to the bin’s
shallow front-to-back dimension), there was little inertia (no
heavy tape reels) to deal with in quickly accelerating the
section of tape under the read/write heads. I didn’t
understand the motivation at the time, but was impressed
with the beauty of the way the tape curled up in its bin.

One night Howard and I went to a lecture at the
University of Pittsburgh. It was given by a couple of people
from MIT named Belmont Farley and Wesley Clark. The
topic was the computer simulation of neuronal activity in
the brain. Here were yet more revelations. The programs I’d
been writing were the dimmest of student exercises
consisting of boring things like adding tables of numbers
together. Now I was to see how the simple capabilities of

Computing in the Middle Ages
A View From the Trenches 1955-1983

7

this incredible machine could be turned to far more
compelling tasks. I’d always wanted to know more about
how the brain works and here were people using this lovely
new instrument to chip away at understanding that very
thing.

Their talk stimulated my imagination and I
immediately began to ponder whether computers could
really lead to an understanding of how the human brain
works. Similar fantasies were soon to captivate not only the
press, but also a sizeable number of members of the
embryonic field that would subsequently become known as
computer science,4 leading to outrageous and unfounded
speculation about what computers were “soon” going to be
doing for us in all sorts of domains. I’ll have more to say
about that topic further along. In any case, I think I knew
from that night onward that one day I wanted to be
involved in the kind of work that Farley and Clark were
describing.

Little did I know what lay in store.
Howie and I were both avid rock-climbers. That fall

(1954) saw us clambering over cliffs that we discovered on
the periphery of Pittsburgh. Soon we bumped into a group
known as the Pittsburgh Climbers who introduced us to
climbing areas further afield in West Virginia, as well as to
local ski areas. When spring skiing season arrived, Howie
and I arranged a trip to old haunts in New England, and on
our way through Boston we stopped to visit Whirlwind to

4 Neither the name nor the discipline would make its appearance for
several years, and when it did, many argued that to call it Science was
misleading since it was really “only” engineering!

Severo M. Ornstein

8

let me get a look at the machine for which I’d been writing
exercise programs.

It was an impressive and memorable visit. The thing
didn’t look like a pinpoint after all. In fact it filled several
floors of the Barta Building at MIT and great bundles of
intestine-like cables traversed holes in the floors and walls
between rooms. The main memory (all 4,096 words of it!)
had originally consisted of 32 registers of switches that had
to be set by hand. These were then replaced by 256 registers
of electrostatic storage tubes, on the surface of which bits of
information were stored as tiny charges. But these about-to-
be-obsolete devices had recently been replaced by an
experimental magnetic-core memory in which the bits of
information were stored in planes of tiny magnetic
doughnuts, polarized this way or that to represent the zeros
and ones that the machine used to encode instructions and
data. This core memory (initially 1,024 words) had been
developed not long before by Jay Forrester, who headed
Project Whirlwind. (Bill Papian, a graduate student of
Forrester’s who had done much of the actual work of
building and testing the prototype core memory, would one
day become my boss.) A special Memory Test Computer
(MTC) had been built expressly to try out the new
memory—which proved so successful that it had promptly
been moved to Whirlwind where it now resided. A variety
of less successful devices had been tried in other machines.
The development of core memory was to spur the growth
of digital computers by providing the standard main
memory technology for the next decade and a half.

The machine’s main registers, however, were
constructed from flip-flops which were very fast memory
devices, much faster than the core memory. These registers,
consisting of groups of flip-flops, were where the real action

Computing in the Middle Ages
A View From the Trenches 1955-1983

9

took place as the computer charged along executing
instructions, one after another, from the main (core)
memory. Each instruction typically involved a series of
steps that took place within and between the registers, so
the instruction steps, and hence the registers, needed to
work significantly faster than the core memory itself.
Someone unplugged a spare flip-flop from Whirlwind’s
gigantic racks and handed it to me. It was about eighteen
inches square as I recall, perhaps four inches thick, bristled
with vacuum tubes and other inscrutable electronic
components, and weighed maybe eight or ten pounds. It
seemed pretty compact and if anyone had suggested then
that within thirty years you wouldn’t be able to find such a
thing without a microscope, there would no doubt have
been great whoops of laughter.

But all those tubes failed with great regularity,
producing a healthy paranoia on the part of engineers of the
time. To cope with reliability problems, a system of
marginal-checking was devised in which the voltage
provided by the power supply could be varied on a unit-by-
unit basis in order to reveal incipient failures in elements
during testing. Marginal elements could then be replaced
before they failed during actual use and gave wrong
answers. Engineers who cut their teeth under these
circumstances were to retain their sensitivity to reliability in
their later work and the early development of projects such
as the ARPANET (see Chapter 14), benefited greatly from
deep concern about reliability issues.

At the time I wasn’t fully aware of the fortuitous timing
of my encounter with Howie. I didn’t realize how near the
headwaters we were, how recent were a number of major
developments that would propel the forthcoming rapid
evolution of computers. It was little more than a decade

Severo M. Ornstein

10

earlier, under the pressure of World War II for more and
better computation, that the first attempts to build any kind
of electronic computer had been undertaken. The result was
ENIAC. Earlier machines had used relays,
electromechanical devices, to store information, but their
mechanical properties had drastically limited their speed
and reliability. The ENIAC used vacuum tubes and could
run programs many times faster than any previous
machine.

In those days computers were still thought of
principally as mechanisms for computing functions of
variables—things like X = a(b2 + c3), and of course far more
complicated kinds of expressions. For some time there had
been fixed purpose devices that could perform a very
limited set of operations, for example, a desk calculator that
could add, subtract, multiply or divide pairs of numbers. In
the 19th century, an Englishman named Charles Babbage
had taken a tremendous intellectual leap by suggesting that
one should be able to construct a general purpose machine,
one that could be made to do a wide variety of different
computations using the same basic machine structure. The
functions themselves, the rules for what was to be
computed, seemed to be comparatively fixed and, in
ENIAC’s day, were thought of as more or less a part of the
machine’s definition. Of course even though it was
comparatively stable, it had to be possible to change it for
different computations, and so in early computers, switches
and plug-boards, into which a nest of cables could be
plugged by hand, were used to define the sequence of
operations that the machine was to follow for a particular
computation. Setting up or changing programs defined in
this way was an unbelievably ponderous operation. (My
wife, whose father, the mathematician D.H. Lehmer,

Computing in the Middle Ages
A View From the Trenches 1955-1983

11

worked on the ENIAC, tells me that as a child she and her
brother were among the world’s first un-programmers. It was
their task to remove the wires from plug-boards and sort
them by length when it was time to reprogram the
machine.)

Creating anything as complicated as a computer
requires a multiplicity of skills. Rarely do all of the
necessary talents exist in a single individual, and in the
design of dramatically new and innovative computers it has
often been the case that a collaboration has arisen between
individuals who conceive the overall machine and those
who have the specialized electrical engineering ability and
imagination to turn that conception into something real that
works. The rôles are not really separable, of course, and
each must play in the other’s pond to a large degree. The
relationship is not unlike that between an architect and a
building contractor when a structure of dramatically new
design is to be erected. Each participant, of course, must
have the capacity to understand the other’s discipline, but
not necessarily to deploy it with full force and imagination.
In the case of the ENIAC, John Mauchly was the
conceptualizer and J. Presper Eckert was the
engineer/builder. This is, of course, gross
oversimplification. Building a new computer invariably
involves an entire team of specialists as well as numerous
subcontractors, specialized parts manufacturers, and
fabricators who provide all of the individual pieces.

In 1944, along came John von Neumann of Princeton’s
Institute for Advanced Study, who was helping to develop
the mathematics for the atomic bomb. That work required
enormous amounts of computation, and although the
ENIAC wasn’t powerful enough, and reprogramming was
extremely cumbersome, it nonetheless looked like a

Severo M. Ornstein

12

promising point of departure. Von Neumann, working
together with Eckert and Mauchly and other senior
members of the ENIAC group, had come up with the
design of a new machine which they called the EDVAC.
EDVAC incorporated two innovations the importance of
which would be hard to overstate.

The first was abandonment of any attempt to force the
decimal number system into the machine’s innards as had
been done with ENIAC. Human beings have, by and large,
settled on the use of decimal numbers so firmly (probably
because of their ten fingers) that most people are surprised
to learn that the choice of ten symbols (0 through 9) is, in
fact, arbitrary and that larger or smaller sets of symbols,
leading to other numbering systems, are possible and even
more convenient for certain tasks. In Eniac’s time,
programmers, being used to decimal numbers, were most
comfortable defining their instructions for the computer in
decimal terms. The underlying hardware, however, could
be made much more reliable if it had to distinguish between
only two states, which meant that the machine represented
information internally in binary form where only two
symbols (zero and one) are used. To resolve this
discrepancy, ENIAC’s designers had attempted to mask in
the hardware, the underlying binary nature of the machine in
order to present the façade of a decimal machine to the
programmers. Doing the conversion necessary to create the
façade had vastly complicated ENIAC’s hardware, so the
decision to push the conversion into the software in
EDVAC allowed great simplification of its hardware.
Programmers quickly adjusted to working in binary and as
the uses of computers have extended far beyond the

Computing in the Middle Ages
A View From the Trenches 1955-1983

13

solution of numerical problems, the early attempts to make
machines appear decimal now seem ludicrous.5 Of course
today users (as opposed to programmers) employ decimal
numbers all over the place and have no need to be aware of,
or to deal with, the underlying binary machine.

The second innovation was the decision to store not
only the data but also the program itself in the memory of
the machine. Today the usefulness of this seems so
transparent that we can’t imagine doing it any other way,
but it was not always so. In thinking up the idea of putting
the program into the memory as opposed to designating it
by the temporary setting of switches and wiring of
plugboards, the EDVAC designers opened the door to a
flood of possibilities, only some of which they could have
foreseen at the time. The most obvious benefit was the
ability to switch programs rapidly, but of course it allowed
far more flexible programming all around. A running
program could operate on itself, changing parameters and
even instructions on the fly. The ability to swap small pieces
of large programs into and out of the main memory onto
other, less-expensive media, would lead to virtual memory
systems, multiprocessing, and a host of other techniques
that today we take for granted. In a sense, it was the natural
next step toward greater flexibility, but at the time, given
the general unreliability of components, it was both a
powerful insight and an act of considerable bravery.

In any case, the idea was of such profound significance
that the stored-program computer, which is what everyone
has used ever since, is still referred to as a “von Neumann
machine.” This gives more credit to von Neumann than he

5 Although IBM later built a number of decimal machines.

Severo M. Ornstein

14

deserves. He was the first to publish a description of the
proposed new EDVAC machine and he signed it as sole
author, but in fact Eckert had been thinking along these
lines well before von Neumann showed up on the scene
and they had worked together on the EDVAC design. Sadly
scientists and engineers, even the best of them, are not
immune from the urge to claim more than their share of
credit.

Early in 1946, Maurice Wilkes, at the Cambridge
University computer lab in England, saw a copy of von
Neumann’s report; a few months later he arrived in the U.S.
in time for a series of lectures at the Moore School
describing the machine more fully. Back to England he
went, busily designing a similar machine of his own en
route. He dubbed his machine the EDSAC in honor of
EDVAC which had inspired it, and three years later, in the
spring of 1949, it began functioning as the first such
machine the world had ever seen. This was the very EDSAC
described in the book that Howie had lent me, and that I’d
been puzzling over just months before our visit to
Whirlwind. The final piece of the puzzle, that opened the
door to forthcoming generations of computers, had been the
development of core memory at MIT.

In retrospect I find the felicity of my timing
unbelievably fortuitous. These prior events, which were to
have such widespread consequences, had all taken place
within the decade preceding our visit to Whirlwind, some
only months before. At the time Howie handed me the book
about EDSAC, I understood that there were only a few such
machines in the world and that they were all highly
experimental. I don’t think that I, or anyone else, realized
the immensity of what was soon to happen and how
rapidly it would all take place.

Computing in the Middle Ages
A View From the Trenches 1955-1983

15

In trying to explain my new profession to my father
(the word “programming” had not yet entered common
parlance), I described to him what I knew of this prior
history. When I mentioned Presper Eckert, to my surprise
he said that a number of years earlier Eckert had been a
dinner guest at our home. My family were friends of
Herbert Welsh, and the Welsh’s son, Frazier, was one of
Eckert’s closest sidekicks. He brought Eckert to dinner one
night under the illusion that he and my dad, both geniuses
in their own fields, might find one another interesting. But
as Eckert was apparently a prototypical nerd and my father
is a black hole so far as science and engineering goes, they
apparently had had little to say to one another. As a
youngster I had known Frazier during the period when he
was helping Eckert with the design of the early UNIVAC
machine, but his life was cut short by the crash of a glider
he was piloting.

By the time I came along, the idea that one could use
computers as something more than mere “computing
engines” was spreading fast. It was the era in which
computers were referred to as “Giant Brains” and
speculation about what they would be able to do ranged
wildly. Just as nuclear power was at one time envisioned as
a magic solution to all of the world’s energy problems, so
computers were thought of as potentially able to solve all of
our most perplexing intellectual problems. Nor was such
speculation limited to the media. No one really knew where
the limits, if any existed, would eventually be encountered,
and even some experts indulged in over-zealous
speculation. Such speculation still goes on today of course,
but, except for a few daring individuals, no longer on the
scale or with the wide-eyed naiveté of those earlier times.
Gradually, as the technology began to mature and

Severo M. Ornstein

16

applications proliferated, more and more people became
involved and the naiveté diminished. That is not to say that
we have arrived at the end of the road; far from it. It’s just
that expectations have become somewhat more realistic and
computers no longer seem like magic. When gadgets such
as Palm Pilots, hand-held GPS devices, etc., appear on the
market, we may be amazed at their cleverness and
usefulness, but it no longer seems like a miracle.

Whirlwind was the first machine that was fast enough
to do interesting things in real time. Most earlier computers
simply did their processing as rapidly as they could; it was
hoped that they wouldn’t take unreasonably long, but there
were no hard deadlines. Real-time computing means that
something outside the computer imposes fixed, short
deadlines on the work to be performed. For example,
suppose a computer is processing data from a device that
generates the data at fixed intervals. Unless the computer is
ready to handle the next piece of data when it arrives, the
data will simply be missed—it will “fall on the floor” (to
use computer vernacular). It’s the same thing as someone
working on an assembly line who mustn’t fall behind. In
some applications, e.g., control of aircraft functions, rates
are high and failure to keep up can have devastating
consequences. Careful matching of speed is critical in the
design of such systems.

A particularly significant form of real-time computing
takes place when a human user interacts directly with a
computer. To be useful, the machine must perform fast
enough, during the various interactions that occur, so that
the human is not forced to work at an unreasonably slow
pace. For example, when a contemporary user moves a
pointing device such as a mouse, it’s vital that the computer
be able to keep track of the mouse’s movement and reflect it

Computing in the Middle Ages
A View From the Trenches 1955-1983

17

on the screen by correspondingly moving some visual
indicator (a cursor). If the computer can’t “keep up,” the
user’s hand movement is not accurately reflected by
movement of the cursor on the screen and the entire
mechanism is ineffectual. Many other elements of
interactive use demand that the computer respond in a
timely fashion. Before one could consider using computers
interactively through a display screen as we do today, they
needed to become fast enough to cope with such use.
Whirlwind was the first computer with powerful interactive
display capabilities, and as such it was the great-
granddaddy of all personal computers. It was in fact
personal in another sense as well, since it was generally
used by one individual at a time6 and during that user’s
time, the machine was completely at his disposal. For many
later machines, this was felt to be too profligate a way to
use such expensive equipment, and different ways of
sharing access would soon be explored.

During our visit, someone mentioned that MIT had
recently opened a place called Lincoln Laboratory, in
suburban Lexington, where qualified staff people were
being sought to work with computers. Howie and I had
both become somewhat disenchanted by the conservatism
of the Gulf Oil company, and not long afterward Howie
disappeared from Pittsburgh to go to work at Lincoln Lab.
Before leaving, he suggested that the training he’d given me
might qualify me for a job there as well. (Programming had
not yet become a recognized profession and anyone with an
aptitude for such things was a potential candidate.) A little

6 Although when driving the Cape Cod System (which we'll encounter
shortly) it was shared by multiple “users.”

Severo M. Ornstein

18

while later I somewhat doubtfully submitted an
application, and to my surprise and delight, I was called for
an interview.

I remember little of the interview itself except for two
things. First, in the middle of the interview I was asked
directly what my main shortcomings were. (I was so
startled by the candor of this question that I think I was
quite forthcoming.) Second, I was given a sort of test to take
home and complete. It contained a number of simple logic
problems and asked you to discuss some of the issues
involved in designing an automated traffic light system for
a city. There were no explicit programming problems, for
the simple reason that most applicants could not be
expected to have ever written a program. The test seemed
not only easy and fun, but was thought-provoking as well.
The next day a number of people interviewed me in what
seemed a very offhand manner. Having been stress-tested
with serious physics questions for employment at Gulf, I
was perplexed to find myself enjoying the process. Was I
being interviewed for a serious job? What was going on?

I learned that Lincoln had been set up to provide MIT
research services to the Air Force. Foremost among these
was the design of a modernized air defense system. Our
uncomfortable alliance with the Soviet Union during World
War II had been but a brief interlude in the over-arching
hostilities between the communist Soviet Union and
capitalist America. By this time that semi-religious war,
having been dubbed “the cold war,” was in full swing, and
the consequent military buildup was proceeding apace on
both sides. The need for an upgraded air defense system
was a manifest part of the process.

There had been various studies and proposals for ways
to upgrade the existing system. MIT had been pursuing a

Computing in the Middle Ages
A View From the Trenches 1955-1983

19

method that would utilize a computer to handle a wide
variety of relevant tasks—the tracking of aircraft (inter-
continental ballistic missiles had not yet become a
significant threat), assignment of weapons, control of
interceptors, etc. A small prototype system that utilized
Whirlwind, known as the Cape Cod system (some of the
system’s radars were on Cape Cod, peering out over the
Atlantic) had been constructed within the Barta building at
MIT where Whirlwind was housed.7 It was a semi-
automatic system which meant that Air Force personnel,
wearing telephone headsets and seated in front of large
consoles with screens and buttons and light-guns (a
forerunner of today’s mouse), interacted with the computer
to operate the system. The Air Force had seen the prototype
system demonstrated and, after the usual hemming and
hawing, the powers that be had decided to develop a full
blown version of it—which formed the raison d’être of
Lincoln Lab. Lincoln was originally organized in 1951, on
the MIT campus, and moved to Lexington in 1952.

Numerous stories, some no doubt apocryphal, emerged
from the Air Force reviews of the Cape Cod system. One
that I particularly like involved a General who,
understanding little of what he was seeing, nonetheless felt
compelled to manifest interest. He stepped over to a young
Air Force operator who happened to be overseeing a radar
monitor and asked him to explain his job. “Well Sir,” he
said, “you see that little red light there? You see this button

7 Previous Navy support for Whirlwind had been under threat, and the
adoption of Whirlwind by the Air Force was quite critical to the continued
development of Whirlwind, the legacy of core memory, and IBM's
construction of the follow-on XD-1 (see below), etc.

Severo M. Ornstein

20

here? Whenever that little red light goes on, I push this
button and the red light goes off.” Radars sometimes pick
up a lot of irrelevant noise and the red light was a data-
overflow alarm. The button suppressed the alarm. It’s not
recorded whether or not the General pursued the matter.

The follow on system to be developed by Lincoln Lab
was dubbed SAGE, which stood for Semi-Automatic
Ground Environment. (Acronyms, I was to learn, are the
life blood of the military.) At the center of the system stood
a giant new computer, the XD-1, designed cooperatively by
Lincoln and IBM. By the time I arrived on the scene, the
basic machine was already in place in a gleaming,
windowless, super-secret building behind the main lab
which housed a full-scale prototype Direction Center—
computer, consoles, and all. Alas, no operational program
inhabited the glistening new core memory and it was in
order to correct this deficiency that the lab was seeking
people like Howie and me.

Despite dire predictions by my disgruntled Gulf
employers that I was letting myself in for what would soon
become a sweat-shop operation with hundreds of
programmers forced to scribble away in giant bull-pens,
within weeks my family and I were on our way to Boston.8
After leaving school in Cambridge, I’d been banished by the
need to earn a living first to the oil fields of New Mexico
and Oklahoma, and then to the wilds of Pittsburgh. Now, in
the summer of 1955, we were on our way back to the part of

8 Gulf was so disgruntled, in fact, by the departure of Howard and me and
a couple of others to MIT, that when a short time later a geologist pal of
mine came to solicit financial support for MIT, he was none too politely
shown the door.

Computing in the Middle Ages
A View From the Trenches 1955-1983

21

the world I knew and loved, within easy reach of the
outdoor joys of all New England. I couldn’t believe my
good fortune.

And I still had no idea what was in store.

Severo M. Ornstein

22

Chapter 2

In which I arrive at Lincoln Lab, am
introduced to the wonders of air defense,
security, and other matters, and worry about
my children’s future.

he SAGE system was the first really large-scale

programming task undertaken anywhere by a sizeable crew
of programmers. (Not surprisingly it exposed many of the
communication problems between programmers that are
still with us.) Shortly after I arrived at Lincoln, a course was
given to teach programming to us novices. In those days
computer people came from all sorts of disciplines.
Programming as a profession hardly existed; there were
virtually no experienced people available, nor any
computer science departments to teach them. So people had
to be recruited from other walks of life and given on-the-
job-training. As we gathered I had an opportunity to inspect
my fellow students. We were a motley crew consisting of
everything from musicians and historians, through
chemists and mathematicians, to a handful who had
actually already written a program or two. I was pleased to
find myself in the latter category and came gradually to
recognize that I actually had a gift for this new craft. With
Howie’s training behind me, and finding considerable
similarities between Whirlwind and XD-1 (the machine
with which I was now faced), I breezed along.

After a week or so, it became apparent to everyone that
the course was redundant for a few of us; we were culled

T

Computing in the Middle Ages
A View From the Trenches 1955-1983

23

and given other assignments. It seemed that not only was
an operational air-defense program lacking, but the overall
system hadn’t yet been fully designed. The OP SPECS
(Operational Specifications) which defined the system were
just being written, and with no more background in air
defense than a woodchuck, I was unceremoniously handed
the task of writing the Crosstelling Spec. What in God’s
name was Crosstelling? The only thing I knew about it was
that it came late in the schedule, thank heavens, after
everything else was finished.

It developed that the country was divided into sectors,
and that the sectors were in turn divided into sub-sectors
(which were really the operational units) with a Direction
Center at the heart of each. Since airplanes, especially those
that didn’t belong to the Air Force (or even the U.S.), could
hardly be forbidden from crossing between sub-sectors,
some coordination was required for handing over the
tracking of planes, controlling of interceptors, etc., between
the sub-sectors. This function was called Crosstelling, a
name inherited from an earlier manual system in which
human operators followed the tracks of aircraft on radar
screens and coordinated matters by talking to one another
on telephones. Now it had somehow fallen to me to define
how this coordination should be handled by computers,
and then to write it all down in an official OP SPEC with a
bright red cover stamped SECRET.

I was horrified. Not only did I feel incapable of
handling the task, but what was to become of a country
whose Crosstelling was to be specified by an ignoramus like
me? My number two daughter was born at about that time,
and for the first time I began to fear for my children’s
future.

Severo M. Ornstein

24

I want to pause here to relate a couple of anecdotes that
help to explain my later sentiments about security rules.
While I was getting an introduction to SAGE, my pal Howie
was writing the manual describing how radar-data input to
the machine was handled. This was classified information,
so as Howie produced each page, it was quickly stamped
SECRET. Unfortunately Howie’s clearance had temporarily
lapsed, and consequently he was not allowed to proof-read
the sections he’d just written.

An even more ironic incident took place the day a
SECRET stamp arrived on the desk of another member of
the lab, presumably to cover the possibility that he might
write down a SECRET thought. Curious about the stamp, he
tried it out on the blank top sheet of the giant pads that sat
atop all of our desks (used for doodling and other vital
government work). That night he was awakened from a
sound sleep by a telephone call from “Security.” He had left
a “SECRET document” on his desk, requiring that he get
out of bed, drive to the lab, and put the document away in
his securely padlocked file cabinet.

Despite such ironies, I soon started to get to know my
confreres. My immediate superior was a wonderfully
relaxed and friendly Japanese guy, Jiro Ishihara. (Japanese?
Hadn’t we recently been at war with those guys? What was
one of them doing defining our new air-defense system?) I
had a lot to learn, it seemed. And Ish, it turned out, was just
the one to teach me. He was wonderfully supportive, and
suitably irreverent. I learned an enormous amount in a
hurry, much of it by osmosis. One thing I learned was that
the Direction Centers were to be connected by high-speed
telephone lines that could transport 1,000 bits of
information every second—every second, mind you!—and in
each direction! Why in five minutes, we could ship 300,000

Computing in the Middle Ages
A View From the Trenches 1955-1983

25

bits! I began to relax. With such incredible capacity, we
could probably do the job. (The tiny modem in my home
computer today handles 56 times this amount; high-speed
communication lines, thousands of times.)

The weeks went by and gradually I learned more. Ish
lived not far from where we did, in a similar duplex. He
invited me to join him one afternoon and, as we lay on
chaises in his sunny back yard discussing work matters, I
was struck by the difference between this job and the one
I’d held previously in which work was strictly relegated to
the office. Here I was coming to learn that the boundaries
were comfortably permeable—it was assumed that you had
some genuine interest in your work that persisted even
beyond the confines of the office and 5 PM. Sometimes we
would take off in the middle of the day, go somewhere for
lunch, and then head to the Barta building at MIT where
some exercise of the Cape Cod system was under way. I
much preferred this easy interplay of work and living.

One day there was an open-house demonstration of
computer facilities at MIT (not, of course, including the
Cape Cod system, which was classified). A new core
memory had been installed in MTC, replacing the one that
had been moved to Whirlwind, and a program had been
written that enabled it to play music (by carefully switching
the inputs to an amplifier back and forth at just the right
frequencies). This was my first encounter with, and must
have been a very early instance of, the use of a computer to
play music. Artificial speech would come much later. A
somewhat grimy but broadly-smiling individual was
overseeing the demonstration. Although I had no way of
knowing it then, this fellow was to appear at various times
throughout my future and, in the process, would become a

Severo M. Ornstein

26

lifelong friend. His name is Tom Stockebrand and we will
encounter him again later.

Eventually I managed to write a respectable
specification that was duly reviewed by the Air Force
personnel attached to Lincoln, whose difficult job it was to
oversee the definition of the system. It was a back-and-forth
process in which each side educated the other; they
educated us about air defense and we educated them about
what a computer could and couldn’t do. Such interactions,
between computer experts and customers with a problem to
solve, were to become commonplace in the years ahead,
and already the occasional arrogance of computer people,
thinking they understood the customer’s needs better than
the customer, was beginning to manifest itself.

Once the specification was completed, it was time to
write the program. The Systems Development Corporation
(SDC) had become a partner in the SAGE development
effort and it was their responsibility to write the actual
code. So I spent time working with one of their
programmers, conveying the specifications to him.
Thereafter crosstelling gradually drifted away from me as I
became involved in other matters. I had become interested
in exploring various ways in which the computer could
track aircraft in the presence of noisy radar data. (I believe
SAGE would have failed utterly in the presence of active
“jamming” by an enemy, but fortunately it was never put to
the test). I was conducting some experiments on XD-1 when
someone spilled a cup of coffee down the throat of the card
reader (the only program entry device). Everything came to
a halt as the IBM technicians took the reader completely
apart and cleaned every piece. After two days of this, glass
partitions and Guards and Rules were put in place. No
further coffee need apply.

Computing in the Middle Ages
A View From the Trenches 1955-1983

27

Emergency main-power-off buttons occupied the ends
of every one of the numerous long racks of computer
electronics. One night a janitor, wielding his broom too
vigorously, accidentally bumped one of them, turning off
all power to the Direction Center. For days thereafter,
technicians could be seen going through the machine
replacing the buttons with recessed versions, thereby
protecting the nation from errant broom handles. You can
think of this as an early forerunner of those “Are you sure
you want to…?” messages that appear on your screen when
you’re about to take some irreversible action.

Severo M. Ornstein

28

Chapter 3

In which I make some comparisons and
mark some contrasts between “back then” and
“now.”

n the “middle-ages,” what computer industry existed

bore little resemblance to that of today. Many of the
differences have come about as the result of the enormous
proliferation of machines. This has, of course, been a snow-
balling process: as price comes down, demand and quantity
increase; as quantity increases, price comes down further,
etc. Producing things in small quantities doesn’t justify
specialty shops; it’s only when quantities become large that
it makes sense. And so the nature of both design and
production have changed dramatically. In the 1950s there
were no chip manufacturers because there were no chips.
Although they bought small electronic components
(resistors, capacitors, transistors, etc.), the few relatively
large computer manufacturers tended to make many of the
parts they needed, such as printed circuit boards,
themselves. There were no huge overseas manufacturing
facilities of the sort that exist today. Asia was barely
emerging into the 20th century having been badly damaged
as a result of World War II. There were standing jokes about
the Japanese only being able to copy things, not devise
them. But these attitudes soon disappeared as Japan rapidly
rebuilt following the war and, with it’s then relatively cheap
labor costs, quickly took over the manufacture not only of
television sets but also of the entire cornucopia of emerging

I

Computing in the Middle Ages
A View From the Trenches 1955-1983

29

household electronic gadgetry—not to mention
automobiles.

The rôles of people were very different then as well.
Start-ups and today’s entrepreneurial fervor all lay ahead. If
you wanted to work in the investigative part of the
computer field, exploring new terrain, there were really
only two choices: you could join one of the large computer
manufacturing firms (most likely IBM), or you could
associate yourself with some Institute or University where
research would be funded with government money of one
sort or another. While the profit motive certainly underlay
much of what went on, there was, in my own experience, a
much larger element of sheer exploratory excitement than
there is now. People were not working on products—they
were working in particular areas of computer research,
testing which ideas were viable and which were not. Many
ideas that seem laughable in retrospect, had to be tested
before their flaws became apparent.

Gradually the wheat was winnowed from the chaff and
as the design of the basic elements began to settle down, the
search for ways to exploit them began to intensify. Of
course people had been considering possible applications
for computers for a long time, but the mere size of earlier
machines precluded the exploration of most of the kinds of
applications that exist today. It was the advent of the
computer on a chip (or a few chips) in the late 1960s that
opened up a world of new possibilities, not only for small
personal computers (and ultimately laptops) but for
applications in all kinds of devices from automobiles and
washing machines to a plethora of hand-held devices.
Given the exponential rate at which the computer enterprise
has grown, it would be nearly impossible to point to a knee
in the curve, let alone a beginning. Nonetheless, looking

Severo M. Ornstein

30

back forty years or so, one can say that at that time, nothing
comparable to the present industry existed. And as a
consequence, the rôles that individuals served, their
ambitions and satisfactions, were all very different from
those one finds today.

Over the last few years we’ve watched as a friend and
neighbor, a young Silicon Valley Turk, set about forming a
new “startup” in the approved manner. For a time he
sprouted ideas right and left for a possible new enterprise,
until one finally grabbed him—the idea of making an
electronic book, something you could carry around with
you easily, that would hold a number of books, be more
readable than your typical laptop, and embody only
features and capabilities related to reading (as opposed to
the cornucopia of features in a portable computer.) He then
pulled together a group of his buddies, rented some office
space, started refining ideas, building rough prototypes,
and gathering initial funding. It was today’s classic story.
Back in “my time” such a person would have been a top-
notch member of some research lab, but today, when so
much of the terrain has been explored, relatively few such
labs still exist. Instead the bright people are now utilizing
their brainpower to create new products (and fortunes)
from leading-edge technology. In one sense, this is not so
different from what we did in building new kinds of
computers using the then-new transistor technology. But
today, the really new things that are being created are not
themselves computers, but rather devices and gadgets with
a microprocessor buried inside. Another major difference is
that most of our work was either government sponsored
research or was directed at specific customers with
particular applications. By contrast, a large fraction of

Computing in the Middle Ages
A View From the Trenches 1955-1983

31

today’s products are aimed directly at the consumer
market, i.e., the general public.

Back when I was a kid, we could all identify the makes
of cars at a glance; you didn’t have to look twice to tell
whether it was a Ford or a Chevy. Looking at modern
automobiles, it’s hard to tell one from another. Of course
there are now all kinds of different models—convertibles,
sedans, vans, station wagons, SUVs—all easily
distinguishable. But within each of these categories variety
is surprisingly limited compared to earlier times. Why? It’s
no doubt partly a matter of conservative and highly
competitive marketing that tends to produce rather uniform
styling. But style itself has been shaped in no small part by
engineering considerations that have have come to be
generally understood and accepted over the course of many
years of experimentation. Back when the constraints were
less well understood and therefore less stringent, greater
experimentation resulted in more diversity. Gradually the
nooks and crannies of the design space were explored, the
blind alleys discovered by everyone and foreclosed, and the
design space thus narrowed. Of course there are still
distinctions based on cost, but increasingly the features that
distinguish luxury from economy models are revealed only
on close inspection and manifested mostly in special
gadgetry.

The same sort of convergence has occurred over the
years with a host of other items from airplanes to toasters as
the design constraints (including ergonomics) have become
better and better understood over time. It’s a bit surprising
that the design of something as complex as a computer has
settled down so rapidly to a similar kind of superficial
uniformity. As with cars, there are now a number of
different models—laptops, desktops, minicomputers,

Severo M. Ornstein

32

mainframes, supercomputers, etc. But in the smaller
versions, where most of the proliferation has occurred, you
have to look carefully at special features, mostly having to
do with speed and memory capacities, before you can
distinguish the various hardware offerings from one
another. Although they are certainly different in their
software and in their methods of operation (and
maddeningly incompatible with one another), nonetheless, in
terms of basic user facilities, they’re all much the same, each
of them presenting you with a screen, a pointing device,
and a keyboard, all of which unambiguously suggest highly
interactive use.

This was by no means always the case, and part of my
task is to explain how this style of usage arose from very
different beginnings. Understanding history is important
because it makes us less cocksure about the present, let
alone the future, and helps us to understand that change is
the only real constant. Despite the uniformity that presently
exists, and the hype and euphoria surrounding the personal
computer revolution, it may well be that the explosion in
numbers today arises less from the perfection of current
design than from the fact that they’ve become good enough
to permit them to be produced and utilized in quantity. But
we shouldn’t forget that significant changes and
improvements may well lie ahead, and even some designs
that lie outside our current imagination.

The computers that existed around the time I arrived at
Lincoln, in the mid-fifties, bore no resemblance whatsoever
to the computers most people are familiar with today.
Many of them cost millions of dollars and filled large
rooms, and even the “smaller” ones cost many tens of
thousands of dollars. But there’s more to it than just the size
and cost and general appearance. Almost everything was

Computing in the Middle Ages
A View From the Trenches 1955-1983

33

unrecognizably different, not just the machines themselves
but the way they were used, the type of people who used
them, and what they used them for.

In the early fifties there were practically no computers
around to speak of, at least by today’s standards.9 The few
that existed were all different from one another; programs
written for one would run only on that machine and no
other. They also broke down a lot. It was a bit like the early
automobiles for which the driver needed to be something of
a mechanic. The people who worked with these early
machines generally knew them inside out. Gradually there
came to be a separation between hardware people, who
specialized in understanding the details of the underlying
machine, and programmers, who specialized in writing the
programs that went into the memory and were executed by
the machine. I certainly encountered many programmers
who had little or no idea how the machines they were
programming actually worked—I was in that class myself
for a number of years—and, perhaps more surprisingly, I
met a number of hardware designers who never could and
never did write a sensible program. But for some years
there was no distinction between a user and a programmer;
users wrote their own programs to do whatever job they or
their superiors wanted done. The distinction arose only
many years later with the proliferation of machines together
with some understanding of the common tasks for which

9 Since writing this, I have been surprised to learn that a 1957 survey
indicates that by then there were already roughly 5,000 machines in the
United States alone including a tiny number of “small” (i.e., on the order of
$80,000 apiece) computers based on magnetic drum memories. By leaping
into the field at Lincoln, I came in contact primarily with some of the larger
machines, which gave me a biased picture of how things stood.

Severo M. Ornstein

34

sizeable numbers of non-computer-savvy people might
want to use them.

In the early middle ages, just as there were only a few
machines, there were very few people who understood and
dealt with them. They constituted a “brotherhood” of
cognoscenti. (Indeed not all of the people involved were
male although most were. Nonetheless, I hope I will be
forgiven for eschewing the word “personhood.”) As the
number of experts grew, the average level of scientific
distinction gradually diminished from the early days of
such giants as Alan Turing, John von Neumann, Norbert
Weiner, and Vannevar Bush. In the early-to-middle middle
ages, there were still few enough knowledgeable people
within the technical community that many of them tended
to know one another. Despite strong differences of opinion,
they were working—in the larger sense—collaboratively,
toward common goals. Today’s nerds constitute an
altogether different breed of cat. They are, for the most part,
working competitively in the marketplace. There are
infinitely more people involved and, as there can be only a
limited number of celebrities at any given time, the ones
who today tend to be widely known are the few who have
percolated into the economic stratosphere. I don’t mean to
suggest that there are any fewer extremely bright and
creative computer people than there used to be—quite the
reverse. In their millions, they have become
indistinguishable in the crowd, whereas in the middle ages,
the few there were often knew one another and stood out
like sore thumbs .

The computers that most people today are familiar with
are the modest-sized, modest-priced personal machines.
There are, of course, larger, more powerful computers for
big jobs, but none covers the kinds of acreage that the

Computing in the Middle Ages
A View From the Trenches 1955-1983

35

gargantuan old computers occupied. They filled rooms and
covered walls that were often plastered with panels
containing zillions of flashing lights. They were big because
the pieces from which they were constructed were big. Big
components meant that cables and connectors were
required to join the pieces of the machine together, and
designers quickly learned that, as my later mentor Wes
Clark put it: “nature abhors a connector.” But aside from
the unreliability of the cables and connectors that hooked
the various pieces of the machine together, the individual
pieces were themselves far less reliable than today’s
electronic components, which often contain more
electronics on a single chip than could then be fitted into a
large building. Despite the marginal-checking mentioned
earlier, the mean time between failures of the overall
machine was sometimes hours or even minutes. The
flashing lights were there because they provided the only
visible clue as to what was happening—or, more frequently,
to what had happened when the machine ground to a halt.
When that occurred, one performed what was
appropriately called a postmortem, using the switches and
buttons to probe around carefully in the remains, trying to
understand what had gone awry.

By the time I showed up at Lincoln Lab in 1955, this
situation was already changing rapidly. Commercial
computers, still big and expensive but of greater uniformity,
had begun to appear. Although there were some
competitors (Remington Rand, General Electric, Control
Data, etc.), IBM (partly as a result of their involvement in
SAGE which gave them the jump on memory technology)
soon came to dominate the field. The situation was often
referred to as “IBM and the Seven Dwarfs,” the dwarfs
being the other computer manufacturers.

Severo M. Ornstein

36

For a number of years IBM had been manufacturing
and selling card-processing equipment that in some very
general sense could be thought of as “computers.” But other
than giant IBM, few places (of which thanks to government
money Lincoln was one) could afford to experiment with
building machines of their own design. In the case of XD-1,
the machine was built by IBM, but due to the unusual
application and its requirements for connecting to large
numbers of special terminals, radars, etc., many special
features existed, some of which had been designed, at least
in part, by Lincoln people. XD-1 was a unique beast, the
prototype for a later production version of an air-defense
computer that would become known as the AN/FSQ-7,
copies of which were eventually installed inside Direction
Centers around the country.

The big machines formed a gravitational center for
groups of programmers who used them. Within a group
there was a lot of voluntary cooperation and sharing of
programs. Indeed, organizations tied to particular kinds of
machines, such as SHARE for IBM and later DECUS for
DEC computers, maintained libraries of donated
subroutines (chunks of program that performed frequently
needed tasks) that were available to all.

Because they were few and expensive, access to the
most powerful of the early computers was hotly contested.
In fact it is only in relatively recent times that costs have
come down to the point where contest for access has
become less of an issue. Most people today think of a
computer as something you turn on and off as you happen
to need it, although of course that’s not true of the big
machines used for functions such as Air Traffic Control and
by businesses, which typically run continuously in the
service of large scale operations of one sort or another.

Computing in the Middle Ages
A View From the Trenches 1955-1983

37

During much of the period I am describing, many of the
machines were big and expensive, and methods for
extending or sharing access were being explored. Debate
about how this should be accomplished forms a major
thread of computer history that commences in the mid-
fifties when styles of usage were already beginning to
diverge.

The style of use for most of the large, expensive
machines might best be characterized as “hands-off”
computing. The user and the computer were deliberately
insulated from one another, the unstated but underlying
motivation being to protect the machine from the users and
to keep the costly beast busy rather than allowing it to sit
there idling while some programmer mulled over his latest
program bug. Expert intermediaries (“operators”) handled
the machine; on a good day a programmer might be
allowed near the operating console to watch what was
happening as the program ran, but was not allowed to
touch the switches.

Much of the work done on a computer in the early
middle-ages involved debugging of programs. There were,
of course, some “production runs” in which programs that
had been debugged were used to process real live data or
perform some calculations, but the majority of such runs
took place in the wee hours when at least some of the
programmers were asleep. A substantial amount of
preparatory work took place long before you were ready to
approach the computer. You wrote programs with pencil
and paper on giant pads of coding sheets. Sophistication
had advanced to the point that you no longer had to write
programs in the ones and zeros that the machine
understood directly. Instead you spelled out each step in
something called assembly language. Every program step

Severo M. Ornstein

38

corresponded to a single machine instruction, but at least
the names of the instructions and the referenced memory
locations could be specified mnemonically. These would
then be translated by the Assembler program into the
machine’s native binary language.

Whenever I design anything—from a house to a
program to a computer—I find that I need to have a picture
of the whole thing laid out in front of me in order to fit it
together in my head. (Other people seem to manage seeing
just one piece at a time.) The programs I was writing were
tiny by today’s standards, but nonetheless covered many
sheets of paper and I needed a giant wall upon which to
paste them up. The walls of my office at Lincoln were
totally inadequate, but at home I had some sizeable empty
wall space, so once the general design of the program was
worked out in major steps, I would often retire to work at
home as I wrote out the detailed code. The walls of our
dining room were thus often covered with flow diagrams
that depicted the broad design, and with coding sheets
containing the numerous detailed steps. My style was by no
means unique.

Once you finished writing the program, the coding
sheets were handed to someone whose job it was to transfer
the information onto punched cards or tape.10 Here we
come to the women’s rôle in earlier computing, for the key-
punchers were often poorly paid women and the work was

10 Whirlwind, like its descendant TX-2, used punched paper tape rather
than punched cards. The now largely forgotten photoelectric paper tape
reader sucked paper tape through its jaws at a terrifying rate. In an attempt
to minimize punching errors, most tapes were punched twice, and the
duplicates “verified.” Also forgotten now is the battle between the
rectangular holes of IBM cards and the round ones in Univac's cards.

Computing in the Middle Ages
A View From the Trenches 1955-1983

39

painfully tedious. There were, of course, some outstanding
women programmers, but I recall few male key-punchers.
Only when you had a deck of cards in hand did you sign up
for computer time. At this juncture the two styles of use
diverged and as my first serious encounters with computers
involved the IBM style of access, I will describe that process
here and postpone for the moment discussion of the more
civilized approach.

When your allotted time arrived, you bore the deck of
punched cards to wherever the computer was located11.
There using a console bristling with lights and switches the
operator ran people’s “jobs” in a sequence called “batch
processing” mode. In order not to waste a millisecond of
precious machine time between jobs, your bundle of cards
was concatenated with those of other hopefuls—separated
by special “job cards” that indicated to the supervisory
program just what was to be done to the ensuing group of
cards—and loaded into a card reader, where either little
fingers or photocells sensed the holes and fed the
information on the cards into the computer’s memory. Once
there, the assembly program translated your symbolic
instructions into binary instructions which the machine
could understand, and then punched out a more compact
deck of cards in binary format.

At last it was time to try running the program. The
switches were used to start the program going, at which

11 The holes in cards were, of course, nothing more than just that and could
be interpreted in any number of ways. Apparently the number theorist
D.H. Lehmer, was carrying a large deck of program cards, when he
encountered someone who asked him, “What have you got there?” His
answer was, “A number.”

Severo M. Ornstein

40

point the programmer stood back, listened to the rumbling
of the air-conditioning, nervously chewed his or her
fingernails, and hoped that something useful would emerge
from the jackhammer-like line-printer over in the corner. If
all went well some useful results might appear, but most
runs ended badly with the program immolating itself in one
fashion or another. At that point the state of the machine
was “dumped” to the printer, the programmer’s run was
finished, and the ensuing hours or days were spent poring
over inscrutable printout, often in base 8 (octal) numbers,
trying to decipher what had gone wrong. Once the problem
was located and corrected, you applied for another “run.”
This pattern of activity was repeated over and over again,
often for a period of days or weeks, until finally the
program had been whipped into shape and began
functioning satisfactorily.

A substantial price was paid for this sort of operation.
Debugging was a slow and painful process that could
extend over weeks or months, depending on the size and
complexity of the program. Often programmers would
realize within minutes what trivial thing they had done
wrong, but would nonetheless have to wait for hours, or
more likely until the next day, to try again. The
consequence was that programs which might have been
debugged in hours often required many weeks.

Over time minor improvements were incorporated into
the procedure, mostly to minimize wasted time between
jobs. Later systems used spooling programs in which cards
were converted to tape on a peripheral computer, the tape
was then put on the big machine where the program was
assembled and run, and the output went to tape for later
listing on a line printer. Despite such improvements in
utilizing the computer efficiently, a lot of one’s life was

Computing in the Middle Ages
A View From the Trenches 1955-1983

41

consumed in trudging around carrying (and occasionally
dropping!) heavy decks of cards; waiting for one’s turn;
poring over printout; bantering with the computer
operators and the people who punched the cards;
sometimes punching an extra hole or two in a card yourself,
or even (don’t tell IBM!) gluing a little piece of card material
back into a hole in a binary card to shortcut reassembly.
Overall, because the process was so cumbersome and
involved the programmer with a variety of specialists, there
was far more social interaction per debugged instruction
than takes place today. The evolution of the comparatively
asocial nerd, in isolated partnership with his machine, still
lay in the future. But the important point is that in that
world, programmers were the drones; the machine, the
queen.

There were a few individuals who disagreed with this
entire set of attitudes and felt that the price of such
cumbersome operation was far too high for the supposed
benefits. These people were convinced that the size and cost
of computers were bound to fall, making such shoe-horning
of multiple users unnecessary. And so a very different style
of usage existed in a few research-oriented settings such as
Whirlwind’s, where much closer interaction between user
and machine was the norm. In such settings, the individual
users spent comparatively long stretches of time with the
machine, typically operating it themselves, and identifying
and and correcting program bugs at a high rate so that
programs converged much more rapidly to correct
performance.

The divergence between these two approaches reflected
a major philosophic schism. Although Whirlwind’s more
direct, personal style of usage persisted, it remained
comparatively rare throughout much of the middle ages.

Severo M. Ornstein

42

Eventually, however, it led to the very first personal
computers. But I’m getting ahead of my story.

One might ask what has eliminated the need for the
kind of protective insulation that the more typical style of
batch-processing usage enforced. The answer lies in a
number of things. First of all, if you do something that
causes trouble with your own, truly personal, computer,
most of the cost will be borne by you, not others. No great
expense is involved, probably no one else will be hurt. This
contrasts with the scene in which a large, very expensive
machine was shared sequentially among many people. If
something you did caused trouble or even delay, the cost
could be enormous and hurt many other people.

When you’re initially writing and testing programs,
failures of unexpected sorts are virtually certain to occur.
Today, with so many people using computers for so many
things, there is no way for all of them to be programmers.
Instead, most people who use computers aren’t writing and
debugging programs at all but instead are using application
programs that provide their only interaction with the
machine. These programs have (presumably) been carefully
crafted by programmers to allow the user to perform
certain kinds of common tasks: email, word-processing,
spreadsheets, bookkeeping, graphics, network access, and
the myriad other jobs for which large numbers of people
today use computers. In using the machine for these
purposes, you no longer fiddle directly with the innards of
the machine by pushing buttons and setting switches.
Rather you manipulate programs indirectly through
devices (mouse, screen, keyboard) and mediating programs
that have been carefully crafted to prevent you from
accessing parts of the hardware or software that could
cause trouble. Much of the protective insulation that was

Computing in the Middle Ages
A View From the Trenches 1955-1983

43

formerly provided by people and regimented procedures is
now enforced by the operating system and the application
programs of the computer itself. In olden times such
insulating software simply didn’t exist, leaving the machine
much more vulnerable to user (programmer) errors.

So, in theory at least, the application programs that
users interact with have been carefully debugged before
users get their hands on them. Debugging takes place
behind the scene, out of sight, in labs dedicated to
designing and writing the systems and application
programs that people will later use. Furthermore, today’s
debuggers utilize programming and debugging tools that
were undreamed of in the 1950s. These have dramatically
reduced frustration and shortened the debugging cycle.

Well then, why aren’t things better today? Why do our
machines still crash? There are at least three answers. First
of all, they are better. Todays users, who expect their
computers to be as reliable as any other piece of consumer
electronics, can’t possibly imagine how flaky computers
used to be. Second, Parkinson’s Law: As our abilities
expand, so do our appetites. And as memory has gotten
cheaper and more plentiful, our desire to fill it with new,
larger, “improved” programs has more than kept pace. And
as the refinements and embroidery increase, they bring
with them new and more subtle interactions and failure
modes. And finally, economics. If all programs were tested
as thoroughly as the space shuttle’s computer programs, we
would have far fewer failures than we now have.
Unfortunately such thorough testing is expensive and takes
time, two things that are intolerable in a fast-moving, highly
competitive marketplace. Experience indicates that today’s
debugging is often far from thorough. So of course, crashes
still happen. Nonetheless, such occurrences are today

Severo M. Ornstein

44

considered outrageous rather than routine and (one hopes)
can eventually ruin a company if allowed to get out of
hand.

But if computer users in those days were all
programmers, presumably conversant with the machine,
why did it need to be protected from them? First of all, by
the late ‘50s most programmers weren’t any longer so
knowledgeable about the innards of the machine hardware,
and, because of the increased contention for access to these
rare and expensive gadgets, it was vital not to waste a
precious moment. The IBM regimen meant that all thinking
was done away from the machine so that it never sat idle
while programmers scratched their heads puzzling over
something. More users could thus be accommodated per
unit time. Beyond that, IBM thinking simply demanded
regimentation: preserving order; limiting people to their
allotted time; keeping them from breaking switches,
spreading grubby fingerprints, spilling coffee; making sure
they collected suitable postmortem information, etc. This
was sometimes referred to as “80-column thought,”
referring to the rigidity of the 80 columns of an IBM card.

In 1957 IBM introduced an entirely new kind of
computer language called FORTRAN (FORmula
TRANslation), which broke the one-to-one correspondence
between the steps that the programmer wrote down and the
steps that the machine executed.12 A program known as the
FORTRAN compiler translated programs written in the
FORTRAN language into steps that could then be executed

12 There were earlier instances of this sort of thing, and of course such
breakthroughs rarely come all at once, but certainly FORTRAN was the
one that had the most widespread impact.

Computing in the Middle Ages
A View From the Trenches 1955-1983

45

by the machine. This was an early move in the direction of
allowing programmers to write in a language more attuned
to the problems they were dealing with and less tied to a
particular machine’s capabilities. Not only did this make
writing programs easier and more natural, but because the
program steps were now independent of the particular
machine, it held out the promise that a FORTRAN program
might be translated to work on any of several different
machines, so long as each new machine had a compatible
FORTRAN compiler. Thus the notion of machine-
independence was born. Although it was only a first step in
this direction, it quickly found favor with many
programmers and some FORTRAN programs are still in
use today. Debates about “higher-level languages” have
filled the air in the years since, but today most programs are
written in languages that run on many different machines.

Machines and computer languages, of course, actually
evolved together—like bindweed. Many people today tend
to think of “the computer” as performing their job, with
only the vaguest notion of what lies inside. Behind the
modern screen lie many layers of software, microcode,13
and hardware, each dependent on all of the underlying
layers, and the entire mess dependent on the years of work
and understanding that led to this remarkable pyramid. In
the early days the pyramid didn’t exist and the
user/programmer had to deal with the underlying machine
more directly in its own terms without the helpful buffering

13 Machine architecture has evolved in such a way that the underlying
hardware performs only some very basic operations. The execution of the
kind of instructions that used to be built into the hardware, is now
performed by sequences of these basic “microcode” operations.

Severo M. Ornstein

46

of the many layers that assist present day users and
programmers.14 These layers arose gradually, starting at the
very bottom near the hardware, and eventually working
their way up to the elaborate application programs that
today’s users have come to rely on. In many ways the
development of these insulating software layers has been
even more challenging than the development of new and
improved hardware.

14 Of course when trouble arises, this multiple layering can be bewildering
and can (and does) lead to finger pointing.

Computing in the Middle Ages
A View From the Trenches 1955-1983

47

Chapter 4

Enter Sputnik and ARPA, I’m nearly
arrested, and a briefcase blows away. MITRE
arises, I switch jobs again, and encounter
various missile problems. A computer is
murdered

n October of 1957, Sputnik rose into the sky and we

all got up in the early morning to watch it rise—together, as
it turned out, with our job security. It was no coincidence
that shortly afterwards an organization within the defense
department that became known as ARPA (the Advanced
Research Projects Agency) was born. Within a few years
ARPA, through its Information Processing Techniques
Office (IPTO), was to become the dominant governmental
institution sponsoring computer research around the
country. I’ll have more to say about ARPA below when I
and numerous colleagues begin working indirectly under
ARPA sponsorship.

Computer people have always tended to work at odd
hours, often in extended, marathon-like spurts that conform
poorly to the usual “business day.” This behavior almost
certainly had its origins in the days when the cost of
machines led to demand for their full utilization, 24 hours a
day. It may seem odd that such behavior continues long
after such requirements have disappeared, but there are
now other reasons. Part of it has to do with today’s
enormous competitiveness and the rush to get products to
market, but I think there may be even more powerful

I

Severo M. Ornstein

48

underlying explanations. Computer programmers deal with
highly complex systems. “Getting your head around” such
problems often requires near total immersion in order to
keep track of everything, so programmers and designers
tend to work in bursts that are tuned to the particular piece
of work that they are engaged in. When it’s finished, they
go home and catch up on sleep and the rest of their lives.
This is behavior that those not so profoundly engaged in a
complex creative enterprise find hard to understand.

And so it was in the “early” days. Lincoln Lab was
situated on Hanscom Air Force Base property, the computer
was in use 24 hours a day, and I frequently had computer
time at night. During this period I lived directly across the
air base from the lab and often bicycled to work. Coming
home I would take a shortcut that crossed one end of the
runways. Late one night, as I was preparing to set off
toward home across the runway, an apparition stepped out
of the bushes. I noticed out of the corner of my eye that the
apparition was wearing a uniform and was just a little
shorter than the cannon that he was holding as, pedaling
furiously to keep my bike-light alive, I swept past him. A
second later I heard a rather dubious “Halt?” and suddenly
a vision of the small figure struggling with the cannon and
perhaps setting it off in my direction leapt to mind. This
caused me to apply the brakes, whereupon, of course, my
light promptly went out and everything went black. Slowly
I pushed my bike back to where he stood, unsure what to
do with me now that he had me. He stepped into a small
booth, grabbed a phone from within, and called for
reinforcements which arrived amidst sirens and flashing
lights looking very spiffy in white hats and gloves. I myself
was in shorts (it was a hot summer night), sported a shaggy
beard, and appeared quite harmless if perhaps somewhat

Computing in the Middle Ages
A View From the Trenches 1955-1983

49

disreputable. Fortunately I was able to produce my Lincoln
Laboratory badge which, after carefully matching me to my
photograph, seemed to satisfy them, although I’m sure they
had no idea why I might be out bicycling at that time of
night. Anyway, with an admonition not to get tangled up in
a drogue chute behind some alighting jet fighter, they were
off again in a torrent of sirens and flashing lights. I
continued on my way after assuring the young guard that
he’d served his country well that night.

I spoke earlier about the division that had taken place
by this time between hardware and software specialties. An
incident that took place at about this time will serve to
illustrate the depth of the divide. Driving to work one
morning, I came upon someone I recognized walking along
Route 128. It was an odd place to be wandering on foot, and
as he appeared distraught I pulled over and waited while
he came up to the car. As he stuck his head in the window I
asked the obvious question—what the devil was he doing
there? “I lost my bag” was all he could say at first, but then
gradually the full story emerged. As he had been getting
into his car that morning to go to work he’d had his
briefcase in one hand and a laundry bag in the other. He
put the briefcase on the roof, opened the rear door, tossed in
the laundry bag, jumped in the front seat and drove away.
Only much later, as he was turning off of the highway
toward the lab, did he suddenly remember the briefcase. He
slammed on the brakes, got out, and stared at the now
empty roof. When I arrived he was starting to retrace his
entire route on foot in hopes of finding the missing
briefcase.

Weeks before I had encountered him for the first time.
He was a hardware designer and by that point I had
become a passably skilled programmer. He wanted to learn

Severo M. Ornstein

50

to program and I had taken it upon myself to teach him. He
was an enthusiastic student, always ready to say “I’ve got
it,” so I gave him a small separable piece of the program I
was working on to write as an exercise. Periodically he’d
proudly bring me his work for review and each time I
would point out what he’d done wrong. “I’ve got it now,
for sure,” he’d say eagerly each time. But after a month I
began to realize that programming would never be his
métier. About a week before I met him on the road, we’d
had a session in which I’d explained that I really needed to
get the job done and that if it didn’t work this time, I was
going to have to finish it myself. After that he’d worked his
abilities to the bone, and this time, absolutely convinced
he’d finally got it right, he was on his way to a meeting with
me—when the briefcase containing the fruits of his labors
blew away.

As he explained his misadventure, I felt a surge of
relief. Although one could hardly fail to feel sympathy for a
grown man with his head in one’s car window on the verge
of tears, I nonetheless realized immediately that his
misadventure had averted the painful session I’d been
anticipating in which I knew I would have to explain that
his work needed to be done over. I succeeded in keeping
these thoughts to myself and after bequeathing what
sympathy I could, continued on my way to work while he
set off once again on his futile quest. Later that day he told
me that he had encountered some youths on the way and
had hired them to walk the entire route (probably a dozen
miles) from his home to where he’d stopped, promising a
reward if they found the briefcase. They never did, and a
few days later, after we’d worked up the bit of program
together, he turned to me and announced that it was just as
well they’d never found it. As I recall, he folded his tent at

Computing in the Middle Ages
A View From the Trenches 1955-1983

51

that point and returned straightaway to the hardware fold,
never to re-emerge.

At about that time (in 1957) the rumbles began about
MITRE. The powers that be at MIT had concluded that
building air defense and related military systems was likely
to be an on-going business from which MIT should
disengage. Besides, there had been growing frustration
between MIT and the Air Force which had substantially
different goals. It was therefore decided that Lincoln should
shed those tasks specifically related to air defense, etc. and
remain more of a general research institution. The MITRE
corporation was duly formed, and it was decreed that the
group in which I’d been working would move en masse to
the new organization. But I (and one other chap) didn’t
want to become specialists in designing and building air
defense systems, which seemed, at that point, to be
MITRE’s mission. I was interested in more general research,
and aside from my personal interests, I was beginning to
have some broader concerns about the rôle of the military in
society. (These doubts were to sharpen and deepen over the
course of my career and ultimately to shape the direction of
my life for several years after I retired.) I remembered how
the country had felt before World War II and didn’t like the
way it was beginning to feel now, maintaining a large, on-
going military establishment with steady-state paranoia
about the Soviets. Clearly MITRE was going to be even
more directly tied to the military than Lincoln, and I simply
didn’t want to be a part of that. So I decided to stay within
the MIT fold. I was importuned by my then boss, Charlie
Zraket, who was leaving for MITRE and would eventually
become its president. He was a wonderful person to work
for and I regretted leaving him, but I resisted all
blandishments and as my colleagues began to move to their

Severo M. Ornstein

52

new quarters, I shifted my office and allegiance to another
group within Lincoln.

In my early days at the lab I’d been unable to avoid
noticing a fellow who seemed to have an extraordinary
vocal range that he employed to great effect in support of
what many would consider rather decided opinions. Not
that he was inflexible or unpleasant—just definite. (He’s
been described as “the only person I knew who spoke in
italics.”) If a “discussion” arose that included him, people in
offices for a considerable distance on either side of where
the discussion was taking place would become aware of his
views. By the time of the MITRE schism, he was in charge
of a small group in another division at Lincoln and it was
for him that I then went to work. His name was Frank
Heart.

Frank’s was a small but closely-knit group of about half
a dozen people. Another member of the group was Will
Crowther, a rock climber of legendary prowess whom I’d
already encountered on weekends at the Shawangunk cliffs
near Poughkeepsie, New York. (William Shockley, inventor
of the transistor, was another Shawangunk climber and one
of my favorite climbs was a route involving an overhang
known as Shockley’s Ceiling.) Will wrote immensely clever
code, seemingly with both hands, and he taught me to play
bridge, the de rigueur lunchtime activity in the new group.
By this time the lab had acquired an honest-to-God
commercial computer, an IBM 704 with which I was to
become intimately acquainted over coming months. The
first days in my new job were spent familiarizing myself
with the programming manual of this new machine. As I
warmed up on some minor, now-forgotten projects, I
noticed that the name Noam Chomsky often appeared on
reams of paper emerging from the printer. Who the devil

Computing in the Middle Ages
A View From the Trenches 1955-1983

53

was this Chomsky fellow, eating up so much valuable
computer time? And the chap’s wife was soaking up time
too. What could possibly be so important, I wondered15.

Frank’s group worked on a wide variety of projects,
especially those with a real-time flavor. Lincoln had
spearheaded such use of computers, but these kinds of
applications, prevalent today, were relatively new and
unknown at the time. New uses for computers were being
investigated, but the expansion into new areas was a slow
process that often required overcoming strong
preconceptions and biases. Many who had problems that
actually cried out for a computer solution simply weren’t
aware of the possibilities. People had accepted that
computers could help with bookkeeping problems, but the
burden of proof that they might be useful in some new
arena often lay with the computer people themselves. This
was Frank’s specialty and over the years he pioneered
many new applications in addition to the one for which he
is best known, the ARPANET. Today computers are often
oversold as the solution to every problem, but with the
exception of the always-receptive military, at that time they
were viewed with healthy skepticism by other prospective
clients.

The process of exploring new application arenas was
one that first required familiarizing oneself with some
existing operation. This could be a delicate proposition

15 Noam Chomsky, I was later to learn, was an MIT professor and one of
the foremost linguistic theorists of the age. His work, some of it utilizing
computers, profoundly influenced the field, and in more recent years he
has achieved further renown as a progressive political and social
philosopher. He has an international reputation and has published an
almost uncountable number of books.

Severo M. Ornstein

54

because not far beneath the surface was the implication that
computer people, fresh off the street so to speak, might be
able to understand and help solve some problem better than
those who had been dealing with it for a long time. Under
such circumstances it was all too easy to offend a potential
“customer,” especially if one’s approach was at all hasty or
arrogant. It behooved one to adopt an attitude of some
humility, because, as often proved to be the case, the
problem needing solution was usually more complex than it
first appeared.

We frequently found ourselves investigating some
totally unfamiliar branch of science or engineering,
attempting to understand it well enough to be able to
decide whether or not there was some piece of an operation
that could be lubricated by the application of computer
technology. If approached with some care, we usually
found that people were enthusiastic about explaining their
work, delighted that some crazy engineers took interest in
their often obscure segment of the world.

Will and I began working together on a project that
involved a missile-tracking radar. By now ICBMs were
becoming a potential threat and the question had been
raised: Would a missile reentering the atmosphere leave a
wake that could be detected by radar in case the radar
failed to notice the missile itself (for whatever good that
might do)? Although I was beginning to have an aversion to
military work, I knew this was an important question, so I
put aside my embryonic “anti-war” concerns.

Not long before, just after dusk on a freezing cold night,
I’d stood atop a hill outside of Boston where Lincoln’s giant
Millstone radar tracked missiles and satellites and
performed numerous scientific experiments. My friend
Howie Briscoe was, by then, working with the Millstone

Computing in the Middle Ages
A View From the Trenches 1955-1983

55

group and he’d invited me out to see the radar in operation.
That night it was to track a communications satellite being
launched into orbit from Wallops Island down in Virginia.
When the rocket was fired we were able to follow its trace
on the radar screen, but almost immediately a shout came
from outdoors and we rushed out into the crystalline night.
There, some 500 miles away, one could clearly spot the
rocket as it rose above the earth’s shadow into sunlight, the
wake from its engines clearly visible spreading out behind
it in a giant orange plume as it ascended. Of course it was
an altogether different question whether a ballistic missile,
whose engines had long ago shut off, would leave a wake
visible to radar as it rushed silently back into the earth’s
atmosphere. The project we were about to embark on
would seek an answer to that question.

An elaborate experiment was being prepared at
Wallops Island in Virginia. Multi-stage, solid-fuel rockets
were to be boosted up above the earth’s atmosphere. There
the final stage would be turned around and fired back
down into the atmosphere at high speed, simulating the
reentry of an incoming missile. The earlier stages were to
fall into the Atlantic in an area from which (I trust) ships
were excluded, and we were assured that the final stage
would completely burn up as it came back down. (Later, as
we watched a launch, we were to wonder about this. Even
though the missile went out over the ocean away from us, it
appeared to be directly overhead and I had the eerie feeling
that if anything went wrong, it would fall directly back on
us. It seems that as you look up into the sky, everything
more than about seventy degrees from the horizontal
appears to be pretty much directly overhead if you have no
other point of reference.)

Severo M. Ornstein

56

A radar was to follow the missile on its upward journey
and then track the final stage as it was fired back down into
the atmosphere. A computer and memory were attached to
the radar in such a way that the path the antenna had taken
while tracking the missile rise and return would be
memorized, thus enabling the radar to be repositioned
along this path to discover if any residual wake could be
detected. My job was to construct a plot of the trajectory the
radar followed during the experiment. Wiggles appearing
in my plots of early tests seemed to suggest a program bug
of some sort, but closer investigation revealed that the
antenna actually jigged and jogged as it moved about
because the servomechanism electronics controlling the
movement were improperly adjusted. I’d earned my salary
even before the first shot was fired.

You need to know about one final refinement. The
radar was situated on the mainland, several miles inland
from the island where the missile firings actually took
place. Thus before the missile took off, the radar was aimed
horizontally along the earth’s surface. This resulted in a
great deal of noise (“ground clutter”) in the received signal.
It was impossible to distinguish the missile within this
clutter and thus it could not be tracked as it took off. And if
you couldn’t track it from the outset, how would the radar
ever locate it as it soared into the sky? A solution to this
problem had been worked out. A set of movable bicycle
handlebars (I kid you not) was mounted beside the giant
radar with a telescope attached to them. The radar antenna
could be slaved to these handlebars so that whenever they
were moved, the antenna followed the movement. The idea
was that an operator would look through the telescope and
watch the missile taking off. He would then follow it up
with the telescope by moving the handlebars to keep the

Computing in the Middle Ages
A View From the Trenches 1955-1983

57

missile in view. And of course the radar antenna, slaved to
the handlebars, would follow along. Shortly the missile
would rise out of the ground clutter, a radar operator
would then be able to identify the missile target on the
radar screen, the radar would be locked onto this target and
disconnected from the handlebars. Rube Goldberg had
nothing on the U.S. Air Force. But, on the other hand, what
could go wrong?

The launches took place at night, presumably making it
easier for the fiery missile to be seen through the telescope.
We had all seen television images of missiles being
launched from Cape Canaveral (later renamed Cape
Kennedy) and slowly lumbering into the sky, and somehow
no one had bothered to explain that those were liquid-fuel
missiles. By contrast, solid-fuel missiles, such as those to be
used here, took off lickety-split, like a bullet fired from a
gun. Thus on the first launch the telescope operator was
totally unprepared for what happened. As the missile tore
into the sky his head whipped back to watch it while his
hands, the handlebars, and the entire guiding apparatus
never budged. On the second launch the telescope operator
was better prepared, but one of his colleagues, deciding to
immortalize the event, snapped a photograph of the
operator at the handlebars just as the missile took off. The
camera’s flash utterly blinded him and by the time he’d
recovered his vision, the missile was somewhere out over
the Atlantic.

I believe that the experiment was eventually made to
work, although I don’t recall whether or not a radar-visible
wake was ever detected. I’m sure the answer is known to
the missile-tracking community. Once everything was
working, however, the programming fun was over, we
programmers were no longer involved, and the running of

Severo M. Ornstein

58

the program became just another part of routine activity. I
have dwelt on this story, not only because the anecdotes
remain memorable, but also because this project illustrates
the importance of direct interaction between the
programmers and the projects for which the programs were
being written. Such interaction was (and in many cases, still
is) an essential part of getting the job done properly. Real-
time applications can rarely be circumscribed and fully
defined in advance. All too often there are side effects and
constraints that need to be discovered and allowed for, and
there seems no good alternative to direct experience for
getting things right.

Frank, always on the lookout for new applications,
became interested in bigger rockets—of the Cape Canaveral
variety. Soon several of us were on our way to Florida
aboard our first jet airplane, a spanking new Boeing 707.
Despite some concern about the unfamiliar spoilers on the
leading edge of the wings before takeoff (“Look at those
strange things. What do you suppose they are?” “Can you
see, is there one on the other wing?” “I guess they’ll
remove them before we go.” “Hey, we’re rolling—could
they have forgotten?”), miraculously we arrived in Florida
intact, and the next day we were shown around a launch
control center.

Our introduction to the site included viewing films of
prior missile launches. We saw pictures of gleaming white
Atlas missiles, sitting on the launch pad shedding ice in the
approved manner as the engines roared into life. The
missile would shudder a bit, rise a few feet into the air—
and then suddenly explode in a tremendous ball of flame.
Moments later, another missile would replace it and the
same scene would be reenacted. One after another we
watched our tax dollars going up in a lengthy series of

Computing in the Middle Ages
A View From the Trenches 1955-1983

59

spectacular explosions. I was reminded of the films
showing the evolution of the airplane through every kind of
conceivable contraption, most of which met similarly
disastrous ends. Such things are the price of experimental
development and illustrate the story I am attempting to tell
here. Most computer fiascos made somewhat less dramatic
exits from the stage, but the same story of trial and error
accompanies most engineering endeavors.

We were interested in understanding how computers
were being used in the missile launching business and
thought that perhaps we would be able to make some
useful suggestions about functions that could be automated.
In particular we suspected that a computer might prove
useful in the long and complex checkout procedures
leading up to the final countdown and launch. We knew
that they would be using a computer for the more obvious
applications, but suspected that they hadn’t thought about
some of the less apparent possibilities. Remember, this was
the late 1950s and computers were still a Big Deal then,
even at Cape Canaveral. There were no computers in
washing machines or automobiles in those days, only in Big
Operations. It turned out that there was a single IBM 709 (or
perhaps it was a 7090) that, as we’d suspected, was
primarily used when a missile was in the air, to keep track
of where it was going and what it was doing. It provided
humans with information, but didn’t do anything much
beyond that; it wasn’t actually controlling anything, just
monitoring and reporting.

We noticed that a large number of television cameras in
the control center were all aimed directly at the launch pad.
We asked why there were so many and were told the
following story. All of the rockets carried explosive destruct
packages so that in case the rocket went astray, it could be

Severo M. Ornstein

60

blown up before it got to where it could cause real trouble
when it came down. The destruct package was in the first
stage (presumably because by the time the later stages fired
and might misbehave the thing would be well out over the
ocean where it could do comparatively little harm). As the
rocket rose into the air, the computer continuously plotted
an “intercept” point which was where the rocket would
land should the engines quit. Drawn across the chart on
which this intercept point was continuously plotted was a
heavy black line. The rockets were aimed out over the
Atlantic, and so the intercept point normally moved
eastward, away from the coast, away from the heavy line.
But if the intercept point ever strayed in the wrong
direction, in particular, if it ever crossed the heavy line, the
range safety officer was to push the button that exploded
the destruct package.

One day things went very wrong indeed, in a way no
one had anticipated. Those watching outdoors were treated
to a spectacular show. When the missile was fired,
somehow the second and third stages of the rocket took off
together, leaving the first stage sitting simmering on the
launch pad. Indoors, the computer plotted the intercept
point of the errant later stages and sure enough, it began to
move inland as the thing flailed drunkenly about. The
range safety officer, with his eyes glued to the intercept
point, saw it cross the forbidden line and so he pushed the
button igniting the destruct package. Having been stunned
to see the later stages take off solo, those watching outside
now were further startled to see the innocent looking first
stage blow up right on the launch pad, utterly destroying
the pad in the process. Meanwhile the range safety officer
watched in horror as, instead of stopping as expected, the
intercept point continued to wobble inland. Ultimately the

Computing in the Middle Ages
A View From the Trenches 1955-1983

61

upper stages fell, harmlessly, into the Banana River. We
were told that the multiple video monitors were installed
shortly thereafter (along, presumably, with destruct
packages in all of the stages). Technological humility far too
often arrives after the fact and computer hubris all too often
comes a cropper on the unexpected. Many years later,
lessons such as this were to lead me into the center of
debates about the advisability of allowing computers too
large a hand in deciding to retaliate against a presumed
hostile missile attack. The various “Star Wars” proposals,
which tend to rely heavily on complex computer decision-
making, have seemed, and still seem to me, extremely
questionable enterprises, fraught with the dangers of
unanticipated circumstances.

Although we never actually did any work at Cape
Canaveral, some time later, still on the rocket kick, we were
able to provide help at Vandenberg Air Force Base in
California. There test missiles were going in the opposite
direction, out over the Pacific, and sending back
telemetering information to special equipment that wrote
the data onto a sequence of magnetic (computer) tapes in
one long string with no gaps. No one had thought ahead of
time about the problem of reading such tapes. Data on tapes
normally came in well-demarcated, manageable-sized
blocks, each of which fit comfortably into memory. Here,
however, was a seemingly unmanageable quantity of
information, all in one indigestible pile. Fortunately we
managed to devise a scheme in which, as the data was
being read into the memory, we simultaneously wrote it
back out alternately onto two other tapes. While one of these
was receiving data, the other could catch its breath and
write an end-of-record mark, thus making it possible to
break the data into manageable-sized pieces for later

Severo M. Ornstein

62

processing. In addition we slyly repositioned the incoming
data pointer occasionally so that although the data
continued pouring in, it never actually overflowed memory
and suffocated the machine. It was a clever counterpoint to
the prior oversight, and we were particularly delighted
because it used the IBM tape system in a way that no one
had anticipated. It also kept the operators hopping,
mounting and unmounting tapes at our direction. For once,
we were in charge.

At about this time IBM introduced a new pair of
computers—the 1620, which was a “scientific” machine,
and the 1401, which was the “business” version. The
distinction was based on presumed differences in need
between these two communities of users. (Even though by
then the term “general purpose digital computer” had
become standard parlance, the underlying idea hadn’t yet
fully sunk in.) The 1620 was dubbed the CADET. Then
some wit, noting that the machine had no ADD instruction,
suggested that CADET stood for “Can’t Add Doesn’t Even
Try,” and the name was quietly dropped. Some time later
word went around that a programmer, in a fit of what must
have been exquisite pique, had shot an IBM 1401 computer
full of holes. What more need one say? Such an urge is
surely familiar to many.

It was now time to move on to the next project which,
by contrast with trying to detect a missile attack, was
concerned with detecting the presence of enemy
submarines. If they didn’t get us from above, they would
get us from below. It seemed we were exploring submarine
detection by sonic means using steered arrays of detectors.
Involvement in this project would soon immerse us in
studies of underwater sound transmission.

But first I have to tell you about the piano.

Computing in the Middle Ages
A View From the Trenches 1955-1983

63

Chapter 5

A piano enters the lab and comes up
against TX-2. DEC is formed and there is an
error on Page 217. Fourier is proven sound and
we land on an aircraft carrier.

am a reasonably good pianist. I’ve been immersed in

music all my life and felt deprived at Lincoln without a
piano to practice on. I knew that Oliver Selfridge, an early
computer whiz I’d met through Howie Briscoe and who
was now at Lincoln, had a piano in his office, and I thought,
why not me too? It was an unusual request, but Frank
rather liked the oddity of it and I promised not to practice
except during lunchtime or after work hours. I located a
suitable junker and made arrangements to have it arrive as
unobtrusively as possible, but when the phone rang an
incredulous guard said “There’s a man here claims he’s got
a PIANO for you???” I arrived at the loading dock to find
two guards restraining the mover, who was intent on
getting a peek inside the super-secret Lincoln Laboratory.
We finally got him out and rolled the piano through the
halls by some raised eyebrows to my office. Soon my
lunchtime practicing became accepted background to the
bridge game.

Now another use for my piano began to form in my
mind. For many years I had watched my father struggling
with music notation, first scribbling down a quick sketch of
a piece of music before he forgot it, and then later going
back over it, laboriously turning shorthand scribbles into

I

Severo M. Ornstein

64

readable scores. Because it took so long to notate music,
much wonderful material had been forgotten and lost.
Although it was many years before word processing would
become commonplace, I suspected that a computer might
be able to help with the problem of notating music, just as
text processors now help writers of prose. My initial
thought was that the computer should be able, by analyzing
the sound, to decide what notes were played, and then print
out a score. After all, musicians could do it; why not a
computer? Knowing what I now know, I realize how naive
this was. I was neither the first nor the last to underestimate
the sophistication and complexity of human cognitive
processes.

From the time I first arrived at Lincoln, I was
subliminally aware of a very special group within the lab,
the Advanced Development Group. Many of the people in
that group had worked on Whirlwind at MIT’s Digital
Computer Lab which had later been absorbed into Lincoln.
These were the people who actually designed experimental
computers and that group was, to my mind, the core of the
matter, the pinnacle, the promised land to which anyone
with a grain of ambition aspired. Lincoln had a seminar
series in which lectures about the structure of the group’s
new experimental computer, TX-2, were appearing with
increasing frequency. These lectures were presented by
people who came to be my secret heroes: John Frankovich,
Jim Forgie, Ken Olsen, Dick Best, and last but not least, TX-
2’s chief architect, none other than the self-same Wesley
Clark, whom I’d heard speak in Pittsburgh in the fall of
1954.

I indicated earlier that beyond the division between
hardware and software, equally important specializations
developed within each of these disciplines. On the hardware

Computing in the Middle Ages
A View From the Trenches 1955-1983

65

side there were already distinctions between the
architects—those who designed the logic of the machine,
viewing it principally from the programming point of view
and breaking it into its logical components and logical
steps—and the engineers, who were specialists in the world
of physical realities and who dealt in electrical and
mechanical constraints. The lectures by Best and Olsen were
about the circuitry of the machine and I strained to
understand the unfamiliar material. The lectures by Clark,
Forgie, and Frankovich, on the other hand, were about the
machine’s logical structure and I understood that part of the
story relatively easily. It seemed to be a magnificent edifice
and I loved the excitement and feeling of esprit de corps
that emanated from the members of the group. I later
learned that Clark and Olsen had collaborated on the
design of previous machines, including the MTC computer
mentioned earlier.

I discovered that TX-2 had an analog to digital
converter that enabled it to read analog signals—such as the
sound waveforms produced by the piano—and then print
them out. I was curious to see what these signals looked
like, so I borrowed a tape recorder, played a few passages
onto the tape, read it into TX-2 and printed out the
waveforms.16

 I was stunned to find that the printout looked
like absolute gibberish. I could see clearly where the first
note had been struck, but beyond that everything looked
like garbage. It was back to the drawing boards. I decided
to try something simpler so I played just three notes in
succession. When I looked at the new waveforms I realized

16 By what subterfuge I managed this brief invasion of the sacred precincts
I no longer recall. TX-2 was certainly not accessible to hoi polloi.

Severo M. Ornstein

66

that my idea was in serious trouble; I couldn’t even tell
where the second note had been played, the whole thing
was still just one big jumble.

Looking at the mess, I decided I’d better learn
something about what was going on, so I went to the library
and fished out a book on the physics of music. By the time
I’d finished reading the chapter about pianos, which
described the incredible complexity and variability of the
actual acoustic waveforms, I realized that analyzing the
sound with a computer in hopes of identifying the notes
being played was far more of a task than I’d imagined and
for all practical purposes, hopeless. This was my first head-
on encounter with the fact that many things we humans do
so naturally that we assume they must be easy, are in fact
extremely difficult (if not impossible) to program a
computer to do. Such tasks seem easy for us only because
they are accomplished using sophisticated mechanisms
buried so deeply within our central nervous systems that
we are blissfully unaware of their operation and thus of
how they work. Giving up on getting the computer to
analyze the sound waveforms, I began to explore the under
side of the keyboard of my ancient upright with the idea of
installing a switch beneath each key that could record
directly the notes as they were played. That was about 1958
and it was as far as I carried my thinking on the subject at
that time. However, I continued mulling over the problem
for many years until, thanks to numerous advances in
computer technology, as well as my own understanding of
the problem, it ultimately bore fruit in 1980 in the form of
the first music score handling program, Mockingbird. More
about that later on.

In late 1957 a subset of the TX-2 designers, under the
leadership of Ken Olsen who had been the chief engineer,

Computing in the Middle Ages
A View From the Trenches 1955-1983

67

left Lincoln to form a company that was going to make and
sell logic modules that could be combined under relatively
simple rules to construct all manner of digital devices—
including computers. The modules were derived from the
circuits that made up TX-2. These brash young men were, I
believe, among the first to leave Lincoln with
entrepreneurial ambitions. Ken was apparently convinced
that computers should be mass-produced gadgets and was
impatient with the cumbersome progress at Lincoln. They
decided to call their company Digital Equipment
Corporation—DEC for short. We wondered whether or not
they’d make a go of it.

But back to underwater sound transmission. I’ve
indicated that Frank was always on the lookout for new
application areas. Today, when computers have become
ubiquitous, one can pretty safely assume that workers in
practically every arena of scientific endeavor are aware of
their existence and most of the more obvious application
areas have long since been thoroughly explored and
exploited. And even if some potential new arena for use
arises, those working in that arena will probably
automatically consider utilizing a computer. But in those
days it was a very different story and so we often found
ourselves acting as missionaries carrying the true word to
the benighted. This often meant that we suddenly had to
learn a lot about some new and unfamiliar area of work in
order to understand how computers might be utilized
beneficially. (The arrogance of many computer people who
leapt to conclusions in fields they inadequately understood
sometimes retarded rather than speeded progress, but of
course our group never behaved in such a fashion.)

In any case, we were certainly uninformed about the
complex matter of underwater sound transmission, so

Severo M. Ornstein

68

Frank went to the library and found a book on the subject
which he gave me to “look over.” When I opened it that
night at home I knew I was in trouble. Like a pervasive
mold, every page was covered with a layer of differential
and integral equations of the most appalling inscrutability.
It had been a long time since I’d dealt with anything like
that. I decided there was only one thing to do. I chose one of
the more frightening-looking pages and inserted a note to
Frank that said “Not a bad book, but the author is really
quite careless. Note, for example, the blatant error on page
217.” I tucked the note into the book and next morning
placed it on Frank’s desk before he arrived. After some time
he appeared in the doorway of my office with an ashen
face. “How on earth did you find it?” he said, looking
stunned. Now it was my turn to wonder—what could he
possibly mean? “That mistake—how did you find it? Did
you really read that entire book last night?” What the devil
was he up to? Was he turning the tables and conning me? I
decided to come clean—he was my boss after all. “Er,
uh…mistake?” I asked sheepishly. “Yes, of course. This one,
right here on page 217” he said, pointing to the book. And
there, indeed, right smack in the middle of page 217, was a
blooper (probably the only one in the entire blasted book!)
so obvious that even I was able to find it within a few
minutes.

We called it a draw and turned the whole matter over
to the group mathematician/physicist who, miraculously,
appeared to understand it all. Ships, it seems, have
propellers that make a lot of noise as they churn through
the water. The noise travels comfortably along for
surprising distances. Each ship’s noise consists of
frequencies characteristic of that particular ship, or kind of
ship. As the noise percolates along through the water,

Computing in the Middle Ages
A View From the Trenches 1955-1983

69

certain frequencies become attenuated—the higher
frequencies have a more difficult journey and tend to erode
faster. Meanwhile, lurking on our shores are arrays of
undersea detectors that act, for sound, somewhat like a
radar receiver and can be electronically “steered” (never
mind how) to point in whatever direction you wish. The
problem we were to investigate was the sorting out of all
the mixed signals that might arrive from the many ships
driving around out there in the ocean. The question, of
course, was whether one could spot an intruder among the
normal shipping sounds. It was a bit like a blindfolded
listener at a symphony concert trying to spot an errant
clarinet in the string section.

We decided that a good way to start to explore the
problem was with a simulation. We split the job into three
parts. The first was a program that simulated the ships’
noises. We could specify how much of each frequency a
particular model of ship would generate and we could
specify where various model ships were located in our
model ocean. The second program utilized all those
incomprehensible equations (well, some of them anyway)
in that dreadful book. These defined how the ships’ noises
would look after they had traveled through the ocean
getting all jumbled together to where our simulated
detector array sat lurking. The third program pretended to
be the detector array itself, puzzling out from this jumbled
mess where it thought various ships might be. Once we had
this set of programs in place and working together, we
could vary all sorts of parameters and rules to see what the
effects might be, what worked best, and so on.

Attached to the IBM 709 was a large oscilloscope screen
about 18 inches in diameter. With sufficient programming
effort, one could paint an image on this screen, but as there

Severo M. Ornstein

70

was a big buffer memory that held the image and it took
some time to move information into this buffer, there was
no way to update pictures fast enough to give the kind of
dynamism you see on today’s screens. However, it was
better than nothing and gave us some visual check on the
waveforms our programs were producing. The image I
remember best was one that we put up to verify that our
wave synthesis programs were working properly. We all
knew, as Fourier had shown at the beginning of the 19th
century, that if you added a series of appropriately related
sine waves together in the proper proportion, the
combination would gradually approach a square wave as
you added in more and more high-frequency components.
That much we knew theoretically, from the mathematics.
But now we were actually able to see it happen before our
very eyes. As we added more and more components, we
could watch the resulting waveform change shape, the
corners gradually becoming sharper and squarer. Looking
at the screen I felt a new level of conviction deep in my gut.
I thought how Fourier would have loved to be able to peek
over our shoulders.

Sometime during this period, a number of us were
overwhelmed by the need to do some fieldwork in order to
come to closer grips with the problem with which we were
struggling. We were invited to spend a few days aboard an
ASW (Anti-Submarine Warfare) aircraft carrier, traipsing
around out in the middle of the Atlantic Ocean. We were to
fly out and land on the carrier at sea, and eventually ride it
into Norfolk, Virginia where it would be staying in port for
a while. We were presumably going in order to learn more
about submarine detection, and I suppose we did, but I
knew a boondoggle when I saw one and this was a textbook
example. When the time came, we piled into a small twin-

Computing in the Middle Ages
A View From the Trenches 1955-1983

71

engine aircraft and headed out to sea. The carrier was
several hundred miles off shore and when we arrived and
looked down at it, it suddenly came to me that we were
doomed. There was obviously NO way to land an airplane
on an object that small, and yet as we descended I realized
that the fool flying our plane was going to attempt it
anyway. We were seated facing backward so that when we
landed and the tail hook grabbed a cable bringing us to an
abrupt stop, we would be squashed flat against, rather than
thrust forward out of, our seats.

As we approached I braced myself for the end, but then
at the very last moment, we were suddenly flung into the
air again as the engines roared into renewed life. The
seaman who was our guide managed to put on a worried
look and say “Gosh, that’s never happened before.” It was
some seconds before we realized he might be joking. By this
time we were pretty thoroughly unsettled (unmanned
might be more honest), and as we circled for another try,
we totally forgot what to expect so that when we actually
landed and were driven backwards into the seats as the
plane’s hook grabbed a cable, my only thought was, “Thank
God, we’ve hit something soft.” Within seconds, before any
of us could regain our composure, the door was flung open
and a smiling face was saying “Well, are you guys going to
stay in there all day?”

From that point on things went immeasurably better.
We had several wonderful days on board during which we
learned many things, among them the fact that the guys
flying the helicopters which were buzzing around dunking
sonar detectors into the ocean listening for submarines, led
an extremely dangerous life. The mortality rate was
frightening. Giant scars on the main deck gave grim
evidence of the hazards involved in the entire operation.

Severo M. Ornstein

72

We watched as the twin-engined planes were hurled, one
after another, into the air by steam-driven catapults, to then
snoop with detectors from higher up.

One afternoon we were told that there were to be night
operations. “Good,” I thought, “we’ll finally see this thing
lit up from stem to stern like a Christmas tree.” That
evening, as we stood in the tower above the deck listening
to the returning planes approaching, I waited for the lights
to go on. As the sound of the approaching planes grew
louder I wondered if something had gone wrong. Suddenly,
out of the night, a plane appeared and, in total darkness,
dropped onto the deck and screeched to a stop. “A
miracle!” I thought. But then it happened again—and again
and again. One after another the returning planes
materialized out of the darkness and settled securely onto
the deck. It turns out, of course, that you don’t light up a
carrier, which would advertise it as a target for enemy guns
or bombs. Instead the pilots were watching narrow light
beams that guided them in. Here was technology that really
worked. It had to.

More fascinating experiences were in store for us before
we finally drove (I’m told that’s the proper verb for a navy
craft of this size) into port. We thought we had learned our
way around this marvel of topological complexity, a
mechanical city housing some three thousand sailors.
Among other things we had discovered the ship’s store
where denizens (including VIPs) could purchase items at
ridiculously low prices. Those of us who were (then)
cigarette smokers had packed into our luggage as many
cartons of essentially free cigarettes (I think they were
something like 9 cents a pack!) as we could cram in. But as
we were approaching land I discovered yet another unfilled
corner of my bag, and so leaving the others I rushed to the

Computing in the Middle Ages
A View From the Trenches 1955-1983

73

store for yet another carton. Getting there took some time
and involved a tortuous trip up and down numerous
ladders and through endless narrow passageways.
Eventually I arrived and made my purchase, whereupon I
was overcome with a feeling that there must be a shortcut.
Grabbing a nearby ladder I ascended ten feet—to find
myself emerging immediately beside my companions!

Although the visit was memorable and fascinating from
many viewpoints, I don’t think we learned anything that
really helped or influenced our study of underwater sound
transmission. If we had, it would have detracted from the
purity of the boondoggle.

Severo M. Ornstein

74

Chapter 6

A moment of skepticism

“Often, especially in those particularly complicated parts of

the physical world constituted by living organisms, the
knowledge that is accessible is separated from what we really
want to understand by very hard questions whose answers we do
not know how to obtain. At one time or another in their lives
most scientists realize the extent of this separation but they also
perceive, probably correctly, that public faith and concrete
investment in science depend on connection between knowledge
and result that is much simpler. So, they are led to make
extravagant claims for the operation of science, both for the
objectivity and compelling power of a formulaic “scientific
method,” and for the direct applicability of elementary knowledge
to problems of human welfare. When challenged, they throw up
an obfuscating cloud of quite interesting and sometimes even
quite useful results of scientific investigation, in the hope that no
one will notice that the original problem has not been solved, or
that it has, but by a pathway quite unrelated to what they have
been doing.”

Richard Lewontin—The N.Y. Review of Books, Mar

6, 1997 p. 52

uring those years the burgeoning computer field

was seeking and finding ever more arenas in which to
D

Computing in the Middle Ages
A View From the Trenches 1955-1983

75

flourish. There often seemed no limit to the possibilities as
new application areas opened up almost daily. Today’s
world is full of hucksters selling computers for every
conceivable use, often in situations where a far simpler tool
would work as well or better. But during these earlier years
we appeared to many as Merlins, able to enlarge their
capacities beyond their wildest dreams. The opportunity to
shape and hand someone an unexpected, powerful, new
tool is wonderfully gratifying, and with such experiences
filling our lives, a general euphoria pervaded the field. I
suspect that a somewhat similar thing may be happening
today among scientists as they unravel genetic codes.

Such euphoria, however, can become a problem, so
overstimulating the imagination that flights of fancy beget
immoderate and unwarranted claims and predictions. Of
course no one could be sure where the hard boundaries
would eventually begin to establish themselves, and it is
difficult to tease apart motivations and assess levels of
optimism, but in retrospect it is clear that over the years
many rosy images were portrayed of what computers might
do for us—images that were far too optimistic and based on
insufficient understanding. This is still happening today as
the boundaries between fact and fiction, reality and fantasy,
become increasingly blurred.

Lay people, always anxious for miracles, have had even
less basis for judging matters than the cognoscenti, and the
desire to appease their longings led to statements and views
by some “experts” that created public expectations which
simply could not be fulfilled. The hype that for many years,
particularly in the 1980s, surrounded the branch of
computer science known as Artificial Intelligence is typical.
Some distortion and exaggeration can be laid at the
doorstep of the media, but not all. In my opinion, such

Severo M. Ornstein

76

indiscretions are folly—they grab headlines, but in the end
damage the credibility of practitioners. Prudence would
dictate a more moderate course than some have chosen to
follow in their eagerness to satisfy an urge to notoriety.

The topic that has probably evoked the greatest number
of false hopes over the years, perhaps because it seems the
most easily understood by the lay person, is the search for a
computer system that could reliably understand continuous
speech, independent of its content. Humans apparently
accomplish this task effortlessly, so it was initially thought
that it must be easy. Forty years ago some were predicting
that within a short while we would be dictating freely to
machines. It was not necessarily anticipated that the
machine would (at least initially) comprehend what was
being said, but it was expected that it would at least be able
to perform the seemingly straightforward secretarial task of
turning the sounds of speech into printed text.

Gradually it became clear that even that deceptively
simple task was far more complex than had been imagined.
Tasks that seem easiest for us humans are the ones we
accomplish through mechanisms that have become so built
in, so instinctive, that we are largely or completely
unconscious of the means by which they work. That makes
them seem easy, but ironically, it also means that we don’t
really understand how we accomplish them. That, in turn,
means that we don’t know how to tell a computer to do it
either. We may, of course, be able to find some way to
accomplish the same end, without understanding how
humans do it. But that’s not what the over-optimists had in
mind forty years ago.

It has turned out, as anyone might have predicted who
thought about it deeply, that recognition and
comprehension cannot easily be separated; for example,

Computing in the Middle Ages
A View From the Trenches 1955-1983

77

although we tend to think we’re speaking in words, the
boundaries between the words are not at all apparent in the
actual sound waveforms of continuous speech. It’s not
dissimilar to the trouble I encountered in trying to sort out
the notes of my piano playing. Finding these word
boundaries seems likely to be tied to the overall process of
comprehension with lots of feedback going in both
directions. The consequence of these and numerous other
unanticipated complications is that, although great strides
have been made, today computers are still unable to
understand the sort of continuous speech that even a young
child has no trouble comprehending.

This week I needed to check on the arrival time of a
United Airlines flight and I used their automated system.
It’s quite clever and allows one to use speech as an
alternative to pushing the dial buttons for numbers and
choices. A naive user might conclude that the system
understands speech quite reliably—until they noticed that
the repertoire of responses is extremely limited and involve
either numbers or highly prompted individual words.
Although wonderfully useful, this word-at-a-time
interaction is not the sort of discourse that is meant when
we talk about understanding continuous speech. That said,
however, it is important to acknowledge that systems now
exist that, when carefully trained to recognize a particular
individual’s voice, do a reasonably good job of recognizing
carefully spoken continuous speech. And we will
undoubtedly do better and better over time. But it’s taken a
lot longer than the enthusiasts (many of whom extracted tax
dollars for their work) promised.

A related subject, language translation, has suffered a
similar history. Given the subtle differences between
languages and the sorts of things they express (not to

Severo M. Ornstein

78

mention the varying cultural attitudes underlying language
differences), the problem of translating from one language
to another is a difficult one even for humans fluent in both
languages. Many things simply cannot be fully translated as
each language inevitably adds its individual flavor to the
underlying ideas being expressed. At one end of the
spectrum lies poetry, probably the most difficult sort of
writing to translate in that it typically capitalizes on the
individual flavor of a language. On the other hand,
translating straightforward scientific information written in
standard, widely-accepted technicalese, is a somewhat less
formidable task.

It is unfortunate that there has never been a clear public
retraction, acknowledging that earlier predictions were
dramatically overblown, and perhaps stating more realistic
expectations. To quote Lewontin again, a “much-
proclaimed program…wasted away, died, and was buried
in a remote corner of the cemetery without a public funeral.
The heirs simply took the cash from the estate and invested
it in another enterprise.” In this case, the new enterprise has
too often been the same old lady simply clad in a new gown
with differently arranged sequins. Periodically the news
media get hold of the story of some new advance in speech
understanding or language translation, and the hoopla is
run by the innocent public yet once again.

Computing in the Middle Ages
A View From the Trenches 1955-1983

79

Chapter 7

In which I join the TX-2 group and
encounter a different culture and some
memorable characters. I simulate another
machine, avoid a fire, and start to dip into
hardware

he leader of the Advanced Development Group, or

TX-2 group as it later came to be known, was Bill Papian
who, I knew, had done his graduate work at MIT under Jay
Forrester, constructing the very first core memory. The chief
designer of the group was Wes Clark. I recognized him as
we passed occasionally in the halls, but even though I knew
he was a friend of Frank’s, it would never have occurred to
me to introduce myself; I thought of him as the first real
genius I’d come across in the computer field and held him
in too great awe to approach him casually.

Then one day the news went round that someone in the
TX-2 group had suddenly died. What kind of a vulture, I
thought, would take advantage of such a tragedy. And yet,
there it was, an opportunity held out by fate. I expected that
there would be contention for such a plum position and I
certainly didn’t look forward to telling Frank that I was
considering leaving his group. I had come to understand
that Frank was someone to whom work relationships were
very personal. He both gave and expected great loyalty and
would not be pleased by what he would no doubt view as
desertion on my part. On the other hand, he had often
spoken admiringly of his friend Wes, and we had discussed

T

Severo M. Ornstein

80

the exciting developments that were taking place in the TX-
2 group. I felt that in many ways Frank himself would have
liked to move into that milieu, but unlike me, he now
headed a group of his own, and was thus no longer such a
free agent. So as Frank sat in his chair, listening to my
announcement, smoke could be seen pouring from his ears
as the conflict within seethed. As he himself ultimately said,
what could he say?

I suppose I must have been interviewed for the
position; I don’t recall. All I know is that a short while later
I was moving again, finally invading the precincts of the
promised land. I was excited and a bit intimidated. I knew
that my life was undergoing a major shift and braced
myself for the challenging new world I was entering. I was
delighted to find that the members of the group, my mythic
heroes, were extremely friendly and helpful people. Even
Wes, when you could get to him, was attentive and
encouraging.

Before I go on with the story, I need to back up and give
a bit of TX-2’s background. Prior to TX-2 there had been a
TX-1 and, following that (oddly enough) a TX-0. TX-1 was
the first of the series. It was to have been a vacuum-tube
machine designed as a test-bed for the first large core-
memory array. But the design was never approved and the
machine was never built. Instead Clark and Olsen proposed
another machine, TX-0, for the purpose, to be built using
transistor circuits designed by Olsen and other members of
the group. That machine was built and continued to be used
for many years. At the same time Clark began designing a
much larger, more powerful transistorized machine that
would incorporate many novel features (not to say bells and
whistles). It was this machine, TX-2, whose design I had
enviously watched evolve from a distance. Its world was

Computing in the Middle Ages
A View From the Trenches 1955-1983

81

very different from the ones I’d inhabited up until then and,
in many ways, its method of utilization presaged what was
to take place throughout the world many years later.

To begin with, you might think that as TX-2 was one of
the very first computers built from transistors rather than
vacuum tubes, it would therefore have been of relatively
modest physical size. But computer people are big
spenders; give them an inch and they take the proverbial
mile. So of course the same space (well, actually a bit less)
had been filled with twice as much smaller circuitry. This
made it a very dense and powerful machine. It was also an
experimental machine and that meant that often people had
their hands and tools inside of it, in the racks which held
the modules of which it was built, forever changing and
improving it. I’d seen this before, with the IBM machines,
but in that setting, repairmen had invaded the machine’s
innards only to heal something that had gone wrong or to
do routine maintenance in the middle of the night. Here,
people seemed to be constantly fiddling with, modifying,
and improving things.

TX-2’s racks were spread out so that some parts of the
machine were a considerable distance from the console
where the main power switch was located. In order to warn
anyone whose hands were in the wiring to stand back
whenever power was turned on, a deafening air-horn was
sounded several seconds in advance. The power-up
sequence actually involved many steps; the air-horn being
merely the first and most apparent. Once power was up,
further internal set-up was initiated by a button labeled
CODABO. Here, at last, was an acronym one could love; it
stood for COunt Down And Blast Off. Which brings me to
the next, very important matter, the way TX-2 was used.

Severo M. Ornstein

82

In those days, TX-2 was run totally differently from any
machine I’d encountered before. The difference was much
like the difference between taking public transportation and
driving one’s own car. First, it was operated directly by the
programmer rather than by an intermediary operator.
Second, you didn’t just get a momentary shot at the
machine and then carry away a printout to be pored over
later, somewhere else. TX-2 users simply debugged their
programs right at the console, sitting there sometimes for
hours at a stretch. (The longer runs were usually at night.)
This appeared to be a waste of valuable computer time, but
it meant that programs could be debugged in a fraction of
the calendar time that it would otherwise have taken.

This way of using a computer evidenced a profoundly
different philosophy: It emphasized optimizing the time of
the human beings, rather than the time of the machine; it
also looked forward to the day when a few seconds of
unused computer time would no longer be so costly. Today
when I turn off the computer on which I’m writing and go
to bed for the night, I waste more computer power than
earlier machines could provide in several months, running
full bore. Wes Clark, who as its principal architect, was king
of TX-2, foresaw this state of affairs and deliberately
arranged the use of TX-2 in this then-unorthodox manner. I
recall a seminar he gave at about this time in which he
looked forward to the day when computer power would
become virtually free. I remember the lecture vividly
because he said that one should think about a computer as
something that would one day perhaps just be painted onto
any handy surface. I can still see the gesture he used,
painting back and forth on the top of the desk from which
he was lecturing. “Surely,” I thought, “that’s going a bit
far.”

Computing in the Middle Ages
A View From the Trenches 1955-1983

83

Another thing about TX-2: It had a screen (about 10
inches square) on which you could both paint and change
images in a big hurry. For use with this display, Clark had
invented a light pen, a device somewhat like Whirlwind’s
and XD-1’s light guns, which allowed you to select items
painted on the screen. Using these features, a young
graduate student from MIT named Ivan Sutherland was
constructing a system that displayed drawings with which
users could interact, stretching, bending, and adjusting
them in real-time. This first serious demonstration of
interactive graphics would become famous as “Sketchpad”
and would eventually move Ivan into the ranks of
computer immortals. But the man behind such
developments, the one who had had the vision to foresee
the need and the possibilities of interactive computing, was
the architect of TX-2 itself, Wes Clark. Another young
graduate student named Larry Roberts was using the
display to explore ways of compressing the information
contained in pictures to facilitate their transmission over
phone lines. Larry would later become famous as one of a
number of so-called “fathers” of the Internet. (The Internet
has a surprisingly numerous paternity. More about this
later on.)

Back to the horn. Although its sound seemed excessive,
it was, in fact, a device of great importance. Earlier I’d
encountered a fellow who had nearly been killed at
Whirlwind years before when someone turned on the
power unexpectedly while he was working with his hands
in the machine. There were some high voltages in the racks
and the shock he suffered had damaged him for life. The
TX-2 horn was designed to prevent such accidents, but it
also had more humorous effects. If a particularly smug new
programmer appeared, somehow mention of the horn

Severo M. Ornstein

84

would be overlooked in his training, and when he went into
the computer room alone at night for his first run and
turned on the power, we knew he would be suitably
chastened.

The author at the Console of TX-2

I mentioned before that somehow certain people stood

out from the crowd. One of these was a colorful fellow by

Computing in the Middle Ages
A View From the Trenches 1955-1983

85

the name of Tom Stockebrand who worked in the TX-2
group. Stocky was the chap who had been demonstrating
MTC’s ability to play music years before. At about this time
I heard the story of his encounter with IBM. It bears
repeating not only because it reveals Stocky’s delightfully
whimsical character, but because it emphasizes the
enormous divide between the academic and the commercial
worlds.

It seems that Stocky had been hired by Lincoln to work
on the tape drives that were part of the XD-1. These were
the first of the big vertical units with the dual vacuum
columns that allowed a small section of the tape over the
read/write heads to be moved quickly without having to
jerk the big tape reels themselves into motion so abruptly.
Later, for many years, these tape drives became such an
icon for a computer that whenever there was a television
news story involving a computer, one of these units would
be flashed on the screen as though it were “The Computer.”

Stocky had been sent down from Lincoln to the IBM
plant near Poughkeepsie where these drives were being
manufactured. He was to work for a while on the
production line and thereby learn about the drives from the
bottom up. In those days, IBM was extremely straight-laced.
You may think this is still true today, but things have
relaxed substantially since those times. Tom Watson was a
no-nonsense leader who wanted his employees if not to
salute, at least to stand up straight, wear white shirts with
coats and ties, sing the company song at the company
picnic, etc. Into this starchy company strode Stocky who
wore dirty fatigues, was often shoeless, and was his own
man, not T.J. Watson’s.

Stocky went to work on the production line in
Poughkeepsie, and soon eyebrows began to raise. Finally

Severo M. Ornstein

86

one of his co-workers, unable to stand it, approached and
said, “Tom, how is it that some days you come in here
looking like a bum and smelling like Limburger, whereas
other days you come in looking quite spiffy?” Stocky, in his
usual forthright manner, answered that some days he woke
up feeling bad; it would be raining and miserable and he’d
just grab whatever clothes came to hand and come to work.
On other days the sun would be shining, the birds would be
singing, he’d feel like a million dollars, and so he would get
all spruced up. The questioner’s jaw dropped; clearly such
whimsy was beyond comprehension, probably illegal,
certainly immoral, and absolutely not in the IBM book.
Meanwhile Stocky, warming to his subject, said “You know,
some days I get up feeling so good, I put on my Tux.” As
the man’s eyes bulged, Stocky realized what he’d
committed himself to.

A few days later he strode in clad in tails and top hat.
All morning he worked on the line. Not a word was said. At
noon, down the aisle came his boss, his boss’ boss, and the
plant manager. They invited him into the front office, and
(here’s the surprise) instead of giving him a lecture, they
offered him a job—at double his salary, whatever it might
be. So white shirts were OK for the plebs, but at least some
at IBM apparently understood how important spunk and
originality were. Stocky, of course, turned them down.

Now he was working in the TX-2 group on the design
of a man-killer tape unit so enormous that it was hoped one
would never again have to change tape reels. Of course one
would have to be able to search such a large space at great
speed and to permit this, motors of substantial horsepower
were involved. In the course of checkout, occasionally a
tape would fail to stop, and when the end of the tape came
off the take-up reel at Mach 2, the sound that it made was

Computing in the Middle Ages
A View From the Trenches 1955-1983

87

deafening; it also turned the computer room into a lively
place where one would sometimes find oneself wading
around in snippets of tape.

Up to this point I had been doing only programming,
but I now began to drift gradually into hardware design.
My initial assignment in the new group was to write a
simulation program on TX-2, this time mimicking
something altogether different from ocean sounds—namely
another computer, the FX-1. For some time the search had
been on for new memory technology that would allow
faster computers to be built. Magnetic cores were reliable
and had the considerable advantage that they retained their
information even when power was switched off. But it took
a while (we’re talking microseconds) to switch their
magnetic field from one direction to the other and that
limited how fast you could cycle the memory, which in turn
limited how fast you could run the overall machine. A
promising new technique, using thin magnetic films, had
been developed at Lincoln and a computer was to be built
that would incorporate a thin-film memory in order to try it
out. The machine was known as FX-1 and would take some
time to build. Meanwhile, in order to allow programs to be
written, debugged, and ready to go when the machine
started working, I was to construct a simulated version of
FX-1 within TX-2 on which these programs could be
checked out. The simulation would also help to verify the
overall logic design of FX-1.

A simulation of this sort does much the same thing an
actor does when he takes on the rôle of a character in a play
or a movie. The actor, to the best of his ability, takes on the
persona of the character he is representing. In this case, I
was to write a program for TX-2 that would make it behave
like some other machine, namely FX-1. I was only supposed

Severo M. Ornstein

88

to simulate the actions of the machine (its instructions) not
the underlying circuits. The actor’s abilities must
encompass all of the abilities of his character; for example if
the character is to speak French, then the actor must be able
to speak French convincingly as well. (In movies it is
sometimes possible to fake certain abilities, such as, for
example, facility in playing the piano, but the audience is
supposed to believe that the actor is performing the action.)
Similarly, the machine on which the simulation was to run
(TX-2) had to be able to perform all of the steps that the
simulated machine (FX-1) could perform. To implement
some FX-1 steps would require several, sometimes many,
TX-2 instructions, but that was OK because it wasn’t
necessary that the simulated FX-1 run especially fast.
Finally, in order for an actor to portray his character
convincingly, he must understand the character thoroughly
in order to understand how to represent him under all
circumstances. In order to do this job, I needed to
understand in some detail how the logic of FX-1 worked.

I had never looked at a machine so closely before. Two
Johns, John Frankovich and John Laynor, were my mentors.
They explained to me how FX-1 was meant to work. We sat
for several days in front of a blackboard and gradually I
pieced together an image of the machine. I then spent some
time designing the program and figuring out how to fit my
simulated FX-1 inside the structure of TX-2. Then I wrote
the program. Fortunately I’d been prepared for my first
night’s run; I knew about the horn and had heard it. But I
was somewhat taken aback when I overheard Frankovich
asking someone, “Is that fire-extinguisher still in there by
the printer?”

Ah yes, TX-2’s printer. It was one of the very first-ever
xerographic printers. It was a monstrous machine, cobbled

Computing in the Middle Ages
A View From the Trenches 1955-1983

89

together from pieces of a couple of very early Xerox copiers.
It painted images on a drum by shining a CRT beam
through a mask that defined a specific set of characters.17 It
was fully programmable, too fully perhaps. The paper it
used came on a large continuous roll six or seven inches
wide, and it was up to the user, employing a set of giant
shears hanging nearby, to chop it into suitable pages
(programs marked the page boundaries so you would
know where to cut) as it emerged from the printer. John’s
inquiry about the fire-extinguisher stemmed from the fact
that a program bug could cause the paper to travel too
slowly (or even, God forbid, stall) in the printer’s heater
station with potentially catastrophic consequences. The
paper should be warm as it emerged, but not brown and
hot—and certainly not flaming. As this was the first TX-2
program I’d written, and as it was going to drive the
printer, John had reason to be concerned. He showed me
where the fire extinguisher was.

But in the event, things actually went swimmingly. I
managed to avoid setting the place on fire, and one night
not too much later, the program began working. I’d checked
out my simulated console and screen (which used a subset
of TX-2’s switches and a piece of the TX-2 screen as FX-1’s
switches and screen) and all of the FX-1 instructions, and
everything appeared to work properly. Even though it was
eleven o’clock at night, I called Wes at home to announce

17 After it was built, someone invited Xerox representatives to see it and
pointed out that it would make an excellent product. They said “Very
interesting!” then departed and were never heard from again. In that same
era, Xerox was being lauded in the financial community as one of the best
managed companies in the world.

Severo M. Ornstein

90

victory. To my astonishment, instead of the “Good show”
or whatever I’d expected, he said, “I’ll be right in. What
kind of coffee do you drink?” He arrived shortly with a
giant thermos of fresh coffee and as I watched, wide-eyed,
he set about driving my FX-1 through the night—writing
and running programs, flipping switches and entering
instructions at blinding speed, as though he’d been
programming it for years. Before I knew it, patterns were
flashing on the screen—my screen. I was thrilled. In all the
time I’d been building it, writing the simulation program
and verifying the individual FX-1 operations, I hadn’t
stopped to consider actually writing programs for it. So this
was the first time it had really been used and, not
surprisingly, I was delighted to see it respond. I was also
thrilled to have a boss who behaved as this one did. We
must have been there until three in the morning, playing
with our new toy. It was a memorable night for me and
formed the first layer of cement in a friendship that has
continued to this day.

My next job was to help connect an IBM tape drive to
TX-2. A stodgy old IBM tape unit was anathema in that
free-wheeling environment, but it needed to be done;
someone important wanted to transfer data between TX-2
and the IBM machine out back—perhaps that guy Chomsky
again for all I knew. We fell to with a will. Chi Sun Lin, a
delightful colleague, would design and build the hardware
interface while I was to do the programming. In a design
such as this, the trick is to build a minimal amount of
hardware, just enough so that when manipulated by the
software, everything that needs to happen can be made to
happen—and fast enough. This is not because hardware
designers are inherently lazy; it’s because that way there’s

Computing in the Middle Ages
A View From the Trenches 1955-1983

91

less to build and to break and because software is far easier
than hardware to rearrange in order to get things right.

Lin was very clever at pushing as much of the design as
possible into the software, and for the first time I found
myself writing a program that reached into and
manipulated special hardware at a very low level. It was up
to the program to run the tape forward and backward, time
out the legislated gaps, and write or read the data to or
from the tape at the appropriate rates. My prior experience
with reading and writing information on tape was with
commands that transferred blocks of data one direction or
the other. The program I was now writing performed some
of the micro-operations that were involved in such block
transfers. I watched Lin operate an oscilloscope, probing the
hardware as the program ran and pointing out when, and
in what way, the program was doing the right or the wrong
things. We finally got everything working so that we were
able to write and then read back information, but we also
had to be sure that the tapes we were making were in a
format compatible with the IBM 709 computer. As a
preliminary verification we wrote a record on the tape and
then dipped the section we’d written into a volatile solution
containing extremely fine iron filings. In solution, the filings
were free to move about on the surface of the tape and they
hauled themselves over to the areas that had been
magnetized when we wrote the tape. Then the liquid
evaporated, leaving the filings sitting on the tape. Peering
through a magnifying glass we could actually see what we
had written—honest to God visible bits—and in the right
place as well. Suddenly I felt I had one toe in the hardware
world.

Severo M. Ornstein

92

Chapter 8

The Big Dealers vs. the Little Dealers. We
poise for a leap

ot long after our IBM-compatible tape unit began

working, Wes asked me to poke around Lincoln, looking for
specialized hardware that people had built for various
projects—projects that might have utilized, and benefited
from the flexibility of, a small computer, had a cheap
enough one been available. Given that I had only the
vaguest idea of what he had in mind, it’s perhaps not
surprising that I found only one or two potential
applications. Nonetheless it soon became evident that a new
computer was in the works. Not just any old new computer,
but an altogether different sort—one that would make a
statement about what computers of the future should be
like, how they should feel and be viewed and used. The
statement was heretical; it crossed swords with prevailing
opinion within the computer research community in what
amounted to a religious war. Like the cold war, this one
never developed into open hostilities, but it nonetheless
manifested two profoundly opposed philosophies, and
lasted for many years. It’s important to note that this debate
took place within the comparatively narrow confines of the
university and government-funded research community.
The wider computer community, represented by industry,
persisted in believing that batch-processing was the only
sensible way to do business and that both factions within

N

Computing in the Middle Ages
A View From the Trenches 1955-1983

93

what might be called the alternative research community
were pursuing unrealistic approaches.

Almost everyone within this alternative research
community agreed that the batch-processing form of
sharing was impossibly cumbersome and that some
improved form of interactive use must be found. But
beyond that basic agreement, opinion diverged markedly.
On one side were the “Big Dealers,” those who believed
that for the foreseeable future useful machines would
continue to be extremely expensive to build and maintain,
and that one therefore needed to find ways of sharing them
more efficiently. The Big Dealers observed that when a
person interacted with a computer, the computer often
spent a large fraction of its time waiting for the person to do
the next thing—strike the next key, whatever. Aha! they
said, that means that the computer should be able to serve a
number of people at (approximately) the same time. While
one user is scratching his head or raising his finger to strike
a key, the computer should be able to serve the needs of
others.

The Big Dealers’ solution was therefore to divide up the
machine’s cycles in such a way that many users, sitting at
individual terminals remotely connected to it, could use it
at essentially the same time. Of course the users weren’t
actually using the machine truly simultaneously, because
these computers could really do only one thing at a time.
However, the idea was that it could switch its attention
between users so rapidly that each user would have the
illusion of having the entire machine to himself. This
approach came to be called “Time-Sharing.”

Before proceeding I need to distinguish carefully
between two very different kinds of sharing. Indeed
machines often serve multiple purposes “simultaneously.”

Severo M. Ornstein

94

In fact the machine on which I am presently typing is a
prime example—it is shared by numerous programs which
perform a variety of different functions. Although only one
is operating at a time, several are in the memory and ready
to go if I ask for them. But there is a difference between
such cooperative sharing and competitive sharing that occurs
in a Time Sharing system. Since I am the only person using
this machine, for the most part I am not competing with
anyone or anything.18 However, in a Time Sharing system
multiple users are competing for computing resources and
under those circumstances, what one person does can
influence the access of another. I will reserve the capitalized
term Time Sharing, for this specific kind of use between
individuals at terminals accessing a central machine and
competing for its computing horsepower.

A crucial question was whether a way could be found
to avoid making users at the terminals wait for the
computer’s attention. Of course there was no way to
anticipate when each user would require servicing, so time
was sliced into very tiny segments and complex
mechanisms were devised to dole out access to the needy. It
was vital to keep down the overhead (in machine cycles) of
managing the sharing, in order to give the users service that
was sufficiently fast to maintain the illusion that each had
the sole attention of the entire machine. Jobs that required
lots of computing could be handled in the cracks, between
the more urgent business of servicing users sitting at

18 Occasionally I ask the machine to perform a task that requires the full
attention of the machine in which case it's taken out of my hands while
that task is performed. But that is under my control—and I can even
change my mind and cancel the operation if I become impatient.

Computing in the Middle Ages
A View From the Trenches 1955-1983

95

terminals. Such jobs would thus take many times longer to
complete in this piecemeal fashion, but who cared?
Occasionally a user at a terminal might do something that
triggered the need for extensive computing, but most users,
it was presumed, needed very little of the computer’s
attention most of the time.

The possibility of some such a form of shared use had
been discussed from the mid-fifties onward. I remembered
such discussions almost from the time I first arrived at
Lincoln. But John McCarthy, at MIT, was the first to
document the concept of general purpose Time Sharing in a
memo he wrote on January 1, 1959. That note bounced
around MIT and resulted in two demonstration projects
being undertaken, one at MIT under Prof. Fernando
Corbato and another at BBN under McCarthy and Ed
Fredkin on BBN’s PDP-1 (the original copy of DEC’s first
full-scale computer based heavily on the designers’
experience with MTC, TX-0, and TX-2). Both systems
became operational in the summer of 1962. Not long
thereafter almost the entire computer research community
commenced a headlong rush down the Time Sharing path,
and for many years thereafter Time Sharing, and the search
for better ways to implement it, dominated research in
computer system architecture within the ARPA community.
Sizeable amounts of money, manpower, and ingenuity were
expended on this approach over the course of many years.

In these systems, the older punched-card, batch-
processing gave way to the use of teletype-style terminals
connecting individual users to the central machine. Using
these devices, communication between user and computer
took place via lines of text typed back and forth. This form
of interaction required the user to learn the arcane language
required to communicate with the computer, but since at

Severo M. Ornstein

96

that stage it was still a limited cognoscenti who were using
machines anyway, the impediment of language was
accepted by most users. Although looking back, these
devices and this sort of interaction seem unbelievably
cumbersome, they nonetheless provided a primitive form of
“interactive” use. Access to the machine was much more
direct than anything that had previously been experienced
except by the handful of people who had used the MIT
machines, Whirlwind, TX-2, etc. Eventually somewhat
faster, sleeker versions of terminals appeared, including the
so-called “glass teletype” in which the text appeared on a
screen rather than on a roll of paper. But virtually all shared
the same fundamental serial text style of communication.
And in fact that was not too badly matched to the limited
computing power available to the individual users of a
Time Shared system.

A very different view was held by a tiny community of
“Small Dealers” led by Wes Clark, who felt that real-time,
interactive use via a display screen was crucial and that
Time-Sharing would never be able to provide such
capability. Of course fast displays had existed on dedicated
machines (Whirlwind, MTC, TX-0, TX-2, etc.) since early
days, and these displays had been an integral part of the
computer itself. The terminals for Time Sharing systems lay
distant from the computer and were connected to it by low-
speed telephone lines that could handle the rates of
typewriter-like devices but not the far higher rates required
to service display screens. Nor could early Time Sharing
systems themselves provide the kind of prompt, high-speed
service required by multiple users working with display

Computing in the Middle Ages
A View From the Trenches 1955-1983

97

screens.19 In fact, the delays and uncertainties of timing in
Time Sharing systems mitigated against real-time use of
any sort except at extremely slow rates. There were some
attempts to circumvent these limitations, but essentially
time-sharing was anathema to real-time computing at
anything other than very slow rates.

Instead, Clark argued that a computer shouldn’t have
to be such an awesome affair, that it should be possible to
build a computer that could be used by a single individual,
moved from place to place as required, and turned off at
night with a clear conscience, not so differently from other
pieces of laboratory equipment. Such a machine should be
able to provide interactive service via a display screen to an
individual user. The vision was thus of a truly personal
computer, not merely the illusion of one as promised by
Time Sharing. Such a vision seemed so implausible at the
time, and was so contrary to received wisdom, that the only
way to make any headway in promoting it would be to put
together a demonstration prototype, and that was precisely
what Clark was quietly preparing to do. In sending me
around the lab, he was discretely looking for potential
clients for such a machine.

In the days before integrated microcircuits, trying to
build a “personal computer” was a daunting enterprise and
required faith that ultimately the size and cost of hardware
would shrink dramatically. It was clear that for the time
being such a computer would be far less powerful than the
existing big machines and would be too expensive for an

19 Today a substantial fraction of the “horsepower” of personal computers
is dedicated to making them more accessible to the user through the
graphical user interface that everyone now takes for granted.

Severo M. Ornstein

98

individual to purchase. The trick would therefore be to
build a reasonable approximation, keeping the cost as low
as possible while still demonstrating all of the important
features (albeit in primitive form) that might someday
constitute such a device. The challenge was to show that
many problems could be handled by a small computer if it
embodied just the right array of features. Over the ensuing
few years, a comparatively modest band of workers, led by
Clark, would devote themselves to constructing such a
computer to be used initially by workers in biomedical
research applications whose needs provided much of the
initial impetus for the design. I was fortunate to be a
member of that troupe.

The war between these two opposing views is one that
today is largely forgotten, having been rendered obsolete by
the later development of microcircuits that ultimately
allowed the vision of the Small Dealers to flourish. The
Time Sharing systems of those years, like other dinosaurs,
are now a thing of the past, but for many years they
dominated the research computing scene. Clark, as a
member of a 1961 MIT Long Range Study Committee,
differed with virtually the entire rest of that committee,
which enthusiastically embraced Time Sharing as the
solution to the Institute’s computing problems. Time
Sharing was the bandwagon and the Small Dealers were
decidedly beyond the pale. A small number of us, however,
were persuaded by the force of Clark’s conviction, and
some, in particular Charlie Molnar whom we’ll meet
shortly, felt that they were able to see a possible way
through the maze of technical obstacles.

Although in the long run the Small Dealers’ image has
come to dominate in that the vast majority of people sitting
in front of machines today are utilizing individual personal

Computing in the Middle Ages
A View From the Trenches 1955-1983

99

computers, nonetheless virtually all machines (from
personal computers to large servers of various types) are
today “time-shared” in that multiple things are going on at
the “same time.” During the years of Time Sharing
dominance, a large amount of software development took
place and a generation of proficient programmers grew up,
honed their skills, and developed important understanding
using Time Shared machines. These systems allowed
programmers to develop many of the machine-utilization
tools that everyone depends on and takes for granted today.
Two important examples are the multiprocessing, which
allows you to work “at the same time” with a number of
different programs (word-processing, file-management,
email, spread-sheets, etc.), and virtual memory which
permits programs to expand beyond the limits of the
(expensive) central memory by sloshing in and out of the
much larger and cheaper hard disk memory. In addition,
Time Sharing enabled exploration of higher-level languages
and other software development tools, as well as
development of many of the instincts and insights that
characterize personal interaction with a machine.

Most of these things would not have been feasible on
the early small machines as they required the power and
capacity of the larger machines. Of course even on the
larger machines, the speed of the interaction was limited by
the fact that they were far slower than today’s computers,
especially given that their attention was spread among so
many users. The issue of speed is far more important than it
may seem because interactive usage simply becomes
unworkable if the machine’s response is too slow. If the
natural rhythms of a human being are too heavily
compromised by a tool, the net effect is destructive rather

Severo M. Ornstein

100

than constructive. Try running at one step every second or
watching a movie run at one-tenth speed.

But there are many reasons why personal computers
have replaced Time Shared use. The price is right and that
means not only that individuals can afford to purchase
them, but that within corporations bureaucratic
involvement is minimal. A second important reason is
territoriality—it’s mine, and I don’t have to compete with
anyone else for its use. As compared with Time Sharing
systems, it provides uniform response time that doesn’t
vary depending on what others are doing. And although
we’re all victims of indifferent software, at least with a
personal machine we aren’t subject in addition to the
whims of system wizards and administrators.

As noted earlier, most advances in computer
development have consisted simply in taking the next step
forward. Often these steps follow more or less obviously
from what has gone before. Occasionally, however,
someone takes a more dramatic leap based on insights that,
in retrospect, appear almost prescient. We were about to
experience such a leap of faith and hope. In this instance it
involved relatively few elements that in themselves were
dramatically new. Rather, it consisted of bringing together,
into a single machine, features that in combination
constituted a new kind of entity, the forerunner of what
would one day turn into the personal computer that has
today become so ubiquitous. In fact the machine that arose
is generally recognized as the world’s first personal
computer.

This was no accident. Clark had been one of the earliest,
and continued to be the most ardent, advocate of personal
computers throughout the era during which batch
processing and Time Sharing dominated almost

Computing in the Middle Ages
A View From the Trenches 1955-1983

101

everywhere, including practically the entire MIT computing
community. What was about to happen involved putting
one’s money where one’s mouth was—nothing less than an
effort to manifest an improbable vision in concrete terms—
and in the face of strongly opposed mainstream opinion.

Severo M. Ornstein

102

Chapter 9

The birth of the LINC. I become a midwife
and leave Lincoln

n the summer of 1957 a young man by the name of

Charlie Molnar came to work in the TX-2 group. In the fall
he commenced graduate studies under Prof. Walter
Rosenblith20 at the Communications Biophysics Lab at MIT
and continued using TX-2 for his thesis work. There had
already been interaction between some members of the TX-
2 group (notably Clark, Farley, and Papian) and people
doing neurophysiological research down at the main
campus of MIT. Wes’ interest in neurophysiology had been
evident in the lecture he’d given several years before in
Pittsburgh, and one day, overhearing a conversation
between him and Jack Rafael (developer of the thin-film
memory), I was delighted to discover that, like me, Wes
was hoping to find a way to do something with computers
in a totally different, non-military arena.

Neurophysiological research up to that time had been
bedeviled by the lack of suitable laboratory equipment. The
“dry” sciences—especially physics following the atom
bomb—did considerably better in acquiring necessary
research tools (big atom-smashers, for example). But the
“wet” sciences got the dregs. The technological and

20 Rosenblith later became Provost of MIT and, subsequently, Foreign
Secretary of the National Academy of Science.

I

Computing in the Middle Ages
A View From the Trenches 1955-1983

103

logistical barriers that separated experimental work from
the processing and analysis of data limited the progress of
research. There was no way that data could be processed as
an experiment proceeded in order to influence the course of
the experiment. Instead researchers had to wait for the
results, which, in the case of experiments with animals,
invariably meant starting over with a different animal with
no way to know whether the electrodes were in exactly the
same place as before, etc.

In order to facilitate the processing of
neurophysiological data, special equipment was designed
and built for particular purposes—such as the averaging of
response signals, for example, in order to increase the
signal-to-noise ratio.21 But such special equipment was, by
definition, limited to a particular kind of data processing.
What was needed instead was a much more general
purpose machine, one that could be adapted through
suitable programming to diverse kinds of data processing.
Such a machine should be able to take in signals directly in
analog form, convert them to digital form, subject them to
whatever kinds of processing the researcher wanted under
control of parameters that the researcher might wish to
vary, and finally display results—all in real time. Batch-
processing and Time Sharing were anathema to such use.
The researcher needed sole access to the machine for
extended periods. In addition, the machine needed to be

21 Clark had designed a machine called the Average Response Computer
(ARC) for this purpose. Individual responses were so noisy that they could
not be seen. But by summing a sequence of responses, the noise, being
random, tended to be self canceling, whereas the actual response signals,
always occurring at the same time, added together and thus became visible
above the noise.

Severo M. Ornstein

104

small enough to live comfortably within the confines of a
laboratory environment. Ideally such a machine should be
viewed as just another piece of laboratory equipment that
could be at the user’s elbow during the course of an
experiment, to be turned on and off as needed. No such
machine existed and the size and cost of most computers
rendered such thoughts essentially fantasy. Nonetheless,
the desire for such processing provided strong motivation
to a computer designer such as Clark who had contact with
the needs of neurophysiological researchers.

As Wes ruminated about these matters, Charlie’s
studies were interrupted by family illness, causing his
student deferment to be canceled. (We were between wars,
but the draft was still in force.) He was called to active duty,
but fortunately he was assigned to the Air Force’s nearby
Hanscom field and, although his thesis work was put on
hold, he began discussions with Clark about the possibility
of designing a computer specifically around the needs of
neurophysiological researchers. Thus commenced a
friendship and alliance between the two that would grow
over ensuing years into the closest collegial partnership
either was to know. Although Charlie had been working
with TX-2 for some time, it was only at this point that I
began to be peripherally aware of the presence in the lab of
a trim young man clad in Air Force uniform.

Today, thanks to the great proliferation of computers,
the design of most machines is constrained by the need for
compatibility with existing programs and methods of use.
But in the early sixties things were still much more in flux
and style had by no means settled down. The initial stages
of design of a new computer were therefore the hardest to
understand because the overall conception, the recognition
of a hole waiting to be filled, required in many ways the

Computing in the Middle Ages
A View From the Trenches 1955-1983

105

keenest insight, the purest invention. When the developers
of the first xerographic copying machine put their toe in the
water with a market survey, they were told that there was
no need for such a thing—people didn’t want to do that
much copying. It took imagination and conviction to defy
this now laughable analysis. Similarly, during the middle-
ages, when a wide variety of currents and cross-currents
swept back and forth across the conceptual space as a host
of now long-forgotten architectural experiments took place,
it took especially keen insight to decide that the thing to do
was to try to build a personal computer.

As the concept for a new kind of computer begins to
firm up, as the niche it is to fill becomes more clearly
defined, a process of distillation commences in which
ensuing design becomes a matter of slowly refining the
ideas in ever greater detail. The first steps define the broad
architecture of the machine and delineate how it will be
perceived by the user.

When Wes asked me to tour the lab looking for possible
applications that would help to justify such a machine’s
sponsorship, I now believe that my search was a post hoc
exercise. He already knew, generally, what he was about.
As time passed those of us working with him came to rely
on his instinct and judgment—too much perhaps. Many
months later I came into his office one day to find him
looking worried and staring abstractly into space. When I
asked what was the matter, he said, with some agony in his
voice “Charlie thinks I know what I’m doing!” I didn’t dare
tell him that the rest of us were suffering from the same
delusion.

That spring (1961) Wes disappeared from the lab for an
extended period. When he returned he brought with him
notebooks containing a preliminary design for a new small

Severo M. Ornstein

106

computer. A number of us gathered around to listen as he
laid out the prospective design. We took notes furiously.
Then he disappeared once more, leaving us to try to
remember, ponder, and critique what he’d done, and to
figure out how to program such a beast. This latter task fell
to me and a newcomer named Mary Allen Wilkes, a
philosophy major from Wellesley who had recently joined
the group. Together we tried to sort out what Wes had said
and to understand how his new brainchild worked—well
enough to be able to write some trial programs and see how
it felt.

In the weeks that followed, Wes would reappear
periodically to accept our insights, answer questions, and
and then quietly announce that the design had changed—
here was the new version. Undaunted, we’d go back to our
deliberations, readjust our thinking and start over. Fairly
quickly the process converged and a solid design began to
emerge and acquired a name—the α-Linc. It was Wes’
design; we were mere hangers-on, and I use the term
advisedly. I wasn’t used to a machine design that constantly
shifted under my feet, and I hung on for dear life.

Gradually the description of the machine stabilized and
started to be reduced to logic diagrams. I’d had no direct
experience with logic diagrams, but Wes felt strongly that
everyone should learn as much as possible about the entire
process; there was to be no escaping into a narrow
specialty. He made it easy for us novices by starting with
simple pieces of hardware logic and showing us how they
were put together to form bigger, more complex devices. A
gentler, more encouraging teacher would be hard to find. I
began designing small exercise devices (not unlike the
process I’d gone through several years before when I was
first learning to write programs). Gradually I began

Computing in the Middle Ages
A View From the Trenches 1955-1983

107

following the design of the machine as it progressed,
learning new things every day.

Wes decided to build the machine out of the new logic
modules that DEC was now marketing—the very same
Digital Equipment Corp. that Ken Olsen, Harlan Anderson,
Dick Best, et al. had departed from Lincoln to form not long
before. In principle, these modules could be treated as black
boxes that performed various logic functions and could be
connected together following a few simple rules; but that
principle was only approximately true, and there was more
to learn here than with programming. A programmer was
provided with a well-defined set of instructions whose
definitions had hard edges. If an instruction didn’t work as
advertised, the machine was broken by definition and you
called in the hardware experts. With logic design, even with
DEC’s comparatively well-behaved, well-defined black
boxes, the “analog” world of electronics, with all of its
complexity, was lurking just below the surface to rise up
and bite you in some mysterious way if you unwittingly
overstepped some bound.

It was at this stage that Charlie began to emerge from
the shadows and forcibly entered my consciousness for the
first time. Although as an Air Force officer he was still only
peripherally involved officially, he was nonetheless rapidly
emerging as the co-star of the project and was starting to
make major contributions to the design. In fact, although I
came to realize it only later, he had been doing so for some
time. As Wes described it later, Charlie had an intimate
relationship with every electron in the known universe. He
not only had serious electrical engineering credentials, but
superb taste and judgment. He was the most thorough and
careful engineer I was ever to come across. Thus when

Severo M. Ornstein

108

important engineering decisions needed to be made, Wes
turned naturally to him.

But Charlie was also just plain fun to work with. He
had an irrepressible sense of humor and unmatched skill at
weaving it into every aspect of technical work. He seemed
to view engineering as an enormous joke that, if properly
done, could be played on the the Gods who give grief to
engineers. He was also a titillating and natural teacher who
employed the Socratic method everywhere. Those of us
who were effectively his students, quickly adopted his
“Don’t Trust Nobody” dictum.

Another colorful member of our “gang” was Tom
Stockebrand who, as I’ve indicated earlier, had prior
experience with several different kinds of magnetic tape
units. Wes wanted a pair of small “snapshot” tape units to
be a standard part of the α-Linc. These would be a
significant innovation, not only technologically but
logistically. They were the forerunner of later diskettes and
floppies in that they provided the user for the first time
with small, removable devices for storing one’s own
programs and data—something far more compact than the
cumbersome card decks of commercial machines. Wes had
devised a clever method by which pre-numbered blocks of
information on the tape could be located, read, and written.
I was given the job of figuring out how to pre-mark the
tapes with the information necessary to control the tape
movement and locate the blocks. Greater faith, I thought,
hath no man than he who assigns such a sticky bit to a
novice like me. Stocky was to design the physical tape units
themselves—tape heads, belts, reels, motors, etc., and
associated mechanics and electronics. We began working
together closely as I started to understand how the tape
control logic would work.

Computing in the Middle Ages
A View From the Trenches 1955-1983

109

The Original LINC Crew

Wes and Charlie continued to oversee what we were

doing. At one juncture, as we were discussing a bit of my
design, it became obvious that although it worked properly,
I had misunderstood some crucial fact. I defended myself,
pointing out that after all, my design did work. Whereupon
Wes drew himself up and announced that “In this business
it’s not sufficient to be right; you’ve got to be right for the
right reasons.” It has sometimes seemed to me that this
statement defines a nice demarcation between the
engineering and the scientific mind-sets.

As we moved into winter (1961-62), the actual machine
began to take shape. I was about to discover further
differences between constructing a machine and
programming one. In programming, the design and coding
were pretty much the entire job (aside from uncovering and

Severo M. Ornstein

110

correcting mistakes). The job of converting one’s code into a
running program was but the work of a few minutes with
the aid of an assembly program, compiler, or whatever. Not
so with hardware. Once the logic design was complete on
paper, the job was only just barely begun. The ensuing
process of transforming the design into an actual physical
machine ready to be debugged, was a major piece of work.
For instance, you had to decide where each of the various
logical pieces would be located physically within the
machine, and if you did a bad job of laying that out, the
wires that connected things together could become
nightmarishly messy. In order to minimize such “steel
wool,” things that required lots of interconnections needed
to be located as close as possible to one another in an
orderly way. (In designing later, far faster machines, the
lengths of wires would become critical in determining the
speed of the machine because even at the speed of light, the
length of time it takes signals to travel along the wires can
become significant. These days, the very operability of the
machine depends on how well the wiring is laid out. In the
comparatively sluggish α-Linc, it was more a matter of
neatness and order.)

Once all of the modules had been assigned to specific
locations within the machine, wiring lists needed to be
prepared that would be used by technicians to install the
thousands of wires, in this case soldering each one in place
in turn. As the years progressed, a wide variety of
techniques for wiring machines have been tried and
discarded as, one after another, new techniques replaced
them. This process has been driven by the ever-increasing
compaction of logic elements into more and more dense
packages. The density of packing, the level of “integration,”
has increased extraordinarily rapidly until today the

Computing in the Middle Ages
A View From the Trenches 1955-1983

111

number of external connections (i.e., those between
packages) represent only an infinitesimal fraction of the
total inter-connectivity. Virtually all of the wiring of earlier
machines has been replaced in today’s computers by fine
traces within the individual integrated circuits themselves.
The compression of many circuits onto a single chip has
eliminated the need for the numerous wires and cables and
connectors that joined together the various parts of earlier
machines.

Somehow, as those things will, a schedule had evolved,
along with a target date for a demonstration of the working
machine to all of Lincoln. Early one foggy morning, having
worked throughout the night, Stocky and I were able, for
the first time, to write and read blocks of information on the
prototype tape units. As the rising sun struggled to pierce
the mists, we celebrated our achievement by climbing a
nearby radar tower to peer into the fog. Despite the gray
weather, we were exultant; we happily ate breakfast while
we waited for the others to arrive and share our excitement.
For months afterwards I was to look down at my feet and
see a splotch of bright orange paint that had transferred
itself from the antenna ladder onto one of my shoes as we
clambered up. It was a mark I secretly treasured.

Miraculously everything came together on schedule
and in March of 1962 the demonstration went off without a
hitch. The final machine consisted of four boxes: a control
panel with lights and switches for manipulating the
machine; a box containing a small (3” x 5”) display and
analog knobs that could be used to vary parameters in a
program; a box that contained plugs for connecting the
machine to external devices, both analog and digital; and

Severo M. Ornstein

112

finally our precious dual tape unit.22 These sat together on a
desk and were connected by cables to a larger box,
variously described as refrigerator-sized or coffin-sized,
containing the power supplies, logic, and associated
electronics that made the whole show go. We pushed this
part as far out of sight as we could, thereby suggesting that
it would someday disappear altogether. Few of us
anticipated that most of the other boxes would also
disappear and that the whole shebang would one day fit
into something you could tote around as easily as a
notebook.

Wes Clark Demonstrating the LINC at Lincoln Lab

22 This describes what, after a few minor modifications, ultimately became
a “Classic LINC.” The prototype initially demonstrated at Lincoln Lab
differed slightly in detail.

Computing in the Middle Ages
A View From the Trenches 1955-1983

113

Almost immediately the machine went on the road to
Washington, where first it was demonstrated to the
National Academy of Sciences and then in labs at the
National Institutes of Health (NIH). These demonstrations
were extremely successful and over the coming months
plans emerged for an enlarged program in biomedical
computing under NIH support. Things looked extremely
promising early in 1962, but then we hit an unexpected
snag. Lincoln management, accustomed to the more
generous overhead allowances of its military funders, was
unwilling to deal with a new set of sponsors. Following this
unfortunate revelation, at our weekly meeting Wes
announced to a stunned gathering that he would be leaving
Lincoln Laboratory—and that, by the way the α-Linc
(which everyone had naturally assumed stood for Lincoln)
was henceforth to be the LINC—the Laboratory INstrument
Computer.

Aside from their superb technical abilities, the human
qualities of Wes and Charlie stand out as utterly unique in
my experience—I could not imagine working with a finer
group of people. After the meeting I went for a walk with
Wes and assured him that whatever home could be found
for the LINC would suit me fine; we soon learned that most
of the others in the group felt similarly. Stocky, however,
opted to join DEC, taking with him the design of the tape
system which he and others redesigned and turned into the
DEC tapes that would serve as the principal program
input/output mechanism on forthcoming DEC machines23.

23 The idea of small, portable snapshot devices, originally represented by
LINC tapes, would ultimately metamorphose into today's floppies,
diskettes, etc.

Severo M. Ornstein

114

When I saw Stocky a few years later he was unrecognizable.
Heretofore he had been at best a casual dresser. (I retain an
image of him hopping around on one foot in the lab, busily
massaging the other foot as he argued some engineering
question with Charlie. He’d been barefoot and had come a
cropper on a raised electric plug fixture.) Now he was
wearing a suit and showing surprising interest in business
matters. It seemed out of character, but I needn’t have
worried. Before we leave Stocky for good, I must punctuate
his departure with a story from more recent times when I
looked him up a few years ago in semi-retirement in
Albuquerque.

Like many inventive engineers, Stocky had a small lab
in his home and, peering into the clutter, I could see that the
suit had been only a temporary diversion; Stocky was
clearly still the same lovable, glue-and-safety-pins fellow I’d
known in the past. Not long before, the house had been
burgled, and in their haste the thieves had wreaked havoc
in most of the rooms. Miraculously, however, Stocky’s lab,
in which precious experiments were under way, hadn’t
been touched at all. When the police arrived, they started
methodically going through the house, room by room,
recording without comment the extensive damage. On
reaching Stocky’s lab, however, they drew back in horror,
exclaiming “Boy, they really trashed this place.”

The rest of us felt bound to one another; we had
practically become a family by then. Each of us had poured
a large quantity of blood into the LINC development and
we weren’t inclined to let it go. Moreover, we had
developed a conviction that we were on an exciting trail
and that our futures lay ahead in biomedical computing. I
was tired of the military ambiance of Lincoln, fed up with
the absurdity of having to show a badge to guards who

Computing in the Middle Ages
A View From the Trenches 1955-1983

115

knew me. So although the immediate future was uncertain,
I felt no hesitancy about leaving Lincoln, and as 1962 drew
to a close we prepared to pull up stakes and move.

Severo M. Ornstein

116

Chapter 10

We move to Kendall Square where we
accomplish the impossible

y the time we left Lincoln in January of 1963,

considerable spade work had already been done in
providing a new venue for our work. Earlier in the year a
proposal had been made to NIH to establish a multi-
institutional Center for Computer Technology and Research
in the Biomedical Sciences, with MIT acting as host. Many
of the major universities in the New England region had
signed on in principle and the proposal had been accepted
and funded to the tune of some $5 million for the first year,
with the promise of more substantial funding ($27 million)
over the ensuing five years as the center grew. In the first
year, an office was to be established that would
simultaneously work on developing plans for the
forthcoming center and proceed with further development
and dissemination of the LINC. This office was given the
absurd, albeit descriptive, name of The Center
Development Office for Computer Technology and
Research in the Biomedical Sciences—affectionately known
as the CDO. We moved into a building in Kendall Square in
Cambridge, snuggled up against MIT proper. Ironically just
up the street lay MIT’s grand Technology Square complex
wherein an ambitious Time Sharing system (Project MAC)
was simultaneously under development. Our modest
quarters above a health-food store symbolized the

B

Computing in the Middle Ages
A View From the Trenches 1955-1983

117

contrasting attention being paid at the time to the two
visions of computing.

Our initial task was an ambitious experimental
program, funded by a combination of NIH, NASA, and
NIMH (National Institute of Mental Health) and known as
the LINC Evaluation Program. Approximately twenty
copies of the LINC were to be built, installed, and evaluated
in a variety of biomedical research laboratory environments
around the country.

We knew that since there would be no maintenance
organization to repair these machines when trouble arose,
each laboratory would have to be able to provide for the
care and feeding of its own machine. In order to empower
the researchers to take on this formidable and
unaccustomed task, we decided to produce the LINCs in kit
form and to bring the researchers (each with an
accompanying technician as desired) to Cambridge in two
waves. There, over the course of one month for each wave,
they would assemble and debug their own computers
under our supervision. Virtually none of these individuals
had any prior experience with a computer and in one
month we would have to teach them not only how to
program the machine but also how it worked, and how to
maintain it as well. It seems we knew no fear in those days.

It is interesting to contrast this situation with today’s.
At that time both hardware and software were far less
complex than they are now, even in the most modest
contemporary computer. But the hardware, with all the
little separate pieces and connections, was inherently more
susceptible to failure than that in a modern computer
(although the urge to press the limits of speed and capacity
has always helped to depress hardware reliability). Not
only was the hardware inherently more vulnerable back

Severo M. Ornstein

118

then, it also contained a much larger fraction of the total
system complexity than it does today. The LINC came with
no elaborate operating system or application programs,
only a relatively straightforward assembly program.
Virtually all of the software that a user would employ
would have to be developed and written directly by that
user, who would thus be intimately familiar with its
purposes and implementation. Today a far larger fraction of
the overall system complexity lies in the software provided
to users by the computer manufacturer and others. Most
users are thus utterly at the mercy of the developers of the
system software as well as the vast array of application and
utility programs that inhabit a modern computer.
Meanwhile the hardware, with all its connections that used
to flap vulnerably in the breeze now compressed into a few
integrated circuit chips, has become much more reliable.

My experience suggests that hardware designers are, by
nature, more careful and more thorough than most software
designers and programmers. They have to be, given the
relative difficulty and cost of correcting hardware design
errors. The cost of a hardware error today can run into
many millions of dollars and this produces a healthy sense
of paranoia in the minds of hardware designers. Modern
programming tools, on the other hand, provide software
developers with powerful means for manipulating and
easily changing programs. Furthermore, the rapid decline
in the cost of memory has encouraged the constant addition
of features in programs, often leading to rococo structures
that no one fully understands. Software engineering
practices have been developed to contain and counter these
problems, but unfortunately they are more often honored in
the breach than in practice. The consequence of these things
is a software industry afloat in revisions and changing

Computing in the Middle Ages
A View From the Trenches 1955-1983

119

versions that often leave the user futilely shaking a fist at
the screen. The end user has been conditioned to accept (if
not love) programs that, as a result of endless bells and
whistles he’ll never use, are cumbersome, flaky, and often
poorly suited to his real needs. The acronym KISS (for Keep
It Simple, Stupid!) has been thrown out the window by the
new generation of programmers feasting on today’s
memory abundance.

Teaching programming and providing significant
hardware understanding to twenty users with virtually no
engineering background (doctors, for heaven sake!) was an
ambitious undertaking, particularly as, before it could
commence, the LINC needed major redesign after which we
would need somehow to assemble some twenty or so kits of
parts. But we were young and invincible, and by that time a
number of us felt confident of our own understanding of
the machine. None of us, however, had had any experience
in even limited quantity production. At about this time one
of the crew (Don O’Brien) reported a vivid dream in which
Wes was driving a steamroller directly towards the edge of
a precipice while Charlie was furiously attempting to attach
wings. Bill Simon (another member of the crew) sat in the
rear, speed-reading a book on aerodynamics! An altogether
apt image it seemed.

By now (the spring of 1963) it was ski season and one
day Mary Allen appeared on crutches wearing a serious
looking cast on her leg and saying “The doctor says I can go
back to work tomorrow!” That week at our regular
gathering, Wes announced in no uncertain terms that there
was to be no further skiing until the machine was finished.
We were a small team and every absence presented a
sizeable problem.

Severo M. Ornstein

120

Mary Allen

At this juncture, Mishell Stucki joined the team. Mish

was a long, lean ex-Harvard student who had previously
worked under the vigilant eye of Charlie Molnar at the
Communications Biophysics Lab. It soon became evident
that Mish carried Charlie’s careful work and thought habits
to an extreme that even Charlie could envy. Over coming
years he would exhibit a level of caution and fastidiousness
that could immobilize any project he was working on until
he was completely satisfied that he understood every
relevant nook and cranny of underlying theory. Mish and I,

Computing in the Middle Ages
A View From the Trenches 1955-1983

121

who made a sort of Mutt and Jeff team (Mish being nearly
twice as tall as I) worked closely together over the next few
years and for a while, following my separation from my
first wife, we shared an apartment. (One day the apartment
was burglarized and we tried to imagine what kind of
misshapen thief had made off with a pair of my pants and
one of Mish’s jackets!)

Mish and Howard24

24 Howard Lewis was one of our superb technicians.

Severo M. Ornstein

122

The LINC redesign went smoothly for the most part.

Wes redesigned the control panel and I helped design the
logic that underlay it. I then redesigned the somewhat
expanded tape-handling logic. Charlie reworked the
physical tape unit itself and where our work met was in the
signals between his tape heads and my tape logic. In lieu of
a quality control department we had instituted a betting
regimen—the better to keep errors to a minimum.
Wherever anyone foresaw a possible problem, a bet
(usually consisting of one or more martinis, depending on
the complexity and importance of the matter) would be
placed to the effect that the designer could not possibly get
it right on the first try. The tape head signals for the various
channels varied in polarity and underwent individual sets
of inversions as they passed through amplifiers and gates
on their way from the heads to the logic circuits. The same
applied to the signals going in the other direction for
writing on the tape. The likelihood of an error somewhere
in this chain seemed semi-infinite—a situation that clearly
warranted a substantial wager. I bet Charlie (I forget how
many martinis) that he couldn’t possibly get all of the
polarities right on the first try, figuring that getting it right
would more than repay the cost of all those martinis.
Although Charlie was nearly infallible, this was a difficult
challenge and some insurance seemed in order. Charlie
took the bet seriously and pondered the matter carefully,
but nonetheless he lost and collapsed on the floor in a fit of
despondency that lasted for days. Meanwhile, of course,
things were corrected and ultimately the tape units worked.

Computing in the Middle Ages
A View From the Trenches 1955-1983

123

Charlie

While this was going on, Mary Allen was working on

an assembly program for the machine that would allow
programs to be written using mnemonic instructions and
address tags. Since the redesigned machine wasn’t yet
working, it was arranged that she should use TX-2, which
of course required that first she do for the LINC what I’d
previously done for FX-1, namely, write a LINC simulator

Severo M. Ornstein

124

that she could then use to debug her LINC assembly
program. Lifting herself thus by the bootstraps required
much traveling back and forth to our old haunts at Lincoln
to access TX-2.

One night I arrived late to a darkened lab and
discovered Wes underneath a table fiddling with the
controls of an oscilloscope and muttering to himself “First
you’ve gotta get its attention.” I had just managed to get the
logic for the control panel working and after we turned on
the lights I demonstrated it for him. It seemed to work
properly, and after we had checked out everything he said,
“Lets give it the Forrester test” —whereupon he picked it
up and, to my horror, proceeded to drop it onto the
workbench from a height of about six inches. After that of
course nothing worked, and when the shock wore off I
realized I’d been given yet one more lesson: in this business,
it’s not enough to get it working; it’s got to go on working,
even when it’s thumped. Hardware design was proving a
tough racket.

We had become a very close-knit group by that time,
closer than any other group with which I would ever work.
We worked without regard for the clock until we were
ready to drop, eating together irregularly in the nearby deli
which grew accustomed to serving breakfast to us at three
in the afternoon or dinner at seven in the morning. Despite
the closeness, we remained rugged individualists. One day
five or six of us were gathered around a huge set of tables
that had been assembled for working on the big logic
drawings. Each of us was working away at his or her own
piece of the design when suddenly I realized that all of us
were whistling or humming different tunes—one Mozart,
one Brahms, one Bach, one Rachmaninoff, and one Bartok.

Computing in the Middle Ages
A View From the Trenches 1955-1983

125

Then, as such things will, at a critical moment a serious
memory flap arose. The authorities (Wes and Charlie)
weren’t sure why the memory didn’t work and reserves
were called in. Professor Jerome (Jerry) Cox, another superb
electrical engineer who himself was looking forward to
receiving one of the machines, arrived from Washington
University in St. Louis. Together, he and Charlie eventually
figured out what was wrong and worked the necessary
repairs. Once the memory was working, I could begin
checking out the tape logic. I recall feeling both satisfaction
and some loneliness as the others all trooped out about 10
PM leaving me alone with the machine and a fast-
approaching deadline.

When I left in the wee hours, I had a rather messy test
program stored in the memory. Since without working tape
units I had no way of saving it, and since reentering it via
the control panel was a slow and tedious process, I left a
note requesting that if at all possible the memory contents
should be preserved. Next day when I arrived, I found a
complete memory module (all 4,096 12-bit words in a neat
6” by 6” by 6” package) sitting on my desk with a note
saying “Here’s your program.” Recognizing that the little
cores in core memories retained their magnetism even
when not powered, Charlie had simply unplugged the
memory module containing my program and plugged in a
replacement unit for his work with the machine. In the light
of today’s technology such a maneuver seems utterly
mundane, but at that time the idea of casually replacing a
computer’s memory startled and bemused everyone. Sure
enough, when I plugged things back together that evening
(with the aid of the requisite memory-installing rubber
mallet), my program was sitting there intact, waiting for me

Severo M. Ornstein

126

to proceed. Over the next few nights I managed to debug
the logic and get the tape units working.

Our technicians developed a proprietary attitude
towards the physical machine as it came together, and with
good reason; they knew how much trouble a superfluous
bit of solder could cause and quickly learned which of us
could be trusted with a soldering iron in our hands. I soon
found that by merely picking up a soldering iron I could
produce a technician from out of the woodwork, one who
would be more than happy to implement the change I’d
had in mind.

Once the tape units were working it was time for a
celebration. A large number of us piled into Bill Simon’s car
and headed for a restaurant in downtown Boston. Parking,
even back then, was notoriously difficult, and as Bill drove
around back streets searching for a space, Wes’ voice rose
periodically from the depths of the rear seat saying, “Go
around front, Bill. They’re holding a place for you.” We all
laughed, of course, at the absurdity of this repeated mantra,
until we happened to pass that way when, lo, there indeed
was a place, right in front. On another occasion Bill was
taking a break throwing darts at a board in the lab. He was
making heavy weather of it when Wes stopped briefly in
the doorway to watch. Then as Bill advanced to the board to
retrieve the darts for the next round, Wes picked up one of
them and saying, “No, Bill. Not that way; this way.”
without looking, he tossed the dart backward over his
shoulder as he withdrew and disappeared down the hall.
Bill and I watched, open-mouthed, as the dart found its way
directly to the bulls-eye. As I observed our mentor for clues
to success, not only in engineering but more generally, I
noted that he occasionally made such improbable
predictions. I finally figured out that he was relying on the

Computing in the Middle Ages
A View From the Trenches 1955-1983

127

fact that outrageous predictions that chanced to be fulfilled
would be remembered, while the numerous ones that failed
would be quickly forgotten. Thus are soothsayers’
reputations formed.

One day not long afterward I was called into the lab to
observe a tape unit that was behaving erratically. It had
somehow gotten into a mode in which it was rocking gently
back and forth as though searching for, but never finding,
some block on the tape. Such problems were my domain,
and gradually our heads bent lower and lower over the tape
unit in an attempt to discover precisely what was going on.
Suddenly the air was rent by a violent explosion right
under our noses. We reeled back in time to see a dense
black cloud, a miniature mushroom cloud, rise majestically
out of the unit. After the dust had cleared we discovered
the remains of a capacitor which had exploded, calling a
halt to both the tape’s unusual behavior and our
investigations. More lessons in electrical engineering.

The tape units were being put together by a small
company in Nashua, New Hampshire. Late one evening
Charlie and I set out to visit them and retrieve the prototype
unit that had been lent them as a model, along with the
drawings. Later, as we got into the car to return home with
it, I noticed that Charlie was chuckling. When I asked him
what it was about he said that he could see evidence that
they had taken the unit entirely apart and then reassembled
it, a totally unnecessary procedure as the model was only to
provide a general picture of how things went together.
Charlie speculated that they had realized that this tape unit
was likely to become a commercial success (as, indeed, a
later DEC version did), and that in their eagerness to
understand it, they had taken it apart and then put it back
together again. The reason Charlie was chuckling was, of

Severo M. Ornstein

128

course, that without understanding the logic in the main
machine that actually controlled the unit, there was no way
that exploring the physical unit was going to reveal
anything about how it worked since there was almost
nothing there in these mechanically primitive units.

While we were working on the LINC, people at DEC,
who shared our Lincoln/TX-2 roots and consequently some
of the same attitudes, had been designing a small machine
of their own, the PDP-5. It had a simpler set of instructions
than the LINC and lacked the special features that lent the
LINC its unique power—the small magnetic tapes, the
display, and the analog capabilities. It was a more
conventional computer than the LINC, except for its
“logical size.” It was meant to be a small machine, but only
became physically small when repackaged some time later
as the PDP-8, which was to prove an extremely popular
computer. Small computers were beginning to make
headway, but, except for the LINC, none of them had an
integrated display that looked forward to a more interactive
form of use.

Finally we got the redesigned machine working and
found manufacturers to provide or build all of the
necessary pieces. By far the most complicated part was the
wired frame into which the machine’s numerous logic
modules were plugged. On its surface lay the nests of wires
connecting everything together. Every wire was recorded in
an enormous wire-list, copies of which were then provided
to the company that manufactured the frames. But we knew
that there would be errors, and debugging a machine is
difficult enough when everything is properly wired
together. Half a dozen wiring errors can render the task
virtually impossible. We devised a method for verifying the
wiring and somehow everything got finished—in the nick

Computing in the Middle Ages
A View From the Trenches 1955-1983

129

of time. By early in the summer of 1963 when the first group
of “participants” showed up, many of them famous medical
researchers, we were exhausted but nearly ready for them.

A LINC Kit

While the finishing touches were being put on their

kits, we lectured to them, stalling for time. Some of these
middle-aged gents hadn’t been worked so hard in decades.
A tremendous amount of information needed to be pumped
into them (one said he felt like pâté de fois gras), and we
drove both them and ourselves ruthlessly day after day,
night after night. They were first amused, then frightened,
and ultimately exhausted by what was happening to them.
But there was no time to spare. We had to get them up to
speed and help them get their machines assembled and
debugged before the second wave of participants was due

Severo M. Ornstein

130

to descend. Somehow we and they managed it, and three
days after the first group departed with bloodshot eyes and
unopened golf bags, we were confronted by the second
wave. This time we were somewhat better prepared and
things went more smoothly, if just as intensively. Shortly
after they too left, we packed up all of the machines and
watched as they were loaded onto a large moving van that
was to deliver them to the various laboratories around the
country. Heaving a great sigh of relief, we staggered home
to sleep for a week.

In retrospect I cannot imagine where we found either
the bravado or the strength to bring it off, but somehow it
all went like clockwork. Somewhere along the way we had
become possessed of missionary zeal. We were cracking
open a whole new area of computer application, one that
unquestionably had a humane purpose, while at the same
time promulgating a dramatically new technique of
computer usage in which complete control was vested in an
individual “owner.” No doubt our vague understanding of
these matters carried us, like soldiers in war, well beyond
our normal capacities.

Computing in the Middle Ages
A View From the Trenches 1955-1983

131

Chapter 11

Tragedies overtake us; the prime number
drop; we move to St. Louis where we design
some new building blocks and encounter the
evil synchronizer bug. I assist in brain surgery

e were of course elated at our success, and

naturally a celebration seemed in order. One afternoon
shortly thereafter we found ourselves purchasing the
necessary supplies at the local supermarket when suddenly
the news went round the store that President Kennedy had
been shot. We rushed back to the lab where we listened to
the radio in shock and disbelief. When it became apparent
that he was indeed dead, one by one we dispersed to our
homes where we retreated into our individual sorrows. We
had watched TV with deep concern in our local deli. as
Kennedy had defied the arrival of Soviet missiles in Cuba.
Aside from missing this man who had so captivated the
entire nation, we wondered what would happen now.

But far closer shocks were in store for us as our dream
of a major inter-university center suddenly foundered on
the rocks of MIT politics and eventually vanished before
our very eyes. As plans for the proposed center had
unfolded and it became evident that it had the potential to
become a major MIT institution, members of the academic
faculty naturally began to take serious interest in the
development. Gradually a power struggle emerged
regarding who would control this new organization.
Having conceived and developed the machine that gave

W

Severo M. Ornstein

132

birth to the whole idea, our group was inclined to retain
control of developments. But of course we were outsiders
(none of us had serious faculty positions) and naturally the
faculty expected to exercise its normal prerogatives in such
a situation. Ultimately the decision fell to Professor Charles
Townes, the renowned physicist who was at that time
provost of MIT. In a dramatic gathering in Townes’ office
one afternoon it became clear that he had little choice but to
back his faculty.

It was a terribly discouraging time, particularly for
Clark who had been the real pioneer and the driving force
behind the development. He said sadly at the time that the
decision had set back the introduction of computers to
medical research by many years. Probably this estimate was
unduly pessimistic as events were to unfold, but certainly
our hopes were dashed that day by political forces. Even
though NIH had already set aside substantial funds for it,
the Center was not to be. Unwilling to hand over the infant
we had borne, we had no choice but to seek another home
for our activities. Today one might well think in terms of
starting up a commercial enterprise, but that was far less
feasible back then as the revolution we had in mind would
have been incomprehensible to potential funders. Besides,
we had academic leanings and were determined to cultivate
further the embryonic relationship between computers and
biomedical research that we were hoping to foster. That
meant looking for a university with good engineering and
medical schools in which the top management would look
favorably on our enterprise of interbreeding the two
disciplines. Experience had taught us how important such
top-level support was.

Early that spring (1964), various members of the team
flew around the country visiting potential host institutions.

Computing in the Middle Ages
A View From the Trenches 1955-1983

133

We finally settled on Washington University in St. Louis,
where Jerry Cox had already established a beachhead with
his Biomedical Computer Laboratory near the Medical
School. George Pake, who would later become the director
of Xerox PARC and still later director of research for all of
Xerox, was at that time Provost of Washington University,
and his understanding and support for what we were
trying to do was a major factor in our decision to move the
group to St. Louis.

Soon afterward, Wes and Charlie began work on a new
proposal to NIH, describing the situation at Washington
University, what work we would do, etc. The writing was
going slowly and Jerry Cox, sitting in St. Louis, began to
fidget, wondering what was holding things up. Finally,
overcome by curiosity and concern, he climbed onto a plane
and came to Boston. When he arrived he found Wes and
Charlie locked in a debate about whether 2047 was or
wasn’t a prime number; Charlie said no, Wes said yes. (A
prime number is one, like five or seventeen, that is divisible
by 1 and by itself but by no other numbers.) There sat the
untended proposal, while Wes tried successive candidate
divisors. Jerry promptly ordered the two of them back to
work, promising that he would figure out whether or not
2047 was prime. So, starting where Wes had left off, he
continued looking for possible divisors. Finding none, he
announced that 2047 was indeed prime—whereupon
Charlie’s hand instantly shot out and he said, “Wanna bet?”
Had Jerry known Charlie better, he would never have
accepted the bet, but as it was, he agreed to treat everyone
to dinner if proved wrong. It turned out that in his part of
the search, Wes had overlooked the fact that 2047 is
divisible by 23. Jerry paid up, but was ever after convinced

Severo M. Ornstein

134

that he’d been duped by what he referred to as “the prime
number drop.”

Later, in a memorable meeting between our NIH
supporters and Washington University senior management,
Pake confidently told the NIH people that he intended to
take all of us on as faculty and staff members, regardless of
whether or not NIH decided to continue their support of
our activities. Occasionally the convictions of a single
individual can help to shape history, and that day Pake
fearlessly backed something he had come to believe in
deeply. This was the kind of support we had not found
previously and we were all extremely grateful.

But the NIH people also wanted to know what we were
planning to do at Washington University. They understood
that we were going to continue supporting the LINCs in
their various domiciles around the country and that we
hoped to build a strong set of ties between Washington
University’s engineering and medical schools (whose prior
degree of separation was symbolized by the giant park that
separated the two schools geographically.) But, they
insisted, what were we going to DO? What new research
directions did we have in mind pursuing?

We’d had some rather vague discussions about this
matter, but nothing terribly firm had come out of them. We
felt that it was important to be able to design computers,
and related pieces of special purpose digital hardware, far
more easily than was then possible. It should be feasible,
Wes felt, to come up with a limited set of building blocks
that were truly logical elements of significant power, in
which the rules for interconnection should be extremely
simple. The builder should not be required to have any
electrical engineering background whatsoever, so all
questions of electrical loading, timing, etc., would somehow

Computing in the Middle Ages
A View From the Trenches 1955-1983

135

have to be pre-solved. One should furthermore be able to
build systems of arbitrary size and complexity; the units
would need to be extensible. We called these building
blocks “Macromodules,” lending them a reality which, at
that stage, they didn’t posses at all. In truth, we had little
idea how to accomplish such an ambitious goal.

In the meeting all eyes were on Wes as the group’s
guru, and watching him I realized to my dismay that he
was in no state to make a strong case to the NIH committee.
The collapse of our enterprise at MIT and the consequent
split-up of the group had been a devastating blow, and at
that moment he was depressed and it showed. To their
credit, our supporters decided to continue their backing,
despite the tentativeness of our presentation, trusting that
the miracle we’d produced would continue to grow and
prosper. Ultimately it was settled that we would move to
Washington University, and shortly thereafter firm offers
arrived in the mail.

The move from Cambridge to St. Louis represented far
more serious geographic dislocation than had the move
from Lexington to Kendall Square in Cambridge, and some
of the group opted to stay in Massachusetts while others
chose to accept appointments at other universities. Mary
Allen punted and climbed onto an airplane for a year-long
trip around the world. Of greatest concern was the fact that
Charlie, so essential a member of the group, would have to
remain in Massachusetts for another year in order to
complete his Ph.D. and his military assignment. As we
shared a bottle of scotch one night, Wes expressed grave
concern on this point. “Charlie is the key,” he said.

The rest of us packed up and in the summer of 1964,
one by one we arrived in the “Hub of Missouri” (later
referred to by some of us as the “Hub of Misery”)—a play

Severo M. Ornstein

136

on the Bostonians’ famous assertion that Boston is the Hub
of the Universe. My second wife, Elizabeth, and I and our
cat arrived at midnight, and as we pulled in we spotted a
large, rotating sign indicating that the temperature was 100
degrees F. It was clear that we were in for a rough stretch,
and I later told Wes that all I could promise for sure was a
three-year hitch.

Mish and I, being two of the first arrivals, soon set to
work together trying to figure out what Macromodules
might be. Unbeknownst to us, we were embarking on one
of the more innovative periods of our careers—at least of
mine. Wes was still suffering postpartum depression and
watched over us from a somewhat greater distance than
usual. We found that a truly clean sheet of paper opens the
mind wonderfully, and as neither of us was afraid to appear
the fool in the other’s eyes, we plunged in fearlessly.

We soon realized that working with the constraints and
goals mentioned above, the kind of signaling system used
inside most computers simply wouldn’t work. Most
computers operate based on a central clock that ticks
regularly25. These are known as synchronous systems since
all changes in the machine take place exactly at clock ticks.
Between ticks, the news about what happened as a result of
the previous tick must be able to propagate everywhere
throughout the machine so that it can figure out what to do
on the ensuing tick. If the clock runs so fast that the next
tick comes before the results of the previous one have

25 When a computer is advertised as a 300 megahertz machine, it means
that its clock is ticking three hundred million times every second—a
frightening number when you think of it.

Computing in the Middle Ages
A View From the Trenches 1955-1983

137

arrived everywhere, then the machine can make a wrong
decision about what to do next and chaos will result.

Signals take some time to percolate throughout a
machine; they travel along wires and pass through various
logic elements that tend to slow them down. The bigger the
machine, the longer the wires, the more elements, and thus
the more the slowdown. Because we wanted to be able to
use our modules to construct machines of arbitrarily large
size, for any given clock rate, as larger and larger systems
were built, sooner or later some signal would arrive too late
at some unit and would produce an error. We therefore
concluded that our building blocks would have to be self-
timing (asynchronous) in that they would somehow have to
guarantee that any change would be made known
throughout the system before proceeding to the next step.
This led us to invent a totally new signaling scheme and to
devise circuits that implemented this scheme.

Every day Mish and I would together invent something
new and then, going home and sleeping on it, one or the
other of us would have a new insight and would arrive at
work to announce excitedly that yesterday’s idea was all
wet and here was a better one. And then we would be off
once more at high speed. We recorded our progress with
frequent Polaroid photos of our chalkboard with one or the
other of us standing smirking beside our latest brainchild.
Sometimes our disdain for yesterday’s idea or for one
another’s current suggestion would become surprisingly
harsh and in the excitement of invention our anxiety at
times verged on hostility. It was merely overstimulation,
but others listening to us shouting at one another
sometimes must have thought that we were having a
dreadful row. They seemed surprised to see us later jawing
calmly together over lunch. Occasionally Wes would

Severo M. Ornstein

138

appear and we would brief him on our progress. I
remember that on one occasion, after listening silently, he
turned to us and announced that we were making good
progress, that we’d now reinvented ILLIAC III. That sent us
scurrying to find out what the hell ILLIAC III might have
been. (It was, indeed, a previous asynchronous machine.)

As we continued to work, our ideas gradually started to
jell and a group of basic building blocks began to crystallize
in our minds. We were able to describe these blocks as
logical units and understood how they would operate and
could be connected together to form arbitrarily large
systems. Our new signaling scheme extended naturally as
the system grew. Wes started spending more and more time
with us and the excitement intensified. Another bright spot
was the arrival, at this juncture, of a student of Charlie’s
from MIT, one Warren (Mackie) Littlefield. (It was to
Mackie’s computer class that I spoke not long ago). Charlie
had indicated that I was going to like Mackie and, as usual,
he was right. Mackie’s contagious enthusiasm and high
good humor provided an excellent antidote to some of the
less appealing aspects of St. Louis. Our friendship was
instantaneous and electric, and has endured to this day,
despite significant later shifts in direction for both of us. He
immediately began offering welcome critique of everything
in sight, and with such good humor that we all promptly
accepted him into the fold. Besides, he was frequently right.

The problems of reviewing scientific research are
substantial. Who, after all, is competent to judge what goes
on at or near the leading edge of investigation; which
activities appear likely to be fruitful and which should be
judged dead-ends? NIH engages in a routine process of
peer review in which qualified experts drawn from the
broader technical community, often as consultants, gather

Computing in the Middle Ages
A View From the Trenches 1955-1983

139

to review the work of a particular group of researchers. This
process relies on the integrity of the workers involved
because it could obviously tend to produce an old-boy
network of mutual admiration and support. My impression,
however, is that it works extremely well in most cases since
it is the nature of scientists to try to knock down ideas and
kick holes in theories in the broad search for scientific truth.
In any case, our group was occasionally the subject of such
site visits. One, in particular, stands out in my memory
because it included Alan Perlis as one of the reviewers of
our work. Perlis was one of the deans, if not the dean, of
American computer science. Besides, he was a memorable
character, already bald as a billiard ball and with a
bottomless sense of humor. I was to re-encounter him again
many years later in a very different context and ultimately
he was to become a good friend.

By this time some of our support was coming from the
Information Processing Techniques Office (IPTO) of ARPA
and soon we were visited by the director of that office, our
old friend from Lincoln, Ivan Sutherland, together with his
deputy, Bob Taylor (who would soon become the director).
Ivan was by far the most astute technical critic we had had
and we were anxious to see what his reaction would be. He
quickly grasped our explanations and promptly sat down
with a large sheet of blank paper and set about designing a
small computer using our new Macromodular building
blocks. We watched with delight as he filled it in and as he
was putting on the finishing touches he said, “By Golly,
fellas, I think you’ve done it!” Coming from Ivan, this was a
twenty-one gun salute and we were thrilled. I like to think
that this may have been Ivan’s first serious brush with
asynchronous systems, something that would increasingly

Severo M. Ornstein

140

occupy his attention as the years rolled by—and Charlie’s
too, for the rest of his life.

But there was one problem that we seemed unable to
solve: how to join a system built out of these units with
some other system, built either of similar units or of
synchronous (clocked) devices. In the course of working on
this problem, we stumbled26 onto a fundamental
conundrum that would occupy both theorists and practical
designers for some time to come. It came to be known as
“the synchronizer problem” or “the glitch problem.” The
problem was enunciated in simple terms in the literature in
a joint paper by Mackie, Tom Chaney (another member of
the lab) and me entitled “Beware the Synchronizer.”27

A rough description is included in Appendix 1, but
what is perhaps more interesting is how difficult it was to
convince others that the problem even existed. By the mid-
1960s, many logic designers (I among them) had, to varying
degrees, lost contact with whatever electrical engineering
roots they might have once had. Many had come to believe
that the units with which they were working were ideal
“black boxes” that always obeyed a relatively simple set of
rules, typically specified by the unit’s manufacturer.
Unfortunately those rules embodied tacit assumptions,
which in some perverse cases, could actually be violated.
Such situations were exceedingly rare in most computer

26 Wes reports that it was I who insistently pressed the question “But what
if they do arrive simultaneously!?”
27 Mackie and Tom wrote a more complete paper at about the same time:
W. M. Littlefield, and T. Chaney, “The Glitch Phenomenon”, Technical
Memorandum No. 9, Computer Systems Laboratory of Washington
University, St. Louis, 1966.

Computing in the Middle Ages
A View From the Trenches 1955-1983

141

systems and many designers argued that they simply
couldn’t occur at all. But careful analysis led us to conclude
not only that they could but that, under the right
circumstances, they must. To resolve the matter, Tom
designed some very sensitive experimental apparatus that
enabled him to focus narrowly on the situation that would
provoke the anomalous behavior and then observe its
occurrence. And sure enough, it showed up just as
predicted, right there on Tom’s oscilloscope.

During 1965-66, much of our time was devoted to
supporting the LINC. DEC had decided to manufacture and
sell LINCs and part of our contract with NIH required us to
document the machine so that anyone who wanted to could
obtain a kit and build one. After all, it had been built with
taxpayer money; the knowledge should be available to the
public. The documentation effort was substantial. Every
feature of the machine was depicted and explained in gory
detail in a giant series of documents. Others besides DEC
intended to build the machines as well. One company
(Spear Electronics) decided to redesign it using the then
new emitter-coupled logic (ECL) circuits that would make it
faster, and shortly they did precisely that.

DEC’s interest in the LINC was fading (during 1964
DEC had made some 50 or 60 “classic” LINCs) as PDP-8
demand increased, so to keep their interest alive, Wes
persuaded them to combine the LINC and their PDP-8 into
a single machine that would be called a LINC-8. Wes was
providing consulting help in merging the two designs and
he sub-contracted a piece of the work to me. Much of the
logic of the LINC tape commands could be handled by a
PDP-8 program, and Wes gave me the job of writing that
program. Some hundred and fifty LINC-8s were built but
later DEC redesigned it as the PDP-12 which, for a number

Severo M. Ornstein

142

of years, was a truly popular machine (over a thousand
were sold) that ultimately embodied most of the world’s
LINCs.

In addition to the documentation effort, we also helped
a number of people, who had obtained separate funding
outside of the LINC Evaluation Program, to procure and
assemble their LINCs. And we continued supporting the
various LINC users around the country who were
struggling to incorporate the computer into their research.
This involved organizing a number of meetings in which
the users could share experiences, programs, etc. In
addition, many of us traveled a good deal during this
period, working with and helping the researchers with their
varied tasks in their own labs. The diversity of applications
was striking28 and we had to become conversant with bits
and pieces of wholly unfamiliar disciplines in order to be
useful. I myself spent time in half a dozen different labs,
consulting on the design of experiments and helping to
connect equipment and write suitable programs. I recall one
in particular that stands out in my memory as by far the
most dramatic.

One of the participants in the program had been a
neurosurgeon and neurophysiological researcher at
Washington University by the name of Sidney Goldring. He
intended to use his LINC for mapping response areas on
the surface of the human brain. Not only is this important
as a general matter of understanding the structure of the
brain, but in addition he hoped to be able to determine

28 A more complete listing can be found in the ACM Conference
Proceedings, History of Personal Workstations, W. A. Clark, The LINC Was
Early and Small, Palo Alto, CA, 1986.

Computing in the Middle Ages
A View From the Trenches 1955-1983

143

individual response areas in the course of brain surgery in
order to be able to avoid damaging critical areas. I learned
that brain surgery is at the same time both more primitive
and more sophisticated than I had imagined.

The LINC was located in the amphitheater directly
above and overlooking the operating table. Thus while
working with the machine we were able to watch the
proceedings in detail. For a lay person it was a frightening
experience to see saws and drills at work on the skull of a
live human being. Even more astonishing was the fact that
these patients were often conscious during the operation.
Although we were given to understand that they were not
suffering significant pain as a consequence of the
proceedings, it was difficult to believe that, and at one
point, as an operation was commencing, I heard Howard
Lewis, who had accompanied me on this visit, murmur
“That’s a brave man down there.”

This was a preliminary phase of the study, and we were
helping to get the equipment and the programs in shape.
An array of electrodes were placed on the surface of the
exposed brain and various stimulae (light flashes, sound,
touch, etc.) were presented to the patient. The signals from
the electrodes were fed to the LINC’s analog inputs whence
they were sampled, recorded, and displayed. By moving
the electrode array to different locations on the brain
surface it was possible to locate the areas of response to the
various sorts of stimulae.

That, at least, is the general picture I retain of what was
happening. Not surprisingly these people, who had never
encountered a computer before, had the program in
something of a tangle, but it was a simple matter to show
them how to put it all straight and leave them with
programs that did precisely what they wanted and that

Severo M. Ornstein

144

they more or less understood. One morning Dr. Goldring
arrived looking deeply troubled and announced that he had
spent a sleepless night having come to the realization that
the research, which he had previously assumed would
occupy his attention for the next ten years, would now, in
all probability, be completed within a year. He was
wondering what he would do for the remainder of the
decade!

Fortunately not all of the experiments were quite so
dramatic and some even produced amusing anecdotes. In
one operant conditioning experiment a rat was being
trained (I don’t recall why) to wait for a fixed interval
between successive pressings of a lever. Properly spaced
pushes would produce reward in the form of food. If the
lever was pressed too rapidly or too infrequently, no food
would result. The rat seemed not to understand the
situation and initially pressed the lever quite randomly,
only occasionally producing food. Then at one point his tail
apparently itched and after a successful pressing, he turned
and chewed on his tail for a moment to relieve the itch.
Turning back he again pressed the lever and, as this had
produced the proper interval, food appeared. The
researcher claimed that you could see the rat momentarily
stop and ponder the situation—and then quickly turn and
bite his tail again and return to press the lever once more
He had decided that this action—biting his tail between
pressings—was what produced food. I learned that such
“superstitious behavior” is not uncommon in training
animals. (Humans too, it would appear, are not immune
from such confusion between cause and effect.)

In the years that followed, the LINC would have the
effect of speeding up research in many areas of biological
exploration. The real-time, interactive processing of

Computing in the Middle Ages
A View From the Trenches 1955-1983

145

experimental data was absolutely revolutionary and
changed both the face and the pace of biological research
forever. The LINC furthermore provided much of the
impetus for further work in computers in medicine that
took place under the leadership of Clark, Molnar and Cox at
Washington University’s computer laboratories long after I
had left. This includes such things as advances in cardiac
monitoring and the development of the PET scanner.

Today there is hardly any piece of medical equipment
that doesn’t incorporate at least one computer in its inner
workings, and doctors, medical technicians, and even
patients now take for granted the ability of instruments not
only to measure, but to analyze and present data in
graphical and pictorial form. The LINC was the forerunner
of such equipment, and as such it remains one of the high
points of my own evolution as a computer scientist.

Severo M. Ornstein

146

Chapter 12

Charlie to the rescue; we take a LINC to
Chile and climb down an elevator shaft. Water
juice

bout a year after the rest of us had arrived in St.

Louis, Charlie finished his work at MIT and shortly
thereafter came to join us. He had, of course, visited
occasionally in the interim, but now he arrived to take up a
full-time position at Washington University and to work
directly with our group. Everyone was, of course,
immensely pleased, perhaps Wes most of all as he had
come to depend heavily on Charlie’s insights and abilities,
and the two of them had developed a uniquely close
working relationship. We had sorely missed Charlie’s full
participation and now welcomed his critique of all we’d
been doing. He immediately zeroed in on the fundamental
problems and implications of the Macromodular work we
had been doing. In years to come he was to carry his ideas
about such self-timed circuits to lengths none of us could
then foresee. In his final years he came to California to work
with Ivan, as the two of them had become convinced that
self-timed circuits provided a possible key to faster
computers for the future. As I write this, Charlie has been
dead for over three years, but that question is still under
investigation by Ivan and his associates.

One day in the spring of 1966, Wes came to me and
asked how I would like to join Charlie in taking a LINC to
Santiago, Chile, to be used in conjunction with

A

Computing in the Middle Ages
A View From the Trenches 1955-1983

147

presentations that were to be made there at a meeting of the
International Brain Research Organization (IBRO). I was
delighted at the opportunity; IBRO had all the right
connotations so far as I was concerned—International and
Brain Research. What could be better? I learned that a giant
squid that lives off the coast of Chile has an extraordinarily
large nerve that lends itself nicely to experiment, and this
helped to turn Santiago into a center of neurophysiological
research. A number of the presenters at the meeting would
be from the U.S. and some of these had incorporated LINCs
into their research so integrally that in order to demonstrate
their work at the meeting a machine was needed on the
premises. It was our job to provide it.

Prior to the LINC, a computer was not something that
you just unplugged and carted off to a new location. Or if
you did, you were almost certain to be in for a considerable
stretch of reincarnating it in its new home. Computers,
aside from their size and the fact that they tended to be
built into their living quarters, were fragile affairs and
moving them around was not generally considered feasible.
However, we had already had considerable experience
moving LINCs on special moving trucks, and even once in
the back of a rented station-wagon. We had found, to our
great delight, that most of the time you just cabled the
pieces back together (which took perhaps fifteen minutes),
plugged it in, turned it on, and by gum, the bloody thing
simply worked. This doesn’t seem like much of a miracle
today, but in those days it was new and stunning.

Taking a LINC to Santiago, nonetheless, was a
considerable challenge. Among other things, before we left
a machine had to be prepared to operate on the 50-cycle
power that would be available in Santiago. Charlie, who
understood such matters, added the necessary extra pieces

Severo M. Ornstein

148

and jury-rigged them temporarily inside the machine. The
requisite export papers were obtained and a few weeks later
we were on our way with the LINC on board. At that time,
neither Charlie nor I had traveled much outside of the U.S.
and the trip turned into an epic adventure for us both.

It started out literally with a bang. Shortly after taking
off from Miami, the plane suddenly dropped precipitously.
There were shrieks as heads momentarily appeared, prarie-
dog like, above the seat backs and then settled back down
as we abruptly bottomed out. Charlie turned to me with a
concerned look on his face and said, “Are you thinking
what I’m thinking?” It turned out I wasn’t. I was hoping we
weren’t going to end up in the drink; Charlie, on the other
hand, was wondering what the impact had done to the
heavy equipment he had rigged inside the LINC. Had it
come loose and slammed into the logic boards?

As it turned out, he needn’t have worried. When we got
to Santiago next morning, the main cabinet (containing his
modifications) was nowhere to be seen. Six items had been
sent and six containers were sitting there, but the main
cabinet wasn’t among them. Amidst torrents of Spanish, it
eventually became clear what had happened. Six items had
gone into U.S. export control in Miami and six had come
out the other end, but one of the items that had entered as
two boxes bound together emerged as two separate items.
Six items went onto the plane and not surprisingly it was
the heaviest one that was left behind. As Jim Morris was to
remark many years later, “You’re always one off in this
business.”29 The next day we put through a call to Wes for

29 Having a count off by one used to be a common programming error.

Computing in the Middle Ages
A View From the Trenches 1955-1983

149

help, and then waited while the official machinery slowly
ground its teeth on the problem.

The Chileans were an extremely hospitable lot and,
unlike we compulsive Americans, not given to worrying.
The consequence was that over the ensuing week, as we
waited for the missing cabinet to arrive, we attended
numerous parties and events (including a memorable
formal audience with the local Monsignor who must have
wondered what, in the name of the Almighty, a computer
might be). Our hosts introduced us to the wonders of Pisco
Sours, we sampled the excellent Chilean wines, and stuffed
ourselves with cherimoyas in orange juice. Between parties,
we leaned out of the window of our hotel room, gazing at
the frenetic activity in the street below—people scrambling
onto overcrowded busses, the outermost clinging only to
other, slightly more inboard, passengers. One day, riding a
bus, I noticed Charlie flinch as he peered forward. Turning,
I found that we were about to collide with the car in front of
us. To our amazement we not only collided with it—we
kept right on going. The car had broken down and the bus
driver was giving it a lift, pushing it fearlessly through the
dense downtown traffic.

Finally the LINC arrived, having been stranded on the
Argentine frontier, waiting for a “runway incident” (read
earthquake damage) to be repaired. On the way to the
airport we stopped at a “restaurant” that turned out (to the
chagrin of our host) to be a front for a brothel, and at the
airport we watched, horrified, as the LINC came out of the
plane’s cargo door upside-down with the temporary power
supplies once more menacing the logic boards. Eventually
we got it to the room where the meeting was to take place,
and where the other pieces had been waiting. Finally we
could go to work putting the machine back together and,

Severo M. Ornstein

150

left alone, we set about it. To our delight, in short order we
had a working machine. As we set out to celebrate,
however, we discovered that we had no way to lock the
door behind us—we’d not been left a key and the cavernous
building we were in was utterly deserted and vulnerable to
the all-too-frequent theft. Undaunted, Charlie took the door
lock apart and discovered that, with one of us on either
side, we could reassemble the lock in such a way that it
locked the door. Fine, but how would the one on the inside
then get out? I think it was Charlie who spotted the elevator
shaft. It was tiny and clearly intended for a one-person
elevator, which hadn’t yet been installed. It was a perfect
escape hatch for a rock-climber, however, and after we put
the door together, I shinnied down the two floors into the
basement. After stumbling around in the dark for some
time, with the aid of Charlie’s shouts I found my way out
and we went off to celebrate. Euphoric and left to our own
devices, we threw caution to the winds with disastrous
digestive consequences.

A short while later other participants started to arrive
from around the world and the meeting took on a more
routine aspect. The contrast between the high-pressure,
high-tech environment we had left behind in the U.S. and
the world we were plunged into in Santiago was truly
mind-boggling. To me the Chilean people seemed
wonderfully human and I reveled in their warmth and
irrepressible humor. (They explained that in my ruptured
Spanish I had been asking not for a glass of water as I’d
thought, but rather for water juice. “Ah, you Americans,”
they said, “you always want the very essence of the thing.”)
On a more serious level, among many of our confreres I
found far more liberal social and political views than I was
accustomed to encountering in the U.S., and I felt great

Computing in the Middle Ages
A View From the Trenches 1955-1983

151

empathy with their attitudes and concerns. When
eventually it came time to depart, it was with great
ambivalence that I climbed aboard the northbound plane.
The LINC had proved to be the star of the show and within
a few years more of them would begin to appear in South
American laboratories.

Days later in St. Louis, sitting in a traffic jam and
looking out over the sea of cars, each with but a single
occupant, probably most of them like me fuming at the
traffic snarl, I found myself wondering which society was
truly more sensible—more humane. In the years that were
to follow, I would find myself pondering this sort of
question many times.

Severo M. Ornstein

152

Chapter 13

Macromodules work; St. Louis is hot; we
build the Chasm, and I depart for Boston

fter our return from Chile, we resumed work on

Macromodules. By this time, with Mish pressing ahead in
our absence, the designs had been reduced to circuit
diagrams, and not long afterwards sample modules were
ready in the lab. These prototypes were substantially larger
than they would ultimately be, but here, finally, were
physical manifestations of our many months of conception
and design. On the day we first pushed the button
activating a simple sequence of actions between modules, I
broke out a bottle of wine that I had brought back from
Chile for the specific purpose of celebrating the occasion.
Despite warnings that good Chilean wine “doesn’t travel,” I
had fetched along a bottle of the very best stuff. To our
great disappointment we discovered that the warning had
been well-founded. Nonetheless, the first Macromodules
performed as expected, and the wine misfortune was soon
forgotten amidst the jubilation.

It was a time when the Viet Nam war was beginning to
show signs of serious unpopularity. Mackie and I both felt
that the war was a terrible mistake and began participating
in a daily noontime silent vigil on the campus. The
gatherings were small at first and people passing by
wondered what we were doing, standing there in a circle
looking so glum. But we were profoundly distressed by
what our government was doing and felt the need to

A

Computing in the Middle Ages
A View From the Trenches 1955-1983

153

express our sentiments in some way. So, for a change, we
dressed in suits in order to indicate that at least some
substantial citizens also disapproved of the war. We stood
there wondering what else one could do.

In the summer of 1967 I took a lengthy vacation with
my family. Just before we left St. Louis, a heat wave struck
producing numerous power outages and brownouts as air
conditioning everywhere was turned up full tilt. Without
power and air-conditioning it was impossible to work, so
we packed the car and fled westward, never stopping until
we arrived in the cool of the Rockies. We swept through the
west, visiting old climbing haunts in Canada and ending up
in San Francisco to visit friends in Berkeley. The three years
I’d agreed to stay in St. Louis were drawing to a close and
as I began looking for something to do next, the Bay Area
seemed appealing. However, it was 1967 and Silicon Valley
and all of its job opportunities still lay a bit in the future. I
stopped in at one or two commercial computing outfits, but
with no letters of introduction. They’d never heard of a
LINC or a Macromodule and I wasn’t even an official
electrical engineer. What use could I possibly be?

Knowing that I was planning to leave St. Louis soon,
Wes kindly set about helping me find something fun and
interesting to do. I’d had a good time in South America and
liked to travel. A job running a computer center in Nigeria
came up, but that sounded too full of the wrong kinds of
challenge and I demurred. By this time Ivan Sutherland was
teaching at Harvard, and Wes sent me off with a good
strong recommendation to talk to him. Harvard was
looking for someone to teach an introductory computing
course that would lay the foundations of both hardware
and software. Knowing of my keen interest in music and
computers, Ivan put me together with a graduate student

Severo M. Ornstein

154

and others with similar interests. He made me a very
tempting offer that seemed to be everything I’d wanted,
and to this day I’m not sure why I didn’t jump at it. Instead
I chose to go to work once again with my old friend Frank
Heart who, by now, was in charge of a group of people and
a number of projects at the consulting firm of Bolt Beranek
and Newman in Cambridge, Massachusetts. And once
again, although there was no way to foresee it, I was
moving in a direction that would soon carry me into the
next major computer wave—networking.

At about this time Charlie decided to build a combined
LINC plus Macromodule system for modeling neuron
behavior (specifically the spike output behavior of a neuron
in response to specifiable distributions of inputs). In
addition to allowing one to study the behavior of the
neuron model, the system would demonstrate the power of
combining the flexibility of a general purpose computer
with special hardware (the Macromodular part of the
system) which speeded up the most frequently repeated
parts of the operation. Another researcher, Antharvedi
Anné, and I assisted with the design. When it was finished
we needed a name for it, but anything truly descriptive was
hopelessly lengthy. I proposed that we call it simply
CHASM, standing for “CHarlie’s, Antharvedi’s, and
Severo’s Machine,” and in looking back through the
literature from that era, sure enough I find a paper bearing
that name boldly in its title (with no explanation of its
derivation).

As the time to leave St. Louis drew near, I wondered
more and more what I was doing and why I was leaving.
We had worked together so closely and so intensively for so
long that the idea of separating was painful. And besides,
the promise of the Macromodule project, on which I’d

Computing in the Middle Ages
A View From the Trenches 1955-1983

155

worked so hard, seemed large at that juncture. As history
was to unfold, the Macromodular approach would
eventually be overtaken by advances in microcircuits and
microcomputers. The cost/performance ratio of computers
was about to plummet and tiny, virtually throw-away
microcomputers would obviate the need for building, even
temporarily, most special purpose equipment. Ironically we
were hoist on our own petard: Macromodules were simply
too expensive to compete with the forthcoming
miniaturization. However, the core of the approach—self-
timed systems—was to survive and to attract the attention
of advanced designers for many years. Today it is alive and
well and may yet provide a fundamentally new approach to
the design of future machines.

But at the time, none of this future was obvious and it
was with terribly mixed emotions that in the fall of 1967 we
drove across the bridge through East St. Louis heading once
more for New England.

Severo M. Ornstein

156

Chapter 14

I join BBN; some comments on ARPA;
Encounters with TENEX; some coffee-tables,
and a teletype through the wall. The
ARPANET is born

olt Beranek and Newman (BBN) was a somewhat
unusual firm: it had many ties with MIT and liked to think
of itself as half-way between a company and a research
institute of some sort. It had been founded in the 1940s by
three MIT professors in architectural acoustics who had
given the company its name, but by this time it had grown
considerably and had strayed into computers as well as
other fields only remotely related to acoustics.30 J.C.R.
Licklider, who became a grand old man of computer
science, had worked there on an early experimental Time
Sharing system on a DEC PDP-1 computer. (The PDP-1 was
the first full-blown computer that DEC made and BBN’s
was the very first of the series. Ben Gurley, a former TX-2
engineer, had designed the PDP-1 with some oversight
from Wes Clark.) By the time I arrived on the scene, BBN
was running a commercial Time Sharing system

30 One wit quipped that the only reason BBN didn't run a brothel in
Cambridge was that they didn't have the appropriate talent. This was
unduly harsh, but after years of academic association, BBN did seem
comparatively “commercial” to me. Time-sheets, for heavens sake!

B

Computing in the Middle Ages
A View From the Trenches 1955-1983

157

(TELENET) and had two computer divisions. The one I was
joining was headed by Frank Heart, and its mission was to
design and build a wide variety of computer systems for
clients. The other, headed by Jerry Elkind, was more
explicitly research-oriented and, among other things, was
developing experimental Time Sharing systems supported
by government money.

In computer research, government money had
increasingly come to mean ARPA money, because ARPA
had become the agency that provided by far the largest
share of government funding for computer research.31
Initially hired by Jack Ruina, then director of ARPA, J.C.R.
Licklider had set up an Information Processing Techniques
Office (IPTO) within ARPA to oversee and fund research in
the burgeoning computer field. The National Science
Foundation and the National Institutes of Health continued
some support, but far below the level of the funds available
to ARPA through the Defense Department’s always ample
budget.

Of all the money that the Defense Department spent,
that which was funneled through the ARPA office (as IPTO
was known within the computer community) was
unquestionably some of the very most productive. It
fostered much of the computer research and development
that took place in this country during the middle-ages.
Much of that work took place at universities, but a few
places with close connections to Universities such as BBN

31 As mentioned earlier, some of the support for our Macromodule
research had come from ARPA.

Severo M. Ornstein

158

and the Stanford Research Institute (later SRI32) which were
centers of excellence outside of a university, also gained
ARPA support for computer research.

I was personally always unhappy about this situation.
It was part of a more general concern that so much of
government-funded research was focused on military
matters and funded through the Department of Defense
(DOD). I felt that this distorted national research priorities
and left far too little for other, non-military concerns.
However, although DOD of course hoped that military
applications would eventually be found for the products of
the research ARPA funded, the money from IPTO was
largely dedicated to very general, quite unspecific computer
research. When developing tools as broadly applicable as a
“general purpose computer,” it is impossible to set limits on
what one might be used for. In any case, during the mid-
1960s it was nearly impossible to do significant computer
research anywhere in the U.S. (except perhaps at IBM)
without working indirectly for ARPA one way or another.

As first head of IPTO, Licklider had established a
standard of excellence that was to persist for many years
beyond his own tenure. The people who followed him—
Ivan Sutherland, Bob Taylor, Larry Roberts, Bob Kahn—
were outstanding individuals who dedicated a few years of
their lives to overseeing federally-sponsored research in the
field. Of course it was an important and powerful position,

32 At that time, SRI was a part of Stanford University. It was changed into
a separate nonprofit corporation sometime in the 1970s, which was when
its official name was shortened to “SRI.” That happened during the
Vietnam War as a result of student activism that banished all classified
research from the University.

Computing in the Middle Ages
A View From the Trenches 1955-1983

159

but I also came to realize that the job entailed elements of
personal and professional sacrifice in that these individuals
could have had (and eventually did have) jobs with many
more emoluments outside of government, perhaps even as
ARPA-funded researchers. I remember riding to the airport
one day with Larry Roberts when he was head of the office,
and discovering that as a government employee he was
constrained to use the cheapest available car rental, which
meant that we had to be ferried from some distant rental
site to the airport.

It may seem strange that I ended up in what was
nominally the less research-oriented division of BBN. This
had primarily to do with my long-standing friendship with
Frank, but it also had to do with the fact that the other
division was focused heavily on research in Time Sharing
systems. This Big Deal concept was anathema to the Little
Deal “Gospel according to St. Louis,” that I arrived bearing.
But beyond these factors, it’s also incorrect to characterize
the construction of dedicated computer systems as non-
research. Designing and building the kinds of systems
Frank’s division was working on involved plenty of
research. It’s just that in addition to the research, there were
commitments to finished systems, hard deadlines, etc. It
seems that often one person’s research is another person’s
routine engineering. In any case, the term “research,” (like
terms such as “executive” and “mansion”), has become so
over-used that it has lost much of its original pith.

Although in Frank’s division a significant effort was
under way in medical computing, it was of a very different
sort from the direct, real-time laboratory use in which I’d
been involved. I also wanted to explore a totally new
application area and so I began working with Wally
Feuerzeig who, together with Seymour Papert of MIT, was

Severo M. Ornstein

160

researching applications in education. Wally and Seymore
had designed the special computer language LOGO, which
they felt would be easy and instructive for children to learn.
I began looking for ways to design a machine that directly
implemented that language.

I had also agreed to teach the computer design and
programming course that Harvard had wanted, so it was
arranged that I would be hired through BBN to teach a
graduate seminar at Harvard. This would enable me to pull
the material together for an undergraduate version of the
course in ensuing years and would provide me with
teaching assistants. Not surprisingly, since this was the first
time I’d taught such a course, preparation took a good deal
of my time and perhaps for that reason I failed to make
progress with the LOGO project and eventually became
discouraged about my ability to make a contribution to it. I
also came to realize that I didn’t share my colleagues’ deep
conviction that computers could revolutionize education.
So my enthusiasm waned and I began to think that perhaps
after all I really belonged in the other BBN division which
was developing hardware, something I by now understood.
So I moved over into Jerry Elkind’s division and began to
learn more about Time Sharing.

There was plenty to learn and plenty of bright new
people to get to know. Danny Bobrow, like me, was
teaching a course at Harvard and at that time I met Ray
Tomlinson, who would later become famous as the
originator of the @ sign for email addresses (totally
swamping the far more significant fact that he had extended
the intra-site message exchange system into an inter-site
system, thereby creating the first primitive email system—
not to mention his more fundamental contributions). Ed
Fiala, who would turn up again later at Xerox PARC, was,

Computing in the Middle Ages
A View From the Trenches 1955-1983

161

as always, deeply buried in the most esoteric complexities
of the system software. Perhaps the most memorable figure
of all was Dan Murphy who, because of his last name, was
blamed for virtually everything that went wrong. Our boss,
Jerry Elkind, would later hire me to work in the Computer
Science Lab at Xerox PARC in California.

The group was preparing to shift from an SDS-940
system to a DEC PDP-10. That was an upgrade to a more
powerful machine and the BBN engineers had designed
special hardware to make the PDP-10 more amenable to
Time Sharing. The new system, consisting of hardware and
software felicitously intertwined, was referred to as TENEX
and would become a de facto standard at many ARPA-
supported sites over ensuing years.33 One of the most
important features of TENEX was a virtual memory system
that allowed programmers to believe they had more high-
speed memory than actually existed (by surreptitiously
swapping information between high-speed memory and
disks). And of course the system allowed multiple
programs to share the machine and run “at the same time.”
These features (virtual memory and multiprocessing) are a
standard part of virtually all computers today. I received
my first introduction to these concepts from Jerry Burchfiel,
a senior member of the TENEX group.

A substantial number of research projects at BBN
depended on this Time Sharing system and some of them
involved real-time processing. As I’ve indicated, real-time
processing doesn’t mix well with Time Sharing since such
processing demands the attention of the computer in
reaction to events beyond the computer’s control. The

33 TENEX was eventually licensed to DEC as TOPS-20

Severo M. Ornstein

162

computer must be ready to jump up and salute whenever it
is needed. But under Time Sharing, the computer’s
attention is directed to the needs of the multiple users
sitting at their terminals. There is an inherent conflict in
trying to serve these two demands simultaneously.
Nonetheless, plans were afoot to design a special hybrid
processor that would be attached to TENEX, enabling it to
provide some level of real-time processing.

I tried to put my attention on this undertaking but
ultimately failed, because—as in Don O’Brien’s earlier
nightmare—I felt that indeed we were trying to attach
wings to a steamroller. When I questioned a colleague
about the wisdom of the whole approach, to my dismay he
simply quoted “Ours not to question why; Ours but to do
or die.” This was a long way from the sort of response I was
accustomed to, and I wondered what sort of outfit I’d fallen
in with. But then a consultant, Chuck Seitz, appeared on the
scene and we quickly found that we had a good deal of
common ground and shared many of the same attitudes.
Among other things, he was teaching a course at MIT
similar to the one I was teaching at Harvard and we
showed one another what we were up to.

A large disk system was to be added to the PDP-10.
Today the capacities of disks are measured in megabytes,
or, increasingly, in gigabytes. Back then, disks were
measured in feet. We’re talking about a set of disks roughly
four feet in diameter. As the disks were being installed, they
filled the halls near the machine room and then gradually
disappeared, one by one into its maw. In order to be able to
get at information quickly, they turned at alarming rates,
and in doing so, they swept a film of air along on their
surfaces. In order to allow the bits of information to be
closely spaced so that lots of them could be crammed in, the

Computing in the Middle Ages
A View From the Trenches 1955-1983

163

heads that read and wrote the disks needed to be very close
to the disk surface. As the heads moved in close, the film of
air offered substantial resistance. (Recall that your
automobile rides on the air in your tires and that metal and
rocks can burn up upon reentering the atmosphere; air
becomes a material to reckon with when sufficiently
compressed.) The heads thus had to be forced toward the
disks to overcome the air resistance.

Perhaps you’re wondering, “But what happened when
the disks slowed down and the resistance of the air film
decreased?” Excellent question. The designers had
considered this matter and in such a situation—when the
power failed, for example—a safety feature instantly
retracted the heads from the disks. The day arrived when
the disks were working and everything had been tested—
everything, that is, except this safety retraction mechanism.
Alas when the power switch was shut off for testing, there
ensued a frightful screeching sound as the heads failed to
retract and instead ground their way into the surfaces of the
disks. Shortly thereafter the halls were once again filled
with disks as replacements began to arrive and the
damaged ones were converted to coffee tables or discarded.
The safety feature was redesigned and after a few weeks,
things were once again ready for action.

The question then arose whether or not to test the
redesigned mechanism. After considerable debate it was
decided NOT to test it. Power failures were infrequent and
should one occur, we would know soon enough if the
mechanism worked. In such contests between man and the
perversity of nature, man is invariably the loser. Within
days a power failure occurred and once again the halls were
filled with disks. But engineers are a persistent lot, and in

Severo M. Ornstein

164

the fullness of time the disks were tamed and became part
of the working TENEX system.

One day, for a reason I can no longer recall, I needed to
talk to John Barnaby, one of the TENEX programmers.
When I entered his office, I couldn’t help noticing a huge,
ragged hole in the wall by his desk. I could see right
through it into the neighboring office, but somehow I knew
that it would be unwise to ask how it had come about. As
we talked, that hole stared at us like a pink elephant whose
presence everyone has tacitly agreed to ignore. Later I
learned that, despite a mild manner, this was a fellow who
could become quite distressed if he encountered trouble
with his program or the system on which it was running. I
can’t say for sure which of these problems had arisen, but I
did discover that on a night not long before my visit,
something had infuriated him to the point that he (a largish
fellow) had picked up his roughly fifty-pound model-33
Teletype (the terminal of choice at the time) and hurled it
bodily through the wall. Programmers of his caliber were
hard to come by, so this minor infraction was overlooked.
The hole remained for some time and I thought of it as
vivid testimony to the frustrations induced by over-stressed
Time Sharing.34

Although people raised an eyebrow at such behavior,
many understood it full well and secretly sympathized with

34 Some years later my wife Laura became a victim of a Time-Sharing
system known as TENEX, the computing environment with which she was
then interacting via a model 33 teletype. She is a skilled knitter and in
between responses from TENEX she had ample time to beaver away at an
elaborate sweater containing thousands of very fine stitches. When it was
finished she dubbed it her “TENEX Memorial Sweater” since most of it
had been knitted while waiting between responses from TENEX.

Computing in the Middle Ages
A View From the Trenches 1955-1983

165

and even admired such a forthright response. I’ve often
thought that if more people responded as Barnaby did (or
the guy who shot the 1401 full of holes), expressing their
frustration with similarly overt action, perhaps the
computer industry would be forced to shape up and give us
less defective products. As it is, we may never know how
many personal computers continue to be secretly abused by
their frustrated users.

I realized I didn’t belong in this Time Sharing
division—I’d settled among disciples of the wrong religion.
I was becoming quite discouraged by this point and felt that
perhaps after all I’d made a serious mistake in turning
down Ivan’s offer at Harvard. I’d found no place at BBN to
apply my skills constructively, but when I talked to some of
my colleagues at Harvard their lives sounded differently
bad as they described their struggles to avoid committee
work and obtain funding. I was having a serious talk with
Frank about the situation, when he pushed across the desk
a document that had just arrived from Washington. He said
it was a request for proposals (RFP in the lingo) for building
some sort of network of computers and suggested that I
take it home and look it over. With very little enthusiasm I
put it in my briefcase to read that evening. I didn’t
understand all of the details, but I got the general drift and
decided that what it described was a relatively
straightforward, if not simple, engineering job. The next
morning I went into Frank’s office and, putting the
document on his desk, told him I felt that we could
certainly build it, but that I couldn’t imagine why anyone
would want such a thing. The network the document
described was to become known as the ARPANET,
forerunner of today’s Internet.

Severo M. Ornstein

166

There is no question that, in retrospect, my initial
sentiment (“Who would want such a thing?”) seems
ludicrous. However, hindsight is far easier than foresight,
and the request for proposal that came from ARPA made
no mention of e-mail or the World Wide Web.35 These
things, which actually caused networking to “take off,”
were to come later, more or less as afterthoughts. Instead, at
the outset, there was talk of eliminating duplication and
fostering “Resource Sharing” —the sharing of programs,
results, and access to computers among workers at the
various sites, mostly universities, that ARPA was
supporting. But these things seemed difficult to believe in,
given the diversity of machines, interests, and capabilities at
the various sites. Although it seemed clear that with
suitable effort we could interconnect the machines so that
information could flow between them, the amount of work
that would then be required to turn that basic capacity into
features useful to individuals at remote sites seemed
overwhelming—as, indeed, it proved to be. A long road
and many years of difficult, ground-breaking work lay
between the interconnection of the first few ARPANET sites
and the world we now inhabit in which a computer that
can’t access and utilize the Internet would be deemed
virtually useless.

As originally conceived, the network was to consist of
the large host computers at each site “talking” directly to
one another. It was Wes Clark who, one day riding in a car
with Larry Roberts (and others), urged the innovation

35 Amazingly, today there exist almost no copies of the original RFP from
IPTO. I take this as some indication that I was not alone in failing to grasp
the historic significance of what was happening.

Computing in the Middle Ages
A View From the Trenches 1955-1983

167

wherein the network traffic handling was off-loaded from
the main (“host”) computers at each site to a small auxiliary
computer. This small computer was dubbed an Interface
Message Processor or IMP. It is probably not overstating the
case to say that this suggestion was critical to the success of
the entire network project. In addition to relieving the host
of the work of handling network traffic for other sites, it
had the advantage that each host had only to deal with its
IMP in a standard fashion, rather than having to interact
with the different types of computers at all the sites to
which it was connected. Eventually, of course, since the
IMPs really only passed the bits along blindly, the host
programs did have to deal with and understand one
another. Standard host-to-host protocols, by which the
hosts communicated with one another, would be defined
and refined over the coming years. Think, for instance, of
the simple protocol whereby we all say “Hello” and “Good-
bye” when we use the telephone—a device which, like an
IMP, simply passes the data (our voices) along without
understanding anything we say. If someone violates these
conventions, it causes at least momentary confusion.

Anyway, here at last was something I could get my
teeth into—a challenging engineering problem. Although I
didn’t know where it would lead, it didn’t seem like a bad
idea, so back I came to Frank’s division as we began to put
together a proposal in answer to ARPA’s request. Before we
could write a sensible proposal, we felt we needed to
understand in detail how what we were proposing would
work, and that meant that we needed to do a pretty
thorough system design. It soon became evident that some
very large corporations and defense contractors were also
interested in bidding on this job and we felt that tiny BBN
would need to have a really superior proposal if it were to

Severo M. Ornstein

168

stand any chance against these giants. We had another
problem as well. Several of us knew Larry Roberts from
Lincoln days and we knew that he would be concerned
about any appearance of favoritism and would therefore be
cautious about giving the job to BBN. We therefore had to
write a proposal that not only Larry but anyone could see
was the best of the lot. Fearlessly we plunged in and set
about not only figuring out how the system should work
but actually proceeding to design it to a level of detail
unusual for a proposal.

Our old colleague Will Crowther was still working at
Lincoln, but we thought that for a job like this he might be
induced to come to work with us. We discussed it with him
and even before he had completed the formal transfer, he
began acting as an informal consultant in the design. At that
time Bob Kahn, who would later become head of the ARPA
IPTO office, was working at BBN. He was interested in the
potential of the network, had contributed to the error
detection scheme contained in the proposal, and wanted to
learn some fundamentals of hardware design. So I
commenced working with him on the design of the
interfaces and other special hardware that would be
required on the IMPs. Teaching is an excellent vehicle for
coming to grips with and understanding a problem, and we
enjoyed working together as the interface designs quickly
took shape.

The hardware design was relatively straightforward
since it was obvious what was required and the choices
were somewhat limited—it was just a matter of being
careful and thorough. The more complex design decisions
lay in the software, where most of the character and
behavior of the IMP, and thus of the network, would be
determined. The software team was made up of Dave

Computing in the Middle Ages
A View From the Trenches 1955-1983

169

Walden, Will Crowther, and Bernie Cosell, with Frank also
deeply involved and the rest of us making occasional
suggestions and comments. It was just the right level of
difficulty and we all enjoyed ourselves enormously, feeling
that the design of systems such as this was ideal grist for
our mill. We had high regard for one another’s abilities and
our mutual understanding was such that a great deal of
abbreviated language was used in communicating with one
another. I was getting to know Dave Walden for the first
time and I remember being impressed that such a bright
young guy had such good judgment as well. Bernie was
already well known to me (and, in fact, to the entire BBN
community) as a programming wizard. He was notorious
for having inadvertently caused Bob Newman (the “N” of
BBN) to imagine briefly that he was typing to a person
(Danny Bobrow) at another terminal, when in fact he was
actually typing into Bernie’s cobbled-together version of
Eliza, a simple simulated-psychoanalyst program originally
concocted by Joe Weizenbaum at MIT.

As more and more time was spent in preparing the
proposal, the “overhead” costs began to pile up. The
company’s management, feeling that the probability of BBN
winning the contract was vanishingly small, was appalled
at the amount of money that was being spent in preparing
the bid—more money (I believe) than BBN had ever before
spent on such a thing. But by the time we finished, we had
great confidence in our design. As I recall it did not fully
comply with ARPA’s RFP; we felt we had found better
ways to do a few things. We had already designed all of the
special hardware and had actually written the time-critical
inner loop of the program, as well as designing the rest of it
in some detail.

Severo M. Ornstein

170

We, and a small number of other bidders, were
individually called to Washington for discussions with
Larry. We defended our design decisions with great vigor
and Larry quizzed us unmercifully about every detail. As
the weeks passed and we remained in the running, our
hopes began to rise. Then, to the astonishment of many
(probably especially to some of the larger bidders, not to
mention the BBN management), we were finally awarded
the contract. That evoked a hilarious telegram from Ted
Kennedy, congratulating us for winning the contract to
build the “Interfaith Message Processor.” But aside from
the hilarity, we were elated as well as appalled at what lay
before us.

Recognizing that we would need to beef up our forces,
we shortly hired Will Crowther and began hiring the best
students from the course I’d been teaching at Harvard. The
first of these was a very bright young fellow by the name of
Ben Barker. Shortly after he came on board, Ben joined us
for a meeting with AT&T people at their New York
headquarters in order to discuss details of their lines and
the 50 kilobit modems to which we would be connecting.
AT&T was somewhat reluctant about the whole endeavor;
they didn’t really want novices like us mucking about with
their terminal equipment, and moreover felt that the entire
enterprise was somewhat silly.36 But Larry held a heavy
governmental sword over their heads so they laid on a
rather formal meeting, replete, it turned out, with cigars,
candy, and nameplates at each seat. As we entered the

36 Later, when we complained about interruptions in the lines on the order
of a few hundredths of a second, they simply could not comprehend why
anyone would possibly care about such a tiny matter.

Computing in the Middle Ages
A View From the Trenches 1955-1983

171

room, I thought to myself that this must be rather heady
stuff for a young student such as Ben, but later, when our
plane home was canceled by a snowstorm and we were
reduced to riding the train back to Boston, suddenly Ben
snapped his fingers and said “I should have thought of it
earlier; we could have taken Dad’s helicopter.” Clearly Ben
could take AT&T and their nameplates in stride.

We had selected the Honeywell 516 computer as the
basis for the IMP37 and had presented extensive justification
for the choice in our proposal—including the fact that we
planned to use a hardened, military version built like a
tank. Now it was time to convey to Honeywell all of the
additions and modifications to the basic machine that
would be necessary to turn it into an IMP. At that point we
were not familiar with the particular logic packages that
Honeywell used and so the designs that we gave them,
though detailed, were in terms of general logic rather than
explicit packages. It seemed to us a straightforward task to
render the design into Honeywell’s own logic modules, but
to be sure that there were no mistakes, we spent a number
of sessions explaining everything carefully to the designer
they had assigned to the project. This was to turn out to be
an extremely painful part of the project. The software was
under our control; we were doing it ourselves. But for the
hardware we were dependent on Honeywell’s special

37 This was based in part on work that Dave Walden and Alex MacKenzie
had done earlier evaluating the Honeywell 516 for another project.
Honeywell, furthermore, was willing to help BBN bid on the proposal
(they were hard-pressed to respond quickly to the several bidders that
wanted to use the 516), and quickly agreed to build the special hardware
for us. Many computer companies hate doing special hardware, wishing to
reserve any available talent for new machines that can be sold in quantity.

Severo M. Ornstein

172

systems division and that turned out to be a hotbed of
incompetence.

Week after week we struggled to get the Honeywell
engineers to understand what was wanted. In the process
we became familiar with their logic elements and were thus
able to see that one mistake after another was being made.
As time passed it became evident that the design was
converging too slowly for the schedule and ultimately we
were forced to accept a machine that we knew we would
have to rework substantially. Ben was a great help in all of
this and together we finally managed to get it going. We
then gave a set of revisions to Honeywell so that ensuing
copies would, we naively presumed, be correct. Alas, we
were to learn, it would take many months before all the
corrections were finally incorporated. In the meantime we
had to make repairs to every machine that arrived. We
instituted a plan under which we gave Honeywell test
programs and insisted that they run them in their plant in
our presence so that we could certify each machine before it
was shipped. One day, despite our previous day’s refusal to
accept a machine, it showed up on a truck at the BBN
loading dock. Frank, watching the proceedings through a
window, registered disbelief as he saw me refuse delivery,
turn the truck around, and send it back. This caused some
chaos at the Honeywell plant and, along with some of my
more forceful language, apparently garnered sufficient
attention that things then began to change.

In the meantime the software crew had been busy and a
test version of the program began to operate in the first
fully-functioning machine. Since we had only that one
machine to work with, for testing purposes the
communication interfaces (both to the host and to the
modem lines) were shunted so that outgoing channels were

Computing in the Middle Ages
A View From the Trenches 1955-1983

173

connected directly to incoming channels. We were elated
that, despite the troubles with Honeywell, things were
going well, but then a strange thing began to happen After
many hours or days of continuously successful operation,
the machine would suddenly stop in a strange state, never
the same way twice. We had what amounts to a system
designer’s worst nightmare—an extraordinarily rare,
seemingly random, intermittent failure. Despite numerous
attempts, we were unable to catch it in the act in order to
capture some symptoms. Then suddenly Ben or I (or
perhaps the two of us together38) remembered the
synchronizer glitch problem that I’d encountered several
years before in a totally different environment. Could this
be a manifestation of the glitch problem, and what could we
do to verify this suggestion?

There were lots of 516s out in the world serving
faithfully in many other settings—that was one of the
reasons we had selected it—and no such problems had been
reported before. But we also knew that our several high-
speed interfaces were driving the machine’s input-output
section much harder than most other applications. And
most other applications didn’t require the machine to
operate continuously, 24 hours a day, for months on end
without a single hiccough. Ben pored over the logic
diagrams of the machine and finally, in the part where
requests for service by external devices are handled, he
found a possible culprit. He designed a clever piece of
hardware that aggravated this part of the machine even
more intensively than our interfaces did, and lo, it stopped

38 I had described the problem to my Harvard class as part of the
introduction to synchronization.

Severo M. Ornstein

174

almost at once. We then excitedly hooked up an
oscilloscope so that we could observe what was happening
and, dimming the room lights, so that we could see a very
faint occasional failure trace amidst all the bright correct
ones, we peered at the scope’s face. And sure enough, there
it was—an occasional failure that Ben’s device had made
just frequent enough to become visible.

This was one of the best pieces of hardware detective
work any of us had ever experienced. We were thrilled and,
now having hard evidence in hand, we immediately called
Honeywell. Their preliminary reaction was defensive: the
troublemakers at BBN were not only complaining about
their interfaces and the schedule, but were now questioning
the very design of their basic 516! After considerable
persuasion we got them to produce the machine’s original
designer from the back room, the first really competent
Honeywell engineer we’d met. He expressed considerable
skepticism at first but agreed to come have a look, and after
listening carefully to our explanation and peering with us at
the evidence on the scope face, he was finally forced to
concur. In the meantime, Ben had devised a simple fix to
the machine that would cure the problem.39 We instituted
the change and the failure never occurred again. We
recommended that Honeywell adopt the change, install it in
all future machines, and retrofit existing machines. I believe
this happened; we certainly checked all future machines
that came to BBN to be sure the fix was installed.

39 The problem can't be truly eliminated, but Ben's fix reduced its
probability to the point where its occurrence was measured in hundreds of
years rather than hours.

Computing in the Middle Ages
A View From the Trenches 1955-1983

175

The day approached when we were to deliver the first
IMP to UCLA and in short order packers arrived to encase
our precious cargo in a sturdy wooden box. Given that the
version of the machine Frank had chosen was “hardened”
—it had a rugged steel case, and appeared capable of
withstanding a direct nuclear hit—this extra packaging
seemed a bit redundant, but it provided a place to affix a
destination address label. Finally I added numerous arrows
saying “This Way Up,” and a note that said simply “Do It
To It Truett.” Frank, in an excess of compulsiveness, had
decided that someone from the team should accompany the
machine on its journey—I mean ride with it in the cargo plane!
This proved impossible—the air transport company simply
refused—but it was watched carefully onto and off the
plane. Truett Thach, a member of the BBN team, was
waiting in Los Angeles and shortly more of us joined the
festivities when it finally arrived at UCLA.

Given the careful testing the machine had undergone at
BBN, including not only the self-test, but also testing with
another IMP in the same room through a pair of modems,
we were not surprised that the machine worked as soon as
it was plugged in and turned on. In fact, since it was
shipped with the program installed, I believe it came alive
of its own accord when it was plugged in, thanks to a
“watchdog timer” we’d provided to reset and restart it
automatically should it ever falter. We had met the
schedule, something quite unprecedented in the computer
field. The UCLA crew had expected that we would spend
several days getting the machine working, and in fact had
relied on this to allow them time to finish their own
preparations of the program and interface for their host
machine. Thus they had to scurry some, but shortly the
connection was made and the much-touted initial message

Severo M. Ornstein

176

was sent through the IMP from one part of the Host to
another. Having done a great deal of such testing on our
home turf, we were not as impressed with the event as the
UCLA people were.

Frank Heart with an early IMP

Computing in the Middle Ages
A View From the Trenches 1955-1983

177

The initial contract had called for four IMPs, and right
on schedule the other IMPs were delivered to their
prescribed sites. There was a good deal of reluctance by
some of these initial site managers because they viewed the
network as an intrusive nuisance that interfered with their
routine operations. But once again Larry held a trump card
(funding) and they were forced to knuckle under and
provide suitable hardware and software interfaces. It would
be several years, however, before the fruits of this trouble
were to begin paying significant dividends. During those
years, the software communities at the ARPA sites would
gather their forces and begin to develop standards by which
diverse computers could communicate with one another.40
Given the diversity of the hardware and software systems
that would be joined into a single network, this was a
complex and daunting undertaking. Steve Crocker, then a
graduate-student at UCLA, would become visible on my
radar screen as one of the principals in this enterprise and it
was some years later that Bob Kahn and Vint Cerf, together
with others who have received considerably less credit,
would define the discipline that would allow networks to
be joined together to form the Internet as we know it today.

By this time my second marriage was beginning to
falter and would soon break-up. Throughout this difficult
period I continued teaching at Harvard and in the second
year we turned my course into an undergraduate one. On
opening day nearly 100 students showed up and we were
forced to turn quite a few away as we had insufficient lab
space and equipment. Fortunately by then I had lined up

40 The fact that TENEX and the IMPs all came from one place (BBN)
facilitated much of the early ARPANET protocols and application work.

Severo M. Ornstein

178

some superb teaching fellows (including Ben Barker) and
together we went to work. I had a good set of lecture notes
from the preceding year and felt much more secure about
what I was doing. I began to relax and enjoy the teaching. It
was exciting to see understanding dawn and my informal
manner shortly led to friendly badinage with the class. We
were working together, bringing them on board for an
exciting journey. I asked Dave Walden to give a lecture on
Time Sharing systems and he did a superb job. At one point
he lost the thread of where he was going and simply turned
to the class and said, “Come on guys—help me out here.”
They were a bright bunch and quickly put him back on
track. When the time came for the final exam we put
together some really intriguing problems and after it was
over, as one student was leaving, she turned to me and said
“That’s the best final exam I ever flunked!”

Other things bound us together as well. It was a time of
anti-war protests, and the students had clearly noted the
resist button on my jacket and knew that I was on “their
side.” When I came across some of them gathered in a
crowd outside a meeting in which the faculty was
considering taking a stand against the war, they hurried me
inside. At BBN I felt considerable ambivalence about my
work. On the one hand I was strongly against the war but
on the other, here I was working hand in glove with a
branch of the Department of Defense. I was able to see that
the military connection of our work was pretty tenuous,
that the implications of what we were doing were extremely
general, but nonetheless, under the circumstances I had
some level of discomfort drawing my pay indirectly from
the Department of Defense. Frank knew this and one day as
we departed for a meeting at the Pentagon, I mentioned
that I was considering moving my resist pin onto “the

Computing in the Middle Ages
A View From the Trenches 1955-1983

179

general’s” jacket when we all hung up our coats at the
commencement of the meeting. Frank wasn’t sure whether
or not I might actually do such a thing. Neither was I.

Meantime, Ray Tomlinson, a bright colleague from my
brief TENEX excursion, noticed that it would be relatively
simple to extend the already-extant intra-TENEX inter-
person communication feature to permit communication
between individuals at TENEX systems at remote sites. Ray
inadvertently achieved immortality through his adoption of
the “@” sign to indicate a remote network address. More
importantly, his “hack” marked the beginning of inter-site
email which promptly blossomed into the most widespread
use of the network. As email started to become ubiquitous,
other mail programs began to show up with improved user
interfaces. However, truly “user-friendly” systems would
appear only after the switch from teletype-style, terminal-
based systems to the sorts of display screens virtually
everyone uses today.

As the ARPANET grew and prospered, it shifted
imperceptibly from an experimental vehicle into a utility as
people began to depend on it more and more. We had, of
course, realized from the outset that reliability would be
critical and had taken numerous steps to assure that when
an individual IMP died, the network as a whole would
continue to function as traffic was rerouted around the sick
IMP. Right from the outset, features were designed into the
IMPS that allowed them to be monitored, reloaded, etc.,
from what soon became a Network Control Center (NCC)
at BBN. Alex McKenzie, a member of the team, was an early
and ardent advocate for viewing the network as a utility.
Alex, a meticulous fellow with a booming voice as forceful
as Frank’s but in a lower register, took over management of
the Network Control Center and was to find himself

Severo M. Ornstein

180

increasingly acting as a buffer between the users of the
network and the providers at BBN.

Alex showing the NCC to some Chinese visitors

Because of its special rôle in overseeing the network,

there were particular sensitivities at the BBN node. One day
it became necessary to install a jumper—a single short piece
of wire—between two points on the back-panel of BBN’s
own IMP. The IMP was busy running in the network at the
time and, because of its critical role at the network control
center, we decided to ignore the normal discipline, whereby
one would turn off a machine before touching the wiring.
The place where the jumper needed to be installed was
awkwardly close to the base of the machine and as I got
down on my hands and knees, with the crew surrounding
me shouting suggestions, I peered at the pins to which the

Computing in the Middle Ages
A View From the Trenches 1955-1983

181

jumper needed to be attached. Finally I reached forward
gingerly—and almost immediately touched something I
shouldn’t have, abruptly shutting off the machine. Chaos
ensued as the control center crew erupted into action,
kicked us out of the way, and quickly restarted the
machine—so quickly, in fact, that it was up and running
before we could take advantage of the time to install the
jumper while the power was off!

So there we were again, right back where we’d started.
One thing was clear—I’d had my chance, and it was now
up to someone else. I couldn’t believe it when Ben Barker
stepped forward and said, “Here, let me.” Ben was a very
tense fellow and I’d noticed that intense concentration on
his part was often accompanied by a shaking hand. Here, I
thought, was a catastrophe not only waiting but impatient
to happen. Ben crouched down and as I knew it would, his
hand commenced shaking. Then, as I watched in disbelief,
his hand suddenly stopped shaking as it shot out, shoved
the jumper into place, withdrew, and immediately resumed
its shaking. To this day I don’t know how he managed it.

All of the early sites were Time Sharing systems and
users of those systems accessed remote sites on the network
through terminals attached to their local “Host” system.
The IMPs acted somewhat like the phone company, merely
passing information along. The Host computers dealt with
the terminals and connected them logically with the desired
remote Host. But there were users, not associated with any
nearby Host, who wished to access remote sites by
connecting directly from their terminals to an IMP and thus
to the network. This unanticipated development required
an upgrade to the IMP that added a sort of mini-host inside
of the IMP through which terminals could speak with
remote Hosts. In addition to the mini-Host software, we

Severo M. Ornstein

182

needed hardware through which the terminals could be
connected to the machine—these terminals were of many
different types and speeds. Ben came up with a clever idea
for this hardware which accommodated a wide variety of
different terminals. While the software team made the
necessary additions to the program, we set about designing
and building the hardware.

This was an era in which a technique known as “wire-
wrap” was the method of choice for building prototype
devices. By this time we were using integrated circuits (ICs)
of the sort that would now be described as small scale
integration. These little bug-like gadgets plugged into
sockets on one side of a board. On the other side, the prongs
of the sockets extended about half an inch, forming
something that looked like a miniature, dense bed of nails.
The wires that provided the required interconnections
between the ICs were wrapped around these prongs.
Special machines (owned and operated by sub-contractors)
did the wire-wrapping, but the mechanisms for providing
the machines with the information from our drawings
regarding precisely which sets of points to connect together,
was, to say the least, primitive. Today such mechanisms are
fully automated, but in those days most wiring lists were
made up by hand41. Thus one had to contend not only with
design errors, but also with clerical errors introduced
during the transcription process. This made debugging
something of a nightmare and caused harsh thoughts, and
sometimes even words, to be exchanged between us and
the company that did the wire-wrapping for us.

41 Some research institutions were then busy developing automated
systems but they hadn't yet percolated to places such as BBN.

Computing in the Middle Ages
A View From the Trenches 1955-1983

183

After the hardware was built, Tony Michel, another
member of the growing IMP team, and I worked together in
debugging it. As always, there was considerable time
pressure and as we worked late night after night, Tony
started to fall asleep even as he was running oscilloscopes
and moving probes around. He later confessed that I’d
pushed him so hard during that period that he had
seriously considered quitting. But he didn’t, and shortly we
had working hardware. The software required major
upgrading and the whole thing took a number of months to
complete, but eventually we got it all working.

As people began using the Terminal IMPs (called
“TIPs”), they were plagued by problems with the telephone
connections between their terminals and the TIP. Strictly
speaking, these weren’t BBN’s problems (just as the
connection from your computer to your Internet Service
Provider isn’t part of the Internet), but the users didn’t care
about that; they viewed their terminals as connected to the
remote site and weren’t interested in the distinction
between the individual line connecting them to the TIP and
the further network connections to the remote sites. If any
part of it failed to work, BBN got the blame. So we
developed a system wherein periodically a computer at
BBN dialed each of the terminal ports on every TIP in turn,
connecting to and testing each one to be sure that the
terminal lines were working properly. These, of course,
were just plain old regular phone lines, and sure enough
one day one of them seemed to be failing. Unable to figure
out what was wrong, the technicians decided to listen to the
line as it was dialed and tested. They heard it ring and try
to whistle at the TIP (think FAX), but instead of the
expected answering signal, to their astonishment, they
heard an angry voice shouting “Oh, it’s YOU again is it!”

Severo M. Ornstein

184

and the receiver was slammed down. Someone had entered
a wrong number in a table of TIP phone numbers, and an
innocent victim had been receiving the repeated test calls.
At that time faxes hadn’t yet come into widespread use and
the recipient of the calls, never having heard such a thing,
assumed it was some prankster repeatedly calling and then
whistling into the receiver.

There was considerable interest abroad in networking,
particularly in England where much parallel thinking about
so-called “packet-switched” networks had taken place.
Shortly Donald Davies, who had been a pioneer in thinking
about such networks, came by for a visit. Davies might
easily have built a network in England before the
ARPANET, had he had access to the kind of funding ARPA
was able to provide. Interactions with our group began to
develop in other parts of Europe as well, and within a year
or so we were making trips both to report on our work in
various meetings and also to explore with potential
customers their need for computer networks. Once again
Frank’s instinct for seeking and finding new applications
was an enormous asset.

I myself think the verdict is by no means in regarding
the ultimate benefits and costs to society of computer
networking. Obviously it’s already had an enormous
impact, but things are moving so fast, and the air is
presently so full of hype, that it’s impossible to say how it
will all ultimately settle out. Like so much technology, the
final effect will depend on the way society chooses to utilize
it. Today the glowing predictions are largely based on
optimistic assumptions about how this will work itself out
and about potential economic benefits. But there are other
impacts as well, and I can envision possibilities that are far
more ominous than those presently being touted. I suspect

Computing in the Middle Ages
A View From the Trenches 1955-1983

185

it would be wise to reserve judgment until the present wave
of euphoria settles down and matters clarify themselves as
developments unfold over coming years.

Most of us have forgotten the sorts of hype that
accompanied the advent of television in its early years. It
was hailed then as a great educational vehicle. But against
the limited educational programming that actually exists
today, one must balance the far more prevalent
entertainment programs, which, by and large, have had a
dumbing-down effect on society—not to mention the
enormous perversion of the political process that has
resulted. Perhaps computer networking, because it permits
multi-way, rather than just one-to-many communication,
will provide a countervailing force, as some are hoping and
predicting, but much remains to be seen.

Before I leave the ARPANET (and its offspring, the
Internet), I feel obliged to comment on what has happened,
in recent years, to its paternity. As its importance has
become obvious to everyone (even to me), so-called
“fathers” have been cropping up all over the place. It’s the
same old story of the press identifying and celebrating
certain individuals as “the Father of the Internet,” whereas
in truth the thing came about as a result of the convergence
of numerous technical developments and the ideas and
energies of a large number of individuals. Although some
people were obviously more central and influential than
others, trying to point to any one person or a few
individuals as responsible for either the end result or the
vision is absurd. Nonetheless, regrettably, a number of
former colleagues have allowed themselves to be singled
out and celebrated as particularly important figures,
whereas others, probably even more central, who are by
nature more reticent, have received far less attention.

Severo M. Ornstein

186

I have come to believe that it was J.C.R. Licklider and
his disciple Bob Taylor, who provided the principal
impetus for networking in the U.S. Not that they
themselves “invented” any part of it. But they foresaw and
believed deeply in the tremendously cohesive impact it
would have and used their influence to push research and
development in the direction of networking. The depth of
their conviction and Taylor’s extraordinary persistence in
pursuing their vision of the computer as primarily a
communication device, are, to me, absolutely stunning—
especially given that neither one was anything like a
technical whiz. It may be precisely because they themselves
were not directly in the trenches, where the many
formidable obstacles were often all that one could see, that
they were able to hang on to their vision. But hold to it they
did, and my hat is off to them. It’s also off to Larry Roberts,
the person who not only ran the ARPA office during that
period but also had ample technical ability to climb
repeatedly into and out of the design trenches during the
crucial early years of the network. And likewise to Frank
Heart, whose firm hand on the tiller and general paranoia,
produced a design that set the kind of high standards for
later developments in networking that would enable it to
become a new kind of utility for the entire world.

A number of years ago, BBN held a self-congratulatory
party to commemorate the twenty-fifth anniversary of the
beginnings of the Internet. Forgotten was the horror with
which, at the time, the earlier management had viewed the
cost of writing the proposal. Instead, now there was much
raucous breast-beating. Frank, however, who had
spearheaded BBN’s initial involvement in networking and
had overseen its blossoming, was a model of reserve, saying
only, with considerable eloquence, that it was a rare

Computing in the Middle Ages
A View From the Trenches 1955-1983

187

privilege to have had the opportunity to ride the crest of
such an important technological wave. Would that all who
have been involved could emulate the reserve such a
statement reflects.

Severo M. Ornstein

188

Chapter 15

The Aloha Network precedes Ethernet; the
first microprocessor appears; we design a true
multiprocessor

uring the late sixties and early seventies there

were annual meetings of a Systems Conference in
Honolulu. Each winter people trooped happily to the
Hawaiian meetings and some significant papers were
presented there. These meetings had been put together by
Professor Norm Abramson, a computer scientist at the
University of Hawaii, with a view to both bringing his
colleagues to his surfing domain and helping to enhance
University of Hawaii computing.

The University of Hawaii has a scattered campus with
branches on several islands. In order to permit computers
on the various islands to communicate with one another,
Norm devised what I believe may be the first instance of
multi-way electronic communication over a shared
medium. Traditionally, when there were only a few devices
to be connected together, direct links were provided
between each pair of devices. But it was impractical to
provide dedicated links between all the pairs of Hawaiian
islands; instead radio was the obvious means of
communication. Norm’s innovation was to share a single
radio link among all the sites as opposed to having separate
individual links between each pair.

D

Computing in the Middle Ages
A View From the Trenches 1955-1983

189

To understand Norm’s proposal, imagine half a dozen
people sitting blindfolded in a room so that speech provides
the only means of communication among them. Norm’s
idea was simple enough—whenever anyone has something
to say, he first listens. If someone else is speaking, he waits
until he hears silence. He then speaks up, says to whom he
wishes to speak, and then says his message. A problem
obviously arises if two or more people happen to start
speaking at once; there will be a conflict and confusion will
result. But, being able to hear, a speaker can promptly
notice any conflict and desist, wait a bit, listen for silence,
and try again. If the delays before retry are varied
randomly, then eventually some speaker will get through,
whereupon the others will wait for silence before trying
again. This, very roughly, was the basis of Norm’s scheme
for an inter-island computer network which he called the
Aloha Network. He demonstrated that it worked, and used
it for communication between the various islands.

Later on, as computers proliferated and there was
increasing need for groups of machines to
intercommunicate locally, others explored further the idea
of using a shared medium. At Xerox PARC, Bob Metcalfe
and David Boggs used a shared coaxial wire (they dubbed it
“Ethernet”) to interconnect locally large numbers of
computers at very high speed. They introduced numerous
refinements into Norm’s initial scheme that vastly increased
its capability, and eventually the idea of Local Area
Networks (LANS) spread through the computer world,
creating a major sub-industry. But as far as I know, Norm
was the first person to build and demonstrate a working
system based on the concept of a shared medium for multi-
way electronic communication.

Severo M. Ornstein

190

At about this time the first microprocessors made their
appearance. As we discussed the implications of this
development at BBN, Frank raised the question whether it
might not be possible to build a powerful computer by
ganging together a number of smaller computers in some
way. The IMPs were already limited in the traffic they could
handle and it was clear that the way the network was
growing much more powerful switching nodes would be
required in the not too distant future. But IMPs aside,
Frank’s question was titillating and had implications across
a broad range of other applications that demanded heavy
computing power. We started mulling over possibilities.

ILLIAC IV at the University of Illinois was thought to
be one of the most powerful computers in the world at that
time. It was what is known as an “array processor” and
consisted of multiple computers that operated in lock step,
simultaneously performing the same operations but on
different sets of data. The image that began to emerge in
our minds as we discussed possibilities was quite different,
however, and consisted of multiple processors, each able to
perform any task that came along, and all working
cooperatively but independently to do whatever tasks
needed doing at the moment. Each machine would work on
whatever task needed to be performed next, and in general
all the machines were doing different things at any given
time. With any machine able to perform any task, the more
machines there were, the faster the tasks could be
performed and thus the faster the overall job could be
handled. This seemed a promising image and as we
considered it, we realized that having multiple machines
had another advantage as well.

Because reliability had for so long been uppermost in
our minds, we began to think of ways that multiple

Computing in the Middle Ages
A View From the Trenches 1955-1983

191

computers might also be used to check on one another.
Over the ensuing months, questions about how to arrange
this absorbed much of our attention, and soon high
reliability became as important an objective as high speed.
The reliability objective raised many fascinating questions.
If the ability to excise a troublesome machine existed, how
could one avoid the possibility that the trouble-maker itself
would do the excising? If the ability to reload a neighbor’s
program existed when it seemed to be failing, how could
one be sure that one’s afflicted neighbor wouldn’t reload
one with its crazy program? Clearly some sort of voting
mechanism was called for. Some of the questions that arose
bore a striking resemblance to problems that arise in human
society and someone craftily suggested that such a machine
should be called “The Association of Computing Machines”
—a play on the name of the largest and oldest computing
society, The Association for Computing Machinery (ACM).

As our ideas began to firm up, we commenced looking
around for a suitable computer on which to base our
design. There were, in fact, very few choices. As we
envisioned it, the computers would need to work very
closely together, so closely in fact that they would need to
share access to a common main memory. Most computers
are designed in such a way that the connection between
processor and memory is carefully tuned for high speed
and is protected from any external access (other than
carefully crafted Input/Output mechanisms) that might
interfere with it or slow it down. As we would need to
intervene in this processor/memory connection, we needed
to have access to it. Our eye was caught by a new machine,
the SUE, that was made in unusually modular form by
Lockheed Electronics and in which access to this connection
was explicitly made externally available. Although we

Severo M. Ornstein

192

would have to design a good deal of special hardware to
mold the machine to our special purposes, its general
structure seemed amenable to the design. We visited
Lockheed in Los Angeles to discuss possibilities, but then,
before things could get fairly under way, an unexpected
interruption occurred which turned my life upside down
for a time.

Computing in the Middle Ages
A View From the Trenches 1955-1983

193

Chapter 16

China!

early a year before, in May of 1971, I had attended a
workshop in Aspen, Colorado. The topic was computer kits
for education and I found myself among an elite group of
computer scientists from around the country. Over drinks
one evening I put forward an idea that had occurred to me
some time before. How about a group of computer
scientists making a visit to China? I love to travel and had
lain awake speculating on the most exotic places one could
go. China seemed a suitably implausible and inaccessible
target in those days. The U.S. had not had diplomatic
relations with China for over twenty years, but some
loosening of the barriers was in the wind. No one then
knew that Nixon was quietly preparing to make the trip
himself (it would be announced a couple of months later),
but ping-pong diplomacy had commenced. Realizing that
formal invitations would be required, I reasoned that a
group of distinguished American computer scientists
might, just conceivably, tempt the Chinese. So although I
was a rather junior member of the group that night, I
tentatively raised the question of a possible visit to see what
response I might get. To my delight no one laughed and
several people expressed real interest.

When I returned to Boston I drew up a formal proposal
setting out the parameters of a potential visit: its goals,
personnel, timing, estimated costs, possible funders, etc. I
circulated the proposal to a group of colleagues for
comment and a short while later some of us made an appeal

N

Severo M. Ornstein

194

directly to the board of the computing umbrella society
AFIPS (American Federation of Information Processing
Societies) for moral and financial support in the unlikely
event that the trip might actually take place. I regret to
report that we were made to feel small and given to
understand that when a computer group ultimately went to
China, it would be they and not some bunch of professors
and mavericks who would go. We quietly withdrew.

A few weeks later I drew up a list of some fifteen of the
country’s best-known computer scientists. It was an
impressive list of names, only a few of whom I knew
personally, and as I picked up the phone I wondered what
sort of response I’d get. My first call went to Al Perlis. As
mentioned earlier, I’d encountered him several years before
when he was part of an NIH visiting committee reviewing
our work at Washington University. At that time I’d been a
junior member sitting quietly in a corner and I was quite
sure that he wouldn’t remember me. Nonetheless, when he
came on the line I briefly reminded him of our “meeting”
and promptly launched into a description of my proposed
trip to China. As I went on I sensed that his interest was
piqued. After a while he interrupted. “WHO did you say
you were?” he asked. I quickly reiterated my earlier
explanation and returned to China. “Sounds interesting.”
he said. “Who’s going?” I fearlessly read off the names on
my list, to none of whom I’d yet spoken. “Sounds like a
blue-ribbon group,” he said. “Count me in.” I put a check
mark beside his name and moved on to the next person on
my list. This time I was able to announce that Al Perlis was
going, and that was a clincher; if it was good enough for Al,
it must be OK. As I continued down the list, my task
became easier and easier, and the sheet rapidly filled with

Computing in the Middle Ages
A View From the Trenches 1955-1983

195

check marks. By the time it was finished I felt I’d earned my
certificate as a con man.

I had asked everyone to send me their curriculum vitae
and over the next few weeks some extremely impressive
packages were to arrive on my desk. My next move was to
try to contact the Chinese embassy in Ottawa. (The U.S. had
no formal relations with China at that time, and thus no
embassy.) I managed to find their Ottawa phone number
and enlisted the help of Tom Cheatham, one of the
prospective participants, at Harvard in making the call. I
thought that the Harvard connection would enhance our
credibility, but when the phone was answered we suddenly
found ourselves face to face with the impenetrable caution
and reserve of the inscrutable east. We explained briefly
what we wanted, but all that came back in return were
barely perceptible grunts of acknowledgement. Clearly we
needed help.

At that time there were articles in the paper about
increasing contacts with the Chinese, and someone named
Daniel Tretiak was often quoted as a China specialist. His
name turned out to be in the Boston telephone directory
and when I called and explained what I had in mind, he
expressed considerable interest and suggested that he might
be able to help. We arranged for him to come to dinner and
when he arrived I was startled to see someone only about
four feet tall striding up the front walk alongside a
statuesque black woman who turned out to be his
delightful wife. I wondered briefly whether I had somehow
found my way into a James Bond movie, but such thoughts
were quickly dispelled by their completely natural charm.
Here, moreover, was someone who spoke with authority,
obviously had connections that could be invaluable, and
spoke fluent Chinese. He agreed to accompany us to

Severo M. Ornstein

196

Ottawa and introduce us to the staff at the embassy there
with whom he was already familiar.

This was a real break. I contacted Cheatham and not
long afterward the three of us stood outside the embassy in
Ottawa. Stretching as high as he could reach, Tretiak rang
the buzzer. When the inscrutable east answered, Tretiak
swung into rapid fire Chinese and shortly we were ushered
into a mini-China, replete with what I would come to
recognize as all the standard trimmings—antimacassars, a
large thermos of tea, and profound reticence. I had never
before seen human features that revealed so little; the full
meaning of the word inscrutable was becoming clear.
Proceedings were one-sided as Dan, unreeling his quiet
Chinese, explained the purpose of our visit. I, meanwhile,
tried to determine whether they thought we were spies or
merely insane. After a while, Dan indicated that it was time
to hand over the formal request I’d prepared together with
the sheaf of résumés. After a few further “pleasantries” we
were returned to the street, where Tretiak assured us that it
had gone well. I’m not sure how he knew, perhaps because
we hadn’t been bodily ejected. In any case, who could tell
what the officials at the other end in China proper might
conclude. These guys were mere functionaries; the total
absence of any reaction was, of course, precisely what
they’d been trained to exhibit. Back in Boston I reported to
the prospective participants and then proceeded to forget
about the whole thing. We’d done what we could do; now it
was in the lap of the Gods and the powers-that-be in
Beijing.

Nearly a year later, as spring came on and we had
heard nothing, we concluded that the predictable thing had
happened to our request; it had been “filed” somewhere.
We’d asked to go in the summer when school would be out.

Computing in the Middle Ages
A View From the Trenches 1955-1983

197

Many of the participants were professors who now began
dispersing to the far corners of the globe. Then one day in
April, just when I’d completely forgotten about it, an
innocent looking envelope appeared on my desk. When I
opened it there it was: an invitation for six computer
scientists to come to China, together with their wives, for a
three week visit!

Overnight the world changed. The U.S. government
suddenly expressed interest. A letter arrived from Nixon’s
Science Advisor, Ed David, on impressive-looking White
House stationery. The National Academy, which for years
had been trying to establish contact with the Chinese
scientific community, but had been rebuffed because of its
close ties with Taiwan, commenced treating us with respect
and promptly offered to pay our travel expenses. Gradually
the realization came over me that this was to be far more
than a mere travel experience—suddenly we were in the
middle of international politics at a critical moment in
history. The importance of our mission was belied by the
modesty of the letter that had arrived. We had apparently
been singled out as having just the right character to
comprise the first scientific delegation in a generation: We
had no direct government ties and were researchers and
academics in a field that the Chinese wanted to learn more
about. Our invitation was a signal that the door was
cautiously opening.

I had the immediate problem of selecting six out of the
fifteen people we’d originally proposed. Having suggested
the trip in the first place, and having done virtually all of
the arranging, there was no question in my mind that I was
going to go. That left five others to select. I didn’t want to
take responsibility for making such a difficult choice single-
handedly, and arranged for the group to self-select from

Severo M. Ornstein

198

within its own ranks by voting. When the dust settled, the
six who went were myself, Al Perlis, Herb Simon, Wes
Clark, Tom Cheatham, and Anatol Holt. Although the most
junior member of the group, I was nonetheless the person
who had made the formal contact and whom the Chinese
thus recognized as the head of the delegation, a rôle I
would slowly grow into. In the meantime Nixon and his
cortège took over the spotlight and made history with their
trip, which I was sure had helped pave the way for our own
venture.

The days leading up to our departure were frantic. As
we climbed onto the plane for Hong Kong, some of us were
meeting one another for the very first time. But we had
many hours to get acquainted during the long flight and
several days thereafter in Hong Kong during which we
made final arrangements. As we finally crossed the border
and were met by our Chinese hosts, the significance of our
visit was brought home to us—we were greeted with great
gravity and formality and treated like V.I.P.s. Each of us
had been provided with a private car, a driver, and a
translator. It took some time for us to adjust to such
treatment.

Although we hadn’t reckoned on it, we had unwittingly
brought along our own personal ice-breaker in the form of
Al Perlis. Al was suffering from multiple sclerosis and by
that time could walk only with difficulty using canes. The
Chinese instantly produced a wheel-chair and the
combination of Al’s disability, his perpetual good spirits
and omnipresent sense of humor (which the Chinese
immediately sensed), broke through all the barriers of
formality and allowed genuine human contact to flourish.
Our hosts also recognized the heroism of someone who
would make such an arduous trip under the circumstances,

Computing in the Middle Ages
A View From the Trenches 1955-1983

199

and Al quickly became their favorite. Eventually we were to
meet with China’s senior and most honored scientist, Kuo
Mo Ro, head of the Chinese National Academy. As he
shook hands with each of us in turn I watched as a broad
smile burst onto his face when he came to Al. Kuo Mo Ro
was elderly and recognizing a fellow sufferer, drew him
instantly to his side. Sadly neither Al nor his wife Sydelle
nor Kuo Mo Ro is any longer with us. In later years I would
come to know Al and Sydelle as close friends and to
appreciate even more deeply his extraordinary pluck and
great humanity and her devotion in caring for him.

Our visit took us initially to Canton where there was
very little to see in the way of technology. There, however,
we were treated to the first of many banquets at one of the
best restaurants I’ve ever been to. Our host for the evening
was a giant of a man who, although clearly friendly, had the
aspect of a menacing Chinese tank driver from an American
comic strip of the period. I am basically a non-drinker (all
this talk of Martinis and Scotch notwithstanding), and had
been assured that the Chinese don’t drink. I was therefore
eying the multiple glasses at our places with some
uneasiness when, to my disappointment, this leviathan
filled one of his glasses with a villainous looking liquid,
stood up, and began to toast me as head of the delegation.
He finished up with a phrase I was to come to loathe, “Gan
Bei” which clearly meant “bottoms up” (literally “dry
glass”). In a flash I saw that my choice lay between utter
disgrace and, in all probability, throwing up all over the
gentleman as I attempted futilely to duplicate his act.
Wesley, bless his heart, recognizing my predicament,
promptly stood up and, after a short speech, casually tossed
back the entire contents of his glass. International relations
had been rescued from the brink, but some damage had

Severo M. Ornstein

200

been done to my personal reputation. In the fullness of
time, it would be repaired.

Over the next two days we visited a museum and a
kindergarten, and were treated to a movie of a heroic,
revolutionary ballet that we were later to see live in Beijing.
We also witnessed two major operations utilizing nothing
but acupuncture for anesthesia. These events allowed us to
become accustomed to our new environment, to our hosts,
and to the behavior that was expected of us. We were quick
studies, although I never completely managed to forego
occasional attempts at informal communication. But it
never worked. We were being shoved into the rôle of semi-
official emissaries, whether it fitted or not. Everyone was
extremely friendly and hospitable, but there were clear
bounds to which we Americans were unaccustomed.

After Canton we proceeded to Shanghai where we
presented lectures and held discussions with members of
the Shanghai Computer Institute of the Academy of Science.
The computers we were shown were several years behind
what one would find scattered around the U.S. at that time.
In reading over a summary of our trip that Wes and I wrote
shortly after the event, I find the statement: “Generally
speaking, Chinese computer technology seems to be
pursuing a course not dissimilar to that followed in the
early days of development in this country, that is, prior to
the great proliferation of machines in the mid-sixties.” It
seems that regardless of when one looks back, the “great
proliferation” appears to have just occurred.

We found that practically all of the pieces of a machine
were manufactured, often by hand, in the factory where the
machines were produced. There were no separate suppliers,
no sub-assemblies; no real support industry had yet
evolved. We later saw evidence, in other contexts, of an

Computing in the Middle Ages
A View From the Trenches 1955-1983

201

absence of the sort of production engineering that would be
taken for granted in the U.S.—even things as simple as
laying out the production process in a sequential line.
Instead, items were moved around hither and yon as they
passed through the various stages of production.

After Shanghai came Beijing where we exchanged
lectures with scientists at the Computer Institute and Tsing
Hua University. The Chinese were particularly curious
about large, powerful machines and about the latest
advances in large-scale integrated circuit design (something
our particular group was ill-prepared to discuss in any
depth).

Our visits to Tsing Hua University revealed the
magnitude of the changes wrought by the cultural
revolution. The University was now administered by a
Revolutionary Committee consisting primarily of workers,
peasants, and soldiers, with some professors and students
also participating. Teachers and professors went to work on
farms and in factories as part of their “re-education,” and in
general academic standards appeared to have relaxed.

Between lectures we visited the cultural and scenic sites
that were to become standard stops on China tours over
coming years. We were housed in a great caravansary next
to the Forbidden City and one night, having gone out on the
balcony of my room to cool off, I was dismayed to hear the
door into my room click shut behind me, neatly locking me
out. The neighboring room had a similar balcony and I
could see that the door was open into its room. There
seemed little alternative, so once again utilizing my rock
climbing experience, I was soon on the adjacent balcony.
Stepping into the room I surprised two very middle-
eastern-looking gents in their underwear (it was fiercely

Severo M. Ornstein

202

hot) who, as I gesticulated, roared with laughter as I
proceeded out and into the hall to return to my own room.

A meeting in China

Rarely were we allowed to sleep, and by the

penultimate banquet in the Great Hall of the People we
were in a state of utter exhaustion. On our way out of
China, however, I was finally able to square accounts with
the tank driver in Canton. This time, as we sat down to our
final banquet, I noted with relief that my glass had been
filled with innocuous looking red wine. But aside from that,
I was ravenous. I had learned that at these banquets,
etiquette required that one place the food on one’s
companion’s plate, never on one’s own. He, in turn, did
likewise. It was rude to decline an offering. As I chatted
with my tank driver, I became aware that he was slowing
down. I, on the other hand, was still famished. With
unswerving determination I continued to feed him until he

Computing in the Middle Ages
A View From the Trenches 1955-1983

203

was finally forced to gesture “no more.” As we staggered
out into the moonlight, he put his great arm around my
shoulders, indicating that the score had been evened and I
had regained his respect.

When we arrived back in Hong Kong, waiting at the
train station was the woman with whom I was destined to
share the rest of my life, Laura Gould. She had been
teaching computer science to humanities students at U.C.
Berkeley and had received Berkeley’s Distinguished
Teaching award. We had met earlier that year at a follow-on
workshop to the one where I had originally proposed the
China trip. The two of us spent a short holiday on Japan’s
northernmost island, Hokaido, recovering from the stress of
the visit to China, and then headed back to the U.S. We
stopped briefly in San Francisco where we visited a place
that was later to become home territory for both of us.
George Pake, the former Provost of Washington University,
had been hired by Xerox to put together a research center in
Palo Alto and a group of very bright computer scientists
had been assembled in what was bemusedly referred to
then as Pake’s PARC—the Xerox Palo Alto Research Center.
In addition to George, I knew a fair number of the people
who had gathered there and we spent an hour or so sitting
around in the bean bags that would become emblematic of
PARC, discussing the trip I’d just been on.

Eventually Wes and I wrote a report of our trip for
Science and Mary Allen wrote a feature cover-article for the
Washington University magazine. (see Bibliography)

Severo M. Ornstein

204

Chapter 17

Pluribus struts its stuff

he adventure in China, together with the short
vacation in Japan, had taken just over a month and now,
back once more at BBN, we settled into our new life
together. Laura shortly commenced working in the speech-
understanding group at BBN, and I picked up the threads
of the multiprocessor design. We had assembled a powerful
team of designers, including many who had worked on the
earlier IMPs. Before we could design couplers to
interconnect the machines, however, we needed to
understand the SUE in great detail, and here we
encountered the first of what would turn into a succession
of problems with Lockheed. Over the ensuing months we
came to realize that Lockheed had not fully understood the
implications of the structure that they had devised, and
certainly had no inkling that anyone would ever try to do
with it what we proceeded to try to do—although it was
within the advertised capabilities. They were unused to
customers who had read their specifications carefully and
expected their machines to meet those specs. In holding
their feet to the fire, I fear I was not always kind or patient.
On the other hand, they deserved all that they received, and
not a few Lockheed heads rolled in the course of our
interactions. We were ultimately forced to help them
redesign two critical integrated circuits in order that the
machine would work as promised. After endless phone
calls and far too many trips back and forth across the

T

Computing in the Middle Ages
A View From the Trenches 1955-1983

205

country, we were able to assemble working multiprocessor
hardware.

In the meantime the software team had been preparing
a version of the IMP program that would be structured to
work on this new kind of multiple machine. In addition to
the regular IMP job of transporting and routing messages in
the network, there were tasks associated with doling out the
work among the processors and keeping track of which
machines were healthy. The individual machines watched
over one another for possible misbehavior and periodically
tested one another. If a member machine or other element
appeared to be causing trouble or otherwise misbehaving, a
vote could be taken to excise the errant piece from the
system. The individual machines could also reload and
restart one another if trouble occurred. And finally, they
watched for, and brought on board, new members as new
machines were plugged in and powered up.

As the reliability features of the program began
working, the overall machine started to take on the feel of a
gyroscope, manifesting something resembling a will of its
own. Our goal was to make it impossible (i.e.,
extraordinarily unlikely) for any single failure (short of a
total power failure) to damage the overall machine’s
functioning for more than a brief period. Turning off or
removing one machine had no effect—the overall system
continued to perform the network job. The day came when
we demonstrated the machine to some visitors and
challenged them to see if they could break it by pulling out
cards, throwing switches, etc. (One thing at a time of
course.) One of the men bent down and, with a knowing
smile, threw the main power switch on one of the racks
(which simultaneously shut off several machines). As there
were other racks containing duplicate pieces of hardware,

Severo M. Ornstein

206

the system kept right on running. Peeved by his failure, he
reached down again and this time turned the switch on and
off repeatedly as fast as he could, then went to the next rack
and did the same thing and on to the next, and so on. At
this, the system paused, causing him to smile triumphantly.
But after a few seconds, to his astonishment (and our
delight), it resumed operating.

The Pluribus Team42

42 Left to right, Front row: Tony Michel, Marty Thrope, Bob Bressler, Dave
Francis; standing at left: David Katsuki, Dick Garber, Ben Barker (inside
rack); standing at right: Mike Kraley, Steve Jeske, Will Crowther; above;
Frank Heart, Severo Ornstein

Computing in the Middle Ages
A View From the Trenches 1955-1983

207

It was now time to name the machine. I had learned
years before that the two most important features of any
computer were its color and its name. We all agreed on a
pleasing sort of pale blue for the color, but the name proved
more difficult. Several names were proposed and after a
number of straw votes we finally settled on the name
Pluribus. This was a double pun. Not only did it evoke the
“e pluribus unum” (from many, one) of the dollar bill, but it
also spoke to the fact that the machine consisted of multiple
busses. A “bus” is a sort of machine backbone consisting of
a common set of wires and a discipline for using them by
means of which the various parts of the machine
communicate with one another. In this case, where there
were multiple machines, there were multiple backbones, all
interconnected by our specially designed bus-couplers.

While we were working on the design of the Pluribus,
another multiple machine called C.mmp was being built at
Carnegie Mellon University (CMU) in Pittsburgh. Their
goal was fundamentally the same as ours—high speed. But
while we needed more speed to handle multiple high-speed
network lines, the CMU group was interested in the speed
in order to facilitate Time Sharing. The overhead of
switching attention among multiple users ate up machine
cycles, and of course the faster the machine, the more users
could be accommodated. Hence speed was doubly
important. The problems of sharing a multiprocessor (i.e.,
multiple computers joined together) among multiple users
(with varying demands) was indeed daunting.

It is somewhat unfortunate that the term
“multiprocessing” was already being employed by the
Time Sharing community to describe what happens when a
computer is used to perform multiple jobs at more or less the
same time—by chopping the jobs up into little pieces and

Severo M. Ornstein

208

processing the pieces in rapid succession. Single computers
have been doing multiple jobs “at once” for many years;
you don’t need more than one processor to do that. Now,
however, we began using the term “multiprocessor” to
mean multiple actual hardware processors working
together on a job—any job, including possibly a
multiprocessing job. With a multiprocessor you get truly
parallel operation, in which multiple, independent tasks are
actually executed simultaneously. This is very different from
the illusion of simultaneity that is created when multiple
jobs are handled piecemeal in rapid succession by a single
processor.

In fact, both the Time Sharing application which the
CMU people were trying to fit onto their multiprocessor,
and the IMP job, which we were trying to fit onto ours, are
multiprocessing jobs—that is, numerous and somewhat
unpredictable tasks must be handled without dropping
anything on the floor. There was friendly competition
between the two groups, and we met jointly from time to
time to share experiences and views, and to poke gently at
one another.

They felt that the machine we were designing was
applicable only to the sort of specialized job that the IMPs
performed, where the program was broken into sub-pieces
(tasks) when it was being written. With Time Sharing, who
could tell what kind of program some user at a terminal
might suddenly launch? How could it be broken up into
pieces that could be handled simultaneously? So they
argued that there was no way to fit Time Sharing, with its
inherent unpredictability, onto such a machine.

The IMP, on the other hand, faced real-time deadlines
that Time Sharing did not. Yes, it would be nice if Time
Sharing systems ran fast, so that users wouldn’t be annoyed

Computing in the Middle Ages
A View From the Trenches 1955-1983

209

by slow response, but if the IMP failed to keep up with the
passing of messages, the result was catastrophic failure
rather than mere annoyance. Each group thought that the
other was a bit wrong-headed, and we were proceeding
down our independent paths when a call from the outside
world came in from a country I’d visited before and had
loved, Chile.

Severo M. Ornstein

210

Chapter 18

Chile revisited; changes at BBN; I head for

PARC

t seemed that the Chileans wanted to learn about
networking. They weren’t the only ones. We’d traveled to a
number of foreign lands by this time, spreading the word
about the usefulness of networks. News of the ARPANET
had spread and there were commercial applications for
special networks waiting to be built in many places. So
Laura and I and Alex McKenzie climbed onto a plane and
headed for Chile.

Chile had changed in a major way since I’d been there
before. My first visit preceded the days of Salvador Allende,
an era when things were relatively peaceful if somewhat
disorderly. By this time Allende had come and gone,
Pinochet was in power, and there was an abundance of
“law and order.” The streets were patrolled by armed
guards, and a strict curfew was in place. Despite this, we
encountered the same wonderful Chilean hospitality I
remembered, although the midnight curfew conflicted with
the custom of 11 P.M. dinners and people rushed to return
home promptly after eating. We were told that violators
could be shot on sight and if one didn’t make it home in
time, one spent the night wherever one happened to be
when the curfew hour arrived.

Our lectures were more or less routine descriptions of
the network we had built, together with the reasoning
behind major decisions. We were speaking to a collection of

I

Computing in the Middle Ages
A View From the Trenches 1955-1983

211

higher-ups from the communications and banking
industries. We kept asking who our hosts were and got
evasive replies, indicating that it was some branch of
government we clearly didn’t understand. The day finally
came when we were to meet our host face to face and it was
an evening I won’t soon forget. We were taken to the top
floor of a downtown hotel and as we stepped from the
elevator we left the world of Chile and entered the world of
USA circa 1950. The contrast with the street below was
staggering. A band was playing, the lights were dimmed,
people were swaying in a slow dance. We were ushered to a
table where we were greeted by our host—a military man
replete with the classic dark glasses, speaking impeccable
English with no trace of an accent. It turned out he was a
product of the U.S. Air Force Academy in Colorado and
over dinner he explained to us how little the people of Chile
understood what they needed. When I finally got back to
the hotel, I felt I needed a bath.

The extreme discrepancy in wealth was both apparent
and appalling. By now we in the U.S. are experiencing some
of the same thing, although the process of wealth
concentration hasn’t yet proceeded as far as it had in Chile
at that time, and of course the overall abundance is much
greater here than there. Nonetheless, memories of what we
witnessed there cause me to be concerned about the extent
to which we are redistributing wealth in our own country
and to wonder what will become of us if we continue in the
directions we’ve been going. When I first went to Chile in
1966, I returned to a United States in which a homeless
person was a rare sight. Today it has become all too
commonplace.

But at that time other things were beginning to bother
me. BBN had changed in the eight years I’d been there. The

Severo M. Ornstein

212

company had grown enormously and changed character.
Concern about the bottom line was replacing the earlier
focus on interesting research. The ARPANET was turned
over from Arpa to the Defense Communications Agency,
which was interested in its utility, not in research. At the
same time there was increasing emphasis on building
systems for the military, some of which involved classified
work. By this stage in my life I didn’t want to have a thing
to do with classified work and I began to think about
leaving. To my everlasting regret I made a false start, and
ultimately took over a year to make a final decision to
depart. Despite this, when we left BBN threw us a truly
grand and heartwarming party. I gave away snow tires,
snow shovels, windshield ice-chippers, and all such wintry
paraphernalia. We were heading for a place where it
seemed unlikely they would be needed.

Computing in the Middle Ages
A View From the Trenches 1955-1983

213

Chapter 19

A place of character(s); I love my Alto; the
imprint of Engelbart; Thacker’s decision; the
importance of tools; an unfortunate erasure;
Bob Taylor—missionary; el Dorado

fter many years I was finally returning to El Dorado. By

this time (early 1976), Silicon Valley was in full swing and a
large number of our friends and colleagues (including
many from BBN) had already found their way to Xerox
PARC, which was rapidly becoming a leading center (in
fact the leading center) of computer research in the U.S. I
had decided to follow this migration. Although it was part
of an enormous corporation, PARC had by then acquired a
far more academic feel than BBN. The place had a decided
“religion,” but researchers were encouraged to pursue their
own interests and projects. Furthermore, the religion was
one that I could happily sign on to. It emphasized personal
machines, tied together in a local network based on the
Ethernet that had been developed at PARC. There were
shared facilities, notably a laser printer and large file
storage, but the structure allowed most of a researcher’s
work to be done on his or her personal machine, and
relegated sharing to those things where the economics
required it but where contention would be minimal. This
seemed an eminently sensible solution that has indeed
become widespread as the years have passed.

As at BBN, there were two computer labs at PARC with
related interests but somewhat different character. I found

A

Severo M. Ornstein

214

my way into the Computer Science Lab, then headed by
Jerry Elkind (my former boss from the BBN TENEX
interlude), later to be headed by Bob Taylor. Laura joined
the System Science Lab down the hall where Alan Kay held
court. As at BBN, we were fortunate to be able to work
together in the same place but on different projects. The
mirror in the bathroom where we took our morning shower
was covered with traces of the diagrams we sketched on its
misted surface as we discussed our work with one another.

Bob Taylor

Computing in the Middle Ages
A View From the Trenches 1955-1983

215

PARC, at least the computer labs, had a very special
character that was set in part by the lab leadership and in
part by the nature of the virtuoso researchers assembled
there. When Taylor became head of the Computer Science
Lab, I never knew his door to be closed. He always
welcomed visits by any and all members of the lab and was
happy to discuss just about any topic. But while he insisted
on complete openness between people on anything related
to the lab, he also insisted that people’s personal lives were
strictly their own business. At one level there was great
informality and individual freedom with a total absence of
the usual structures for keeping employees in line. People
came and went as they pleased; it was simply taken for
granted that everyone would pull his or her share. (One of
the PARC people later went to work for a while at Xerox
headquarters in Connecticut and was appalled when
suddenly the lights went off at something like ten o’clock at
night. It was simply assumed that by then everyone would
have gone home. Not so at PARC, where people could be
found working away at every hour of the night.) On the
other hand, there was a feeling of cohesion and esprit de
corps, of everyone pulling together in the same general
direction, and diversions were definitely not encouraged,
especially when they ran counter to the group ethos and
overall direction.

Bean-bag “chairs,” which filled the offices and
conference rooms, came to symbolize the informality of the
place. They represented one of many devices for
encouraging casual contact and interchange between
researchers. A weekly gathering of the Computer Science
Lab, known as Dealer, in which one or more individuals
stood up and presented some new research findings or
questions, was a free-for-all of ideas. People often

Severo M. Ornstein

216

volunteered to be the speaker at these gatherings, knowing
that plenty of slings and arrows would be forthcoming—as
well as cheers, laughter, and applause when deserved. And
those who were too shy to volunteer were eventually
volunteered. Everyone who wasn’t in the middle of some
compelling experiment attended Dealers. They were
chaired by Bob Taylor in a ritualistic manner, pipe and Dr.
Pepper in hand—directly beneath a sizeable “No Smoking”
sign. (Almost everyone else in the lab had given up
smoking by that time.)

In addition, speakers would occasionally come from
outside of the lab and when they did so, many came with
justifiable trepidation. The reputation of PARC for
unflinching outspokenness (some said arrogance) had
spread to the outside world and intimidated many. We
showed little mercy to one another and came to accept a
level of forthrightness that could stun an outsider. One day,
as he was beginning his presentation and looking down on
this unusual audience slouching comfortably in their bean-
bags, a somewhat nervous speaker, looking up at the No
Smoking sign, asked tentatively, “If I smoke in here, will I
be stoned?” Instantly came the reply, “Depends on what
you’re smoking.” Another poor chap was attempting to
make an improbable case, and his audience were beginning
to fidget. Suddenly, from the back of the room, came a
clarion voice. “Bullshit!” it said. The speaker staggered as
though shot. The ensuing discussion left him bereft of both
argument and topic. To someone with fragile nerves,
unused to this level of candor, such a stroke could be
unmanning and left some speakers badly-shaken.

Potential new researchers were invited for a visit and
circulated around the lab, chatting with various members
who expressed interest in their specialty. The prospect

Computing in the Middle Ages
A View From the Trenches 1955-1983

217

would then make a presentation to the lab of some piece of
current work as part of the interview process. For many this
was a daunting experience, although of course, some
relished this kind of spontaneous give and take. (I’m one of
the few people who endured this process twice, having
declined the resulting offer the first time around.) After the
interviewee had departed, Taylor would call together the
senior members of the lab to discuss everyone’s views.
From the many such discussions in which I participated,
my favorite comment came from Jim Morris who possessed
an unusually dry sense of humor. We had been
interviewing a very tall fellow, taller than any member of
the lab. Others had been chewing over his presentation, his
competence, and likely contributions to the lab. When it
came Morris’ turn to comment, he said simply, “Seems
pretty bright, for such a big guy.”

The computer that existed at PARC when I arrived
early in 1976 was the Alto. I believe PARC was the first
place where every researcher was provided with a personal
machine as a standard piece of office equipment. The day I
arrived, one was wheeled into my new office. The Alto had
been designed by Chuck Thacker and Ed McCreight, based
on a description in an earlier memo by Thacker. Butler
Lampson, Bob Sproull and others had written the software,
including the operating system, the compiler, and some of
the early applications. The philosophy underlying the Alto
depended heavily on work done earlier by Doug Engelbart,
at SRI.

In the late 1960s, Doug, one of the truly great
innovators of the modern computer era, was experimenting
with new ways for users to interact with a computer via

Severo M. Ornstein

218

displays.43 I visited his laboratory when one of the early
ARPANET IMPs was being installed there and had seen his
revolutionary system in operation. That system formed an
absolutely critical step in the development of today’s
graphical user interface. Doug foresaw the very sorts of use
we all experience today, but the inexpensive chip
technology, upon which such use is dependent, was simply
unavailable in the 1960s. Instead his system was based on a
Time Shared computer (an SDS 940). In the computer room
down the hall, each user’s work was displayed on a small,
individual, vector-type CRT (See Appendix II). Mounted in
front of each CRT was a television camera whose video
signal was piped to a television monitor at the user’s station
(think desk, although these users were often gathered in
beanbags). Mixed into each user’s video image was a
cursor, controlled by the user’s mouse, that allowed items
on the screen to be pointed at. Doug had designed the
mouse for precisely this purpose, and although today he is
finally being recognized as having “invented the mouse,”
his contribution is far broader, and encompasses the basic
concept of direct user control through an interactive
display. His prototype system on the Time Shared machine
using primitive television techniques was cumbersome by
today’s standards, but it pointed the way to modern usage.
In 1968 he gave a historic public demonstration of his work
that blew the minds of all who were present. Alan Kay, who

43 Earlier machines, such as the SAGE machines, TX-2, and the LINC, had
displays and input devices that were used to interact with programs, but
Doug extended and generalized this use so broadly that it led to a
qualitative shift in the way users thought of interacting with their
programs and data.

Computing in the Middle Ages
A View From the Trenches 1955-1983

219

was there, describes Doug as “dealing lightning with both
hands.”

The next steps took place at PARC just a few years
afterward. In Engelbart’s system, the image produced by
the computer consisted of line segments. This limited the
kinds of pictures that could be presented. Television was
used only in a passive sense, to transport the images from
the computer room to the user’s monitor. The PARC
researchers decided instead to create television images
directly from the computer—images in which every point
of the television scan was individually specified by a bit in
memory. This meant that for the first time arbitrary pictures
could be generated at television rate and resolution.

A preliminary system was built that included an
expensive external memory for holding the bits of the
image. A short while later, in designing the Alto (which was
to be a personal computer and thus needed to be
comparatively inexpensive), Chuck Thacker decided to
dedicate a significant segment of each computer’s main
memory to holding the bit-for-bit image of the display
screen. Having the bit-map directly in the main memory, as
opposed to an external memory, allowed manipulation by
programs at a level of intimacy (and thus speed) never
before possible. The cost and availability of integrated
circuit memories at that time brought this scheme barely
within reason, and the decision by Thacker to dedicate
memory in this seemingly profligate fashion was an act of

Severo M. Ornstein

220

considerable daring.44 The payoff, however, was enormous.
By facilitating the graphical user interface (as it has come to
be called) it opened the door to a fundamental change in the
way people interacted with computers. Today, of course,
displays are based on many different kinds of underlying
technology, but the basic notion of a bit-map, contained in
the computer’s main memory, which the user references by
means of a mouse of some sort, has remained the canonical
“user interface” everyone today takes for granted.

In many ways the Alto was also a descendant of the
LINC, but of course in much more modern dress—so much
so that the quantitative changes resulted in qualitatively
different user capabilities. By today’s standards the Alto
was big, (the size of a hotel-room refrigerator), clunky,
expensive, slow, and had limited storage. Nonetheless,
functionally it embodied virtually all of the features to
which the world has since become accustomed.

Another change manifested in the Alto was the
disappearance of the console that, in one form or another,
had graced the façade of earlier machines and provided the
principal user access. What permitted the lights and
switches to disappear was the development of a thing
called a PROM. ROM stands for read-only-memory, and the
P stands for the fact that, with special equipment, you could
initialize (Program) the ROM with whatever you wanted
before you put it into the computer. Once in place,
however, the contents of the PROM could not be changed.

44 Thacker says, “The use of main memory resulted from my
internalization of the truth of Moore's law—semiconductor memory was
barely cheap enough to do it at all, but would get much cheaper very
quickly.”

Computing in the Middle Ages
A View From the Trenches 1955-1983

221

When programs fail to function properly, they rarely just
cease operating: often they wreak havoc inside the memory,
altering its contents. A PROM could provide a safe haven
for bootstrap programs that, following a crash, could bring
in a small debugging program to peer around inside the
rest of the machine after the running program had gone
aground. It could then report what it saw, on a printer or a
screen, or on whatever other handy output device the
machine might have. A different piece of bootstrap
program could then reload the repaired version of the
program for another run at the wall. Thus the need for the
switches and lights, that had previously been used to
explore and modify the machines innards, simply went
away and was replaced by a program in a secure part of the
memory—the PROM.

The bit-map display screen and the disappearance of
the console had many practical consequences. For example,
together they meant that debugging, heretofore a frightfully
cumbersome process, was dramatically speeded up. But
they also had profound philosophical implications. Note
that when access was provided by switches and lights, the
term “user” implied someone who was going to tinker
directly with the machine. Now a “user” could be someone
who interacted only with functioning programs that
provided one or more applications such as a text editor or a
graphics program having nothing whatsoever to do with
the machine’s innards. To the user, therefore, the Alto
presented much the same façade as do the machines of
today.

The final novel element in the PARC scene which tied
everything together was the Ethernet. Not only were all the
individual researchers’ Altos interconnected, but special
servers for printing and for large-scale file-storage were also

Severo M. Ornstein

222

connected to the Ethernet. The Ethernet owes a substantial
debt to Norm Abramson as mentioned earlier. Bob
Metcalfe, who together with Dave Boggs developed the
Ethernet at PARC (and later went on to found 3Com), had
discussed the Aloha Network in his PhD thesis and he
exploited the basic scheme (with many important
refinements) in producing the original Ethernet at PARC.

All of these elements had come into existence at PARC
by the mid-1970s and numerous experimental software
applications, forerunners of many of today’s most common
user programs, were rapidly proliferating. “Windows” (the
technique whereby rectangles of visual material could be
overlain on the screen) were already being developed and
demonstrated about the time I arrived. (Many years later
Microsoft acknowledged the importance of this idea by
adopting the name for its revised operating system). A text
editor called BRAVO, very similar to Microsoft WORD
(from which WORD, in fact, derives, having been rewritten
at Microsoft by Charles Simonyi, Bravo’s implementor at
PARC) was in place and was already being upgraded. Most
of the refinements that have taken place since are too
complex to describe here and, although they underlie the
ease with which today’s users accomplish many of their
tasks, they do not fundamentally change the user’s
perception of the machine.

In almost every technological field, the development of
tools has proven critical. In no field has this been more true
than with computers. Here tools have been required to
build other tools and gradually a giant pyramid of such
tools came into being, with each layer dependent on the one
below it. Computers themselves quickly became a principal
tool for building further computers. And if the tools for
building the machines themselves formed a pyramid, the

Computing in the Middle Ages
A View From the Trenches 1955-1983

223

programming tools for creating software systems constitute
a veritable Mt. Everest. As a consequence of this pyramid of
tools, the race, particularly in the software field, has often
gone to those who first understood the need and went to
work building the underlying tools. The people at PARC
understood this situation better than almost any other
group and this, more than anything else (other than
perhaps the driving force of a few insightful individuals),
led to their preeminence in the field. Of course, like
anything else, it could be carried too far—and sometimes
was.

So much for an introduction to the PARC scene as it
existed when I arrived. Because I hadn’t come with a
particular project of my own in mind, my initiation took the
form of working on a project that was already under way.
The Computer Science Lab had earlier designed and put
together a laser printer. It was a giant affair and consisted of
a number of elements that filled an entire room. It was
connected, via an Alto (which formed one of the elements),
to the Ethernet so that its use could be shared by anyone
with a computer connected to the Ethernet. Having
successfully built this monster, people had then set about
making something smaller and better integrated. In another
PARC lab, Gary Starkweather tore apart one of Xerox’s
standard copiers and installed a laser mechanism in it for
writing a scanned image onto the drum. Meanwhile Bob
Sproull and Butler Lampson in the Computer Science Lab
set about identifying parts of the image conversion job
previously handled by hardware that could be turned over
to software (and microcode), thus reducing dramatically the
quantity of specialized hardware required. This process of
distillation and reassignment was pretty well completed by
the time I arrived and it had become obvious what

Severo M. Ornstein

224

functions would be needed in the much-reduced,
specialized hardware for the next generation. I was to
design that hardware. This was something of a challenge as
it had been some time since I’d actually done any design
myself and instead had been supervising a team of
designers at BBN. New, more sophisticated chips had come
into being, and furthermore the design process at PARC
employed new and unfamiliar design tools. So there was a
lot to learn in a hurry.

One of the people who had worked on the design was
Bob Sproull, whom I’d previously encountered at various
places along the way (Harvard, the Stanford Artificial
Intelligence Lab, etc.) Bob was leaving shortly to lecture in
India and just before he left he spent a day imparting all of
the information I would presumably need to proceed. Bob
moves very fast, and as he sped along in his explanation, I
was hanging on by the fingernails. At that point I hadn’t the
vaguest notion how a laser printer might work. Thankfully
Bob made squiggles on the white board as he spoke and I
knew that I’d be studying that white board carefully for
some days to come.

Next morning I arrived in my office to find it being
rearranged as I’d requested. This involved shifting the
precious white board a foot or so to the left, and to my
horror I saw a workman bellying up to the shifted board as
he screwed it down in its new location. In the process, he
had removed a sizable portion of its contents onto the front
of his overalls. I was to spend the next week scrutinizing
that white board with the squinting eye of an archaeologist,
attempting to induce it to release its secrets. Eventually,
with the help of others, I came to understand what was
needed and in due course the hardware was built. Bob
returned in time to help with the debugging and to write

Computing in the Middle Ages
A View From the Trenches 1955-1983

225

the necessary program to make the whole shebang go.
Shortly we had a much more compact printing facility
called a Dover. It was then duplicated and soon became the
workhorse printer, not only for PARC, but for a number of
other computer science labs around the country as well.
Some of the same logic that drove that printer now resides,
in far more compressed form, in the tiny commercial laser
printer that sits on my desk here at home.

Many of the programs that came out of PARC arose
because the person devising them wanted such a tool.
Chuck Thacker, as a hardware designer, envisioned a
graphic logic-design system that would permit the
automatic production of wire-lists directly from logic
drawings, previously a terribly error-prone manual process.
The front-end of such a system would be a program that
permitted one to construct and manipulate screen-based
logic drawings, so Thacker wrote such a program and
modestly called it Simple Illustrator (SIL) because it was
useful for making all sorts of drawings as well as logic
diagrams. The mouse at PARC had three buttons and
Thacker used these in conjunction with various keyboard
keys to provide the necessary array of graphic functions.
Most programmers would have used the keyboard keys
mnemonically, but Thacker, realizing that the right hand
was occupied driving the mouse, chose to use keys in the
lower left side of the keyboard in such a way that the
necessary combinations lay conveniently under the left
hand. I have noted with pleasure that this piece of
cleverness, obvious perhaps, but only once you think of it,
has found its way into the conventions for standard
functions (such as Cut, Copy, Paste, and Undo) on the
Apple Macontish.

Severo M. Ornstein

226

Although the Alto was a wonderful computer, the
usual thing had happened: Ambition had already outrun
current capability and a new, more powerful machine was
needed for the software research proceeding in the lab.
Thacker and Lampson had all but completed the design of a
couple of prospective machines, and a new arm of Xerox,
which was trying to find ways to utilize ideas from PARC
and bring them to market, was supposed to build a number
of these research-prototype machines. But by the early
spring of 1977 it had become clear that this was not going to
happen and that if the machines were going to exist, our
own lab would have to find ways to finish off the designs
and build them. The hardware people, including me, balked
at this idea. We didn’t want to take on the chore of building
a machine that had already been designed; we wanted to do
more innovative work of our own. At this point, enter the
arch persuader, Bob Taylor. But before I continue with the
story, I must pause to say a few words about Bob himself.

When I had arrived at PARC, Jerry Elkind had been
director of PARC’s Computer Science Laboratory. By this
time, however, Jerry had gone on to other matters and
Taylor had taken over as director. Managing a bunch of
prima donna computer scientists, most of whom had
several outstanding alternative job offers at any given time
and all of whom had specialties he couldn’t possibly hope
to understand, was a job that only a Texan would
undertake—and Bob qualified. He has been described as an
administrator with no particular technical ability, but vision
and dedication were seldom so felicitously combined. I
think of his intuition as something like an itch on the back:
You can’t scratch it yourself and can only direct someone
else to the right general area. But when they finally light on
the right spot, you certainly know it. I think that’s how Bob

Computing in the Middle Ages
A View From the Trenches 1955-1983

227

directed research. Although he was not an engineer, he had
a truly extraordinary sense of what was important and
what was needed. In this he no doubt adopted much of
J.C.R. Licklider’s philosophy, but he believed in it to the
bottom of his soul. No doubt his zeal at times verged on
mania (as viewed by some who stood in his way), but I
think the importance of this zeal, and the vision that
underlay it, has often been underestimated. His technical
betters at PARC repeatedly bowed to his judgment, and,
following his lead, deployed their skills to the best of their
abilities in pursuit of his vision. In many ways the Alto was
the culmination of a sizeable piece of that vision.

Bob’s managerial style consisted in gathering together
the brightest researchers he could find and giving them all
the support and encouragement he could muster, with little
direct interference. In addition to the regular staff members,
he attracted to the lab a variety of associates from
universities who were given part-time appointments. One
of the more colorful (and brightest) of these was Bill Gosper
from MIT. Bob’s complacency was tested one day when a
young associate of Gosper’s showed up in the lab wearing a
long, brightly-colored African dress. Nothing unusual
about that, except that the associate was male. Bob didn’t
say anything, but I suspected that his Texas background
was a bit stressed. More to the point, I can imagine that he
was also thinking, “if some Xerox executive comes by
today, I’m going to have a problem.” Sometime later Bob,
Ed Fredkin (visiting from MIT), and I were deep in
discussion in my office when the young fellow happened
by the door. Fredkin immediately leapt up to give him an
enthusiastic greeting. Clearly he was well known and
highly regarded at MIT. In fact a year or two later he
showed up in my office, this time wearing a three piece suit

Severo M. Ornstein

228

and looking extremely successful. He had started his own
company and it wouldn’t surprise me if today he is a very
wealthy man.

The disagreement within the lab about whether and
how to proceed with the building of an altogether new
computer was grist for Taylor’s mill; you could almost see
him rubbing his hands in glee. He arranged for a series of
lab-wide meetings to discuss what to do. I felt rather like a
condemned prisoner sitting down with a group of
executioners to discuss the forthcoming beheading. Over
the course of very few meetings the size of the steam-roller
became evident: It was made clear that we could be either
the lubricant or the sand in the wheels of progress—it was
entirely up to us. Laura and I took a long backpack trip at
that point, in the course of which the reality of the situation
became apparent to me. We actually had no choice. Unless
we wanted to leave PARC (which one of the group actually
chose to do), we were in for it.

I was asked to head the project to build the larger of the
two machines, the Dorado, and acquiesced only under the
condition that it be a joint partnership with Ed McCreight,
whom I’d identified as one of the brightest, if not the
brightest, person around. One of us had to know what he
was doing, and Ed, in addition to being brilliant, was
someone I knew I could work with comfortably—anyone
could. Of course Butler, who understood the design better
than anyone else, would also be on hand to help bail when
the water started to rise around our necks. But there had to
be some quid pro quo and I laid down other demands as
well: I asked for and got a sizeable crew of people and then
specified a schedule that I believed in, which everyone else
thought absurdly pessimistic. Butler took me aside and told
me that if people had any idea how hard such projects were

Computing in the Middle Ages
A View From the Trenches 1955-1983

229

going to be, they would never have the courage to
undertake them in the first place. I took this under
advisement, but decided that there was a downside to over-
optimism in which morale went through the floor as
schedules started to slip. With this bunch, there was no
question of people not working hard, regardless of official
schedules. As Taylor himself had wisely observed, the far
bigger problem was to keep people from burning
themselves to a cinder. His technique had been to hire
highly motivated people and thereafter frequently tell them,
“You look tired, better go home and get some rest.” I stuck
with my prediction; others could believe what they liked.

Not surprisingly, it turned out to be both a lot of hard
work and a lot of fun. It took us just about the two years I’d
predicted to get a prototype working. Half way along, as
spirits were flagging a bit, we took the entire group for a
several-day retreat at a posh resort in Yosemite Valley
during which we reviewed where we stood and what
remained to be done. It was a welcome breather. It had been
such a struggle that when the machine finally began
working, some worried that it might never be possible to
build the multiple copies to populate the lab as planned.
Once again our faithful technicians were to surprise us and
in the fullness of time working machines began to roll off of
a mini-production-line (affectionately dubbed “The
Garage” by Thacker) under their ministrations.

The Dorado was a much more powerful machine—
faster, more capacious memory, disk, etc.—than the Alto
and, of course, had a very different bottom-level internal
structure. But from the user’s point of view it did not
appear significantly different from the Alto—just a lot
faster. However, it was physically much bigger and it
quickly became clear that, unlike the Alto, having one of

Severo M. Ornstein

230

those in your office with you would be intolerable. It was
big and noisy and generated a lot of heat, requiring serious
air conditioning. So we (reluctantly) retreated to the old-
fashioned idea of a machine room in which rack mounted
machines could live and make all the noise and heat they
wanted. Nonetheless, they were personal computers, with a
cable connecting the screen, keyboard, and mouse in each
office with the user’s own machine in a rack, roaring away
downstairs. From the user’s point of view, things had
gotten quieter, office space had been freed up, and, most
importantly, things happened in a fraction of the time they
had previously taken. The Altos had had removable disks
about 15” in diameter, weighing perhaps five pounds, and
containing about the same amount of data as fit on a
diskette circa 1990. These had been replaced in the Dorado
by enormous drives (think fork-lift) whose platters held the
unbelievable quantity of eighty megabytes per machine—
and later the even more unbelievable quantity of three
hundred megabytes each. Many times more capacious disk
drives now fit comfortably in a tiny laptop. Back then it
took two strong men to lift one, and a fork-lift was
employed to put the drives in and out of the machines—a
mere twenty years ago.

Computing in the Middle Ages
A View From the Trenches 1955-1983

231

Chapter 20

Music, music, music; bright students;
Mockingbird

y the beginning of 1980 I was at last coming somewhat

free of the Dorado project and was looking forward to
revisiting my old interest in developing a computer-aid to
notating music. I began poring over piano scores trying to
understand the rules that governed standard music
notation. What I really wanted was a music typewriter in
which the computer would sense what was played on a
(piano-like) keyboard and would produce a score directly
from that. I was pretty sure that composers would relish
such a thing, but I also knew that it was considered bad
form to “compose at the piano.” I decided to inquire of
several prominent composers—Leonard Bernstein, Aaron
Copland, Samuel Barber, and Virgil Thomson as it turned
out—just how they went about the process of writing
music. Almost all of them said “Well, yes, I use the piano
because I happen to be a skilled keyboard player—but no
one else does.” I knew what to make of that. But of course
no matter how much I waved my hands, trying to describe
what I had in mind, none of them could possibly have any
image of what I might be talking about. I doubt very much
that at that point any of them had ever seen a computer
screen, much less a mouse, in action.

I decided to consult existing computer-music experts
and arranged to give a talk at IRCAM, a computer music
research center in Paris. But I came away feeling that most

B

Severo M. Ornstein

232

of my audience were surprisingly naive, not so much about
computers but about music. I tested the waters at a few
other places where computers and music were being joined,
but found little sympathy for, or understanding of, what I
was up to. The only person who showed any enthusiasm
for what I was proposing was Don Knuth at Stanford. It
seemed clear: I would have to proceed on my own and trust
that if I succeeded, the results would speak for themselves.

It would, of course, not be difficult for a computer to
sense the note-strokes, that is to determine what notes were
being played and at what times. That kind of information
had long ago been recorded on piano rolls, and of course
we could get the same kind of information into a computer.
But piano roll “notation” could not be read in any useful
way by human beings. Instead, for human consumption,
music (particularly the timing) is represented symbolically.
Furthermore, in addition to the noteheads, scores include a
great deal of clarifying notational information that exposes
the internal structure of the music and suggests roughly
how it should be played. This symbolic representation,
which has evolved over the centuries as music itself has
evolved, is essential in enabling humans to read and play,
music at reasonable speeds.

So the question was how to transform raw note-strokes
into the symbolic form in which music is normally
represented in scores. The more scores I studied, the more
doubtful I became that it would be possible for a program
to infer the symbolic information directly from the raw
note-strokes. I had seen far too many people come a cropper
working on precisely this sort of artificial intelligence job,
and as a pragmatist, intent on demonstrating a working
tool, I was determined not to fall into that trap. I concluded
that any attempt to do the transformation automatically

Computing in the Middle Ages
A View From the Trenches 1955-1983

233

would, at best, be imperfect and would therefore require
user tools that could redo any part of the job to repair
mistakes. So why not start by building those tools? They
would enable a person to do the complete job, and later on
any parts of it that turned out to be susceptible to
automation, could be automated. This sort of amanuensis
approach to problems that require human intervention, in
which the computer acts as a sort of scribe/assistant, had
been promoted almost a generation earlier by J.C.R.
Licklider. It seemed to fit this problem well.

Gradually I worked out a scheme in which the user and
the computer in a kind of partnership could work over the
note-strokes, gradually massaging them into something that
resembled a score. I knew I could connect a keyboard to a
Dorado in such a way that the program could measure the
note-strokes, but beyond that lay a sizeable programming
job with which I knew I would need help.

Like several other Silicon Valley companies, Xerox had
an arrangement with MIT whereby each year a few selected
students would spend the summer working under the
direction of a senior researcher on some mutually
interesting project—an apprentice arrangement that
benefited everyone involved. They came for three
successive summers, and in their third year they chose and
pursued a project that would constitute the topic for a
master’s thesis.

In the late 1970s I was one of those who helped to
choose the students, and a great pleasure it was. PARC had
an excellent reputation so we had the cream of the crop
from which to choose. But each year the choice became
more difficult as the students seemed to get brighter and
brighter. Having eliminated anyone who didn’t have
straight As, we were still confronted by tough choices. We

Severo M. Ornstein

234

gave them exercises to work out while we stood by and
observed how they approached problems. Most were
imperturbable and exhibited frightening competence. They
were also surprisingly personable, belying the typical MIT
nerd image. The first year I deliberately chose a fellow by
the name of John Maxwell III who seemed so bright and
creative that I wondered if perhaps he would turn out to be
a bit eccentric. (I needn’t have worried—John has today
become one of PARC’s leading researchers.) In his first year
I was pleased to find that John chose to work in Alan Kay’s
group where unconventionality was not only tolerated but
cherished. Toward the end of his second year, about the
time that I was mulling over my music notating ideas, I
learned that John had expressed interest in working on
some sort of music project for his thesis. Within days we
began working together in a partnership that was to prove
wonderfully productive.

The system we designed was one in which the user was
provided with powerful tools for superimposing
information about musical structures (measure lines,
chording, note durations, note groupings, etc.) onto the raw
note-strokes. Once that was done, the program could then
utilize this information in making a reasonable guess about
further refining the symbolic representation—which could,
in turn, be further adjusted and corrected by the user.

Simple synthesizer keyboards were already available,
and although MIDI (the now standard musical instrument-
to-computer interface) hadn’t yet been devised, it was
simple enough to connect a keyboard to a Dorado in such a
way that all note-strokes could be measured in great detail
and the instrument’s sounding apparatus operated by a
program. By the time that was done, John had some
elementary software ready to try out. In addition to

Computing in the Middle Ages
A View From the Trenches 1955-1983

235

deciding on the underlying data formats (which would
determine what kinds of user features would be practical),
we had discussed which features to include initially and as
John worked away, I stood back and cheered. Every few
days more features came alive, and then we would discuss
what to do next. Over the course of the summer of 1980 I
saw my dream of over two decades gradually become a
reality as John built one of the first applications on the
Dorado utilizing its new operating system. He dubbed his
program “Mockingbird,” and it was a triumph. It was
enabled not only by John’s extraordinary cleverness, but
also by the Dorado that was far more powerful (especially
in its graphics capabilities) than anything previously
available. In the fall, we gave an enthusiastically-received,
PARC-wide lecture demonstration. Among other things it
showed off the Dorado itself for the first time. A few
months later, after finishing a few more features, we made a
demonstration videotape.

Today Mockingbird is recognized as a pioneering
classic. Although modern personal computers are far more
powerful than the Dorado, some of the fundamental ideas
embodied in Mockingbird have yet to be adopted in the
many commercial music software products that have
appeared on the market in recent years. Part of the reason
for this is that most of these products are designed to cater
to a marketplace in which many of the complex features of
classical music are irrelevant. We, on the other hand, were
working towards a tool that we felt would be useful to the
next Beethoven when he comes along.

Severo M. Ornstein

236

John, Severo, and Mockingbird

Computing in the Middle Ages
A View From the Trenches 1955-1983

237

Chapter 21

The beginning of the end; CPSR and
nuclear wars; clerical errors and the end of an
era

n truth, my story is drawing to a close. In some ways

it was over by the time I’d arrived at PARC. Except for the
explosion of the Internet, the world into which I then
stepped, though confined within PARC’s computer labs,
was already surprisingly little different from the
computerized world we all inhabit today.45 Indeed there are
some important technical differences that make today’s
computers more accessible and usable, but the Altos that
were then spreading throughout PARC were—with the
exception of size, cost, and speed—very little different in
principal and mode of use from today’s personal
computers. I had seen it all begin with the LINC and had
followed the development (albeit with some side trips)
through to the point where large commercial interests
would now grab the ideas and run with them, smoothing
the rough edges, making the devices smaller, cheaper, and
faster, but adding very little that was fundamentally new.
Proliferating applications seemed to be where the future
lay.

45 Granted, we had to share access to printing and large file storage
facilities which today sit respectively on my desk and inside my computer.

I

Severo M. Ornstein

238

In 1980 Ronald Reagan was elected president, and
within a short time I began to fear for my life. I had been
concerned for many years about the threat posed to future
generations by the growing stockpile of nuclear weapons,
but here was a president who didn’t appear to have
sufficient comprehension of the implications of these
weapons. The Soviet leadership seemed equally unaware
and blasé, and it began to appear entirely possible that a
serious nuclear blunder might be committed by one side or
the other. The threat seemed to be moving inexorably closer
in time.

In October of 1981, in response to what seemed like
increasingly irresponsible statements by then Secretary of
Defense, Alexander Haig, I sent an email message to the
PARC community, expressing my concerns and
announcing the formation of a new net discussion group.
Not surprisingly, there was immediate response. A
vigorous discussion ensued that ended the following year
in the formation of an organization that came to be known
as Computer Professionals For Social Responsibility
(CPSR). Over the next few years Laura and I would be
preoccupied with building and running that organization
and attempting to put it on a stable financial footing.
Although we are no longer directly involved, it is still alive
and well today, over twenty years later.

When Ronald Reagan made his famous Star Wars
speech, some computer scientists climbed on the
bandwagon where money would be plentiful and where
there would be challenging engineering problems. Others,
looking at both the technical problems and the threat posed
by an increased arms race, decided that the whole
enterprise was a dangerous and provocative undertaking.
The Strategic Defense Initiative was the subject of intense

Computing in the Middle Ages
A View From the Trenches 1955-1983

239

debate within the computer science community and sadly
even caused rifts between colleagues. Public debates, many
arranged by CPSR, raised the issue to national prominence
and pitted scholars and scientists against powerful forces
with vested interests. There were many detailed arguments
having to do with the need for such rapid response that one
was forced to rely on extremely complex and therefore
untrustworthy computer systems for launch on warning.
Several of us wrote a book Computers In Battle—Will They
Work? I like to think that our small organization contributed
to limiting the extent of the project, although probably the
cost and repeated experimental failures have proved far
more effective than our meager efforts. Unfortunately, like
so many defense programs, once begun, Star Wars seems
likely to continue indefinitely. It has great appeal for those
legislators who hope for technological solutions to
problems, and it is lucrative for the participants. These two
factors seem sufficient to guarantee it perpetuity, and
indeed, as I write this a new president, George Bush, is
pressing forward with development of such a system,
ignoring the advice of scientists and concerns about
violating the international Anti Ballistic Missile treaty.

In the summer of 1982, as Laura and I were preparing
to depart for a climbing trip in the remote mountains of
British Columbia, I got a call from the personnel office at
PARC. They announced that through a clerical error
(blunders everywhere) I had been overlooked in an offer of
early retirement, but that in fact I qualified—and did I wish
to take it? Good Lord, I said, how would I know? I
explained that the car was packed, that we were planning to
leave immediately for a month’s vacation, and that I
couldn’t possibly answer such a question on the spot. Since
the oversight had been theirs, I was allowed to postpone the

Severo M. Ornstein

240

decision, and as we drove away I said to Laura “Guess
what?”

As we drove north we discussed the situation. The
years in which I had been able to make a significant
contribution were nearing their end. Many of the big
questions about machine architecture had been explored
and the whole computer field seemed to be maturing to the
point where commercial exploitation, which had never
much interested me, would increasingly dominate the
scene. We had been fortunate to ride the crest of a wave of
exploration and innovation for nearly thirty years, an
unbelievably exciting period. Surely it was a good time to
“leave ‘em laughing.” In fact, we had intended to retire
within the next few years in any case. We wanted time to
explore the world’s mountains before we were too decrepit
to do so. We weren’t sure whether we could afford
retirement at that juncture—I was only 51—but decided
that we could probably manage it if we sold our house in
the bloated Silicon Valley market. So from a dusty phone
booth beside the road in the middle of nowhere in British
Columbia, we called a startled California real-estate agent
and told her that the key was under the mat, could she
please try to sell our house while we were gone. Then we
climbed onto a helicopter and proceeded to forget the rest
of the world while we enjoyed mountain climbing for the
next month.

When we returned home we found that there were
interested potential buyers for our house, so I called the
personnel office to inquire when I finally had to make a
decision about retiring. An embarrassed pause ensued, after
which I was told that another mistake had been made, that I
actually hadn’t been eligible after all! But, as I explained
shortly thereafter to George Pake, in the course of the

Computing in the Middle Ages
A View From the Trenches 1955-1983

241

month away, my mind had, in fact, decided to retire. After a
brief negotiation it was agreed that I would remain for one
more year and then take early retirement.

When I told Bob Taylor what had happened, after
exploding all over the personnel department, he said
simply “What will you do?” He, who had such fierce
dedication to a mission, could not comprehend that, despite
my apparent enthusiasm, I’d been merely dabbling in the
computer field and had numerous other interests and
concerns46. For me the years working with computers and
computer design had been a delightful game that brought
me in contact with many extremely bright people. I’d
played the game with great energy, and even at times with
considerable conviction, but there were many other things
that I found equally compelling. By then I was deeply
involved in the struggle to combat what I saw as various
forms of nuclear lunacy, and I’d always wanted to be able
to dedicate more time to musical endeavors.

At the same time a more local war was shaping up. For
many years there had been friction between Bob Taylor and
his boss, George Pake, the director of PARC. Bob’s
missionary zeal rendered him all but unmanageable.
Furthermore, he had a large, gifted, and dedicated
following within his laboratory that gave him tremendous
leverage with any superior who might have serious
disagreements with him. After years of struggling with Bob,
with whom he naturally didn’t always agree, George
moved on and away to become director of research for all of

46 Taylor himself retired a good many years afterwards and has since been
awarded the National Medal of Technology for his many contributions to
computer science.

Severo M. Ornstein

242

Xerox. A new director, Bill Spencer, was put in place at
PARC and, discovering Bob’s intransigence, he almost
immediately made the fatal mistake of trying to force Bob to
“behave.” Bob promptly resigned. Spencer may have been
somewhat startled by that, but he had no way of
anticipating the revolt and mass exodus that would ensue.
Some of the rest of us, however, foreseeing this likely
eventuality, decided to pay a visit to the president and
chairman of the board of Xerox in order to voice our
concerns and plead for their intervention—alas to no avail.
The die was cast and as we predicted, within a very few
months the lab began to empty as, one after another, people
joined Taylor in forming a new Systems Research Center for
DEC in downtown Palo Alto. Within a year most of the
senior members and many of the junior members of the
Computer Science Lab, arguably the best computer lab in
the world at the time, had disappeared from Xerox.

It was the end of an era and seemed a terrible waste at
the time. In retrospect, however, perhaps it was fitting.
PARC had made truly extraordinary contributions to the
computer field during the 1970s, an act that would have
been nearly impossible to follow. Since I was on a
retirement track, I stayed on through most of the good-bye
parties until the time came for my own departure. Although
I’d decided to retire, I nonetheless toyed briefly with the
idea of joining my chums in their new digs, but ultimately
decided it was time for a new and different life, pursuing
other, long-postponed interests.

A bright note was struck by the fact that almost exactly
the day I officially retired, the 25th anniversary celebration
of the birth of the LINC took place in Washington—the
LINC, which had been so much the crucible in which I was
truly formed as a computer scientist. Laura and I attended

Computing in the Middle Ages
A View From the Trenches 1955-1983

243

the celebration where we were delighted by a talk given by
Alan Kay and bored stiff by a speech given by Margaret
Heckler, the then secretary of Health, Education, and
Welfare. which was sponsoring the celebration and
belatedly trying to claim its share of the credit for what had
happened. Most of all I was thrilled to re-encounter
numerous old LINC friends whom I hadn’t seen in many
years.

Severo M. Ornstein

244

Chapter 22

A review of the bidding

here is considerable debate about who “invented”
the personal computer, and when. There is no simple
answer to such a question and the definition of the term
itself has evolved over time. Lots of people contributed
ideas over many years as increasingly close approximations
were constructed, eventually culminating in the machines
we know today. Those who receive most of the publicity are
those who made such machines widely available and made
the most money. And indeed if by “personal” we mean that
most people can own one, then certainly general availability
and affordability are important features. As a final exercise,
let me trace the story backward in time, pointing out what I
see as the principal links in the chain of dependencies on
which present personal machines rest.

What ultimately made it possible to sell computers at a
price most people could afford were developments in
integrated circuits, in particular the development of the
microcomputer chip in the late 1960s. Until then the
minimum cost of anything that one could call a computer
was several tens of thousands of dollars—way beyond the
reach of most individuals. Computers were also physically
big, needed air conditioning, and often required the
ministrations of technicians. The advent of the Intel 8080
chip provided, for the first time, a core computer building
block that was affordable. Other, more advanced chips
followed in rapid succession.

T

Computing in the Middle Ages
A View From the Trenches 1955-1983

245

Almost as soon as these chips appeared, hackers
commenced using them to begin putting together things
that were certainly personal and certainly computers, but
bore no resemblance to what we today call a personal
computer. Little machines, most notably the Altair,
consumed the attention of hackers, but they were strictly
playthings for nerds and most people would have had no
interest in such gadgets. Nonetheless by the early 1970s,
some of the hackers, Steve Jobs among them, were able to
start selling small, relatively inexpensive computers that
could sit comfortably on a desk.

But interacting with these early small, really
inexpensive machines was still extremely arcane and
cumbersome. Before personal computers could spread
beyond nerdville, they had to become both more usable by,
and more useful to, ordinary people. That required
standing on the shoulders of those who had pioneered user
accessibility and user applications. By the mid 1970s, PARC
had developed and propagated the Alto within its walls. All
of the important functional and user features of today’s
personal computer were manifested in that machine. Xerox,
however, failed to take advantage of what its researchers
had done. The reasons they so profoundly dropped the ball
are explored in the books Fumbling the Future and (more
recently and more thoroughly) Dealers of Lightning. [See
Bibliography]. Whatever the reasons, they certainly missed
the boat, and one day Steve Jobs found his way inside
Xerox PARC where he saw what was missing in Apple’s
early machines. He shortly hired a key Alto software
developer (Larry Tesler) and quickly adopted the PARC
concepts into his machines, whereupon Apple was up, up
and away, heading fast towards the Macintosh.

Severo M. Ornstein

246

But where had the PARC ideas come from? The
researchers there had helped to define what such a thing as
a personal computer might be. It was a matter of defining
the capabilities and method of use that would make a
computer broadly useful and appealing. Initially these
researchers had to work with the relatively big, expensive,
clunky components that were available to them, foreseeing
that the parts would eventually become sufficiently small,
cheap, and fast that computers could become accessible to
everyone. The researchers not only brought together ideas
from many sources, they also made enormous contributions
themselves. Probably the two most important of these were
the decision to embed the screen image in the computer’s
main memory and the development of local area
networking. Capitalizing on these key architectural
features, they proceeded to implement a graphical user
interface and to develop prototype versions of numerous
applications that would surge through the personal
computer markets over years to come.

But many of the ideas of interactive use through mouse
and screen that came out of PARC and that we all
experience today, were refinements of concepts and
techniques pioneered by Douglas Engelbart at SRI in the
1960s. Lacking any such personal machine as an ALTO,
Engelbart and his associates had developed their ideas
using a specially doctored-up Time Sharing system. In 1968
Engelbart gave the historic demonstration of his work that
permanently altered the minds of his contemporaries and
laid the foundation for much of the ensuing work at PARC.

During the mid-1960s, although some of the smaller
machines were shrinking in size, their cost, for most people,
remained out of reach and Time Shared use of giant
machines dominated the research scene. These machines

Computing in the Middle Ages
A View From the Trenches 1955-1983

247

allowed a limited amount of interactive use through non-
display terminals, but their more important contributions
consisted in the exploration of memory management
schemes and multiprocessing. We have to go back all the
way to 1962 to discover the earliest machine that was
designed specifically for individual use—the LINC.

Although he clearly believed that computers would one
day become small, cheap and fast, I doubt that Wes Clark,
or anyone else at that time, envisioned today’s personal
computers with any precision. In 1962, a personal computer
meant something that an individual researcher (not a
homebody) controlled and could casually turn on and off
like other pieces of lab equipment. It also had to be within
plausible reach of a typical lab manager’s budget which, at
the time, meant on the order of $25,000. While he was at it,
Clark threw into the mix a collection of features that would
make machines useful far beyond the medical research
community for which the LINC was originally conceived.
The display screen and control knobs were primitive
instances of today’s screen and mouse that clearly
suggested interactive use. LINC tapes were the original
forerunners of today’s diskettes, floppies, etc., upon which
personal computers still depend. All in all it was to prove a
stunningly prophetic design, but despite its seminal rôle,
only a handful of people today have ever heard of the
LINC.

And of course the LINC did not come totally out of thin
air either. Its predecessors were TX-0, TX-2, and Whirlwind
which, despite their enormous size and cost, could arguably
be dubbed “personal” computers. Unlike most other
machines of the day, that were either doing batch-
processing or, later, Time Sharing, TX-2, when I knew it,
was used for long periods by individual programmers. This

Severo M. Ornstein

248

was at Wes Clark’s insistence, and only over his dead body
(i.e., after he left Lincoln) was TX-2 outfitted with a Time
Sharing system.

To me, these then seem the major steps in the long
process that has led to today’s personal computer. You will
note that although PCs, or derivatives (clones) thereof, now
dominate the personal computer field in terms of numbers,
in this review I have altogether failed to mention IBM. As
happened on so many previous occasions, they were
practically the last to “get it.” Personal computers were
fundamentally anathema to IBM thinking, so it is hardly
surprising that IBM climbed onto the personal computer
bandwagon late in the game. The initial success of PC’s was
due not to any significant conceptual contribution, but
rather to IBM’s giant size which swamped everyone else
once they entered the market. But it was only with
considerable reluctance, and the assistance of Microsoft,
that a semi-reasonable user-interface eventually come to
inhabit PCs. Their later profusion arose from the fact that
the PC was made an open system for software developers
and of course from the numerous clones that have arisen.
Finally, to complete the circle, it’s been suggested that IBM
was rescued from the dustbin of history only by the
millions of dollars of government money that poured into
their coffers from Air Force contracts associated with SAGE
in the 1950s. Sic transit, and all that.

Computing in the Middle Ages
A View From the Trenches 1955-1983

249

Severo M. Ornstein

250

Epilogue

n the summer of 1999 Laura got a call announcing

that the following year there was to be a mathematics
conference in Berkeley honoring her father, her mother, and
her grandfather, all of whom were number theorists
associated with the University of California at Berkeley.
Many years ago, in searching for ever larger prime
numbers, her father, D.H. Lehmer, constructed a number of
devices known as “sieves” whose purpose was to
mechanize the search by using techniques well known to
mathematicians for bypassing factorable numbers. Today
such algorithms are either programmed for fast digital
computers or built using electronic devices, but prior to
ENIAC there were no electronic devices available for such
computation. Instead these early sieves were semi-
mechanical devices made out of gears, bicycle chains,
“electric eyes” and other unlikely, Rube Goldbergian
paraphernalia. One machine that used strips of movie film
punched with a conductor’s punch (for those who
remember trains and trolleys), spools from sewing thread,
etc., had to be lubricated with baby powder and thus
became known as the “Babychine.” These ingenious
machines bear a superficial resemblance to some of
Babbage’s early attempts to build a mechanical computer,
and indeed these were computers, albeit of a rather
specialized sort.

Today they reside in the Computer Museum History
Center collection at Moffett Field in Mountain View,
California. Thinking that it would be nice to have these
machines present at the forthcoming conference, and even

I

Computing in the Middle Ages
A View From the Trenches 1955-1983

251

operating if they could be resuscitated, we visited the
History Center, together with Wes Clark who happened to
be in California at the time. At present the History Center is
more like a warehouse where things are lined up in “visible
storage,” awaiting funding for a more gracious setting. As
we walked down the aisles, past dusty pieces of ENIAC, old
SAGE machines, ancient CDC, IBM, and GE machines, we
were struck by the enormous cleverness and the variety of
ideas that were tried and later abandoned as the technology
marched forward, obsoleting one after another of these
conceptions. And yet, here, like the Neanderthals, were the
manifest steps that had been necessary for that march to
proceed.

The sieves had been set out for our inspection and we
considered how they might be safely transported the fifty
odd miles to Berkeley for the conference. One in particular,
built with a large number of heavy steel gears, was encased
in a metal box held together with nuts and bolts that looked
as though they might have been useful in constructing the
Golden Gate bridge. That one apparently weighs nearly a
ton and gave us considerable pause. But others, the
Babychine and the bicycle chain machine (which had been
previously replicated by a graduate student for a master’s
thesis), appeared to present no problem.

Along one aisle we came upon a “classic” LINC, sitting
patiently beside less familiar neighbors. Perhaps because of
its physical size, or perhaps just because of its age, it was
not located, as it should have been, together with later
personal computers—an Altair, an Atari, an Alto—and we
pointed this discrepancy out to our hosts. This brought
home yet once again the need for reminding people of the
historic significance of the LINC as the earliest computer
designed explicitly for individual use and embodying

Severo M. Ornstein

252

primitive versions of most of the features that make today’s
personal machines so useful.

Seeing the Alto reminded me that many years ago I’d
been responsible for sending one from Xerox-PARC to be
placed on display in the Boston Computer Museum (now
absorbed into the Science Museum). As the machine was
strictly for display and didn’t have to work, I’d unearthed a
problematic chassis and told the technicians to stuff it full of
boards that they’d been unable to repair. There were plenty
of those and they’d filled it up indiscriminately, putting
memory boards and CPU boards and whatever they had
into random card slots. We’d bundled the whole thing up
and shipped it off to Boston.

About two years afterward I got a call from someone
who announced that he was trying to get the machine
running (!) and did I have any drawings that I could give
him? I couldn’t help laughing at the image of the poor guy
struggling to comprehend a machine thus thrown together
from stray broken parts, and I finally managed to persuade
him that it was a futile effort. Since then a working Alto has
apparently found its way into the Computer History Center
as Altos have taken their place alongside earlier computers
as memorabilia.

In 1980, while John Maxwell was putting the finishing
touches on Mockingbird, Laura and I trekked around the
Annapurna range in Nepal—a 250-mile circuit that includes
the traverse of a pass nearly 18,000 feet high. Toward the
end of the trip, near the village of Ghorapani, lies Poon Hill,
so named because, at that time at least, it belonged to a
Major Poon of the Nepalese army. On top of the hill the
Major had erected a most remarkable structure, a whimsical
wooden tower boasting two rickety stairways—one
presumably for up, and the other for down. From this tower

Computing in the Middle Ages
A View From the Trenches 1955-1983

253

the view to the north includes some of the highest and best-
known Himalayan peaks, among them, the Annapurnas,
Dhaulagiri, and Machupuchare. Turning to the south, you
look down toward India over the plains of southern Nepal
where lesser mountain ranges disappear into the distance.

Five years later, building our home in the hills above
the Pacific, we decided to call the place Poon Hill in honor
of the view which faintly resembles that to the south from
Poon Hill in Nepal. Later, in printing my father’s music, I
used the imprimatur Poon Hill Press. A couple of years ago
one of our friends, wondering where the name Poon Hill
might have come from, searched the web and found
references to Nepal. Thinking these irrelevant, he then tried
Poon Hill minus Nepal—whereupon his screen filled with
the titles of music I’d published that were listed at the
American Music Center’s web site.

I have not yet built my own a web site, and the older I
get, the less I rush to embrace the latest technological
fashions. Next week an old college friend of mine and I will
set out to climb a mountain in the heart of the Sierras. It has
been suggested that it might be prudent to take along a cell-
phone, just in case. But I can’t imagine doing such a thing—
a large part of the purpose would be lost. Today’s
generation is accustomed to being “connected” at a level
that is foreign to us old-timers. As always, something is
gained—and something is lost.

After I retired in 1983, we pulled the plug—
disconnected from the network and remained in electronic
darkness for nearly a decade, during which time the
ARPANET metamorphosed into the Internet. Meanwhile
my son David, who years before had dropped out of high-
school, was becoming a rising computer jock. Eventually he
persuaded me that getting reconnected was in order, but by

Severo M. Ornstein

254

then I had little idea how to go about it. He must have had
one of the more gratifying days a son can experience when
he appeared one afternoon with a modem under his arm.
Within a couple of hours he had me on-line and had given
me an intensive course in networking. After giving me one
final now-let-us-review-what-we-have-learned lecture, he
shot off to his next appointment, leaving me feeling that the
baton had been securely passed.

Reflecting on the preceding decades, I have come to
realize what a remarkable time it was. When we retired, we
wondered what it would be like to be no longer working.
That was nearly twenty years ago, during which time I’ve
learned that the enemy is within; that all that scurrying
about was in the nature of the beast and that retirement
could only alter its directions, not diminish its intensity.

Now that I’ve come to the end, I can see that, after all, I

have failed to achieve the principal thing I set out to do—to
bring you, the reader, inside of the process so that you
could feel what it was actually like. It was an impossible
goal, of course. One wishes so deeply to communicate at
that level—to share the actual experiences that have moved
one throughout life. But in the end all one can do is to
describe the externals without really penetrating to the
heart of the matter.

It is particularly difficult when one is describing a
process that is, by its nature, largely unfamiliar to most
people, where often the most dramatic moments are utterly
internal and not manifested in any external way
whatsoever. Sitting in a chair, chewing on a pencil, mulling
over a problem, suddenly there it comes, the insight you

Computing in the Middle Ages
A View From the Trenches 1955-1983

255

have been waiting for that solves today’s problem so
elegantly. It’s the experience of the beauty and the
excitement of such moments as well as the gradual
unveiling of where it might all be leading that one wishes to
convey and to share—the feeling of exhilaration as one
achieves understanding, comes over the next ridge on the
way to the summit. But analogies never really capture the
flavor or the feeling that comes with a particular experience.

These misgivings notwithstanding, perhaps by
describing some of my own experiences and reactions, I
have been able to convey some of the differences between
the styles and motivations that existed earlier and those that
obtain today. And I hope that in the process I have
managed to transmit a whiff of the flavor of discovery and
revelation during those now bygone years and to provide
some new insights into the origins of the surprising little
devices that we have come to take so much for granted and
that have so dramatically altered the lives of us all.

Severo M. Ornstein

256

Appendix I

The Synchronizer Problem

Most computers are “synchronous” devices, that is they

operate based on a clock that ticks regularly. Changes take
place in the state of the machine only at clock ticks. What
happens on a given tick depends on the state of the machine
produced by the previous tick. At each tick, information
about the changes that are produced must percolate
everywhere throughout the machine before the next tick
comes along—otherwise outdated or changing information
could produce incorrect behavior. The maximum clock rate
is thus dependent on the nature of the circuits, the wire
lengths, etc., that is, all of the things that determine how fast
signals travel around inside the machine.

But what about signals that come into the machine from
outside devices (such as disks, mice, printers, modems, etc.)
that operate at their own times, quite independent of the
machine’s clock? Consider, for example, a disk feeding data
into a computer’s memory. The data comes off the disk at
times that depend on the spinning of the disk, unrelated to
the timing of the computer’s clock. Suppose a new piece of
data has just arrived and is ready to be read into the
memory. Several different parts of the machine need to
participate in taking in the datum—the next instruction
must be delayed, memory pointers must be reset, etc. If the
disk simply holds up its hand at an arbitrary time with
respect to the computer’s clock and says “Datum
Available,” then, if the hand happens to go up at about the
same time as the clock ticks, some parts of the machine may

Computing in the Middle Ages
A View From the Trenches 1955-1983

257

see the signal and start to process the datum, while other
parts of the machine may not notice and may blandly
proceed with the next instruction. Chaos will result.

This much was well understood and to deal with it a
“synchronizer” was normally employed. On each clock tick,
the signal that says “Datum Available” would be sampled.
If it was found to be on, then a “Datum Ready” signal could
be turned on. Because “Datum Available” is sampled at only
one place in the machine, it would either turn on the “Datum
Ready” signal or, if it just missed it on one tick, it would
turn it on at the next tick. Because it comes on only at a
clock tick and not at some random time, it will have settled
down and be stable (either on or off) by the time of the
ensuing clock tick. It can thus be used throughout the
machine to bring about the processing of the datum.

This standard solution appeared to work and had been
used for many years. But it depended on the tacit
assumption that the device that stored the “Datum Ready”
signal would either be On or Off at a given clock tick
(depending on whether the “Datum Available” signal had
been noticed or not on the previous clock tick.) It was
generally believed that the devices used to store such
signals (flip-flops) switched between their two states in a
short, specifiable time—far shorter than the interval
between successive clock ticks. What we found was that
under certain circumstances that switching time could not
be depended upon. In particular, if a flip-flop was activated
by a marginal signal (such as occurred for example when
the “Datum Available” signal happened to turn on just as
the clock was ticking), then rather than turning over crisply
in the usual way, the flip-flop might stall in an in-between
state for much longer times than the specifications
indicated—in fact, theoretically, for arbitrarily long times!

Severo M. Ornstein

258

These special circumstances were statistically very rare,
happening only when the coincidence of signals was
extremely unfortunate. But we were able to demonstrate
that once in a great while, the “Datum Ready” signal,
supposedly rock-solid by the time of the next clock tick,
could itself still be wavering in indecision and could thus
produce erroneous behavior.

This was shocking news and meant that most systems
had a vulnerability that had hitherto been unrecognized. As
the speed of machines (their clock and data rates) had
increased, the problem started to show up with increasing
frequency. We suspected that many unexplained computer
failures of the sort that are never traced but that don’t
appear to re-occur after the machine is restarted, were cause
by synchronizer failures. As recorded above, I encountered
precisely this situation when working on the beginnings of
the ARPANET.

It is interesting to note that when we first discussed this
failure mode, there were a number of serious computer
scientists (some from the sacrosanct halls of MIT) who
argued that it simply could not happen. Those of us who
had observed it, not only knew that it could, but understood
that under the right circumstances it was inevitable. It was
shocking to find so much resistance among supposed
scientists.

Mackie describes the scene as follows:
“Tom and I made it our mission in life to convince the

world that there was a real problem here, and spent the
better part of a year taking on any comer who claimed he
could produce a glitch-free circuit that could resolve the
arrival order of two asynchronous signals unambiguously
(without using a “Trinary Flop-flop,” as we called the
concoction). We referred to such designs, publicly, as

Computing in the Middle Ages
A View From the Trenches 1955-1983

259

“move-the-glitch” circuits. In private we disdainfully
referred to them as “perpetual motion machines.” In every
case we were able to determine to where, in the design, the
ingenious designer had moved the glitch. In each case, the
glitch persisted, and the presenter was brought into
alignment with this new “correct” view of the universe. Our
fervor approached that of religious zealots. It was our
mission to stamp out anti-glitch apostasy wherever we
could find it.

“You might recall an ally we had in this effort. I’m sure
you met him. He was a truly mad Englishman (I believe he
worked for Motorola, but I could be mistaken) whose name
now entirely escapes me. Tom and I met him at a
conference in Chicago. He had written a paper on how this
“arbitration” problem, which is inherent in all digital
computers, would eventually doom the design of truly
large scale machines, as the error rate caused by these
random events would become so high that it would
eventually become intolerable. His article saw no solution
to the problem. We convinced him that there was indeed
light at the end of the tunnel.

“Hence the second paper which dealt with the solution
to the problem, the building of what we called, at that time,
an “Interlock.” It showed how using one or more boxes
containing a simple tri-state flip flop (“Zero,” “Wait,” and
“One” states), one could build a system that would arbitrate
the arrivals of any number of asynchronous signals with
non-ambiguous outcomes.

“I remember an embarrassing incident surrounding the
first demonstration of the Trinary Flip flop Interlock.
Charlie had invited those of us who had been doing some
of this ‘moonlighting’ (we did this in addition to our
daytime work of building macromodules) research to

Severo M. Ornstein

260

present it to the entire team. So on this particular day I
made a demonstration of my Trinary Flip-Flop Interlock
design with no small amount of hubris. But for some
reason it wouldn’t work properly. I stared at it, but I
couldn’t figure out what was wrong. Then Mish, who had
been watching intently, pointed out that I had wired it up in
reverse, and by simply swapping the connections
everything would work properly. The connections were
reversed and everything did indeed work as advertised. I
felt both humbled and pleased at the same time. I’ve
certainly never lost my admiration for Mish who was able
to smoke that one out so nimbly. The true industrial-
strength Synchronizer that is in use today was, of course,
eventually designed and built by Charlie Molnar.”

Computing in the Middle Ages
A View From the Trenches 1955-1983

261

Appendix II

The Bit-Map Display

The basic device used in most computer display

systems for many years has been the cathode ray tube
(CRT)—the same basic device that underlies your television
set47. Here, roughly, is how a CRT works. At the rear of the
tube sits an electron gun capable of firing a stream of
electrons toward the front face of the tube (the face being
the part you look at). The back surface of the front face is
coated with a material that glows briefly when electrons
strike it. By controlling the aiming of the gun while turning
the electron stream on and off, one can paint a picture on
the front of the tube. Depending on the particular kind of
coating used, an illuminated point will glow for a shorter or
longer time after being irradiated. The faster an image
fades, the easier it is to present rapidly changing images (as
in television), but the more frequently the points need to be
re-illuminated in order to avoid flicker, or even fading, of
the image.

These basic facilities have been used in a wide variety
of ways over the years. In one method, the gun is used as a
graffiti painter uses a spray can. The beam is turned on and

47 In recent years various alternative display technologies are used,
particularly in situations where size and weight are critical (as in laptops
and other portable devices). However many CRT-based displays still
occupy desks and counters around the world and no doubt will for some
years to come.

Severo M. Ornstein

262

off and it is moved about, just as the graffiti painter turns
the spray on and off with the finger-tip while continuously
redirecting it. This produces a series of illuminated lines
against an otherwise unlit background. Of course the
picture must be displayed repeatedly or it will shortly fade
from view. If a more slowly fading coating is used, then
problems will occur in depicting changing images.
However, the principal problem with this scheme is that the
computations of aiming directions for many kinds of
images are extremely complex, and thus most systems that
have used this technique have been limited to handling
segments of straight lines, for which the computation is
relatively straightforward. Many early display systems,
including the SAGE consoles, used this sort of “vector”
display—sometimes in conjunction with character-forming
masks.

In an alternative usage, an image is created by
displaying a sequence of dots to be brightened, each of
whose X and Y screen coordinates can be held in a table in
the computer’s memory or provided by specialized
instructions. Whirlwind, TX-2, and the LINC all utilized this
basic “point” display technique (with various frills). Only
the points to be illuminated needed to be addressed; the
remainder of the screen remained dark.

Today computer screens present an image the way
television does, by repeated scanning of the entire screen
while the electron beam is brightened or dimmed as the
scanning proceeds. To understand the scanning process,
consider how you read a book. Unless you are a speed
reader, you start at the upper left-hand corner of the page
and scan the first line, left to right. You then reposition your
eyes to the left end of the next line down, which you again
scan from left to right, etc., on down the page. That, in

Computing in the Middle Ages
A View From the Trenches 1955-1983

263

essence, is how a television screen works. The gun is aimed
at the upper left corner, and then sweeps rightward across
the top of the screen. As it sweeps, the beam is brightened
or dimmed so as to “paint” the topmost line of the desired
image. When the gun gets to the end of the first line, the
beam is turned off while the gun is repositioned to the left
end of the next line down, whence it again sweeps
rightward, painting the image’s second line as it goes. This
process continues until the entire screen has been painted
by a succession of horizontal lines, at which point the beam
is turned off, the gun is repositioned to the upper left
corner, and the entire process repeats—over and over again.
This process is called refreshing the display, because the
screen quickly goes blank if the process stops. It all happens
at unimaginable speed: The entire screen is painted in this
way several tens of times each second. At such speed, a human
is unable to follow the detail of the process, and instead sees
the picture in its entirety. If the picture changes on
successive repaintings, we see movement, just as we do in a
movie made by rapidly projecting a sequence of still
pictures. All such devices rely on the perceptual limitations
of our human visual system.

For normal television, the intensity of the beam, as it
paints successive lines, is supplied by a television camera
simultaneously scanning a live image (or by a previously
recorded signal of that sort). In a modern computer screen,
the bits representing the image are stored in the computer’s
memory where it can be readily manipulated by programs
and whence it is repeatedly used for refreshing the display
as described above. It takes a lot of memory to store an
entire screen image—there are many, many pixels (picture
elements), each of which occupies a bit in the memory (or
several bits for gray scale or color). For many years the cost

Severo M. Ornstein

264

of memory was far too great to allow such extravagance. It
was only when the cost of memory began to fall that this
sort of use became economically feasible.

Computing in the Middle Ages
A View From the Trenches 1955-1983

265

Bibliography

1. W. A. Clark and C. E. Molnar, A Description of the LINC,

Ch. 2, Computers in Biomedical Research, R.W. Stacy and
B. D. Waxman (eds) Academic Press, New York, N.Y.,
1965.

2. Mary Allen Clark, China Diary, Washington University

Magazine, Fall 1972

3. S.M. Ornstein et al, Computing in China: A Travel Report,

Science, Vol., 182, 1973.

4. Kent C. Redmond and Thomas M. Smith, Project

Whirlwind; The History of a Pioneer Computer, Digital
Press, 1980

5. S.M. Ornstein and J.T. Maxwell III, Mockingbird: A

Composer’s Amanuensis, Byte Magazine 9-1, 1984.

6. W. A. Clark, The LINC Was Early and Small, in A History

of Personal Workstations, Adele Goldberg ed. ACM Press,
1986.

7. S. M. Ornstein, Computers in Battle: A Human Overview,

Ch 1, Computers In Battle—Will They Work?, D. Bellin
and G. Chapman (eds).,Harcourt Brace Jovanovich,
New York, N.Y., 1987.

Severo M. Ornstein

266

8. K. Hafner and M. Lyon, Where Wizards Stay Up Late: The
Origins of the Internet, Simon and Schuster, New York,
N.Y., 1996.

9. S. Sellager, Nerds 2.0.1: A Brief History of the Internet, TV

Books, New York, N.Y., 1998.

10. S. McCartney, ENIAC: The Triumphs and Tragedies of the

World’s First Computer, Walker and Co. New York, N.Y.,
1999.

11. M. Hiltzik, Dealers of Lightning, Harper Collins, New

York, N.Y., 1999

12. J. Naughton, A Brief History of the Future: The Origins of

the Internet, Overlook Press, NY, 2000.

13. Leo Beranek, Roots of the Internet, A Personal History, The

Massachusetts Historical Review, Volume 2, 2000

14. M. Mitchell Waldrop, The Dream Machine, Viking Press,

2001

Computing in the Middle Ages
A View From the Trenches 1955-1983

267

INDEX

a-Linc, 106, 108, 110, 113
Abramson, Norm, 188, 222
address, 6
AFIPS, 194
air defense, 18, 22-24, 26, 36, 51
Air Force, 18-19, 23, 26, 48, 51, 57, 61, 104, 107, 211, 248
Aloha Network, 188-189, 222
Alto, 213, 217, 219, 220-221, 223, 226-227, 229-230, 237, 245,
251-252
AN/FSQ-7, 36
analog, 3, 65, 103, 107, 111, 128, 143
Anderson, Harlan, 107
Anné, Antharvedi, 154
ARPA, 156-159, 161, 166, 167-169, 177
ARPANET, 9, 53, 156, 165-166, 177, 179, 184-185, 210, 212,
218, 253, 258
Assembler (assembly program), 2, 37-39, 110, 118, 123-124
ASW, 70
asynchronous, 137-139, 258-259
Babbage, Charles, 10
Barber, Samuel, 231
Barker, Ben, 170-174, 178, 181-182, 206
Barnaby, John, 164-165
Barta Building, 8, 19, 25
batch processing, 39, 42, 92-93, 100
BBN, 95, 156-157, 159-161, 165, 167-172, 174-175, 177-180,
182-183, 186, 190, 204, 210- 214, 224
Bernstein, Leonard, 231
Best, Dick, 64, 107
binary instructions, 39
Bobrow, Danny, 160, 169
Boggs, David, 189, 222

Severo M. Ornstein

268

bootstrap, 3-5, 221
BRAVO, 222
Briscoe, Howard (Howie), 1-5, 7, 9, 14, 17, 20, 22, 24, 54, 63
Burchfiel, Jerry, 161
Bush, Vannevar, 34
C.mmp, 207
CADET, 62
Cape Canaveral, 57- 59, 61
Cape Cod system, 17, 19, 25
Cape Kennedy, 57
Cerf, Vint, 177
CHASM, 152, 154
Cheatham, Tom, 195-196, 198
Chomsky, Noam, 52, 53, 90
Clark, Wesley (Wes), xxi, 6, 35, 64, 79-80, 82-83, 89, 92, 96,
102-109, 112-113, 119, 122, 124-126, 133-138, 140-141, 146,
148, 153, 156, 166, 198-200, 203, 247-248, 251
CODABO, 81
coding sheets, 37-38
Communications Biophysics Lab, 102, 120
compiler, 44-45, 110, 217
console, 19-20, 37, 39, 81-82, 84, 89, 220-221, 262
Copland, Aaron, 231
Corbato, Fernando, 95
core memory, 8-9, 14, 19-20, 25, 79, 125
Cosell, Bernie, 169
Cox, Jerry, 125, 133, 145
CPSR, 237-239
Crocker, Steve, 177
Crosstelling, 23, 26
Crowther, Will, 52, 54, 168-170, 206
CRT, 89, 218, 261
David, Ed, 197
Davies, Donald, 184
debug (debugging), 37, 40-43, 82, 87, 110, 117, 124, 126, 128-
129, 182-183, 221, 224

Computing in the Middle Ages
A View From the Trenches 1955-1983

269

Digital Equipment Corp. (DEC), 36, 63, 67, 95, 107, 113, 127-
128, 141, 156, 161, 242
Direction Center, 20, 23-24, 27, 36
Dorado, 213, 228-231, 233- 235
Dover, 225
drum memory, 6, 33
dump, 40
Earnest, Les, xxi
Eckert, J. Presper, 11-12, 14-15
EDSAC, 3, 5, 14
EDVAC, 14
electrostatic storage tube, 8
Elkind, Jerry, 157, 160-161, 214, 226
Engelbart, Doug, 213, 217, 219, 246
ENIAC, 2-3, 10-12, 250-251
Ethernet, 188-189, 213, 221-223
Farley, Belmont, 6-7
Feuerzeig, Wally, 159
Fiala, Ed, 160
flip-flop, 8-9, 257, 259-260
flow diagrams, 38
Forgie, Jim, 64, 65
Forrester, Jay, 8, 79, 124
FORTRAN, 44-45
Frankovich, John, 64-65, 88
Fredkin, Ed, 95, 227
FX-1, 87-90, 123
GAG, 2
Gates, Bill, xii
Giant Brain, xiv, 15
glitch, 140, 173, 258-259
Goldring, Sidney, 142, 144
Gosper, Bill, 227
Gould, Laura, xviii, xxi, 164, 203-204, 210, 214, 228, 238-240,
242, 250, 252
Haig, Alexander, 238

Severo M. Ornstein

270

Hanscom, 48, 104
Heart, Frank (Frank), 52-53, 58, 63, 67-68, 79-80, 154, 157,
159, 165, 167, 169, 172, 175-176, 178-179, 184, 186, 190, 206
Heckler, Margaret, 243
Holt, Anatol, 198
Honeywell, 171-173
IBM, 13, 19-20, 26, 29, 35-36, 39, 41, 44, 62, 81, 85-86, 90, 92,
159, 248, 251
IBM 704, 52
IBM 709, 59, 69, 91
ILLIAC III, 138
ILLIAC IV, 190
IMP, 167-168, 171, 175-177, 179-181, 183, 190, 204-205, 208-
209, 218
Internet, 83, 165-166, 177, 183, 185-186, 237, 253
IPTO, 47, 139, 157-158, 166, 168
Ishihara, Jiro (Ish), 24-25
Jobs, Steve, xii, 245
Kahn, Bob, 158, 168, 177
Kay, Alan, 214, 218, 234, 243
Kennedy, Ted, 170
Knuth, Don, 232
Kuo Mo Ro, 199
Lampson, Butler, 217, 223, 228
Laynor, John, 88
Lehmer, D.H., 10, 39, 250
Lewis, Howard, 121, 143
Lewontin, Richard, 74
Licklider, J.C.R., 156-158, 186, 227, 233
Lin, Chi Sun, 90-91
LINC, xvi, 102, 109, 112-114, 116-119, 122-124, 128-129, 141-
149, 151, 153-154, 218, 220, 237, 242-243, 247, 251, 262
LINC-8, 141
Lincoln Laboratory (Lincoln Lab, Lincoln) 17-20, 22, 26, 32-
33, 35-36, 38, 48-49, 51-54, 63-64, 67, 85, 87, 92, 95, 102, 107,
 111-116, 124, 128, 139, 168, 248

Computing in the Middle Ages
A View From the Trenches 1955-1983

271

line-printer, 40
Littlefield, Warren (Mackie), 138, 140, 152, 258
machine-independence, 45
Macromodule, 135-136, 152-154, 155, 157, 259
main memory, 6, 8, 13, 191, 219-220, 246
marginal-checking, 9, 35
Mauchly, John, 11-12
Maxwell, John, 234-236, 252
McCarthy, John, 95
McCreight, Ed, 217, 228
McKenzie, Alex, 171, 179-180, 210
Memory Test Computer (MTC), 8, 25, 65, 85, 95-96
Metcalfe, Bob, 189, 222
Michel, Tony, 183, 206
Microsoft, 222, 248
Middle Ages, xiv-xv, 28, 34, 37, 41
Millstone, 54
MIT, xii, 1-2, 6, 8, 14, 17-20, 25, 51, 53, 64, 79, 83, 95-96, 98,
101-102, 116, 131-132, 135, 138, 146, 156, 159, 162, 169, 227,
233-234, 258
MITRE, 47, 51-52
Mockingbird, 66, 231, 235-236, 252
Molnar, Charlie (Charlie), xii, 98, 102, 104-105, 107-109, 113-
114, 119-120, 122-123, 125, 127, 133, 135, 138, 140, 146-150,
154, 259-260
Moore School, 2, 14
Morris, Jim, 148, 217
multiprocessing, 13, 99, 161, 207-208, 247
Murphy, Dan, 161
National Academy of Sciences, 102, 113, 197, 199
National Institutes of Health (NIH), 113, 116-117, 132-135,
138, 141, 194
Newman, Bob, 169
O'Brien, Don, 119, 162
Olsen, Ken, 64-66, 80, 107
Operational Specifications, 23

Severo M. Ornstein

272

operators, 19, 23, 37, 39, 41, 56-57, 62, 82
Pake, George, 133-134, 203, 240, 241
Papert, Seymour, 159
Papian, Bill, 8, 79, 102
PDP-1, 95, 156
PDP-10, 161-162
PDP-12, 141
PDP-5, 128
PDP-8, 128, 141
Perlis, Alan, 139, 194, 198-199
personal computer, xi, xvi, xxv, 17, 29, 32, 34, 42, 97-100,
105, 165, 213, 217, 219, 230, 235, 237, 244-248, 251-252
plug-board, 10-11
Pluribus, 204, 206-207
Poon Hill, 252-253
prime number drop, 131, 133-134
Project MAC, 116
punched-card, 38-39, 41, 95
radar-data, 19, 24, 26
Rafael, Jack, 102
random access, 6
Reagan, Ronald, 238
real time, 16, 53, 83, 96-97, 103, 144, 159, 161-162, 208
Roberts, Larry, 83, 158-159, 166, 168, 186
Rosenblith, Walter, 102
Ruina, Jack, 157
SAGE, 20, 22, 24, 26, 35, 218, 248, 251, 262
SDC, 26
SDS-940, 161
security, 22, 24
Seitz, Chuck, 162
self-timing, 146
Selfridge, Oliver, 63
Shockley, William, 52
Simon, Bill, 119, 126
Simon, Herb, 198

Computing in the Middle Ages
A View From the Trenches 1955-1983

273

Sketchpad, 83
Soviet Union, 18, 51, 131, 238
Spencer, Bill, 242
spooling, 40
Sproull, Bob, 217, 223, 224
SRI, 158, 217, 246
Stanford Research Institute, 158
Star Wars, 61, 238-239
Starkweather, Gary, 223
startup, 30
Stockebrand, Tom (Stocky), 26, 85, 86, 108, 111, 113-114
Stucki, Mishell (Mis h), 120-121, 136-137, 152, 260
sub-sectors, 23
SUE, 191, 204
Sutherland, Ivan, 83, 139, 146, 153, 158, 165
symbolic instructions, 39
synchronizer problem, 131, 140, 173, 256-258, 260
Taylor, Bob, 139, 158, 186, 213-217, 226, 228-229, 241-242
teletype, 95-96, 156, 164, 179
TENEX, 156, 161-162, 164, 177, 179, 214
Tesler, Larry, 245
Thach, Truett, 175
Thacker, Chuck, 213, 217, 219-220, 225-226, 229
thin-film memory, 87, 102
Thomson, Virgil, 231
time sharing, 97, 99
Time-Sharing, 93-100, 103, 116, 156-157, 159-162, 164-165,
178, 181, 207-208, 218, 246-248
TIP, 183-184
Tomlinson, Ray, 160, 179
Townes, Charles, 132
Tretiak, Dan, 195-196
Turing, Alan, 34
TX-0, 80, 95
TX-1, 80

Severo M. Ornstein

274

TX-2, 38, 63-67, 79, 80-90, 95-96, 102, 104, 123-124, 128, 156,
218, 247-248, 262
UNIVAC, 15, 38
Vandenberg, 61
virtual memory, 13, 99, 161
von Neumann, John, 11-14, 34
Walden, Dave, 169, 171, 178
Waldrop, Mitchell, xi
Wallops Island, 55
Watson, Tom, 85
Weiner, Norbert, 34
Weizenbaum, Joe, 169
Welsh, Frazier, 15
Whirlwind, 2, 4,-5, 7-9, 14, 16-17, 19, 22, 25, 38, 41, 64, 83, 96,
247, 262
Wilkes, Mary Allen (Mary Allen), 106, 119-120, 123, 135, 203
Wilkes, Maurice, 14
Windows, 222
WORD, 222
World War II, 10, 18, 28, 51
XD-1, 19-20, 22, 26, 36, 83, 85
Xerox PARC, 133, 160-161, 189, 203, 210, 213, 215-217, 219,
221-228, 233-235, 237-239, 241-242, 245-246, 252
516, 171, 173-174
1401, 62
1620, 62

About the Author

In the late 1950s Severo Ornstein worked at MIT’s

Lincoln Laboratory, then at the forefront of computer
research. In 1961-62 he participated in the design of the
LINC, the world’s first personal computer. He was later
responsible for the hardware design of the IMP, the
computer that handled messages for the Arpanet,
forerunner of the Internet. During the same period he
taught computer design at Harvard, and in 1972 he
organized and led the first delegation of computer scientists
to China. In 1981, together with his wife, Laura Gould, he
founded Computer Professionals for Social Responsibility
(CPSR), an organization concerned with the role of
computers in society.

