
Prompter: A Domain-Speci!c Language for Versu

by Graham Nelson

I

When is it time to design a new programming language? ere are many thousands already, but
the big battalions are investing in new ones all the same: Apple has Swi (2014), Facebook has
Hack (2014), Microso has F# (2005), Google has Dart (2011) and Go (2007) - which wasn’t even
the !rst programming language called Go. We live in a time of ferment. Research into static
analysis makes us want to tweak the languages we have, for efficiency. Hardware constraints
change — going away (memory shortage), or coming back again (slow tablet CPUs). And besides
that, there’s our ever-escalating crisis that programs go wrong a lot. Not the pacemakers and the
nuclear power plants and the spacecra guidance systems, because we’re careful on those, but the
everyday stuff. Always we want to disprove Fred Brooks’s maxim that there are no silver bullets. If
only we had the perfect programming language, we would write the perfect programs.

at’s what one group of programming-language designers do, but it’s not what I do. My own
best-known language, Inform, has never placed higher than number 73 in popularity charts. For
comparison, the 73rd most popular human language is Norwegian: but like Norwegian, which of
course ranks as number 1 in Norway, Inform is valued within its own domain. It serves a
community with speci!c needs which would otherwise be difficult to meet. And that’s the other
reason to design a programming language: when there’s an entirely new domain to work in, one
where conventional languages just won’t do.

e Versu platform was just such an opportunity, from my point of view, but I !rst had to
persuade people of that. is oen happens with domain-speci!c programming. For one thing,
those who work in the domain may never use the word “programming” at all. ey may say, for
example, that they’re making “structured data”, preparing “con!guration !les”, creating “level
designs”, formulating “design requirements”, running off “database reports”. In the case of Versu,
the game designer is a writer putting together both a broad narrative and also a richly interactive
experience, in which !ctional people have motives and emotions and beliefs. Is that
“programming”?

If told to put together a !le of instructions in a particular format, a beginner will typically just
get on and do that, even if the work is repetitive and !ddly. But experts also rarely ask whether an
alternative exists. When you fully understand the low-level intricacy of an engine, in all its austere
beauty, the complexity of working it comes to seem appropriate. You may not even be aware of a
trade-off being made. Hours of highly-skilled labour can be spent on what amount to standard
manoeuvres, hours which you could otherwise be spending on your broader artistic agenda.
When, say, Aaron Sorkin or J. J. Abrams are writing a screenplay, they’re not typing little essays to
specify that REPUBLICAN FLACK #2 or SCIENCE OFFICER T’BLURG have elbows which
articulate inwardly, or that they stand upright. ey expect all of that to be understood
automatically. More to the point, they don’t think about it at all. ey need to give all of their
attention to how people will feel as they watch the movie.

All of this is by way of saying that a language designer usually comes into a project late on,
and has to win converts. It’s important to remember that peoples’ concerns are valid. Will the

1

gains from a new language be tangible? Will they melt away when we get to real work rather than
demos? Will we lose expressive power? Even if it’s terri!c, is it worth the technical risk? A new
language has to be a compelling proposition and it has to carry people with it. If not, people will
carry on with what they already have.

II

e Versu project began as research-level computer science, and its heart is a &exible and
powerful engine for drawing logical inferences. Richard Evans, who designed this engine and has
a profound understanding of how to couple it to simulations of how people think and act, created
a language called Praxis to control it. Praxis had its rough edges at !rst, but the basics were clean
and elegant. Central to it are logical ideas such as free variables, which give the Versu engine
freedom to !nd solutions to certain constraints, or that some possible relationships exclude others
and some do not.

Praxis is not a low-level language. You aren’t explicitly shuffling raw data around, and you can
directly express highly sophisticated AI concepts. In one of Richard’s test cases, philosophers in a
bar argue about sports, which is far beyond the comfort range of, say, Java or C++. All the same,
Praxis clings tightly to the underlying Versu engine. at, together with its underlying regularity,
makes it an excellent target language to compile to. But for some purposes, at least, it’s better
regarded as an intermediate tool. An interactive story of the depth of Emily Short’s “Blood and
Laurels” would have taken years to code directly in Praxis, would have run to perhaps twenty
times as many lines of code, and would have needed far more testing and debugging. Here’s a little
sample of Praxis, for example:

 insert data.scene_data.linus_wakes_up
 {
 noun!”Linus wakes up”
 set_location.jordan_fischer!anonymous_room
 set_location.linus_bergstrom!anonymous_room
 establish_relationship.linus_bergstrom.jordan_fischer!
friends!”{A}We get along really well”
 movement_restricted
 timeout_conclusion.null_scene!”The story has ended due
to inactivity.”!10000
 setup!stocker_for_linus_wakes_up
 }

“Blood and Laurels”, “Bramble House” and other Versu titles are instead written in a language
called Prompter which compiles down to Praxis. Besides making it feasible to write large-scale
narratives for Versu, Prompter has two other goals: to enable faster development, and to make
Versu content more human-readable. Readability matters. It matters for all soware, in fact, but
especially here. Versu writers may be working on interactive versions of existing intellectual
property, where it’s essential for rights-owners to check that their characters and settings are used
appropriately. Or they may be contributing the AI ingredients to an MMO, or some other large-
scale game, where the Creative Director will want to get a sense of what’s been written for it. And
every writer needs an editor and a proof-reader. Given sufficient readability, those people don’t
need to be Versu experts at all.

2

e name “Prompter” came about partly because the “Pr-” seemed !tting as a partner for
“Praxis”, and partly to imply rapid development (compare Apple’s new “Swi”). But it’s also meant
to sound like a prompter in a theatre, the person who sits in the pit and supplies the actors with
lines when they forget. I mention that because language design begins with identifying the key
concepts which its users have in their minds. In the case of Prompter, those concepts are, broadly
speaking, “scene”, “character”, “dialogue” and “event”. e Versu writer is composing something a
little like a screenplay. Not a linear story in which everything happens exactly as written, but a
screenplay all the same. Prompter therefore uses these concepts as its top-level constructs. A
“program” for Prompter is a piece of what’s called “playtext”, and looks very like dialogue being
written for actors to read.

A playtext begins with the cast of characters. It has locations and props, too, though these are
less important than what really matters — the human drama going on. Here’s the cast of a story
about an advertising agency:

 CAST

.. e Ad Designer (playable) Alice Lin
.. e Boss Dave Johnston

... Another Employee Patrick Rutigliano
... Yet Another Employee Jordan Fischer
.. Still Another Employee Linus Bergstrom

.. Another Other Employee Storm Sparks
.. e Client Chandra Tarhouni-Cook

Just as a playwright would sketch out a character as well as give him or her dialogue, so also in
Prompter. Here’s somebody to reckon with:

 A poor young straight Ancient Roman man. By reputation he is
 attractive - “[He] is widely accounted tremendously handsome”,
 intelligent - “[He] is known for his poetry, and cannot be
 supposed a fool”, but not proper - “[His] misbehaviour, with
 various ladies, is the talk of the town”. He is open,
 unconscientious, extroverted and &irtatious. He is concerned
 with attractiveness, intelligence and friendship.

at’s actual Prompter code, ready to be compiled.
e narrative is then divided into scenes, which contain what may be quite a number of

generally short conversations: the Versu engine chooses how to deploy these, and does a
remarkably good job of making events &ow naturally. For example, one of the toy stories we used
when developing Prompter was George Bernard Shaw’s classic play “Arms and the Man”, and
here’s a typical fragment of conversation - just a single exchange.

 (About Bluntschli and the carpet bag.)
 Catherine (to Louka, naively): Captain Bluntschli! at’s a German name.
 Louka: Swiss, madam, I think.

3

ough this is very concise, it contains more than simply dialogue. Catherine doesn’t yet know
the signi!cance of her visitor: hence “naively”, which causes the Versu engine to adjust her state of
mind here. e dialogue will only happen at all if it naturally &ows from other talk about, say,
Bluntschli, or the most famous prop in the play - the carpet bag he has le behind. By constantly
adjusting and monitoring how the characters feel about themselves and each other, Versu is able
to avoid the strange non-sequiturs and bizarre life-choices which some AI systems generate for
their characters.

But this doesn’t mean the whole thing runs on rails, because different playing can lead to
dramatically different lines of plot. e typical experience of a player of “Blood and Laurels” is to
feel on a !rst play-through that everything is plotted out like a thriller: it’s on a second try, where
it all plays out entirely differently, that people begin to appreciate the depth of the simulation.

 Figure 1. A visualisation (see below) of a Prompter “scene”, divided into “conversations”
 which can touch on several “topics”.

In many ways, the organising concepts of Prompter had emerged naturally in 2011-12 as Versu
progressed from R&D towards its !rst commercial products. Fighting through a thicket of
complexity, Emily Short gradually found ways to write generalised Praxis code to handle a variety

4

of narrative needs. e breakthrough moments were the discovery, or invention, of “transferable
affordances” and of “scenes”, gadgets which prevented many accidental errors while grouping
material together in a steadily more natural way. When Prompter came along, it really only had to
employ these naissant or existing concepts in a more systematic way. In that sense, my work on
the Versu project was cosmetic - little more than a thin user interface on top of a hugely
sophisticated code-base. But it had a modestly transforming effect all the same. “Blood and
Laurels” has 126 scenes and 4963 lines of dialogue, of which typically only 6% is seen on any one
experience. By handling the little details, and letting the writer simply get on and write, Prompter
brought scale to the Versu project. Test stories which had taken a month to write in 2012 could be
done in a day in 2014.

III

What is a programming language? One answer is that it’s a way to express what will happen when
a program runs. is is the analogy nearly always given in school: a computer running a program
is like a cook following a recipe. Today, of course, a truer picture would involve a worldwide chain
of restaurants, each with multiple cooks, none quite in charge, sometimes helping each other and
sometimes getting in each other’s way. (And all dependent on a truly complex, asynchronous
network of logistics for their supplies. e food they serve is by no means the only frightening
thing about McDonald’s.) Still, when it comes down to it, a programming language remains a way
to write down instructions.

But it is also an organisational tool. If the recipe is for a Boeing 787, rather than lemon sorbet,
it’s not going to !t on one page, and no human reader will ever be able to hold it all in mind at
once. It will have to be divided into many sub-tasks, and those in turn into sub-sub-tasks. An
essential feature for a good language today is that it should provide ways to organise large
programs, and in a way which is natural rather than arbitrary. You might divide the Boeing, for
example, into the fuselage, the wings, the tail and the engines, but you probably wouldn’t divide it
into the square bits and the rounded bits. is is not a new thought: the issue of subdividing
programs has been with us at least since IBM wrote OS/360 in 1966, and we’ve tried any number
of conceptual approaches since then - subroutines, functions, classes, modules, namespaces,
compilation units, frameworks, libraries. My point here is rather that, in a domain-speci!c
language, organisational features should re&ect what’s natural in the domain.

5

 Figure 2. e &ow diagram of a simple Versu story. e story runs down the grey “wires”
 from the red end to the blue end, while the grey boxes represent scenes.

In Prompter, the basic unit for grouping code together is the “scene”. e playtext is divided up
into them, so that you have to fully describe one scene, then fully describe another, and so on. e
reason it’s helpful to enforce this concept, rather than simply let the user dice up the code into a
set of !les at random, is that it makes it possible for Prompter to give the user meaningful
feedback on what the story is going to do. At its largest scale, the story will consist of a
progression of scenes, and the single most useful development tool for a Versu author turns out to
be a way to visualise a time-line chart of the scenes and the possible ways they can &ow into each
other.

6

 Figure 2. Caption: A very simple scene, early on in play, with one route in and two
 routes out. Note that Alice only gets the option to storm out if she’s angry at this
 point, which will depend on what has happened so far.

e business of visualisation is not a secondary task which is le for subsidiary tools to handle:
Prompter generates the chart automatically on every successful compilation, and a good deal of
grief is saved as a result. e more Prompter was used, the more detail we wanted to add to the
chart. For example, the Versu engine can automatically run hundreds or thousands of randomised
test playings and ask Prompter to display the results, in which case we get to see what percentage
of play-throughs visit any given scene. is is very helpful to check whether something is, for
some subtle reason, unreachable.

IV

Prompter is, in some ways, one of the simplest programs in the Versu project. It has a clear
ideology, if you want to call it that: make programs more concise and easier to write by using
concepts already familiar to the people who will write them. Centuries of work by theatre and
cinema people has honed a clear, easily understood format for writing down drama: the text of a
play, the book of a musical, the screenplay of a movie. If Prompter succeeds in making it easier to
produce deep and satisfying narratives, this is why. To anyone weighing up whether or not they
need a new language, I’d offer three conclusions from our experience with Prompter: !rstly,
people working with inappropriate tools oen don’t realise it; secondly, the organising concepts in
more appropriate tools will be the ones which those users already have in their imagination as
they think about the problem; and thirdly, time spent in having the compiler produce useful
feedback - explanatory error messages for what doesn’t work, and visualisation of what does - is
time which will amply be rewarded.

I must conclude by thanking my colleagues on the Versu project, for whose achievements I have
the deepest respect.

7

