
PAPERS CHI 98 . 18-23 APRIL 1998 

Scripting Graphical Applications by Demonstration 
Brad A. Myers 

Human Computer Interaction Institute 
Carnegie Mellon University 

Pittsburgh, PA 15213 
bam@cs.cmu.edu http://www.cs.cmu.edu/-barn 

ABSTRACT 
Writing scripts (often called “macros”) can be helpful for 
automating repetitive tasks. Scripting facilities for text 
editors like Emacs and Microsoft Word have been widely 
used and available. However, for graphical applications, 
scripting has been tried many times but has never been suc- 
cessful. This is mainly due to the data description problem 
of determining how to generalize the particular objects se- 
lected at demonstration time. Previous systems have mostly 
tried to solve this using inferencing, but this has a number 
of problems, including guessing wrong and providing ap- 
propriate feedback and control to users. Therefore, the 
Topaz framework does not use inferencing and instead al- 
lows the user to specify how the appropriate objects should 
be found, This is achieved by recording changes to which 
objects are selected and searches for objects, so that scripts 
can be written with respect to the selected object, in the 
same way as Emacs keyboard macros. Furthermore, all 
values can be explicitly generalized in a number of ways, 
and scripts can be invoked as a result of other commands. 
By leveraging off of Amulet’s command object architec- 
ture, programmers get these capabilities for free in their 
applications. The result is that much more sophisticated 
scripting capabilities available in applications with no extra 
work for programmers. 

Keywords: Scripting, Macros, Programming by Demon- 
stration (PBD), Command Objects, Toolkits, User Interface 
Development Environments, Amulet 

INTRODUCTION 

Creating scripts (also called “macros”) for textual applica- 
tions like text editors and spreadsheets has a long and very 
successful history. These scripts are important for automat- 
ing repetitive tasks that are so common in direct 
manipulation interfaces. They can also be useful for creat- 
ing new commands and for customizing generic 
applications to be more effective for specialized tasks (such 
as making a drawing program like MacDraw more efficient 
for creating charts). 

Permission to make digit&hard copies of all or part of this mr&rial for 
personal or classroom use is granted without f= provided that the copks 
.are not made or diibuted for profit or commercial advanuge. the copy- 
right notice. the title of the publication and its date appear, and notice is 
given that copyright is by permission of the ACM, Inc. To copy othewise, 
to republish, to post on servem or to rediibute to Iis& requires specific 
permission antior fee. 
CHI 98 Los Angeles CA USA 
copyi!# 1998 0-89791-975-019814..s5.00 

534 

To create a script, the user typically goes into record mode, 
then performs some commands, which operate normally in 
addition to being recorded. The recorded script can then be 
re-executed later in different contexts. For example, the 
keyboard macro facility of the Emacs text editor [13] is 
easy to use and extremely useful for manipulating the text. 
Many Emacs users claim that such facilities are essential to 
use the editor efficiently, especially when making repetitive 
changes. Scripting facility also exist in Microsoft Word us- 
ing Visual Basic, and spreadsheets have a long history of 
creating scripts by example. 

However, for graphical applications, such scripting facili- 
ties have mostly been unsuccessful. Graphical applications 
here refers to programs such as drawing editors, CAD pro- 
grams, graphical programming languages, and iconic 
manipulation programs such as “visual shells” which are 
graphical interfaces to the file system (like the Macintosh 
Finder or the Windows Desktop). We have analyzed the 
fundamental features that allow text editors to be success- 
fully scripted by demonstration and then incorporated these 
features into a graphical editor framework called ‘Topaz.” 
Topaz stands for panscripts of programs activated with 
zeal. The result is that powerful and sophisticated scripts 
can be created by example in any graphical program. This 
is in contrast to special-purpose scripting languages like 
Chimera [3] that only work for a drawing editor. 

With Topaz, the user is able to: 

l change which object is selected by moving forwards and 
backwards through the objects in a variety of ways, re- 
cording the change of selection in a script, 

l search for objects by matching on various properties or 
by location, and cause the found object to become se- 
lected (this is a generalization of graphical search and 
replace [4]), 

l execute subsequent commands with respect to the cur- 
rently selected objects, so that the next time the script 
runs, it will operate on newly selected objects, 

l generalize the parameters of the operations (colors, lo- 
cations, numbers, strings, etc.) in a variety of ways, so 
the values can be computed at run-time, 

l execute the script a specified number of times or con- 
tinuously until an error occurs (such as a search failing), 

l specify that the script should be automatically invoked 
before or after other commands are executed. 



Figure 1. A drawing program created using Topaz showing 
the result of a script which subdivides a triangle into 3 
smaller triangles, applied 13 times. This is called a 
“‘Sietpinski Gasket” Figure 6 shows the code of the script. 

Figure 2. A sample circuit design program created using 
Topaz showing a circuit. The inset picture is the result of a 
script that converts an And gate and a Not gate into two Not 
gates and an Or gate and reconnects the wires. 

The result is that users can create scripts by demonstration 
that perform such actions as replacing objects with patterns, 
performing repetitive edits, and creating graphical abbre- 
viations. Specific examples of scripts created with Topaz 
are to: 

e Build interesting patterns lie the “Sierpinski Gasket” of 
Figure 1. 

l Replace an And gate and a Not gate with the equivalent 
circuit according to DeMorgan’s law, connecting all the 
wires appropriately, as shown in Fi,aure 2. 

l Put a drop-shadow beneath any type of selected object 

l Put an arch inside each rectangle as in Mondrian [a. 
The user has full control over the whether the width of 
the side pieces and the height of the top is proportional 
to the size of the rectangle or constant. 

l Insert a new node in a row of nodes and move all of the 
nodes that are on the right of the insert point further to 
the right to make room. 

l Create a bar chart by making a row of rectangles whose 
heights depend on a given a list of numbers. 

l Whenever a string is created, create a rectangle that is 
10 pixels bigger than the string and center the rectangle 
behind the string. 

l Perform the same edits to a set of graphics files, for ex- 
ample to replace all uses of an old logo picture with a 
new picture, and move all of the other objects a few pix- 
els to the right and down to make room. 

l And many more.. . . 

Of course, a particular application might have some of these 
commands built-in, but the goal here is to allow end users, 
who will not necessarily know how to program, to construct 
these kinds of scripts by demonstration when the applica- 
tion does not have the built-in command that they need. 

We have implemented the Topaz framework using the 
Amulet toolkit [12], leveraging off of Amulet’s command 
object architecture [ll]. The result is that graphical appli- 
cations get these sophisticated scripting facilities without 
any extra code in their applications. At this point, these fa- 
cilities have been tested with a drawing program and a 
circuit editor, and we are working on a visual shell. 

WHY ARE TEXT EDITORS EASIER TO SCRIPT THAN 
GRAPHICAL APPLICATIONS? 

In a text editor like Emacs and Microsoft Word, most op- 
erations are performed with respect to the cursor, and there 
are a wide variety of ways to move the cursor using the 
keyboard and the mouse. These include moving the cursor 
forward and backward by characters, by words, by lines, or 
by sentences. The movement operations work in text 
documents because the content is an ordered sequence of 
characters, so forward and backwards are meaningful. 
Furthermore, for text with any kind of structure (including 
program code, content lists, etc.) moving forward by a line 
or by a certain number of words will correspond to moving 
by a semantically meaningful unit. 

Scripts for repetitive actions take advantage of this order- 
ing. A very common idiom used in Emacs keyboard 
macros is to move or search to the next occurrence of a 
pattern, and then perform operations on it. This script can 
then be repeated until all occurrences are processed. It is 
interesting to note that many powerful scripts can be written 
in this way without using conditionals or iterations, other 
than repeating the entire script until a search or move fails. 

There are no equivalent operations in graphical programs. 
Just recording the low-level input events, which works well 
for keyboard events, does not work for mouse events since 
the specific location of the mouse is recorded when the 
buttons are clicked, and when the script is replayed, often 

535 



PAPERS CHI 98 018-23 APRIL1998 

the wrong object is at that location. Indeed Microsoft Word 
turns off the use of the mouse to move the cursor while re- 
cording a script. Many attempts to provide scripting in 
graphical programs therefore try to infer the meaning of the 
mouse locations (that is, what is at this mouse location, and 
why was that object clicked on?). Other programs try to 
match the objects that were used in different executions of 
the script to try to create generalizations. These programs 
must use heuristics which means that the system can guess 
incorrectly, and often will not infer the correct program. 

, \ 

Figure 3. Circle 1 is selected. Moving the selection to the 
right will select rectangle 2, but then should oval 3 or 8 be 
selected? Currently, when moving to the right, Topaz se- 
lects objects in the order 1,2,3,4,5. But then moving the 
selection left from 5 selects 5,4,6,7. 

The approach taken in Topaz is to allow the user to specify 
how to find the correct objects using capabilities similar to 
those found in text editors, rather than trying to infer the 
generalizations. In graphics programs, the selection (often 
shown by black squares around objects as in Figure 3) cor- 
responds to the cursor in text editors, and most commands 
operate on the selected set of objects. The innovation in 
Topaz is that users can change which objects are selected in 
graphical applications in a variety of ways, and have these 
recorded in a script. 

Other innovations in Topaz are that there are various ways 
that the user can explicitly generalize a script so it will work 
in new contexts, and the ability to invoke a script automati- 
cally before or after other commands execute, as proposed 
in [2]- 

MOVING THE GRAPHICAL SELECTION 

Text has a natural order, so commands like “forward” and 
“backward” are meaningful. However, in a graphical appli- 
cation, it is not so obvious what the order for all objects 
would be. The requirements for the ordering is that it have 
a well-defined first and last object, moving forward from 
the first object should go through every object exactly once, 
and moving backwards from the last object should select all 
the objects in the reverse order as forwards. It would also 
be good if the order made sense to users. However, in 
many cases, the particular order does not matter-it is often 
only important that each object be visited exactly once. 

Our first idea was to go top-to-bottom, left-to-right, but this 
is not well-defined for some layouts of objects, and the 
backwards order is often not the reverse of the forwards or- 
der (see Figure 3). 

Therefore, we decided to make the primary order for trav- 
ersing objects be the display “Z” order from back to front. 
This has a number of advantages: it is well defined, reversi- 
ble, and usually corresponds to the chronological order in 
which objects were created (older objects are further back 
unless the user has explicitly changed the order with a To- 
Top or To-Bottom command). A sophisticated user can 
also take advantage of this order in scripts. For example, to 
make sure that a script that creates arch inside of rectangles 
does not create arches inside the arches themselves, the 
script might start at the end of the list and move backwards. 
Since new rectangles are always created after the current 
end of the list, the selection will never get to the rectangles 
of the arch. 

The current user interface for moving the selection is that 
the HOME key on the keyboard selects the first object, the 
END key selects the last object, and the left and right arrow 
keys select the next and previous objects in the Z order. If 
the shift key is held down, then the new object is added to 
the selection, in the same way as the shift key works with 
the arrow keys for text selection in Microsoft Word. All of 
the selection moving operations beep when a movement is 
not possible because there are no more objects on which to 
operate, and this stops the execution of the script. 

There are some cases where it is important to find the next 
object in a graphical direction, so there are commands to 
select the next object to the left, right, up, down, inside or 
outside of the current object. These operations find the 
nearest object in that direction to the selected object that 
overlaps in the other dimension, so the reverse direction 
does not necessarily choose the same objects, as shown in 
Figure 3. These operations are available as buttons at the 
bottom of the search window (Figure 4). 

SEARCHING FOR OBJECTS 

Often it is important for scripts to only execute on specific 
objects. Previous demonstrational graphical systems have 
often tried to infer the properties from one or more exam- 
ples, which is error-prone. Instead, Topaz allows the user 
to search for the appropriate object. This graphical search 
was introduced in 1988 [4] but still is not available even in 
sophisticated graphics editors like Adobe Illustrator, al- 
though it is provided by some CAD programs. 

Topaz extends this searching to make it work in any graphi- 
cal application, not just a drawing program. All objects in 
Amulet have a well-defined protocol for querying their 
properties. Topaz uses this to find what types of objects 
can be created and what parameters are available for each 
type. This does not require any new code in the applica- 
tion. Topaz automatically constructs a dialog box that 
allows the user to choose which properties should be used 

536 



Cl-II 98 l 18-23 APRlL 1998 PAPERS 

for a search, as shown in Figure 4. Of course, this dialog 
box could be made to look much nicer if it was designed by 
hand, but we wanted to minimize the amount of custom 
code needed in each application, so we used a straightfor- 
ward automatic mechanism to generate the search dialog. 
This is why it uses internal names (liie FILL-STYLE) and 
a ndive layout 

Figure 4. The search (find) dialog box automatically cre- 
ated by Topaz for the graphical editor of F&we 1. The 
values from an arc (oval) have been loaded. 

To perform a search, the user can type in a value, or load 
the values from an existing object There are eight ways to 
search for the next object, using the buttons at the bottom of 
the window. Find Next and Previous search in the 
3” order, and the others find in graphical layout order. All 
searches start Corn the current selection, or if nothing is se- 
lected, then from the first item in that order. For example, 
when searching to the Right, the first item is the left-most. 
“Find Inside” finds the back-most (in 2 order) object 
on top of the selected object that is entirely inside it. This 
is useful for finding enclosed objects, like the label inside a 
box. “Find Outside” finds the front-most object be- 
hind the selection and completely surrounding it, and is 
usefid for going Corn a label to its box. If nothing is se- 
lected, Find Inside starts from the back-most object, 
and Find Outside starts from the front-most 

When searching, Topaz only matches on the properties that 
have their checkboxes selected, so if nothing is checked, the 
search is through all objects. Selecting various properties 
supports more complex searches, such as “find the wire 
which is down from the selected object” which was needed 
for the script for Figure 2. 

~~Sekct &mmand to Undo or Rqxac 

Figure 5. The undo history dialog box, in which previous 
commands can be selected for undo, repeat or scripting. 
Recording of selections and scrolling can also be turned on 
and off. Here, the commands for the script to create the tri- 
angles of Figure 1 are selected. 

Figure 6. The commands of Figure 5 displayed in the 
scripting window, with some of the parameters already gen- 
eralized into placeholders. 

USER INTERFACE FOR SCRIPTING 

Unlike most other demonstrational scripting facilities where 
the user has to think ahead that the next operations should 
be in a script, Topaz allows scripts to be created by select- 
ing the desired commands from the list of commands 
displayed in the undo dialog box (see Figure 5). This list 
shows all the previous commands that have been executed. 
As reported earlier [l 11, the user can select any command 
in this list for selective undo or selective repeat. 

537 



PAPERS CHI 98. 18-23 APRIL 1998 

The new feature added by Topaz is the ability to select a 
sequence of commands to be included in a script. 
(Selecting previous commands also was available for the 
graphical histories in Chimera [3].) Topaz allows non- 
contiguous sequences of commands to be selected (using 
the standard shift- and control- clicking), so that unlike 
other systems, the sequence of commands for the script do 
not have to be executed flawlessly without errors. 

Once selected, the commands are expanded to show all 
their parameters, and are displayed in the scripting window 
(Figure 6). Now, the user can edit the script in various 
ways (discussed below) How the script will be invoked 
can be specified (the script of Figure 6 will be executed 
when the user hits the ‘P8” keyboard key). When the script 
is ready, it can be executed, saved, or removed (deleted). 

EDITING AND DEBUGGING SCRIPTS 

Many previous programming-by-demonstration systems 
seem to have assumed that all scripts would work the first 
time and never need to be changed, since there was no way 
to edit the recorded script (a notable exception was Chimera 
[3], which had nice editing facilities). In fact, some systems 
do not even have a reasonable representation of the re- 
corded script that can be viewed. Topaz provides full 
editing of the script, including selecting the commands and 
deleting, cutting, copying, and pasting them. Also, com- 
mands in the undo dialog box (Figure 5) can be selected 
and inserted before or after any statement in the script to 
add new commands. 

In order to debug the script, the user can select specific 
commands and execute just those commands, or single step 
through the script one command at a time. The results of 
the commands will be visible in the main application win- 
dow, so the user can check if they are operating correctly. 
Because all commands can be undone, including the execu- 
tion of the script itself, it is easy to back out of any 
operations that are incorrect. 

An important capability not available in other systems that 
is this editing makes possible, is the ability to demmstrute 
new commands to be added to the middle of a script. The 
user can single step the script to the appropriate point, then 
execute the desired new commands, which will appear in 
the undo dialog box. These commands can be selected and 
inserted into the script at the current point. Then the user 
can continue single stepping the script to make sure that the 
subsequent script commands still work correctly. 

GENERALIZATION OF PARAMETERS 

An important feature of Topaz is the ability to generalize 
the parameters of operations. This is important to have a 
different object, position, or value used when the script is 
run, rather than the specific constant object used when the 
script was demonstrated. The user can select any value dis- 
played in the script window and double-click (or use the 
“generalize” menu item in the Edit menu) to bring up a 

538 

dialog box. After generalizing, the value displayed in the 
script is replaced with a descriptive placeholder. Bringing 
up the dialog box for a placeholder will allow it to be ed- 
ited, or changed back into a constant. This is related to the 
“data description” property sheets in the SmallStar visual 
shell [l], but here they are domain independent. If an ap- 
plication has a special type of value, the programmer can 
add a new dialog box to handle it, but the built-in dialog 
boxes seem sufficient for many applications. Also, the 
dialog boxes have a “custom” option that will in the future 
link to a programming subsystem where any expression for 
computing the values can be entered in a language like 
JavaScript or Visual Basic. However, we have found the 
built-in options to be sufficient for most scripts. 

Figure 7. The dialog box for generalizing objects, with the 
scrint window in the background. 

There are three built-in dialog boxes: one for generalizing 
objects, one for positions, and one for all other values. The 
dialog box for generalizing objects (see Figure 7) lets the 
user pick how to get the object when the script runs: 

l Use a constant object (which defaults to the original 
object, but the user can type a new value). 

l Use whatever objects are selected at that point in the 
script. Often the user will arrange for the appropriate 
object to be selected before executing an operation. 

l Pause the script and ask the user to select some objects. 

l Use the object or objects that are returned or operated 
on by a previous operation in the script. For example, a 
resize operation might be generalized to operate on the 
object returned by a previous create command. The user 
specifies which previous command to use by selecting 
the command in Figure 6 and clicking the “Load” but- 
ton in Figure 7. There are two options for this, because 
many commands return a variable number of objects 
(e.g., paste, duplicate or select-all) and there must be a 
way to specify that subsequent commands operate on all 
of the objects, no matter how many, or on a particular 
object (e.g., the first one) from the set. 

Figure 7 shows that the clicked on object is used in three 
places in this script. The one the user actually clicked on is 
shown in green, and all other uses are shown in yellow. 



CHl 98 . 18-23 APRIL 1998 
’ 

PAE’EFiS 

The top of the generalizing dialog box allows all of these 
uses to be replaced at the same time, or just the specific one 
that the user clicked on. 

Topaz performs one generalization automatically. When a 
set of commands is brought into the script window, Topaz 
first checks to see if any of the commands are the kind that 
create a new set of objects. This includes create commands 
(including Paste and Duplicate) as well as selection com- 
mands that define a set of objects. Topaz searches for any 
subsequent uses of these objects, and if found, replaces the 
occurrences with placeholders that refer to the results of the 
create commands. This replacement is made automatically 
because in almost every script, if an object is created and 
then manipulated, when the script is run, the manipulation 
should operate on the newly created object and not on the 
original constant object. For example, all of the object gen- 
,eralizations for the script of Figure 6 were automatically 
performed by this mechanism. If the user really wants to 
use tie original, constant object, the automatically gener- 
ated placeholder can be edited using the standard dialog 
box (Figure 7) back to the constant value, but this has never 
been necessary so far. 

Figure S. The dialog box for generalizing locations, along 
with the pop-up menus for setting the left, top, width and 
height. The picture in the lower left of the dialog box 
shows the result of the Left and Top selections. 

Figure 8 shows the dialog box for generalizing locations. 
The user can click on the check boxes at the left of the dia- 
log box to choose which parameters of the location to 
generalize. The options for the left coordinate are to be 
constant, a difference from the old value, a value specified 
by the user at run time either by clicking in the picture or 
typing, or a value computed with respect to a diierent ob- 
ject either by being to the right outside, right inside, center, 
Iefi inside or left outside. If the center is selected, then the 
text input field is for the percent of the way across (the de- 
fault is 50% which is in the center, but the user could type 
another value such as 33% to make the object be l/3 of the 
way across). For all other relationships, the text box is the 
offset from the other object The top properties are similar. 
For the width and height, the bottom two icons are to make 
it depend on another object by offset (e-g., my width is the 
other object’s width t- 10) or percent (my width is 50% of 

the other’s width). When an option is chosen that depends 
on another object, the user can select which object to use. 
The normal choice is whatever is selected when this com- 
mand runs. 

All other types of values use a dialog box which allows the 
value to be constant, the current value from the palette if 
there is a palette registered for this type of value (like the 
color palette), a value chosen from a list, a value that the 
user types, or the value computed by a previous command. 

One use for the list of values is to create a script that will 
process a number of files. The file Open and Save-As 
commands have the filename as their parameter, so the user 
can record a script with open and save in them, and then 
generalize the filename parameter to either be a list of file- 
names or to ask the user for the filenames. 

Generalizing the values integrates well with the Search 
dialog box, since the search command uses as its parame- 
ters the values that were searched for. The user can 
therefore generalize parameters for a search in the same 
way as any other command, for example to search for the 
next object whose color is the same as the selected object, 
rather than some constant color. 

INVOCATION OF SCRIPTS 

Topaz supports a variety of ways to invoke a script. First, 
the Execute button on the script window (bottom of 
Figure 6) can be used. Second, Topaz supports the con- 
ventional ways to invoke scripts, using a keyboard 
accelerator or by putting the script into a menu of the appli- 
cation. In the future, scripts will be able to be executed at a 
certain time (for example to cleanup a disk every night). 

- 

Figure 9. The dialog box for specifying how to invoke 
scripts. The Text-Create command description was 
automatically entered when the user clicked on the Load 
hutton. 

Topaz also supports a novel way to invoke scripts: before 
or after any other command is executed. This idea was 
proposed earlier [2], but it has never previously been im- 
plemented in any system. The idea is that the user not only 
can demonstrate the script to be executed, but also which 
commands the script should run after or before. For exam- 
ple, after demonstrating a script to surround an object with 

539 



PAPERS CHI 98 . 18-23 APRIL 1998 

a rectangle, the user brings up the invocation dialog box of 
Figure 9. Next, the user selects the “After” option, then 
demonstrates a Text-Create operation and selects it in 
the main undo dialog box (Figure 5) (or else the user can 
just select any previously eXeCuted Text-Create opera- 
tion). Finally, the user hits the “Load” button in Figure 9 
which loads the command description into the field. By de- 
fault, all the parameters to the command are generalized so 
the script will be invoked whenever any Text-Create 
command is executed. This will put a rectangle behind any 
strings created. Alternatively, the user can select any pa- 
rameter and use the original value of the example or any of 
the other generalizations discussed in the previous sections. 

This provides the ability to create many intriguing scripts. 
For example, graphical abbreviations can be defined such 
as “whenever the text ‘logo’ is created, delete it and put in 
the logo picture read from a file.” Since scrolling opera- 
tions can be recorded, a script to scroll down after a search 
could be created. 

To further the analogy with Emacs, scripts can be executed 
a specified number of times (using the count field at the 
bottom of Figure 6). The user can type a value or, like in 
Emacs, “U will multiply the current count value by 4. For 
many scripts, the user will pick some reahy large number of 
times to execute, because, also lie Emacs, all scripts are 
stopped if anything causes a beep (the low-level beep func- 
tion was modified to set a global flag if a beep happens, and 
Topaz clears the flag before executing any script and 
checks the flag before each operation). Error dialogs al- 
ways beep, and searches and movements of the selection 
causes a beep if they fail, and nothing beeps when every- 
thing is OK, so this is a good heuristic for stopping script 
execution. 

Scripts are represented as a command like any other com- 
mand, and are listed in the undo dialog box, so the 
execution of a script can be undone, repeated, or even in- 
cluded in other scripts. The count of the number of times to 
execute is the parameter for a script (which can be general- 
ized), so a recursive script could even be written that would 
stop when the count got to zero or when there was a beep. 

IMPLEMENTATION 

An important feature of Topaz is that it requires almost no 
work from the application developer to use scripting, if the 
application is created using the Amulet framework Amulet 
requires that all operations be encoded into the methods and 
data values of a command object [l 11. Due to the way that 
these command objects are designed, they already provide 
Topaz with most of the information it needs. Command 
objects have a “Do” method that performs the operation, 
and an “Undo” method for undoing. They also contain 
methods to support selective-repeat and selective-undo 
which are when the user selects the command in the list of 
Figure 5 and asks for it to be repeated or undone in the cur- 
rent context. The scripting mechanism uses this selective- 
repeat to execute each command of the list. Selective-undo 

is used when the script itself is undone-it just undoes each 
of the component commands in the script. The selective- 
repeat has a companion method that tests whether the com- 
mand can be executed in the current context, and this is 
used by the script before each command is executed to ver- 
ify that it can be executed, and if not, an appropriate error 
message is provided. This makes it safe for Topaz to allow 
the user to insert or delete arbitrary commands in the script, 
since at run-time there will be a check to make sure that 
each command can execute. Command objects also adhere 
to a standard protocol for describing their parameters and 
generated values, so Topaz can inspect, display and gener- 
alize the values of any command. 

Using the selective repeat mechanism, instead of just in- 
voking the original Do method again, has a number of 
advantages. The Do method does not take any parameters, 
since the values to be used come from the selected object, 
the palette, and pop-up dialog boxes that ask the user. This 
is a very annoying feature of the scripts in Microsoft 
Word-they keep popping up the dialog boxes when the 
script is run. Pursuit [9] used “me&dialog boxes” to allow 
the user to specify whether the dialog box should appear at 
run time, and if so, what parts should be filled in by the 
user, but this required that Pursuit parse and understand the 
dialog boxes. By using the selective repeat method, the pa- 
rameters can be passed to the operation directly since 
usually Topaz computes the values. Of course, it would 
also be useful to let the user pop up the original dialog 
boxes when desirable, by using the original Do method of 
the command rather than the selective-repeat. 

The command object architecture also helps Topaz record 
the scripts at the appropriate level. Scripts recorded at the 
mouse-movement-level fail because objects are not at the 
same place the next time. Applications written in Amulet 
must already encode the semantics of their operations into 
command objects, so recording at this level allows Topaz to 
create robust, repeatable and generalizable scripts without 
requiring Topaz to try to infer the “meaning” of the opera- 
tions or of mouse events. Also, users can invoke commands 
in any way that is convenient (from the mouse, menus or 
keyboard accelerators) and these are recorded the same way 
in scripts, since they all use the same command object. 

Amulet’s built-in save and load mechanism allows applica- 
tions to save and load their files with a minimum of code. 
All that is necessary is to register each of the main types 
that the user can create, and the important parameters of 
those types. Topaz takes advantage of this information to 
automatically construct the Search window, so again no ex- 
tra work is required of the programmer. 

Most graphical applications use Amulet’s selection handles 
widget, and so the selection moving operations and search- 
ing come for free when this widget is used. Note that a 
Replace operation as in [4] could not be added without new 
code in the application, because Topaz would not know 
how to create new objects. In the current design, Topaz can 

540 



inspect all of the graphical objects, but it can only change 
the objects by re-executing commands that have already 
been demonstrated by the user. 

f01 extra code in the application is optional. The program- 
mer should register the palettes in the application, so that 
the value generalization can tell if the selected value can be 
computed from a palette. Also, the main menubars should 
be registered with Topaz so it will know how to add scripts 
to the menus if requested by the user (Figure 9). 

STATUS AND FUTURE WORK 

Topaz is mostly working, and has been integrated with a 
drawing program and a small circuit design program. The 
main hole is the lack of a general-purpose pro@unming 
language for the “custom” generalization options. We 
would also lie to investigate writing scripts that work 
across multiple applications. As we.get more experience 
with users and test Topaz with a wider variety of applica- 
tions, we will continuously refine the interface. 

RELATED WORK 

The main influence on Topaz is Emacs [13], and we have 
tried to provide the key features of Emacs to graphical edi- 
tors, which has not been done previously- Vmacs [SJ was 
an early attempt to apply Emacs ideas to graphics, but it did 
not support any scripting by example, and instead concen- 
trated on parsing of freehand drawings. The idea of dialog 
boxes to generalii parameters in scripts was used in the 
SmallStar [1] visual shell, and Topaz provides this capabil- 
ity for any graphical application. Graphical search was 
introduced in 141 for a graphics editor, and Topaz allows it 
to be used in scripts and for multiple types of applications. 
Topaz is also the first to allow the generalization of the pa- 
rameters of the search. Chimera [3] supported graphical 
histories of operations in a graphics editor, and allowed 
commands to be selected for scripts, but supported only ru- 
dimentary generalizations. 

There are many previous examples of scripting by demon- 
stration in graphical applications, including Peridot [lo], 
h{etaMouse 171, Mondrian [6], Pursuit [9], Gamut [S], etc., 
but most of these concentrated on inferencing algorithms 
rather than providing sophisticated controls to users. 

CONCLUSIONS 

Topaz allows the user to construct sophisticated scripts by 
demonstrating the desired commands and then explicitly 
generalizing the parameters, usually without the need for 
conditionals and embedded iterations. This is achieved by 
generalizing the cursor movement capabilities from Emacs 
to a graphical domain. Topaz also allows scripts to be exe- 
cuted before or after other commands. These capabilities 
are provided to users with almost no effort on the part of the 
application developer. We hope that these capabilities will 
be generally useful, and that they will appear in many more 
kinds of applications. 

ACKNOWLEDGMENTS 

For help with this paper, I would like to thank Bemita Myers, Rob 
Miller, Rich McDaniel, and Bruce Kyle. This research was par- 
tially sponsored by NCCOSC under Contract No. N66001-94-C 
6037, Arpa Order No. B326, and partially by NSF under grant 
number IRI-9319969. The views and conclusions contained in 
this document are those of the authors and should not be inter- 
preted as representing the official policies, either expressed or 
implied, of the U.S. Government. 

REFERENCES 

1. Halbert, D.C. “SmallStan Progranuning by Demonstration in 
the Desktop Metaphor,” in Watch What I Do: Programming by 
Demonstration. 1993. Cambridge, MA: MIT Press. pp. 102-123. 

2. Kosbie, D.S. and Myers, B.A., “PBD Invocation Techniques: A 
Review and Proposal,” in Watch What I Do: Programming by 
Demonstration, A. Cypher, Editor 1993, MIT Press. Cambridge, 
MA. pp. 423-431. 

3. Kurlander, D. “Chimera: Example-Based Graphical Editing,” in 
Watch What I Do: Programming by Demonstration. 1993. Cam- 
bridge, MA: MIT Press. pp. 271-290. 

4. Kurlander, D. and Bier, E.A. “Graphical Search and Replace,” 
in Proceedings SIGGRAPH’88: Computer Graphics. 1988. At- 
lanta, GA: 22. pp, 113-120. 

5. L&in, F., et al., “The Electronic Design Notebook: Performing 
Medium And Processing Medium.” Visual Computer: Intema- 
tional Journal of Computer Graphics, 1989.5(4): pp. 214-226. 

6. Lieberman, H. “Dominos and Storyboards: Beyond Icons on 
Stings,” in IEEE Computer Society: 1992 IEEE Workshop on 
Visual Languages. 1992. Seattle, WA: pp. 6571. 

7. Maulsby, D.L. and Witten, I.H. “Inducing Procedures in a Di- 
rect-Manipulation Environment,” in Proceedings SIGCHI’89: 
Human Factors in Computing Systems. 1989. Austin, TX: pp. 57- 
62. 

8. McDaniel, R.G. and Myers, B.A. “Building Applications Using 
Only Demonstration,” in I998 International Conference On In- 
tehigent User Interfaces. 1998. San Francisco, CA: To appear. 

9. Modugno, F., Corbett, A.T., and Myers, B.A., “Graphical Rep- 
resentation of Programs in a Demonstrational Visual Shell -- An 
Empirical Evaluation” ACM Transactions on Computer-Human 
Interaction, 1997.4(3): pp. 276-308. 

10. Myers, B.A., “Creating User Interfaces Using Programming- 
by-Example, Visual Programming, and Constraints.” ACM Trans- 
actions on Programming Languages and Systems, 1990. 12(2): 
pp. 143-177. 

11. Myers, B.A. and Kosbie, D. “Reusable Hierarchical Command 
Objects,” in Proceedings CHI’96: Human Factors in Computing 
Systems. 1996. Vancouver, BC, Canada: pp. 260-267. 

12. Myers, B.A., et al., ‘The Amulet Environment: New Models 
for Effective User Interface Software Development.” IEEE Trcms- 
actions on Sojiware Engineering, 1997.23(6): pp. 347-365. 

13. Stallman, R-M., Emacs: The Extensible, Customizable, Self- 
Documenting Display Editor. MIT Artificial Intelligence Lab, 
1979. 

541 


