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Chapter 1

Introduction

1.1 Personal Note

I became interested in gravitation in 2004, when I attended the launch of the Gravity-Probe B satellite[27]. The
evening before the launch, Francis Everitt, the principal investigator on the project, gave a delightful presentation
describing in simple terms what was being measured, and how the measurement was done. I had just finished my
“Little Green Book”[44] a few years earlier, and the effect they were looking for sounded just like the four-vector
coupling in that book, but with gravitation instead of magnetism. When I got home, I started working on the
problem, to see if I could use four-vector gravitational coupling to analyze it. Of course I went down several
rat-holes, as one always does in a new field, but within a year or two I had a really clean solution, which I wrote
up while it was still fresh in my mind. That writeup appears as Chapter 11 in this document. Then, of course,
I wondered if I could get the “tests of GR” with my approach. After a long struggle I was able to get a clean
understanding of planetary orbits, and, by incorporating both a relativistic wave function and vector-potential
coupling, came up with exactly Einstein’s orbital precession formula at first order beyond Newton. I wrote that
one up as I went along because figuring out something like that in a new way is very satisfying! It appears in this
document as Chapter 10.

In both these cases I realized that my approach was much simpler than GR, and I could describe it conceptually.
As the years passed, I tried to develop a conceptual understanding of various phenomena involving gravitation
and Quantum matter waves. Whenever I would get a clean understanding of one, I would write it up so I could
remember it later. So my file system accumulated a decent number of these writeups, and I thought about making
them into a book. The first attempt got bogged down, so I gave up, and it lay fallow for some years.

When I would try to talk to anyone about it, there would be either a blank stare, or some statement like:
“It has been shown that GR is the unique formulation that encompasses:

1. The principle of relativity as expressed by general covariance

2. The principle of equivalence.”

When I would reply that those proofs only applied to metric theories, and

1. G4v is not a metric theory—it has a variable speed of light.

2. G4v incorporates both principles at the fundamental level.

the conversation would be politely steered to a different topic, as if I had uttered an indecency. I realized that the
only people that might be open to a new approach are the young people, just starting their technical careers.

Opportunity came in 2022 when I was awarded the Kyoto Prize in Advanced Technology, for work I had done in
the 1960’s and 70’s:

https://www.kyotoprize.org/en/2022/carver_mead/

I was asked to give two talks: The first, primarily for the Kyoto people, was to share the background and meaning
of the work being recognized. The second, for the Kyoto organization in San Diego, CA, could be on any topic,
and the audience was primarily young people interested in science and technology.
I chose to give the talk Engineering Concepts Clarify Physical Law. As I thought about it, it was clear that
a number of young people at the event might get interested in learning more about the approach, and would need
something that gave more details. So I grabbed these chapters out of my files. They are not finished works, and
have not had the benefit of any review or editing process. The style changes from one to the next, and my use of
various methods of adding emphasis may irritate some readers. I often refer to “recently” meaning shortly before
that file was written. There are bound to be errors and duplications. But it’s what I have—a Very Rough Draft!
The whole theory can be falsified by an experiment using today’s technology: See Section 7.6.
I am eager to do that experiment! Or perhaps one of you can do it, or help me do it.
Readers who get seriously interested and would like to act as reviewers are encouraged to send their findings to
my admin Donna Fox, dfox@caltech.edu who keeps things organized. I will treasure what you come up with.
You can find more on my web site: carvermead.caltech.edu

1



CHAPTER 1. INTRODUCTION 2

1.2 Background

Students today are told that our understanding of Fundamental Physical Law is embodied in Three Great Theories:
Quantum Mechanics, General Relativity, and Classical Electrodynamics.

Upon enquiry they find that Quantum Mechanics (QM) is formulated in 3n dimensions, where N is the number
of interacting elements (e.g. Electrons) involved in the problem of interest. The mathematics used involves the
manipulation of 3N dimensional mathematical structures, and the result is expressed in 3N spatial dimensions
plus an intrinsic spin degree of freedom for each electron. The multi-dimensional “wave function” of space and
spin must also satisfy the Pauli exclusion principle (anti-symmetry with respect interchange of electron degrees
of freedom.) Furthermore, since the complexity of the problem of calculating anything in 3N dimensions grows
exponentially with N , even the growth of computing power with Moore’s Law has not enabled first-principles
solution of any but the simplest quantum systems. The student is assured that no one understands QM at an
intuitive level, and all attempts to do so have been futile—all physical law is embodied in the mathematical
formalism, limited only by the intrinsic complexity of its calculation—so just Shut Up and Calculate!1

An enquiry into General Relativity (GR) reveals that it has been universally successful in predicting the results
of numerous gravitational experiments, many of which seemed counter-intuitive. It is formulated in curved
space-time, so the space and time coordinates of any given point depend on the distribution of matter in the space.
Calculations in such a space are inherently self-referential, and require sophisticated mathematical techniques
for their solution. Most problems require certain simplifications to produce solutions that are useful in practice.
However that may be, the student is assured that all physical law associated with gravitation (with the exception
of quantum systems) is embodied in GR, and what remains is to apply it to ever more “interesting” gravitational
arrangements.

An enquiry into Electrodynamics reveals that Maxwell’s Equations were not derived by Maxwell, but by his
followers who, along with Maxwell, were determined to base electromagnetic phenomena on disturbances in what
they called the Luminiferous Ether—a substance that was postulated to pervade all of space, and to follow the
laws of classical mechanics, thereby enabling light to propagate through it. The equations themselves are expressed
in vector calculus, and require a number of auxiliary classical mechanics relations, most noticeably a mechanical
force law by which electrical charges and currents interact. Much of our modern electrical technology is based
on specializations of Maxwell’s Equations, simplified and highly tuned for specific applications like electrical
machinery (motors, generators, transformers), wireless transmission (radio, television, cellular, satellite, deep
space communication), transmission via conductors (cable, ethernet, power transmission lines).

These three Great Theories all developed in the scientific culture of classical mechanics, and are expressed in
constructions that were leading-edge at the time. But that was a century or more ago, and technology has since
evolved from the mechanical/geometric age to the electrical/electronic age. Concepts that have made electrical
technology successful had very different connotations in the mechanical view of a century ago than they do in the
context of todays ubiquitous electrical and electronic reality. In particular, electromagnetic waves are everywhere,
and propagate in empty space—a concept that no longer causes any consternation. So the fact that fundamental
elements of matter like electrons, protons and neutrons are waves that also propagate in empty space is easily
visualized by anyone familiar with radio waves. Likewise the notion of a potential is built into our electrical culture
at the bottom level—the electrical potential is called the Voltage, and no discussion of electrical phenomena can
proceed without it. The fact the potential is defined with respect to some reference “zero” is obvious—every
Voltmeter has two terminals! Yet these two fundamental concepts are largely absent from the way the three Great
Theories are taught.

Viewed through the engineering concepts of waves and potentials,
modern experiments give a clear and intuitive view of fundamental physical law.

1David Mermin phrase
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I have selected the following historic experiments because they directly illuminate the conceptual connection
between quantum waves and gravitational and electromagnetic potentials:

1. 1927 - Direct observation of the wave nature of free electrons.[12]

2. 1929 - The expanding universe, containing the enormous energy from the cosmic expansion.[31]

3. 1961 - Quantized flux experiments showed that a superconducting ring6 had a coherent collective wave
function which had an integer number of 2π phase advance in its path around the ring[14][16].
Such macroscopic wave functions provide our most direct access to the 3-dimensional wave nature of matter.

4. 1964 - The Superconducting Quantum Interference Device (SQUID) showed unequivocally that the

superconducting collective wave function was coupled via the electromagnetic vector potential ~A,
not the Maxwell magnetic field ~B[34].

5. 1964 - The London Moment 6 in a rotating superconducting ring showed directly
that the free-floating collective electron wave function finds a delicate balance
between opposite electromagnetic and cosmic gravitational vector potentials.[29]

6. 1965 - The Cosmic Microwave Background (CMB) was detected and identified.[75]

7. 1967 - The Shapiro Delay 7.3 of radar signals passing close to the Sun was the first direct demonstration of
the effect of the gravitational scalar potential on the measured speed of light.[64][56][15]

8. 1975 - Direct measurement 4 of gravitational scalar potential effect on Neutron wave functions.[9]

9. 1976 - The Fiber-Optic Gyroscope (FOG)5.3 - Direct effect of gravitational vector potential
on electromagnetic propagation (Sagnac Effect), and the cosmic zero of rotation.[71]

10. 1977 - Convincing observation of the CMB frame of reference.[66]

11. 1979 - Direct measurement of the effect of gravitational vector potential 5.4 on Neutron wave functions.[73]

12. 2010 - Direct measurement of atomic clock frequency vs gravitational scalar potential.[8]

I strongly advocate introducing students to physical law via these great modern experiments rather
than dragging them through endless repetition of centuries-old classical mechanics ideas.

This document is written for non-specialists, who will almost certainly prefer a more historical introduction.
These readers can skip the expert section for now and go directly to Section 1.5.

1.3 For Experts

This document contains a highly practical approach to the conceptual formulation of Physical Law.
The result is a simplified and unified quantum treatment of Electromagnetism and Gravitation.

I have found that readers who are already expert in these subjects tend to skip all the introductory material and
scan the equations in order to find the “meat” of the document. In the process they completely miss the entire
purpose of doing physics this way. So I have provided a special introduction just for them.

1.3.1 Electromagnetism (E&M)

The most fundamental formulation of E&M deals with two four-vectors, shown in bold-face type (SI units):

J =
{
~J, cρ

}
the four current density (1.1)

which represents the density ρ and flow ~J of charged matter, and

A =

{
~A,
V
c

}
the four potential (1.2)

which contains the scalar potential V and the vector potential ~A, representing the scalar (electrostatic) and vector
(magnetic) interaction between elements or aggregations charged matter.
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The four-current-density J is the source of the four-potential A:

A(0, t) =
µ0

4π

∫
J(~r, t± r/c)

r
←→ �2A = −µ0J (1.3)

The equivalence follows from Green’s representation theorem, and �2 is the four-vector Laplacian:

�2 = ∇2 − 1

c2
∂2

∂t2
(1.4)

The effect of the vector potential on matter is represented, at the most fundamental level, by the presence of the
four-potential in the four-momentum p of each element of charged matter:

p = ~k− qA −→ J =
qn

m
(~k− qA) (1.5)

where k =
{
~k, ω/c

}
is the propagation four vector of the matter wave function, and the current density four-vector

is just the aggregation of n per unit volume elements of matter of charge q.

So the four-potential approach to electromagnetism, and the wave representation of matter, together give a direct
coupling of the momentum of the elementary “source” charges to the momentum of the elementary “affected”
charges without any use of the classical notion of “force.” The potentials are merely bookkeeping devices, and do
not imbue the intervening space with degrees of freedom of its own.

As detailed in CE[44], this succinct, self-contained and intuitive formulation captures, in a relativistically correct
manner, the behavior of electromagnetic phenomena all the way from the radiation of individual atoms up through
superconductors, transmission lines, radio antennæ, electric motors and generators.

1.3.2 Gravitation

For GR, Einstein chose, quite arbitrarily, to assume that the Speed of Light c is the same constant in all inertial
frames of reference—quite at odds with his 1911 and 1912 theories. Unfortunately he did not have the hindsight
provided by the direct observation of the gravitational slowing of Radar pulses by Shipiro in 1967, and many that
followed into the present. However that may be, GR must work in frames of reference whose space and time axes
are constantly warped by the presence of matter.

A mathematical theorem: Sylvester’s Law of Inertia, shows that there is always a free-fall frame of reference, but
it does not specify what the speed of light will be in that frame of reference. GR assumes that value will always
be the “Universal Speed of Light in Vacuum” ∼ 3× 108 meters/sec. G4v does Not make that assumption.
In G4v the value of the speed of light c at any point depends on the location and energy of other matter relative
to that point. However Special Relativity remains valid locally, in any free-fall frame of reference, provided this
local value of c is used.

G4v works in frames of reference where lengths are independent of Gravitational Scalar Potential, and the speed of
light is, as directly observed, proportional to the Gravitational Scalar Potential. To avoid duplication of variables,
In G4v the Speed of Light c itself is used as the Gravitational Scalar Potential.
The quantity of matter is Not the mass m but the Compton wave number k0 = mc

~ .
Thus, for example, the mass me of the electron is not a fixed number of kilograms,
but the electron’s Compton wave number k0 is always 2.589605× 1012 meters−1.

Note about units: G4v is formulated in wave units, where energies have the units of frequency ω, and momenta
have the units of a propagation vector k, i.e., inverse length. The units of both k0 and ~k are inverse length,
therefore the gravitational vector potential ~A is dimensionless. The product of k0 and the gravitational potential c
is a frequency ω0. In mechanical units, the rest momentum ~k0 = mc, which, when multiplied by the gravitational
potential c is equal to the rest energy ~ω0 = mc2. See Section 3.1 for details.

The proper use of four-vector quantities assures us of Lorentz-invariance in free-fall (Inertial) “flat” frames of
reference in which the coordinates do not depend on the contents—an enormous simplification!
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Relation to GR

The Einstein Field Equations of GR can be written as:

Gµν =
8πG

c4
Tµν Tµν =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 . (1.6)

Where G is Newton’s gravitational constant and Tµν is the Stress-Energy Tensor. The element T00 is the energy
per unit volume divided by c, and T01, T02, T03 are the momentum per unit volume in, for example, the x, y, z
directions. Thus the units of all elements are momentum per unit volume.

It is well known that, for weak gravity, Eq. 1.6 reduces to a vastly simpler linear equation2 of the form:

�2Aµν =

[
∇2 − ∂2

∂t2

]
Aµν ≈

−4πG

c3
Tµν (1.7)

where Aµν is the Tensor Gravitational Potential and the Tµν is slightly different from the one in Eq. 1.6. Since
lengths in G4v do not change when the gravitational potential c changes, we need to express the gravitational
constant G as a length. By definition the Planck length

`p =

√
~G
c3

⇒ G =
`2P c

3

~
(1.8)

Since G4v works strictly with a wave description of elements of matter; let’s check the units of Eq. 1.7:
m=meter, s=second, ~ω=energy, ω ∼ 1/s, ~k=momentum, k ∼ 1/m, α = [x, y, z]:

G =
`2P c

3

~
⇒ G

c3
=
`2P
~

T00 =
1

c

~ω
vol

⇒ G

c3
T00 =

`2P
~
· 1

c

~ω
vol

=
`2P
c

ω

vol
∝ 1

m2

T0α =
~kα
vol

⇒ G

c3
T0α =

`2P
~
· ~kα

vol
= `2P

kα
vol
∝ 1

m2

(1.9)

We may now express Eq. 1.7 using our wave representation of matter:

�2Aµν ≈
−4π`2P

~
Tµν ⇒ Aµν ≈

−`2P
~

∫
Tµν(x, y, z, t± tt)

r(t± tt)
dvol where tt =

∫ r

path

s/c(s) ds (1.10)

Since the d’Alembertion operator �2 =
(
∇2− 1

c2
∂2

∂t2

)
has the units of 1/m2, the tensor gravitational potential Aµν

is dimensionless. The integral form follows from Green’s theorem, as Einstein indicated in Meaning of Relativity,
Eq.101, and the discussion that follows. As written, Eq. 1.10 can utilize all components of Tµν . When we only
include the first column, or, equivalently, the top row, we arrive at a four-vector version.

The top row and left column of the stress-energy tensor contain the components of the energy-momentum
four-vector, which are attributes of any fundamental element of matter. The diagonal elements Tαα represent
the moments of inertia of a binary, and are the largest source of the Gravitational Waves that directly alter
the spacing of the LIGO mirrors—a fact that that I bungled in my arXiv:1503.04866 paper, but was handled
properly in my collaborators’ arXiv:1502.00333 paper. For gravitational arrangements where elements of matter
like Electrons and Neutrons, and massive objects like stars, planets, etc. can be approximated as discrete elements,
we can ignore the blue and green Tαβ elements, and a straightforward four-vector formulation becomes, as long as
the curvature is small, an excellent approximation.

2See, e.g. Wikipedia: Linearized Gravity.
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The quantities in Eq. 1.10 are, with α = [x, y, z] and 4-vector quantities in bold:

T00 =
1

c

~ω
vol

=
~ω
c

Ψ∗Ψ

T0α =
~kα
vol

= ~kαΨ∗Ψ

Using T =
[
T00, T0x, T0y, T0z

]
= ~

[ω
c
, kx, ky, kz

]
Ψ∗Ψ = ~kΨ∗Ψ

Eq. 1.10 becomes �2A ≈ −4π`2P
~

~kΨ∗Ψ = −4π`2PkΨ∗Ψ

(1.11)

�2A ≈ −4π`2PkΨ∗Ψ ⇒ A ≈ −`2P
∫

kΨ∗Ψ(x, y, z, t± tt)
r(t± tt)

dvol where tt =

∫ r

path

s/c(s) ds (1.12)

We have thus shown that, in weak gravity, where only the Energy-Momentum elements of the Stress-Energy
tensor play a significant role, we have a four-vector version of Einstein’s field equation that is parallel to, and
integrated with CE[44] four-vector, quantum-based electromagnetism. We call this formulation G4v.

1.4 G4v

G4v has the following positive attributes:

• It is parallel to, and integrated with CE [44] four-vector electromagnetism.

• It is based on 4-vector properties of matter waves, and thus has a fundamental Quantum basis.

• It is formulated with 4-vector relations in ordinary “flat” space-time, and is easy to work with.

• It uses the gravitational 4-potential, not merely “fields” which are derivatives of the potential.
For that reason it can treat the full scalar and vector relations of Mach’s Principle:
Inertia and Rest Energy of an element of matter are due to its
Gravitational 4-Vector coupling to all matter inside the Horizon of the Universe!

• It predicts all the observed post-Newtonian phenomena normally attributed to GR
with the exception of Gravitational Waves, which require the diagonal elements hαα.

• Its predictions are quantitatively in accord with observations, as far as have been determined.

• It is based on Mach’s principle, and provides a basis for the Equivalence Principle.

• Being based on Mach’s principle, it provides a Cosmic basis for Special Relativity.

• Its solution for a massive “Black Hole” is free of singularities.

• A simple cosmology based on G4v predicts a universe consistent with observation
without requiring “dark energy.”

G4v has the following limitations:

• It does not include the diagonal spatial elements in the stress-energy tensor, so misses the largest contribution
to the separation of the LIGO mirrors by gravitational waves. The Green’s Function of binary systems,
containing diagonal tensor elements that are 4 times the amplitude of the G4v vector element, is easily
added, and this addition gives the same prediction for LIGO results as linearized GR. This ad hoc addition
is not satisfying, as a full tensor-potential based theory would be. It might be prudent to await the outcome
of the Section 7.6 experiment before undertaking the effort involved in such a development.

• It is an engineering approach, and employs different logic than main-stream theoretical physics.

• It is not nearly as highly evolved and mathematically sophisticated as GR.

————————————————–
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1.5 History

Building on the work of Cavendish and Coulomb, the parallel between electromagnetism and gravitation became
obvious to many scientists. Both Maxwell and Heaviside attempted theories of gravitation based on their
electromagnetic equations. They were discouraged by the fact that, due to the opposite sign of coupling,
gravitational energies were invariably negative.

In 1911, Einstein [23], reasoning solely from the equivalence principle, which he called “the happiest thought
of his life,” put forth a theory in which the speed of light decreased near a massive body. In that paper he
predicted three of the modern post-Newtonian effects due to this decrease in the speed of light with gravitational
potential:

• Gravitational redshift

• Dependence of the speed of light on the gravitational potential

• Gravitational deflection of light by massive bodies

His expression for the redshift gives the accepted modern value, which was not observed experimentally until
1960. He ended the paper with the following historic passage:

A ray of light going past the Sun would accordingly undergo deflection to the amount of 4×10−6 = 0.83
seconds of arc. The angular distance of the star from the center of the Sun appears to be increased
by this amount. As the stars in the parts of the sky near the Sun are visible during total eclipses of
the Sun, this consequence of the theory may be compared with experience. . . It would be urgently
wished that astronomers take up the question here raised, if though the considerations presented above
may seem insufficiently established or even bizarre. For, apart from any theory, there is the question
whether it is possible with the equipment at present available to detect an influence of gravitational
fields on the propagation of light.

Although the results of observation would not be known for another 9 years, his analysis led to 1/2 the observed
bending. This factor of two seems to be the only reason modern authors refer to this remarkable landmark
paper.

It was clear to Einstein that, if the parallel between electric and gravitational interactions were a reliable guide,
there must be more to the story. In 1912, in a short paper in an obscure journal[19], he explored the question:
Is There a Gravitational Effect which is Analogous to Electrodynamic Induction?
The predictions of this paper are even more far-reaching than those of the 1911 paper:

• Proximity Increase in Inertia

• Gravitational Influence on Frame of Reference

• Mechanism for Mach’s Principle

Shortly after his 1912 paper, Einstein struck out in a totally new direction, leading to General Relativity (GR)
in 1915. This new theory absorbed the change in the speed of light with gravitation potential into dilation of
the spacetime metric. He postulated that the velocity of light was the same constant in any local Lorentz frame.
Including both the time and spatial variation of the spacetime metric in GR led to the correct prediction for the
bending of light, as reported by Eddington and his colleagues [17] in 1920.

We return here to Einstein’s original 1911/12 formulation: that the speed of light depends on the gravitational
potential, and that gravitation includes an inductive coupling. This approach was extended with several deep
insights by Max Abraham [57] in what he called “a constructive competition with A. Einstein.” That work might
have led to a Minkowski-type four-vector theory of gravitation based on the obvious parallel with electromagnetism.
However, at the time, attempts to use gravitational potential invariably led to negative energy. Also, Abraham
had extended the Lorentz force law to include damping in the electromagnetic field. The application of the
Abraham-Lorentz law to gravitation led to an apparent runaway instability, which, along with the negative-energy
problem, put an abrupt end to the development of four-vector theories of gravitation.
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From our modern perspective, these pioneering workers were lacking a number of centrally important insights
which, taken together, provide a clear guide to a unification of Electromagnetic and Gravitational interaction
of Quantum Matter Waves. We have used this new set of insights to clarify the solution space in the following
ways:

• The negative gravitational potential energy presents no problem when it is viewed as subtracting from the
enormous kinetic energy of the cosmic expansion.

• The coupling of matter wave functions via the electromagnetic vector potential appears directly, and does not
involve the Maxwell field quantities ~E and ~B. No force equation is needed, and hence the Abraham-Lorentz
confusion does not arise.

• In 1951 Callen & Welton[7] showed that Abraham’s damping addition to the Lorentz force was due to
coupling to a continuum of quantum levels, and hence depended on the square of the coupling constant, not
to the coupling constant itself as Abraham had assumed. For that reason the term results in damping for
both gravitation and electromagnetism, rather than in an instability for gravitation.

• Collective Electrodynamics [CE] [44] provides full Quantum-based articulation of electromagnetics based
solely on the four-vector potential3. Practical problems from electric motors, permanent magnets, antenna
patterns, and atomic transitions are all worked in a significantly simpler manner than with the traditional
Maxwell’s Equations and their concomitant force equations. In addition, the theory correctly treats
interaction with superconductors, whereas the Maxwell approach does not.

• Sagnac effect demonstrations with light[71], with superconducting Electrons[29], and with Neutrons[73],
have all, within their accuracy, demonstrated that the coordinate system in which the Wave Function has
zero rotation is identical to the observed coordinate system of matter in the Universe. Because none of
the present consensus theories work at the level of potential, they cannot make this connection, but it is
a natural consequence of Mach’s Principle, which inspired Sciama’s Origin of Inertia[62]. At the end of
Einstein’s Meaning of Relativity[21], he outlines his approach to obtaining Mach’s Principle, which uses
a gravitational vector potential, but he does not carry it through. We adopt Sciama’s 4-vector potential
coupling between all elements of matter in the Universe, and apply it at the Quantum level.

• This being an Engineering approach, we take the obvious interpretations of the experimental results, rather
than superimpose some belief coming from previous history. From the numerous observations of Shapiro
Delay[64][65][56][15], the obvious conclusion is that the Speed of Light is directly proportional to the
gravitational potential—a conclusion Einstein reached in 1911. GR has taken the position that the length of
rigid rods is proportional to the gravitational scalar potential, as are the speed of clocks. That combination
then predicts that the speed of light slows by twice the gravitational scalar potential, which accounts for the
factor of 2 in the bending of light, observed in 1919, and verified in the Shapiro Delay. We take the view
that photons carry momentum, and therefore have vector as well as scalar coupling to matter—the sum of
the two effects accounting for the factor of two. This difference in the origin of that factor of 2 is testable
using current technology—see Section 7.6.

3Poincaré, Minkowski, Sommerfeld, Abraham and Lewis all made noble attempts to develop such a theory, but only Lewis produced
a conceptually simple four-vector electromagnetic theory [36]. All these efforts predated both Schrödinger’s papers and London’s
insights into the quantum nature of superconductivity, so none of them were able to develop a wave-vector based theory free from
force-law coupling
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1.6 Present Approach

We describe here an internally-consistent, Quantum coupled treatment of gravitation and electromagnetism. The
electromagnetic part is put forth in Collective Electrodynamics—Quantum Foundations of Electromagnetism
[44], hereinafter referred to as CE, and described briefly in Section 1.3.1. The Gravitational theory described in
this document, which we call G4v, is a direct extension of Einstein’s 1911/12 approach. It differs from previous
attempts in a number of important ways:

• Neither the electromagnetic nor gravitational fields are quantized.
The wave functions and four-potentials are continuous functions of space and time.
Quantization results from the interaction of matter and field wave functions.

• The theory is based on Mach’s Principle and provides a conceptual base for the Equivalence Principle.

• It is not a metric theory; it is formulated in flat space-time.
Lengths are constant and do not vary with gravitation potential

• The speed of light c is equal to the gravitational scalar potential.
It is not constant, but varies with position and time.

• The quantity of matter coupled gravitationally is not the mass m.
It is the Compton wave number k0 = mc/~.

• The theory is based on four-vector coupling.
It is thus locally Lorentz-invariant in regions where the speed of light can be considered constant.

• The source of the electrical four-potential is the charge–current density four-vector, and that for the
gravitational four potential is the energy-momentum four-vector. Both quantities are defined for the wave
function of the source matter, and appear as terms in the affected matter wave function.
The concept of force is not necessary, but can be computed if desired.

This approach allows a unified treatment that avoids the historical stumbling blocks caused by force-law based
coupling. We obtain, in a simple and straightforward manner, all of the canonical experimental “tests of GR.” In
particular we observe that, in 1911, Einstein included only the scalar part of the interaction, neglecting the vector
part. As noted above, his 1912 paper [19] provides the key element that was missing in 1911: Because the photon
is traveling at the speed of light, the vector contribution to the speed and deflection of light is equal to that of
the scalar part, and the two effects add. Thus the total deflection of light predicted in this manner agrees with
GR and with observation. He was thus within a day’s work of having a correct solution to the light-deflection
problem. It is ironic that this “near-miss” diverted the entire evolution of gravitational theory onto a completely
different path. Our approach to the speed of light can be tested using today’s technology—see Section 7.6.

In addition to obtaining the correct value for the light-deflection problem, we also obtain exactly the same
expressions as GR, to the first order beyond Newton, for perihelion precession, Gravity Probe B, gravitational
redshift, Shapiro delay, and the gravitational bending of light.

For gravitational waves, it is now clear that those that affect the spacing between the LIGO mirrors are primarily
polarized by “strain” modes—the “stretching of spacetime.” These are represented by the diagonal modes of the
source tensor[33]. Expanding the G4v gravitational potential approach to include these linearized GR Green’s
Function potentials from binary systems is straightforward, and produces the same results as GR. That insight,
which is not part of G4v proper, was missed in my arXiv:1503.04866 posting, which therefore gave the wrong
location and amplitude for the historic 2017 LIGO sighting [38][37]. To properly incorporate tensor elements
beyond the first row/column is a future project, and only worthwhile if the Section 7.6 experiment succeeds.
Meanwhile we can rely on the Green’s Function “hack.”



Chapter 2

Waves as the Foundation of Physics

There is a tendency to teach science concepts in the order in which they were discovered. Such an approach would
not pose a problem if scientific discovery were perfectly well-ordered, so that each new discovery was an extension
of the prior knowledge. The actual evolution of our knowledge is, however, much more chaotic than this simple
idealization: New findings always modify our understanding of older ideas.

The dangers of unwillingness to give up historical viewpoints has been most prominent in the recent development
of quantum physics. Specifically, it is common practice to teach classical mechanics as the foundation of physics.
Subsequently, quantum phenomena are introduced in a manner that tries to avoid admitting that classical
mechanics is not fundamental, whereas in fact it derives from quantum mechanics as a special case. A key defect
of this approach is the introduction of point-particles which are described as interacting in a mechanical manner,
leading to infinite energy density and further difficulties.
Ernst Mach[41] foresaw the problem long before it had become acute. He said:

The view that makes mechanics the basis of the remaining branches of physics, and explains all
physical phenomena by mechanical ideas, is in our judgment a prejudice . . . The mechanical theory of
nature, is, undoubtedly, in an historical view, both intelligible and pardonable; and it may also, for a
time, have been of much value. But, upon the whole, it is an artificial conception.1

Classical mechanics is inappropriate as a starting point for physics because the elements out of which it is
constructed—force, mass, position, velocity, etc.—are not fundamental; rather they are properties that emerge in
the limit of an incoherent aggregation of an enormous number of quantum elements, each of which has the nature
of a wave. Feynman (FLP vol. II Sec. 15-5) [25] expressed it this way:

There are many changes in what concepts are important when we go from classical to quantum
mechanics. . . Instead of forces, we deal with the way interactions change the wavelength of waves.

So, to have a unified approach to physics, we start with the wave nature of elements of matter, and derive the
behavior of macroscopic systems by treating them as aggregations of a large number of these elements. The
phenomena of electromagnetism arise directly from the coherent aggregation of charged elements, as discussed at
length in CE [44]. We find that, at the fundamental level, gravitation couples matter waves with other matter
waves via the gravitational four-potential in exactly the same manner that one charged matter wave couples to
another charged matter wave via the electrodynamic four-potential.

The phenomena of ordinary macroscopic gravitation, mechanics and thermodynamics arise directly from the
incoherent aggregation of uncharged elements. The unified approach presented here accommodates the full range
of interactions.

2.1 Mechanics of Matter Waves

We begin with the connection between the wave nature of matter and mechanics. Every element of matter has a
wave function ψ, as first put forth by de Broglie[13].
The most elementary wave function ψ is of the form:

ψ = a eiφ = a ei(k·r) = a ei(
~k·~r−ωt) (2.1)

The amplitude envelope a, and the propagation vector ~k are assumed to be slowly varying functions of the spatial
location ~r and the time t. Such wave functions are solutions of some wave equation: the most common being
the Riemann–Sommerfeld Equation for electromagnetic waves and the Schrödinger, Klein-Gordon, and Dirac
Equations for matter waves. The density of energy or charge carried by the wave is proportional to the absolute
square ψ∗ψ of its wave function.

1The quote appears in Ch. V, pg. 495 of the final (1919) edition of reference [41].

10

http://www.feynmanlectures.caltech.edu/II_15.html#Ch15-S5
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For some reason that is only postulated and not yet understood at the fundamental level, the integral over all
space of ψ∗ψ for each element of matter is equal to unity. This quality is called the normalization of the wave
function, and, when multiplied by the elementary charge q, is called the quantization of charge; it is responsible
for the particle-like properties of matter. It can be thought of as the mechanism by which each element of matter
keeps its “identity” even though it is distributed in space and time.

In Eq. 2.1 the phase φ is the dot product of the propagation four-vector2 k = ~k, ω/c and the corresponding
interval r = ~r, ct. The dot product of any two four-vectors is a scalar—it is invariant under a Lorentz
transformation, i.e., it has the same value in any inertial coordinate system. Thus the phase φ has the same value
in any inertial coordinate system. We can derive other relativistically correct laws from such dot products: Taking
the dot product of k with itself we obtain:

k · k = ~k · ~k − ω2

c2
= k2 − ω2

c2
(2.2)

Defining k2
0 = k · k where k0 is the Compton wave number or standing-wave number of the wave function

and the scalar magnitude k of the propagation vector ~k of the wave is called the wave number, we obtain

ω2 =
(
k2

0 + k2
)
c2. (2.3)

Thus, using the relation between the wave variables and their mechanical counterparts: momentum ~p = ~~k and
energy E = ~ω we obtain the final form:

E2 =
(
p2

0 + p2
)
c2. (2.4)

where the final form is obtained from the relation between the wave variables and their mechanical counterparts:
momentum ~p = ~~k and energy E = ~ω. The scalar magnitude k of the propagation vector ~k of the wave is called
the wave number. The quantity k0 is called the Compton wave number or standing-wave number of
the wave function, and p0 = ~k0 is the corresponding rest momentum. The quantity ω0 = k0c is called the
rest frequency of the matter wave and E0 = ~ω0 = ~k0c is the corresponding rest energy. The frequency ω is
the change in phase per unit time. The propagation vector ~k is the change in phase per unit distance. It may
seem strange for a stationary element of matter to have a momentum, but a standing wave can have a phase
that changes with distance, which then becomes its rest momentum. Electromagnetic waves in free space have
k0 = 0.

Two fundamental postulates of G4v are:

1. The speed of light c is the local gravitational potential.

2. The Compton wave number k0, not the “mass”, is the quantity of matter.

so their product is the rest frequency ω0.

In G4v, the entire rest energy of electrically neutral matter is gravitational in origin!

Eq. 2.3 is called a dispersion relation between the frequency ω (energy E = ~ω) and the propagation vector
~k (momentum ~p = ~~k ) of the matter wave. As we will see shortly, the path of propagation of a matter wave is
governed by its dispersion relation.

We note here that this formulation is quite different from the familiar Newtonian one, and is the source of
many effects normally associated with GR. Although it takes a little getting used to, we will find that the entire
relativistic dynamics of an electromagnetic wave, and that of any matter wave, including gravitational interaction,
can be derived simply from its dispersion relation. The power of this method can only be appreciated by way of
examples, to which the remainder of this volume is dedicated.

All familiar elements of matter have some restriction on their wave functions at the Compton scale, almost
certainly associated with an internal degree of freedom called spin. That restriction is, in some way that has not
yet been clearly conceptualized, responsible for the rest standing-wave-number k0, called the Compton wave
number: the inverse of the reduced Compton wavelength of the matter wave function. In G4v k0 is the
fundamental quantity of matter, not the mass m.

2See
Section 2.2 of [44] or Susskind Lecture Notes for an introduction to four-vector notation.

http://www.lecture-notes.co.uk/susskind/special-relativity/lecture-5/four-vectors/#ln-definition-of-four-vectors
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The wave view of matter allows us to visualize many physical phenomena in an extraordinarily powerful way:
Instead of visualizing a “particle” of matter having a “mass” with a “position” at every “time,” we visualize it in
the same way we view a ray of light—extended along some path of propagation. The path is determined by
conservation of energy and angular momentum, as appropriate, and by the environment, given by the gravitational
and electromagnetic potentials in the neighborhood. For example the orbit of a planet can be treated as the path
of propagation of a “ray” of matter with the same dispersion relation as the planet, carried out in Chapter 10. In
that case the orbit is totally determined by the gravitational potentials and the dispersion relation—The path is
exactly the same if the planet is a wave stretched around the orbit as it is if the planet is a compact sphere whose
center-of-mass is tracing out the orbit!

2.2 Phase Integrals

Most of the important properties of waves derive from the phase φ. The propagation four-vector k is defined as
the four-gradient of the phase:

k = �φ =

{
∇φ, −1

c

∂φ

∂t

}
=
{
~k,

ω

c

}
(2.5)

The wave propagates in the ~k direction along its path of propagation, which is perpendicular to the contours of
equal phase. When the interval is taken along this path, it follows immediately from the definition of gradient
that the phase between two space-time points is a minimum.

φ12 =

∫ 2

1

∇φ · d~r − ω dt = minimum (2.6)

This principle defines ray optics in terms of wave optics, where it is called Fermat’s Principle.

Applied to matter waves, the phase is called the action; many problems can be solved using Eq. 2.6, which is
then a simplified form of path integral, and its solution called the principle of least action.

The form in which we will most often use this principle will be to view a “snapshot” of the wave around the entire
path at one point in time. We then integrate the wave vector ~k along the path to get the phase.
The correct path will have stationary phase (not changing to first order with small changes to the path).

This method was clearly described by Leonhard Euler in 1744, in very recognizable terms[24]:

Let the mass of the projectile be M , and let its speed be v while being moved over an infinitesimal
distance ds. The body will have a momentum Mv that, when multiplied by the distance ds, will give
Mv ds, the momentum of the body integrated over the distance ds. Now I assert that the curve thus
described by the body to be the curve (from among all other curves connecting the same endpoints)
that minimizes

∫
Mv ds.

Identifying Euler’s momentum with our wave vector:

φ12 =

∫ 2

1

~k · ~ds (2.7)

Notice that there is no time anywhere in this formulation—and it works for any set of potentials to which the
projectile is subjected, provided only that the potentials are not explicit functions of time. So Euler anticipated
the result of the wave view of matter 180 years before de Broglie and Schrödinger put it forth in a more tangible
form. Examples of our application of the method are given in Sections 2.5, 5.1, 7, 7.4, and 12.5.3.
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2.3 Classical from Quantum

The classical limit emerges from the incoherent aggregation of a large number of quantum objects. The initial
aggregation of individual matter (Fermi) wave functions requires that the wave function of each additional element
of matter be orthogonal to that of all others present. The most elementary attribute of a stationary aggregation
will be manifest by every element of matter being paired with another element with equal and opposite wave
vector, thereby making a standing wave. As we add more and more such standing waves in different directions,
we build up a composite structure that has no net momentum, but has a position as observed for macroscopic
objects. The total momentum vector ~k of a stationary object is zero, because the momentum of each element
is precisely cancelled by that of another. But the scalar Compton standing wave numbers of all the elements
are independent, do not cancel each other, and so they add up. So the Compton wave number k0 = mc

~ of the

aggregate, and therefore its rest energy k0c = mc2

~ , is not a separate thing at all—it is simply the aggregation of all
the orthogonal standing-wave vectors of the individual constituent elements of matter. The rest energy is just the
sum of all the Compton standing waves subject to the local gravitatenal potential c. And the reason we can use
the wave properties of a moving aggregation of matter, even when the matter involved is a big, messy, incoherent
aggregation of individual quantum elements, is that all its constituent elements share a common motion, and
therefore a common wave vector, which emerges as the momentum of the object.

Any wave structure transports matter (or energy) with its group velocity v = ∂ω/∂k, so, to make the connection
with ordinary mechanics, we differentiate Eq. 2.3 with respect to k:

2ω
∂ω

∂k
= 2kc2 ⇒ ω

c2
∂ω

∂k
= k ⇒ ~ω

c2
v = ~k ⇒ E

c2
v = p (2.8)

We see that the momentum is proportional to the velocity, but the “constant” of proportionality E/c2 depends
on velocity (because E does) and on the gravitational potential c. It is only for small velocities (v � c), and
gravitational potentials whose relative change during the motion is negligible, that the proportionality constant
E/c2 in Eq. 2.8 can be considered constant.

Only in this limiting case we can define a mass m = E0/c
2 = ~ω0/c

2 = ~k0/c = p0/c, and the result
approximated:

mv ≈ p where m =
~k0

c
(2.9)

The idea that mass is somehow a “fundamental” property of an element of matter, although familiar from classical
mechanics, has been one of the principle stumbling blocks in the search for a unified treatment of gravitation,
as we will see more clearly in the following sections. In this document we will use wave variables in all our
calculations, and only translate our results into familiar mechanical units at the end.
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2.4 Dispersion Relations

The familiar form of Eq. 2.9 in terms of the variables used in classical mechanics prepares us for the more important
case where the gravitational potential, equal to the speed of light, is a function of position.
The relationships involved can be visualized with the aid of the dispersion curves of Fig. 2.1.

Figure 2.1: Dispersion relations of Eq. 2.3 for Left: elements of matter with k0 = 0(black), 0.5(blue) 1(magenta)
and 2(red), all in an environment of c = 1. Right: Single element of matter with k0 = 1 in environments of
different gravitational potentials c = 0.25(blue), 0.5(cyan), 1.0(magenta) and 2(red). The y-axis intercept is the
rest energy k0c, the slope at large k is c, and the curvature at k = 0 is ~/m, as can be seen in Eq. 2.10. It is k0

that is coupled by gravitation, and is constant when the gravitational potential, equal to the speed of light, is
changed. The black arrow is the trajectory of an element of matter in free-fall moving in the +k direction.

As before, differentiating Eq. 2.3 with respect to k at a particular value of c yields

ω
∂ω

∂k
= kc2 ⇒ ω

∂2ω

∂k2
+

(
∂ω

∂k

)2

= c2

∂2ω

∂k2

∣∣∣∣
k=0

=
c2

ω0
=

c

k0
=

~
m

(2.10)

Max Abraham discovered already in his 1913 paper (page 353 in [57]) that mc, not the mass m, is the most
natural representation of the gravitational quantity of matter of a massive object, which does not change as
the gravitational potential, equal to the speed of light c, changes.

Abraham also adopted the assumption that the lengths of material objects do not change with gravitational
potential, already introduced in Einstein’s 1911 and 1912 papers. Those facts were rediscovered independently
nearly 100 years later in the course of the present investigation, and are incorporated in the scaling laws upon
which G4v is based.
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2.5 Gravitational Field

Changes in the gravitational potential c with position in space occur e.g. near massive bodies. The spatial
gradient of the gravitational potential c is called the gravitational field g. To derive the dynamics of a matter
wave in a gravitational field, we use the group velocity ~v = ∂ω/∂k in Eq. 2.8:

ω

c2
~v = ~k ⇒ ω2

c4
v2 = k2 (2.11)

Using this result in Eq. 2.3 yields the energy and momentum as a function of velocity:

ω2 =

(
k2

0 +
ω2

c4
v2

)
c2 = k2

0c
2 + ω2 v

2

c2
⇒ k2

0c
2

ω2
= 1− v2

c2

ω =
k0c√

1− v2/c2
=

mc2

~
√

1− v2/c2
and ~k =

ω

c2
~v =

k0 ~v/c√
1− v2/c2

=
m~v

~
√

1− v2/c2

(2.12)

On the surface, Eq. 2.12 looks just like the standard relativistic expressions for energy and momentum as functions
of velocity. However, in G4v the speed of light c is also the gravitational potential.
So, if c is a function of position, each of the curves shown in the right side of Fig. 2.1 will be that of an element of
matter at a different position, and an energy-conserving wave which was stationary at a position where c = c0 will
accelerate to wave vector ~k and hence velocity ~v at a position where c = c0 − δ, as shown by the black arrow. The
energy ω and the Compton wave number k0 are both constant, so

ω = k0c0 =
k0(c0 − δ)√

1− v2/ (c0 − δ)2
⇒ 1− δ

c0
=

√
1− v2

(c0 − δ)2 (2.13)

In the Newtonian limit where δ � c0, Eq. 2.13 reduces to

δ ≈ v2

2c0
⇒ k0δ ≈

k0v
2

2c0
⇒ mc0δ =

mv2

2
(2.14)

So the decrease in gravitational potential energy mc0δ has been converted into the kinetic energy mv2/2.

Now let us see how the velocity v changes with time. Differentiating the first expression in Eq. 2.14,
and noticing that the velocity v = ∂z

∂t , and that the local gravitational field g = c0
∂δ
∂z ,

v

c0

∂v

∂t
=
∂δ

∂t
=
∂δ

∂z

∂z

∂t
⇒ ∂v

∂t
= g (2.15)

Thus our matter wave is accelerated by the local gravitational field in exactly the way we would expect from
Newton’s law. We are reminded that in Newtonian physics Eq. 2.15 would read

mgrav g = minertial
∂v

∂t
and mgrav = minertial ⇒ ∂v

∂t
= g (2.16)

Since there is no fundamental reason in Newtonian theory why the gravitational mass mgrav should be equal to
the inertial mass minertial, we see just how artificial and contrived the force-law view of elementary physics really
is. From these relations we also see just how misleading the idea of “mass” is. It is neither the quantity coupled
by gravitation, nor the quantity conveying inertia to the matter wave function, nor is it the invariant quantity
when the gravitational potential is changed. It has been the subject of endless debate in the context of special
relativity, but the problem with the concept goes much deeper than that.
It is only in the context of gravitation as the origin of inertia that the resolution becomes clear.
Throughout this treatment, when we express results in terms of standard mechanical variables, the mass M and
the gravitational constant G will mean their values at the average cosmic gravitational potential c0.



Chapter 3

Basic G4v Formulation

3.1 Mach’s Principle

Mach’s principle (Section 9.17) is a central tenet of CE [44] and G4v:

Every element of matter derives its dynamical properties from interactions with every other element
of matter on its past and future light cones.

More specifically, in a matter-wave context, this statement can be made quantitative by describing its propagation
four-vector elements ω and k in a coordinate system in which the element is at rest:

~k = −k0χ
∑
i

~ki
ri

ω = k0 c = k0

(
c∞ − χ

∑
i

ωi
ri

)
(3.1)

where ri is the distance, along the light cone, from the ith element of matter to the point where the potential is
being evaluated, χ is the gravitational coupling constant, and c∞ is the speed of light in a fully-dispersed universe,
as described in detail in Chapter 9.

We can see just how deeply this theory is a true theory of relativity. Momentum is the result of propagation
relative to everything in the universe. Eq. 3.1 includes not only the scalar potential c that we have discussed in
the previous section, but also the vector interaction due to the propagation of other matter with which our local
element is coupled.

The interactions in the summations in Eq. 3.1 decrease inversely with the distance ri, but, in a uniform universe,
the amount of matter in any spherical shell is proportional to r2, so the sum is dominated by matter in the
far-distant universe. Thus the matter that governs our local inertia and speed of light is the matter farthest
away. So, instead of embarking in a futile attempt to keep track where all that matter is, we define potentials
that describe the big sum: The gravitational vector potential ~A and scalar potential c are given by the Mach’s
Principle sum of contributions from all other elements of matter in the universe1.

~A = −χ
∑
i

~ki
ri

c = c∞ − χ
∑
i

ωi
ri

(3.2)

In a region where c can be considered approximately constant, ~A and c can be made into a four-vector, whereupon
these equations are of exactly the same form as those of electrodynamics, but with the opposite sign of coupling
coefficient.

A =
{
~A, c
}

and k =
{
~k, ω

}
= k0 χA (3.3)

Eq. 3.2 is the basis for G4v cosmology, as detailed in Chapter 9. However, in the vast majority of cases, we are
concerned with gravitational phenomena involving a few local massive bodies in the background potential of the
rest of the universe.

In this most common case, we factor the terms in Eq. 3.2 into those from distant(dis) and local(loc) sources:

~A = −χ
dis∑
j

~kj
rj
− χ

loc∑
i

~ki
ri

c = c∞ − χ
dis∑
j

ωj
rj
− χ

loc∑
i

ωi
ri

(3.4)

1The potentials determine the energy and momentum per unit k0 of a free-floating element of matter. This simple relationship is
strictly true only when the k0 of the “test element” has a k0 that is much less than the k0 of the matter elements i responsible for
the potential. In many cases we shall encounter, such as planets around the Sun, gyroscopes in the GPB satellite, mirrors in the
LIGO interferometer, etc., this approximation is satisfied by many orders of magnitude. However, when we consider the interaction
of objects of comparable k0, such as binary star and “black hole” systems, the potential must be properly apportioned among the
interacting elements.

16
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Except in the case of cosmology, we do not know the value of c∞, but we can directly observe the local speed of
light c0 in the background of the universe at large, corresponding to the first two terms in the expression for c in
Eq. 3.4, which thus becomes:

~A = −χ
dis∑
j

~kj
rj
− χ

loc∑
i

~ki
ri

c = c0 − χ
loc∑
i

ωi
ri

(3.5)

In a coordinate system that is at rest with respect to the universe at large, for every distant element of matter
with propagation vector kj there will be another element with equal and opposite propagation vector −kj , and

the distant sum for ~A in Eq. 3.5 will be zero. In fact, that is the definition of “at rest with respect to the universe
at large.” In that special coordinate system, Eq. 3.5 becomes:

~A = −χ
loc∑
i

~ki
ri

c = c0 − χ
loc∑
i

ωi
ri

(3.6)

It is this formulation we shall adopt for the rest of the present treatment. Because the effect of distant matter has
been taken into account, we can henceforth omit the “loc” notation, and all ~ki and ωi will be understood to refer
to local massive bodies.

3.2 Matter at Rest

Let us consider a “test object” of Compton wave-number k0 at rest in the coordinate system of the universe
at large. Because the element is not moving, its propagation vector ~k will be only that contributed by other
local matter moving with respect to it, as represented by the gravitational vector-potential ~A, and its frequency
ω will be only that contributed by the potential due to other matter, as represented by the gravitational
scalar-potential ~c.

~k = k0
~A = −k0χ

∑
i

~ki
ri

ω = k0c = k0

(
c0 − χ

∑
i

ωi
ri

) (3.7)

If the matter also carries a charge q and is subject to electromagnetic vector and scalar potentials ~Ae and V, as
discussed at length in [44], Eq. 3.7 becomes

~k = k0
~A+

q

~
~Ae ω = k0c+

q

~
V (3.8)

Note about units: G4v is formulated in wave units, where energies have the units of frequency, and momenta
have the units of a propagation vector, i.e., inverse length. The units of both k0 and ~k are inverse length, therefore
the gravitational vector potential ~A is dimensionless. The product of k0 and the gravitational potential c is
a frequency. In mechanical units, the rest momentum ~k0 = mc, which, when multiplied by the gravitational
potential c is equal to the rest energy ~ω0 = mc2.

Thus the coupling constant χ has dimensions of length squared. In G4v

χ = `2P =
~G
c3

(3.9)

where `P is the Planck Length. In G4v, lengths do not change when the gravitational potential changes, so the
coupling constant χ is indeed constant. Planck’s constant ~ is merely a translation from frequency to energy,
both of which scale directly with c, so ~ is also constant. The ordinary “gravitational constant” G = `2P c

3/~ thus
is not constant at all, but scales as the cube of the gravitational potential c.
Wherever we refer to G, we will mean its value in the average potential c0 of the present universe.
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3.3 Interacting Elements of Matter in Motion

All interesting gravitational problems involve the interaction of two or more elements of matter.
Part of the energy and momentum of each element comes from its own motion, and part from its electrical and
gravitational interaction with other elements. We will adopt the following notation:

• The total energy and momentum of element j are ωj and kj

• The isolated rest energy and momentum of element j are ω0j and k0j

• The gravitational scalar and vector potentials at the position of element j are cj and Aj

• The electrical scalar and vector potentials at the position of element i are Vj and Aej

• The electrical charge of element j is qj

• The (positive) distance between element j and element i is rji = rij

• The velocity of element j in the chosen coordinate system is ~vj

The relativistically correct values for ωj and kj due to the motion of a “test object” are given by Eq. 2.12, with
~Aj and cj defined in Eq. 3.7, and the electromagnetic terms from Eq. 3.8:

ωj = k0j
cj√

1− v2
j /c

2
j

+
qj
~
Vi

~kj = k0j
~vj/cj√

1− v2
j /c

2
j

+ k0j
~Aj +

qj
~
~Aej

where cj = c0 − χ
∑
i 6=j

ωi
rij

and ~Aj = −χ
∑
i 6=j

~ki
rij

(3.10)

As always, cj is the local speed of light, equal to the local gravitational scalar potential.
We see that this system of equations is self-referential, with the solution for each element dependent on the
contributions of all the others. It includes both gravitational and electromagnetic interactions. As noted above,
the simple form of the potentials given here is only correct when the k0 of the “test object” j is much less than
that of the objects i creating the potential.

In a region where the speed of light c can be considered constant, the three-vector ~k and the scalar ω/c form
the elements of a proper four-vector, which transforms (locally) according to the local Lorentz transformation.
However the dispersion relation (Eq. 2.12) seems to be valid over a wider range of circumstances, and renders the
Lorentz transformation largely unnecessary.

3.4 Weak Gravity Limit

Many problems, including almost all the “tests of GR” that have been carried out thus far, operate in the regime
where the potential c is not too different from the average background potential c0 and, in addition, the velocities
involved are much less than c. It is thus desirable to develop a simplified procedure that is suitable for such
weak-gravity situations. In this “non-relativistic, weak-gravity” limit for uncharged matter, we expand the radical
in Eq. 3.10, keeping only terms of lowest order in v/c. In this limit the energy and momentum become:

ωj ≈ k0jcj

(
1 +

v2
j

2c2j

)
~kj ≈ k0j

(
~vj
c0

c0
cj

+ ~Aj

) (3.11)
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Next we take the case, which often accompanies the low-velocity case, where the coupling terms involving χ are
small as well: The corresponding approximations for the potentials then become:

cj ≈ c0

1− χ

c0

∑
i 6=j

ω0i

rij

 = c0

1− χ

c0

∑
i6=j

c0k0i

rij

 = c0

1− χ
∑
i 6=j

k0i

rij


c0
cj
≈ 1 + χ

∑
i 6=j

k0i

rij

~Aj ≈ −χ
∑
i 6=j

k0i

rij

~vi
c0

(3.12)

After which the approximations for energy and momentum in Eq. 3.11 become

ωj ≈ ω0j

1− χ
∑
i6=j

k0i

rij
+

v2
j

2c20


~kj ≈ k0j

~vj
c0

(
1 + χ

∑
i 6=j

k0i

rij

)
− χ

∑
i 6=j

k0i

rij

~vi
c0

 = k0j

~vj
c0

+ χ
∑
i 6=j

k0i

rij

(
~vj − ~vi

)
c0

 (3.13)

Multiplying by ~ and using m = ~k0/c0 from Eq. 2.9 and χ = ~G/c30 from Eq. 3.9 to convert our results into

familiar mechanical units, the energy E = ~ω and momentum ~p = ~~k of our object become:

Ej ≈ mjc
2
0

(
1− G

c20

∑
i 6=j

mi

rij

)
+
mjv

2
j

2

~pj ≈ mj

(
~vj +

G

c20

∑
i 6=j

mi

rij

(
~vj − ~vi

)) (3.14)

We can see a number of things much more clearly from the “post-Newtonian” approximation in Eq. 3.14 than we
could see from the fully relativistic form in Eq. 3.10:

• The energy contains the rest energy mjc
2
0 in addition to the Newtonian potential energy −mjmiG/rij and

kinetic energy mjv
2
j /2.

• The fraction contributed by the coupling term miG/rijc
2
0 is the same for both energy and momentum,

as it must be for the equivalence principle to hold.

• The potential energy contributed by mi to mj is exactly equal to that contributed by mj to mi.

• The momentum contains the Newtonian term mjvj and the vector coupling term
mjmiG

rijc20

(
vj − vi

)
.

The momentum contributed by mi to mj is exactly equal and opposite that contributed by mj to mi.

Even with the extreme simplifications we have adopted to obtain Eq. 3.14, we still retain the momentum coupling
term that allows us to treat the first-order corrections beyond the Newtonian limit, and obtain results for the
standard “tests” that are in agreement with experiment and with GR.

Again we see just how deeply this theory is a true theory of relativity. Momentum is the result of motion relative to
everything in the universe. Said another way, each of the masses mi has contributed its fraction miG/ric

2 to the
frame of reference of mass m. G4v thus fully embodies Mach’s Principle at the most fundamental level.

The application of these methods to real problems will help clarify the principles involved.
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3.5 Whence Special Relativity?

We have in Eq. 3.10 a general method of determining the propagation vector (momentum) ~k and frequency
(energy) ω for a moving element of matter subject to any combination of gravitational and electromagnetic
interactions. This formulation is firmly rooted in Mach’s principle, by which the inertia and rest energy of a body
are induced by its gravitational interaction with all of the (primarily distant) matter in the visible universe, as
depicted in Eq. 3.5.

Any such formulation based on Mach’s principle, by its very nature, makes local interactions dependent on the
nature of the entire visible universe: i.e., on its cosmology. A simple G4v cosmology is detailed in Chapter 9. We
have seen already that local quantities heretofore treated as “fundamental constants” (such as the speed of light
c) are determined by the universe at large. There are other important properties of physical law that have their
origin in cosmology: The most obvious of these is the equivalence principle, postulated by Einstein as “the
happiest thought of his life.” The G4v formulation above makes it clear that this “equivalence” property—that
inertia and gravitational attraction have a common origin—is expressed directly by the four-vector nature of
gravitation, together with Mach’s principle, as Einstein had expected it to be.

Other, less obvious properties of physical law are also deeply rooted in cosmology. An important example is
brought center-stage by Eq. 3.10. Our development of this equation was done in the frame of reference of the
universe at large. In modern treatments this frame is well-defined by the cosmic microwave background (CMB).
The motion of a frame of reference with respect to the CMB is evidenced by the Doppler shift of CMB radiation
being dependent on the direction of observation. From such measurements it is known that our solar system is
moving with respect to the CMB at more than 600 km/sec (See [66] and references therein).
So none of our experiments are done in the frame of the universe.

In 1905 Einstein[18] introduced another postulate, the principle of relativity, governing the local properties of
physical law. That principle, in the present context, is equivalent to the statement that a relation such as Eq. 3.10
is valid in any coordinate frame having the following properties:

1. The coordinate frame is moving at a constant velocity (not rotating)
with respect to the universe at large.

2. The speed of light (gravitational potential) can be considered approximately constant
over the range of motion considered.

Such coordinate frames are called inertial frames.
The postulate is equivalent to the statement that the four-vectors in one such frame are related to the corresponding
four-vectors in another such frame by a Lorentz transformation.

By now there is overwhelming evidence, principally from electromagnetic propagation and high-energy particle
physics experiments, that the principle of relativity is valid. Physicists have grown accustomed to it, and it is now
expressed in elegant mathematics. Nonetheless, there is no conceptual basis for such a principle as it is presented
in elementary classes and textbooks.

Our G4v cosmology has a property that helps us understand conceptually the origin of the principle of relativity
in the same way it helped us see the origin of the principle of equivalence. The interaction responsible for inertia
and rest energy is mediated by space-time paths called light cones. Because the universe is expanding with a
velocity proportional to the distance from us, both the forward and backward light cones have horizons, where
distant matter is receding from us at the speed of light. Matter beyond these horizons is effectively decoupled
from us, and has no effect on local physics. The distance to the horizon is called the Hubble radius, and the
volume of the universe within the horizon is called the Hubble volume.

If we are moving in a straight line toward one horizon and away from the opposite horizon, our velocity relative
to distant matter ahead of us decreases, and that relative to distant matter behind us increases. The net result is
that the horizon expands ahead of us, in the direction we are moving, and shrinks behind us. So, if the average
energy density of the universe is constant for an additional Hubble radius beyond the horizon, the average contents
of the universe with which we interact will stay the same, no matter what direction and speed we are moving, so
long as we are just moving in a straight line and not accelerating.

So here we have the cosmic origin of the principle of relativity.



CHAPTER 3. BASIC G4V FORMULATION 21

3.6 Some Further Details

This section is largely redundant and most readers will prefer to skip to Section 4.

Many problems, including almost all the “tests of GR” that have been carried out thus far, operate in the regime
where the potential c is not too different from the average background potential c0 and, in addition, the velocities
involved are much less than c. It is thus desirable to develop a simplified procedure that is suitable for such
weak-gravity situations. In this “non-relativistic, weak-gravity” limit for uncharged matter, we expand the radical
in Eq. 3.10, keeping only terms of lowest order in v/c:

ωi = k0i
ci√

1− v2
i /c

2
i

+ qiVi

~ki = k0i
~vi/ci√

1− v2
i /c

2
i

+ qi ~Aei

where ci = c0 − k0iχ
∑
j 6=i

ωj
rij

(3.15)

ωi ≈ k0ici

(
1 +

v2
i

2c2i

)
= ω0i +

k0iv
2
i

2ci

~kmi ≈ k0i
~vi
ci

(3.16)

We also neglect the second-order coupling term in Eq. 3.17

ωi ≈ ωmi + ω0i − k0iχ
∑
j 6=i

ωj
rij

+ qiVi

~ki ≈ ~kmi − k0iχ
∑
j 6=i

~kj
rij

+ qi ~Aei

(3.17)

~k ≈ k0

(
~v

c
+ ~A

)
+
q

~
~Ae

ω ≈ k0c

(
1 +

v2

2c2

)
+
q

~
V

(3.18)

The effect of local perturbing matter is represented by c and ~A from Eq. 3.6:

~A = −χ
∑
i

~ki
ri

c = c0 − χ
∑
i

ωi
ri

(3.19)

Using these substitutions and neglecting products of small quantities, Eq. 3.16 becomes

~k ≈ k0

(
~v

c0
− χ

∑
i

~ki
ri

)
+
q

~
~Ae

ω ≈ k0

(
c0 − χ

∑
i

ωi
ri

)(
1 +

v2

2c2

)
+
q

~
V

≈ k0c0 − k0χ
∑
i

ωi
ri

+
k0v

2

2c0
+
q

~
V

(3.20)
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Next we multiply through by ~ and use m = ~k0/c0 from Eq. 2.9 and χ = ~G/c30 from Eq. 3.9 to convert our

results into mechanical units, the momentum ~p = ~~k and energy E = ~ω of our object are:

~p ≈ m

(
~v − G

c20

∑
i

mi~vi
ri

)
+ q ~Ae

E ≈ m

(
c20 +

v2

2
−G

∑
i

mi

ri

)
+ qV

(3.21)

Even with the extreme simplifications we have adopted to obtain Eq. 3.21, we still retain the unification with
electromagnetism, and the momentum coupling term that allows us to treat the first-order corrections beyond the
Newtonian limit. This term is all that is required to obtain results for the standard “tests” that are in agreement
with GR.

Again we see just how deeply this theory is a true theory of relativity. Momentum is the result of motion relative to
everything in the universe. Said another way, each of the masses mi has contributed its fraction miG/ric

2 to the
frame of reference of mass m. G4v thus fully embodies Mach’s Principle at the most fundamental level.

The application of these methods to real problems will help clarify the principles involved.

In this “non-relativistic, weak-gravity” limit for uncharged matter, we expand the radical in Eq. 3.10, keeping only
terms of lowest order in v/c and taking ci ≈ c0 except where the difference is first-order, and dropping products
of small quantities:

ωi = k0i
ci√

1− v2
i /c

2
i

≈ k0ici

(
1 +

v2
i

2c2i

)
≈ ω0i +

k0iv
2
i

2c0
− k0iχ

∑
j 6=i

ωj
rij

~ki = k0i
~vi/ci√

1− v2
i /c

2
i

+ k0i
~Ai ≈ k0i

~vi
ci
− k0iχ

∑
j 6=i

~kj
rij

(3.22)

It is instructive to explicitly deal with the purely gravitational interaction of two uncharged elements.
In the coordinate system of the universe at large, the first has energy ω1 and momentum ~k1, and the second has
energy ω2 and momentum ~k2. Eq. 3.17 for the energies then becomes:

ω1 = ωm1 + ω01 − k01χ
ω2

r12

ω2 = ωm2 + ω02 − k02χ
ω1

r12

(3.23)

which has solutions

ω1

(
1− k01χ

r12

k02χ

r12

)
= ω01 + ωm1 −

k01χ

r12
(ω02 + ωm2)

ω2

(
1− k02χ

r12

k01χ

r12

)
= ω02 + ωm2 −

k02χ

r12
(ω01 + ωm1)

(3.24)

Similarly, Eq. 3.17 for the momenta then becomes:

~k1 = ~km1 − k01χ
~k2

r12

~k2 = ~km2 − k02χ
~k1

r12

(3.25)

which has solutions

~k1

(
1− k01χ

r12

k02χ

r12

)
= ~km1 −

k01χ

r12

~km2

~k2

(
1− k02χ

r12

k01χ

r12

)
= ~km2 −

k02χ

r12

~km1

(3.26)

They appear linear in that superposition applies, once the energy, momentum and light-cone distance for each
of the sources are known. The system of elements is, however, a dynamical system requiring self-consistent
solution.
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• The vector and scalar potentials appear directly in the momentum and energy of each element. The
momentum and energy are also the sources for the vector and scalar potentials.
So any solution is self-referential.

• The gravitational scalar potential is equal to the speed of light c, which determines the light cone and therefore
the distance ri in Eq. 3.2. This additional self-referential dependence necessarily creates non-linearity.

Examples of highly non-linear gravitational problems we shall encounter in later sections are:

• The neutron star/black hole is analyzed, in Chapter 12, in which the gravitational potential can vary by a
large factor within very short distances.

• Cosmological calculations, in which the entire universe must be considered, and a substantial fraction of its
total energy is tied up in the mutual gravitational attraction of its elements, as in Section 9.



Chapter 4

Gravity and Wave Functions

For many years it was thought that gravity might be a phenomenon confined to macroscopic classical objects i.e.
incoherent aggregations of large numbers of quantum elements as discussed in Section 2.3. An end was put to all
such discussions by the historic 1975 experiment of Colella, Overhauser and Werner [9][72]. They constructed an
interferometer from a single Silicon crystal, as shown in Fig. 4.1.

Figure 4.1: Left: Neutron interferometer hewn from a single dislocation-free Silicon crystal.
Right: Interference pattern, as evidenced by the difference in the number of Neutron counts in counters
C2 and C3 as the apparatus is rotated by angle φ around the AB axis in the Earth’s gravitational field.

A collimated beam of Neutrons impinges from the left along path AB, striking the first thin crystal fin at point
A. The Neutron wave is diffracted by the crystal, so part of it travels to point C from whence part is diffracted
to point D and part continues to counter C1. From point A, the remaining part of the incident wave continues
to point B, from whence part is diffracted to point D where the CD path and the BD path interfere, creating
an amplitude pattern at counters C2 and C3. The probability to count each Neutron in these two counters is
proportional to the square of that amplitude, which varies as the cosine of the relative phase of paths ACD and
ABD. As the apparatus is rotated by the angle φ in the direction shown, point C is moved to higher potential
in the Earth’s gravitational field, and point B is moved to lower potential. The dependance of wavelength with
gravitational potential is worked in Section 2.5. Because the Neutron speed is much less than the speed of light
and the gravitational field is small, we can use the simple formulation: The Neutron mass m, velocity v, height h
and the gravitational field is g, and the total Neutron energy E >> mgh:

p = mv = ~k0 =
2π~
λ

⇒ v =
2π~
mλ

E =
~2(k0 + ∆k)2

2m
+mgh ≈ ~2(k2

0 + 2k0∆k)

2m
+mgh = Constant

~2k0∆k

m
= −mgh ⇒ ∆k =

−m2gh

~2k0
=
−m2ghλ

2π~2

(4.1)

The Neutron mass m ≈ 1.675 ∗ 10−27 kg, and its wavelength is given as λ = 1.445× 10−10 meter, so their velocity
v ≈ 2700 meter/sec, a factor of 105 less than the speed of light, so our approximation is good.

Looking at the interferometer in Fig. 4.1, the height of path AB does not change with rotation angle φ, and the two
diagonal path segments AC and BD change by exactly the same amount, so all the relative phase change occurs
in path segment CD, which, spaced ≈ .03 meter from segment AB, will rise by h ≈ .03 sinφ. Path segment CD is
≈ .035 meters long, so the maximum number of cycles phase shift going from +h to −h will be ∆k.035/π ≈ 19
cycles, in agreement with the papers. At any given angle, the phase shift β ≈ 9.4 sinφ cycles.

The actual data shown in the right side of Fig. 4.1 is the difference between the counts in counters C2 and C3, so
we need a way to estimate the count rate in these two counters as the phase β. Each encounter a neutron makes
with one of the Silicon fins results in an amplitude to go straight-through and an amplitude to Bragg reflect from
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the 220 plane of the Si crystal. The process is complicated, and analyzed in detail in reference [72]. We can make
a rough estimate by modeling the amplitude to reflect as R and the amplitude to go directly through as S. From
the left drawing in Fig. 4.1, Paths have the following amplitudes:

Path Amplitude Sum
Count Rate

ABDC2 S R S
ACDC2 R Rcos(φ) R S2 R + cos(φ) R3

ACDC3 R Rcos(φ) S
ABDC3 S R R S R2 + cos(φ) S R2

The papers tell us that the part of the count rate that is independent of φ for C2 is 2.6 times that for C3,
which leads to R ≈ 0.53, S≈ 0.85. When we allow S to be imaginary, indicating a 90 degree phase shift on the
transmitted wave relative to the refracted wave, we obtain:

C2 = −RS2 +R3 cos(φ) ⇒ I2 = C2C∗2 = R2S4 − 2R4S2 cos(φ) +R6 cos2(φ)

C3 = iR2S
(
1 + cos(φ)

)
⇒ I3 = C3C∗3 = R4S2

(
1 + 2 cos(φ) + cos2(φ)

) (4.2)

The count rates I2 and I3, given in the right-hand expressions in Eq. 4.2 are given in [72] as:
I2 = γ − α cos(φ), I3 = α(1 + cos(φ)), γ/α = 2.6 with which we are in agreement with γ = R2S4, α = 2R4S2

except for a factor of 2 in the first term in parentheses in I3, and the second order terms containing cos2(φ), which
are down by a factor of R2/2S2 in I2 but equal in I3, and are very evident in their Fig.3. It is not clear why they
left them out of their analysis.

The difference in counting rates, which is plotted in Fig. 4.1 is

I2 − I3 = R2S4 −R4S2 − 4R4S2 cos(φ) + (R6 −R4S2) cos2(φ) (4.3)

For the values of R and S given, the expected gravity modulated rate 4R4S2 is 2.5 times the background rate
(R2S4 −R4S2), which is much larger than observed in Fig. 4.1. If we had taken S to be real, the cos(φ) terms in
I2 and I3 would have cancelled, so the phase-shift I assumed for S was wildly optimistic. Although, except for the
optimistic modulation, this rough-and-ready analysis seems to agree with the observation, I have not been able to
follow the extensive analysis in reference [72] well enough to determine where I went wrong. They did, however,
comment on the low level of modulation. Interested readers are encouraged to get to the bottom of this.

Independent of the details, this Historic Experiment showed, for the first time in history, that the gravitational
scalar potential directly enters the frequency ω of the wave function [ω,~k] four-vector. In another four years, this

heroic group was able to show that the gravitational vector potential directly enters the propagation vector ~k
of the wave function [ω,~k] four-vector, thereby verifying that the gravitational vector potential A=[c, ~A] affects

wave functions in exactly the same way as does the electrodynamic four-potential Ae=[V, ~Ae].
That Even More Historic Experiment is the subject of Chapter 5 .



Chapter 5

Rotation

The most familiar display of the existence of a frame of reference outside the earth is the Foucault Pendulum
(1851). It swings back and forth in a plane fixed with respect to “the fixed stars”, what we today would call
the distant Universe. The puzzle of what is responsible for the ultimate reference for physical law has troubled
“natural philosophers” for centuries. Today the history and makeup of the Universe as a whole is a respectable
scientific subject.

5.1 Newton’s Bucket

Isaac Newton put forth extremely strong views in favor of “absolute space.”
His “bucket experiment” (1687), shown schematically in Fig. 5.1, was for him the compelling example.

1 

 

The Sagnac Effect: Does it Contradict Relativity? 

By Doug Marett 2012 

   A number of authors have suggested that the Sagnac effect contradicts the original 

postulates of Special Relativity, since the postulate of the constancy of the speed of light 

is violated in rotating systems. [1,2,3] Sagnac himself designed the experiment of 1913 to 

prove the existence of the aether [4]. Other authors have attempted to explain the effect 

within the theoretical framework of relativity, even going as far as calling the effect 

“relativistic”.[5] However, we seek in this paper to show how the Sagnac effect 

contravenes in principle the concept of the relativity of time and motion.  To 

understand how this happens and its wider implications, it is necessary to look first at 

the concept of absolute vs. relative motion, what the Sagnac effect implies about these 

motions, and what follows logically about the broader notions of space and time.  

Early Ideas Regarding Rotation and Absolute Motion: 

   The fundamental distinction between translational and rotational motion was first 

pointed out by Sir Isaac Newton, and emphasized later by the work of Ernest Mach and 

Heinrich Hertz.  One of the first experiments on the subject was Newton’s bucket 

experiment of 1689. It was an experiment to demonstrate that true rotational motion 

cannot be defined as relative rotation of a body with respect to surrounding bodies – 

that true motion and rest should be defined relative to absolute space instead.   In 

Newton’s experiment, a bucket is filled with water and hung by a rope. If the rope is 

twisted around and around until it is tight and then released, the bucket begins to spin 

rapidly, not only with respect to the observers watching it, but also with respect to the 

water in the bucket, which at first doesn’t move and remains flat on its surface.  

 Figure 5.1: Newtons Bucket experiment. There is only one state of rotation in which the surface of water in the
bucket is flat. No differential theory can predict which state of rotation that will be without assuming it a priori.
G4v, along with Sciama’s theory[62], predict that state to be the frame of reference of the Universe. Figure from
Marett[42].

Newton describes the experiment in own words:[48]

If a vessel, hung by a long cord, is so often turned about that the cord is strongly twisted, then filled
with water, and held at rest together with the water; after, by the sudden action of another force, it is
whirled about in the contrary way, and while the cord is untwisting itself, the vessel continues for some
time this motion; the surface of the water will at first be plain, as before the vessel began to move; but
the vessel by gradually communicating its motion to the water, will make it begin sensibly to revolve,
and recede by little and little, and ascend to the sides of the vessel, forming itself into a concave figure
(as I have experienced), and the swifter the motion becomes the higher will the water rise, till at last,
performing its revolutions in the same time with the vessel, it becomes relatively at rest with it. This
ascent of the water shows its endeavor to recede from the axis of its motion; and the true and absolute
circular motion of the water, which is here directly contrary to the relative, discovers itself, and may
be measured by this endeavor. At first, when when the relative motion of the water in the vessel was
the greatest, it produced no endeavor to recede from the axis; the water showed no tendency to the
circumference, nor any ascent towards the sides of the vessel, but remained of a plain surface, and
its true circular motion had not yet begun. But afterwards, when the relative motion of the water
had decreased, the ascent thereof towards the sides of the vessel proved its endeavor to recede from
the axis; and this endeavor showed the real circular motion of the water perpetually increasing, till it
had acquired its greatest quantity, when the water rested relatively in the vessel. And therefore, this
endeavor does not depend upon any translation of the water in respect to ambient bodies, nor can
true circular motion be defined by such translation. . . . but relative motions. . . are altogether destitute
of any real effect. . . . It is indeed a matter of great difficulty to discover, and effectually to distinguish,
the true motions of particular bodies from the apparent; because the parts of that immovable space in
which these motions are performed, do by no means come under the observations of our senses.

26



CHAPTER 5. ROTATION 27

5.2 G4v Treatment

Modern discussions go to great lengths to show the compatibility of both special and general relativistic treatments
with the outcome of this experiment and its more modern counterparts. Still, it remains the case that there is one
and only one rotational state in which the surface of the water is flat, and no differential theory can tell us which
rotation state that is. But Mach’s Principle, being an integral theory, provides us a deep and compelling answer:
It is the state not rotating with respect to all the matter in the Universe, suitably weighted. From Eq. 3.14, in
the weak-gravity limit

~k ≈ k0
~v

c
and ω ≈ k0

(
c+

v2

2c
+
gh

c

)
(5.1)

where we have taken c to be the value at the surface of the water, and have approximated the gravitational
potential of the Earth by the local acceleration g.

We must emphasize here that v is the velocity in the frame of the universe, not just any arbitrary frame. Eq. 2.6
determines the phase Φ around a path of radius r on the water surface, where the velocity v = Ωr and the height
is h(r).

Φ =

∫
(kds− ωdt) =

∫ (
k − ω ∂t

∂s

)
ds =

∫ (
k − ω

v

)
ds

= k0

∫ (
v

c
− c

v
− v

2c
− gh

c v

)
ds = k0

∫ (
v

2c
− c

v
− gh

c v

)
ds

= 2πrk0

(
Ωr

2c
− c

Ωr
− gh

cΩr

)
= 2πk0

(
Ωr2

2c
− c

Ω
− gh

cΩ

) (5.2)

For the correct path, the phase must be stationary with respect to changes in r:

∂Φ

∂r
= 2πk0

(
Ωr

c
− g

cΩ

∂h

∂r

)
= 0 ⇒ ∂h

∂r
=

Ω2r

g
⇒ h =

Ω2r2

2g
(5.3)

So, for the water surface to be flat (∂h/∂r = 0)
the rotation rate Ω of the water must be zero in the frame of reference of the Universe!
So one fundamental difference between G4v and differential theories is that it knows where zero is!

5.3 Sagnac Effect with Light

Figure 5.2: Sagnac Effect[60] with Light

The modern version of Newton’s Bucket is the Fiber-Optic Gyroscope. The principle of its operation is shown
on the left in Fig. 5.3. In the frame of the Universe, light going both directions has the same distance to travel,
and there is no phase shift when they meet after their trip. If the path is rotating, the path in the direction of
rotation will be longer than the opposite one, and they will develop a phase shift at their point of meeting. The
effect can be magnified by a factor of N by making the light go around N turns, as shown in the sketch on the
right. Commercial devices of this sort are now universally used for inertial navigation. Once again, the effect is
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consistent with Special Relativity, once an inertial frame of reference is defined as not rotating with respect to the
distant galaxies, but provides no causal connection between the Universe and inertia. Mach was enraged that no
connection had been found.

So strongly did Einstein believe at that time in the relativity of inertia that in 1918 he stated as being on an
equal footing three principles upon which a satisfactory theory of gravitation should rest:

1. The principle of relativity as expressed by general covariance.

2. The principle of equivalence.

3. Mach’s principle: That the gµν are completely determined by the mass of bodies, more generally by Tµν .

In 1922, Einstein noted that others were satisfied to proceed without this third criterion and added,
“This contentedness will appear incomprehensible to a later generation...” See Wikipedia “Mach’s Principle.”

As expressed earlier in this document, I believe that differential theories, by their very nature, cannot make the
Mach-Principle connection—it is only by working directly with the gravitational four-potential (or 4× 4 tensor
potential) that a seamless connection can be made.

5.4 Sagnac Effect with Wave Functions

The Neutron interferometer described at the beginning of Chapter 4 was continually improved and adapted
specifically to observing the vector coupling of the Universe on the propagation vector ~k of neutrons, as shown in
Fig. 5.3.

Figure 5.3: Sagnac Effect with Neutron wave function

The colatitude angle at Columbia, Missouri, where the experiment was performed, is 51.37 degrees, so the “vertical”
axis is pointing into the northern sky. The orientation φ is that of a vector perpendicular to the ABDC plane,
and is zero when that vector points west, parallel to the Earth’s surface. At 90 deg, that vector points up into
the northern sky, and, in that position it has a maximum projection onto the Earth’s rotation vector. At -90
deg, that vector points down into the Earth, and, in that position it has a maximum negative projection onto
the Earth’s rotation vector. So the Sagnac effect can be exposed by varying φ and recording the phase shift β
as a function of φ. The plot is shown on the right panel of Fig. 5.3. This is the first direct observation of the
gravitational vector coupling of matter in the distant Universe to the wave vector ~k of a single element of matter.
Together with the scalar coupling exhibited by an earlier version of the same interferometer,
It made the four-vector gravitational potential at the fundamental level Evident.



Chapter 6

London Moment

The huge density of electrons in a superconductor join into pairs of opposite spin, which allows them to form
a collective “Bose Condensate”, which is a Quantum state of macroscopic proportions. This condensate has a
collective wave function, whose frequency and propagation vector have a dispersion relation just like the one
discussed in Section 2.4. H. K. Onnes found already in 1911 that once started, the current in a superconducting
ring will keep flowing undiminished as long as the material is kept in its superconducting state[50][49][51].

In 1961 two independent groups[14][16] found that the reason such a “persistent current” can persist is because
its wave function phase must stay continuous, and so must have an integer number of cycles around the ring.
So the collective wave function in a superconducting ring is
a perfect, lossless, free-floating macroscopic Quantum state!
It is by far the most accessible of all quantum states—a fantastic place to introduce students to matter waves.

In Collective Electrodynamics 1.9 and 1.10 [44] we saw that the total momentum ~p = ~~k of each electron was the

sum of the ordinary mechanical momentum m~v and the electrodynamic momentum q ~A:

~p = ~~k = m~v + q0
~A (6.1)

The velocity ~v of the electron is thus

~v =
~~k − q0

~A

m
(6.2)

and thus each electron will carry a current ~Ie = q0~v. If there are N electrons per unit volume moving together,
then there will be a current density ~J given by

~J = N Ie = N q0~v = N q0
~~k − q0

~A

m
(6.3)

6.1 Null Phase Experiments

It was shown in CE [44] that, when a superconductor in which ~k is initially zero is subjected to an external
vector potential, that vector potential dies out with distance into the superconductor with space constant λ,
called the superconducting penetration depth. For typical superconductors like Niobium, λ is a few tens of
nanometers. So the vector potential and all of its derivatives approach zero in the bulk of the superconductor,
and only penetrate the material in this very thin “skin” layer. Of course the magnetic field ~B = ∇ × ~A also
approaches zero, and the superconductor is said to “expel the magnetic field.”’ This phenomenon was discovered
in 1933 by W. Meissner and R. Ochsenfeld, and is called the Meissner effect. It was explained by Fritz London
[39] as a natural consequence of the superconducting condensate being a macroscopic quantum system with a
well-defined phase. The electrical current density is the difference between the propagation vector and the vector
potential. When the propagation vector is constrained by the coherence of the wave function and the boundary
conditions of the geometry, current flows to reduce the “mismatch” between these two vectors. Deep within the
superconductor, the two quantities approach each other q0

~A→ ~~k and the current approaches zero.

Let us consider a loop of radius r made of superconducting wire at rest with respect to the universe, and initialized
with the electron wave function in phase at every point around the loop (~k = 0). If the loop is located in an
environment free of magnetic flux, for example by carefully shielding it from the influence of outside currents,
~A = 0 and thus ~J = 0 as well. With this initial condition we now perform two experiments:

1. We locate another loop of wire, coaxial with the first loop, and carrying a current. Because the loops are
coaxial, the symmetry of the arrangement dictates that the vector potential at the surface of the first loop
due to the current in the second loop will be parallel to the center line of the first loop. We do not know the
magnitude of the vector potential at the surface of the first loop, but let’s call it As. If all dimensions of the
loop are large compared with λ, we can apply the analysis of CE Section 1.11 and discover that the vector
potential approaches zero deep inside the superconducting wire of the first loop. The magnetic flux is the
integral of the vector potential around the loop, which we can take in the center of the wire, and therefore
the flux in the loop is zero in this state, independent of the current in the second loop. This is just the
Meissner effect for the loop as a whole.
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2. We remove the second loop, so no external current is present, and therefore no external vector potential.
We then spin the first loop around its axis with angular rotation rate Ω. We know from persistent current
experiments that the electron wave function behaves like a perfect, frictionless object: totally uncoupled
from the crystal lattice in which it resides. The N positive charges per unit volume responsible for keeping
the entire wire charge neutral are, however, part of the lattice, and are forced to move when the loop is
mechanically rotated about its axis. The current density is therefore the difference between the positive
charges moving with velocity Ωr and the superconducting condensate moving with velocity v as given by
Eq. 6.2. The current density J of Eq. 6.3 then becomes

J = −N q0

m

(
~~k −mΩr − q0A

)
(6.4)

Our initial conditions on this experiment constrained the total phase around the loop to be zero, so ~k = 0
and the current density is

J = N q0

(
Ωr +

q0

m
A
)

(6.5)

As detailed in CE Section 1.11 the current density represented by the total of all N positive charges per unit
volume moving with velocity Ωr is huge compared with the currents actually observed in these experiments,
so we assume that J � N q0Ωr and check our result later. Under this assumption

A ≈ −mΩr

q0
⇒ Φ = 2πrA ≈ −mΩ 2πr2

q0
=
mΩ

q0
× loop area (6.6)

The rotation has induced a magnetic flux equal to the line integral of ~A around the loop. The negative sign
indicates that the flux is in the opposite direction from that induced by electronic charges moving with
velocity Ωr. The flux is proportional to the loop area, and hence is the equivalent of a uniform magnetic
field of magnitude Brot. If we take q0 = −q as the electronic charge and m the electronic mass, the field per
unit angular velocity is

Brot

Ω
=

Φ

Ω×Area
=

2m

q
= 1.137× 10−11 Tessla sec

= 1.137× 10−7 Gauss sec

(6.7)

We can understand the effect as follows: When we initiate the rotation, the motion of the positive charges in the
lattice creates a change in vector potential that acts on the electron wave function. The sign of the interaction
is that required to accelerate the electrons in the direction of rotation, to match the motion of the positive
charges. The inertia of the electrons opposes this acceleration. If the electrons were extremely massive, they
would accelerate only a small amount, and the “slip” between their motion and that of the positive charges would
be large, implying a large current density, and therefore a large magnetic flux. If the electrons had no inertia, their
motion would exactly match that of the positive charges, and there would be no magnetic flux. In any case, the
net result is that, in the interior of the wire, the propagation vector of the wave function is matched to the vector
potential, and the current is therefore zero. As we approach the surface, the positive charges slightly outpace the
electrons, ~A decreases slightly, and the difference between ~k and ~Aq0/~ is manifest as a “skin” current. At the

surface, the value and radial slope of ~A inside and outside the wire match, and the value of ~A is still within one
part in 104 of that in the center of the wire, exactly as in the case of a persistent current

The flux produced by a rotating superconducting loop was predicted by London [39], and is called the London
Moment. It was first measured in 1964 by Hildebrandt[29], and found to be within about 5% of the predicted
value. The experimental data from that experiment is shown in Fig. 6.1.

Notice that we have taken the value of q0 as that of a single electron, not that of two electrons as in the case of
the quantized flux. The doubling of the effective charge is usually attributed to pairing of electrons. If that were
the case in the present circumstance, the doubling of charge for a pair would be accompanied by a doubling of the
mass as well, and the magnitude of the effect would be the same. If, as suggested by Berry[4], the doubling in the
effective charge per unit wave vector is a result of the fact that the spin– 1

2 electron wave function can match up
with itself with a π phase twist, that fact would have no effect in the present experiment, since there is no phase
accumulation around the loop. Thus the present experiment cannot shed any light on the origin of the value of q0

in quantized flux experiments.
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Figure 6.1: Magnetic field in rotating loop as a function of rotation rate from Hildebrandt[29].
The upper curve is for clockwise and the lower curve is for counterclockwise rotation.

The important lesson this experiment teaches us is that, in the interior of the loop, the inertial effect from the
electrons’ coupling to the rest of the universe is, to very high accuracy, cancelled by the motion of the positive
charges, each contributing equally in opposite directions to the reference frame of the electrons.
Thus this was a null-phase measurement—the wave function phase around the loop was fixed at zero while
the magnetic flux was measured as a function of rotation rate. The result was a measurement of the ratio of
gravitational to electromagnetic vector coupling, represented by the mass–to–charge ratio in Eq. 6.7.

6.2 Null Flux Measurement

Although limited by the precision of the magnetic flux measurement, Hildebrandt’s 1964 paper was the first
demonstration of the London moment, and determined the mass–to–charge ratio to be that predicted by Fritz
London. It could not, for the reasons mentioned above, discriminate between a condensate composed of single
electrons and one composed of electron pairs.

In 1990 a Stanford group[68], leveraging the technology developed for the Gravity Probe B satellite, extended
Hildebrandt’s technique and achieved a direct determination of the inertial properties of the condensate in a
Niobium superconductor. The insight that led to this innovation was that the magnetic flux vs rotation rate could
be measured for a large number of discrete values of ~k = mv − qA, each of which was assumed to correspond to
an integral number n of cycles of the wave function phase around the loop. The data obtained in this manner is
shown in Fig. 6.2.

The N positive charges per unit volume in the loop of radius r are moving with velocity Ωr because they are
fixed in the Niobium lattice. The superconducting condensate is composed of N negative charges per unit volume,
and is “free-floating” with respect to the lattice. Its frame of reference is determined by the mass of the Universe,
vector-coupled gravitationally, and the positive charges, vector-coupled magnetically.

Eq. 6.6 becomes

q0
~A+m~vc = ~~k = ~

2πn

2πr
=

~n
r

⇒ q0Ar = ~n−mrvc (6.8)

The flux Φ = 0 in the loop, and the frequency of the zero crossings in Fig. 6.2 is then a linear function of
condensate velocity vc.

Φ =

∮
~A · d~l = 2πrA =

~
q0
n− mrvc

q0
= 0 ⇒ m =

~n
rvc

(6.9)

Because the data actually used in the analysis are the points of zero flux, they are also the points of zero current,
at which the condensate moves exactly with the positive charges, which allows Eq. 6.9 to be written as a function
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Figure 6.2: Magnetic flux enclosed by rotating loop as a function of rotation frequency (revolutions/sec.).
Each sloping line of data points, corresponding to an integer number of wave function phase cycles around the
loop, is equivalent to the upper plot in Fig. 6.1. The lines are separated vertically by one flux-quantum Φ0 and
horizontally by the incremental rotation rate such that the additional velocity adds one cycle to the phase of the
wave function. The spacing of the zero crossings in this data is a measurement of the wave vector k as a function
of condensate velocity at zero current.

of rotational frequency Ω:

m =
~n
r2Ω

=
hn

2SΩ
=

h

4πS

∆n

∆ν
(6.10)

which is Eq. 3 in the Stanford paper[68], in which S is the area of the loop, and ∆n/∆ν is the slope of the plot of
n vs rotational frequency. The Stanford experiment obtained ∆n/∆ν = 69.922, from which they inferred the
mass of the condensate pair m′ = 2me × 1.000084(21). The experiment was afflicted with a systematic error due
to charging of the quartz rotor which supported the Niobium loop. Rotation of this charge created a current
that was indistinguishable from current in the loop. To correct for this effect. the loop was heated until it
became normal and the flux measurement from this “zero point” was used to construct a model of the charge
contribution. The corrections to the final result were around 2000 ppm. So the accuracy quoted for the final result
(84 ppm) depended critically on the accuracy of the model used for the corrections. After careful examination of
the data, it is our opinion that the result may be interpreted as consistent with m′ = 2me within experimental
uncertainty.

6.3 Discussion

The Stanford experiment was the first measurement to determine the inertial properties of the superconducting
condensate without relying on any electromagnetic contributions to the wave function phase. It was thus a new
landmark in our knowledge about the condensate itself. However, like the quantized–flux experiments and the
original London moment experiment, it cannot discriminate between a condensate composed of spin– 1

2 electrons
with m′ ≈ me and one composed of spin–zero pairs of mass m′ ≈ 2me, as assumed in the literature. In the former
case, the Berry phase around the loop would be πn instead of 2πn in Eq. 6.8, and the mass in Eq. 6.10 would
become m′ = me × 1.000084(21). Thus, once again, we are unable to determine the most fundamental properties
of the elements of a superconducting condensate. All experiments are consistent with either interpretation. We
are led to ask the question “is a condensate formed of spin– 1

2 electrons really different in any measurable way
from one formed of spin–zero electron pairs?”

A second question raised by the Stanford experiment is, apart from issues about spin, what mass would we expect?
Electrons moving in solids have a well-characterized effective mass that is usually very different from the “bare”
electron mass. This effective mass is the result of electron current interacting with the positive charges of the
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lattice. Niobium has 5 conduction electrons per atom and a complicated Fermi surface. As such the effective
mass depends wildly on the position of the electron wave function in k-space. Magnetic measurements used to
characterize the effective mass at the Fermi energy as a function of the position of the electron wave function in
k-space[10] give values between −1.5×me and −4.8×me (the negative sign indicating hole-like conduction), all
assuming that the charge of the conduction elements is 1× qe. The sign of the effective mass (inverse of ∂vc/∂k)
is opposite of that obtained from the Stanford experiment! Thus, independent of possible very small deviations
from m′ = 2me, the Stanford result result is certainly sufficient to rule out any significant contribution of the
normal-state effective mass to the inertia of the condensate.

Given this complexity of conduction electron behavior, how can the experimental value of the condensate mass
lie so close to the bare electron value? One hint is that the conduction electrons in the magnetic experiments
are moving with respect to the positive charges in the lattice, while those in the Stanford experiment are not.
Another hint is that the superconducting condensate is a much more collective state than the normal electrons
in Nb, and a superconducting gap has been created at the Fermi level that has completely different symmetry
than that of the normal Fermi surface. Whatever our theoretical speculations, this landmark experiment is telling
us that the inertial properties of the condensate, when freed from electromagnetic interference and allowed to
interact via its vector gravitational coupling with the matter in the universe at large, is extremely close to the
inertial properties of its isolated constituent elements. Both of these questions lead us deep into the fundamental
nature of the collective state of a condensate—a discussion well beyond the scope of this section.



Chapter 7

Gravitation and Light Propagation

7.1 Introduction

The effect of gravity on the propagation of light was taken up by Einstein in 1907, and in a more complete manner
in his 1911 paper specifically on the subject[23]. One is struck by the clarity of reasoning in this paper, and the
power of its conclusions. Reasoning strictly from the equivalence principle, he reached the conclusion:

If we call the velocity of light at the origin of co-ordinates c0, then the velocity of light c at a place
with the gravitation potential Φ will be given by the relation

c = c0

(
1 +

Φ

c20

)
(7.1)

In 1911 there was no direct way to test the variation in the speed of light as the path of propagation passed near
a massive body. In 1964, Irwin Shapiro published a visionary paper Fourth Test of General Relativity[63] which
opened with the statement:

Recent advances in radar astronomy have made possible a fourth test of Einstein’s theory of general
relativity. The test involves measuring the time delays between transmission of radar pulses towards
either of the inner planets (Venus or Mercury) and detection of the echoes. Because, according to the
general theory, the speed of a light wave depends on the strength of the gravitational potential along
its path, these time delays should thereby be increased by almost 2× 10−4 sec when the radar pulses
pass near the sun.

Shapiro’s first (1966) measurements of the delay were made by upgrading the MIT Haystack radar with a
high-power transmitter and sensitive receiver so it could determine the time delay of the faint returns from radar
pulses sent from Earth to Venus and Mercury. When the orbits were such that the line of sight came close
to the Sun, a large “excess delay” was detected due to the reduction of the speed of light along the path, as
shown in Fig. 7.1.

Figure 7.1: Excess delay in propagation of a radar signal from Earth to Venus and back, as the path of propagation
passed near the Sun. The zero of time denotes the time when the line of sight between the two planets passed
closest to the Sun. Tests such as this one provide us with direct evidence that the speed of light varies with
gravitational potential. Plot from Shapiro et al. (1971)[65]

34
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7.2 Speed of Light in G4v

We have seen that the energy and momentum of any propagating wave interacts gravitationally with nearby
matter. We consider a large massive body of Compton wave number k0 and energy ω0. According to Mach’s
Principle, embodied in Eq. 3.10, the frame of reference for the momentum of M is the resultant of all other
momentum vectors in the universe. For simplicity, let us consider the case where M is at rest with respect to the
universe as a whole. We now add a ray of light of frequency ω and wave vector ~k propagating at a distance r
from M . According to Eq. 3.2, that light ray will result in a gravitational vector potential at M of

~A = −χ
~k

r
(7.2)

From Eq. 3.7, that vector potential will result in M acquiring a propagation vector ~kM

~kM = −k0
~A = −k0 χ

~k

r
(7.3)

In other words, the light ray has become part of the frame of reference for M , and M acquires a momentum,
however slight, by virtue of the light ray’s motion with respect to it.

The total momentum, light ray plus M , is conserved, exactly as was the case for two matter waves, as highlighted
in Eq. 3.14. The light ray thus acquires an equal and opposite additional momentum by its interaction with
M .

k =
ω

c
− kM =

ω

c
+ k0 χ

k

r
⇒ k =

ω

c

1

1− k0χ
r

(7.4)

We note here that the foregoing calculation has a self-referential character, of which we spoke earlier:
We don’t know k, but know it will have a contribution from M . We don’t have a closed-form way to determine
the contribution of M to k in the light ray’s reference frame because the light ray is moving with the velocity of
light. But the light ray will have a finite and well-defined k, so we calculate its contribution to the momentum of
M , and invoke the conservation of momentum to determine the “back reaction” from M to the light ray. Thus
the problem has the character of a feedback loop, and the solution is the self-consistency condition. The form of
the solution will recur many times as the vector contribution to the momentum. It is not limited to a light ray,
but applies to any matter wave, whatever its ω/c is from scalar interactions. It is the source of essentially all
the measured deviations of observed phenomena from their Newtonian form, which are normally attributed to
GR.

Returning now to the path of propagation of the light wave, Eq. 7.4 gives the vector-gravity contribution to
the light propagation vector k. We also need to take into account the scalar contribution due to the Eq. 3.2
dependence of the speed of light c on the gravitational potential c:

c = c0 −
ω0χ

r
(7.5)

where c0 includes the interaction with the entire universe, not including M .
Substituting this value of c in Eq. 7.4, we obtain an expression for k valid for arbitrary potentials:

k =
ω

c0

1(
1− k0χ

r

)(
1− ω0χ

c0r

) (7.6)

We can compare our value with that predicted by GR by noting that both k0 and χ are independent of the
gravitational potential c.

k0 =
Mc0
~

and χ =
~G
c30

and ω0 = k0cM =
Mc0cM

~ (7.7)

where M and G are the values in potential c0, and cM is the potential at the massive body.
So, in terms of these conventional variables, Eq. 7.6 becomes

k =
ω

c0

1(
1− MG

rc20

)(
1− MGcM

c30r

) (7.8)
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in the weak-gravity limit cM ≈ c0, and Eq. 7.6 becomes

k ≈ ω

c0

1(
1− MG

rc20

)2 ≈
ω

c0

(
1 +

2MG

c20 r

)
=
ω

c0

(
1 +

δ

r

)
(7.9)

In this and the following expressions

δ ≈ 2MG

c20
(7.10)

7.3 Shapiro Delay in G4v

Armed with a value of k as a function of r (Eq. 7.9) we can evaluate the phase along the path x traversed by the
light ray from a source at x = xp to an observatory on earth at x = xe. For the moment we approximate the path
as a straight line, and check later to see what errors are introduced. The mass M is located at x = 0 and spaced
from the path of propagation by the distance d, as shown in Fig. 7.2.

Figure 7.2: Massive object M separated a distance d from the path of propagation from source at xp to the Earth
at xe. At any given x, the path element is spaced from M by a distance r =

√
d2 + x2.

The phase φ along the light path will, from Eq. 7.9 be

φ =

∫ xe

xp

k dx ≈ ω

c0

∫ xe

xp

(
1 +

δ

r

)
dx =

ω

c0

∫ xe

xp

(
1 +

δ√
d2 + x2

)
dx

=
ω

c0

xe − xp + δ log

xe +
√
d2 + x2

e

xp +
√
d2 + x2

p

 (7.11)

The propagation time τ is just the phase divided by the frequency ω:

τ =
1

c0

xe − xp + δ log

xe +
√
d2 + x2

e

xp +
√
d2 + x2

p

 (7.12)

Because xe − xp = Rep is the total distance the signal has propagated, those terms give the time required for
propagation from the source to earth in vacuum without the contribution of M to the reduction of the speed of
light. That contribution of the δ log () term is the additional Shapiro delay∆τ :

∆τ =
1

c0

δ log

xe +
√
d2 + x2

e

xp +
√
d2 + x2

p

 =
2MG

c30
log

(
xe +Re
xp +Rp

)
(7.13)

where Re and Rp are the magnitudes of the distances from M to Earth and from M to the planet, respectively.
This result is in agreement with Shapiro’s original GR expression[63], valid for weak gravity, and so evident in
Fig. 7.1. This expression is not convenient for comparison with observation because the coordinates xe and xp are
not directly measurable. A more convenient form[69][30], which contains only the distances between the three
objects, can be obtained by noticing that, if the correction due to the rotation of M is negligible, the Shapiro
delay is the same if the direction of propagation is reversed, i.e., Re and Rp are interchanged, xe is replaced by
−xp, and xp is replaced by −xe in the argument of the logarithm:

xe +Re
xp +Rp

=
−xp +Rp
−xe +Re

=
xe − xp +Rp +Re
xp − xe +Re +Rp

=
Rp +Re +Rep
Re +Rp −Rep

∆τ =
2MG

c30
log

(
Re +Rp +Rep
Re +Rp −Rep

) (7.14)
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This form uses all positive distances, which, in G4v, are independent of the inertial coordinate system chosen for
the analysis.

In general G4v is much less sensitive to coordinate system issues than GR. The Shapiro delay is given in the time
unit determined by the location of the radar clock. For this and many other experiments, the objects involved are
all in free-fall.

This gravitational effect of local matter on the speed of light has been measured with increasingly high precision as
time has progressed: The effect was first detected by Shapiro and his collaborators during the superior conjunction
of Venus on Nov. 9, 1966, and during 3 such conjunctions of Mercury in early 1967[64]. The excess delays
measured on these occasions agreed with Eq. 7.13 to well within the experimental uncertainty of ±20%. By 1971,
numerous improvements had been made in the experiment, which resulted in the plot in Fig. 7.1, the excess delay
agreeing with Eq. 7.14 to within about 2%[65]. Also in 1971, the JPL team tracked the Mariner spacecraft as the
line of sight to it came close to the Sun[1], with results that agreed with Shapiro’s Venus/Mercury experiments.
Once the JPL Viking landers were firmly planted on Mars[56], the range could be established much more precisely,
and the agreement between the observed excess delay and that predicted by Eq. 7.14 and by GR was good
to 0.1%. More recently, the Cassini spacecraft was equipped with a high precision multiple-frequency two-way
radio link when it passed by the Sun in 2002. Observations and analysis by the Cassini team[5] resulted in an
excess delay within less than ±10−4 of Eq. 7.14. The calculations involved in comparing these observations with
GR involve ever more parameters as the precision becomes higher, so the calculations are carried out, with the
parameterized (beta, gamma, . . . ) form of general relativity, to about two orders of magnitude higher accuracy
than the standard deviations of the measurements. Thus, for example, they consider the motions—orbital and
spin—of the earth between transmission and reception of the echoes of the radar signals, the precise orbits of the
planets and spacecraft, etc. Consult the original papers for details.

A spectacular example involving many fewer parameters is the Shapiro delay of a one-way transmission from the
recently discovered pulsar J1614-2230[15] in a close orbit with a white dwarf companion, as shown in Fig. 7.3.

Figure 7.3: Artist’s conception of pulsar and white-dwarf companion. As viewed from Earth, the orbit is nearly
edge-on, so the pulsar radio beam comes very close to the companion, resulting in a large Shapiro delay as shown
in Fig. 7.4. The shaded grid in the background shows the gravitational potential. The drawing is not to scale:
The pulsar is only .002 the diameter and 4 times the mass of the companion, so its gravitational potential well is
2000 times deeper. The Shapiro delay is only the contribution of the companion potential, which changes with
orbital phase angle θ. The inclination ι (the angle from the axis of the orbit to the line of sight) is nearly 90◦ in
this configuration. From Miller[46].
Reprinted by permission from Macmillan Publishers Ltd: Nature, ©2010.

After applying a little geometry to the orbit (see [45], Fig. 1). Eq. 7.14 gives the standard expression[11] for the
Shapiro delay of this configuration.

∆τ = −(2MG/c3) ln(1− sin ι cos θ) (7.15)
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The observed delay is compared with this expression in Fig. 7.4.

Figure 7.4: Delay ∆τ of pulsar J1614-2230 radio signal (in µsec) as a function of orbital phase θ. Red error bars
are the observed delay after the signal-travel-time across the Keplerian orbit has been subtracted. The solid black
line is the Shapiro delay calculated from Eq. 7.15. The insets are cartoons of the orbit as seen from the top at
three particular phases. The direction of propagation to the Earth is indicated by the yellow fans. The pulsar is
colored red and the companion blue. Although the ultimate precision of this example is not as high as that of the
solar-system observations described above, it seems to be the most direct illustration to date of the gravitational
influence on the speed of a one-way signal from an independent astronomical source. From Demorest et al.[15].
Reprinted by permission from Macmillan Publishers Ltd: Nature, ©2010.

7.4 Gravitational Deflection of Light

Usual treatments of this subject make a great deal of the fact that Einstein’s result for the delay and the
concomitant deflection of a light ray by a massive object gave only half the value given by GR, and observed
experimentally. In fact, this “failure” of Einstein’s early formulations of gravitation theories is often cited as the
justification for Metric (curved space-time) formulations, of which GR is the best known. Einstein formulated his
gravito-magnetic theory in 1912[19]. He seems to have never returned to the light-deflection problem and asked
the question: “What result is obtained if the ‘magnetic analog’ effect is taken into account?”

We can see immediately from Eq. 7.9 that, in this weak-gravity limit, the scalar and vector gravitational interactions
make equal contributions to the propagation vector k. Thus the total effect will be twice that calculated by Einstein
in 1911, in agreement with GR. Einstein’s “failure” was simply that he included the scalar part, and overlooked
the vector part of the relativistic 4-vector interaction. Very odd: Einstein knew perfectly well the four-vector
construction of his old teacher Hermann Minkowski, but seemed ignorant of the brilliant 1910 electromagnetism
synthesis of G. N. Lewis—published in an obscure journal[36]

Because the Shapiro delay is larger when the light ray is closer to the massive object, the light path will, in
keeping with the principle of stationary phase, bend or “refract” to minimize the phase of its path around the
massive object. The deflection of the path depends on the spatial derivative of the gravitational potential, rather
than on the potential itself.

For the situations considered in the “standard tests,” it will, in terms of the precision of the measurement, be a
much smaller effect than the Shapiro delay. However the gravitational deflection of light was first observed during
the 1919 solar eclipse, long before precision radar observations were feasible. Sir Arthur Eddington organized
an expedition to northern Brazil, and also to the island of Principé off the west coast of Africa, specifically to
measure the effect. The final results of the expedition are shown in Fig. 7.5.
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Figure 7.5: Final results of the 1919 solar eclipse expedition, taken from the report of Sir Arthur Eddington and
colleagues[17]. During each exposure the telescope tracked the Sun, the direct image of which was blocked by the
Moon, so background stars were visible. The best data were obtained from Sobral, Brazil by comparing each
exposure with a reference image of the same star field taken with the same instrument two months later when the
sun was not present. The deflection (in arc seconds) is plotted vs the reciprocal angular distance from the center
of the Sun (in arc minutes). The maximum deflection observed was only 1 part in 1800 of the Sun’s diameter.
The GR prediction is the dark solid line, and the dotted line is half the GR prediction.

Despite the large scatter in the data, the results of this expedition were sufficient to rule out the earlier “half-GR”
prediction, and were taken by the investigators as confirmation of the GR prediction. The announcement was
considered spectacular news and made headlines in major newspapers around the world. It made Einstein and his
theory of general relativity world-famous.

The measurement has been repeated a number of times since, but never with the accuracy obtainable with direct
observation of the Shapiro delay. See The Wikipedia entry “Deflection of Light by the Sun”[74] for additional
discussion, references and photo.

7.5 Light Deflection in G4v

To obtain the angle of deflection, we once again evaluate the phase along the path traversed by the light ray. We
take the mass M as the origin and consider propagation along the path Γ between two points P1 at x = R1 and
P2 at x = −R2, such that M is located exactly on the line between P1 and P2.

Figure 7.6: Gravitational focusing of light.

We ask if there are paths of stationary phase φ at a distance d > 0 from M . If there are such paths, a star at P1

will appear to an observer at P2 as a bright “Einstein ring” surrounding M . The total light flux from P1 can thus
be greatly enhanced, as Einstein showed in a short 1936 note.[22] Many examples of this kind of gravitational
focusing have been documented in recent years, for example
https://www.livescience.com/james-webb-perfect-einstein-ring.
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The presence of this effect has profound consequences for certain classes of astronomical observation, and is of
great current interest[67]. Anticipating that the deflection will be very small, we consider paths whose distance of
closest approach to M is d� R1 and d� R2, and apply the condition of stationary phase:

∂φ

∂d
= 0 where φ =

∫
~k · ds ≈ ω

c0

∫ (
1 +

δ

r

)
ds (7.16)

In the following derivation, we use R generically for either R1 or R2. At any given x, the distance r from M will
be

r =

√
x2 + d2

(
1− x

R

)2

(7.17)

The distance element ds along which we integrate is

ds = dx

√
1 +

d2

R2
(7.18)

The integral of Eq. 7.16 thus becomes

φ =

∫
~k · ds =

ω

c0

R
√

1 +
d2

R2
+ δ log


(√

1 + d2

R2 + 1

)(
R
√

1 + d2

R2 + d

)
d




≈ ω

c0

(
R+

d2

2R
+ δ log

(
2 (R+ d)

d

))
≈ ω

c0

(
R+

d2

2R
− δ log

(
d

2R

)) (7.19)

where the approximations follow because d/R� 1.

The total phase is the sum of two such terms, one in which R = R1 and one in which R = R2.

φtot ≈
ω

c0

(
R1 +

d2

2R1
− δ log

(
d

2R1

)
+R2 +

d2

2R2
− δ log

(
d

2R2

))
≈ ω

c0

(
R1 +

d2

2R1
+R2 +

d2

2R2
− δ log

(
d2

4R1R2
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For stationary phase, we require that the derivative of this expression with respect to d2 vanish:

1

2R1
+

1

2R2
− δ

d2
= 0 ⇒ δ

d2
=

1

2R1
+

1

2R2
(7.21)

Eq. 7.21 is reminiscent of the equation of a lens with focal length f :

1

R1
+

1

R2
=

1

f
⇒ f =

d2

2δ
=

c20d
2

4MG
(7.22)

However, in the gravitational case, the focal length f depends on the distance d of the light path from the center
of a mass concentration, and hence a single “point-like” mass cannot form an image the way a lens does. Instead
of an image of the object at R2, an observer at R1 will see an “Einstein ring” of angular diameter d/R1. In
practice, an observed object is never precisely aligned with M , and what is observed is a crescent-shaped image.
It is possible, under special circumstances, for a special mass profiles to imitate a lens in forming an image, but
we are not aware of a case where this has been observed.

Einstein (1936) treated the special case where R1 � R2. In this special case, Eq. 7.21 becomes

d =
√

2δR2 ⇒ θ ≈ d

R2
=

√
2δ

R2
=

√
4MG

c20R2
(7.23)

which is precisely the result Einstein obtained with GR[20].

In the symmetrical case where R1 = R2 = R, Eq. 7.21 becomes

δ

d2
=

1

R
⇒ θ ≈ d

R
=

√
δ

R
=

√
2MG

c20R
(7.24)
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The Eq. 7.23 deflection angle is extremely small in any of the Shapiro delay observations described in the previous
section. The effect of that deflection on the Shapiro delay is second-order in the already small angle, and hence
can be ignored in those experiments.
Of course, when the deflection is the quantity being measured, we must pay attention to it, however small it may
be. In that case GR and G4v predict the same deflection to first order beyond Newton.

k =
ω

c0

(
1− k0χ

r

)(
1− ω0χ

c0r

)
(7.25)

The vector effect is not, to first order, directional, since it simply modifies the existing propagation vector by a
very small factor proportional to the inverse distance to the local mass concentration. However, once the effect
from the galaxy has been detected, it may possible to observe second-order directional dependencies. Only time
and careful experiments will tell.

It is notable that we use the one-way speed of light in the Shapiro delay analysis, and simply add the outgoing
delay to the return delay. We must be careful not to associate such a round-trip radar signal with a standing
wave, because it would take many coherent round trips to build up a standing-wave, and a radar experiment
consists of one outward-going signal followed by a later return signal. Each of these one-way signals experiences a
Shapiro delay according to Eq. 7.13.

Direct evidence for light propagating at different velocities in different directions is the Sagnac effect, widely used
for optical gyroscopes. This effect has often been cited as evidence for Mach’s Principle: See Sections 5.35.4.

7.6 Local Experiments Suggested by G4v

A curious consequence of the vector coupling can be seen in Eq. 7.6 and Eq. 7.9. Because light propagation is
non-dispersive, its propagation velocity vc = ω/k at all frequencies, and, near a massive body, is not equal to
either c or c0. In general and in the limit of weak gravity:

vc = c0

(
1− k0χ

r

)(
1− ω0χ

c0r

)
≈ c0

(
1− 2MG

c20r

)
(7.26)

Said more simply, the vector coupling causes the one-way speed of light propagation vc to be different from the
velocity c inferred from a standing wave. A standing wave has no net momentum and therefore has no net vector
interaction with a nearby massive body.

Let us compare the properties of a local measurement done in a gravitational potential c due to a local massive
body with the same experiment done in space where c = vc = c0. The frequency ωloc of local atomic transitions
scales as c, as observed.

ωloc ≈ ω0

(
1− MG

c20r

)
vc ≈ c0

(
1− 2MG

c20r

)
(7.27)

The wave vector k of the radiation propagating one-way from a local atomic clock therefore scales as

kloc =
ωloc

vc
≈ ω0

c0

(
1 +

MG

c20r

)
(7.28)

In G4v the length scale of local matter does not depend on the local gravitational potential. It follows that the
local wavelength λloc = 2π/kloc will depend on gravitational potential when measured relative to local measuring
rods. The reason for the disparity between wavelength of propagating light and length scale of matter is that
stationary matter, or standing-wave light, has no net momentum and therefore is not affected by the vector
coupling, whereas one-way propagating light has a net propagation vector and therefore has both a scalar and
vector interaction with the massive body in the same manner as a conductor carrying net current has a magnetic
interaction with other charges and currents whereas electron standing-waves in the conductor carry no current
and thus have no such interaction.

The difference in speed of light between standing waves and propagating waves is widely observed in precision
measurements of optical cavities. When a high-Q cavity is excited by an optical-frequency comb, it supports pulses
propagating at the group velocity and, at the same time, standing waves at the carrier frequency determined by
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the phase velocity. In a vacuum, without gravitational vector interaction, the phase velocity and group velocity
should be the same. When these two velocities are not the same, a beat note is generated between the frequency
at which pulses are bouncing back and forth between the cavity mirrors and the resonant modes of steady-state
standing waves supported between the same mirrors. This beat note is called the carrier-envelope offset
frequency fCEO of the optical cavity. This widely observed offset is usually attributed to dispersion in mirrors
and optical material in the cavity, all of which mask the gravitational effect.

Using the techniques described by Ref.[28], a vacuum cavity stabilized laser showed a frequency instability below
∼ 10−14 for averaging times between 1 ms and 1 s, and a cavity drift of a few Hz over hour-long time periods. An
extension of this design would be to lock a frequency comb instead of the continuous-wave laser, to the cavity.
The frequency of the circulating optical pulses in the cavity frep would then the inverse of the round-trip group
delay, which is directly monitored at one end of the cavity. If not stabilized, the CEO frequency fCEO of the comb
will be that of the cavity, equal to the inverse difference between the round-trip phase delay and the round-trip
group delay. A waveform at that frequency is conventionally derived by heterodyning the fundamental and second
harmonic optical output frequencies of the comb[35]. The phase of this waveform is equal to the phase difference
at the optical frequency, so fCEO can be resolved to the optical frequency instability limit by simply counting
enough cycles. The fCEO of the cavity described in [28] is ∼ 1010 Hz, so it can be counted to ∼ 10−13 in a few
minutes. The system can count one frequency using the other as a reference, thereby rendering the cavity and
mirror drift common mode, contributing to the result in only second order. This is a strong prediction of the G4v
theory, and is testable with presently available technology[61]. I Really want to do this experiment!

7.7 Future Work

By Far the most important work ahead of us is to perform the fCEO experiment just described.
If it fails to show a gravitational effect on the CEO frequency of a vacuum cavity,
G4v will need to be either revised in a major way, or totally abandoned!

In the real universe, virtually all bodies are rotating, often at relativistic speeds. The vector contribution to light
propagating near rotating bodies will depend on the direction of light propagation relative to the direction of
rotation. This asymmetry will almost certainly be discernible in the Shapiro delay of eclipsing or near-eclipsing
binary pulsars.

It is clear that the present discussion is limited to lower energies where “particle physics” reactions are not
involved. It thus provides a simple and straightforward approach to “low energy” phenomena.

Eq. 7.8 gives a propagation vector for light as a function of the gravitational effective mass M as follows:

k =
ω

c0

1(
1− MG

rc20

)(
1− MGcM

c30r

) (7.29)

where cM is the gravitational potential at the surface of the massive body. As long as the light path remains in
the weak-gravity limit, cM ≈ c0, the Shapiro delay and light deflection are given by the above treatment, and the
agreement with GR and astronomical observation are satisfactory. In strong gravity, however, cM can be much
less than c0, and quite different results are obtained. One example is the diameter of a light-ring and horizon
around “gravistars” and “black holes” which we analyze in Sections 12.6 and 12.7.

Gravitational waves from merging ultra-dense objects are giving us a new window through which to observe the
properties of such objects. There will, no doubt, be numerous observations in the future where G4v may make
different predictions from GR in this regard.



Chapter 8

Gravitational Red Shift

8.1 Introduction

We now analyze the most fundamental phenomenon predicted by Einstein in 1911, and later by GR: Clocks at
different gravitational potentials c tick at different rates.

Consider a specific experiment where one clock is stationed at the bottom of a building of height h and a second
nominally identical clock is stationed next to it. Clock 1 generates a frequency ω1 and Clock 2 generates a
frequency ω2. Clock 2 is connected by a coaxial cable of length h to a frequency comparator that is also stationed
next to Clock 1. In this configuration, the clocks are adjusted so that ω1 = ω2. Clock 2 is now carefully carried to
the top of the building of height h without damaging the coaxial cable. The frequency comparator now registers a
difference frequency

ω2 = ω1

(
1 +

gh

c2

)
(8.1)

where g is the gravitational field ∂c/∂h at the location of the clocks.

This simple experiment brings us to an extremely fundamental question:
What changed between the two configurations that caused the frequencies to become different?

Einstein based his 1911 conclusion strictly on the equivalence principle, and thus provided no hint as to a
mechanism. The standard GR answer is that “time flows differently at different gravitational potentials.” But
GR has purposely constructed its curved spacetime such that this result will occur. There is, therefore, no physics
in the statement. The result was assumed in the construction of spacetime itself.

So our question can be rephrased: How does the clock know about the curved spacetime GR has constructed?
We conclude that GR is good at describing what the clock does,
but provides no understanding of the underlying mechanism.

We understand how coaxial cables work, and we know that, in spite of many errant textbook arguments that
“the photons get tired going uphill,” the frequency difference cannot be due to propagation up the coaxial cable.
Whatever the gravitational potential does to the propagation vector of radiation in the cable, once it has reached
steady state, there are a given number of cycles in the cable. This implies that every time a cycle enters one
end of the cable, a cycle must come out the other end. So it is the clock itself that runs at a rate that depends
on gravitational potential. Einstein reached this conclusion from the same reasoning in 1911. Something in the
physics of the clock causes it to behave that way—What Is It?

The scaling law that allows us to construct a theory in which the speed of light changes with gravitational potential
was discovered by Max Abraham in 1913[57]. It was re-discovered independently nearly a hundred years later in
the course of the present investigation. We have thus adopted Abraham Scaling in which lengths, and therefore
wave vectors (including k0), are independent of the gravitational scalar potential, which is equal to the speed of
light c. Frequencies, and therefore energies, scale directly with c, and thus times scale inversely with c.

8.2 Physics of Clocks

Einstein commented that the conceptually simplest clock is made with two parallel mirrors separated by a meter
bar. Light bounces back and forth between the mirrors, making a tick every time it reaches one end. A modern
realization of such a clock is a laser,where light traveling with velocity c forms a standing wave between two
mirrors separated by a length l, and a gain medium is present to make up for the light that is taken out of the
cavity to preform measurements. The frequency of the standing wave is proportional to c/l. So for the frequency
to change with gravitational potential, either the speed of light c, or the length l, (or both) must be a function of
gravitational potential. As discussed in Section 7, we have direct and incontrovertible evidence that the speed of
light depends on the gravitational potential, so in G4v, it is c that changes with gravitational potential, and l
does not. So the frequency of a laser scales directly with the speed of light c, as observed.
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8.3 Atomic Energies

Another form of clock relies on the frequency of an atomic transition. Each atomic transition energy is some
constant of proportionality times the Rydberg constant Ry.

Ry =
α2

2
mec

2 (8.2)

In G4v, the quantity k0 = mc is independent of gravitational potential. The fine-structure constant α has been
studied closely for any sign of variation with location in the universe or cosmological epoch, placing an upper
bound on any potential variation of a few parts per million. From Eq. 8.2 we can see that, to the extent that α
is truly constant, the Rydberg energy scales in exactly the same way as the laser frequency with gravitational
potential. So the frequency of an atomic clock is proportional to c just like that of an optical clock.

From our point of view, α2/2 is the scale factor between the electron rest energy and the energy of atomic orbits.
From the accepted value of α

1

α
= 137.035 999 68 (8.3)

the factor between these two energy scales indicated by Eq. 8.2 is ≈ 3.75× 104. We encountered α in
CE Section 3.12 [44] as the ratio of the impedance of free space to the quantized Hall resistance.

8.4 Atomic Dimensions

Atomic dimensions, and hence dimensions of material bodies, all scale with the Bohr Radius a0.

a0 =
4πε0~2

mee2
=

~
me c α

(8.4)

We have seen in Eq. 2.3 that the quantity of matter, given by the Compton wave number k0 = mc/~ is constant,
independent of gravitational potential. Therefore, to the extent that α is truly constant, atomic dimensions, and
thus measuring rods, retain their length and can be used to construct a coordinate system in which massive bodies
reside.

Thus we have concluded that Abraham scaling does indeed allow us to construct a self-consistent theory in which
the speed of light scales directly with gravitational potential.

There is a deep principle here, hiding in the guise of the dimensionless fine-structure constant α. Matter wave
functions develop their character from interacting with other matter in the universe.

Most of the macroscopic phenomena we observe, like the force between permanent magnets, atomic spectral
lines, etc., come about because energy is transferred between local electromagnetic interaction and cosmological
gravitational interaction, as indicated by the presence of the mass m in the equations. At some distance scale,
the change in local electromagnetic energy is just comparable to the change in gravitational vector interaction
energy, manifested as inertia and kinetic energy. This is the distance scale at which matter, chemistry, and the
building-blocks of life reside.

8.5 Nuclear Energies

At even smaller distance scales, other interactions come into play. The vast majority of the rest energy of matter
resides in the nuclei of atoms, where the nuclear interaction fixes the Compton scale for k0. The behavior of
the nuclear interaction at short distances constrains the wave functions much more tightly than is possible with
electromagnetic interaction. That confinement of the wave function gives very high k0 to the aggregate, which
is why the nuclear “mass” is so dominant. To the extent that the Compton scale for protons and neutrons is
truly constant, nuclear energies scale directly with the speed of light c. From studies on the nuclei of atoms, it is
clear that the k0 of an aggregate nucleus is only approximately the sum of the k0 of its constituent protons and
neutrons. The non-linear interaction of matter at densities even higher than those of an atomic nucleus becomes
important in neutron stars and black holes, and is poorly understood at present. Nonetheless, the total inertia of
complex aggregations of matter are still precisely proportional to their rest energies, and hence to the gravitational
potential, and thus to the local velocity of light c. This precise proportionality, is a natural consequence of Mach’s
Principle as embodied in G4v.
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8.6 Effect of Coordinate Systems

The discussion throughout this section has been in the context of a coordinate system fixed with respect to the
universe as a whole. In that situation, energies and frequencies scale directly with the gravitational potential c as
discussed above. When a clock is moving with respect to the universe as a whole, its frequency is proportional to
the total energy of matter in its state of motion, as given by, e.g., Eq. 2.12. This result is a direct result of the
equivalence principle: The energy of any object is equivalent to a frequency, and all frequencies scale in the same
way.

Real measurements are most often made from a platform, such as the Earth or a spacecraft, which is in free-fall:
e.g., in orbit around the Earth or Sun. The local coordinate system takes the platform as its origin, and the
angular orientation fixed with respect to the distant universe—an excellent example is the GPB satellite described
in Chapter 11. The simplest free-fall system was shown as the black arrow in Fig. 2.1.

Any object that is stationary within that coordinate system will have constant total energy as the system traverses
its trajectory. This principle, although obvious, is invaluable when reasoning about experiments involving a
number of objects of interest (planets, spacecraft, etc.) which are communicating.

This dependence of clock rate on total energy per unit matter predicts a curious outcome for the well-known
and highly overworked twin paradox: Any twin embarking on space travel must, of necessity, reach a higher
energy due to her motion in the free-fall coordinate system of her brother who is left behind. It is thus inevitable
that her clock will run faster than his, and (sadly) she will age faster than he. This conclusion is opposite of
that reached from special-relativistic arguments for a totally obvious reason: It is simply not a special-relativity
problem!

8.7 Future Work

The way nuclear and other short-range interactions contribute to the Compton wave number k0 of a composite
object, and how the resulting object behaves in extreme gravitational potential wells such as those encountered
in neutron stars and black holes, is a whole field of study in its own right. These extremely dense bodies are
certainly huge nearly-coherent states, the nearest earthbound counterpart being superconductors. It is known
that the superconducting ground state cannot be arrived at by a perturbation expansion, even with an infinite
number of terms. For that reason the equation of state for ultra-dense matter will most likely not be arrived at
using “particle” basis states and interactions. It remains an open question whether the CE-G4v line of reasoning
can enable progress on this front. More on neutron stars in Chapter 12.



Chapter 9

Cosmology

Any cosmology is built on a few central tenets. The central tenet of G4v is Mach’s Principle, which states that
matter derives its inertia through interaction with other matter in the universe. Because virtually all modern
formulations of physics are differential in nature, there is a widespread misconception that integral formulations
such as Mach’s cannot add anything substantive to our understanding of physical law. In order to help dispell
this myth we give a brief review of this deep and compelling principle.

9.1 Mach’s Principle

The recent (2004) successful launch of the historic Gravity Probe B (GPB) satellite has been widely heralded as
a test of GR. In a larger context, it can be viewed as an investigation into the origin of inertia. In Newtonian
physics, inertia was viewed as an intrinsic local property of a massive body, moving with respect to absolute space.
Gravitation was a quite separate phenomenon, evidenced by the attraction of nearby massive bodies. Elegant
experiments by Eötvös showed that the inertial mass and the gravitational mass were equal, to extremely high
precision. Ernst Mach[40] was an outspoken critic of Newton’s notion of “absolute space.” He believed that the
motion of an object had no meaning except with reference to other objects in the universe. In his view, a mass
would have no inertia if the rest of the mass in the universe were not interacting with it. The idea that matter
derives its inertia through interaction with other matter in the universe is known as “Mach’s Principle”.

A number of workers have attempted to realize a mathematically precise formulation of Mach’s Principle: An
excellent account with many references can be found in Barbour and Pfister[2]. A wonderfully well-reasoned and
historically important exposition was given by Sciama[62]. In a fully Machian universe, Gravitation becomes
the universal interaction of all matter. There is no longer such a thing as an isolated experiment. Local physics
cannot be separated from cosmology, and the identity of inertial and gravitational mass is automatic.

If gravitation is to serve as the mechanism for establishing a frame of reference, the gravitational interaction
of an element of matter with all other matter in the visible universe must be responsible for the inertia of that
element of matter. Inertia is the property that allows matter moving with a velocity ~v to exhibit a momentum
~p. For gravitation to be the origin of inertia, it must have a momentum effect as well as the usual energy effect
associated with the gravitational potential energy of nearby massive bodies. In the same way that magnetism is
the vector aspect of electrical interaction, “gravitomagnetism” must be responsible for inertia.

In the title of his 1912 paper, Einstein[19] asks the question:
Is There a Gravitational Effect which is Analogous to Electrodynamic Induction?
This paper contains the first concrete proposal for how distant matter in the universe could serve as an inertial
frame of reference:

This suggests that the entire inertia of a point mass is an effect of the presence of all other masses,
which is based on a kind of interaction with the latter.

At this point, Einstein inserts a footnote

This is exactly the same point of view that E. Mach advanced in his astute investigations on the
subject. (E. Mach, The Evolution of the Principles of Dynamics, Chapter 2. Newton’s Views on Time,
Space and Motion.).

He then remarks

The degree to which this conception is justified will become known when we will be fortunate enough
to have come into possession of a serviceable dynamics of gravitation.

In a number of his other writings, Einstein indicates that Mach’s Principle had been one of his guiding principles
in the evolution of his theories of gravitation. In his later years he became uncomfortable with what he saw as the
failure of GR to incorporate Mach’s principle in any deep way. It is thus unfortunate that the coming of GR
cut short what, in retrospect, might have been a very productive co-development of cosmology and gravitation
theories based on Special Relativity and Mach’s Principle. The present approach is a return to this line of thought
in the light of recent experimental findings.
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9.2 Basic Cosmological Assumptions

It is not obvious at the outset that G4v is compatible with a universe having the properties we observe. Here
we analyze the simplest and most basic properties of a G4v universe. In accord with our goal of obtaining the
maximum physical insight with the minimum of mathematical complexity, we introduce what we see as the
minimal assumptions which could underlie any form of cosmology whatsoever. The assumptions upon which this
formulation is based are:

1. The universe is homogeneous, isotropic, expanding.

2. Energy density ρE is the source of gravitational scalar potential.

3. The gravitational scalar potential is the speed of light c.

4. Energy density is subject to a continuity equation.

9.3 Gravitational Potential

In G4v, the gravitational vector potential takes the same place in the matter wave equation as the electromagnetic
vector potential. For that reason, the source of the gravitational four-potential is the energy-momentum four-vector.
The coupling constant χ is equal to the square of the Planck length, and the scalar potential Z is equal to the
local speed of light c.

Whatever the makeup of matter in the universe, it will have some energy density ρE Joules/m3, and that energy
density is the source for gravitational scalar potential Z, governed by the Abraham Equation1:

�2Z = ∇2Z − 1

c

∂

∂t

(
1

c

∂Z

∂t

)
= 4πχρE (9.1)

where χ = `P
2 is the coupling constant. Because the potential is equal to the speed of light c, the equation is

highly non-linear due to the 1/c = 1/Z terms, so it has no scalable solutions. We are accustomed to solving it in
the limit of nearly-constant gravitational potential, in which case it becomes nearly linear, and ordinary methods
apply. In the case of cosmology, we must look for a particular solution.

Assuming a uniform solution throughout space, consistent with the cosmological principle, both Z and ρE are
functions of t alone and Eq. 9.1 becomes

− 1

Z

∂

∂t

(
1

Z

∂Z

∂t

)
= 4πχρE (9.2)

which has solution
Z = c∞ tanh (nH0t)

ρE =
ρ0 cosh (2nH0t)

cosh (nH0t) sinh3 (nH0t)

ρ0 =
n2H2

0

4πχc∞

(9.3)

where n is a parameter of the theory that is chosen for the self-consistency condition as described in Section 9.8.3.
So the speed of light is uniquely determined by the Hubble Constant, H0, and the energy density.

1Abraham, in his 1913 paper (page 356 in [57]), saw that this form of the equation must be used when the speed of light c = Z is
changing with time. Unfortunately he applied it to a theory in which the variable was

√
Z instead of Z. Nonetheless we have chosen

to name this form of the equation, when used for gravitational potential calculations, after Abraham.
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9.4 Continuity Condition

A necessary constraint on the solution is the continuity of energy density ρE . We express the expansion in a
spherical coordinate system, in which the expansion velocity v is in the r direction:
For a universe whose density is uniform at any given cosmic time, ρE is a function of t alone:

−∂(ρE)

∂t
= ∇ · (v ρE) = ρE ∇ · v

− 1

ρE

∂ρE
∂t

=
∂ v

∂r
+ 2

v

r

(9.4)

We assume a separable solution for the velocity v = vtH0r, where vt is a function of t alone:

1

ρE

∂ρE
∂t

= −3H0vt (9.5)

So the full solution for the expansion velocity is

v =
nH0r

3

(
3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)

)
(9.6)

Henceforth we shall express the relations of Eq. 9.3 and Eq. 9.6 in terms of dimensionless variables as follows:

c(H0t) =
c

c∞
= tanh (nH0t)

ρ(H0t) =
ρE
ρ0

=
cosh (2nH0t)

cosh (nH0t) sinh3 (nH0t)

v(H0t, R) =
v

c∞
=
R

3

(
3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)

)
where R =

r

rH
rH =

c∞
nH0

(9.7)

The evolution of those quantities with cosmic time is shown in Fig. 9.1.

Figure 9.1: The three dimensionless functions of cosmic time in Eq. 9.7 for the self-consistent value n = 1.33. The
green curve is the normalized speed of light c, equal to the gravitational potential Z. It is determined by the
energy density and expansion rate, and is nearly constant after about two Hubble times. The blue curve of the
normalized expansion velocity can be thought of as the effective Hubble constant, which also becomes constant
after about two Hubble times. The red curve is the normalized energy density.
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9.5 Light Cone Distance

A light signal leaving a source at time t1 will reach an observer at distance d at t = t2, where

∂d

∂t
= c(t) = tanh (nH0t) ⇒ d =

∫ t2

t1

c(t) dt

d = rH log

(
cosh (nH0t2)

cosh (nH0t1)

)
where rH =

c∞
nH0

(9.8)

We note that d is not the distance at one particular cosmic time, but the distance along the light cone.
For a well-evolved universe, older than about two Hubble times, Eq. 9.8 reduces to the usual expression where the
speed of light is constant. In dimensional units:

d ≈ rH(H0t2 −H0t1) = c∞(t2 − t1) for H0t� 1 (9.9)

9.6 Co-Moving Distance

We wish to follow the evolution of a small volume as it moves with the Hubble flow (called a co-moving volume in
the cosmology literature). The dimensionless radius Rc reached by a co-moving volume at cosmic time t will be
the solution to

v =
∂R

∂t
=
R

3

(
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)
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(
cosh (2nH0t)

)−1
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) 1
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·
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sinh (2nH0t)
) 1

2n ·
(

sinh (4nH0t)
) 1

6n

(9.10)

The co-moving radius has an arbitrary scale constant Rs which, when viewed as a vector, is unique to each element
in the universe. It identifies that element’s position, relative to our chosen origin, at any given cosmic time.

9.7 Horizon

From Eq. 9.8 we have a “lookback radius”—the distance from which light can reach us. The maximum such
distance occurs at the normalized horizon radius R0, where v = c in the chosen frame of reference. From
Eq. 9.7

R0 =
3 tanh (nH0t)

3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)
(9.11)

The Light-Cone Distance, Co-Moving Distance, and Horizon Radius, normalized to the Hubble Radius, are shown
in Fig. 9.2. This plot would look the same, independent of which element in the visible universe is chosen as the
origin. We have chosen the frame of reference to be the co-moving frame of the observer.

Figure 9.2: Cosmic distances for n = 1.33, in units of the Hubble Radius rH , relative to an arbitrarily chosen
origin, plotted as a function of cosmic time in units of the Hubble time. The Horizon Radius is shown in black.
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The green, cyan, and blue curves are co-moving distances Rc for objects with Rs = 0.1, Rs = 0.2 and Rs = 0.4.
The expansion decelerates in the early stages of cosmic evolution, and accelerates during the later stages. It is
clear that, at late cosmic time, more and more volume elements disappear beyond the horizon. The right plot is
an enlargement of the lower-left corner of the left plot. The red curves are the light paths emitted by the green,
cyan, and blue sources at earlier times H0t1, and received by observers at H0t2 = 0.66, 1.5 and 2.75 and 4.0. The
n = 1.33, H0t2 = 0.66 curve will turn out to be internally consistent, and to give the best fit to recently observed
SN1a Hubble data. The early universe is beyond the horizon in this model.

9.8 Comparison with Astrophysical Observations

9.8.1 Redshift

Let the rest-frame frequency of an atomic transition at r1, t1 be ω1 where the speed of light is c1 and the
corresponding quantities at r2, t2 be ω2 and c2. The rest-frame frequencies will be proportional to the corresponding
gravitational potentials:

ω2

ω1
=
c2
c1

(9.12)

The frequency ωobs we observe at r2, t2 where the speed of light is c2, is further reduced by the Doppler effect at
the source:

ω2

ωobs
= 1 + z =

c2
c1

√
1 + v/c1
1− v/c1

(9.13)

9.8.2 Magnitude

A certain number of excited atoms in the supernova we are observing radiate energy at a frequency given by
Eq. 9.13. All time scales change inversely with gravitational potential, and are affected the same way by the
Doppler effect, so both the energy per photon and the rate at which photons are received will be inversely
proportional to the factor given by Eq. 9.13. It follows that the received energy per second f will be inversely
proportional to the square of that factor, and of the distance R:

f ∝

(
c1
c2

√
1− v/c1
1 + v/c1

· 1

R

)2

(9.14)

The Eq. 9.14 relation is valid in the frame of reference of the source, where R is the radius of a sphere upon
whose surface the energy flux f is constant. However, in the frame of reference of the observer, the spheres of
constant flux are lengthened in the direction of source motion and flattened in the direction opposite to the source
motion. This problem is known as relativistic beaming, and is well known in particle-physics circles. It has
has been carefully worked out by K. T. McDonald[43]. The result is that, for an isotropically radiating source
moving away from the observer, the received energy flux fobs is reduced from that of a stationary source fsta by
the factor2

fobs

fsta
=

(
1− v/c2
1 + v/c2

)2

(9.15)

so the total received flux becomes

f ∝
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c2
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· 1
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)2

m = −2.5 log10 (f) + constant

(9.16)

The predictions of this model, plotted along with recent observations in Fig. 9.3, were arrived at by the iterative
process described in the following section.

2In a theory like G4v, where the speed of light changes over the path, this relationship will probably be more complicated. The
analysis should actually be done with an integral along the light path.
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Figure 9.3: Hubble plot showing the results predicted by the G4v cosmological model using n = 1.33 from Fig. 9.4.
The blue points are the Union2.1 data set, augmented with the 2013 z = 1.71 observation. The red curve shows
the magnitude-redshift relation predicted for an observer at H0t2 = 0.66 in Fig. 9.2, which is the self-consistent
value. The upturn of the curves at high redshift is predominantly due to the moving-source factor (Eq. 9.15).
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9.8.3 Internal Consistency

It is a principle of G4v that the speed of light is equal to the gravitational potential, and thus determined by
Mach’s Principle i.e. by the gravitational interaction with every other element of matter on both our future and
past light cones within our horizon. Thus far we have used only differential relations, and Z = c is determined by
Eq. 9.3. Experimentally we have found that equally good Hubble plot fits can be obtained for a wide range of the
parameter n, each of which has a different value for the present age of the universe H0t2 that gives the best fit.
By doing a number of best fits with different n values, we can find the dependence of H0t2 on n as shown in the
left plot Fig. 9.4.

Figure 9.4: Left: Present age of the universe giving the best Hubble plot fit, as a function of 1/n. The red
line merely connects the points. The best fit values entailed considerable judgement, but with care could be
reproduced within ±1%. Right: Velocity of light determined from Eq. 9.7 (blue crosses) and from the full Mach
integral (red circles), both plotted as functions of the parameter n. The intersection at n ≈ 1.33, H0t2 ≈ 0.66,
c/c∞ ≈ 0.706 is taken as our best estimate of a self-consistent solution.

For each H0t2, n pair, we can determine the value of every variable, including the speed of light, at every point in
space-time from Eq. 9.7.

Because we have the density at every point on the light cone of our present point of observation, we can carry out
the Mach integral and thereby determine the gravitational potential, and hence the speed of light. When our
theory is internally consistent, these two values must agree.
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9.8.4 Mach Integral

According to the G4v interpretation of Mach’s Principle, the gravitational potential, and therefore the rest energy
and hence the inertia of matter, is determined by the energy density of matter, weighted inversely with distance,
and corrected for the Doppler effect. Because of the non-linear nature of the equations involved, we are not
guaranteed that an integral determination of the potential will yield the same result as that assumed in the
differential formulation. So we must carry out the integration to the point where the two values can be compared
to evaluate the internal consistency of the entire approach.

From the definitions of the dimensionless variables in Eq. 9.6 and Eq. 9.7 we obtain
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(9.17)

As with any Mach’s Principle based theory, the integration must be carried out over both the past and future
light cones. The integrand is shown as a function of R in Fig. 9.5.

Figure 9.5: Integrand of Eq. 9.17 as a function of cosmic time at the radius on the light cone where the source
matter is located. The blue curve is the contribution of the past light cone and the red curve is that of the future
light cone. Both curves cut off where the light cone encounters the horizon. The value of H0t2 = 0.66 used for
this plot is that which gives a self-consistent solution.
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The determination of the self-consistent values of the parameters proceeds as follows:

1. Choose a value for n.

2. Compute ρ and c from Eq. 9.7, R from Eq. 9.8, and v/c from Eq. 9.11 as functions of H0t1 and H0t2.

3. Choose a value for H0t2 and make a Hubble plot. Iterate H0t2 until a best fit is obtained.

4. Using these values, calculate c(H0t2)/c∞ from Eq. 9.17.

5. Iterate with a new value of n

In this way a plot can be made of the two values of c(H0t2) as functions of n, as shown in the right plot in Fig. 9.4.
The best fit self-consistent values obtained are n = 1.33, H0t2 = 0.66 and c(H0t2) = 0.706.

9.8.5 Absolute Distance and The Hubble Constant

To establish the z � 1 absolute distance scale, we need a single measurement of both z and distance.
In 1999, the water masers in NGC4258 were observed with VLBI parallax, and the distance to that galaxy has
been followed and updated regularly. The most recent (2013) distance was reported by Humphreys et al.[32]
as 7.6± 0.23 Mpc3. This distance is too close to obtain a reliable Hubble flow velocity, so Riess et al.[58] used
Cephide variable star magnitudes in NGC4258 and more distant galaxies to infer the magnitude of a hypothetical
SN Ia in NGC4258 of m4298 = 10.25. In a more recent study Riess et al.[59] inferred a magnitude of m4258 = 10.18.
These two values of m4258 and the ± Humphreys distance estimates give us four values for the conversion factor
from redshift to distance. For each combination we follow our model Hubble plot back to m4258 and read off the
redshift inferred for NGC4258 if it were in the Hubble flow. The mean value so obtained is z4258 = .00192. Then,
using the Humphreys distance, we can determine the absolute conversion factor between the redshift z and the
distance r:

r = z r0 where r0 = (3.96± 0.16)× 103 Mpc (9.18)

Although it is not an object of this analysis to derive an independent estimate of the Hubble Constant H0, the
Eq. 9.18 relation between the redshift z and the distance r is equivalent to one. All theories, even the most naive
Doppler interpretation, predict z = v/c for small redshift, where v is the recession velocity. The z = .00192
redshift inferred for NGC4258 (if it were in the Hubble flow) certainly meets the z � 1 criterion. The Hubble
constant H0 thus determined is

H0 =
v

r
=
z c

r
=

z c

z r0
=

c

r0
= 75.9± 5

km/sec

Mpc
(9.19)

Of the ±5 estimated uncertainty in the result, ±3 is attributable to the uncertainty in the distance to NGC4258
and the uncertainty in m4258. The balance is directly attributable to the value for H0t2 chosen as best fit, and
the particular fit adopted to the data set. To use this class of G4v models for a serious determination of H0

would require a much more exacting analysis. Nevertheless, the value obtained here is only a bit higher than that
of Riess et al.[59], Freedman et al.[26], and Humphreys[32] et al., and very close to Suyu et al.[67], and midway
between the uppermost recent values, all of which are considerably higher than the Planck value[55], as shown in
Fig. 9.6.

3One megaparsec (Mpc) = 3.09×1022 m
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Figure 9.6: Reported values of the Hubble Constant. Our value is between the upper rightmost two data points.

9.8.6 Energy Density

Using the values quoted above, we can, with Eq. 9.3, determine the value of ρ0 and thus the present energy
density rhoE in the universe4:

ρ0 =
n2H2

4πχc∞
=

n2H2 cosh (2nHt)

4πχ c(Ht2) cosh (nHt) sinh3 (nHt)

= 11.5 H atoms equivalent per m3

(9.20)

This value is about twice the recently quoted value of 5.9 equivalent protons/cubic meter, arrived at with GR-based
theory. Our approach has the advantage that it does not place any restrictions on the particular form of energy
making up the universe. Thus the simple G4v model does away with the need for some mysterious “dark energy”
while, in many other respects, agreeing with the main conclusions of GR-based models. We have thus demonstrated
that an internally consistent G4v model cosmology based on Mach’s Principle gives results that are within the
bounds of reason. This approach places no restrictions on the makeup of the universe, and has a minimum of
other assumptions.

4An ~ is needed to convert from our standard G4v frequency units to ordinary energy units.



Chapter 10

Orbits around Massive Objects

10.1 Introduction

One of the celebrated predictions of GR was the precession of an elliptical orbit around a massive body. This
prediction resolved a long-standing anomaly in the observed orbit of the planet Mercury. More recently such
precession has been observed with exquisite precision in the orbits of double pulsars, and therefore promises to
be an important test of the limits of gravitational theories. Here we show that the G4v result without vector
interaction corresponds to the classical “Newtonian” result, and that adding the vector coupling gives precisely
the same result as GR, to the first post-Newtonian order.

10.2 Classical Solution

The Kepler problem is most simply posed as:
Determine the orbit of an object of mass m around a much heavier object of mass M fixed at the origin.

Assuming there exists a closed orbit, Kepler’s second law:

The radius vector from the sun to a planet sweeps out equal areas in equal time.

follows directly from the conservation of angular momentum L:

L = mrvθ = mr

(
r∂θ

∂t

)
=
m

2
· ∂Area

∂ Time
= Constant (10.1)

To obtain the orbit we start with conservation of energy E:

2E

m
= v2 − 2MG

r
= v2

r + v2
θ −

2MG

r
=

(
∂r

∂t

)2

+

(
r
∂θ

∂t

)2

− 2MG

r

=

(
∂r

∂θ

)2(
∂θ

∂t

)2

+

(
r
∂θ

∂t

)2

− 2MG

r
=

[(
∂r

∂θ

)2

+ r2

](
∂θ

∂t

)2

− 2MG

r

(10.2)

In terms of the conserved quantities, Eq.10.2 becomes

2E

m
=

[(
∂r

∂θ

)2

+ r2

]
L2

m2r4
− 2MG

r
⇒ 2E =

[(
∂r

∂θ

)2

+ r2

]
L2

mr4
− 2mMG

r
(10.3)

which may be written (
∂r

∂θ

)2

=
2Em

L2
r4 +

2MGm2

L2
r3 − r2 (10.4)

Substituting the variable u = 1/r, we first work out the derivative:

∂r

∂θ
=
∂r

∂u

∂u

∂θ
= − 1

u2

∂u

∂θ
(10.5)

after which Eq. 10.3 becomes

2E =
L2

m

[(
∂u

∂θ

)2

+ u2

]
− 2MmGu (10.6)

(
∂u

∂θ

)2

+ u2 = 2
(
E +MmGu

)m
L2

(10.7)

Differentiating with respect to θ

2
∂u

∂θ

∂2u

∂θ2
+ 2u

∂u

∂θ
− 2Mm2G

L2

∂u

∂θ
= 0 (10.8)
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we obtain the final form, which, by some miracle, turns out to be linear.

∂2u

∂θ2
+ u =

Mm2G

L2
(10.9)

The solution is

u =
Mm2G

L2

(
1 + ε cos (θ)

)
⇒ r =

r0

1 + ε cos (θ)
where r0 =

L2

Mm2G
(10.10)

which is the standard polar form of an ellipse relative to its focus. The distance r0 is called the semi-lattice
rectum of the ellipse. We have thus demonstrated Kepler’s first law:

Each planet moves in an ellipse with the sun at one focus.

Direct substitution into Eq. 10.7 gives the value for the eccentricity ε

ε =

√
1 +

2EL2

m3M2G2
(10.11)

The geometry of the orbit is completely determined by r0, which gives the size scale and ε, which gives the shape
of the orbit.

From Eq. 10.1 we can integrate the angular momentum L around the orbit, requiring time equal to the period
T : ∫ T

0

L dt =

∫ 2π

0

mr2 ∂θ

∂t
dt = m

∫ 2π

0

(
r0

1 + ε cos (θ)

)2

dθ =
2πr2

0 m(
1− ε2

)3/2 = LT (10.12)

T =
m

L

2πr2
0(

1− ε2
)3/2 =

2π√
MG

(
r0

1− ε2

)3/2

= 2π

√
a3

MG
(10.13)

where the final form follows from Eq. 10.10 and the fact that the semi-major axis a = r0/(1− ε2).
We have thus demonstrated Kepler’s third law:

The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit.

We notice that we have not needed Newton’s law of force to solve this problem. The only assumptions were the
mutual conservation of energy and angular momentum.

10.3 Matter-Wave Treatment

We now view the orbit as a path of stationary phase around the massive body. Any element of the path is
stationary only if the propagation vector ~k is in the direction ~ds of the path. The differential element in the r
direction is dr, and the differential element in the θ direction is r dθ

∂r

r∂θ
=
kr
kθ

⇒ ∂r

∂θ
=
rkr
kθ

(10.14)

It is a deep principle of nature that, in a system of this kind, the phase shift dφ allocated to each increment dθ of
the angle θ does not depend on θ.
This principle is called the conservation of angular momentum.

L ≡ ∂φ

∂θ
= rkθ = constant (10.15)

Eq.10.14 can thus be expressed

kr =
L

r2

∂r

∂θ
(10.16)
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We recall from our treatment of the deflection of light that the dependence of the speed of light c on the
gravitational potential was responsible for only half of the deflection of light by a massive body. The additional
deflection, equal in magnitude and of the same sign, was contributed by vector coupling to the massive body. The
fact that the two contributions were equal was a unique property of the dispersion relation of light: ω = kc. The
dispersion relation of a matter wave ω2 = ω2

0 + k2c2 contains the rest energy in addition to the kinetic energy.
When we include the vector interaction, we find that the orbital equation is affected at the very next order beyond
Newtonian. What emerges is a much clearer view of gravitation than that accessible through the quasi-Newtonian
view. We are considering the case where the central body of Compton wavenumber K0 is much more massive
than the orbiting body K0 � k0, and hence its velocity can be neglected. From Eq. 3.10, in the weak-gravity
approximation, the gravitational potential c at radius r from the central body is:

c

c0
= 1− χK0

r
(10.17)

The corresponding approximation for the momentum of our orbiting object then becomes

~k ≈ k0
~v

c0

c0
c

(10.18)

The c0/c term captures the “back reaction” of the vector coupling on the momentum of the orbiting object, as we
saw in Eq. 3.14. In the present context, we can interpret the vector interaction as follows:
For any given radius and energy, the wave vector is larger than we would expect without the vector interaction by
a factor of c0/c. That factor first appears in the relationship between ∂r/∂θ and wave vector in Eq. 10.16. We
must therefore supplement that expression to take the vector interaction into account:

kr =
L

r2

∂r

∂θ

(c0
c

)
⇒ k2

r =
L2

r4

(c0
c

)2
(
∂r

∂θ

)2

(10.19)

Of course kθ is affected by the same factor, but that dependence is absorbed into the angular momentum L, which
is a constant of the motion.

The dispersion relation for an element of matter is

ω2 =
(
k2

0 + k2
)
c2 =

(
k2

0 + k2
r + k2

θ

)
c2 =

(
k2

0 + k2
r +

L2

r2

)
c2 (10.20)

which, using Eq. 10.19, becomes

ω2

c2
− k2

0 −
L2

r2
= k2

r =

(
∂r

∂θ

)2 (c0
c

)2 L2

r4
(10.21)

which simplifies to (
∂r

∂θ

)2

=

(
ω2

L2c20
− k2

0c
2

L2c20

)
r4 − c2

c20
r2 (10.22)

Eq. 10.22 describes the orbit of a matter wave propagating around a stationary (non-spinning) mass concentra-
tion.

10.4 Weak-Field Limit

The gravitational potential appears as the speed of light c in Eq. 10.22. For a body that is not too massive, we
can approximate

c ≈ c0
(

1− GM

rc20

)
⇒ c2 ≈ c20

(
1− 2GM

rc20

)
(10.23)

Using this approximation, Eq.10.22 becomes(
∂r

∂θ

)2

≈
(
ω2 − k2

0c
2
0

L2c20

)
r4 +

2GMk2
0

L2c20
r3 − r2 +

2GM

c20
r (10.24)



CHAPTER 10. ORBITS AROUND MASSIVE OBJECTS 59

When we substitute k0 = mc0 and E = ω we obtain(
∂r

∂θ

)2

≈ E2 −m2c40
L2c20

r4 +
2GMm2

L2
r3 − r2 +

2GM

c20
r (10.25)

Which is to be compared with the GR result:[20](
∂r

∂θ

)2

≈ E2 −m2c4

L2c2
r4 +

2GMm2

L2
r3 − r2 +

2GM

c2
r (10.26)

The two results are in agreement to this order. To compare with the classical treatment, we assume the energy is
only slightly different from the rest energy

E = mc20 + ε ⇒ E2 ≈ m2c40 + 2mc20ε (10.27)

to this order Eq. 10.25 becomes(
∂r

∂θ

)2

≈ 2mε

L2
r4 +

2GMm2

L2
r3 − r2 +

2GM

c20
r (10.28)

When ε is identified as the classical energy E, Eq. 10.28 is identically Eq. 10.4, with the addition of the last
term. Tracing back through the derivation, we see that the last term was obtained only by including the vector
interaction.

10.5 Apsidal Precession

To assess the effect of the last term on the orbit, we substitute the variable u = 1/r, for which we first work out
the derivative:

∂r

∂θ
=
∂r

∂u

∂u

∂θ
= − 1

u2

∂u

∂θ
= −r2 ∂u

∂θ
(10.29)

upon which Eq. 10.24 becomes

1
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(10.30)

Differentiating with respect to θ

2

(
∂u

∂θ

)(
∂2u

∂θ2

)
≈ 2GMk2

0

L2c20

∂u

∂θ
− 2u

∂u

∂θ
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6GM

c20
u2 ∂u

∂θ
(10.31)

Dividing by 2 ∂u/∂θ we obtain
∂2u

∂θ2
≈ GMk2

0

L2c20
− u+

3GM

c20
u2 (10.32)

which, in the limit where GMu/c20 � 1, reduces to the classical Kepler standard form.

Following Bergman[3] pp. 215-216 we use a trial solution with parameter ρ, of the form

u = u0 + u0ε cos (ρθ) (10.33)

Substituting into Eq. 10.32, expanding the result into a Fourier cosine series in ρθ, ignoring terms of order higher
than 1 in GM/c20, and setting the coefficient of the residual cos (ρθ) to zero we find

1− ρ2 ≈ 6u0δ ⇒ ρ ≈
√

1− 6u0δ ≈ 1− 3u0δ

ρ ≈ 1− 3u0δ ≈ 1− 3
MGm2

L2

MG

c20
= 1− 3

M2G2m2

L2c20

(10.34)
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which is Bergman’s Eq. 14.24.

To the level of approximation required we can use the Newtonian Kepler relations for the period T from
Eq. 10.13:

T = 2π

√
a3

(m1 +m2)G
⇒ T 2 = 4π2 a3

2MG
⇒ MG = 2π2 a

3

T 2
(10.35)

where the semi-major axis a is given by

a =
2r0

(1− ε2)
=

2

u0 (1− ε2)

µ0δ =
2

a (1− ε2)
· MG

c20
=

2

a (1− ε2)
· 2π2a3

c20T
2

=
4π2a2

T 2c20 (1− ε2)

(10.36)

From Eq. 10.34, the angular increment ∆θ for a full rotation is 2π × 3µ0δ:

∆θ =
24π3a2

T 2c20 (1− ε2)
(10.37)

which is the expression Einstein arrived at in his original paper.

Once again we have demonstrated that the gravitational 4-potential in flat space-time gives results in agreement
with observation at the first order beyond Newton. Even to first order, the apsidal precession required both the
relativistic dispersion relation and the vector coupling. These results hold only in the context of Mach’s Principle,
whereby the entire rest energy of a massive body is the result of its gravitational interaction with the rest of the
universe.

10.6 Future Work

The relativistic and vector-coupling terms that give rise to the apsidal precession have only been included here
to first order. For ultra-massive objects with small orbits, such as those involved in black hole mergers, a full
relativistic treatment must be used. A great deal of work has been done with the corresponding GR analysis, but
virtually none with G4v.

The relativistic and vector-coupling terms that give rise to the apsidal precession also affect the orbit at the same
order. These effects will modify the gravitational radiation to this order as well. The required modifications
remain to be worked out for G4v, and compared with the GR working expressions for gravitational radiation used
by astronomers.

As noted in Section 7.7, Virtually all bodies in the real universe are rotating, often at relativistic speeds. The
vector contribution to orbital precession due to the rotation of such bodies in binary systems goes under the rubric
of spin-orbit coupling, and has been analyzed in detail in a GR context. Modern high-precision observations of
the double pulsar J0737-3039A/B agree with the GR predictions to first order beyond Newton [6]. In Chapter 11
We analyze the spin-orbit coupling of a more local system and show that, to first order, G4v predicts the same
result as GR. It remains to be analyzed whether the two theories agree to higher order. Any difference might be
experimentally discernible as the pulsar observations are continued.



Chapter 11

Gravity Probe B

11.1 Introduction

The Gravity Probe B (GPB) experiment[27] launched in 2004, is, from the viewpoint of G4v, the first direct
measurement of vector coupling in its pure form, free from scalar effects, and not obscured by other interactions.
It is important, in part because its magnitude, relative to the scalar magnitude, gives the propagation speed of
a gravitational wave. Both GR and G4v predict gravitational waves traveling at c, but before GPB we had no
independent experimental corroboration of that expectation. Of course, our direct knowledge of the speed of
gravitational waves became good to 10−15 with the LIGO sighting of 2017[38][37].

The GPB spacecraft is orbiting the earth, following the trajectory of a carefully shielded “proof mass” which we
will identify with m1. The proof mass sphere is in free-fall, and therefore experiences no acceleration whatsoever.
From the point of view of the proof mass, there is a massive universe at large distance, and a local mass called
the Earth which is revolving around it with angular velocity Ω = 1 revolution every 1hr 37min 34sec, and the
Earth rotating on its own axis every 24 hours. as illustrated in Fig. 11.1.

Figure 11.1: Configuration of the gyroscope sphere in orbit aboard the GPB satellite. This Earth-centered view
somewhat obscures the basic physics of the experiment: Because the sphere is in free-fall, it can be taken as the
origin of the coordinate system, and the Earth visualized as being in orbit around it. When looked at this way,
the sphere is stationary in its coordinate system, which consists of the mass of the universe, the mass of the Earth
orbiting around it, contributing the “Geodetic Effect”, and the Earth rotating on its own axis, contributing the
“Frame-dragging Effect.” From the GPB web site[27].

11.2 Frame of Reference

The rotation rate of the proof mass’ frame of reference with respect to the universe due to the Earth’s vector
potential will be the rotation rate of the earth around the proof mass multiplied by the fraction of the frame of
reference contributed by the earth’s mass.

∂Φ

∂t

∣∣∣∣∣
A

= Ω · Earth contribution

Universe contribution
= Ω

Gmearth

rorbitc2
(11.1)

where the Earth contribution is from Eq. 3.14. By the Virial theorem, an orbiting object of mass m1 has kinetic
energy equal to half of its (negative) potential energy:

m1 G(mearth/rorbit) = m1 v
2
orbit (11.2)

Substituting Eq. 11.2 into Eq. 11.1 we obtain

Earth contribution

Universe contribution
=

v2
orbit

c2
(11.3)
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Therefore the Earth’s vector coupling induces a rotation in the proof mass’ frame of reference of

∂Φ

∂t

∣∣∣∣∣
A

=
v2

c2
Ω (11.4)

The rotation given by Eq. 11.4 does not depend in any way on the nature of the proof mass. In particular, the
effect will be the same whether the proof mass is stationary or spinning. It is the contribution to the geodetic
effect explained in GR in terms of the curvature of space[70].

11.3 Gyroscope precession

There is, in addition to Eq. 11.4, an effect due to the vector coupling of the orbit of the earth with the spin of the
gyroscope. The relationships involved are illustrated in Fig. 11.2.

Figure 11.2: Vector coupling of Earth with mass M to gyroscope, which we represent as a ring of matter of mass
m and radius r, rotating with angular velocity ω and therefore velocity vm = ωr.

The Earth has mass M at radius R from the satellite, moving with velocity vM . Anticipating that the detailed
structure of the gyroscope will not affect the result, we represent it as a ring of matter of mass m and radius r,
rotating with angular velocity ω.

From Eq. 3.14 we can write the kinetic energy K.E. of the arrangement:

K.E. ≈ p2

2m
=
m

2
v2
m +

m

2

(
MG

rc2

)2

v2
M −

mMG

rc2
(~vm · ~vM ) (11.5)

The last term is the gravitational equivalent of the magnetic coupling energy ~A · ~J . We use Eq. 11.5 to compute
the coupling energy. The v2

m and v2
M terms do not depend on the angle between Earth’s orbit and the spin axis

of the gyroscope. The last term gives the vector part of the coupling energy of the Earth to an element of the
gyroscope of length dl at angle φ around the ring. The gyroscope has mass per unit length m/2πr moving at
velocity ωr. When the gyroscope ring and Earth’s orbit are concentric and lie in the same plane, the vector
coupling energy EmM is
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EmM ≈ −
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(11.6)

When the gyroscope ring and Earth’s orbit are concentric but not in the same plane, this expression must be
multiplied by cos θ, where θ is the angle between Earth’s orbit and the gyroscope ring. In Fig. 11.1, θ = π/2,
while in Fig. 11.2, θ = 0.

EmM =
MG

Rc2
mvMωr

2

r

R
cos θ =

MG

2Rc2
L
vM
R

cos θ (11.7)

where the gyroscope angular momentum L = mωr2.
The first form makes the dimensional correctness more explicit.

The torque τ on the gyroscope is

τ = −∂EmM
∂θ

=
MG

2Rc2
L
vM
R

sin θ (11.8)

For the GPB configuration (Fig. 11.1) the spin axis of the gyroscope is orthonogal to the orbit, so sin θ = 1. Two
superconducting loops carrying persistent current are at lowest energy when the currents are aligned (See Sect. 1.7
[44]) Gravitational vector interaction is of the opposite sign, so is of lowest energy when the the angular momenta
are anti-aligned. The torque thus produces a precession of the spin axis in the direction of orbital rotation:

τ =
∂L

∂t
= L

∂Φ

∂t
=

MG

2Rc2
L
vM
R

(11.9)

As we anticipated, all the parameters of the gyroscope cancel out. Remembering that vM = MG/R from Eq. 11.2,
and taking v = −vM = −ΩR, the precession is

∂Φ

∂t

∣∣∣∣∣
gyro

=
MG

2Rc2
vM
R

=
v2

2c2
Ω (11.10)

This rate is just half that due to Mach’s principle (Eq. 11.4), and of the same sign. The total rotation is the sum
of the two separate effects:

∂Φ

∂t

∣∣∣∣∣
total

=
∂Φ

∂t

∣∣∣∣∣
A

+
∂Φ

∂t

∣∣∣∣∣
gyro

=
3

2

v2

c2
Ω (11.11)

This extremely simple result can be misleading. The additional rotation given by Eq. 11.10 is entirely due to
the fact that the proof mass is spinning at a rate that is very large compared with the orbital rotation rate, and
would be zero for a non-spinning proof mass. The result obtained from our four-vector theory of gravitation,
with parameters forced upon us by Mach’s principle, gives a value for the result of the GPB experiment that is
identical to that predicted by GR. Here, then, is Einstein’s “analog of electrodynamic induction” in its purest
form: All traces of any scalar effect have been removed because the proof mass is in free-fall.

GR-based discussions of the GPB experiment make a distinction between the geodetic effect and the additional
precession due to Earth’s rotation on its axis, which is called frame dragging. In G4v, both effects are analyzed
in the free-fall frame of the test mass, and both are due to the vector “dragging” of the local frame of reference
due to Earth’s motion. The geodetic effect is easier to evaluate because the satellite orbital period and the Virial
theorem give its magnitude without further knowledge of the mass distribution in the Earth. However the E-W
“Lense-Thirring” effect does require this detailed knowledge, and hence is not included in our analysis.



CHAPTER 11. GRAVITY PROBE B 64

11.4 Future Work

In the preceding analysis of the gyroscope precession, we have resorted to a force-law approach.
A much simpler approach should be possible using direct momentum coupling.

A detailed G4v analysis of the E-W frame-dragging using a good Earth model should be performed to see if the
vector coupling is sufficient, or if tensor terms are required.

The spin-orbit coupling calculation for the gyroscope precession should be applied to the double pulsar
J0737-3039A/B [6]. http://www.sciencemag.org/content/321/5885/104.full.html

Since the influence of gravitational waves on the LIGO mirror spacing is second-order in the vector coupling, it is of
the same order in v/c as the diagonal tensor coupling, and 1/4 the value. It is not obvious how the GPB spin-orbit
coupling comes out the same while the GW coupling differs. This question should be investigated.



Chapter 12

Static Spherical Distribution

12.1 Introduction

We first consider a sphere of matter of constant density n elements of matter per unit volume, each element having
intrinsic Compton wave vector k1. The energy of each element will be k1c(r), where r is the radial distance to the
element from the center of the massive object, and c(r) is the gravitational potential at r. Thus the energy density
ρE(r) = nk1c(r). We might think of this idealization as being some approximation to the potential within and
outside a Neutron Star or Black Hole of matter radius R. Inside the matter, the potential satisfies the Abraham
Equation (Eq. 9.1) for the scalar potential c(r) in the special case where the time derivative is zero:

∇2c(r) = 4πχρE(r) = 4πχnk1c(r) (12.1)

It is convenient to define a dimensionless scalar potential Z = c/c0, whereby Eq. 12.1 becomes:

∇2Z(r) = 4πχnk1Z(r) = ρZ(r) (12.2)

Using the wave number density ρ is given by

ρ = 4πχnk1 (12.3)

Eq. 12.2 can be written:
2

r

(
∂Z

∂r

)
+

(
∂2Z

∂r2

)
= ρ Z (12.4)

Which has solution

Z(r < R) =
Zc sinh (Rn)

Rn
(12.5)

where Zc is the dimensionless potential at the center of the object and Rn = R
√
ρ.

We emphasize that ρ has the units of length−2.

Outside the object, ρ = 0 and the potential decays as the inverse of r:

Z(r > R) = 1− A

r
(12.6)

where A is some constant to be determined.

The constant unity is fixed by the requirement that the potential c→ c0 (Z → 1) as r →∞.

Equating Z and ∂Z/∂r of the two solutions, Eq. 12.5 and Eq. 12.6, at r = R, we obtain the value of the minimum
potential Zc at the center of our massive object and the constant A:

Zc = sech
(
Rn

)
A = R− tanh(Rn)

√
ρ

(12.7)

The dimensionless potential inside and outside the object is thus:

Z(r < R) =
sech

(
Rn

)
sinh (Rn)

Rn

Z(r > R) = 1− Rn − tanhRn
Rn

Z(R) =
tanhRn
Rn

(12.8)

The dimensionless gravitational potential Z given by Eq. 12.8 is shown as a function of the dimensionless radius
rn = Rn in Fig. 12.1 for several values of the dimensionless matter radius Rn = Rn.

65
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Figure 12.1: Dimensionless gravitational potential as a function of dimensionless radius for spherical objects of
dimensionless matter radius Rn = 0.8, 1.11, 1.5, 2.3, 3.5, 3.5×1.91/3, 7.
All curves are for the same value of uniform matter density ρ.
The self-limiting nature of the source term is apparent, especially for very large objects.
The maximum gravitational field occurs at the boundary of the matter sphere (r = R).
The super-massive object derived from this theory of gravitation has no singularity.
The blue curve represents a typical neutron star. The red curve is for a black hole of the general size of those
involved in the GW150914 merger. The magenta curve below it represents the final merged object, of 1.9 times
the original individual masses.

The dimensionless potential Zsurf at the matter surface given by Eq. 12.8, and the maximum dimensionless
gravitational field given by Eq. 12.9, are plotted in Fig. 12.2.
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Figure 12.2: (Left): Dimensionless gravitational potential at the surface of a massive object, (Right): Dimensionless
maximum gravitational field, both vs dimensionless matter radius.

As the total accumulated matter increases, the gravitational potential within the sphere becomes lower, thereby
reducing the effectiveness of the central matter as a gravitational source. Even unlimited accumulations of matter
are not able to drive the potential Z, and therefore the speed of light c, negative.
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The reduction in source value at the center of large matter accumulations also occurs in GR, but not quickly
enough to save it from forming a singularity.
The predictions of the two theories are thus strikingly different:

The super-massive object of G4v has no singularity

Nonetheless, extremely strong gravitational fields can develop at the boundaries of high density objects.
The maximum gravitational field, which occurs at r = R, is

gmax =
∂Z

∂ (Rn)

∣∣∣∣∣
R

=
Rn − tanh (Rn)

(Rn)
2 (12.9)

12.2 Scaling of the Results

To proceed farther we need a realistic value for the density ρ, for which real units are required:

Speed of light c = 299,792,458 m/s.

Gravitational Constant G = 6.674× 10−11 m3

kg sec2

Mass of Sun M� = 1.9× 1030 kg
Planck constant ~ = 6.5821191× 10−16 eV s=1.0545717 ×10−34 J s.
Planck Length `P =

√
~G/c30 ≈ 1.6162× 10−35m

Coupling Constant χ = `2P = 2.61× 10−70m2

Neutron mass = 1.6749273× 10−27 kg.
Neutron rest energy ~ω0 = 939.56536 MeV.
Neutron intrinsic wave vector k1 = ωN/c0 = 4.76× 1015 m−1.
Neutron Star average density n is thought to be between 0.3 and 1.2 neutrons/fm3 [52].
This density corresponds to ρ = 4πχnk1 between 4.7× 10−9 and 1.9× 10−8 m−2, corresponding to a length scale
of 14.5 to 7.2 km, respectively. The same study[52] reviews extensive observational evidence and concludes that
neutron stars have radii between 6 and 14 km, with an average of ≈ 10 km.

In the spirit of our engineering approximation, we will assume a fixed density of ρ = 10−8, corresponding to a
length scale of 1/

√
ρ = 10 km, thereby adopting a very “stiff equation of state” for our coherent neutron-star

matter at the core of our super-massive objects.

The gravitational potential at the surface of a few neutron stars has been estimated to be ≈ 0.75 c0.
The surface gravitational potential of our objects is plotted in Fig. 12.2, from which we see that an object having
Zsurf ≈ 0.75 has Rn ≈ 1→ R ≈ 10km, consistent with our order-of-magnitude analysis.

There is a great deal of ongoing discussion of the density and compressibility of the matter that comprises neutron
stars. This discussion has all been in the context of GR, which predicts a singularity for matter accumulations
above a certain threshold. However, we can see from Fig. 12.2 that, in G4v, the maximum gravitational field
never gets more than ≈ 11% larger than it is at the surface of a neutron star, and actually decreases for objects of
Rn > 2.

So the horrible “gravitational collapse,” so vividly portrayed by GR, does not come to pass in G4v.

In addition, we can have confidence that what we learn from neutron stars is a reliable guide to the physics of the
matter cores inside objects much more massive than neutron stars—in particular those that are presently called
“Black Holes.” More about those in the upcoming sections.

12.3 Weak Gravity Limit

At small values of the argument Rn, we may expand tanhx ≈ x− x3/3 in Eq. 12.8:

Z(r > R) ≈ 1−
Rn −Rn + 1

3R
3ρ3/2

Rn
= 1− R3ρ

3r
= 1− R3

n

3rn
(12.10)

where rn = r
√
ρ. Using ρ = 4πχnk1 from Eq. 12.3

Z(r > R) ≈ 1− R34πχnk1

3r
= 1−

χk0
√
ρ

rn
(12.11)
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where, in the weak-gravity limit, the total quantity of matter in the star k0 is just the volume of the star times
nk1, given by

k0 =
4

3
πR3nk1 (12.12)

Because χ = ~G
c30

from Z = c/c0 and ~k0 = Mc ≈Mc0, Eq. 12.11 can be compared with the standard Newtonian

expression for gravitational potential:

c(r > R) ≈ c0
(

1− χMc0
~ r

)
= c0

(
1− MG

rc20

)
(12.13)

Again our weak-gravity limit reduces to the well-known relations of classical Newtonian mechanics.

12.4 Total Energy

Even when the matter accumulation is far greater than the weak-gravity limit, the potential outside the matter
still has a well-defined 1/r dependence. Hence every massive object has a total energy ωtot that defines how it
interacts gravitationally with other objects at a distance. Eq. 12.8 gives the potential at the boundary r = R,
from which we can obtain the total energy ωtot of the body by Eq. 3.6:

Z(R) =
c(R)

c0
=

tanh (Rn)

Rn

c(R) = c0 −
χωtot

R

ωtot = c0
Rn − tanh (Rn)

χ
√
ρ

(12.14)

We can check this result by direct integration of the energy in spherical shells from r = 0 to r = R.
Recalling from Eq. 12.3 that ρ = 4πχnk1,

ωtot =

∫ R

0

4πr2nk1c(r) dr =

∫ R

0

4πr2 ρ

4πχ
c0Z(r) dr (12.15)

Using c(r) = c0Z(r < R) from Eq. 12.8, this integral gives the same result as Eq. 12.14.

In strong gravity, the effective Compton wave-number k0 is not the total of that of all neutrons in the star for the
same reason that the total energy is not the sum of that of its isolated components. The matter that is active
as a source of gravitational interaction forms a “shell” of thickness 1/

√
ρ on the surface of extremely massive

bodies. It is still true that k0c0Z(R) = ωtot, thus from Eq. 12.14 we obtain the dimensionless form of the Compton
wave-number for the entire body:

k0 c0

(
tanh (Rn)

Rn

)
= ωtot = c0

Rn − tanh (Rn)

χ
√
ρ

k0 =
R (Rn coth (Rn)− 1)

χ
=
Rn (Rn coth (Rn)− 1)

χ
√
ρ

(12.16)

A convenient dimensionless form of the Compton wave-number follows from Eq. 12.16:

k0χ
√
ρ = R2

n coth (Rn)−Rn

→ R3
n

3
as Rn → 0 Weak Gravity

→ R2
n −Rn when Rn & 3 “Black Hole”

(12.17)

Using ρ = 4πχnk1 from Eq. 12.2, the last line of this equation reduces to Eq. 12.12 in the limit of weak
gravity. In the strong-gravity “Black Hole” limit, Rn � 1, the coth approaches unity, giving k0 → 1√

ρ 4πR2nk1,

so the “active” matter is effectively a shell of thickness 1/
√
ρ.
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12.5 Effective Mass

Eq. 12.14 and Eq. 12.16 give directly the total energy ω0 = ωtot and Compton wave number k0 of the massive
body analyzed earlier in this section:

k0 =
(Rn)

2
coth (Rn)−Rn
χ
√
ρ

and ω0 = k0Z(R) = c0
Rn − tanh (Rn)

χ
√
ρ

(12.18)

We see here a graphic example of how the reduced potential at the surface of the mass concentration lowers
ω0, which mediates the scalar interaction, but does not affect k0, which mediates the vector interaction. The
vector interaction can, for this reason, be much larger than the scalar interaction for objects in the “Black Hole”
limit. However the “shielding effect,” which decreases the coupling of an external vector potential to interior
matter, is governed by the vector equivalent of Eq. 12.1, which guarantees that the equivalence principle is
satisfied. The physics involved is the gravitational parallel of the electromagnetic skin effect discussed in CE
[44] 1.10. The simultaneous solution of both scalar and vector equations is required, e.g., for a spinning matter
distribution.

Following, Eq. 2.12, we can define a gravitational effective mass Meff :

ω =
k0c√

1− v2/c2
=

Meffc
2

~
√

1− v2/c2
and ~k =

k0 ~v/c√
1− v2/c2

=
Meff~v

~
√

1− v2/c2
(12.19)

from which we might conclude that ~k0 = Meff c. However, the entire reason for defining an effective mass is to
compare our results with those of conventional Newtonian and GR treatments, which all use the term “Mass” to
represent the invariant quantity of matter. If we wish our Meff to have this meaning, we cannot have it changing
with the gravitational potential c. We therefore adopt the following definition:

Meff =
~k0

c0
=

~
c0χ
√
ρ

(
R2
n coth(Rn)−Rn

)
(12.20)

The energy E and momentum ~p of the body form the energy-momentum four-vector P = ~k:

P =

{
E

c
, ~p

}
= MeffU = Meff

{c,~v}√
1− v2/c2

= ~k = ~
{ω
c
,~k
}

E0 = ~ω0 = Meffc0c rest energy

(12.21)

From Eq. 12.20, we see that there is a universal dimensionless form for the effective mass:

Meffc0χ
√
ρ

~
=
MeffG

√
ρ

c20
= R2

n coth(Rn)−Rn (12.22)

This dimensionless effective mass is plotted vs the dimensionless matter radius in Fig. 12.3:

Expanding Eq. 12.22 for Rn � 1, the weak-gravity effective mass becomes

MeffG
√
ρ

c20
≈ (Rn)

3

3
∝ volume of star for Rn � 1 (12.23)

However, for a sufficiently massive body, we can no longer add up the properties of all its constituent elements in
this manner to obtain its total energy ωtot or total Compton wave number k0. As more matter is accumulated, the
effective gravitational source, as seen outside the massive body, becomes ever less than the sum of the individual
source values of the elements matter accumulated.
In the “Black Hole” limit, Eq. 12.22 becomes:

MeffG
√
ρ

c20
≈ R2

n −Rn for Rn � 1 (12.24)
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Figure 12.3: Dimensionless gravitational effective mass as a function of dimensionless matter radius for non-
spinning spherical ultra-dense bodies of fixed density.
The blue curve is the “black-hole” approximation of Eq. 12.24.
The straight green line is the weak-gravity approximation of Eq. 12.23.

12.5.1 Effective Mass in Real Units

Astronomers use M�, the mass of the Sun, as the unit of matter, rather than the neutron-star units we have
adopted. We have already seen in Section 12.2 that our natural unit of length 1√

ρ ≈ 10 km.

Since M� = 1.9× 1030kg, our natural unit of matter c20/G
√
ρ ≈ 1.35× 1031kg corresponds to ≈ 7M�.

Substituting these units for our natural units, Eq. 12.22 is, in easy-to-use form:

Meff =
c20
G
√
ρ

(
R2
n coth(Rn)−Rn

)
≈ 7M� ×

((
R

10km

)2

coth

(
R

10km

)
− R

10km

)
(12.25)

This expression is plotted in Fig. 12.4:

12.5.2 Pulsars

Until 2015, the vast majority of our knowledge of extreme-density massive objects has come from astronomical
observation of pulsars. Fortunately an excellent recent review by Özel & Freire [53] nicely summarizes these
findings through late 2016. The field is evolving very rapidly, with interesting new discoveries appearing on
a weekly basis. Because the pulse period of many pulsars is extremely stable, the timing of arriving pulses
(integrated Doppler shift) gives an astoundingly accurate measure of the motion of the pulsar along the line of
sight. When, as often happens, the pulsar is part of a binary system, the knowledge of its motion can translate
into a detailed description of several parameters of the orbit of the binary. Occasionally one of these systems will
appear “edge-on,” and the signal from the pulsar will pass very close to its binary companion. In this configuration
the Shapiro delay described in Section7.3 pins down additional parameters. When the companion can be seen
optically, its motion can be extracted from the Doppler shift of spectroscopic lines. In one case (the only case
to date), both objects in the binary were pulsars, and an even more detailed and precise determination of the
orbit was possible. When a near-complete determination of the orbit is possible, the individual masses of the
two objects can be found. Relatively precise values have been obtained for quite a number of pulsars, and are
summarized (with error bars) in Figure 2 of [53].

A fascinating aspect of these findings is that there appears to be a maximum pulsar mass somewhat larger than
2M�. In G4v, this maximum can represent the appearance of a light-ring, where light or other signals can
propagate in circular orbits around the object (the subject of Section 12.5.3).
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Figure 12.4: Gravitational effective mass as a function of matter radius for non-spinning spherical ultra-dense
bodies of fixed density. The blue curve is the “black-hole” approximation of Eq. 12.24. The straight green line is
the weak-gravity approximation of Eq. 12.23.
Vertical magenta and orange lines show the inner and outer light ring radii of Section 12.5.3.

Once a light-ring is formed, the nature of emitted signals changes in fundamental ways, and the resulting object
develops many of the external appearances associated with the Black Hole of GR.

While it is possible in many cases to make quite precise determination of the pulsar mass, the determination of
the pulsar radius is not nearly as advanced, as shown in Fig. 4 of [53]. The best values are good to ≈ 30%, and
an uncertainty of a factor of 2 is normal. Taken as a group, the average radius seems to be near 10 km, which is
the value we have used to determine our density ρ.

The reader is cautioned that the Özel-Freire review [53], and virtually all of the related literature, assume that
GR is the correct theory of gravitation. As we have seen, in many cases G4v gives the same results as GR to the
first order beyond Newton. However, the gravitational potential at the surface of a pulsar is already below c0 by a
substantial fraction, and first-order corrections may or may not give the same results. For slightly more massive
objects, G4v gives well-behaved continuous solutions where GR may give singular ones. In light of these deep
fundamental differences, it is somewhat surprising that the two theories predict quite similar observed behavior for
a wide range of binary systems. In what follows we will attempt to highlight both the similarities and differences
as they arise.

12.5.3 Circular Propagation of Light

Because light is deflected toward a massive body, there must be a radius at which a stable circular propagating
solution around a sufficiently dense accumulation of matter is possible. We assume the body is sufficiently dense
that rc, the radius of the “light orbit,” is outside the matter making up the body, and hence the interaction is
of the form 1/r. We can find that radius using the principle of stationary phase given in Eq. 7.16. The light
propagation vector as a function of radius is given by Eq. 7.6:

k(r) =
ω

c0

1(
1− k0χ

r

)(
1− ω0χ

c0r

) ⇒ k(rn) =
ω

c0

1(
1− k0χ

√
ρ

rn

)(
1− ω0χ

√
ρ

c0rn

) (12.26)

To obtain the total phase φ around the orbit, we integrate around a circle of radius r centered on the object with
Compton wave number k0.

φ =

∫
~k · ~ds =

ω

c0

2πr(
1− k0χ

r

)(
1− ω0χ

c0r

) =
ω

c0
√
ρ

2πrn(
1− k0χ

√
ρ

rn

)(
1− ω0χ

√
ρ

c0rn

) (12.27)
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Using the values of ω0 and k0 from Eq. 12.18, we obtain

φn = φ
c0
√
ρ

2πω
=

r3
n coth(Rn)

((rn −Rn) coth(Rn) + 1) (rn +Rn −R2
n(coth(Rn)))

(12.28)

This equation has solutions for both positive and negative φ, corresponding to light propagating in opposite
directions. The normalized phase φn is plotted as a function of normalized radius rn in Fig. 12.5.
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Figure 12.5: Normalized phase of circular paths from Eq. 12.28 for objects of Rn=2(red), 3(orange), 4(green),
and 5(blue). The left curves are the negative branch and the right curves are the positive branch of φ. For both
branches the minima indicate light rings.

This phase is stationary at the normalized light-ring radius rcn where ∂φn

∂rn
= 0:

rcn =
(
Rn − tanh(Rn)

)(
Rn coth(Rn) + 1±

√
R2
n coth2(Rn)−Rn coth(Rn) + 1

)
(12.29)

where the ±√ gives rcn for both positive and negative branches of φ. An excellent approximation is available
for the negative solution of large objects:

“Black Hole” Rn � 1 rcn →
3Rn

2
− 15

8
(12.30)

The full expression is plotted for both negative and positive branches in Fig. 12.6.

12.6 Neutron Stars and Light-Rings

In Fig. 12.6 we have determined the conditions under which an accumulation of matter can result in a light-ring,
where light can propagate in a circle around the object and not escape. We have seen that such a light-ring can
form when Rn > 1.11 or R & 11 km. We can express this result in terms of the minimum effective gravitational
mass Mmin of a massive body required to form a light-ring. From Eq. 12.25:

Mmin ≈ 7M� ×
(

1.112 coth(1.11)− 1.11
)
≈ 2.97M� (12.31)

As noted above, the most decisive information we have about neutron stars comes from observations of binary
pulsars. Most observed pulsars have gravitational effective masses near 1.5M�, but individual pulsars have been
observed with effective masses near 2M�. For Meff < 2.97M� the matter radius is larger than the light-ring
radius, and the object acts like a normal neutron star. Although there are hints of neutron stars with masses
edging up toward 3M�, so far the well-measured pulsars all fall in the normal neutron-star range, as highlighted
in Fig. 12.7.

This figure should be compared with Fig. 4 (right) of Özel & Freire [53].
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Figure 12.6: Light-ring radii rc for negative (blue) and positive (red) branches of φ.
Left: rcn vs Rn. Right: rc vs effective mass Meff . The black line is the matter radius R.
A light-ring can form when rc > R, which corresponds to Rn > 1.11, Meff > 2.97 (magenta) for the positive
branch and Rn > 3.613, Meff > 66.2 (orange) for the negative branch.
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Figure 12.7: Effective mass Meff vs matter radius R (black curve) and light-ring radius rc (red curve) for static
spherical objects of uniform matter density. The shaded bands are the masses of the most massive pulsars for
which precise determinations have been possible to date: Magenta: PSR J0348+0432, Orange: PSR J1614-2230,
Cyan: PSR J1946+3417.

12.7 Light-Rings, “Gravastars” and “Black Holes”

From Eq. 12.26, using ω0 and k0 from Eq. 12.18 and Meff from Eq. 12.25, the propagation velocity vc of a light
wave at radius r from the center of a stationary massive body is:

vc(r) =
ω(r)

k(r)
= c0

(
1−

k0χ
√
ρ

rn

)(
1−

ω0χ
√
ρ

c0 rn

)
vc
c0

=
tanh(R)

(
(r −R) coth(R) + 1

) (
r +R−R2 coth(R)

)
r2

(12.32)

This relation is plotted in Fig. 12.8:
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Figure 12.8: Velocity vc of light Propagating in one direction in a circular path of radius r around a static spherical
object of uniform matter density. Each curve is for an object of Rn=1(brown), 2(red), 3(orange), 4(yellow),
5(green), and 6(blue).

A great deal of care must be exercised in the interpretation of the light-velocity vc as discussed in Section 7.6.
It is the speed of a light wave propagating in one direction. Such a wave has a momentum ~k that couples to
the Compton wave-number of any local massive objects. The back-reaction from that coupling increases the
propagation vector k for any given value of frequency ω, thereby lowering the speed of propagation below the
local scalar potential c.

If we were to create a standing wave of the same frequency at the same location, for example in the Fabry-Parot
cavity of a laser, the standing wave, having no net momentum, would have no net vector coupling to the massive
object, and its dispersion relation would, instead of Eq. 12.32, be:

ω(r)

k(r)
= c0

(
1−

ω0χ
√
ρ

c0 rn

)
= c0

(
1−

k0χ
√
ρ

rn

)
= c(r) (12.33)

The scalar potential c never goes negative, as illustrated in Fig. 12.1, and energies of massive bodies are, by the
dispersion relationalways greater than k0c and hence never go negative, even in the most extreme gravity.

However, near sufficiently massive objects the speed of a one-way propagating wave of light (or gravitational
radiation) can be brought to zero, as we see in Fig. 12.8. Engineers are familiar with the interaction of light with
unique states of matter which have a similar effect on light propagation, where the “effective index of refraction”
becomes negative. No disaster befalls us in these circumstances, and the interested reader can find amusing results
under the heading negative index [54] [47].

In the present context, from Eq. 12.32, in G4v there will be a horizon where the one-way propagation velocity
approaches zero at r = rH :

vc → 0 where

(
1− k0χ

r

)
= 0

rH = k0χ ⇒ rHn = k0χ
√
ρ = R2

n coth (Rn)−Rn
(12.34)

where the final result comes from Eq. 12.17.
Using Meff from Eq. 12.25, this relation is plotted, along with the light-ring radius, in Fig. 12.9:

The detailed observational consequences of objects with particular effective masses will, no doubt, be the subject
of a great deal of controversy for many years. At present we only point out that Fig. 12.9 suggests the occurrence
of three classes of ultra-dense objects:

Meff < 2.97M� Neutron Stars

2.97M� < Meff < 66.2M� Single-Light-Ring Stars

Meff > 66.2M� Double-Light-Ring Stars
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Figure 12.9: Light-ring radius rc (red) from Eq. 12.29 and the (green) approximation of Eq. 12.30. The horizon
rH (black) is from Eq. 12.34, and (blue) is the matter surface r = R.
All plotted vs effective mass Meff for static spherical objects of uniform matter density.

The light-ring will have a resonance at frequencies ωlr where the phase around the ring is an integral number n
cycles. From Eq. 12.27

φ =
ωlr
c0

2πrc(
1− k0χ

rc

)(
1− ω0χ

c0rc

) = n2π

flr =
ωlr
2π

=
n c0
2πrc

(
1− k0χ

rc

)(
1− ω0χ

c0rc

) (12.35)

Using ω0 and k0 from Eq. 12.18, rc from Eq. 12.29, this relation becomes:

flr =
c0n
√
ρ coth(Rn)

(√
X + 1

)(√
X +Rn coth(Rn)

)
2π(Rn coth(Rn)− 1)

(√
X +Rn coth(Rn) + 1

)3

where X = Rn
2 coth2(Rn)−Rn coth(Rn) + 1

(12.36)

In the “black hole” limit, where Meff � 2.1M�, the normalized matter radius Rn, the light-ring radius rc of
Eq. 12.30 and the fundamental (n = 1) resonant frequency of Eq. 12.36 approach:

Meff ≈ 7M� (Rn − 1) → Rn ≈
Meff

7M�
+ 1

rcn → 2R2
n − 1.5Rn so rc →≈ 20

(
Meff

7M�
+ 1

)2

− 15

(
Meff

7M�
+ 1

)
km

flr →
c0
√
ρ

2πRn
2 ≈

(
7M�

Meff + 7M�

)2

× 1194 Hz

(12.37)

where we have used Meff and
√
ρ from Eq. 12.24, Eq. 12.25 and discussion thereof.

The fundamental resonant frequency flr = ωlr/2π is plotted in Fig. 12.36:
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Figure 12.10: Light-ring fundamental resonant frequency flr vs effective mass Meff for static spherical objects
of uniform matter density. The blue curves are from Eq. 12.36 with n = 1; the red curve is the high-Meff

approximation of Eq. 12.37.

Because the light ring is non-dispersive, it can support an arbitrary number of harmonics. In particular, if the
massive object is the result of a binary merger, the light ring of the combined object can support a “binary
traveling pulse” as the remnant signature of the original objects.



Chapter 13

Conclusions

G4v recovers classical mechanics from a relativistically correct wave view of Quantum matter.

In the process G4v demonstrates that the observed behavior of matter is consistent with Mach’s principle, and with
the notion that the entire inertia and rest energy is due to the gravitational four-potential of the Universe.

G4v shows how the “mass” of a macroscopic object arises from the dispersion relation of its underlying quan-
tum elements, and allows us to understand how energies, both nuclear and atomic, scale with gravitational
potential.

I have highlighted the historic experiments that first showed clearly the coupling of gravitational scalar and vector
potentials to the energy and momentum of Quantum matter waves.

In the process, G4v has become a simple approach to gravitation calculations beyond the Newtonian limit.
This approach has been applied to the frame-of-reference effects highlighted by Gravity Probe B, to the delay
and deflection of light by massive bodies, to predicting the orbits around arbitrarily massive bodies, and to the
gravitational redshift. In all these “standard tests of GR” G4v has obtained exactly the same expressions as those
obtained by GR, to the first order beyond Newton.

The attributes of a simple G4v cosmology show, in broad brush, remarkable similarity to many GR based
conclusions.

G4v predicts several results that are markedly different from those of GR:

1. The difference in speed of light between standing waves and propagating waves, which has probably already
been observed in the carrier-envelope offset frequency of optical cavities, and should be studied in detail to
quantify the effect of gravitational vector interaction.
This experiment will show immediately whether G4v is right or wrong!
It is discussed in Section 7.6, and I am personally dedicated to finding a way to do it!

2. G4v predicts a vector polarization in gravitational-wave radiation patterns, in addition to the diagonal-
tensor-element polarization predicted by linearized GR[33]. GR predicts no vector contribution. My
arXiv:1503.04866 posting did not include the tensor modes, which reference [33] predicts to be 4 times the
amplitude of the G4v vector modes. The resolution of the three observatories that captured data from the
historic GW170817 Neutron-star-merger sighting[38][37] was not sufficient to distinguish tensor+vector from
pure tensor polarization. As more signals emerge from an increasing number of advanced gravitational-wave
observatories, these predictions can be compared.

3. The two theories show very different results for the interior of ultra-high-density massive bodies such as
neutron stars and black holes. Only time will tell if any of these predictions can be compared.

As I have pointed out at the end of many chapters, there is a great deal of work to be done before G4v can hold
its own in a world where a vast number of extremely talented scientists rely on GR as an everyday language with
which to describe gravitation. G4v has the advantage of great simplicity, both conceptual and mathematical, and
of unification with electromagnetism and the Quantum nature of matter, but, as it stands, it is limited by not
including tensor elements of the gravitational potential. I believe that a 4× 4 tensor potential version, keeping
the other desirable G4v attributes, is a feasible extension, but it is beyond my mathematical capabilities.

Finally, no theory is the ultimate theory: Each is just a step in the never-ending human quest to understand
nature. My message to students is: There is Far More to be discovered than has already been discovered.
The exciting finds have seldom been on the beaten path. Develop your own intuition about How Nature Works.
Mathematics is for making concepts precise and quantitative, but you must have the concept first!

As Einstein expressed it:

As for the search for truth,
I know from my own painful searching, with its many blind alleys,
how hard it is to take a reliable step, be it ever so small,
toward the understanding of that which is truly significant.
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[53] Özel, F., and Freire, P. Masses, Radii, and Equation of State of Neutron Stars. arxiv (2016). Available
at: arxiv.org/abs/1603.02698 or Annual Review of Astronomy and Astrophysics, vol. 54, 401.

[54] Padilla, W. J., Basov, D. N., and Smith, D. R. Negative refractive index metamaterials. Materials
Today 9, 7–8 (2006), 28–35. Available at: infrared.ucsd.edu.

[55] Planck Collaboration: et. al. Planck 2013 Results. XVI. Cosmological Parameters. arxiv (2013), 1–67.
Available at: arxiv.org/abs/1303.5076.

[56] Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E., Goldstein, R. B., Breidenthal, J. C.,
and Brenkle, J. P. Viking Relativity Experiment - Verification of Signal Retardation by Solar Gravity.
Astrophys. J., Part 2 - Letters to the Editor 234 (1979), L219–L221.

[57] Renn, J. Genesis of General Relativity. Springer, 2007. Note: A very insightful analysis of this period, with
translation of many of the original papers into English, particularly Vol. 3.

[58] Riess, A. G. e. a. A redetermination of the hubble constant with the hubble space telescope from a
differential distance ladder. Astrophys. J. 699 (2009), 539–563.

[59] Riess, A. G., et al. A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope
and Wide Field Camera 3. Astrophys. J. 730, 2 (2011), 119–174. Available at: arxiv.org/abs/1103.2976.

[60] Sagnac, G. The luminiferous ether is detected as a wind effect relative to the ether using a uniformly
rotating interferometer, 1913.
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