When is a Symbol Symbolic?

JOHN MASON

These notes are written as if to a teacher on an inservice
course about developing mathematical thinking who missed
a session. I have deliberately used a didactic rather than
academic style in order to try to keep my feet on the ground
by talking directly to experience. That experience is pro-
vided by questions embedded in the notes, which must be
attempted. In a classroom [ pause and get people to work on
them so that we can enrich our discussions about thinking,
by direct reference to thinking.

The questions I am addressing concern the roles of sym-
bols, the generally absent icons that should support those
symbols, and the mathematical processes of conjecturing
and proving, or in a slightly more refined form, specializ-
ing, generalizing and reasoning. The particular points I am
trying to make have proved useful in classes in Thinking
Mathematically in Canada and the U.K.

Seeking patterns

In a warehouse you receive a 20% discount but vou
must pay 15% Value Added (sales) Tax, Which would
you prefer to have calculated first, discount or VAT?

How do you get to grips with such a question? The only
sensible thing to do is to try it on some specific examples of
prices. I hope that you have already done this, but if not,
DO SO NOW!
Surprised? Most people are, and it is that surprise which
fuels mathematical thinking. The real question is whether it
will always work, or whether there was something special
about the prices you chose. Try some more examples, this
time with an eye to trying to get a sense of the underlying
pattern or structure,

A lot depends on the form in which you do your calcula-
tions. The usual approach is to

— calculate the discount

— subtract the discount to get the discounted price

— calculate the VAT on the discounted price

— add the VAT to the discounted price to get the final
price and similarly in reverse order.

Try to find another way which reveals why it works. You
are looking for a form which is independent of the initial
price. This suggests calculating what percentage of a quoted
price you pay when granted a 20% discount, and what per-
centage you pay when VAT is included.

With any luck you will have found that:

(1) subtracting 20% is the same as paying 80%, or 0.80
times the price,

(ii) adding 15% is the same as paying 115%, or 1.15 times
the price.

Thus for any quoted price, say £100,

Discount first: you pay (100) (0.80) (1.15)
VAT first: you pay (100) (1.15) (0.80)

From this shape you can see that the initial quoted price is
imrelevant to the order of calculation, since (0.80) (1.15) =
(1.15) (0.80), or more technically, multiplication is com-
mutative.

The point of going through this example in some detail is
to focus attention on key processes at the heart of mathemat-
ical thinking:

SPECIALIZATION — doing specific examples to try to
find out what is meant and get a
sense of what is going on.

GENERALIZATION — Irying to articulate the underlying

general pattern.

REASONING — producing an argument to verify
that your articulation of the general
pattern is valid.

In the VAT question, enough specific prices had to be
used to suggest that the end price is independent of the order
of calculation. Articulating this then introduces a second
phase of looking at examples to try to discover why the
calculations always come out the same. Articulating this
“why’’ very often suggests how to lay out the reasoning. In
this case the separation of the 0.80 and 1.15 leads to observ-
ing that (0.80) (1.15) = (1.15) (0.80). The fact that the
order of calculation is independent of the quoted price is
often expressed symbolically as:

For any quoted price P, the final price will be
P(0.80) (1.15) = P(1.15) (0.80)
so the order of calculation does not matter.

Notice that the final argument represents the crystallizing of
experience on examples, but these examples are not men-
tioned. It is precisely for this reason that it is useful to be
explicit about SPECIALIZING, since most written mathema-
tics hides the pattern-revealing examples.

Before going on to another example, I hope you have
alrcady asked yourself what happens if the discount or VAT
rate changes. Express it symbolically.

Finger computing

Asked to multiply 9 by a single digit number like 7, I
open my palms towards me. I fold down the seventh
finger from the left, and read off a biock of six figures
and a block of three fingers as 63.

I hope that there is enough in this description to have arise
inside you the question ‘What is going on?". HAVE YoU
SPECIALIZED — that is tried more examples? In order to do
this, you must first GENERALIZE from the specific number 7
to the role of 7 and formulate a general rule, which must
then be checked. Of course you can quite easily try all
possible cases, but even so you will not have answered the
question of why it works.
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What is the gencral pattern or feature which makes finger
computing work? A number of ideas may spring to mind
from past experience, Perhaps you knew that the digits of 9
times x add to 9 if x is a single digit. Ultimately you may
come to place value, and noticing that adding 9 is the same
as adding 10 and subtracting one. The process is the same as
with VAT: doing examples and looking for different forms
to describe the examples until one form reveals an underly-
ing structure.

Generalizing takes several forms. Initially, in this exam-
ple, a general rule was inferred, then an underlying pattemn
was sought. Later the question ‘What If..." needs to be
asked to try to set the question in a more general context. In
this case there are several ‘What If's ...

What if [ want to multiply 9 by two digit numbers?
What if [ use my toes?

What if I want to multiply by some other number like 6
instead of 97

Singly and in combination these ‘what if* questions open a
door to other bases (hinted at by place value), and to ar-
ticulating more advanced rules involving toes.
Specializing also arises several times in any question of
reasonable difficulty. Not only is it useful to examine
specific examples in order to try to understand a question,
but whenever a conjecture is articulated, it should be
checked against some examples before trying to find out
how an argument might go. You should also try some nasty
looking examples, that is, examples which might refute
your conjecture, Conjecturing is a sort of swaying or oscil-
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Trying to refute a conjecture is a very useful way of finding
holes in your conjecture, as well as revealing why the con-
jecture might be valid. The examples we have looked at so
far have been too straightforward to illustrate this process
— indeed no question is certain of demonstrating it because
it depends on how carefully and systematically you
specialize while seeking pattern. The next example might
be helpful in this respect.

Consecutive sums

Observe that 3 =1 + 2
5=2+3
6=14+2+3
9=4+5=2+3+4

What numbers can be expressed ay the sum of consecu-
tive positive integers. What ones can be done in more
than one way?

In how many ways’

Systematic calculations present you with an obvious pat-
tern, indeed several patterns, though you probably found
that **it will be clearer if I do a few more examples'".
Emphasis should be placed on *‘systematic’’, which is often
an essential ingredient in useful specializing. In this case at
least two systematizing ideas are suggested. Trying 1, 2, 3,
4,5,..., and writing down all numbers that are the sum of
two consecutive sums, three consecutive sums and so on.
Answering the final question, in how many ways, is rather
more challenging than the previous questions. It leads us
into the domain of proof and reasoning, which I will post-
pone to another session. I hope however that you found
yourself making little guesses — conjectures, and that, at
least once, further examples caused you to modify your
conjecture. If not — do some more examples, systemati-
cally!

The cxamples of specializing have so far been of a
straightforward kind — routinely trying specific cases —
but a lot more is lying beneath the surface. [ want now to
cxplore the relation between specializing/generalizing, and
Bruner's three modes of representation. This will lead me to
the distinction between symbol and symbolic representation
which is the aim of this session.

In the questions posed so far, I have assumed that you
have a natural, immediate impulse to turn to specific exam-
ples, a process called specialization. I have often noticed
that faced with more difficult questions, questions which
involve ideas or notation that are not entirely familiar, many
people seize up, staring at the paper in front of them but
with unfocused attention. A possible example is the fol-
lowing, though its effectiveness depends on your experi-
ence of the symbols.

Zeller's congruence
To derermine the day of the week on which a given
date falls, compute
{I2.6m — 0.2] + d + y + [v/4] + [c/4] — 2¢}
modulo 7
whered = day of month
m= month number (March = 1, February = 12)
v o= vear
c = century
Sunday = day 0
and [x] means the greatest integer less than or equal 1o X.

If you are not totally familiar and confident with [x], then it
seems to me that the obvious thing to do is to ignore the
question, and become familiar with [x] by doing examples.
In other words, you turn from something unfamiliar which
induces queaziness, to examples involving entities with
which you are fully familiar. You might therefore consider:

[3.1] =3

Er']z] _ g looks straightforward
(31 =3

(%)= -1  AHA!

(-1] = -1

_ﬂ] = —4

o.k, I think I see it now.



This is only successful because 3.1, 7, —4, etc., are to-
tally confidence-inspiring, concrete entities for you.

Having become happier with an embedded concept or
symbol, you can turn to the formula itself and try it out.
Today's date seems the most sensible, and perhaps the
meaning of ‘modulo 7° will become clearer with the exam-
ple. Today’s date for me is 12/3/80, so, being tidy so that I
can see the pattern, I write

d =12

m = | (that's convenient!)
y = 1980

¢ =20

I want {[2.6 X 1 = 0.2]) + 12 + 1980 + [1980/4] +
[20/4] — 2 x 20} modulo 7

= {[2.4] + 1992 + 495 + 5 — 40} modulo 7

= {2454} modulo 7

= remainder on dividing 2454 by 7

= 4 modulo 7

= Wednesday (which is correct! phew!)
I'am now thoroughly intrigued as to why it works (it appears
to!). What should I do now to investigate?

Having done one example (today’s date), and being lazy,

I am curious to see how it copes with tomorrow’s date. This
way I can hope to see if it works and how. I am seeking the
underlying pattern. Quickly I find that the significant fea-
ture is how it copes with months of varying length, since
advancing d by one is going to keep it perfectly in step until
d suddenly flips back to one at the end of March. I leave
further investigation to you.

Icons and symbols

Looking back at the processes involved, it seems to me that
they can be described as a cyclic process of doing examples
to get a sense of an underlying pattern, trying to articulate
that sensed pattern, then testing or checking the articulated
pattern to see if it fits, modifying or building upon this until
reaching both a sense of *‘I see’” and an adequate articula-
tion of what is seen. Specifically in the case of Zeller's
congruence, this meant seeing that it works in one random
instance, then that it will continue to work as long as d
advances; then seeing how the change of month is coped
with, then the change of year, and finally the change of
century. Even then, despite seeing how it all fits together,
there may be lingering doubts about the formula as a whole,
so to appreciate it fully, I try to modify it or improve it in
some way. Can I change the formula neatly to get rid of the
large numbers in twentieth century calculations?

I hope that a similar sequence occurred when you looked
at “‘Consecutive sums’’. Doing examples leads to a de-
veloping pattern which seems to be there but is hard to
capture. Successive articulations are quickly contradicted
and need to be modified (unless of course the underlying
pattern arises inside you). This oscillating can be very frus-
trating if you are determined to solve the problem, but excit-
ing and stimulating if you view it as exploration into un-
known territory. Do not forget that an underlying pattern
may be very subtle, or may not even exist!

I wish to draw your attention specifically to the search,
while doing examples, for a SEnsg of underlying pattern.
Vastly underrated and usually ignored, it is only a sense of
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pattern which can eventually come to articulation. As you
know, I put a good deal of stress on achieving a sense of
pattern or structure whenever [ introduce a new topic, and it
is the same idea in thinking about problems. Indeed it is part
of THINKING of any kind.

The description of conjecturing, involving specializing
and generalizing, conforms very closely with some ideas of
Bruner, and now it is appropriate to make that more precise.
To do that, let me summarize the conjecturing process in
slightly different words.

1 Do examples (Specialize) using entities with which you
are entirely confident, which you can manipulate easily
while part of your attention remains focused on your
primary goal.

2 Try to get a sense of underlying pattem or relationship.
Often diagrams or metaphors will help here — have
you seen a similar problem or idea? an analogous one?

3 Try to articulate the pattern you sense. Keep refining
the articulation until it can be checked on examples
(back to 1 again).

In this form it begins to look very much like Bruner's use
of ENACTIVE, ICONIC and SYMBOLIC,

Bruner found it useful to distinguish three modes of in-
ternal representation which seem to describe stages in
children’s thinking. When asked a question, children seem
to make use of the following internal representations:

ENACTIVE — able to respond only by recourse to previ-
ous practical experience. The classic ex-
ample is a number question for which the
child turns 1o a balance and physically per-
Sforms the required acts. Here the response
is by the musculature.

ICONIC — able to respond by recourse to mental im-
ages of physical objects or to an inner
sense of pattern or structure. In the case of
numbers, having a balance in sight, or a
drawing, can assist the work by extending
the mental screen. Icons need no articula-
tion because within a culture they need no
definition.

SYMBOLIC — able to respond by using abstract symbols
whose meaning must be articulated or de-
fined. In the case of number, 3 + 4 =7
now has meaning, and no recourse to the
balance or balance image is needed.

Because Bruner was looking at stages in children’s de-
velopment, giving a slightly different perspective to
Piaget’s work, people seem to have identified

ENACTIVE with physical toys

TCONIC with drawings and pictures

SYMBoLIC with words and letters
or, worse,

ENACTIVE with primary school
1cONIC with middle school
SYMBOLIC with upper school

and missed the essential qualities which I describe as



ENACTIVE — confidently manipulable
ICONIC — having a sense or image of
SYMBOLIC — having an articulation of.

Notice too that SYMBOLIC expression must ultimately be-
come ENACTIVE if the idea is to be built upon or become a
component in a more complex idea. Thus to a pre-school
child 1, 2, 3 are truly symbolic, having little or no meaning.
With time and extensive encounters a sense of one-ness and
two-ness develops which underpins the symbols and pro-
vide a source of meaning when 1, 2 and 3 are encountered
in a new context. To proceed with arithmetic it is essential
that 1, 2, 3 become enactive elements, become friends. If
they remain as unfriendly symbols then arithmetic must be a
source of great mystery.

Moving along the spiral in which ENACTIVE elements
provide an ICONIC representation of some pattern or rela-
tionship, to a SYMBOLIC articulation, to ENACTIVE elements
and so on, consider the role of *‘symbols'’ like x and y. In
the content of number work x and y begin by acting as
placeholders for some yet-to-be-determined numbers.
Without a sense of general pattern, as in the VAT example,
and a wish to record a general pattern, the use of x and y is
quite mysterious. Further manipulation of these in simple
equations already assumes that x and y have become, or are
well on the way to becoming, enactive elements represent-
ing an arbitrary number, or an unknown number.

The same spiral continues as students encounter sets of
numbers described by properties, for example {2 + 1. x an
integer}, functions on those sets, sets whose elements are
sets, sets whose elements are functions, functions whose
domains are functions or even sets of functions, and so on.
In other words, the E-I-S spiral is relevant to presenting
mathematics at all levels. The relevance is bascd on releas-
ing the word ENACTIVE to describe elements which are con-
fidently manipulable, and the word 1CON to describe mental
images, feelings or intuitions which are pre-articulate. I
suggest that in the problems you work on, and in mathema-
tics classes, you try to identify these modes of representa-
tions — indeed they are almost modes of confidence or
security. Having begun to distinguish them, you can then
make use of the distinctions to trigger suggestions for useful
activity:

Turning to enactive elements to explore the meaning of
symbols or concepts; Using enactive elements to try to
get a sense of pattern; Asking for images, metaphors,
diagrams to illustrate what is going on; Crystallizing
understanding in symbolic form; Practising with
examples to move the symbolic form into enactive
elements.

Of course the same ideas impinge on your own classroom
behaviour where you can decide to put emphasis on *‘get-
ting a sense of'" before pushing your students to recording
in symbolic form.

When is a symbol symbolic?

Now I can address the main question of this session. A
symbol in common parlance is hard to define in the ab-
stract. Its primary quality is that it requires explanation

because its meaning is not immediately clear. In Zeller’s
congruence,d, m, y and ¢ can be guessed at, but only if you
already know what the expression is trying to compute,
Computer programmes have moved away from the
mathematicians predeliction with single letters towards
short forms which require less explanation. For example,
{[2.6 Month — 0.2] + Day + Year + [Year/d)
+ [Century/4] — 2 Century}
seems clearer, but if extensive manipulation is called for,
then m, d, y and ¢ require less ink and time. More
importantly, they reduce the clutter and make complicated
manipulation tenable. However, as an intermediate stage in
moving from symbolic representation to enactive elements,
the longer expression seems helpful. It seems to me that this
example captures precisely the difference between symbol
and symbolic representation. A symbol is symbolic if it
describes or expresses or stands for an idea but has not yet
become an enactive element. It can only become an enac-
tive element if it has meaning, in other words, if there is
associated with it at least one icon, an image, metaphor,
picture or sense with itself captures a pattern or relationship.
Thus the state of being symbolic is highly relative.

How does the awareness of the relativity of symbolic
experience help us as thinkers or as teachers? I have already
suggested that the transitions from ENACTIVE to ICONIC,
ICONIC to SYMBOLIC, and SYMBOLIC to ENACTIVE need care
and preparation. Rapid movement to symbolic expression
without the support of icons to fall back on can only result
in trouble later. I suspect most people who study mathema-
tics recognise the feeling of mental saturation as new ideas
and symbols arise in a seminar or lecture. Awareness of
E-I-S can help you as teacher to be more helpful in present-
ing mathematical ideas. I find that the transitions are the
significant states to look for. They are very similar to physi-
cal phase transitions like ice to water and water to steam.
There come times when energy in the form of a strong wish
to find out “‘what is going on’" generates lots of examples
and questions, but nothing seems to come of it, and this
seems to correspond to the physical events when energy
pumped in goes not towards visible rise in temperature, but
towards change of state.

Not only does E-I-S provide a framework for thinking
about mathematical presentation, it also provides an under-
pinning for the processes of specializing and generalizing.
By making these explicit, and bearing E-I-S in mind, new
perceptions of your own thinking activity becomes possible.
The only proof of this is for you to try it. Certainly it has
been true for me,

Finally, let me draw your attention to the role of atten-
tion. If you are tackling Zeller's congruence without having
met it before, then it is probable that all of your attention
focuses on those square brackets. If this happens, there is
no spare attention to be providing an overall direction, and
to be watching out for unexpected emerging patterns.
Turning to enactive elements is natural (though people seem
to need a lot of prodding!) precisely because manipulation
of enactive elements does not require full attention. Instead,
there is sufficient spare attention to be seeking patterns. Try
bearing this in mind as you watch a young child labour to
write down a question, unable to think about anything but
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the process of writing the words. Try bearing it in mind
when you invite students to solve physics problems requir-
ing ratio and proportion as well as physical ideas. In many
cases of mathematical paralysis, some component skill re-
quires full attention, thus derailing the overall plan of at-
tack. In other words, too many elements of the problem are
symbolic not enactive. Being only vaguely aware of this,
the student remains frozen. By bringing these matters to the
student’s attention, other options become available.

I end, as usual with a problem. This one seems to me to
illustrate pretty fully the qualities of specializing and
generalizing and E-I-S transitions.

Denote lines in the plane by lower case letters, a, b, c, ...,
and points by upper case letters P, O, R, . ... To each line,
say a, there corresponds a transformation of the plane, re-
flection in that line, which it is convenient to denote by a
also. To each point, say P, there corresponds reflection in
that point, denoted by P also.

Transformations can be composed. Sometimes the result
will be to leave all points of the phase fixed: denote this
identity transformation by /. For example,

Four-Cube Houses

HANS FREUDENTHAL

The following is a summary of an experiment undertaken by
E.J. Wijdeveld in a third grade class. It has been published
in full*, with 38 colour pictures, taken in the classroom,
didactical remarks, and critical comments by a teacher who
repeated the experiment. Meanwhile the experiment has
been repeated many times, even at PTA meetings. It has
become a classic in our primary education.

Paulus the Forest Midget is a wellknown feature on Dutch
children’s TV. The teacher tells a story about Paulus and the
midgets. There is restlessness in the midget town. Some
houses are more beautiful than others. Paulus is called in as
a troubleshooter. He proposes to rebuild the town. The
midgets will live pairwise in houses, each consisting of a
drawing room, a kitchen, and two bedrooms. All rooms are
to be (congruent) cubes, and each house will be built from
four cubes, which touch each other along complete faces,
thus

or

*Edu Wijdeveld, Vierkubers — een onderwijslecrpakket voor de
basisschool. Wiskobas-Bulletin 6, nr 2 (1977). IOWO (Instituut Ontwik-
keling Wiskunde Onderwijs). (Out of print)

reflection ina followed by reflection ina again is denoted
by aa or a? and is always /.
Similarly ab = I if and only ifa = b, and PQ =/ if and
only if P = Q. Investigate the geometrical meaning of the
following statements:

(POR)? = I, (ab)? =1 butab =1,
@P) =1, (abe)? =1,
PQORS =1, and so on.

Investigate how to express symbolically, geometrical state-
ments of the form:

R is the mid point of PQ (P # Q);

a and b are perpendicular lines meeting at P;

and so on.
Stuck?
Do you understand the question? Try some specific exam-
ples! Have you tried various interpretations fora, b, P and
Q7 Have you tried special cases whena = b, etc?

I wish to express my thanks to the EM235 Course Team: Leone Burton,
Nick James, Ann Floyd, Jean Nunn and Tim O'Shea for constituting such
a creative environment that some fuzzy notions became clearer and more
useful.
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It would be a dull town if all the houses were the same
shape. So it is understood that they should build as many
different houses as possible. The children will help them to
design such four-cube houses. They are sitting at tables in a
circle around the teacher who acts as Paulus, each child
with four cubes. Each has built one house.

But are they all different? No, quite a lot are the same. It
is easy to sec whether two of them are the same, but not so
easy to tell why they are so. You can show it by turning
them.

By chance Eloy and Guus, at the same table, had built the
‘‘same’’ house. When Eloy noticed it, he changed his house
a bit.
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