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Abstract

We describe Venture, an interactive virtual machine for probabilistic programming that aims to be
sufficiently expressive, extensible, and efficient for general-purpose use. Like Church, probabilistic
models and inference problems in Venture are specified via a Turing-complete, higher-order prob-
abilistic language descended from Lisp. Unlike Church, Venture also provides a compositional
language for custom inference strategies, assembled from scalable implementations of several ex-
act and approximate techniques. Venture is thus applicable to problems involving widely varying
model families, dataset sizes and runtime/accuracy constraints. We also describe four key aspects
of Venture’s implementation that build on ideas from probabilistic graphical models. First, we
describe the stochastic procedure interface (SPI) that specifies and encapsulates primitive random
variables, analogously to conditional probability tables in a Bayesian network. The SPI supports
custom control flow, higher-order probabilistic procedures, partially exchangeable sequences and
“likelihood-free” stochastic simulators, all with custom proposals. It also supports the integration
of external models that dynamically create, destroy and perform inference over latent variables
hidden from Venture. Second, we describe probabilistic execution traces (PETs), which represent
execution histories of Venture programs. Like Bayesian networks, PETs capture conditional de-
pendencies, but PETs also represent existential dependencies and exchangeable coupling. Third,
we describe partitions of execution histories called scaffolds that can be efficiently constructed
from PETs and that factor global inference problems into coherent sub-problems. Finally, we
describe a family of stochastic regeneration algorithms for efficiently modifying PET fragments
contained within scaffolds without visiting conditionally independent random choices. Stochastic
regeneration insulates inference algorithms from the complexities introduced by changes in exe-
cution structure, with runtime that scales linearly in cases where previous approaches often scaled
quadratically and were therefore impractical. We show how to use stochastic regeneration and the
SPI to implement general-purpose inference strategies such as Metropolis-Hastings, Gibbs sam-
pling, and blocked proposals based on hybrids with both particle Markov chain Monte Carlo and
mean-field variational inference techniques.
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1. Introduction

Probabilistic modeling and approximate Bayesian inference have proven to be powerful tools in
multiple fields, from machine learning (Bishopl 2006) and statistics (Green et al., 2003; Gelman
et al., [1995) to robotics (Thrun et al., 2005), artificial intelligence (Russell and Norvig, 2002), and
cognitive science (Ienenbaum et al., 2011). Unfortunately, even relatively simple probabilistic mod-
els and their associated inference schemes can be difficult and time-consuming to design, specify,
analyze, implement, and debug. Applications in different fields, such as robotics and statistics,
involve differing modeling idioms, inference techniques and dataset sizes. Different fields also of-
ten impose varying speed and accuracy requirements that interact with modeling and algorithmic
choices. Small changes in the modeling assumptions, data, performance/accuracy requirements or
compute budget frequently necessitate end-to-end redesign of the probabilistic model and inference
strategy, in turn necessitating reimplementation of the underlying software.

These difficulties impose a high cost on practitioners, making state-of-the-art modeling and
inference approaches impractical for many problems. Minor variations on standard templates can
be out of reach for non-specialists. The cost is also high for experts: the development time and
failure rate make it difficult to innovate on methodology except in simple settings. This limits the
richness of probabilistic models of cognition and artificial intelligence systems, as these kinds of
models push the boundaries of what is possible with current knowledge representation and inference
techniques.

Probabilistic programming languages could potentially mitigate these problems. They provide
a formal representation for models — often via executable code that makes a random choice for
every latent variable — and attempt to encapsulate and automate inference. Several languages and
systems have been built along these lines over the last decade (Lunn et al.,[2000; Stan Development
Team, 2013; Milch et al., [2007; |Pfeffer, 2001; McCallum et al., 2009). Each of these systems
is promising in its own domain; some of the strengths of each are described below. However,
none of the probabilistic programming languages and systems that have been developed thus far
is suitable for general purpose use. Examples of drawbacks include inadequate and unpredictable
runtime performance, limited expressiveness, batch-only operation, lack of extensibility, and overly
restrictive and/or opaque inference schemes. In this paper, we describe Venture, a new probabilistic
language and inference engine that attempts to address these limitations.

Several probabilistic programming tools have sought efficiency by restricting expressiveness.
For example, Microsoft’s Infer.NET system (Minka et al., [2010) leverages fast message passing
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techniques originally developed for graphical models, but as a result restricts the use of stochastic
choice in the language so that it cannot influence control flow. Such random choices would yield
models over sets of random variables with varying or even unbounded size, and therefore preclude
compilation to a graphical model. BUGS, arguably the first (and still most widely used) proba-
bilistic programming language, has essentially the same restrictions (Lunn et al., 2000). Random
compound data types, procedures and stochastic control flow constructs that could lead to a priori
unbounded executions are all out of scope. STAN, a BUGS-like language being developed in the
Bayesian statistics community, has limited support for discrete random variables, as these are in-
compatible with the hybrid (gradient-based) Monte Carlo strategy it uses to overcome convergence
issues with Gibbs sampling (Stan Development Team, 2013)). Other probabilistic programming
tools that have seen real-world use include FACTORIE (McCallum et al., 2009) and Markov Logic
(Richardson and Domingos [2006); applications of both have emphasized problems in information
extraction. The probabilistic models that can be defined using FACTORIE and Markov Logic are
finite and undirected, specified imperatively (for FACTORIE) or declaratively (for Markov Logic).
Both systems make use of specialized, efficient approximation algorithms for inference and param-
eter estimation. Infer.NET, STAN, BUGS, FACTORIE and Markov Logic each capture important
modeling and approximate inference idioms, but there are also interesting models that each cannot
express. Additionally, a number of probabilistic extensions of classical logic programming lan-
guages have also been developed (Poole, |1997; Sato and Kameya, (1997; De Raedt and Kersting,
2008), motivated by problems in statistical relational learning. As with FACTORIE and Markov
Logic, these languages have interesting and useful properties, but have thus far not yielded com-
pact descriptions of many useful classes of probabilistic generative models from domains such as
statistics and robotics.

In contrast, probabilistic programming languages such as BLOG (Milch et al., 2007), IBAL
(Ptefter] 2001), Figaro (Pfeffer,[2009) and Church (Goodman*, Mansinghka*, Roy, Bonowitz, and
"Tenenbaum), 2008 Mansinghka, 2009) emphasize expressiveness. Each language was designed
around the needs of models whose fine-grained structure cannot be represented using directed or
undirected graphical models, and where standard inference algorithms for graphical models such as
belief propagation do not directly apply. Examples include probabilistic grammars (Jelinek et al.,
1992), nonparametric Bayesian models (Rasmussen, [1999; Johnson et al., |2007; |Rasmussen and
Williams,, [2006} |Griffiths and Ghahramanil, 2005)), probabilistic models over worlds with a priori
unknown numbers of objects, models for learning the structure of graphical models (Heckerman,
1998} |[Friedman and Koller, 2003; Mansinghka et al., |2006), models for inductive learning of sym-
bolic expressions (Grosse et al.,[2012; |Duvenaud et al., 2013) and models defined in terms of com-
plex stochastic simulation software that lack tractable likelihoods (Marjoram et al., 2003).

Each of these model classes is the basis of real-world applications, where inference over richly
structured models can address limitations of classic statistical modeling and pattern recognition
techniques. Example domains include natural language processing (Manning and Schiitze, [1999),
speech recognition (Baker, [1979), information extraction (Pasula et al., 2002), multitarget tracking
and sensor fusion (Oh et al., 2009; |Arora et al., 2010), ecology (Csilléry et al., 2010) and compu-
tational biology (Friedman et al., [2000; |Yu et al., [2004; |Toni et al., 2009; |Dowell and Eddyl, 2004)).
However, the performance engineering needed to turn specialized inference algorithms for these
models into viable implementations is challenging. Direct deployment of probabilistic program im-
plementations in real-world applications is often infeasible. The elaborations on these models that
expressive probabilistic languages enable can thus seem completely impractical.



Church makes the most extreme tradeoffs with respect to expressiveness and efficiency. It can
represent models from all the classes listed above, partly through its support for higher-order prob-
abilistic procedures, and it can also represent generative models defined in terms of algorithms for
simulation and inference in arbitrary Church programs. This flexibility makes Church especially
suitable for nonparametric Bayesian modeling (Roy et al., 2008)), as well as artificial intelligence
and cognitive science problems that involve reasoning about reasoning, such as sequential deci-
sion making, planning and theory of mind (Goodman and Tenenbaum) 2013} Mansinghka, 2009).
Additionally, probabilistic formulations of learning Church programs from data — including both
program structure and parameters — can be formulated in terms of inference in an ordinary Church
program (Mansinghka, 2009). But although various Church implementations provide automatic
Metropolis-Hastings inference mechanisms that in principle apply to all these problems, these mech-
anisms have exhibited limitations in practice. It has not been clear how to make general-purpose
sampling-based inference in Church sufficiently scalable for typical machine learning applications,
including problems for which standard techniques based on graphical models have been applied
successfully. It also is not easy for Church programmers to override built in inference mechanisms
or add new higher-order stochastic primitives.

In this paper we describe Venture, an interactive, Turing-complete, higher order probabilistic
programming platform that aims to be sufficiently expressive, extensible and efficient for general-
purpose use. Venture includes a virtual machine, a language for specifying probabilistic models,
and a language for specifying inference problems along with custom inference strategies for solving
those problems. Venture’s implementation of standard MCMC schemes scales linearly with dataset
size on problems where many previous inference architectures scale quadratically and are there-
fore impractical. Venture also supports a larger class of primitives — including “likelihood-free”
primitives arising from complex stochastic simulators — and enables programmers to incrementally
migrate performance-critical portions of their probabilistic program to optimized external inference
code. Venture thus improves over Church in terms of expressiveness, extensibility, and scalability.
Although it remains to be seen if these improvements are sufficient for general-purpose use, un-
optimized Venture prototypes have begun to be successfully applied in real-world system building,
Bayesian data analysis, cognitive modeling and machine intelligence research.

1.1 Contributions

This paper makes two main contributions. First, it describes key aspects of Venture’s design, in-
cluding support for interactive modeling and programmable inference. Due to these and other in-
novations, Venture provides broad coverage in terms of models, approximation strategies for those
models and overall applicability to inference problems with varying model/data complexities and
time/accuracy requirements. Second, this paper describes key aspects of Venture’s implementation:
the stochastic procedure interface (SPI) for encapsulating primitives, the probabilistic execution
trace (PET) data structure for efficient representation and updating of execution histories, and a suite
of stochastic regeneration algorithms for scalable inference within trace fragments called scaffolds.
Other important aspects of Venture, including the VentureScript front-end syntax, formal language
definitions, software architecture, standard library, and performance measurements of optimized
implementations, are all beyond the scope of this paper.

It is helpful to consider the relationships between PETs and the SPI. The SPI generalizes the
notion of elementary random procedure associated with many previous probabilistic programming



languages. The SPI encapsulates Venture primitives and enables interoperation with external mod-
eling components, analogously to a foreign function interface in a traditional programming lan-
guage. External modeling components can represent sets of latent variables hidden from Venture
and that use specialized inference code. The SPI also supports custom control flow, higher-order
probabilistic procedures, exchangeable sequences, and the “likelihood-free” stochastic primitives
that can arise from complex simulations. Probabilistic execution traces are used to represent gen-
erative models written in Venture, along with particular realizations of these models and the data
values they must explain. PETs generalize Bayesian networks to handle the patterns of conditional
dependence, existential dependence and exchangeable coupling amongst invocations of stochastic
procedures conforming to the SPI. PETs thus must handle a priori unbounded sets of random vari-
ables that can themselves be arbitrary probabilistic generative processes written in Venture and that
may lack tractable probability densities.

Using these tools, we show how to define coherent local inference steps over arbitrary sets of
random choices within a PET, conditioned on the surrounding trace. The core idea is the notion
of a scaffold. A scaffold is a subset of a PET that contains those random variables that must exist
regardless of the values chosen for a set of variables of interest, along with a set of random variables
whose values will be conditioned on. We show how to construct scaffolds efficiently. Inference
given a scaffold proceeds via stochastic regeneration algorithms that efficiently consume and either
restore or resample PET fragments without visiting conditionally independent random choices. The
proposal probabilities, local priors, local likelihoods and gradients needed for several approximate
inference strategies can all be obtained via small variations on stochastic regeneration.

We use stochastic regeneration to implement both single-site and composite Metropolis-Hastings,
Gibbs sampling, and also blocked proposals based on hybrids with conditional sequential Monte
Carlo and variational techniques. The uniform implementation of these approaches to incremental
inference, along with analytical tools for converting randomly chosen local transition operators into
ergodic global transition operators on PETSs, constitutes another contribution.

2. The Venture Language

Consider the following example Venture program for determining if a coin is fair or tricky:

[ASSUME is_tricky_coin (bernoulli 0.1)]

[ASSUME coin_weight (if is_tricky_coin (uniform 0.0 1.0) 0.5)]
[OBSERVE (bernoulli coin_weight) True]

[OBSERVE (bernoulli coin_weight) True]

[INFER (mh default one 10)]

[PREDICT (bernoulli coin_weight) ]

We will informally discuss this program before defining the Venture language more precisely.

The ASSUME instructions induce the hypothesis space for the probabilistic model, including a
random variable for whether or not the coin is tricky, and either a deterministic coin weight or a
potential random variable corresponding to the unknown weight. The model selection problem is
expressed via an 1f with a stochastic predicate, with the alternative models on the consequent and
alternate branches. After executing the ASSUME instructions, particular values for is_tricky_coin
and coin_weight will have been sampled, though the meaning of the program so far corresponds
to a probability distribution over possible executions.



The OBSERVE instructions describe a data generator that produces two flips of a coin with the
generated weight, along with data that is assumed to be generated by the given generator. In this
program, the OBSERVESs encode constraints that both of these coin flips landed heads up.

The INFER instruction causes Venture to find a hypothesis (execution trace) that is probable
given the data using 10 iterations of its default Markov chain for inferenceﬂ INFER evolves the
probability distribution over execution traces inside Venture from whatever distribution is present
before the instruction — in this case, the prior — closer to its conditional given any observations
that have been added prior to that INFER, using a user-specified inference technique. In this example
program, the resulting marginal distribution on whether or not the coin is tricky shifts from the prior
to an approximation of the posterior given the two observed flips, increasing the probability of the
coin being tricky ever so slightly. Increasing 10 to 100 shifts the distribution closer to the true
posterior; other inference strategies, including exact sampling techniques, will be covered later. The
execution trace inside Venture after the instruction is sampled from this new distribution.

Once inference has finished, the PREDICT instruction causes Venture to report a sampled pre-
diction for the outcome of another flip of the coin. The weight used to generate this sample comes
from the current execution trace.

2.1 Modeling and Inference Instructions

Venture programs consist of sequences of modeling instructions and inference instructions, each
given a positive integer index by a global instruction countelﬂ Interactive Venture sessions have the
same structure. The modeling instructions are used to specify the probabilistic model of interest, any
conditions on the model that the inference engine needs to enforce, and any requests for prediction
of values against the conditioned distribution.

The core modeling instructions in Venture are:

1. [ASSUME <name> <expr>]: binds the result of simulating the model expression <expr> to
the symbol <name> in the global environment. This is used to build up the model that will
be used to interpret data. Returns the value taken on by <name>, along with the index of the
instruction.

2. [OBSERVE <expr> <literal-value>]: adds the constraint that the model expression <expr>
must yield <literal-value> in every execution. Note that this constraint is not enforced un-
til inference is performed.

3. [PREDICT <expr>]: samples a value for the model expression <expr> from the current dis-
tribution on executions in the engine and returns the value. As the amount of inference done
since the last OBSERVE approaches infinity, this distribution converges to the conditioned dis-
tribution that reconciles the OBSERVES.

1. This default Markov chain is a variant of the algorithm from Church (Goodman*, Mansinghka*, Roy, Bonowitz, and
Tenenbaum), [2008; [Mansinghkal 2009). This is a simple random scan single-site Metropolis-Hastings algorithm that
chooses random choices uniformly at random from the current execution, resimulates them conditioned on the rest
of the trace, and accepts or rejects the result.

2. Venture implementations also support labels for the instruction language. However, the recurrence of line numbers
is reflective of the ways the current instruction language is primitive as compared to the modeling language. For
example, it currently lacks control flow constructs, procedural abstraction, and recursion, let alone runtime generation
and execution of statements in the instruction language. Current research is focused on addressing these limitations.



4.

[FORGET <instruction-index-or-label>]: This instruction causes the engine to undo
and then forget the given instruction, which must be either an OBSERVE or PREDICT. Forgetting
an observation removes the constraint it represents from the inference problem. Note that the
effect may not be visible until an INFER is performed.

Venture supports additional instructions for inference and read-out, including:

1.

2.

[INFER <inference-expr>]: This instruction first incorporates any observations that have
occurred after the last INFER, then evolves the probability distribution on executions accord-
ing to the inference strategy described by <inference-expr>. Two inference expressions,
corresponding to general-purpose exact and approximate sampling schemes, are useful to
consider here:

(a) (rejection default all) corresponds to the use of rejection sampling to generate
an exact sample from the conditioned distribution on traces. The runtime requirements
may be substantial, and exact sampling applies to a smaller class of programs than
approximate sampling. However, rejection is crucial for understanding the meaning
of a probabilistic model and for debugging models without simultaneously debugging
inference strategies.

(b) (mh default one 1) corresponds to one transition of the standard uniform mixture
of single-site Metropolis-Hastings transition operators used as a general-purpose “auto-
matic” inference scheme in many probabilistic programming systems. As the number
of transitions is increased from 1 towards oo, the semantics of the instruction approach
an exact implementation of conditioning via rejection.

[SAMPLE <expr>]: This instruction simulates the model expression <expr> against the cur-
rent trace, returns the value, and then forgets the trace associated with the simulation. It
is equivalent to [PREDICT <expr>] followed by [FORGET <index-of-predict>], but is
provided as a single instruction for convenience.

[FORCE <expr> <literal-value>]: Modify the current trace so that the simulation of
<expr> takes on the value <literal-value>. Its implementation can be roughly thought
of as an OBSERVE immediately followed by an INFER and then a FORGET. This instruction can
be used for controlling initialization and for debugging.

2.2 Modeling Expressions

Venture modeling expressions describe stochastic generative processes. The space of all possible
executions of all the modeling expressions in a Venture program constitute the hypothesis space that
the program represents. Each Venture program thus represents a probabilistic model by defining a
stochastic generative process that samples from it.

At the expression level, Venture is similar to Scheme and to Church, though there are several
differencesﬂ For example, branching and procedure construction can both be desugared into appli-

cations of stochastic procedures — that is, ordinary combinations — and do not need to be treated as

3. We sometimes refer to the s-expression syntax (including syntactic sugar) as Venchurch, and the desugared language
(represented as JSON objects corresponding to parse trees) as Venture.



special forms. Additionally, Venture supports a dynamic scoping construct called scope_include
for tagging portions of an execution history such that they can be referred to by inference instruc-
tions; to the best of our knowledge, analogous constructs have not yet been introduced in other
probabilistic programming languages.

Venture modeling expressions can be broken down into a few simple cases:

1. Self-evaluating or “literal” values: These describe constant values in the language, and are
discussed below.

2. Combinations: (<operator-expr> <operand0-expr> ... <operandk-expr>) firsteval-
uates all of its expressions in arbitrary order, then applies the value of <operator-expr>
(which must be a stochastic procedure) to the values of all the <operand-expr>s. It returns
the value of the application as its own result.

3. Quoted expressions: (quote <expr>) returns the expression value <expr>. As compared
to combinations, quote suppresses evaluation.

4. Lambda expressions: (lambda <args> <body-expr>) returns a stochastic procedure with
the given formal parameters and procedure body. <args> is a specific list of argument names
(<arg0> ... <argk>).

5. Conditionals: (if <predicate-expr> <consequent-expr> <alternate-expr>) eval-
uates the <predicate-expr>, and then if the resulting value is true, evaluates and re-
turns value of the <consequent-expr>, and if not, evaluates and returns the value of the
<alternate-expr>.

6. Inference scope annotations: (scope_include <scope-expr> <block-expr> <expr>)
provides a mechanism for naming random choices in a probabilistic model, so that they can be
referred to during inference programming. The scope_include form simulates <scope-expr>
and <block-expr> to obtain a scope value and a block value, and then simulates <expr>, tag-
ging all the random choices in that process with the given scope and block. More details on
inference scopes are given below.

2.3 Inference Scopes

Venture programs may attach metadata to fragments of execution traces via a dynamic scoping con-
struct called inference scopes. Scopes are defined in modeling expressions, via the special form
(scope_include <scope-expr> <block-expr> <expr>), that assigns all random choices re-

quired to simulate <expr> to a scope that is named by the value resulting from simulating <scope-expr>

and a block within that scope that is named by the value that results from simulating <block-expr>.
A single random choice can be in multiple inference scopes, but can only be in one block within
each scope. Also, a random choice gets annotated with a scope each time the choice is simulated
within the context of a scope_include form, not just the first time it is simulated.

Inference scopes can be referred to in inference expressions, thus providing a mechanism for
associating custom inference strategies with different model fragments. For example, in a parameter
estimation problem for hidden Markov models, it might be natural to have one scope for the hidden
states, another for the hyperparameters, and a third for the parameters, where the blocks for the
hidden state scope correspond to indexes into the hidden state sequence. We will see later how to
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write cycle hybrid kernels that use Metropolis-Hastings to make proposals for the hyperparameters
and either single-site or particle Gibbs over the hidden states. Inference scopes also provide a means
of controlling the allocation of computational effort across different aspects of a hypothesis, e.g. by
only performing inference over scopes whose random choices are conditionally dependent on the
choices made by a given PREDICT instruction of interest.

Random choices are currently tagged with (scope, block) pairs. Blocks can be thought of
as subdivisions of scopes into meaningful (and potentially ordered) subsets. We will see later how
inference expressions can make use of block structure to provide fine-grained control over inference
and enable novel inference strategies. For example, the order in which a set of random choices is
traversed by conditional sequential Monte Carlo can be controlled via blocks, regardless of the order
in which they were constructed during initial simulation.

Scopes and blocks can be produced by random choices; <scope-expr>s and <block-expr>s
are ordinary Venture modeling expressionﬂ This enables the use of random choices in one scope
to control the scope or block allocation of random choices in another scope. The random choices
used to construct scopes and blocks may be auxiliary variables independent of the rest of the model,
or latent variables whose distributions depend on the interaction of modeling assumptions, data and
inference. At present, the only restriction is that inference on the random choices in a set of blocks
cannot add or remove random choices from that set of blocks, though the probability of membership
can be affected. Applications of randomized, inference-driven scope and block assignments include
variants of cluster sampling techniques, beyond the spin glass (Swendsen and Wang, [1986) and
regression (Nott and Green, |2004) settings where they have typically been deployed.

The implementation details needed to handle random scopes and blocks are beyond the scope
of this paper. However, we will later see analytical machinery that is sufficient for justifying the
correctness of complex transition operators involving randomly chosen scopes and blocks.

Venture provides two built-in scopeﬂ

1. default — This scope contains every random choice. Previously proposed inference schemes
for Church as well as concurrently developed generic inference schemes for variants of Ven-
ture correspond to single-line inference instructions acting on this default, global scope.

2. latents — This scope contains all the latent random choices made by stochastic proce-
dures but hidden from Venture. Using this scope, programmers can control the frequency
with which any external inference systems are invoked, and interleave inference over external
variables with inference over the latent variables managed by Venture.

2.4 Inference Expressions

Inference expressions specify transition operators that evolve the probability distribution on traces
inside the Venture virtual machine. This is in contrast to instructions, which extend a model, add
data, or initiate inference using a valid transition operator.

Venture provides several primitive forms for constructing transition operators that leave the
conditioned distribution invariant, each of which is a valid inference expression. In each of these

4. Our current implementations restrict the values of scope and block names to symbols and integers for simplicity, but
this restriction is not intrinsic to the Venture specification.

5. Some implementations so far have merged the default and latent scopes, or triggered inference over latents automat-
ically after every transition over the default scope.
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forms, scope must be a literal scope, and block must either be a literal block within that scope, or
the keyword one or all. The “selected” set of random choices on which each inference expression
acts is given by the specified scope and block. If the block specification is all, then the union
of all blocks within the scope is taken. If the block specification is one, then one block is chosen
uniformly at random from the set of all blocks within the given scope.

The core set of inference expressions in Venture are as follows:

1. (mh <scope> <block> <#-transitions>) — Propose new values for the selected choices
either by resimulating them or by invoking a custom local proposal kernel if one has been pro-
vided. Accept or reject the results via the Metropolis-Hastings rule, accounting for changes to
the mapping between random choices and scopes/blocks using the machinery provided later
in this paper. Repeat the whole process #-transitions times.

2. (rejection <scope> <block> <#-transitions>) — Use rejection sampling to generate
an exact sample from the conditioned distribution on all the selected random choices. Repeat
the whole process #-transitions times, potentially improving convergence if the selected
set is randomly chosen, i.e. block is one. This transition operator is often computationally in-
tractable, but is optimal, in the sense that it makes the most progress per completed transition
towards the conditioned distribution on traces. All the other transition operators exposed by
the Venture inference language can be viewed as asymptotically convergent approximations
to it.

3. (pgibbs <scope> <block> <f#-particles> <#-transitions>) — Use conditional se-
quential Monte Carlo to propose from an approximation to the conditioned distribution over
the selected set of random choices. If block is ordered, all the blocks in the scope are sorted,
and each distribution in the sequence of distributions includes all the random choices from
the next block. Otherwise, each distribution in the sequence includes a single random choice
drawn from the selected set, and the ordering is arbitrary.

4. (meanfield <scope> <block> <iters> <#-transitions>) — Use iters steps of stochas-
tic gradient to optimize the parameters of a partial mean-field approximation to the condi-
tioned distribution over the random choices in the given scope and block (with block inter-
preted as with mh). Make a single Metropolis-Hastings proposal using this approximation.
Repeat the process #-transitions times.

5. (enumerative_gibbs <scope> <block> <#-transitions>) — Use exhaustive enumer-
ation to perform a transition over all the selected random choices from a proposal corre-
sponding to the optimal conditional proposal (conditioned on the values of any newly created
random variables). Random choices whose domains cannot be enumerated are resimulated
from their prior unless they have been equipped with custom simulation kernels. If all se-
lected random choices are discrete and no new random choices are created, this is equivalent
to the rejection transition operator, and corresponds to a discrete, enumerative implemen-
tation of Gibbs sampling, hence the name. The computational cost scales exponentially with
the number of random choices, as opposed to the KL divergence between the prior and the
conditional (Freer et al., 2010).

Both mh and pgibbs are implemented by in-place mutation. However, versions of each that use
simultaneous particles to represent alternative possibilities are given by func-mh and func-pgibbs.
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These are prepended with func to signal an aspect of their implementation: these simultaneously
accessible sets of particles are implemented using persistent data structure techniques typically asso-
ciated with pure functional programming. func-pgibbs can yield improvements in order of growth
of runtime as compared to pgibbs, but it imposes restrictions on the selected random choiceﬂ

There are also currently two composition rules for transition operators, enabling the creation of
cycle and mixture hybrids:

1. (cycle (<inference-expr-1> <inference-expr-2>) ... <#-transitions>)—This
produces a cycle hybrid of the transition operators represented by the given inference ex-
pression: each transition operator is run in sequence, and the whole sequence is repeated
#-transitions times.

2. (mixture ((<wl> <inference-expr-1>) (<w2> <inference-expr-2>) ...) <#-transitions>)
— This produces a mixture hybrid of the given transition operators, using the given mixing
weights, that is invoked #-transitions times.

This language is flexible enough to express a broad class of standard approximate inference
strategies as well as novel combinations of standard inference algorithm templates such as con-
ditional sequential Monte Carlo, Metropolis-Hastings, Gibbs sampling and mean-field variational
inference. Additionally, the ability to use random variables to map random choices to inference
strategies and to perform inference over these variables may enable new cluster sampling tech-
niques. That said, from an aesthetic standpoint, the current inference language also has many lim-
itations, some of which seem straightforward to relax. For example, it seems natural to expand
inference expressions to support arbitrary modeling expressions, and thereby also support arbitrary
computation to produce inference schemes. The machinery needed to support these and other natu-
ral extensions is discussed later in this paper.

2.5 Values

Venture values include the usual scalar and symbolic data types from Scheme, along with extended
support for collections and additional datatypes corresponding to primitive objects from probability
theory and statistics. Venture also supports the stochastic procedure datatype, used for built-in
and user-added primitive procedures as well as compound procedures returned by lambda. A full
treatment of the value hierarchy is out of scope, but we provide a brief list of the most important
values here:

1. Numbers: roughly analogous to floating point numbers, e.g. 1, 2.4, -23, and so on.

2. Atoms: discrete items with no internal structure or ordering. These are generated by categor-
ical draws, but also Dirichlet and Pitman-Yor processes.

3. Symbols: symbol values, such as the name of a formal argument being passed to lambda, the
name associated with an ASSUME instruction, or the result of evaluating a quote special form.

6. To support multiple simultaneous particles, all stochastic procedures within the given scope and block must support
a clone operation for their auxiliary state storage (or have the ability to emulate it). This is feasible for standard
exponential family models, but may be not be feasible for external inference systems hosted on distributed hardware.
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4. Collections: vectors, which map numbers to values and support O(1) random access, and
maps, which map values to values and support O(1) amortized random access (via a hash
table that relies on the built-in hash function associated with each kind of value).

5. Stochastic procedures: these include the components of the standard library, and can also
be created by lambda and other stochastic procedures.

2.6 Automatic inference versus inference programming

Although Venture programs can incorporate custom inference strategies, it does not require them.
Interfaces that are as automatic as existing probabilistic programming systems are straightforward
to implement. Single-site Metropolis-Hastings and Gibbs sampling algorithms — the sole auto-
matic inference option in many probabilistic programming systems — can be invoked with a single
instruction. We have also seen that global sequential Monte Carlo and mean field algorithms are
similarly straightforward to describe. Support for programmable inference does not necessarily in-
crease the education burden on would-be probabilistic programmers, although it does provide a way
to avoid limiting probabilistic programmers to a potentially inadequate set of inference strategies.

The idea that inference strategies can be formalized as structured, compositionally specified in-
ference programs operating on model programs is, to the best of our knowledge, new to Venture.
Under this view, standard inference algorithms actually correspond to primitive inference program-
ming operations or program templates, some of which depend on specific features of the model
program being acted upon. This perspective suggests that far more complex inference strategies
should be possible if the right primitives, means of combination and means of abstraction can be
identified. Considerations of modularity, analyzability, soundness, completeness, and reuse will be-
come central. and will be complicated by the interaction between inference programs and model
programs. For example, inference programmers will need to be able to predict the asymptotic scal-
ing of inference instructions, factoring out the contribution of the computational complexity of the
model expressions to which a given inference instruction is being applied. Another example comes
from considering abstraction and reuse. It should be possible to write compound inference pro-
cedures that can be reused across different models, and perhaps even use inference to learn these
procedures via an appropriate hierarchical Bayesian formulation.

Another view, arguably closer to the mainstream view in machine learning, is that inference
algorithms are better thought of by analogy to mathematical programming and operations research,
with each algorithm corresponding to a “solver” for a well-defined class of problems with certain
structure. This perspective suggests that there is likely to be a small set of monolithic, opaque
mechanisms that are sufficient for most important problems. In this setting, one might hope that
inference mechanisms can be matched to models and problems via simple heuristics, and that the
problem of automatically generating high-quality inference strategies will prove easier than query
planning for databases, and will be vastly easier than automatic programming.

It remains to be seen whether the traditional view is sufficient in practice or if it underestimates
the richness of inference and its interaction with modeling and problem specification.

2.7 Procedural and Declarative Interpretations

We briefly consider the relationship between procedural and declarative interpretations of Venture
programs.
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Venture code has a direct procedural reading: it defines a probabilistic generative process that
samples hypotheses, checks constraints, and invokes inference instructions that trigger specific al-
gorithms for reconciling the hypotheses with the constraints. Re-orderings of the instructions can
significantly impact runtime and change the distribution on outputs. The divergence between the
true conditioned distribution on execution traces and the distribution encoded by the program may
depend strongly on what inference instructions are chosen and how they are interleaved with the
incorporation of data.

Venture code also has declarative readings that are unaffected by some of these procedural
details. One way to formalize the of meaning of a Venture program is as a probability distribution
over execution traces. A second approach is to ignore the details of execution and restrict attention
to the joint probability distribution of the values of all PREDICTs so far. A third approach, consistent
with Venture’s interactive interface, is to equate the meaning of a program with the probability
distribution of the values of all the PREDICTs in all possible sequences of instructions that could be
executed in the future. Under the second and third readings, many programs are equivalent, in that
they induce the same distribution albeit with different scaling behavior.

As the amount of inference performed at each INFER instruction increases, these interpretations
coalesce, recovering a simple semantics based on sequential Bayesian reasoning. Consider replac-
ing all inference instructions are replaced with exact sampling — [INFER (rejection default
one 1)] — or a sufficiently large number of transitions of a generic inference operator, such as
[INFER (mh default one 1000000)]. In this case, each INFER implements a single step of se-
quential Bayesian reasoning, conditioning the distribution on traces with all the OBSERVEs since the
last INFER. The distribution after each INFER becomes equivalent to the distribution represented by
all programs with the same ASSUMEs, all the OBSERVEs before the infer (in any order), and a single
INFER. The computational complexity varies based on the ordering and interleaving of INFERs and
OBSERVES, but the declarative meaning is unchanged. Although correspondence with these declar-
ative, fully Bayesian semantics may require an unrealistic amount of computation in real-world
applications, close approximations can be useful tools for debugging, and the presence of the limit
may prove useful for probabilistic program analysis and transformation.

Venture programs represent distributions by combining modeling operations that sample values
for expressions, constraint specification operations that build up a conditioner, and inference op-
erations that evolve the distribution closer to the conditional distribution induced by a conditioner.
Later in this paper we will see how to evaluate the partial probability densities of probabilistic ex-
ecution traces under these distributions, as well as the ratios and gradients of these partial densities
that are needed for a wide range of inference schemes.

2.8 Markov chain and sequential Monte Carlo architectures

The current Venture implementation maintains a single probabilistic execution trace per virtual ma-
chine instance. This trace is initialized by simulating the code from the ASSUME and OBSERVE
instructions, and stochastically modified during inference via transition operators that leave the cur-
rent conditioned distribution on traces invariant. The prior and posterior probability distributions on
traces are implicit, but can be probed by repeatedly re-executing the program and forming Monte
Carlo estimates.

This Markov chain architecture has been chosen for simplicity, but sequential Monte Carlo ar-
chitectures based on weighted collections of traces are also possible and indeed straightforward.
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The number of initial traces could be specified via an INFER instruction at the beginning of the pro-
gram. Forward simulation would be nearly unchanged. OBSERVE instructions would attach weights
to traces based on the “likelihood” probability density corresponding to the constrained random
choice in each observation, and PREDICT instructions would read out their values from a single,
arbitrarily chosen “active” trace. An [INFER (resample <k>)] instruction would then implement
multinomial resampling, and also change the active trace to ensure that PREDICTs are always mutu-
ally consistent. Venture’s other inference programming instructions could be treated as rejuvenation
kernels (Del Moral et al., 2006)), and would not need to modify the Weight This kind of sequential
Monte Carlo implementation would have the advantage that the weights could be used to estimate
marginal probability densities of given OBSERVESs, and that another source of non-embarrassing par-
allelism would be exposed. Integrating sophisticated coupling strategies from the aSMC framework
(Whiteley et al.,|2013)) into the inference language could also prove fruitful.

Running separate Venture virtual machines is guaranteed to produce independent samples from
the distribution represented by the Venture program. This distribution will typically only approxi-
mate some desired conditional. If there is no need to quantify uncertainty precisely, then Venture
programmers can append repetitions of a sequence of INFER and PREDICT instructions to their pro-
gram. Unless the INFER instructions use rejection sampling, this choice yields PREDICT outputs that
are dependent under both Markov chain and sequential Monte Carlo architectures. It only approxi-
mates the behavior of independent runs of the program. Application constraints will determine what
approximation strategies are most appropriate for each problem.

2.9 Examples

Here we give simple illustrations of the Venture language, including some standard modeling id-
ioms as well as the use of custom inference instructions. Venture has been also used to implement
applications of several advanced modeling and inference techniques; examples include generative
probabilistic graphics programming (Mansinghka*, Kulkarni*, Perov, and Tenenbaum) 2013) and
topic modeling (Blei et al., |2003)). A description of these and other applications is beyond the scope
of this paper.

2.9.1 HIDDEN MARKOV MODELS

To represent a Hidden Markov model in Venture, one can use a stochastic recursion to capture the
hidden state sequence, and index into it by a stochastic observation procedure. Here we give a
variant with continuous observations, a binary latent state, and an a priori unbounded number of
observation sequences to model:

[ASSUME observation_noise (scope_include ’hypers ’'unique (gamma 1.0 1.0))]

[ASSUME get_state
(mem (lambda (seq t)
(scope_include ’state t

(if (= t 0)
(bernoulli 0.3)
(transition_fn (get_state seq (- t 1)))))))]

[ASSUME get_observation

7. The only subtlety is that transition operators must not change which random choice is being constrained, as this
would require changing the weight of the trace.
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(mem (lambda (seq t)
(observation_fn (get_state seq t))))]

[ASSUME transition_fn
(lambda (state)
(scope_include ’state t (bernoulli (if state 0.7 0.3))))]

[ASSUME observation_fn
(lambda (state)
(normal (if state 3 -3) observation_noise))]

[OBSERVE (get_observation 1 1) 3.6]
[INFER (mh default one 10)]

[OBSERVE (get_observation 1 2) -2.8]
[INFER (mh default one 10)]

<ol

This is a sequentialized variant of the default” resimulation-based Metropolis-Hastings infer-
ence scheme. If all but the last INFER statement were removed, the program would yield the same
stochastic transitions as several Church implementations, but with linear (rather than quadratic) scal-
ing in the length of the sequence. Interleaving inference with the addition of observations improves
over bulk incorporation of observations by mitigating some of the strong conditional dependencies
in the posterior.

Another inference strategy is particle Markov chain Monte Carlo. For example, one could com-
bine Metropolis-Hastings moves on the hyperparameters, given the latent states, with a conditional
sequential Monte Carlo approximation to Gibbs over the hidden states given the hyper parameters
and observations. Here is one implementation of this scheme, where 10 transitions of Metropolis-
Hastings are done on the hyper parameters for every 5 transitions of approximate Gibbs based on
30 particles, all repeated 50 times:

[INFER (cycle ((mh hypers one 10) (pgibbs state ordered 30 5)) 50)] ‘

The global particle Gibbs algorithm from (Wood et al., 2014) with 30 particles would be ex-
pressed as follows:

[INFER (pgibbs default ordered 30 100)] ‘

Note that Metropolis-Hastings transitions can be more effective than pure conditional sequential
Monte Carlo for handling global parameters (Andrieu et al.,[2010). This is because MH moves allow
hyperparameter inference to be constrained by all latent states.

In real-time applications, hyperparameter inference is sometimes skipped. Here is one repre-
sentation of a close relativeﬁ of a standard 30-particle particle filter that uses randomly chosen hyper
parameters and yields a single latent trajectory:

[INFER (pgibbs state ordered 30 1)]

2.9.2 HIERARCHICAL NONPARAMETRIC BAYESIAN MODELS

Here we show how to implement one version of a multidimensional Dirichlet process mixture of
Gaussians (Rasmussen), |1999):

8. The only difference is that a particle filter exposes all its weighted particles for forming Monte Carlo expectations
or for rapidly obtaining a set of approximate samples. Only straightforward modifications are needed for Venture to
expose a set of weighted traces instead of a single trace and literally recover particle filtering.
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)
)

]
]

[ASSUME alpha (scope_include ’hypers 0 (gamma 1.

0 1.0))
[ASSUME scale (scope_include ’"hypers 1 (gamma 1.0 1.0))

[ASSUME crp (make_crp alpha)]

[ASSUME get_cluster (mem (lambda (id)
(scope_include ’'clustering id (crp))))]

[ASSUME get_mean (mem (lambda (cluster dim)
(scope_include ’'parameters cluster (normal 0 10))))]

[ASSUME get_variance (mem (lambda (cluster dim)
(scope_include ’'parameters cluster (gamma 1 scale))))]

[ASSUME get_component_model (lambda (cluster dim)
(lambda () (normal (get_mean cluster dim) (get_variance cluster dim))))]

[ASSUME get_datapoint (mem (lambda (id dim)
((get_component_model (get_cluster id dim)))))]

[OBSERVE (get_datapoint 0 0) 0.2]
< ool

; default resimulation-based Metropolis-Hastings scheme
[INFER (mh default one 100)]

The parameters are explicitly represented, i.e. “uncollapsed”, rather than integrated out as they
often are in practice. While the default resimulation-based Metropolis-Hastings scheme can be
effective on this problem, it is also straightforward to balance the computational effort differently:

[INFER (cycle ((mh hypers one 1)
(mh parameters one 5)
(mh clustering one 5)
1000) ]

On each execution of this cycle, one hyperparameter transition, five parameter transitions (each
to both parameters of a randomly chosen cluster), and five cluster reassignments are made. Which
hyperparameter, parameters and cluster assignments are chosen is random. As the number of data
points grows, the ratio of computational effort devoted to inference over the hyperparameters and
cluster parameters to the cluster assignments is higher than it is for the default scheme. Note that
the complexity of this inference instruction, as well as the computational effort ratio, depend on the
number of clusters in the current trace.

It is also straightforward to use a structured particle Markov chain Monte Carlo scheme over the
cluster assignments:

[INFER (mixture ((0.2 (mh hypers one 10)
(0.5 (mh parameters one 5)
(0.3 (pgibbs clustering ordered 2 2)))
100) ]

Due to the choice of only 2 particles for the pgibbs inference strategy, this scheme closely re-
sembles an approximation to blocked Gibbs over the indicators based on a sequential initialization
of the complete model. Also note that despite the low mixing weight on the clustering scope in
the mixture, this inference program allocates asymptotically greater computational effort to infer-
ence over the cluster assignments than the previous strategy. This is because the pgibbs transition
operator is guaranteed to reconsider every single cluster assignment.
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2.9.3 INVERSE INTERPRETATION

We now describe inverse interpretation, a modeling idiom that is only possible in Turing-complete
languages. Recall that Venture modeling expressions are easy to represent as Venture data objects,
and Venture models can invoke the evaluation and application of arbitrary Venture stochastic proce-
dures. These Scheme-like features make it straightforward to write an evaluator — perhaps better
termed a simulator — for a Turing-complete, higher-order probabilistic programming language.
This application highlights Turing-completeness and also embodies a new potentially appealing
path for solving problems of probabilistic program synthesis. In less expressive languages, learning
programs (or structure) requires custom machinery that goes beyond what is provided by the lan-
guage itself. In Venture, the same inference machinery used for state estimation or causal inference
can be brought to bear on problems of probabilistic program synthesis. The dependency tracking
and inference programming machinery that is general to Venture can be brought to bear on the
problem of approximately Bayesian learning of probabilistic programs in a Venture-like languageﬂ
We first define some utility procedures for manipulating references, symbols and environments:

[ASSUME make_ref (lambda (x) (lambda () x))]
[ASSUME deref (lambda (x) (x))]

[ASSUME incremental_initial_environment
(lambda ()
(list
(dict
(list (quote bernoulli)
(quote normal)
(quote plus)
(quote times)
(quote branch))
(list (make_ref bernoulli)
(make_ref normal)
(make_ref plus)
(make_ref times)
(make_ref branch)))))]

[ASSUME extend_env
(lambda (outer_env syms vals)
(pair (dict syms vals) outer_env))]

[ASSUME find_symbol
(lambda (sym env)
(if (contains (first env) sym)
(lookup (first env) sym)
(find_symbol sym (rest env))))]

The most interesting of these are make_ref and deref. These use closures to pass references
around the trace, using an idiom that avoids unnecessary growth of scaffolds. Consider an execution
trace in which a value that is the argument to make_ref becomes the principal node of a transition.
Only those uses of the reference to the value that have been passed to deref will become resampling
nodes. The value of the reference is unchanged, though the value the reference refers to is not. This
permits dependence tracking through the construction of complex data structures.

9. Although we are still far from a study of the expressiveness of probabilistic languages via definitional interpreta-
tion (Reynolds, |1972; |Abelson and Sussman, |1983), it seems likely that probabilistic programming formulations of
probabilistic program synthesis — inference over a space of probabilistic programs, possibly including inference
instructions, and an interpreter for those programs — will be revealing.
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Given this machinery, it is straightforward to write an evaluator for a simple function language
that has access to arbitrary Venture primitives:

[ASSUME incremental_venture_apply
(lambda (op args) (eval (pair op (map_list deref args)) (get_empty_environment)))]

[ASSUME incremental_apply
(lambda (operator operands)
(incremental_eval (deref (lookup operator 2))
(extend_env (deref (lookup operator 0))
(deref (lookup operator 1))

operands))) ]
[ASSUME incremental_eval
(lambda (expr env)
(if (is_symbol expr)
(deref (find_symbol expr env))
(if (not (is_pair expr))
expr
(if (= (deref (lookup expr 0)) (quote lambda))
(pair (make_ref env) (rest expr))

((lambda (operator operands)
(if (is_pair operator)
(incremental_apply operator operands)
(incremental_venture_apply operator operands)))
(incremental_eval (deref (lookup expr 0)) env)
(map_list (lambda (x)
(make_ref (incremental_eval (deref x) env)))

(rest expr)))))))]

It is also possible to generate the input exprs using another Venture program, and use general-
purpose, Turing-complete inference mechanisms to explore a hypothesis space of expressions given
constraints on the values that result. We call this the inverse interpretation approach to probabilistic
program synthesis. As in Church — and contrary to (Liang et al., [2010) — inverse interpretation
algorithms are not limited to rejection sampling. But while Church was limited to a single-site
Metropolis-Hastings scheme, Venture programmers have more options. In Venture it is possible to
associate portions of the program source (and portions of the induced program’s executions) with
custom inference strategies.

Here is an example expression grammar that can be used with the incremental evaluator:

[ASSUME genBinaryOp (lambda () (if (flip) (quote plus) (quote times)))]
[ASSUME genLeaf (lambda () (normal 4 3))]
[ASSUME genVar (lambda (x) x)]

[ASSUME genExpr
(lambda (x)
(if (flip 0.4)
(genlLeaf)
(if (flip 0.8)
(genVar x)
(list (make_ref (genBinaryOp)) (make_ref (genExpr x)) (make_ref (genExpr x))))))]

[ASSUME noise (gamma 5 .2)]
[ASSUME expr (genExpr (quote x))]

[ASSUME £
(mem
(lambda (y)
(incremental_eval expr
(extend_env (incremental_initial_environment)
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(list (quote x))
(list (make_ref y))))))]

[ASSUME g (lambda (z) (normal (f z) noise))]

[OBSERVE (g 1) 10] ;f(x) = 5x + 5
[OBSERVE (g 3) 20]
<. o>

Indirection via references substantially improves the asymptotic scaling of programs like these.
When a given production rule in the grammar is resimulated, only those portions of the execution
of the program that depend on the changed source code are resimulated. A naive implementation of
an evaluator would not have this property.

Scaling up this approach to larger symbolic expressions and small programs will require multi-
ple advances. Overall system efficiency improvements will be necessary. Inverse interpretation also
may benefit from additional inference operators, such as Hamiltonian Monte Carlo for the continu-
ous parameters. Expression priors with inference-friendly structures would also help. For example,
a prior where resimulation recovers some of the search moves from (Duvenaud et al., 2013) may be
expressible by separately generating symbolic expressions and the contents of the environment into
which they are evaluated. Longer term, it may be fruitful to explore formalizations of some of the
knowledge taught to programmers using probabilistic programming.

3. Stochastic Procedures

Random choices in Venture programs arise due to the invocation of stochastic procedures (SPs).
These stochastic procedures accept input arguments that are values in Venture and sample output
values given those inputs. Venture includes a built-in stochastic procedure library, which includes
SPs that construct other SPs, such as the SP make_csp which the special form lambda gets desug-
ared to. Stochastic procedures can also be added as extensions to Venture, and provide a mechanism
for incremental optimization of Venture programs. Model fragments for which Venture delivers in-
adequate performance can be migrated to native inference code that interoperates with the enclosing
Venture program.

3.1 Expressiveness and extensibility

Many typical random variables, such as draws from a Bernoulli or Gaussian distribution, are straight-
forward to represent computationally. One common approach has been to use a pair of functions: a
simulator that maps from an input space of values X and a stream of random bits {0, 1}* to an output
space of values 9, and a marginal density that maps from (x,y) pairs to [0,e0). This representation
corresponds to the “elementary random procedures” supported by early Church implementations.
Repeated invocations of such procedures correspond to IID sequences of random variables whose
densities are known. While simple and intuitive, this simple interface does not naturally handle
many useful classes of random objects. In fact, many objects that are easy to express as compound
procedures in Church and in Venture cannot be made to fit in this form.
Stochastic procedures in Venture support a broader class of random objects:

1. Higher-order stochastic procedures, such as mem (including stochastic memorization),
apply and map. Higher-order procedures may accept procedures as arguments, apply these
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procedures internally, and produce procedures as return values. Stochastic procedures in
Venture are equipped with a simple mechanism for handling these cases. In fact, it turns out
that all structural changes to execution traces — including those arising from the execution
of constructs that affect control flow, such as IF — can be handled by this mechanism. This
simplifies the development of inference algorithms, and permits users to extend Venture by
adding new primitives that affect the flow of control.

. Stochastic procedures whose applications are exchangeably coupled. Examples include
collapsed representations of conjugate models from Bayesian statistics, combinatorial objects
from Bayesian nonparametrics such as the Chinese Restaurant and Pitman-Yor processes, and
probabilistic sequence models (such as HMMs) whose hidden state sequences can be effi-
ciently marginalized out. Support for these primitives whose applications are coupled is im-
portant for recovering the efficiency of manually optimized samplers, which frequently make
use of collapsed representations. Whereas exchangeable primitives in Church are thunks,
which prohibits collapsing many important models such as HMMs, Venture supports prim-
itives whose applications are row-wise partially exchangeable across different sets of argu-
ments. The formal requirement is that the cumulative log probability density of any sequence
of input-output pairs is invariant under permutation.

. Likelihood-free stochastic procedures that lack tractable marginal densities. Complex
stochastic simulations can be incorporated into Venture even if the marginal probability den-
sity of the outputs of these simulations given the inputs cannot be efficiently calculated. Mod-
els from the literature on Approximate Bayesian Computation (ABC), where priors are de-
fined over the outcome of forward simulation code, can thus be naturally supported in Ven-
ture. Additionally, a range of “doubly intractable” inference problems, including applications
of Venture to reasoning about the behavior of approximately Bayesian reasoning agents, can
be included using this mechanism.

. Stochastic procedures with external latent variables that are invisible to Venture. There
will always be models that admit specialized inference strategies whose efficiency cannot
be recovered by performing generic inference on execution traces. One of the principal de-
sign decisions in Venture is to allow these strategies to be exploited whenever possible by
supporting a broad class of stochastic procedures with custom inference over internal latent
variables, hidden from the rest of Venture. The stochastic procedure interface thus serves as a
flexible bridge between Venture and foreign inference code, analogous to the role that foreign
function interfaces (FFIs) play in traditional programming languages.

3.2 Primitive stochastic procedures

Informally, a primitive stochastic prodecure (PSP) is an object that can simulate from a family of
distributions indexed by some arguments. In addition to simulating, PSPs may be able to report the
logdensity of an output given an input, and may incorporate and unincorporate information about the
samples drawn from it using mutation, e.g. in the case of a conjugate prior. This mutation cannot
be aribitrary: the draws from the PSP must remain row-wise partially exchangeable as discussed
above. A PSP may also have custom proposal kernels, in which case it must be able to return
its contribution to the Metropolis-Hastings acceptance rate. For example, the PSP that simulates
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Gaussian random variables may provide a drift kernel that proposes small steps around its previous
location, rather than resampling from the prior distribution.
Primitive stochastic procedures are parameterized by the following properties and behaviors:

1. isStochastic () — does this PSP consume randomness when it is invoked?

2. canAbsorbArgumentChanges () — can this PSP absorb changes to its input arguments? If
true, then this PSP must correctly implement logdensity () as described below.

3. childrenCanAbsorbAtApplications () — does this PSP return an SP that implements the
short-cut “absorbing at applications” optimization, needed to integrate optimized expressions
for the log marginal probability of sufficient statistics in standard conjugate models.

4. value = simulate (args) — samples a value for an application of the PSP, given the ar-
guments args

5. logp = logdensity(value, args) — an optional procedure that evaluates the log proba-
bility densitym of an output given the input arguments p,,(simulate(args) = value|args).

6. incorporate (aux, value, args) — incorporate the value stored in the variable named
value into the auxiliary storage aux associated with the SP that contains the PSP. incorporate ()
is used to implement SPs whose applications are exchangeably coupled. While it is always
sufficient to store and update the full set of values returned for each observed args, often
only the counts (or some other sufficient statistics) are necessary.

7. unincorporate (aux, value, args) — remove value from the auxiliary storage, restor-
ing it to a state consistent with all other values that have been incorporated but not unincorporated;
this is done when an application is unevaluated.

3.3 The Stochastic Procedure Interface

The stochastic procedure interface specifies the contract that Venture primitives must satisfy to
preserve the coherence of Venture’s inference mechanisms. It also serves as the vehicle by which
external inference systems can be integrated into Venture. This interface preserves the ability of
primitives to dynamically create and destroy internal latent variables hidden from Venture and to
perform custom inference over these latent variables.

3.3.1 DEFINITION

Definition 3.1 (Stochastic procedure). A stochastic prodecure is a pair (request, output) of PSPs,
along with a latent variable simulator, where

1. request returns:

10. This density is implicitly defined with respect to a PSP-specific (but argument independent) choice of dominating
measure. For PSPs that are guaranteed to produce discrete outputs, the measure is assumed to be the counting
measure, so logdensity is equivalent to the log probability mass function. A careful measure-theoretic treatment of
Venture is left for future work.
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(a) Alistof tuples (addr,expr, env) that represent expressions whose values must be avail-
able to output before it can start its simulation. We refer to requests of this form as
exposed simulation requests (ESRs),

(b) A list of opaque tokens that can be interpreted by the SP as the latent variables that
output will need in order to simulate its output, along with the values of the exposed
simulation requests. We refer to requests of this form as latent simulation requests
(LSRs).

2. The latent variable simulator responds to LSRs by simulating any latent variables requested.

3. output returns the final output of the procedure, conditioned on the inputs, the results of any
of the exposed simulation requests, and the results of any latent simulation requests.

3.3.2 EXPOSED SIMULATION REQUESTS

We want our procedures to be able to pass (expr,env) pairs to Venture for evaluation, and make
use of the results in some way. A procedure may also have multiple applications all make use of a
shared evaluation, e.g. mem, and in these cases the procedure must take care to request the same
addr each time, and the (expr,env) will only be evaluated the first time and then reused thereafter.

Specifically, an ESR request of the (addr,expr,env) is handled by Venture as follows. First
Venture checks the requesting SP’s namespace to see if it already has an entry with address addr.
If it does not, then Venture evaluates expr in env, and adds the mapping addr — root to the SP’s
namespace, where root is the root of the evaluation tree. If the SP’s namespace does contain addr,
then Venture can look up root. Either way, Venture wires in root as an extra argument to the output
node.

3.3.3 LATENT SIMULATION REQUESTS AND THE FOREIGN INFERENCE INTERFACE

Some procedures may want to simulate and perform inference over latent variables that are hidden
from Venture. Consider an optimized implementation of a hidden Markov model integrated into the
following Venture program:

[ASSUME my_hmm (make_hmm 10 0.1 5 0.2)]

[OBSERVE (my_hmm 0 0) 0]

[OBSERVE (my_hmm 0 1) 1]

[OBSERVE (my_hmm 0 2) 0]

[INFER (mh default one 20)]

[PREDICT (my_hmm 0 3)]
[PREDICT (my_hmm 1 0)]

Here we have a constructor SP (make_hmm <num-states> <transition-hyper> <num-output-symbols>

<observation-hyper) that generates an (uncollapsed) hidden Markov model by generating the
rows of the transition and observation matrices at random. The assumption is that make_hmm is a
primitive, although it would be straightforward to implement make_hmm as a compound procedure
in Venture, using variations of the examples presented earlier. The constructor returns a procedure
bound to the symbol my_hmm that permits observations from this process to be queried via (my_hmm
<sequence-id> <index>). The program adds a sequence fragment of length three then requests
predictions for the next observation in the sequence, as well as the initial observation from an en-
tirely new sequence.
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This probabilistic program captures a common pattern: integrating Venture with an foreign
probabilistic model fragment that can be dynamically queried and contains latent variables hidden
from Venture. It is useful to partition the random choices in this program as follows. The transition
and observation matrices of the HMM could be viewed as part of the value of the my_hmm SP and
therefore returned by the output PSP of the make_hmm SP. The observations are managed by Venture
as the applications of the my_hmm SP. The hidden states, however, are fully latent from the standpoint
of Venture, yet need to be created, updated and destroyed as invocations of my_hmm are created or
destroyed and as their arguments (or the arguments to make_hmm) change.

Venture makes it possible for procedures to instantiate latent variables only as necessary to sim-
ulate a given program. The mechanism is similar to that for exposed simulation requests, except in
this case the requests—which we call latent simulation requests (LSRs)—are opaque to Venture. Ven-
ture only calls appropriate methods on the SP at appropriate times to ensure that all the bookkeeping
is handled correctly.

This framework is straightforward to apply to make_hmm and the stochastic procedure(s) that
it returns. If my_hmm is queried for an observation at time #, the requestPSP can return the time ¢
as an LSR. When Venture tells the HMM to simulate that LSR, the HMM will either do nothing
if x; already exists in its internal store of simulations, or else continue simulating from its current
position up until x;. The outputPSP then samples o, conditioned on the latent x;. If the application
at time ¢ is ever unevaluated, Venture will tell the HMM to detach the LSR ¢, which will cause the
HMM to place the latents that are no longer necessary to simulate the program into a “latentDB”,
which it returns to Venture. Later on, Venture may tell the HMM to restore latents from a latentDB,
for example if a proposal is rejected and the starting trace is being restored.

The main reason to encapsulate latent variables in this way, as opposed to requesting them as
ESRs, is so that the SP can use optimized implementations of inference over their values, potentially
utilizing special-purpose inference methods. For example, the uncollapsed HMM can implement
forwards-filtering backwards-sampling to efficiently sample the latent variables conditioned on all
observations. Such procedures are integrated into Venture by defining an “Arbitrary Ergodic Kernel”
(AEKernel) which Venture may call during inference, and which is simply a black-box to Venture.
Note that this same mechanism may be used by SPs that do not make latent simulation requests
at all, but which have latent variables instantiated upon creation, such as a finite-time HMM or an
uncollapsed Dirichlet-Multinomial.

To implement this functionality, stochastic procedures must implement three procedures in ad-
dition to the procedures needed for their ESR requestor, LSR requestor and output PSPs:

1. simulatelatents (aux, LSR, shouldRestore, latentDB) — simulate the latents cor-
responding to LSR, using the tokens in latentDB (indexed by LSR) to find a previous value if
shouldRestore is true.

2. detachlLatents (aux, LSR, latentDB) — signal that the latents corresponding to the re-
quest LSR are no longer needed, and store enough information in latentDB so that the value
can be recovered later.

3. AEInfer (aux) — Trigger the external implementation to perform inference over all latent
variables using the contents of aux. It is often convenient for simulateLatents to store latent
variables in the aux and for incorporate to store the return values of applications in tt aux,
along with the arguments that produced them.
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Examples of this use of the stochastic procedure interface can be found in current releases of
the Venture system.

3.3.4 OPTIMIZATIONS FOR HIGHER-ORDER SPS

Venture provides a special mechanism that allows certain SPs to exploit the ability to quickly com-
pute the logdensity of its applications. Consider the following program:

ASSUME alpha (gamma 1 1)]

ASSUME collapsed_coin (make_beta_bernoulli alpha alpha)]
OBSERVE (collapsed_coin) False]

OBSERVE (collapsed_coin) True]

<repeat 1079 times>

[OBSERVE (collapsed_coin) False]

[INFER]

[
[
[
[

A hand-written inference scheme would only keep track of the counts of the observations, and
could perform rapid Metropolis-Hastings proposals on alpha by exploiting conjugacy. On the other
hand, a naive generic inference scheme might visit all one billion observation nodes to compute
the acceptance ratio for each proposal. We can achieve this efficient inference scheme by letting
make_beta bernoulli be responsible for tracking the sufficient statistics from the applications of
collapsed_coin, and for evaluating the log density of all those applications as a block. Stochastic
procedures that return other stochastic procedures and implement this optimization are said to be
absorbing at applications, often abbreviated AAA. We will discuss techniques for implementing
this mechanism in a later section.

3.3.5 AUXILIARY STATE
An SP is itself stateless, but may have an associated auxiliary store, called SPAux, that carries any

mutable information. SPAuxs have several uses:

1. If an SP makes exposed simulation requests, Venture uses the SPAux to store mappings from
the addresses of the ESRs to the node that stores the result of that simulation.

2. If a PSP keeps track of its sample counts or other sufficient statistics, such as the collapsed-
beta-bernoulli which stores the number of trues and falses, it will store this information in
the SPAux.

3. If an SP makes latent simulation requests, then all latent variables it simulates to respond to
those requests are stored in the SPAux.

4. Some SPs may optionally store part of the value of the SP directly in the SPAux. This is

necessary if an SP cannot easily store its value, its latents, and its outputs separately.

4. Probabilistic Execution Traces

Bayesian networks decompose probabilistic models into nodes for random variables, equipped with
conditional probability tables, and edges for conditional dependencies. They can be interpreted as
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probabilistic programs via the ancestral simulation algorithm (Frey} [1997). The network is traversed
in an order consistent with the topology, and each random variable is generated given its immediate
parents. Bayesian networks can also be viewed as expressing a function for evaluating the joint
probability density of all the nodes in terms of a factorization given by the graph structure.

Here we describe probabilistic execution traces (PETs), which serve analogous functions for
Venture programs and address the additional complications that arise from Turing-completeness
and the presence of higher order probabilistic procedures. We also describe recursive procedures
for constructing and destroying probabilistic execution traces as Venture modeling language expres-
sions are evaluated and unevaluated.

4.1 Definition of a probabilistic execution trace

Probabilistic execution traces consist of a directed graphical model representing the dependencies
in the current execution, along with the stateful auxiliary data for each stochastic procedure, the
Venture program itself, and metadata for existential dependencies and exchangeable coupling. We
will typically identify executions and PETs, and denote them via the symbols p or £.

PETs contain the following nodes:

1. One constant node for the global environment.

2. One constant node for every value bound in the global environment, which includes all built-
in SPs.

3. One constant node for every call to eval on a expression that is either self-evaluating or quoted.
4. One lookup node for every call to eval that triggers a symbol lookup.

5. One request node and one output node for every call to eval that triggers an SP application.
We refer to the operator nodes and operand nodes of request nodes and output nodes, but note
that these are not special node types.

PETs also contain the following edges:

1. One lookup edge to each lookup node from the node it is looking up.

2. One operator edge to every request node from its operator node.

3. One operator edge to every output node from its operator node.

4. One operand edge to every request node from each of its operand nodes.

5. One operand edge to every output node from each of its operand nodes.

6. One requester edge to every output node from its corresponding request node.

7. One ESR edge from the root node of every SP family to each SP application that requests it.

Every node represents a random variable and has a value that cannot change during an execution.
The PET also includes the SPAux for every SP that needs one. Unlike the values in the nodes, the
SPAuxs may be mutated during an execution, for example to increment the number of frues for a
beta-bernoulli.
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4.2 Families

We divide our traces into families: one Venture family for every assume, predict, observe directive,
and one SP family for every unique ESR requested during forward simulation. Because of our
uniform treatment of conditional simulation, executions of programs satisfy the following property:
the structure of every family is a function of the expression only, and does not depend on the random
choices made while evaluating that expression. The only part of the topology of the graph that can
change is which ESRs are requested.

4.3 Exchangeable coupling

Given our exchangeability assumptions for SPs, we can cite (generalized) de Finetti (Orbanz and
Roy) to conclude that there is, in addition to the observed random variables explicitly represented in
the PET, one latent random variable 8 for every SP f in the PET corresponding to the unobserved
de Finetti measure, and one latent variable 07 args fOr every set of arguments args that f is called on,
with an edge from f’s maker-node to 0, edges from 6 to every O args, and an edge from 0 args
to every node corresponding to an application of the form f(args). However, each 07 and 0 args is
marginalized out by each f by way of mutation on its SPAux, effectively introducing a hyperedge
that indirectly couples the application nodes of all applications of f.

We have chosen not to represent these dependencies in the graphical structure of the PET for
the following reasons. First, once we integrate out 0 and 0 args, we can only encode these depen-
dencies at all with directed edges once we fix a specific ordering for the applications. Second, for
the orderings we will be interested in, the graph that combines both types of directed edges would
be cyclic. This would complicate future efforts to develop a causal semantics for PETs and Venture
programs.

4.4 Existential dependence and contingent evaluation

An SP family is existentially dependent on the nodes that request it as part of an ESR, in the sense
that if at any point it is not requested by any nodes, then the family would not have been computed
while simulating the PET. Existential dependence is then handled with garbage collection semantics,
whereby an SP family can no longer be part of the PET if it is not selected by any W nodes, and
thus should be unevaluated.

4.5 Examples

Here we briefly give example PETs for simple Venture programs.

4.5.1 TRICK COIN

This is a variant of our running example. It defines a model that can be used for inferences about
whether or not a coin is tricky, where a trick coin is allowed to have any weight between 0 and 1.
The version we use includes one observation that a single flip of the coin came up heads.

To keep the PET as simple as possible, we give both the program and the PET in the form where
IF has already been desugared into an SP application: (IF <predicate> <consequent> <alternate>)
has been replaced with (branch <predicate> (quote <consequent>) (quote <alternate>)),
where branch is an ordinary stochastic procedure.

28



(b)

Figure 1: The two different PET structures corresponding to the trick coin program. (a) An execution
trace where the coin is fair. (b) An execution trace where the coin is tricky, containing additional nodes that
depend existentially on the coin flip.

[ASSUME coin_is_tricky (bernoulli 0.1)]
[ASSUME weight (branch coin_is_tricky (quote (beta 1.0 1.0)) (quote 0.5))]
[OBSERVE (bernoulli weight) true]

Figure [T] shows the two PET structures that can arise from simulating this program, along with
arbitrarily chosen values.

4.5.2 A SIMPLE BAYESIAN NETWORK

Figure 2] shows a PET for the following program, implementing a simple Bayesian network:

[ASSUME rain (bernoulli 0.2)]
[ASSUME sprinkler (bernoulli (branch rain 0.01 0.4))]
[ASSUME grassWet
(bernoulli (branch rain
(branch sprinkler 0.99 0.8)
(branch sprinkler 0.9 0.00001)))]
[OBSERVE grassWet True]

Note that each of the Venture families in the PET corresponds to a node in the Bayesian net-
work. A coarsened version of the PET contains the same conditional dependence and independence
information as the Bayesian network would.

4.5.3 STOCHASTIC MEMOIZATION

We now illustrate a program that exhibits stochastic memoization. This program constructs a
stochastically memoized procedure and then applies it three times. Unlike deterministic memoiza-
tion, a stochastically memoized procedure has a stochastic request PSP which sometimes returns
a previously sampled value, and sometimes samples a fresh one. These random choices follow a
Pitman-Yor process. Figure 3] shows a PET corresponding to a typical simulation; note the overlap-
ping requests.

[ASSUME f (pymem bernoulli 1.0 0.1)]
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exp: grassWet
value: #t
exp: bemoull
value: sp:bernoulli
exp: 0.000010
value: 0.000010
exp: branch_exp exp: rain
value: spibranch value: #1
exp: 0,000010 "] exp: 0.800000
valle: 0.000010 value: 0.800000
‘oxp: 0.900000 oxp: branch_exp xp: 0.000010 exp: sprinkler xp: branch_exp exp: 0.800000 ‘oxp: 0.990000 exp: sprinker
value: 0.900000 value: spibranch value: 0.000010 ale: #1 value: spibranch value: 0.800000 value: 0.990000 ue:
3
exp: bemoull
value: spibemoul
xp: 0400000 /
value: 0.400000
exp: 0400000 xp: 0010000 exp: branch_exp xp: rain
value: 0.400000 value: 0.010000 value: spibranch value: #
2
“exp: 0.200000 exp: bernoulll
value: 0.200000 value: sp:bemoull
1
tuce Eamil

Figure 2: The PET corresponding to a three-node Bayesian network. Each of the three numbered families

correspond to a node in the Bayesian network, capturing the execution history needed to simulate the node
given its parents.
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exp: f exp: f exp: f
value: sp:pymem value: sp:pymem value: sp:pymem

2 3 4

exp: pymemoizedSP exp: pymemoizedSP
value: sp:bernoulli value: sp:bemoulli

exp: 1.000000 exp: pymem exp: 0.100000 exp: bernoulli
value: 1.000000 value: sp:sp_no_name value: 0.100000 value: sp:bernoulli

1

Venture Families

o012

Figure 3: A PET corresponding to an execution of a program with stochastic memoization. The proce-
dure being stochastically memoized, bernoulli, is applied twice, based on the value of the requests arising
in invocations of (f).

[PREDICT (f)]
[PREDICT (f)]
[PREDICT (f)]

4.6 Constructing PETSs via forward simulation

Let P be a constrained program. Venture’s primary inference strategies require an execution of
P with positive probability before they can even begin. Therefore the first thing we do is simply
evaluate the program by interpreting it in a fairly standard way, except with all conditional evaluation
handled uniformly through the ESR machinery presented above. For simplicity, we elide details
related to inference scoping.

4.6.1 PSEUDOCODE FOR EVAL, APPLY AND EVAL-REQUESTS

Evaluation is generally similar to a pure Scheme, but there are a few noteworthy differences. First,
evaluation creates nodes for every recursive call, and connects them together to form the directed
graph structure of the probabilistic execution trace. Second, there are no distinctions between prim-
itive procedures and compound procedures. We call the top-level evaluation procedure EVALFAM-
ILY to emphasize the family block structure in PETs. Third, a scaffold and a database of random
choices db are threaded through the recursions, to support their use in inference, including restoring
trace fragments when a transition is rejected by reusing random choices from the db. Note that an
environment model evaluator (Abelson and Sussmanl, [1983) is used, even though the underlying
language is pure, with the PET storing both the environment structure and the recursive invocations
of eval.
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EVALFAMILY (trace, exp, env, scaffold, db)

1 if isSelfEvaluating?(exp)
2 return (0,trace.createConstantNode(exp))
3 elseif isQuoted?(exp)
4 return (0, trace. createConstantNode(TextOfQuotation(exp)))
5 elseif isVariable?(exp)
6 sourceNode = env.findSymbol(exp)
7 REGENERATE(trace, exp, scaffold, FALSE, db)
8 return (0, race.createLookupNode(sourceNode)
9 else
10 weight,operatorNode = EVALFAMILY (trace, exp.operator,env,scaffold,db)
11 operandNodes = ||
12 for operand in exp.operands
13 (w,operandNode) = EVALFAMILY (trace,operand, env, scaffold, db)
14 weight = weight +w
15 operandNodes. append(operandNode)
16
17 (requestNode, outputNode) = trace.createApplicationNodes(operatorNode, operandNodes, env)
18 weight = weight + APPLY SP(trace, requestNode, outputNode, scaffold , FALSE, dD)
19 return (weight, outputNode)

The call to REGENERATE ensures that if EVALFAMILY is called in the context of a pre-existing
PET, it is traversed in an order that is compatible with the dependence structure of the program.
We will sometimes refer to such orders as “evaluation-consistent”. From the standpoint of forward
simulation, however, REGENERATE can be safely ignored.

APPLYSP(trace, requestNode, outputNode, scaffold, restore?,db)

weight = APPLYPSP(trace, requestNode, scaffold, restore?,db)

weight = weight + EVALREQUESTS (frace, requestNode, scaffold, restore?,db)

weight = weight + REGENERATEESRPARENTS (trace, outputNode, scaffold, restore?, db)
weight = weight + APPLYPSP(trace, outputNode, scaffold, restore?,db)

return weight

AW

Stochastic procedures are allowed to request evaluations of expressionﬂ this enables higher-
order procedures as well as the encapsulation of custom control flow constructs. For example,
compound procedures do this to evaluate their body in an environment extended with their formal
parameters and argument values.

11. To prevent this flexibility from introducing arbitrary dependencies, the expressions and environments are restricted
to those constructible from the arguments to the procedure or the procedure that constructed it.
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EVALREQUESTS (trace, node, scaffold, restore?,db)

1 sp,spaux = trace.getSP(node),trace. getSPAux(node)

2 weight =0

3 request = trace.getValue(node)

4 for id,exp,env,block,subblock in request.esrs

5 if not spaux.containsFamily(id)

6 if restore?

7 esrParent = db. getESRParent(sp, id)

8 weight = weight + RESTOREFAMILY (trace, esrParent, scaffold, db)
9 else

10 (w,esrParent) = EVALFAMILY (trace, exp, env, scaffold,db)
11 weight = weight +w

12 trace.registerFamily(node, id, esrParent)

13 else

14 weight = weight + REGENERATE(trace, spaux. getFamily (id), scaffold, restore?,db)
15 esrParent = spaux. getFamily(id)

16 if not block == NONE

17 trace.registerBlock(block, subblock, esrParent)

18 trace.addESREdge(esrParent,node. outputNode)

19 for Isrin request.lsrs

20 if db.hasLatentDBFor(sp)

21 latentDB = db. getLatentDB (sp)

22 else

23 latentDB = NONE

24 weight = weight + sp.simulateLatents(spaux, Isr, restore?, latentDB)

25 return weight

Stochastic procedures are also allowed to perform opaque operations to produce outputs given
the value of their arguments and any requested evaluations. Note that this may result in random
choices being added to the record maintained by the trace.
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APPLYPSP(trace,node, scaffold, restore?,db)

1 psp,args = trace.getPSP(node),trace. getArgs(node)
2 if db.hasValueFor(node)
3 oldValue = db.getValue(node)
4 else
5 oldValue = NONE
6 // Determine new value
7 if shouldRestore
8 newValue = oldValue
9 elseif scaffold.hasKernelFor(node)
10 newValue = scaffold. getKernel(node). simulate(trace, oldValue, args)
11 else
12 newValue = psp.simulate(args)
13 // Determine weight
14 if scaffold . hasKernelFor(node)
15 weight = scaffold. getKernel(node). weight(trace, newValue, oldValue, args)
16 else
17 weight = 0
18 trace.setValue(node,newValue)
19 psp.incorporate(newValue,args)
20 if isSP?(newValue)
21 PROCESSMADESP(trace,node, scaffold.isAAA?(node))
22 if psp.isRandom?()

23 trace.registerRandomChoice(node)
24 return weight

This functionality is supported by book-keeping to link new stochastic procedures into the trace,
and register any customizations they implement with the trace so that inference transitions can make
use of them:

PROCESSMADESP (trace,node,isAAA?)

sp = trace. getValue(node)
trace.setMadeSP(node, sp)
trace.setValue(node, spref(sp))
if not isAAA?
trace.setMadeSPAux (node, sp.constructSPAux())
if sp.hasAEKernel()
trace.registerAEKernel (node)

NN R W

4.7 Undoing simulation of PET fragments

Venture also includes requires unevaluation procedures that are dual to the evaluation procedures
described earlier. This is because PET fragments need to be removed from the trace in two situa-
tions. First, when FORGET instructions are triggered, the expression corresponding to the directive is
removed. Second, during inference, changes to the values of certain requestPSPs make cause some

34



SP families to no longer be requested. In the first case, all of the random choices are permanently
removed, whereas in the second case, the random choices may need to be restored if the proposal is
rejected.

4.7.1 PSEUDOCODE FOR UNEVAL, UNAPPLY AND UNEVAL-REQUESTS

When a trace fragment is unevaluated, we must visit all application nodes in the trace fragment so
that the PSPs have a chance to unincorporate the (input,output) pairs. The operations needed to do
this are essentially inverses of the simulation procedures described above, designed to visit nodes
in the reverse order that evaluation does, to ensure compatibility with exchangeable coupling. Here
we give pseudocode for these operations, eliding the details of garbage collectio

UNEVALFAMILY (trace,node, scaffold, db)

1 if node.isConstantNode?

2 weight = 0

3 elseif node.isLookupNode?

4 trace.disconnectLookup(node)

5 weight = EXTRACT(trace,node.sourceNode, scaffold, db)

6 else

7 weight = UNAPPLY SP(trace,node, scaffold, FALSE, db)

8 for operandNode in node.operandNodes

9 weight = weight + UNEVALFAMILY (trace,operandNode, scaffold,db)
10 weight = weight + UNEVALFAMILY (trace,node.operatorNode, scaffold,db)
11 return weight

To unapply a stochastic procedure, Venture must undo its random choices and also unapply any
requests it generated:

UNAPPLYSP(trace,node, scaffold, db)

weight = UNAPPLYPSP(trace,node, scaffold,db)

weight = weight + EXTRACTESRPARENTS (trace, outputNode, scaffold,db)
weight = weight + UNEVALREQUESTS (trace, node. requestNode, scaffold ,db)
weight = weight + UNAPPLYPSP(trace,node. requestNode, scaffold,db)
return weight

DN AW N =

To unapply a primitive stochastic procedure, we remove its random choices from the trace,
unincorporate them, and update the weight accordingly. Note that we store the value in the db so
that we can restore it later if necessary.

12. Previous work has anecdotally explored the possibility of preserving unused trace fragments and treating them as
auxiliary variables, following the treatment of component model parameters from Algorithm 8 in (Neal, [1998). In
theory, this delay of garbage collection, where multiple copies of each trace fragment are maintained for each branch
point, could support adaptation to the posterior. A detailed empirical evaluation of these strategies is pending a
comprehensive benchmark suite for Venture as well as a high-performance implementation.
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UNAPPLYPSP(trace,node, scaffold, db)

0 ON N kW~

—_— e
A WO = OO0

psp,args = trace.getPSP(node), trace. getArgs(node)
if psp.isRandom()

trace.unregisterRandomChoice(node)
if isSP(trace. getValue(node))

TEARDOWNMADESP (trace, node, scaffold.isAAA(node) )
oldValue = trace. getValue(node)
psp.unincorporate(oldValue, args)
if scaffold.hasKernelFor(node)

weight = scaffold. getKernel(node).reverseWeight(trace, oldValue,args)
else

weight = 0
db.extractValue(node, oldValue)
trace.clearValue(node)
return weight

Handling of requests during unevaluation involves two additional subtleties. First, latent random

choices must be handled appropriately. Second, requests must be unevaluated only if no other
application of the SP refers to them.

UNEVALREQUESTS (trace, node, scaffold, db)

0O ON N bk WN
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sp,spaux = trace. getSP(node), trace. getSPAux(node)
weight = 0
request = trace.getValue(node)
if request.lsrs and not db.hasLatentDB (trace. getSP(node))
db.registerLatentDB (sp, sp. constructLatentDB())
for Isr in reversed(request.lsrs)
weight = weight + sp.detachLatents(spaux, Isr,db. getLatentDB (sp))
for id, exp, env in reversed(request . esrs)
esrParent = trace.popLastESRParent(node. outputNode)
if rrace. getNumberOfRequests(esrParent) ==
trace.unregisterFamily(node, id)
db.registerFamily(sp, id, esrParent)
weight = weight + UNEVALFAMILY (trace, esrParent, scaffold, db)
return weight

When an SP is finally destroyed — i.e. when the output PSP of its maker SP application is un-

applied — then the SP can be destroyed and its auxiliary storage can be garbage collected. Because
unapplication of the maker must happen after all applications of the made SP have been unapplied
— due to the constraint that unevaluation visits nodes in the reverse order of evaluation and regen-
eration — there is no information in the auxiliary storage that needs to be preserved in the latent
DB.
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TEARDOWNMADESP (trace,node,isAAA?)

sp = trace. getMadeSP(node)
trace.setValue(node, sp)
trace.clearMadeSP(node)
if not isAAA?
if sp.hasAEKernel ()
trace.unregisterAEKernel (node)
trace.clearMadeSPAux (node)

NN RN =

4.8 Enforcing constraints via CONSTRAIN and UNCONSTRAIN

Unfortunately, the observations may not have positive probability given the program execution.
Venture may not happen to sample the right data, and but if noise is added to each data generating
expression to ensure positive probability, it may take a long time for Venture to incorporate the
observed data at all. On the other hand, the general problem of finding a program execution for
which some output has positive probability is intractable in general — it can encode SAT without
even making use of contingent evaluation or special primitives — and Venture is not designed to
attempt to invert such programs.

Venture implements a middle ground. It is designed with sufficiently stochastic probabilis-
tic programs in mind, and in particular is not a SAT-solver. However, in order to support com-
mon cases from Bayesian statistics, we do support inverting a simple kind of determinism. We
introduce a method constrain (<directive>, <value>) that recursively walks backwards along
id-on-requests edges to find the outermost application of a different kind of PSP. If the constrained
value has positive probability at this PSP application, we constrain the value and we are done. Oth-
erwise, we unevaluate the entire program and evaluate it again, in hopes that this execution will be
constrainable.

Simple versions of constrain and unconstrain can be implemented as follows:

CONSTRAIN(trace,node, value)
1 if node.isLookupNode?

2 return CONSTRAIN(trace,node. sourceNode,value)
3 elseif rrace. getPSP(node). isESRReference?
4 return CONSTRAIN(trace,trace. getESRParents(node)[0], value)
5 else
6 psp,args = trace.getPSP(node), trace. getArgs(node)
7 psp.unincorporate(trace. getValue(node), args)
8 weight = psp.logDensity(value,args)
9 trace.setValue(node,value)
10 psp.incorporate(value,args)
11 if psp.isRandom?
12 trace.registerConstrainedChoice(node)
13 return weight
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UNCONSTRAIN(trace,node)

if node.isLookupNode'!

return UNCONSTRAIN(trace,node. sourceNode)

elseif trace. getPSP(node).isESRReference?

return UNCONSTRAIN(trace, trace. getESRParents(node)|[0])

oldValue = trace. getValue(node)
psp,args = trace.getPSP(node), trace. getArgs(node)
if psp.isRandom?

1
2
3
4
5 else
6
7
8
9 trace.unregisterConstrainedChoice(node)

10 psp.unincorporate(oldValue, args)

11 weight = psp.logDensity (oldValue,args)
12 psp.incorporate(oldValue,args)

13 return weight

It is instructive to consider the following program:

[ASSUME x_1 (bernoulli 0.5)]
[ASSUME x_2 (bernoulli 0.5)]

[ASSUME x_N (bernoulli 0.5)]
[OBSERVE (xor x_1 ... x_N) True]

If xor () happens to be true by chance — i.e. constrain () did not have to adjust any random
choices — then the PET that was sampled is already drawn from the true conditioned distribution.
However, the probability of this decreases rapidly in N and because xor () is deterministic, repeated
rejection may appear to be the only option. To avoid this problem, we frequently restrict ourselves
to OBSERVES whose expressions have the form (<some-stochastic-SP> ...),i.e. they are appli-
cations of some fixed stochastic procedure. Then we can always successfully initialize and begin
inference. Venture was designed with such “sufficiently stochastic” probabilistic programs in mind;
see (Freer et al., 2010) for some rationale. We also note that to ensure ergodicity, periodic whole-
trace proposals that attempt to restart from the prior (via the INFER directive) are sufficient, although
this kind of independence sampler is unlikely to be efficient.

We note that without additional restrictions on observations, the presence of constrain () could
introduce significant complexity. Constraining a node X that is used in multiple places would not
necessarily give us an execution with positive probability, since the probability of all children of X
will now have changed.

To resolve this and to simplify our algorithms, we make the following strong assumption on
Venture programs:

For a Venture program to be valid, it must guarantee that if a node gets constrained during
inference (as opposed to from a call to observe), every node along every outgoing directed path
must be either a deterministic output PSP, a null-request PSP, or a lookup node. Moreover, any
observed nodes on this path must agree on the observed value.

In addition to the code given above, our implementation of constrain also propagates the con-
strained value along these outgoing deterministic paths, but the details of the implementation are
beyond the scope of this paper.
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S. Partitioning Traces into Scaffolds for Scalable, Incremental Inference

Most scalable inference algorithms for Bayesian networks take advantage of the network’s repre-
sentation of conditional dependence. We have seen that probabilistic execution traces make analo-
gous scalability gains possible for probabilistic programs written in Turing-complete, higher-order
languages, by representing not just conditional dependences but also existential dependencies and
exchangeable coupling.

However, PETs and the SPI also introduce complexities that can be avoided in the setting of
Bayesian networks. For example, in a Bayesian network, the random variables that could possibly
directly depend on a given random variable are easy to identify: they are the immediate children of
the node according to the direct graph structure of the network. In a PET, the value of a random
choice may change which children exist. Additionally, in Bayesian networks, all nodes are equipped
with conditional probability densities, but SPs that lack conditional density functions are permitted
in Venture. Joint densities for chains of random choices in Venture may not be available, let alone
the conditional density of a choice given its immediate descendants.

Here we describe scaffolds, the mechanism used in Venture to handle these complexities. Scaf-
folds carve out coherent subproblems of inference in the context of a global inference problem
analogously to the inference subproblems in a Bayesian network that arise by conditioning on a
subset of the nodes and querying the nodes contained within it.

5.1 Motivation and Notation

Let p be an execution and let X = {X} denote a set of nodes that we wish to propose new values
for as a block. If we only propose new values to these nodes, we may end up with a trace that has
probability 0. For example, consider the following program:

[ASSUME x (normal 0 1)]
[PREDICT (+ x 1)]

If we only propose a change to the value of x from 1 to 2, and do not propagate the change
through the application of +, then + will report probability O of sampling its output 2 given its
inputs 1 and 2.

Similarly, in the program

[ASSUME x (normal 0 1)]
[PREDICT (if (< x 0) (normal -10 1) (normal 10 1))]

if we only propose a new value for x and its sign flips, then the requester for IF will report
probability O of its old request given its new inputs.
SPs that cannot report their likelihoods introduce a similar problem. In the program

[ASSUME x (normal 0 1)]
[PREDICT (likelihood-free-sp x)]

if we only propose a new value for x, then we cannot compute the Metropolis-Hastings accep-

tance ratio since we have no way to account for the probability of the likelihood-free-sp’s old value
given its new arguments.
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In all three cases, the problem can be solved by proposing new values to other nodes downstream
of the nodes in X. However, we do not want to resimulate the rest of the program just to make a
single proposal. We want to find a middleground between rejecting at 4+ and running the entire
program. As a default, we propose new values to downstream nodes until we reach applications of
stochastic PSPs for which we can definitely compute the logdensity of its original output given any
new values for its inputs. We say that these nodes “absorb the flow of change” and so we call them
absorbing nodes.

Note that in the case of the IF statement that may switch from one branch to another, the nodes in
the old branch may no longer exist in the proposed trace, and other nodes may come into existence.

To simplify notation, we will not explicitly condition on the parents of a random variable in
our derivations. For example, in the Bayesian network A — B, we will write P(A) for P(A) and
P(B) for P(B|A). Although this would be unacceptable in the case of Bayesian networks where we
marginalize and condition arbitrarily, in our discussion of probabilistic programming we will only
ever compute probabilities of nodes given their parents, so that this notation will not be problematic.

5.2 Partitioning traces and defining scaffolds

As before, let p be an execution and let X = {X} denote a set of nodes that we wish to propose new
values for as a block. We call X the principal nodes of the proposal. Let & denote the proposed
trace. We introduce the following definitions:

1. D=D(p,X): the nodes that will definitely still exist in &, whose values might change. This
includes X, as well as any nodes at which we do not want to absorb at (e.g. deterministic
nodes) or are unable to absorb at (e.g. applications of likelihood-free SPs). Note that we have
D(p) =D(&) = D by symmetry.

2. brush(p) = brush(p,X): the nodes that may no longer be requested if D is resampled. This
includes any nodes in branches that may be abandoned, or any requests whose operator may
change.

3. R(p) =R(p,X) =D(p,X)Ubrush(p,X): the regenerated subset of p. These are all the nodes
that may either change value or no longer exist in & Conversely R(§) consists of precisely
the set of new values we are proposing for &.

4. A = A(p,X): the children of D, or equivalently, the “absorbing” nodes. For each absorbing,
the differences between the logdensity of the output given the new value and the logdensity
of the output of the old value appears in the Metropolis-Hastings acceptance ratio.

5. torus(p,X) = p\R(p): the nodes in p that are guaranteed to still exist in &, and whose values
are guaranteed not to change. By construction we have torus(p) = torus(§) = torus.

6. P(p) = P(p,X): all parents of all nodes in R(p) UA, excluding any nodes in those sets.
These are the nodes whose values would have been required to simulate R(p) from torus and
to calculate the new log densities at A, but which definitely exist and whose values cannot
change.

7. I(p): the set of all nodes that would never be referenced at all while regenerating R(p).
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Figure 4: The scaffold partitions the trace into five groups: the gold nodes that will definitely still exist in
the proposal trace but whose values may change (drg), the blue nodes at which we will definitely compute
likelihoods (absorbing), the green nodes that may no longer exist (the brush), the dark grey nodes that are
parents of nodes in these three groups (parents), and all other light grey nodes that need never be visited at all
(ignored). Note that future graphs will not distinguish between these last two groups.

8. 0 =P(p)UI(p) =P(E)UI(E). Note that we may not have P(p) = P(§), since R(p) and
R(&) may lookup different symbols in different environments, and may also request different
simulations.

These definitions give us the following partitions:

p=DUR(p)UAUO (1)
E=DUR(§)UAUO 2)

We refer to the pair (D,A) as the scaffold of the set X of principal nodes. As we will see,
the scaffold is the fundamental entity in the inference methods we will consider. It induces a set
E = E[0,scaffold] of executions that can be reached by resimulating along the scaffold, consulting
parents in O as needed. Moreover, for any & € E, the scaffold scaffold will yield the same set O in

the factorization & = scaffold Ubrush(§) UO.

5.3 Constructing the scaffold

Given a trace p and a set of principal nodes X, we construct the scaffold D(p, X) as follows. First, we
walk downstream from each of the principal nodes depth-first until every path either terminates or
reaches the application of a stochastic PSP for which we are certain we can compute a logdensity. As
we go along, we mark nodes as D or A as appropriate. However, some nodes that we marked during
this process may actually be in the brush. Therefore our second step is to recursively “disable” all
requests that may change value or that may no longer exist, and to mark as brush every node that is
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(a) (b)

Figure 5: Scaffold construction. The principal node is shown in red, resampling nodes are shown in gold,
absorbing nodes are shown in blue, and the brush is shown in green. (a) To construct a scaffold, Venture
first walks downstream from the (red) principal node, identifying all the nodes whose values could possibly
change, stopping at nodes that are guaranteed to be able to absorb the change (albeit perhaps with a probability
density of 0). (b) Venture then identifies the brush — those nodes that may no longer exist depending on the
values chosen for the nodes being resampled — using a separate recursion. Once the brush has been identified,
the definite regeneration graph (gold) and the border (blue) are straightforward to identify. See the main text
for additional details.

only requested by these disabled requests. We then remove from D and A every node in the brush.
Figure [5] gives an overview of this process, while Figure [0 illustrates the need for removing the
brush of the source trace p before making a proposal.

5.4 Pseudocode for constructing scaffolds

The overall construction procedure for scaffolds involves several passes, all linear in the size of the
scaffold:

CONSTRUCTSCAFFOLD(trace, principalNodes, kernellnfo)

¢DRG,cAbsorbing,cAAA = FINDCANDIDATES CAFFOLD(trace, principalNodes)
brush = FINDBRUSH(trace,cDRG,cAbsorbing,cAAA)

drg,absorbing,aaa = RemoveBrush(cDRG,cAbsorbing,cAAA,brush)

border = FINDBORDER (drg,absorbing,aaa)

regenCounts = COMPUTEREGENCOUNTS(trace, drg,absorbing,aaa,border,brush)
lkernels = loadKernels(trace, drg, kernellnfo)

return Scaffold(drg,absorbing,aaa,border,regenCounts, lkernels)

N NN W

Finding a candidate scaffold given a set of principal nodes involves walking downstream from
each principal node until it is possible to absorb. To find the brush, Venture must count the number
of times a given requested family is reachable from the DRG. If this equals the number of times
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exp: (branch_exp (f) (quote (f)) (quote (f)))
§ value: 1

request: [(161334320, (f), <env>)] s

157180560

1

Venture Families

159241808

Figure 6: The need for detaching the brush before making a proposal. This trace includes the invocation
of make_symmetric_dirichlet_discrete, an SP that produces SPs whose applications are exchangeably
coupled. In this trace, the result of one application determines whether or not another application is made.
Thus the second application is in the brush of the scaffold generated by the first application. If we do not
detach the brush first, we may propose to the first application conditioned on an application that will not exist
in the new trace.

the family is requested, then all references to the family originate in the DRG, and it is therefore
possible for the family’s existence to depend on the values of the DRG nodes.

FINDBRUSH(trace,cDRG, cAbsorbing,cAAA)

disableCounts = map(0)
disabledRequestNodes = set()
brush = set()
for node in cDRG
if node.isRequestNode?
DISABLEREQUESTS(frace, node, disableCounts, disabledRequestNodes, brush)
return brush

NN RN =

43



DISABLEREQUESTS (trace, node, disableCounts, disabledRequestNodes, brush)

1 if node in disabledRequests

2 return

3 for esrParent in trace. getESRParents(node. outputNode)

4 disableCounts|esrParent] = disableCounts|esrParent| + 1

5 if disableCounts|esrParent| == trace. getNumberOfRequests(esrParent)

6 DISABLEFAMILY (trace, esrParent, disableCounts, disabledRequestNodes, brush)

DISABLEFAMILY (trace,node, disableCounts, disabledRequestNodes, brush)

1 brush.insert(node)
2 if node.isOutputNode?
3 brush.insert(node. requestNode)
DISABLEREQUESTS (trace,node. requestNode, disableCounts, disabledRequestNodes, brush)
DISABLEFAMILY (trace,node.operatorNode, disableCounts, disabledRequestNodes, brush)
for operatorNode in node.operatorNodes

DISABLEFAMILY (trace, operatorNode, disableCounts, disabledRequestNodes, brush)

~N N b

The border consists of nodes where resampling stops. This includes absorbing nodes, AAA
nodes, and also resampling nodes with no children, e.g. from top-level PREDICT directives:

FINDBORDER(trace, drg,absorbing, aaa)

1 border = union(absorbing,aaa)

2 for node in drg

3 if not hasChildInAorD(trace, node,drg, absorbing)
4 border.insert(node)

5 return border

For stochastic regeneration to proceed correctly, the nodes in the scaffold must be annotated with
counts that allow determination of when a given node is no longer referenced and can therefore be
removed.
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COMPUTEREGENCOUNTS (trace, drg,absorbing,aaa,border, brush)

1 regenCounts = map(0)
2 for node in drg
3 if node in aaa
4 regenCounts|node] = 1 // will be added to shortly
5 elseif node in border
6 regenCountsnode| = trace. getChildren(node). size + 1
7 else
8 regenCounts[node| = trace. getChildren(node). size
9 // Now determine the number of times each reference to an AAA node will be regenerated
10  for node in union(drg,absorbing)

11 for parent in trace. getParents(node)

12 MAYBEINCREMENTA AAREGENCOUNT (parent)

13 for node in brush

14 if node.isLookupNode"!

15 MAYBEINCREMENTA A AREGENCOUNT (node. sourceNode)

16 elseif node.isOutputNode?

17 MAYBEINCREMENTA A AREGENCOUNT(frace. getESRParents(node)[0])

18 return regenCounts

MAYBEINCREMENTA A AREGENCOUNT(trace, node, regenCounts)

1 value = trace.getValue(node)
2 if value.isSPRef? and not value.makerNode == node and aaa.contains?(value. makerNode)
3 regenCounts|value. makerNode] = regenCounts|value.makerNode] + 1

5.4.1 ABSORBING AT APPLICATIONS

As we discussed earlier, there are cases in which we do not need to visit all the absorbing nodes
explicitly to account for their logdensities because the SP can keep track of its outputs and report
the joint logdensity of all of its applications. If this is the case, we say that the application of the SP
is absorbing at applications (AAA), and our preliminary walk to the find the scaffold can stop upon
reaching an AAA node. Figure[/| gives a graphical illustration. Note that the AAA node itself is in
D-not A-since its value may change.

Handling AAA introduces many subtle bookkeeping challenges, and the code for computing
the regenCounts for AAA nodes will seem mysterious until inspecting the special cases for AAA
nodes in regen and extract in the next section.

5.5 Breaking down a global inference problem into collections of local inference problems

If the principal nodes are chosen to be all the random choices in the current trace, then the border
will correspond to the random choices constrained by the OBSERVESs, and the terminal resampling
nodes will be any ASSUMESs that are not subsequently referred to, as well as all the PREDICTs. The
definite regeneration graph will only contain random choices that are guaranteed to exist in every
execution of the probabilistic program. Conditionally simulating the entire program can be reduced
to conditionally simulating a completion of a torus given the absorbing nodes A.
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Figure 7: Scaffolds with and without the ‘‘absorbing-at-applications” optimization. Repeated applica-
tions of stochastic procedures are common in probabilistic programs for machine learning and statistics. (a)
shows a PET fragment typical of this repetition. The principal node is in red, resampling nodes are in yellow,
and the constructor SP is in blue. Note the size of the scaffold, which grows linearly with the number of appli-
cations. (b) shows the same PET fragment but where the “constructor” SP (whose resulting SP is repeatedly
applied) can absorb at applications. The SP is now pink, and it because it absorbs at applications (implement-
ing the weight calculations needed for inference via information in its auxiliary storage) the scaffold size no
longer scales linearly with the number of applications.
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This equivalence is an important feature of Venture’s design. Any inference strategy that works
for entire programs can be run on a program fragment, conditioned on the remainder, and vice
versa. Venture can break down the problem of sampling from the conditioned distribution over
the entire PET, which might be extremely high dimensional, into collections of overlapping lower-
dimensional inference subproblems. Any Venture strategy applicable to the overall problem be-
comes applicable to each subproblem. Current research is exploring the use of Venture programs
to construct custom proposals, where each PREDICT directive is mapped to a principal node or a
resampling node in the border, and each OBSERVE statement is matched to an absorbing node.

5.6 Local kernels and scaffolds

Later sections describe techniques for building up transition operators that efficiently modify con-
tents of scaffolds, sampling its definite regeneration graph and brush from a distribution that leaves
its conditional invariant. These transition operators are built out of stochastic proposals for individ-
ual random choices that we call local kernels. These kernels must be able to sample new values for
individual random choices as well as calculate the ratio of forward and reverse transition probabili-
ties necessary for using the sampled value as a proposal for a Metropolis-Hastings scheme. Venture
supports local kernels of two types: simulation and delta kernels.

5.6.1 LOCAL SIMULATION KERNELS: RESIMULATION & BOTTOM-UP PROPOSALS

A local simulation kernel for a random choice x cannot look at previous values of x when making
a proposal. The simplest simulation kernel is the one that samples x according to the simulate ()
provided by its associated stochastic procedure. We will sometimes refer to this as a “resimulation”
kernel.

1. Let m_, denote the order in which the local kernels are called during sample. Then sample
returns a new value x along with the following weight:

P (x)

KTC% ('x)
2. Let m._ denote the reverse of the order in which the local kernels are called during unsample.
Then unsample returns the following weight:

Ky, (x)

Py, (x)

For the resimulation kernel, the weights from this local kernel are identically 1. Simulation
kernels can also be conditioned on anything in torus without breaking asymptotic convergence.
This is because the values of random choices in the torus are all available at proposal time and
also unaffected by the transition. Simulation kernels can thus be used to make bottom-up proposals,
using other values in the source trace as input. This provides one mechanism for augmenting the top-
down processing that is typical in probabilistic programming with custom bottom-up information.

5.6.2 LOCAL DELTA KERNELS AND REUSE OF RANDOM CHOICES

Venture also supports delta kernels. When these kernels transition the trace from x’ — x, they have
access to the previous state x’ in addition to the contents of the torus. A Gaussian drift kernel, where
x ~ N (¥,6?), is a typical example. They satisfy the following contract:
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1. sample returns a state x’ with weight:

2. unsample returns O.

These kernels cannot be applied to stochastic procedures that exhibit exchangeable coupling
between applications, nor can they be used in particle methods. Since they receive the source state
as an input, they also provide a mechanism for re-using the old value of a random choice if its parent
choices have not changed. Delta kernels can thus reduce unnecessary or undesirable resampling.

6. Stochastic Regeneration Algorithms for Scaffolds

We now show how to coherently modify a trace, given a partition and a valid scaffold, using an
algorithm we introduce called sftochastic regeneration. Variations on stochastic regeneration, some
of which can be expressed as simple parameterizations, can be used to implement a wide range of
stochastic inference strategies.

The simplest use of stochastic regeneration is to implement a Metropolis-Hastings transition
operator for PETs as follows. First, the border of the scaffold is “detached” from the trace in an
arbitrary order, and the random choices within the trace fragment that has been detached are stored
in an “extract”. We will sometimes abbreviate this process as detach. Next, the border of the
scaffold is “regenerated and attached” in reverse order, yielding a new trace. We will sometimes
abbreviate this process as regen. This new trace can be accepted or rejected. If it is accepted, the
algorithm has finished. If it is rejected, it is detached again, and the original extract is fed to the
regeneration algorithm. This restores the trace to its original state.

Assuming simulation and density evaluation of the constituent PSPs is constant, the runtime of
this process scales with the size of the scaffold and the brush, not the size of the entire PET. Nodes
that cannot influence or be influenced by the transition are never visited. PET nodes are regenerated
in the opposite order that they were visited during detach; see Figure [§|for a trace that illustrates the
need for this symmetry.

6.1 Detaching along a scaffold with DETACH-AND-EXTRACT

Detach-and-Extract takes a scaffold and a trace, and converts the trace into a torus and a full
omegaDB. At that point, the torus is ready for a new proposal, while the omegaDB then contains all
the information needed to restore the original trace. The first step is to disconnect (detach) the trace
fragment from the border of the scaffold. The second step is to extract all the random choices from
the trace fragment and store them in the omegaDB.
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exp: (branch_exp (eq n 1.000000) (quote (f 0.000000)) (quote (f 0.000000)))
value: 1

exp: (f 0.000000)

request: []

exp: 0.000000
value: 0.000000

expif
value: sp:sym._dir_mult

exp: n
value: 0.000000

Figure 8: Due to partially exchangeable SPs, detach and regen must visit nodes in opposite orders. A
procedure with partial-exchangeable coupling is applied in both the absorbing border and the brush. The
probability of the absorbing nodes depends on the order in which regeneration takes place. As Venture is
detaching, it needs to compute the probability of the absorbing nodes that it would have calculated if it had
proposed this trace by regenerating along the scaffold. In particular, if it would have visited the absorbing
application first during regen, then it must visit the absorbing application last during detach. Venture solves
this problem by having detach always detach all nodes in the opposite order from how regen would have
generated them.

DETACHANDEXTRACT(trace, border, scaffold)
1 weight =0
2 db =DB()
3 for node in reversed(border)
if scaffold.isAbsorbing(node)
weight = weight + DETACH(trace,node, scaffold, db)
else
if node.isObservation
weight = weight + UNCONSTRAIN(trace,node)
9 weight = weight + EXTRACT (trace,node, scaffold,db)
10 return weight,db

o0 NN

To detach a node from the border, Venture must unincorpoate the value from the PSP that was
previously responsible for generating it, adjust the weights, and then extract its parents:

DETACH(trace,node, scaffold, db)

psp,args = trace. getPSP(node), trace. getArgs(node)
groundValue = trace. getGroundValue(node)
psp.unincorporate(groundValue,args)

weight = psp.logDensity(groundValue,args)

weight = EXTRACTPARENTS(trace, node, scaffold,db)
return weight

AN N AW =

To extract the parents of a node, Venture loops over the parents in the correct order:
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EXTRACTPARENTS (trace, node, scaffold, db)

1 weight = EXTRACTESRPARENTS(trace,node, scaffold,db)
2 for parent in reversed(trace. getDefiniteParents(node) )

3 weight = weight + EXTRACT (trace, parent, scaffold, db)
4 return weight

EXTRACTESRPARENTS (trace,node, scaffold, db)

1 weight =0

2 for parent in reversed(trace. getESRParents(node))

3 weight = weight + EXTRACT (trace, parent, scaffold, db)
4 return weight

The key idea in this process is that when a node is no longer referenced by any others — that is,
its regenCount is 0 — it can be unevaluated. Also, if a node is a request node, before unevaluating it
all requests it generates should be unevaluated, which may trigger the trace fragments corresponding
to the request to be unevaluated if they are no longer referenced.

EXTRACT(trace,node, scaffold, db)

1 weight =0
2 value = trace.getValue(node)
3 if value.isSPRef? and not value.makerNode == node and scaffold.isAAA (value. makerNode)
4 weight = weight + EXTRACT(trace, value.makerNode, scaffold,db)
5 if scaffold.isResampling(node)
6 scaffold.decrementRegenCount(node)
7 if scaffold. getRegenCount(node) ==
8 if node.isLookup?
9 trace.clearValue(node)
10 else
11 if node.isRequestNode?
12 weight = weight + UNEVALREQUESTS(trace,node, scaffold, db)
13 weight = weight + UNAPPLYPSP(trace,node, scaffold, db)
14 weight = weight + EXTRACTPARENTS (trace, node, scaffold, db)
15 return weight

6.2 Regenerating a new trace along a scaffold with REGENERATE-AND-ATTACH

Regenerate-and-Attach, often abbreviated as regen, takes a scaffold, a torus, and an omegaDB, as
well as a control parameter that indicates whether or not it is restoring (i.e. replaying random choices
from the omegaDBﬂ The key idea in regen is that it ensures the PET is constructed via sequence
of self-supporting PETs, that is PETs where all parents of a node — including all choices on which
a given random choice directly depends — have been regenerated before the node itself is.

13. It also takes a map from nodes to the gradient of their log densities, for use by variational kernels; we will discuss
this later in the advanced inference section.
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REGENERATEANDATTACH (trace, border, scaffold, restore?, db)

1 weight =0

2 for node in border

3 if scaffold.isAbsorbing?(node)

4 weight = weight + ATTACH(trace,node, scaffold, restore?,db)

5 else

6 weight = weight + REGENERATE(trace,node, scaffold, restore?,db)

7 if node.isObservation?

8 weight = weight + CONSTRAIN(trace,node,node. observedValue)
9 return weight

To attach a node from the border, one first regenerates its parents, then “attaches” the trace
fragment to the current trace, making it responsible for generating the current node in the border.
This involves updating the weight and also incorporating the value into the stochastic procedure that
is newly responsible for generating it.

ATTACH(trace,node, scaffold, restore?,db)

psp,args = trace. getPSP(node),trace. getArgs(node)

groundValue = trace. getGroundValue(node)

weight = REGENERATEPARENTS (trace, node, scaffold, restore?,db)
weight = weight + psp.logDensity(groundValue,args)
psp.incorporate(groundValue,args)

return weight

AN N AW -

REGENERATEPARENTS (trace, node, scaffold, restore?, db)

1 weight =0

2 for parent in trace. getDefiniteParents(node)

3 weight = weight + REGENERATE(trace, parent, scaffold, restore?,db)

4  weight = weight + REGENERATEESRPARENTS (trace, node, scaffold, restore?, db)
5 return weight

REGENERATEESRPARENTS (frace, node, scaffold, restore?, db)

1 weight =0
2 for parent in trace. getESRParents(node)
3 weight = weight + REGENERATE(trace, parent, scaffold, restore?,db)

4 return weight

Regenerating a node involves updating its regeneration counts, to ensure that after regeneration,
detach can be correctly called on the new trace:
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REGENERATE(trace,node, scaffold, restore?,db)

1 weight =0

2 if scaffold.isResampling?(node)

3 if scaffold. getRegenCount(node) ==

4 weight = weight + REGENERATEPARENTS (trace,node, scaffold, restore?,db)

5 if node.isLookup?

6 trace.setValue(node, trace. getValue(sourceNode))

7 else

8 weight = weight + APPLYPSP (trace,node, scaffold, restore?,db)

9 if node.isRequestNode?
10 weight = weight + EVALREQUESTS (trace,node, scaffold, restore?,db)
11 scaffold.incrementRegenCount(node)

12 value = trace. getValue(node)

13 if value.isSPRef? and not value. makerNode == node and scaffold.isAAA?(value. makerNode)
14 weight = weight + REGENERATE(trace, value. makerNode, scaffold, restore?,db)

15 return weight

6.3 Building invariant transition operators using stochastic regeneration

Stochastic regeneration can be used to implement a variety of inference schemes over probabilistic
execution traces. In addition to modifying the trace in an undoable fashion as described above,
stochastic regeneration provides numerical weights that are needed for inference schemes such as
Metropolis-Hastings.

6.3.1 WEIGHTS ASSUMING SIMULATION KERNELS

Assume that the local kernels used for each stochastic procedure application is a simulation kernel
— that is, the value it proposes is independent of the value of the random choice in p. Let  be
the (after the fact) regen order for &, which is the order in which the local kernels are called during
regen, and which is also by construction the reverse of the order in which the local kernels would
be called during detach. Then

1. regen returns
Pr(R(§),A)
Kregen(R(5))

2. detach returns:
Kregen (R(S))

Pr(R(§),A)

where Kregen is the kernel that proposes to R(-) by calling local kernels in the regen order, and
detach computes the reverse probability correctly since each local kernel is unapplied in the reverse
of the order in which it would have been applied during regen. These weights can be used to
implement Metropolis-Hastings transitions between p and &.

Note that if all local kernels are resimulation kernels, only the “likelihood ratio” induced by the
absorbing nodes is involved in the Metropolis-Hastings acceptance ratio.
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6.3.2 WEIGHTS ASSUMING DELTA KERNELS

Now assume that at least one of the local kernels is a delta kernel — that is, the value it proposes
depends on the value of the random choice being modified from p. In this case, regen and detach
do not return useful quantities individually, but their product (detachAndRegen) is the same as in
the case of simulation kernels, and is suitable for implementing Metropolis-Hastings transitions:

Pr, (R(&), A)Kregen(R() = R(p))
Pr,(R(p),A)Kregen(R(p) = R(E))

3)

6.4 Context-independent versus context-specific inference schemes

The contents of the scaffold and brush do not depend on the values of the principal nodes for a
given transition. For example, every random choice whose existence might be affected by a value
chosen for a principal node (or a descendant of a principal node that must be resampled) must be
included in the brush, and regenerated during a transition, even if the particular value(s) sampled
for the principal node were consistent with the old execution trace. It could be asymptotically more
efficient in some circumstances to exploit context-specific independencies, both for the values of
random choices and for their existence.

Unfortunately, context-specificity comes at the cost of significant additional complexity. Other
Turing-complete probabilistic programming systems — for example, the original implementation
in (Mansinghka), 2009), as well as MIT-Church, and an earlier version of Venture — were context
sensitive. Monte was context-independent but significantly more limited than Venture. Of these,
we believe only the earlier version of Venture achieved the correct order of growth for all scale
parameters in Latent Dirichlet Allocation, and none supported reprogrammable inference.

It seems likely that scaffold construction and stochastic regeneration can be interleaved to retain
the flexibility of our current architecture while achieving the efficiency of an update scheme sensitive
to context-specific independencies. We leave this for future work.

7. General-purpose Inference Strategies via Stochastic Regeneration

Venture’s inference programming language provides a number of primitive inference mechanisms .
The effect of each strategy is the evolution of a PET according to a transition operator that leaves
the posterior distribution on PETs invariant, with modifications constrained to lie within the scaf-
fold. Each of these strategies can be applied to any scaffold, including the global scaffold. Each
is implemented using stochastic regeneration, with regen and detach performing mutation of the
trace in place and returning weights that can be used for any rejection steps necessary to maintain
invariance.

Before describing specific inference strategies, we establish some preliminary results that sim-
plify reasoning about transition operators on PETs.

7.1 Factorization of the acceptance ratio

Let p be a PET representing an execution and 7 be an ordering of its nodes. Suppose we visit each
node in this order, for each SP application (i.e. random choice) computing the probability density
of its output given its input, and then passing that input-output pair to the incorporate method asso-
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ciated with the SP, to handle exchangeable coupling. Define Py (p) to be the total probability density
of the sequence of random choices in p, i.e. the product of the probability densities calculated above.
Recall that every SP satisfies the property that the probability of any sequence of input-output pairs
is invariant under permutation. Thus we have that Pr(p) = P(p).

For an arbitrary subset Z of the nodes in p, we do not necessarily have Py, (Z) = Pr,(Z). The
equivalence only holds over the probability of all of p, not over arbitrary fragments of it. For
example, consider the following program:

(assume f (make-ccoin 1 1))
(predict (f))
(predict (f))

Now let p be an execution with (say) both predicts true. Then the probability of the first predict
depends on whether or not it is weighted before or after the second predict, but the total probability
will be the same no matter which order we proceed in.

However, the probabilities will be equal if Z is a prefix in both orderings, because we can view
Z as the complete trace associated with some modified probabilistic program p’.

Proposition 7.1. Let p,§ € E[torus,D]. Let m, be a permutation on p such that ©,(PUI) <
To(R(p) UA), and likewise for . Then

P(p) _ Pry(R(p).A) “

Proof. We can factor p and § into disjoint subsets:
p=(PUDUR(p)UA) Q)
&= (PUDU(R(E)UA) (6)

We have Py, (PUI) = Py, (PUI) since the set is a prefix in both orderings. The result follows
immediately. 0

7.2 Auxiliary variables for state-dependent stochastic selection of kernels

We would like to be able to use Metropolis-Hastings to construct valid transition operators that leave
a conditional distribution P() on PETs invariant. In some cases, we also would like these transition
operators to be individually ergodic. For any random choice guaranteed to be in all executions —
that is, the SP application is in the DRG of the global scaffold — this is straightforward. Standard
cycle or mixture hybrid kernels (see e.g. (Bonawitz, 2008;|Andrieu et al.,|2003; Mansinghkal [2009)))
can be used to sequence Metropolis-Hastings proposals on individual variables. Alternately, if we
are only interested in inference strategies that choose random choices at uniformly at random, we
can make a compound Metropolis-Hastings proposal that first selects a random variable to change
(using it to seed a scaffold) and then makes a within that scaffold. Because the choice of random
choices involves only a simple state dependence, and it is (nearly) trivial to integrate out the number
of paths from some trace p to another trace & under this sequence of choices, it is straightforward to
accommodate it in a single Metropolis-Hastings step.

Venture supports a broader range of transition operators: Metropolis-Hastings proposals where
the proposal kernel is randomly chosen from a state-dependent distribution. Let I be a (possibly
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infinite) set, f a stochastic function from traces to / with induced density Ps(). For every i € I, let
Q; be a proposal kernel on PETs, and let p be the current PET. Then the following cycle kernel on
the extended state space Q x [ preserves T

1. Sample i|p ~ f(p).

2. (a) Propose &~ Q;(p —&).
(b) Accept if
. Pr(f(€) =i) P(E)Qi(E—p)
U Omitorm(O. 1 < b (o) =1) Po)0ip + )

This scheme treats the choice of kernel as a transient auxiliary variable / that is created solely for
the duration of the ordinary Metropolis-Hastings proposal that depends on it. Invariance is ensured
by accounting for the effect of Q; on P¢(f(§) = i). This construction can be used to straight-
forwardly justify sophisticated custom proposal strategies such as Algorithm 8 from (Neal, [1998))
without need for any approximation.

Stochastic index selection makes it straightforward to compositionally analyze richer transition
operators on PETs. For example, one can select scaffolds by choosing a single principal node
uniformly at random, as in typical Church implementations. Alternately, one could estimate the
entropy of the conditional distributions for each random choice given its containing scaffold, and
choose scaffolds with probability proportional to this estimate. One could also select principal nodes
by starting with some query variable of interest — e.g. a random choice representing an important
prediction or action variable — and walk the PET, favoring random choices that are “close” to the
query variable.

We anticipate that the evolution of the Venture inference programming language will depend
on the expansion and refinement of a library of techniques for converting proposals into invariant
transition operators.

7.3 Metropolis-Hastings via Stochastic Regeneration

Here we describe the basic Metropolis-Hastings algorithm for incremental inference over a PET.
With all of the tools we have developed so far, a generic version of this transition operator is straight-
forward to specify:

1. Sample a set of principal nodes principals ~ f(p), and record the probability P(f(p) =
principals) of sampling it.

2. Construct D with principals as the set of principal nodes.
3. Set a = detachAndRegen (D)
4. Calculate P(f(&) = principals).

5. Accept if
y < PUE) = pr{nC{paIS) o
P(f(p) = principals)
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Correctness follows immediately from and (3)), and applies to a broad class of customized
kernels. Because stochastic regeneration does not visit portions of the PET that are conditionally
independent of the random choices affected by the transition, it is more scalable than approaches
based on transformational compilation. In particular, for typical machine learning problems on
datasets of size N, the number of random choices scales linearly with N but the connections in
the PET are sparse. Thus an inference sweep of N single-site Metropolis-Hastings transitions —
enough to consider each random choice roughly once — requires O(N) time, as opposed to O(N?)
time for transformational compilers.

7.4 Approximating optimal proposals via Stochastic Variational Inference

We can use the same auxiliary variable technique to lift any local proposal into one that preserves
global stationarity. Here we show how to learn a local variational approximation to the posterior
distribution on R(§) given A using regen and detach, and then wrap it in Metropolis-Hastings as
discussed above.

7.4.1 POSING THE OPTIMIZATION PROBLEM

Let p be a trace and D a definite regeneration graph inducing torus. Let Q be some family of
distributions on E[torus, D] where every Qg € Q is defined by its parameters 8 € ®, which control
the local kernels along D, and where each Qg reverts to the resimulation kernel on the brush. Our
goal is to I-Project P(R) onto the space Q, which involves solving the following optimization
problem:

minimize f(8) = Eg g, [log
subjectto 6 € ©

7.4.2 STOCHASTIC GRADIENT DESCENT

One generic approach is stochastic gradient descent. Under assumptions of differentiability that
may not hold in arbitrary programs, the gradient of the objective function has the following nice
form (as originally shown in (Wingate and Weber, [2013)) for entire traces):

Vof(0) = VoEz_g, [log PQ(;((IESE)&)J )
o [ 0u(R(E))1og 2o e ®)

- e {QG(R@)) log m}di ©)

~ [ voos(RiE) o B ek [ 0u(R(E) (Volog ot e 10)

(11)
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_ Qs(R(8))

= J,o& VOO R e (12
_ Q6(R(8))

~ [ OuRE)Tolox 0 (R(E) log o2 SR () a3
_ Qs(R(8))

=Ee g, [Velong(R(&))log P(;(&)?A)] (14)

where we used that

0u(R(E)) (Valog 2ot az = [ 0uRE®) (FalozQuRENAE 15

ke €x
= Jie V0o (R(E))dE (16)
_ /é _ Qo(R(E)d (17)
-0 (18)

Thus for a given setting of 81"), we can approximate the gradient Vg f(8)|q« using Monte Carlo,
by forward-sampling trajectories from Qgq. This is the scheme proposed in (Wingate and Weber,
2013):

1. Sample a trajectory from Qg).
2. Calculate the noisy gradient estimate 8().

3. Take a noisy gradient descent step 801 := 8(1) — () §(").

7.4.3 AS A PROPOSAL FOR METROPOLIS-HASTINGS

We can solve this optimization problem as above to construct a proposal distribution Qg+, and then
sample & from it and accept or reject it as a single M-H proposal. Note that while solving the
optimization problem, we did not inspect any nodes that were in p but that might not be in &;
therefore we can use the same Qg+ to compute the probability of the reverse transition.

7.4.4 USING REGEN AND DETACH

The stochastic regeneration recursions can be easily extended to carry additional metadata that en-
ables them to evaluate local gradients for each random choice, and store this information as a local
kernel that modifies additional state capturing variational parameters. Once this is done, it turns out
that both the stochastic gradient optimization of the variational approximation and the use of it as a
proposal can be expressed using stochastic regeneration:

1. Construct D.
2. Detach p.

3. For every application node in D whose operator cannot change and that can compute gradi-
ents, initialize variational parameters to the current arguments.
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4. Loop until satisfied with the quality of the variational approximation:

(a) Attach variational kernels to D to define Qg .
(b) Call regen to sample § ~ Qq), and to compute

P(EA)
log (Qem <R<&>>>

as well as the local gradients {Vglog Qg (R(E))}.
(c) Take a gradient step.
(d) Detach.

5. restore p to compute O := FRip)A)

6. detach

7. regen to sample & and compute o 1= %ﬁ)(gg-

8. Accept if
P .
U ~ Uniform(0,1) < —/—>—=. =
O <

8. Particle-based Inference: Enumerative Gibbs and Particle Markov chain Monte
Carlo

Many inference strategies involve weighing multiple alternative states against one another as a way
of approximating optimal Gibbs-type transition operators over portions of the hypothesis space.
Gibbs sampling on a discrete variable in a Bayesian network can be implemented by enumerating all
possible values for the variable, substituting each into the network, evaluating the joint probability
of each network configuration, then renormalizing and sampling. Normalized importance sampling
for approximating Gibbs involves proposing multiple values for a variable from its prior, weighting
by its likelihood, and then normalizing over and sampling from the sampled set. Each of these
techniques can be applied iteratively to larger subsets of variables. For example, discrete Gibbs
can be iterated over a sequence of variables to generate a proposal from a single-particle particle
filter, or extended via enumeration (and perhaps dynamic programming) to larger subsets of random
variables. Normalized importance sampling can be also iterated to yield sequential importance
sampling with resampling, and embedded within a Markov chain to yield particle Markov Chain
Monte Carlo techniques.

It can be useful to think of these inference strategies as instantiations of the idea of weighted
speculative execution technique within inference programming. An ensemble of executions is rep-
resented, evolved and stochastically weighted and selected via the absorbing nodes, although ulti-
mately only one of these executions will be used.

We refer to each alternative state as a particle, and implement Gibbs sampling, particle Markov
chain Monte Carlo, and other techniques using general machinery for particle-based inference meth-
ods. This allows us to develop common techniques for handling the dependent random choices in
the brush — both in the proposal and in the analysis — that apply to all these inference strategies.
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8.1 In-place mutation versus simultaneous particles in memory

Particle methods also provide new opportunities for time-space tradeoffs in inference. Although
the semantics of particle methods involve multiple alternative traces, it may not always be desir-
able, or even possible, to represent alternate traces in memory simultaneously. Consider scaffolds
whose definite regeneration graph or brush invokes a complex external simulator. If we cannot
modify the code of this simulator, or it relies on an expensive external compute resource that cannot
be multiplexed, it will be necessary to implement particle methods via mutation of a single PET
in place. Otherwise, it is likely to be more efficient to represent all particles in memory simulta-
neously, sharing a common PET and scaffold as their source, and cloning the auxiliary states of
stochastic procedures that are referred to from multiple particles. This choice also enables the par-
allel evolution of collections of particles via multiple independent threads, synchronizing whenever
resampling occurs.

Venture supports both in-place mutation and simultaneous representation of particles. This is
necessary to recover asymptotic scaling that is competitive with custom sequential Monte Carlo
techniques. In this paper, we focus on the transition operators associated with particle methods,
and give pseudocode for implementing them in terms of a generic API for simultaneous particles.
The data structures needed to implement this API efficiently, and the algorithm analysis for effi-
cient implementations, involve novel applications of techniques from functional programming and
persistent data structures and are beyond the scope of this paper.

8.2 The Mix-MH operator for constructing particle-based transition operators

Although the auxiliary variable technique introduced previously is sufficient for lifting a local pro-
posal into a global Metropolis-Hastings proposal, it will be helpful to introduce a variant of the
technique that is closed under application — i.e. the kernel that results from applying the technique
is a valid proposal kernel that can be parameterized, randomly selected, and used as a proposal
in a subsequent application. This will give us significant additional flexibility in explaining and
justifying our particle-based inference schemes.

8.2.1 METROPOLIS-HASTINGS

Suppose we have some distribution 7 of interest on €2.

Let K be a proposal kernel on Q2. We can create a new kernel MH(K, 1) based on it that satisfies
detailed balance with respect to Tt by the Metropolis-Hastings rule. Instead of representing it as a
black-box kernel, we will keep around its constituent elements, so we have

MH(K,7) = (K,1) (19)

where
Mp — &) =n(E)K(E —p)
and where applying (K,\) involves:

1. Sample & from K(p,§&).
2. Let U ~ [0, 1]. Accept the new trace & iff



It is straightforward to show that this transition operator preserves detailed balance with re-
spect to T, and therefore leaves 7 invariant. Ergodic convergence can be proved under fairly mild
assumptions (Andrieu et al.| 2003)).

8.2.2 STATE-DEPENDENT MIXTURES OF KERNELS

We would like to be able to construct compound kernels that are themselves stochastically cho-
sen, and certify detailed balance of the compound kernel given easily verified conditions on the
component kernel(s) and the stochastic kernel selection rule.

Let P() be a density of interest, such as the conditioned density on resampling nodes given
the absorbing nodes in a scaffold. Let I be a (possibly infinite) set, and f(p) = i be a stochastic
function from traces to I, with P¢(i) the density of i induced by f. We will use f(p) to select
a kernel Q; = (Kj,o;) at random given the trace p (and also evaluate Ps(f () = i) for reversing
the transition). Let K;(p — &) be a transition operator on traces that can be simulated from, and let
o (p — &) be a procedure that evaluates the factors out of which the Metropolis-Hastings acceptance
ratio is constructed:

oi(p = &) = PE)Ki(E—p)

Consider the following kernel, parameterized by scalars A;(p — &) to be determined:
1. Sample i ~ f(p). This will be used to choose a kernel K;.
2. Sample & ~ K;(p — §).

3. LetU ~ [0, 1]. Accept & iff
Ai(p — €)
Mi(E — p)

Our goal is to define A;(p — &) such that this kernel preserves detailed balance, analogously to
the Metropolis-Hastings kernels described above. We assume that the stochastic function f satisfies
the following symmetry condition:

Pr(f(p) = D)Ki(p = &) >0 = Pr(f(§) = )Ki(E = p) >0

This expresses the constraint that if you can reach & from p by selecting Q; according to f(p) then
applying it, then with nonzero probability, reaching p from & is possible by selecting the same Q;
according to f(&) then applying it. Let I(p) = {i € I : P¢(f(p) = i) > 0} be the set of indices
(kernels) reachable from p, and I(p,&) = I(p) NI(&) be the set of indices (kernels) reachable from
both p and &. To establish detailed balance for this kernel, it suffices to show that

Z Py(f Ki(p = ENi(p = &) = Z Py(f Ki(€E—p)h(E—p) (20)

i€l(p i€l(§

U<

Due to our symmetry condition, i € I(p) but i ¢ I(&) implies that K;(p — &) = 0. Therefore detailed
balance is satisfied if and only if the following holds:

) Y, Pif Ki(p = Ehi(p =8 =PE) Y, Pr(f(§) =)Ki(E—p)hi(§—p)
icl(p.&) i€l(p,8)
(21
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By hypothesis, we have that each Q; = (K, o;) satisfies detailed balance with respect to P:
P(p)Ki(p = §)au(p — &) = P(S)Ki(§ — p)o;(§ —p)  foralli 22)

LetA;(p — &) = ai(p — &)Pr(f(§) =1i). If we multiply both sides of by Pr(f(p) =i)Pr(f(§) =

i) then sum both sides over i € I(p,&), we establish 21)).

8.2.3 THE MIXMH OPERATOR

We define the MixMH operator as follows. MixMH takes as input stochastic index sampler f and
a set of base kernels {K;, a; },c; parameterized by the index i sampled from the index sampler:

MixMH(f, {(K;, %)} ;c/)
Now let Ai(p — &) = ou(p — E)P(f(§) = i). To apply MixMH(f, { (K;, &) };;) we:
1. Sample i from £(p).
2. Apply (Ki ).

8.3 Particle-based Kernels

Our goal here is to define and sketch correctness arguments for particle-based transition operators.
We first describe particle sets obtained from repeated applications of a single kernel. Our formula-
tion incorporates a boosted acceptance ratio that is designed to recover Metropolis-Hastings in the
special case where there is only one new particle generatedEf]

8.3.1 GENERATING PARTICLES BY REPEATEDLY APPLYING A SEED KERNEL

Suppose we have a (torus, D) pair, and we attach local simulation kernels to the nodes in D to define
a distribution K on Z[torus, D]. By (1)), regenAndAttach will return

_ P(R(E).A)
K(©)

Let Y = {(&;,w;) :i=1,...,n} be a multiset of weighted particles in E. We can define the kernel
Ky (- — -) on Y as follows:
nds(ﬁj, i)Wj

Wi

Ky(&—¢&)) =

where nds(&;, i) is the number of duplicates of §; in Y\ ;. The o-factor for Ky in isolation is:

a& —¢&;)  PEHKy(E — &)

aE;—&) PE)Kr(E& —E))

P(R(E;), A) el
( )’

(
P(R(E;

(23)

—J
A) nds(ﬁﬁi)w.,’ (24)

w_i

14. This boosting comes at the cost of subtle ergodicity violations if this is the only transition operator used and the
hypothesis space contains the right symmetries. Simpler particle-based analyses — where all particles, including the
current trace, are resampled from — are possible and indeed straightforward. These yield Boltzmann-style acceptance
rules that self-transition more frequently and therefore explore the space less efficiently, but avoid ergodicity issues.
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We can sample the kernel Y starting from &; by generating n — 1 additional particles from Kyegen-
The probability of generating Y is the probability of sampling the n — 1 other particles, multiplied

by the number of distinct orders in which they could have been sampled:

(n—1)!

P(Y|G;) = X Kyegen
( |EJ) Hyeunique(Y\&,-) ndS(’Y,l)!LII. 8 (ak)
Claim 8.1.
P(Y|E;) _ nds(&;,i) [Txz) Kregen(Er)
P(Yﬁi) nds(E_.,, )Hk;éz regen(gk)
Proof.

(n=1)!
P(Ylg‘]) Hyeumque Y\&I) lldS Y J ! Hk#J Kregen(?;k)

P(Y|gi) (n— )‘nds €7)) qu;éz regen(gk)

Hyeumque (T\&;)

Hye unique(Y\&;) nds (Ya ) ! Hk;é j thregen (&k)

Hyeumque (N\E)) nds(y, )'Hk;«ét regen (&.:k)
nds(gja )'nds(&,, )'Hk;éj regen(&k)
nds(&;, j)'nds (&, j)! TTiti Kregen ()
nds(&j? i) k) regen(ék)

nds(&,,]) Hk;&z regen(ék)

Thus once we apply MixMH, the o-factor becomes:

A &) PRE)A)EELP(YE)

A& = 8)  P(R(E),A) e p(Y )
 P(R(E)),A) S nds (8, i) [Ti K (Ee)
 P(R(E),A) e Mings (g, ) T K (E)
~ P(R(E)A) 2 Ty K (E)

P(R(E),A) o [T K (&)
rwe)a ) ke
mgq»m)
P(R(E),A)~— " TT,. K(&)
:Wﬁ

62

(25)

(26)

27

(28)

(29)

(30)

€2y

(32)

(33)

(34)



8.3.2 THE MH,, OPERATOR

This pattern, where a multiset of weighted particles is generated from a “seed” kernel K and then
sampled from, is a sufficiently common operation that we give it a name:

MH, (K) = MixMH(Y ~ K, Ky)

We will use variations on it throughout this section. The multiset functions as the index for MixMH,
and the sampling step where a particle is chosen functions as the base proposal kernel.

8.3.3 METROPOLIS-HASTINGS AS SPECIAL CASE OF PARTICLE METHODS

Metropolis-Hastings with a simulation kernel is actually just the special case MH,, since in this
case w_p = we. Parallelizable extensions of this kind of “locally independent” Metropolis-Hastings
scheme are also natural. For example, one could make multiple proposals and weigh them against
against one another. This could be viewed as an importance sampling approximation to an optimal
Gibbs proposal over a scaffold, where the proposal can be any simulation kernel, including one that
conditions on downstream information. That said, the restriction to simulation kernels is significant.
Gaussian drift kernels, for example, are not permitted.

8.3.4 ENUMERATIVE GIBBS AS A SPECIAL CASE: USING DIFFERENT KERNELS FOR EACH
PARTICLE

There are many ways to generate weighted particle sets Y. For instance, we may want to allow a
different kernel K; for each particle &;. We can represent enumeration over some set of variables
this way: each distinct tuple in the Cartesian product of the domains of the variables will correspond
to a different kernel.

Suppose there are some variables in D that we want to enumerate over, yielding »n total combi-
nations. Assume that p has the first combination. We can sample Y from p as follows: call regen
n— 1 times as before to generate n — 1 new particles, but passing K; for &;, where K; is the same as
K except with deterministic kernels replacing the old kernels on the nodes that we are enumerating.

The analysis is even simpler in this case because the particles are distinct. Once we apply
MixMH, the o-factor becomes:

a — &) P&
aE;—&) P&)
_ P(R(E))

(R(&)
P(R(§;).A)

P(R@j),A)(‘:ff;)nk# Ky (&)
- P(R(E;).A)

P(R(&»,A)(‘iffj)nk#m@k)

= (38)
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as above.
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8.3.5 PARTICLE MARKOV CHAIN MONTE CARLO: ADDING ITERATION AND RESAMPLING

It is often useful to iterate particle-based methods, and to resample collections of particles based on
their weights, stochastically allocating particles to regions of the execution space that appear locally
promising. This insight is at the heart of particle filtering, i.e. sequential importance sampling with
resampling (Doucet et al.,|2001), as well as more sophisticated sequential Monte Carlo techniques.
For example, (Andrieu et al.,|2010) introduces particle Markov chain Monte Carlo methods, a family
of techniques for using sequential Monte Carlo to make sensible proposals over subsets of variables
as part of larger MCMC schemes.

We can also use conditional SMC to generate Y. As above, suppose we have p and D, with
local simulation kernels attached to the nodes in D, which determines a simulation kernel K that
generates samples by propagating along D via regen. Suppose we group the sinks into 7 groups,
which in turn partitions all of D into 7" groups Dy, ...,D7 according to the regen recursion. We will
refer to K on R; as K;.

To establish notation, first let us consider a simpler case: basic sequential Monte Carlo, instead
of conditional SMC. We can propose along R; from K, and then (inductively) propagate to time ¢
by sampling independently from a proposal kernel,

(m)
MR (R(E™))

M R(E") = S

where

) _ PR1(E") A1)
-1 Kt—l(gtfl)
(m

is the return value from regen on the ¢ — 1st group of sinks, and where R, (&,

" (m), e £(@”)
conditioned on &,"’s parent particle &, .

It is instructive to view this sampling procedure as a way of generating a single sample of all
auxiliary variables I" from the density

w
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Now suppose we perform the conditional SMC sweep to sample I'". First we sample an index
b, €{l1,...,n} foreachtime steps =1,...,T — 1 for the index of the forced resampling of the source
particle ;. Then we sample the other particles as in standard CSMC.
The probability of I starting from &; is precisely:
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However, we want to index our kernel with multiset semantics for the complete particles as we
did above, and so we index by the equivalence class I where I' = I" if they agree on everything up
until the last time step, and then agree on the same multiset of complete particles. We have

(n—1)!

P([;&) = P(IGE; .
( &J ) ( % ) Hyeunique(r‘(n\&i) nds (Y? l) !

and thus when we apply MixMH, the a-factor becomeﬁ
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We can think of this as a strict generalization of MH,, where the kernel is split into a sequence
of kernels.

This scheme is called PGibbs in the Venture inference programming language, as it enables the
approximation of blocked Gibbs sampling over arbitrary scaffolds. Cycles and mixtures of PGibbs
with other kernels recovers a wide range of existing particle Markov chain Monte Carlo schemes as
well as novel algorithms.

8.3.6 PSEUDOCODE FOR PGibbs WITH SIMULTANEOUS PARTICLES

Here we give pseudocode for implementing the PGibbs transition operator using an interface for
simultaneous particles. The particle interface permits particles to be constructed from source PETs
or from one another, sharing the maximum amount of state possible. Stochastic regeneration is used

(i)

15. When it is clear we are referring to the final weight, we will refer to w;’ as w; to be consistent with the previous
sections.
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to prepare the source trace p for conditional SMC, to populate the array of particles, and to calculate
weights.

PGIBBS(trace,border, scaffold, P)

1 T = border.length

2 rhoWeights = [T|

3 rhoDBs = [T]

4 fort=Ttol

5 rhoWeights|t], rhoDBs|t] = DETACHANDEXTRACT(trace, border!t|,scaffold)
6 particles = [P]

7 particleWeights = [P]

8 forp=0toP

9 particles[p] = PARTICLE(trace)
10  particleWeights|0] =

REGENERATEANDATTACH (particles|0], border|1], scaffold, TRUE, rhoDBs|[1])

11 forp=1toP
12 particleWeights[p] =

REGENERATEANDATTACH (particles|p|,border|1], scaffold, FALSE,NIL)
13 newParticles = [P]
14 newParticleWeights = [P]
15 fort=2toT
16 newParticles|0] = PARTICLE(particles|0])
17 newParticleWeights[0] =
REGENERATEANDATTACH (newParticles|0],border]t], scaffold, TRUE, rhoDBsl|t])
18 forp=1to P

19 parentlndex = SAMPLECATEGORICAL(MAPEXP(particleWeights))
20 newParticles[p] = PARTICLE(particles|parentIndex))
21 newParticleWeights|p| =
REGENERATEANDATTACH (newParticles[p|, border/t], scaffold, FALSE,NIL)
22 particles = newParticles
23 particleWeights = newParticleWeights

24 finallndex = SAMPLECATEGORICAL(MAPEXP(particleWeights|1 : P]))
25 weightMinusXi = LOGSUMEXP(particleWeights. REMOVE (finallndex))
26 weightMinusRho = LOGSUMEXP(particleWeights. REMOVE(0))

27 alpha = weightMinusRho — weightMinusXi

28 return particles(finallndex],alpha

This implementation illustrates the use of versions of regen and detach that act on particles,
and the initialization of particles using parent particles as well as source traces. All but the last four
lines are simply constructing the randomly chosen kernel to be applied, corresponding to proposing
to replace the current race with the contents of a particle.

9. Conditional Independence and Parallelizing Transitions

Here we briefly describe the conditional independence relationships that are easy to extract from
probabilistic execution traces. This analysis clarifies the potential long-range dependencies in a
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PET introduced by the choice to make probabilistic closures into first-class objects in the language.
These independence relationships could be used to support probabilistic program analyses and also
to justify the correctness of parallelized kernel composition operators in the inference programming
language. They also expose parallelism that is distinct from particle-level parallelism.

9.1 Markov Blankets, Envelopes, and Conditional Independence

In Bayesian networks, the Markov Blanket of a set of nodes provides a useful characterization of
important conditional independencies. These independencies permit parallel simulation of Markov
chain transition operators. In constrast, while the scaffold provides a useful factorization of the
logdensity of a trace, it does not permit parallel simulation of transition operators. In this section,
we show how to formulate a notion of locality that permits parallel transitions on PETs.

We first review Markov Blankets in Bayesian networks. Let D and D’ be sets of nodes in a
Bayesian network, A the children of D, and P the parents of DU A excluding D and A. Then if
D'N(DUAUP) = 0, proposals can be made on the two regeneration graphs in parallel, although
both proposals may read the same values. We refer to A UP as the Markov blanket of D, and it can
be thought of as the set of all nodes that one must read from (but not write to) when resampling D
and computing the new probabilities of its children A.

The situation becomes more complicated in the case of PETs for two main reasons. First, the
parents P =P(p) UP(&) are not known a priori, since we do not know P(&) until we have simulated
€ to see what nodes it reads from. Second, the SP auxiliary states that will be mutated are not known
a priori, since the PSPs being applied in R(§) are not known.

9.2 After-the-fact envelopes
Let S(p) denote the SP auxiliary states for SPs with PSPs that are applied in R(p). Define

MB(p) =P(p)UA (51)

to be the set of all nodes that are read from but not written to, as before for Bayesian networks. Now
define the scope of a proposal

Scope(p) =R(p) US(p) (52)

to be the set of all parts of the PET that are written to or created while generating p from torus, and
define the envelope

Envelope(p) = MB(p) UScope(p) (53)

to be the set of all nodes that must be read from or written to during the proposal. Note that in
general there may be some nodes in the scope that are written to but never read from, e.g. terminal
resampling nodes and the sufficient statistics for uncollapsed SPs, but we will ignore this distinction
for now.

We can make the following claim: suppose the proposal p — & temporally overlaps with the
proposal p’ — &', and that by some luck,

(Envelope(p,&) NScope(p’,&')) U (Envelope(p’,&') NScope(p,&)) = 0 (54)
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then the transitions will not have clashed. In words, this says that the two proposals will not clash
as long as no node that one proposal reads differs in the two traces of the other proposal. If the
transitions have not clashed, then they could have been simulated simultaneously.

9.3 The envelope of a scaffold

Define:
EnvelopeD] = | | Envelope(§) (55)
EEED]
Scope[D] = U Scope(§) (56)
SeED]

That is, Envelope[D| and Scope[D] correspond to the union of the trace-specific envelope and
scope, taken over all possible completions of torus. Then two proposals on D and D’ are guaranteed
not to clash if

(Envelope[D] NScope[D’]) U (Envelope[D'] N Scope[D]) = 0 (57)

Now let R and R’ be the random variables corresponding to the results of invocations of regen
(including the weights) on scaffolds with definite regeneration graphs D and D’. One approach to
formalizing the relationship between conditional independence and parallel simulation in Venture
would be to first try to show that holds if and only if R L. R/, and second to try to show that
random variables can safely be simulated in parallel if and only if they are conditionally indepen-
dent.

When probabilistic programmers can identify two scaffolds for which holds, they can
schedule transitions on them simultaneously. Also, in some circumstances speculative simultaneous
simulation may be beneficial, for example if the clash is on small, cheap procedures or an approxi-
mate transition that ignores some dependency can be used as a proposal for a serial transition.

It may also be possible to use this notion of envelope to predict beforehand which transitions we
can run simultaneously. To do this, we will need to bound the Markov blanket and the scope. One
option would be to statically analyze Venture program fragments, implementing a kind of “escape
analysis” for random choices. Another would be to introduce language constructs and/or stochastic
procedures that came with hints about Markov blanket composition. Future work will explore the
efficacy of these and other techniques in practice.

10. Related Work

Venture builds on and contains complementary insights to a number of other probabilistic program-
ming languages, implementations, and inference techniques. For example, Monte (Bonawitz and
Mansinghka, |2009) was the first commercially developed prototype interpreter for a Church-like
probabilistic programming language. Its architecture is the most direct antecedent of Venture. For
example, it included a scaffold-like decomposition of local transitions in terms of “proposal blan-
kets” for single-variable changes. Preliminary prototypes of Venture (Wul 2013)) and of an approx-
imate multi-core scheme for Church-like languages (Perov and Mansinghkal 2012) also introduced
early, ad-hoc versions of some of the ideas in this paper, all in an attempt to control the asymptotic
cost of each inference transition.
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The most salient inefficiency in many Church systems has been that for typical machine learn-
ing problems with N datapoints, a single sweep of inference over all random variables requires
runtime that scales as O(N?). This quadratic scaling, combined with the absolute constant factors,
has made it impossible to apply these systems beyond hundreds of datapoints. For “lightweight”
implementations based on direct transformational compilation or augmented interpretation, such as
Bher (Wingate et al., [2011b), this is a basic consequence of the approach: the entire program must
be re-simulated to make a change to a single latent variable.

A variety of approaches have been tried to mitigate this problem. For earlier implementations
such as the first prototype implementation of Church (Mansinghkal [2009)) atop the Blaise system
(Bonawitz, 2008)), the MIT-Church implementation, and also Monte, ad-hoc attempts were made to
control the scope of re-simulation, approximating the Venture notions of PETs and their partition
into scaffolds. Similarly, the Shred implementation of Church (Yang et al., 2012) uses techniques
from program analysis coupled with just-in-time compilation to try to avoid the re-simulation in-
volved in lightweight implementations of Metropolis-Hastings and also reduce constant-factor over-
head.

These approaches exhibit different limitations with respect to generality, scalability, absolute
achievable efficiency and runtime predictability. For example, the Blaise implementation of Church
and MIT-Church both exhibited quadratic scaling in some cases, and involved substantial runtime
overheads. The program analysis and compilation techniques used in Shred incur runtime costs
that can be significant in absolute terms and difficult to predict a priori, and additionally impose
constraints on the integration of custom primitives into the language. Finally, all of these approaches
have only applied directly to single-site Metropolis-Hastings approaches to inference.

Outside of Church-like languages, BLOG (Milch et al., [2007) — the first open-universe prob-
abilistic programming language — is of particular relevance. For example, the original BLOG
inference engine was based on infinite contingent Bayesian networks (ICBN) (Milch et al., [2005).
ICBNs characterize the valid factorizations of their probability distribution and represent depen-
dencies whose existence is contingent on the values of other variables. They thus provide a data
structure for BLOG that serves an analogous function to PETs in Venture. Also, the Gibbs sam-
pling algorithm introduced for BLOG (Arora et al., 2012)) exploits a decomposition of a possible
world that is related to the scaffolds used to define the scope of inference in Venture. However,
BLOG is not higher-order — it does not support random variables that are themselves probabilistic
procedures — nor does it provide a programmable inference mechanism. BLOG also does not sup-
port collapsed primitives that exhibit exchangeable coupling between applications, primitives that
lack calculable probability densities, or primitives that can create and destroy latent variables while
providing their own external inference mechanism.

The Figaro system for probabilistic programming (Pfeffer, 2009) shares several goals with Ven-
ture, although the differences in language semantics and inference architecture are substantial. Ven-
ture is a stand-alone virtual machine, while Figaro is based on an embedded design, implemented
as a Scala library. Figaro models are represented as data objects in Scala, and model construction
and inference both proceed via calling into a Scala API. This enables Figaro to leverage the ma-
ture toolchain for Scala and the JVM, and avoids the need to reimplement difficult but standard
programming language features from scratch. It remains to be seen how to apply this machinery
to models that depend on higher-order probabilistic procedures, primitives exhibiting exchangeable
coupling, and likelihood-free primitives, or how to enable users to extend Figaro with custom model
fragments equipped with arbitrary inference schemes. IBAL (Pfeffer, 2001), an ancestor of Figaro
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based on an embedding of stochastic choice into the functional language ML, is arguably more sim-
ilar to Venture in terms of its interface. However, the inference strategies around which IBAL was
designed imply restrictions on stochastic choices that are analogous to Infer.NET.

Our hybrid inference primitives embody generalizations of other proposals for global inference
in probabilistic programs. The idea of global mean-field inference in probabilistic programs via
stochastic optimization, implemented using repeated re-simulation of the program, was first pro-
posed in (Wingate and Weber, 2013). Similarly, a global implementation of particle Gibbs via
conditional sequential Monte Carlo, implemented via repeated forward re-simulation, has been in-
dependently and concurrently developed in (Wood et al., 2014). Both of these approaches were
implemented using the “lightweight” scheme proposed in (Wingate et al., [2011b). They thus lack
dependency tracking and will exhibit unfavorable asymptotic scaling. The mean field and condi-
tional SMC schemes developed in this paper are implemented via stochastic regeneration, building
on PETs for efficiency and supporting the full SPI. The techniques from this paper can also be
used on subsets of the random choices in a probabilistic program and composed with other infer-
ence techniques, yielding hybrid inference strategies that may be asymptotically more efficient than
homogeneous ones.

To the best of our knowledge, Venture is the first probabilistic programming platform to support
a compositional inference programming language with multiple computationally universal primi-
tives. It is also the only probabilistic programming system to support higher-order probabilistic
procedures as first class objects, and in particular the implementation of arbitrary higher-order prob-
abilistic procedures with external, per-application latent variables as ordinary primitives. Venture
is also the only probabilistic programming system that integrates exact and approximate sampling
techniques based on standard Markov chain, sequential Monte Carlo and variational inference.

11. Discussion

We have described Venture, along with the key concepts, data structures and algorithms needed
to implement a scalable interpreter with programmable inference. Venture includes a common
stochastic procedure interface that supports higher-order probabilistic procedures, “likelihood-free”
procedures, procedures with exchangeable coupling between their invocations, and procedures that
maintain external latent variables and supply external inference code. We have seen how the prob-
abilistic execution traces on which Venture is based generalize key ideas from Bayesian networks,
and support partitioning traces into scaffolds corresponding to well-defined inference subproblems.
We have defined stochastic regeneration algorithms over scaffolds, and shown how to use them
to implement multiple general-purpose inference strategies. We have also given example Venture
programs that illustrate aspects of the modeling and inference languages that it provides.

The coverage of Venture in terms of models, inference strategies and end-to-end problems needs
to be carefully assessed. It remains to be seen whether the current set of inference strategies are truly
sufficient for the full range of problems arising across the spectrum from Bayesian data analysis
to large-scale machine learning to real-time robotics. However, expanding the set of inference
primitives may be straightforward. One strategy rests on the analogies between PETs and Bayesian
networks. For example, it may be possible to define analogues of junction trees for fragments
of PETs by conditioning on random choices with existential dependencies. Along similar lines,
extensions to the enumerative_gibbs inference instruction could leverage the insights from (Koller
et al.,[1997). Variants based on message passing techniques such as expectation propagation might
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also be fruitful. Other inference techniques that we could build using PETs and the SPI include
slice sampling and Hamiltonian Monte Carlo. Of these, Hamiltonian Monte Carlo has already seen
some use in probabilistic programming (Stan Development Team) [2013; Wingate et al., 2011al).
However, these implementations do not apply to arbitrary Venture scopes, where proposals can
trigger the resampling of other random choices due to the presence of “likelihood-free” primitives
or the brush. Generalizations of Hamiltonian and slice methods that use the auxiliary variable
machinery presented in this paper are straightforward and are currently included in development
branches of the Venture system.

Although some real-world applications have been successfully implemented using unoptimized
prototypes, the performance surface of Venture is largely uncharacterized. This is intentional. Our
understanding of probabilistic programming is more limited than our understanding of functional
programming when Miranda was introduced (Turner, [1985). Standard graphical models from ma-
chine learning correspond to short nested loops that usually can be fully unrolled before execution,
and therefore only exercise small subsets of the capabilities of typical expressive languages. It thus
seems premature to focus on optimizing runtime performance until better foundations have been
established.

The theoretical principles needed to assess the tradeoffs between inference accuracy, asymptotic
scaling, memory consumption, and absolute runtime are currently unclear. Point-wise comparisons
of runtime are easy to make, but just as easily mislead. Even small changes in problem formulation,
dataset size or accuracy can lead to large changes in runtime. The asymptotic scaling of runtime
for many probabilistic programming systems is unknown, and for some problems the relevant scale
parameters are hard to identify. Systematic comparisons of inference strategies that control for im-
plementation constants and scale thresholds have yet to be performed. Although Venture’s asymp-
totic scaling competitive with hand-optimized samplers in theory, a rigorous empirical assessment
is needed. Mathematically rigorous cost models are in our view a precondition for comparative
benchmarking and thus could be an important research direction. Additionally, once the relation-
ships between the asymptotic scaling of forward simulation and the asymptotic scaling of typical
inference strategies has been characterized, it will be possible to search for effective equivalences
between custom inference strategies and model transformations.

Performance engineering research for Venture can build on standard techniques for higher-order
languages as well as exploitation of the structure of probabilistic models and inference strategies.
Immediate opportunities include runtime specialization via type hints and/or scaffold contents, com-
pilation of the transition operators arising from specific inference instructions, and optimizations
to the SPI to minimize copying of data. PETs could be used to support a memory manager that
exploits locality of reference along PETs — and conditional independence, more generally — to
improve cache efficiency. For example, one could pre-calculate the envelope of a specific infer-
ence instruction, and pre-fetch the entire PET fragment. Similar optimizations will be beneficial for
high-performance multicore implementations. There are also opportunities for asymptotic savings
if deterministic sub-segments of PETs can be compressed; in principle, the memory requirements of
inference should scale with the amount of randomness consumed by the model, not by its execution
time. Preliminary explorations of some of these ideas have yielded promising results (Perov and
Mansinghka, 2012} 'Wul 2013)) but much work remains to be done. In practice, we believe the ju-
dicious migration of performance sensitive regions of a probabilistic program into hand-optimized
inference code will be as important as runtime and compiler optimizations.

71



11.1 Debugging and profiling probabilistic programs

Venture makes interactive modeling and inference possible by providing an expressive modeling
language with scalable programmable inference. By removing the need to do integrated co-design
of probabilistic models, inference algorithms and their implementations, Venture removes one of the
main bottlenecks in building probabilistic computing systems. This is far from the only bottleneck,
however. Design, validation, debugging and optimization of probabilistic programs — both model
programs and inference programs — still requires expertise.

The promise of probabilistic programming is that instead of having to learn multiple non-
overlapping fields, future modelers will be able to learn a coherent body of probabilistic program-
ming principles. They should be able to use standard probabilistic programming tools and work-
flows to navigate the design, validation, debugging and optimization process. This could evolve
analogously to how programmers learn to design, test, debug and optimize traditional programs
using a mix of intuitive modeling, mathematical analysis and experimentation supported by sophis-
ticated tools.

Venture implements a stochastic semantics for inference that is designed to cohere with Bayesian
reasoning via exact sampling in the limit of infinite computation. This facilitates the development of
mathematically rigorous debugging strategies. First, the precise gap between exact and approximate
sampling can sometimes be measured on small-scale examples; this provides a crucial control for
larger-scale debugging. Second, as the amount of computation devoted to inference increases, the
quality of the approximation can only increase. As a result, at potentially substantial computational
cost, it is always possible to reduce the impact of approximate inference (as distinct from modeling
issues or data issues).

There is even a path forward at scales where the true distribution is effectively impossible to
sample from or even roughly characterize. For example, the Bernstein-von Mises family of the-
orems gives general conditions under which posteriors concentrate onto hypotheses that satisfy
various invariants. These can be exploited by debugging tools: a tool could increase the amount
of synthetic data and inference used to test a probabilistic program until the posterior concentrates.
At this point the probabilistic program begins to resemble a problem with a “single right answer”,
significantly simplifying debugging and testing as compared to regimes where the true distribution
can be arbitrarily spread out or multi-modal. Many more tools and techniques will no doubt be
needed to tease apart the impact of model mismatch, inadequate or inappropriate data and insuffi-
cient inference.

Traditional profilers may also have natural analogs in probabilistic programming. A profiler
for a Venture program might track “hot spots” — scaffolds (and their source code locations) where
a disproportionate fraction of runtime is spent — as well as “cold spots™: scaffolds where transi-
tions are rejected with unusual frequency. Such cold spots might serve as useful warning signs of
limited, purely local convergence of inference. As Venture maintains an execution trace, it should
be possible to link an execution trace location with the source code location responsible for it, and
potentially help probabilistic programmers identify and modify unnecessarily deterministic or con-
strained model fragments. Both together could help Venture programmers identify the portions of
their program that ought to be moved to optimized foreign inference code.
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11.2 Inference programming

The Venture inference programming language has many known limitations that would be straight-
forward to address. For example, it currently lacks an iteration construct, a notion of procedural
abstraction (so inference strategies can be parameterized and reused), the ability to dynamically
evaluate modeling expressions to stochastically generate scope and block names, or an analogue of
eval that gives inference programs the ability to programmatically execute new directives in the
hosting Venture virtual machine. Additionally, its current set of inference primitives cannot them-
selves be implemented via compound statements in the language; to support this, an analogue of
stochastic regeneration could potentially be exposed. Future work will address these issues by rein-
troducing the full expressiveness of Lisp into the inference expression language and determining
what extensions are needed to capture the interactions between modeling and approximate infer-
ence.

More substantial inference programming extensions may also be fruitful. For example, it may
be fruitful to incorporate support for inference procedures: reusable proposal schemes for scaffolds
that match pre-specified patterns, where the proposal mechanism is implemented by another Ven-
ture program. The scaffold’s contents constitute the formal arguments. Each random choice in the
border could be mapped to an OBSERVE, and the new values for resampling nodes could each come
from a PREDICT. If inference in the proposal program is assumed to have converged, it should be
possible to construct a valid transition operator. This mechanism would enable Venture program-
mers to use probabilistic modeling and approximate inference to design inference strategies, turning
every modeling idiom in Venture into a potential inference tool. A similar mechanism could facil-
itate the use of custom Venture programs as the skeleton for variational approximations. Finally,
the inference programming language needs to be extended to relax the constraints of soundness. In-
stead of restricting programmers to transition operators that are guaranteed by construction to leave
the conditioned distribution on traces invariant, the language should permit experts to introduce
arbitrary transition operators on traces.

It will be interesting to develop probabilistic programs that automate aspects of inference while
going beyond traditional formulations of interpretation and compilation. For example, it is theoret-
ically possible to develop probabilistic programs that work as inference optimizers. Such programs
would take a Venture program as input, including only placeholder INFER instructions, and produce
as output a new Venture program with INFER instructions that are likely to perform better. These
programs could also transform the modeling instructions and the instructions introducing the data
to improve computational or inferential performance. Depending on architecture, these programs
could be viewed as inference planners, compilers, or an integrated combination of the two. Prob-
abilistic models, approximate inference and Bayesian learning could all be deployed to augment
engineering of the planning algorithm, compiler transformations or even the objective function used
to summarize inference performance. Machine learning schemes for algorithm selection (Xu et al.,
2008) and reinforcement-learning-based meta-computation (Lagoudakis and Littman, [2001}) can be
viewed as natural special cases. Venture also makes it possible to integrate a “control” probabilis-
tic program into an interpreter running another probabilistic program. The control program could
intercept and modify the inference instructions in the running Venture program based on approxi-
mate, model-based inferences from live performance data, and perhaps influence the machine code
generation process invoked by a just-in-time compiler.
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Inference programming also supports the integration of “approximate” compilers based on prob-
abilistic modeling and approximately Bayesian learning. Consider a probabilistic program with a
specific set of OBSERVEs and PREDICTs. The expressions in the OBSERVEs define a space of pos-
sible inputs, each corresponding to a set of literal values, one per observation. The expressions in
the PREDICTs define a space of possible outputs, each corresponding to an assignment of a sam-
pled value to each PREDICT. A compiler for Venture might generate an equivalent program that
is restricted to precisely the given pattern of inputs and outputs, optimizing the implementation
of any INFER instructions in the program given this restriction. It is also possible to use model-
ing and inference to approximately emulate the program, by writing a probabilistic program that
models p({PREDICTs}|{OBSERVEs}), with parameters and/or structure estimated from data that is
generated from the original probabilistic program. This can be viewed as approximate compilation
implemented via inference, where the target language is given by the hypothesis space of the model
in the emulator program. Both the creation of this kind of emulator and its use as a proposal would
be natural to integrate as additional inference instructions.

Probabilistic programming systems should ultimately support the complete spectrum from black-
box, truly automatic inference to highly customized inference strategies. So far Venture has focused
on the extremes. Other points on the spectrum will require extensions to Venture’s instruction lan-
guage to encode specifications for exact and approximate inference within particular runtime and/or
accuracy parameters. Developing a suitable specification language and cost model to enable precise
control over the scope of automatic inference is an important challenge for future research.

11.3 Conclusion

The similarities between non-probabilistic, Turing-complete, higher-order programming languages
are striking given the enormous design space of such languages. Lisp, Java and Python support
many of the same programming idioms and can be used to simulate one another without changing
the asymptotic order of growth of program runtime. Each of these languages also presents similar
foreign interfaces for interoperation with external software. They have all been used for data anal-
ysis and for system building, deployed in fields ranging from robotics to statistics. They have also
all been used for machine intelligence research grounded in probabilistic modeling and inference.
One measure of their flexibility and interchangeability is provided by their use in probabilistic pro-
gramming research. Each of these languages has been used to implement expressive probabilistic
programming languages. For example, multiple versions of Church and Venture have been written
in Python, Lisp and Java, and BLOG has been implemented in both Java and Python.

We do not know if it will be possible to attain the flexibility, extensibility and efficiency of Lisp,
Java or Python in any single probabilistic programming language, especially due to the complexity
of inference. Thus far, most probabilistic programming languages have opted for a narrower scope.
Most are not Turing-complete or higher-order, only support a subset of standard approximate infer-
ence strategies, and have no notion of inference programming. Translating between sufficiently ex-
pressive probabilistic programming languages without distorting the asymptotic scaling of forward
simulation will be difficult, especially given the lack of a standard cost model. Providing faithful
translations that do not distort the asymptotic scaling of inference — in runtime, in accuracy, or
both — will be harder still.

Despite these challenges, it may be possible to develop probabilistic languages that can be used
to specify and solve probabilistic modeling and approximate inference problems from many fields.
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Ideally such languages would be able to cover the modeling idioms and inference strategies from
fields such as robotics, statistics, and machine learning, while also meeting key representational
needs in cognitive science and artificial intelligence. We hope Venture, and the principles behind its
design and implementation, represent a significant step towards the development of a probabilistic
programming platform that is both computationally universal and suitable in practice for general-
purpose use.
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