
THE EVOLUTION OF. .  .  
Edited by Abe Shenitzer 

Mathematics, York University, North York, Ontario M3J 1P3, Canada 

Function: Part I1 
N. Luzin 

What follows is the second part of a translation by Abe Shenitzer (in two parts) of an article by N. 
Luzin in the first edition of The Great Soviet Encyclopedia, Vol. 59, pp. 314-334. The article describes 
the evolution of the function concept 

The function concept after Fourier's discovery 

The modern understanding of function and its definition, which seems correct to 
us, could arise only after Fourier's discovery. His discovery showed clearly that 
most of the misunderstandings that arose in the debate about the vibrating string 
were the result of confusing two seemingly identical but actually vastly different 
concepts, namely that of function and that of its analytic representation. Indeed, 
prior to Fourier's discovery no distinction was drawn between the concepts of 
"function" and of "analytic representation," and it was this discovery that brought 
about their disconnection. After this, the efforts of mathematicians were chan-
nelled in two different directions. On the one hand, the desire to maintain the 
mutual dependence of the parts of a curve gave rise to the modern tlzeoly of 
functions of a complex uariable. The prospect on this road was the complete 
separation of the concepts of a function and of its analytic representation. This was 
done by Weierstrass in his concept of an "analytic" ("holomorphic") function. On 
the other hand, Fourier's discovery and the study of the values of analytic 
expressions destroyed all connections between different parts of a curve. It seemed 
that the only property of the values of an analytic expression was their determinacy, 
and that they were otherwise completely arbitrary, each independent of the 
others. This was the sense of the definition of the function concept given by 
Dirichlet. This definition turned out to be of fundamental importance for the 
contemporary theory of functions of a real uariable. For a time, the definitions of 
function, given by Dirichlet and Weierstrass, respectively, brought great clarity and 
a certain serenity into the mathematical milieu. It seemed that this clarity was final 
and that all that remained to do was to develop the consequences of the solid 
definitions achieved after so many difficulties and efforts. But quite recently it 
became clear that not all mathematicians are of one mind concerning the value 
and the very sense of these definitions. Ever more frequent hints, supported by 
incontestable facts, suggested that the Weierstrass definition of function is overly 
restrictive. On the other hand, mathematicians concluded with utmost consterna- 
tion that they were not all of one mind concerning the sense of Dirichlet's 
definition of function. Some found it perfect, others overly broad, and still others 
devoid of all meaning. It thus became clear that, in our own time, the controversy 
about the vibrating string has been renewed in another light and with a different 
content. The grouping of names below suggests the general pattern of the evolu- 
tion of the function concept. 
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d'Alembert 

Euler 

D. Bernoulli 

Lagrange 
Fourier 

\ Weierstrass 

The Moscow papers Painlevd 
Carleman 

Functions of a real variable. Fourier's discovery showed that it is possible to view 
as a single function the ordinate of a continuous curve composed of arcs of curves 
that have nothing in common and thus of completely different nature. This 
discovery utterly destroyed the notion of an organic (logical) connection [presuma- 
bly] existing between different parts of a curve described by means of a single 
analytic expression, especially an expression as simple as a trigonometric series. 
This being so, it seemed that the only available option was to ignore analytic 
expressions and declare that all there is to the meaning of the function concept is 
that it is a collection of numerical values corresponding to different values of x 
that are, in general, completely independent of one another. This was the idea 
behind the famous Dirichlet definition of a function, still in use today, which states 
that 

y is a function of a uariablex, defined on an interual a < x < b, if  to euely value of 
the uarz'ablex in this interual there corresponds a definite value of the uariabley. Also, it 
is irrelevant in what way this correspondence is established. This definition immedi- 
ately clarified a great many hitherto at best vaguely understood phenomena of 
mathematical analysis. At first this definition seemed so perfect that it was virtually 
unanimously accepted. For a long time it was viewed as a genuine discovery. Its 
formulation was thought to be so exactly suitable that no thought was given to the 
very possibility of its modification. The established view was that from then on 
mathematical analysis was to concern itself with the discovery of properties of 
various special classes of functions obtained by restricting Dirichlet's general 
definition of function. In this way there arose branches of analysis concerned with 
classes of functions such as continuous functions (in the sense of Cauchy); 
monotonic functions; functions with a finite number of maxima and minima [on an 
interval]; functions satisfying a Lipschitz condition; functions satisfying a Dini 
condition; differentiable functions, and so on. Only after these classes of functions 
had been singled out and investigated, voices arose that asked for clarification of 
the Dirichlet definition that was initially accepted without any reservations. The 
objections were directed against the clause: "it is irrelevant in what way this 
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correspondence is established." Later the arguments for and against this point linked 
up with the arguments for and against the so-called axiom of choice, first explicitly 
formulated by Zermelo. One of the first to clearly state his dissatisfaction with this 
"rider" to Dirichlet's definition of a function was Brodtn (1897). Unfortunately, 
Brodgn's argument was couched in rather general terms. As a result, not all 
contemporary mathematicians paid attention to his reservations. Brodkn argued 
that the definition of a function must have a special property that would enable 
easy communication from mind to mind. To get an idea of what Brod6n had in 
mind we subdivide the interval [ a ,b ]  of definition of a function y ( x )  into infinitely 
many subintervals 6,, 6,, 6,, . . . . Suppose that our function coincides on 6, with 
the ordinate of some straight line L,, on 6, with the ordinate of some cycloid L,, 
on 6, with the ordinate of some lemniscate L,, and so on. Brod6n asks: when may 
y ( x )  be said to be defined? His answer is that y ( x )  is defined if and only if we are 
given a definite law of choice of the curves L,, L,, L,, . . . , that is, when these 
curves have something in common and thus are in some sense "homogeneous" 
[as a class]. Brodkn claims that we cannot study a function made up of infinitely 
many absolutely "heterogeneous" curves, since such a function can neither be 
prescribed nor given. The only time one can prescribe or give absolutely different 
curves is when their number is finite, in which case they can be given as absolutely 
independent of one another. According to Brodin, then, one cannot study in- 
finitely many curves that are absolutely independent of one another. Somewhat 
later-independently of Brodgn-Borel, Baire, and Lebesgue (1905) supported 
the requirement of a definite law, always tacitly implied, whenever one deals with 
the function concept. Baire pointed out that one should, once and for all, banish 
the analogy of a bag with balls passed from hand to hand from all discussions 
involving the infinite. While it is true that a function is, essentially, the totality of 
numerical values corresponding to the different values of the variable x ,  this 
totality cannot be passed from hand to hand like the previously mentioned bag 
with balls; here the description of the law of correspondence that associates a y ( x )  
to an x is absolutely indispensable, and that law must be communicable to anyone 
who wants to investigate the function y ( x ) .  Baire notes that "for our minds all 
reduces to the finite". To describe accurately the difference between his own views 
and those of Zermelo and Hadamard, Borel performs the following thought 
experiment. He notes first that the decimal expansion of n- = 3.1415926535.. . 
must be viewed as completely determined, since every textbook of elementary 
geometry tells us how to compute as many of its decimal digits as we wish. This 
means that we may view each decimal digit, say the millionth one, as fully 
determined even if no one has as yet computed it. Then Borel makes a queue of a 
million people and makes each person name a decimal digit at random, thus 
obtaining a certain decimal expansion of a million digits. Borel regards this 
expansion as fully determined. Then he makes a queue of infinitely many, rather 
than a million, people and again makes each person name a decimal digit at 
random. Now Borel poses the question if one can continue to view the resulting 
infinite decimal as fully determined, that is, as fully determined as the infinite 
decimal expansion of T,say. Borel's reply is that mathematicians with the mental 
set of Zermelo and Hadamard will definitely regard this infinite decimal expansion 
as "fully determined", whereas he himself does not regard it as such. His reason is 
that the number obtained in this manner may not be ruled by any law, so that two 
mathematicians discussing this number will never be certain that they are talking 
about the same number; without a law of formation of its decimals they can never 
be certain of its identity. Lebesgue goes one step further and claims that a 
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mathematician who does not have a law that realizes a function y(x) he is 
considering cannot be certain that he is talking about the same function at 
different moments of his investigation; here we are no longer concerned about the 
common language of two mathematicians but about a mathematician agreeing with 
himself, In rebutting Borel's views Hadamard asserts that there is no difficulty in 
regarding a "lawless" decimal expansion as completely determined. Thus, for 
example, in the kinetic theory of gases one speaks of the velocities of the molecules 
in a given volume of a gas although no one will ever really know them. Hadamard 
points out that the requirement of a law that determines a function y(x) under 
investigation strongly resembles the requirement of an analytic expression for that 
function, and that this is a throwback to the 18th century. 

The mathematical papers of Baire and Lebesgue have shed a great deal of light 
on the question but have also made it extremely complex. Baire embarked on a 
systematic investigation of the representation of functions by means of analytic 
expressions. Since, by Weierstrass' theorem, every continuous function f(x) is 
representable as the sum of a uniformly convergent series of polynomials 
f(x)  = C;=,Pn(x), Baire calls all continuous functions functions of class 0. Baire 
defines the functions of class 1 as those discontinuous functions that are limits of 
continuous functions, that is, f(x) = lim f,(x). Baire calls functions not in the 

n - m  
classes 0 and 1that are limits of functions in class 1 functions of class 2, and so on. 
Baire's definition extends over all finite numbers and all countable transfinite 
numbers. Hence the famous Baire classification of functions: 

K O ,  Kl ,  K 2 , .  . . , K u , . . . , K c , . . . la. 
Each function f(x)  in the Baire classification has a definite analytic representa- 

tion by means of polynomials and finitely many or countably many symbols of 
passing to the limit. This is the kind of analytic expression considered by Baire. 
Lebesgue supplemented Baire's research in an essential way by showing that it is 
completely pointless to consider all other analytic operations, such as differentia- 
tion, expansion in series, integration, the use of transcendental functions such as 
sin x, log x, and so on; this because every function formed by using a finite or 
countable number of such operations is necessarily included in the Baire classifica- 
tion. Lebesgue also proved the fundamental fact that none of the Baire classes is 
empty and, finally, using a profound but extremely complex method, he found a 
specific function f(x)  outside the Baire classification. The impact of Lebesgue's 
discovery was just as stunning as that of Fourier's in his time. Lebesgue's result 
shows that a logical definition of a particular function is more extensive than a 
purely mathematical definition, since a logical definition yielded a particularfunction 
f(x)  that cannot be obtained from polynomials by passing to the limit a finite or 
countable number of times. The Lebesgue function that is outside the Baire 
classification is extremely complex and its nature has not yet been fully investi- 
gated. But the Moscow papers showed that the most delicate point of Lebesgue's 
considerations gives rise to objections. When Lebesgue showed that evely analytic 
expression consisting of mathematical symbols, finite or countable in number, can 
be transformed into a Baire expression composed of simple (countable) passages to 
the limit he had no actual complete catalogue of all possible analytic expressions. 
This meant that he was exposing his enterprise to a great danger, for there could 
always turn up an analytic expression not transformable into a Baire expression. In 
fact, the Moscow papers showed that already the analytic expression 

f ( x )  = lim lim l imP, , , (x,y) ,  
y - w  m-m n - w  
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where P,,,(x, y) is a polynomial in x and y, where the passing to the limit on m 
and n is simple (countable), and where the passing to & on y is continuous 
(uncountable), is not reducible to a Baire expression for the right choice of the 
polynomial P,, ,(x, y). At the same time it became clear that, as Borel anticipated, 
very frequently analytic expressions are entirely useless in the sense that, appar- 
ently, even functions in class 1of the Baire classification confront us with problems 
that are unsolvable in principle. The indicated problems concerning the nature of 
analytic expressions are far from being solved. But it should be pointed out that 
there are marked and important nuances of opinion among mathematicians who 
object to Dirichlet's definition. Thus while Lebesgue is willing to accept any law 
(logical or mathematical) as long as it yields an individual function, Borel insists on 
the restriction that the law be countable (that is, that it involve the natural 
numbers but not a continuum). Brouwer seems to go still further, for he refuses to 
consider even the infinity of natural numbers. 

Functions of a complex variable. A very different fate befell the definition of 
function that aimed at a formulation of the function concept such that "knowledge 
of a small arc of the curve under consideration implies knowledge of the whole 
curve." It is a fact that just as Dirichlet, working with real variables, gave a 
definition of function that was viewed as final, so too Weierstrass, working with 
complex variables, gave a definition of function so perfect that to this day the 
majority of mathematicians regard it as unique and, at any rate, as meeting all 
requirements of practical applications. Whereas criticism directed against Dirich- 
let's definition calls for it to be narrowed, criticism directed against Weierstrass' 
definition calls for it to be broadened. The papers of Weierstrass were preceded by 
those of Cauchy (1789-1857). Cauchy was the first to realize that the property of a 
curve to be determined by a small arc called for the use of a complex uanable, and 
that while it might play an auxiliary role, it was an indispensable role. Cauchy's 
ideas and basic theorems were ordered and systematized by Weierstrass 
(1815-1897). His fundamental idea was that of analytic continuation. Cauchy's 
investigations showed that every series P(x - a)  of positive powers of the differ- 
ence x - a converges in the interior of a definite circle C with center a and 
diverges outside C. The sum of the series inside C is infinitely differentiable. 
Weierstrass regarded this sum of the series P(x - a) as an "analytic function" 
defined in C and relied on a special process for extending its existence domain. 
This process is based on the following fundamental theorem: If the circles of 
conuergence of two giuen series P(x - a)  and P(x - b) intersect and if this intersection 
contains a point at which the ualues of the two sums and the ualues of all their 
cowesponding deriuatiuesare equal, then the two sums haue the same ualues throughout 
the intersection of the two circles. In this case, Weierstrass regards each of the two 
series as a direct continuation of the other and calls each of them an "element" of 
the analytic function that is being defined. Weierstrass' definition of an analytic 
function is the following: An analytic function f(x) is the totality of elements obtained 
from a giuen one by means of successiue direct continuations. Volterra and Poincar6 
contributed a final clarification to this definition by showing that the complete 
definition of an analytic function throughout its domain of existence required no 
more than a countable number of direct continuations. An analytic function f(z)  is 
called single-ualued if there is no point z at which two different elements P(x  - a) 
and P(x - b) have different values. The set of points z in the interior of the 
circles of the elements of the single-valued function f(z)  under consideration is 
called its natural domain of existence. A point on the boundary of the natural 
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domain of existence of a single-valued function is called a singular point of that 
function. A basic theorem is that the cil-cle of convergence of each element of an 
analytic function f(z)  contains a singular point. Weierstrass' definition immediately 
shed a bright light on a great many hitherto dark areas of mathematical analysis. It 
explained a great many paradoxes and gave rise to a flood of papers (continuing to 
this day) devoted to the study of properties of analytic functions. It seemed that 
one had found so perfect a definition of function that all that remained to do was 
to study its implications. Above all, one seemed to have finally unriddled the 
property of a function that "the values of a small part of a curve determine all of it": 
this property turned out to be just a consequence of the definition of function. In 
addition, many hitherto baffling properties of analytic expressions, primarily series 
and infinite products, became clear: it turned out that the sum of a uniformly 
convergent series of functions analytic in a domain D was an analytic function in 
D. The riddle of an analytic expression that converged to different functions in 
different domains was explained by noting that uniform convergence was disturbed 
between these domains. This explained why, for example, the series 

converges to + 1 inside the circle 121 = 1 and to -1 in its exterior. Thus the 
concepts of an analytic function and an analytic expression became unlinked. Borel 
(1895) was the first to point out definite shortcomings of Weierstrass' definition 
and made a number of attempts to construct a theory more general than the 
Weierstrass theory. The first two of these attempts were found wanting by 
Poincark and Painlev6 and only the third one (1917) must be judged satisfactory. 
Borel devoted a significant part of his scientific work to the search for a class of 
functions wider than the class of Weierstrass' analytic functions. In this area he 
stated a number of profound ideas that became the foundation of virtually all 
papers of his followers in this direction. Borel's key objection to Weierstrass' 
definition was the complete artificiality of the boundary of the "natural domain of 
existence of a single-valued analytic function." This boundary is truly natural if it 
consists of a finite or countable number of points. But if it is a closed curve, then 
"this boundary-writes Borel-is frequently entirely artificial in the sense that the 
analytic expression that yields a function with this boundary turns out to also 
converge uniformly outside the boundary, and so yields an external function. From 
Weierstrass' viewpoint these two functions, the internal and external, are com-
pletely different, for neither one is a continuation of the other. But this is, in fact, a 
single function cut in two by a singular curve, for it is possible to find a class of 
analytic expressions such that if one part satisfies an algebraic or a differential 
relation then so does the other." The analytic expressions Borel has in mind are 
series of rational fractions 

where the series CIA,I converges and the singular points a,  ("the poles of the 
analytic expression") are everywhere dense on the closed curve under considera- 
tion or accumulate in its vicinity. 

Poincar6 and Wolf were critical of Borel's first attempt [to modify the Weier- 
strass definition]. Poincar6 pointed out that it is always possible to divide the curve 
under consideration into two parts A and B and to define two analytic (from 
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Weierstrass' viewpoint) functions cp,(z) and cp,(z) such that cp,(z) is analytic 
outside A,  cp,(z) is analytic outside B, and yet cp,(z) + cp,(z) = F,(z) inside the 
curve and cp,(z) + cp2(z) = F,(z) outside the curve, where F,(z) and F,(z) are two 
arbitravy functions of which one is analytic inside the curve, the other is analytic 
outside the curve, and neither can be continued analytically anywhere across the 
curve. As for Wolf, he constructed a series CA,/(z - a,) that converges to zero 
inside the curve, its poles a,, accumulate in a curve outside, and the series CI A,,I 
converges. Following Poincar6's criticism Borel changed his theory and resorted to 
Mittag-Leffler star expansions. Mittag-Leffler star expansions are generalizations 
of Taylor series, for the n-th term of such an expansion is a linear combination of 
the first n coefficients a,, a,, a,, . . . ,a,-, of a Taylor series. Borel expressed the 
conviction that the Weierstrass concept of an analytic function is too strongly tied 
to a particular class of analytic expressions, namely Taylor series, and that if one 
took instead of a Taylor series K(x - a)  a Mittag-Leffler star expansion, con-
structed for an interior point of the curve, then one could slide past the poles of 
the analytic expression, located everywhere densely on the singular curve, into 
outside space along its rays. We note that the domain of convergence of a 
Mittag-Leffler star expansion for an analytic function f(z)  is obtained as follows. 
One lights a source of light at the initial point a of a Mittag-Leffler star expansion 
M(x - a), and one drives in the plane opaque pegs into all singular points of the 
analytic function that is being expanded. The domain of convergence of the star 
expansion M(x - a)  to f(z)  is all the lit places (the "star"). Borel's computations 
seemed to confirm his idea, for it turned out that the star expansion M(x - a)  for 
an interior point a turned out to converge on the infinite set of rays of the star to 
the magnitude of the external function on these rays. But Painlev6 wrote a 
brilliant, detailed, and extremely subtle paper in which he pointed out to Borel 
that all this could be accidental, for there are Mittag-Leffler star expansions that 
converge to zero on a segment of a ray without the whole expansion representing 
zero. Then Borel made a third attempt-this time a successful one-by assuming 
that the series CIA,I converges extremely strongly (at least to the order of e- ,,4 1. He 
linked this assumption that the "monogenicity on the set" (that is, to the existence 
of f r ( z )  on the set). Borel's new theory stood the test; for a certain class of 
(complex) functions (in the sense of Dirichlet) the star expansions invariably 
converge to f(z). This means that knowledge of the magnitude of the function and 
of its derivatives completely determines the function in its entirety. This is certainly 
the case when the function is known on a segment. A somewhat delayed confirma- 
tion of Borel's third theory came from the Moscow papers (Privalov, Luzin). 
Specifically, it was shown that if a function is analytic near a rectifiable curve and 
vanishes almost everywhere on the curve when its points are approached along 
tangent paths, the function must necessarily be identically equal to zero. And since 
the external Borel function takes on the same values almost everywhere on the 
(rectifiable) singular curve as the internal function, it follows that there can be only 
one such external function. This uniqueness confirms Borel's ideas concerning the 
organic connection between the internal and external noncontinuable functions. 

In their search for the most natural generalization of the notion of an analytic 
function, Denjoy, Bernstein, and Carleman followed an entirely different path. 
The most original feature of their investigations was their determination to work 
with real rather than complex variables. 

Bernstein begins with his results on best approximation of analytic functions. 
His starting point is the following theorem. If f(x) is holomorphic at all points of 
an interval [a ,  b] then the best approximation Enf of f(x) by means of an n-th 
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degree polynomial must satisfy the inequality Enf < M .  p", where p < 1. 
Bernstein calls a function ( P )  quasi-analytic if there exists an infinite sequence of 
natural numbers n ,  < n ,  < ... < n ,  < ... such that Enk f < Mp"'. These func- 
tions turn out to be remarkable for, as Bernstein's fundamental theorem asserts, 
every (PI quasi-analytic function is completely determined on the whole interval 
[a ,  b ]  by its values on any of its subintervals [a',  b']. This proposition enabled 
Bernstein to define ( P )  quasi-analytic contin~lation as the preservation of the inequal- 
ity Enkf < M .  pnk in a larger interval [c ,  dl containing the given interval [a ,  b] .  
Bernstein likened the observed fact that changing the basis n ,  < n ,  < ... < n ,  < 
... of a (PI quasi-analytic continuation produced entirely different continuations 
of the given function f ( x )  outside the interval [a ,  b ]  to the multivaluedness of 
ordinary analytic functions. 

Carleman gave a different definition of quasi-analyticity. Whereas Bernstein's 
( P )  quasi-analytic function may not have a derivative, Carleman insists that the 
functions f ( x )  he considers have derivatives of all orders. He denotes by C, the 
class of all functions f ( x )  that satisfy on a given interval [a ,  b ]  the inequality 
1 f ( " ) ( x ) (< kn . A n ,  where A,, A,, . . . ,A,, . . . is a sequence of natural numbers 
and k is a positive constant independent of n. 

The fundamental Carleman-Denjoy theorem is the following important proposi- 
tion. A necessary and sujjicient condition for the family of functions C, to be 
quasi-analytic (that is, that its members have the property that their values on a 
subinterval [a', b ']  of [a ,  b ]  determine them on all of [a ,  b ] )  is that every monotonic 
nwjorant of the series El /  'xdiverges. Denjoy proved only the sufficiency of this 
condition. Carleman's definition has already been applied to the theory of mo-
ments. Its connection with Bernstein's definition is indeterminate in the sense that 
we have here neither the relation of sameness nor the relation of the general to 
the particular. 

BIBLIOGRAPHY 

N. N. Luzin, The integral and the trigonometric series, Moscow, 1915. (Russian) 
N. N. Luzin, Le~onssur. les ensembles analytiques et leurs applications, Paris, 1930. 
H. Burkhardt, Entwicklungen nach oszillie~enden Funktionen, Leipzig, 1901. 
E. W. Hobson, The the091 of functions of a real variable, 2 vols., Cambridge, 1921-26. 
E. Borel, Le~onssur la the'orie des forzctions, Paris, 1905. 
E. Borel, MCthodes et problCmes de la thCorie des fonctions, Paris, 1922. 
H. Lebesgue, Sur les fonctions reprksentables analytiquement, J .  Math. Pures Appl., Paris, 1905. 
S. Bernstein,  Leqons sur les propriCtCs extrCmales et a1 meilleure approximation des fonctions 

analytiques d'une variable rCelle, Paris, 1925. 
T. Carleman, Fonctlons quasi-analytiques, Paris, 1926. 

THE EVOLUTION OF  [March 


