
1HEURETTCS:
‘Il_iE~RE’T’lCAL AND EXPERPM ENTAL STUDY OF HEURISTIC RULES

Douglas B. Lenat
Heuristic Programming Project

Stan ford University

Builders of expert rule-based systems [Barr 811
[Feigenbaum 771 [Hayes-Roth et al. 8’21 attribute the
impressive performance of their programs to the corpus
of knowledge they embody: a large network of facts to
provide breadth of scope, and a large array of informal
judgmental rules (heuristics) which guide the system
toward plausible paths to follow and away from
implausible ones.

Yet what is the nature of heuristics? What is the source
of their power? How do thev interreIate; i.e., how
can/should a large col-pus 6f heuristic rules be
oq;anized? How do heuristics originate and evolve?

“Heuretics” is the study of heuristics, with an eye
toward answering questions such as those. Two case
studies, the AM and E:URISKO programs, have lccl to
some tentative Heuretics hypotheses, a dozen of which
are presented in this paper. Our aitn is to stimulate
lirture research in this field.

Hypothesis 1: Heuretics is a bolta fide field of
l~~~lcdgc, and merits investigation by AL We speak of
Heuretics as a jZe/tl if knowfedgc because (as we
sketchecl above) it has some more or less well agreed-
upon objects of study, some motivation fbr studying
such objects, and some central questions about the
nature of such objects.

13ut to rate as a JielLi ~;f knowledge, as a science,
Heuretics must also possess some accepted methods for
investigating its many questions. We hypothesize the
adequacy of the standard empirical inquiry paradigm
which dominates Al research; i.e,, test hypotheses about
heurislics by constructing -- and studying -- computer
programs which use heuristics and which try to find
new ones.

My pot hesis 2: Heuristic rules have three primary uses:
to prune away implausible ” moves” (actions,
alternatives, etc.), to propose plilusible ones, arId to serve
as data for the induction ol nc\~ heuristic rules. The
first of these, using a heuristic to prune a search, is the
one rnost heavily studied by earlier workers in the field

t
Michie, Nilsson, Gaschnig, etc. See, for example,
Gaschnig 771 and the references he cites.). The second

use, plausible move generation, is the source of power
exploited by AM [Lenat 791. Tt has the character of
lean? irlg by disco WY)). h the third and final case, the
entities being learned are not new domain concepts, but
new heuristics.

Hypothesis 3: Heuristics can act as “plausible move
generators”, to guide an explorer -- be he human or
m:~chir~e -- toward valuable nejv concepts worthy of
attentilon. This is one of the t.hree roles for a heuristic
t-~-ul;~~as nyted.in Hyp. 2. Here we illustrate how that

. <,onslcler, as an example, the heuristic Hl:
Hl: if function f takes a pair of A’s as arguments,

then define and study g(x) =df f(x,x).

That is, given a binary fLmction f, it’s often worth taking
the time and energy to see what happens when f’s
arguments coincide. If f is multiplication, this new
function turns out to be squaring: if f is acldition, g is
doubling. If f is union or intersection, g is the identity
function; if f is subtraction or exclusive-or, g is
iden tically zero. Thus we see how two usef~11 concepts
(squaring, doubling) and four ftmdamental conjectures
might be discovered by a researcher employing this
sirn ple heuristic.

Application of Hl is not limitecl to mathematics bf
course; one can think of Compile(x,x) [i.e., optimizing
compilers written inefficiently in the language they
compile,. and then processed by themselves ; Kill(x,x)
[i.e., sutclde

1
;

Apply(x,x)
Ponder(x,T) [i.e., self-awareness ; 1 afid even

i.e., the activity we are now engaging in].
This hypothesis was su.ggested by work with AM, and
has been confirmed In several domains by recent
experiments with .EURISKO.

When EURISKO was applied to the task of gcnefating
interesting three-dimensional VLSI designs, it already
possessed a heuristic that suggested augmentin.g any
design, to make it more symmetric. When this was
applied to the two-.climensional primitive device (the.
gate: see Fig. l), it led to the very svmmetric device in

gate oxide

Figure 1. The standard MOS gate. Side view. The Channel tile
.is intrinsic channel; i.e., it can serve between two positively (p-)
doged regions or bctwecn two negatively (n-) doped regions.

159

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

Figure 2 below, a device which simultaneously
computes NAND and OR, and which is the
fLmdamenta1 building block of most of our latest 3-D
VLSX chip designs. Symmetry is often more than
merely aesthetic; here, it led to a device which tesselates
(packs) three-space, and can be compactly stacked up
into memory cells, PLAs, etc. James Gibbons, a
pioneer in the techniques of builcling high-rise chi s by
recrystallization of thin silicon films [Gibbons 80 , has f
recently succeeded in fabricating these devices for us.

** NAND(A’B)
I Metal tile

tile
P-doped

Metal tile

N-doped

Figure 2 A symmetrized, three-dimensional extension of the gate
from Figure 1. The central tilt is intrinsic channel, coated with
gate oxide on both its top and bottom surfaces.

HypothesEs 4: The same methodology enables a body of
heuristic rules to monitor, modify, and enlarge itself.
Each heuristic in EURISKO is represented as a full-
fledged concept, asrf:‘;;ye with d!,zens yft;ts, each with
a relatively succmt - This
“parameterization” of he space of heuristics enables a
corpus of heuristics to apply to itself. For instance, a
heuristic that says “If a concept is using inordinate
resources and achieving very little, then put it out of its
misery (drop the ExpectedWorth to zero and stop using
it)” can apply to mathematical functions and can also
apply to heuristics. The heuristic “If a concept is
sometimes useful but often not, then specialize it in
many ways” actually applied to itself successfully, in one
of the early runs of EUKlSKO, because it was
sometimes useful but often not.

One of EURISKO’s tasks is the design of naval ships,
and entire fleets, conforming to a large set of rules and
formulae (G DW’s “Trillion Credit Squadron” game).

A simulator was easily built, and this enabled a kind of
heuristically-guided evolution of fleets, with the
simulator providing the needed natural selection
function. As each battle was fought, specific designs
were given credit and blame, and abstractions of these
formed simple design heuristics (e.g., “Heavy armor is
more important than agility”). Eventually, EURISKO
generalized these into a very abstract heursitic: For the
values of most parameters, when designing a TCS fleet,
the best value will usually be a nearly -- but not quite --
extreme value. This was noticed at the level of
designing an individual ship (nearly heaviest armor,
nearly as many types of weapons as leoally allowed,
nearly as small weapons as possible, ctc.7, and turned
out to apply to the design of the fleet as a whole (nearly
uniform, nearly minimal speed, etc.)

The fleet designed by this process won the national
Origins tourmament in TCS last July 4 (seven-round,
single elimination). Partly as a result of the countec-
intuitive loopholes exploited by that design, there were
numerous rules changes in effect for the local
tournament held in February, 1982. It is significant that
EURISKO spent much less time developing a fleet (yes,
it won again) for that set of rules, as most of its general
heuristics were still valid, even though the particular
designs it came up with were quite different (e.g., a
ship with no offensive ability was a useful acljunct to its
JLI~~, 1981 fleet; a ship with no defense was useful for
the February, 1982 tournament; the old fleet had
practically no ships with large weapons, whcras the new
fleet had practically no ships without such weapons).
EURISKO’s design task was made much easier by the
use of the new heuristics it synthesized last summer.

Hypothesis 5: Heuristics are compiled hindsight, and
draw their power from the various kinds of regularity and
continuity in the world. If an action A was (or would
have been) useful in situation S, then it is likely that
actions simiiar to A will be useful in the future in
situations similar to S. I.e., if we could somehow
actually compute the utility of obeying a heuristic, then
that function -- APPROI’IiIA’TENESS(Actioil,SitLlation) --
would be continuous in both variables. One useful
exercise is to consider the graph of APPROPRIATENESS
values for a fixed action, varying over the situations in
which it might be applied.

For example, consider graphing the utility of the
heuristic “If it’s April already and you haven’t gotten
your taxes done, then consider going to a commercial
tax-preparer”. The value of this advice varies as a
function of rnany situation-dependent variables, such as
your income (see Fig. 3). If’ you earned below $1.2k, it
might be better to do it your-self; if you earned above
$28k, it might be better to get an accountant.

The language of graphs of functions is now at our
disposal, an attractive metaphor within which to discuss
such processes as specializing a heuristic, using multiple
heuristics, and measuring attributes of a heuristic’s
performance. For instance, we were led to ponder the
significance of the slope of the curve as it intersects the
x-axis, This reflects how crucial it is to determine
true -- rather than approximate -- relevance of the
heuristic. 1f the slope is steep, the effects of obeying the
heuristic when it isn’t quite relevant could be

160

catastropluc. ff the slope is mild, spending a great
amount of time determining true relevance is a waste.
We cannot automatically construct the graph of a
heuristic’s utility, but it is easy to infer the magnitude of
its slope near the x-intercept from several cases of its
accidental misuse. EURISKO presently uses this
empirical technique to estimate this quantity for each
heuristic. That value in turn guides the rule interpreter
in deciding how much time to spend evaluating the IF-
part of the rule before trying to apply the THEN-part.

+
++

+*+
+ +* *

I * + + +
INCOME ->

+
______________sk_____________________l~~______~______ + _____*,~~____ + ______T_“________3Ok___
* + * *

+ t + t *
* + * -I-

* *

* + +

t
+ *

*
+ l

t

+

+

Figure 3. The utility of “...c, w to a commcricnl income-tax-preparer”
(*) and “...go to John Smith at the Palo Alto AxaTax office” (-I-).

As an example of specializil., 1~ a heuristic, consider what
happens as we change the THEN-part of the above
heuristic into I’... then go see John Smith at the Palo
Alto AxaTax office”. His forte’ may be individuals
whose income is around $20k, and he may be worse
than his colleages fbr taxpayers earning about $12k, or
about $28k. See the graph marked “-t-l’ in Fig. 3. If we
specialize the IllEN-part of a heuristic, it typically has
higher utility but only over a narrower clomain. Notice
the area under the curve appears to be remain roughly
constant; this is a geoniitric interpretation of -the
tradeoff between generality and power of heuristic rules.

Hypothesis 6: Generalizing and specializing a heuristic
often leads to a p:~thologically extreme new one, but
some of those arc useful nevertheless. By examining the
graphs in Figure 3 above, one can generat.e a list of
possible bugs that may occur when the actions (‘THEN-
part) of a heuristic are specialized. First, the domain of
relevance of the new one may be so narrow that it is
merely a spike, a delta function. This is what happens
when a general heuristic is replaced by a table of
speci fit values. A more common bug occurs when one
of the heuristics is completely dominated by the other.
For example, “Smack a vu-graph projector if it makes
noise” has much narrower dotnnin, but no higher utility,
than the more general heuristic “Smack a device if it’s
acting up”. Thus, the area under the curve is greatly
diminished, but no benefit (narrow, high peak) accrues.

While the last paragraph warned of some extreme bacl
cases of specializing the THEN- part of a heuristic,
there are some extreme good cases which frequently

occur. The utility (y-) axis may have some absolute
desirable point along it (e.g., some guarantee of
correctness or efficiency), and by specializing the
heuristic enough, its utility may exceed that threshhold
(albeit over a narrow range of tasks). In such a case, the
way we qualitatively value that heuristic may alter; e.$;,
we may term it “algorithmic” or “real-time” or “O-tax .

So some of the most useful constructs in computer
science can be viewed as pathological cases of heuristics.
Algorithms are seen to be heuristics which are so
powerful that guarantees can be made about their use.
Tables of values are seen to be heuristics whose domain
is a set of measure zero.

Hypothesis 7: The graph of “all the world’s heuristics”
is surprisingly shallow. One can take a specific
heuristic and generalize it gradually, in all posible ways,
until all the generalizations collapse into weak methods.
By carrying out this activity over and over again, for
heuristics from various fields, we can imagine building
up a graph that would approach -- in the limit -- “the
graph of all heuristics.” This might be a useful
technique, then, for investigating the space of heuristics,
getting at its structure.

A preliminary analysis (using AM’s 243 heuristics) led
us to expect the tree to be of maximum depth about 50,
though most of AM’s heuristics were turned into weak
methods after only about a dozen generalization steps.
Next, with the help of Woody Bledsoe and Herbert
Simon, we analyzed this partial tree of AM’s heuristics,
examining the power of the rules therein. It soon
became apparent that most generalizations Hgenl were
just as powerful than the heuristic rule(s) Hspec beneath
them! In such cases, the specific rule(s) can be
eliminated from the tree. The resulting tree had depth
of only 4, and is thus incredibly shallow and bushy. We
observed that all but the top couple and bottom couple
levels of its tree could be eliminated with no ill effects.

This elevates the top levels (the weak methods) to a
special status, and likewise the bottom levels (the
domain-specific rules). It may shed some light on the
successes of two radically opposed philosophies of
heuristic search: the cognitive science and knowledge
engineering. It also dooms most attempts to create a
new heuristic by specializing (moving downwards in
that tree): the new heuristics synthesized that way are
almost sure to be no more powerful than the ones you
started with. This explains theoretically a finding we
reached empirically using EURIS KO: generalization
and analogy -- rzc)f specialization -- are the most
powerfill ways to discover new heuristics.

One solution to this “shallow-tree problem” is the
realization that ihere are numerous ways in which one
heuristic can relate to another: abstraction-of, applies-
more-widely-than, possibly-triggers, easier-to-teach-
than, etc. If there is avly such relation for which HN
has some higher power than Hold, then it’s worth
keeping Hnew around. E.g., special cases of Maxwell’s
equations and Thorp’s Blackjack tens-count systems are

161

important, as they
general versions.

are easier to teach and use than the

Hypothesis 8: Even though the world is often
discontinuous, we usually cannot do-any better than rely
upon heuristics that presun;ose;b;~nulty (see Hyp. 5).
There are many ‘7 3 measures of
APPROPRIATENESS (e.g., ef’ficiekcy, low down-side risk,
comprehensibility), and many dimensions along which
Situations can vary (e.g., difficulty, time, importance,
subject matter). Compounding this is the nonlinearity
of the Situation space along most of these dimensions.
Thus the “zeroth order theory” espoused in Hyps. 5-7 is
only a metaphor.

Yet it is too attractive, too close to what human experts
actually do, to reject out of hand. It can be extended
into a “,first order theory“:

It is frequently useful to behave 8s though the zero*
order theory were true. That is, one acts as if the
function APPROPRIATENESS(Action , Situation) existed,
were computable, continuous, and time-invariant..

To give an ex‘ample: the current situation may appear
similar to ones in which it was cost-effective to skip to
the Conclusions section of the paper. Even though you
can’t be sure that that’s an appropriate action to take
now, it may be useful for you to behave as though the
world is that continuous, to take that action anyway. If
you do so, you’re following a heuristic. [To not tempt
the reader to follow that heuristic, this paper has no
Conclusions section.] That heuristic’s guidance is oniy
as good as the generalization process you used in
deciding the situation was similar (e.g., would you apply
it to all articles? to all articles written by Lenat?) The
world has of course changed in innumerable ways since
the formation of your heuristics about paper-reading.
You cannot monitor even a small fraction of the
changes in the world; you cope (i.e., , solve the Frame
l+$lci) by relying on extant heuristics Fd revising

-- but usually only as -- they fall you.

Hypothesis 9: The interrelations among a set of
heuristics -- and the internal structure of a single one --
can and should be quite complex. Six years ago, the
AM program was constructed as an experiment in
learning by discovery. Its source of power was 243
heuristics, rules which guided it toward fruitful topics of
investigation, toward profitable experiments to perform,
toward plausible hypotheses and definitions. Its
ultimate limitation apparently was due to its inability to
discover new, powerful, domain-specific heuristics for
the various new fields it uncovered. At that time, it
seemed straight-forward to simply add “Heuristics” as
one more field in which to let AM explore, observe,
define, and develop.

That task -- learning new heuristics by discovery --
turned out to be much more difficult than was realized
initially, and we have just now achieved some successes
at it. Along the way, it became clearer why AM had
succeeded in the first place, and why it was so difficult
to use the same paradigm to discover new heuristics.

In essence, AM was an automatic programming system,
whose primitive actions were modifications to pieces of
Lisp code, predicates which represented the
characteristic functions of various math concepts. See
[Green et al., 741 for background on this style of code
synthesis and modification. It was only because of the
deep relationship between Lisp and Mathematics that
these operations (loop unwinding, recursion elimination,
composition, argument elimination, function
substitution, etc.) which were basic Lisp mutators also
turned out to yield a high “hit rate” of viable, useful
new math concepts when applied to previously-known,
useful math concepts. For instance, AM took a piece of
Lisp code which determined whether or not two list
structures were equal, lopped off one recursive call, and
(see Fig. 4) wound up with a new Lisp predicate that
returned True iff its arguments had the same length.
But no such deep relationship existed between Lisp and
Heuristics: when the basic automatic programming
operators were applied to viable, usef’ul heuristics, they
almost always produced useless (often worse than
useless) new heuristic rules.

PREDl: i4 (x,y)
(COND ((EQ x Y) T)

((OR (NULL x) (NULL y) NIL)
(T (AND (PREDl (CAR x (CAR y)) 1

(PREDl (CDR x) (CDR y)))))

PRED2: ii (x.y)
(COND ((EQ x Y) T)

((OR (NULL x) (NULL y)) NIL)
(T (PRED2 (CDR x) (CDR y))))

Figure 4. AM was given PREDl, the characteristic function for
the math concept “list-equality”. Ry lopping off one recursive
call. it created PRED2, which computes “lists having the same
length”.

Over the past six years, we have constructed a new
language in which the statement of heuristics is more
natural and compact. The vocabulary includes many
types of conditions (If-there-are-enough-resources, If-
we-recently-worked-on), actions (Then-conjecture,
Then-add-to-Ggenda), and non-executable attributes that
record descriptive information about the heuristic
(Average-running-time, Origin). Instead of writing two
large lumps of Lisp code to represent the heuristic (If
and Then), one spreads the same information out across
many dozens of “slots”. A heuristic in EURISKO is
now -- like a math concept always was in AM -- a
collection of about twenty or more slots, each filled with
a line or two worth of code. By employing this new
language, the old property that AM satisfied fortuitom’y
is once again satisfied: the primitive syntactic operators
usually now ‘produce meaningfLl1 semantic variants of
what they operate on. The ties to the foundations of
Heuretics have been engineered into the synt‘ax and
vocabulary of the new language, partly by design and
partly by evolution, much as McCarthy engineered ties
to the foundations of Mathematics into Lisp.

The EURISKO program employs this language to
represent hundreds of heuristics. It explores eight task
domains: design of naval fleets, elementary set theory
and number theory, Lisp programming, biological
evolution, games in general, the design of three-
dimensional VLSI devices, the discovery of heuristics

162

which help the system discover heuristics, and the
discovery of appropriate new types of “slots” in each
domain. From 200 to 500 concepts from each domain
(objects, operators, etc.) were also supplied initially. In
each domain, many new concepts and designs, and a
few heuristics, were indeed discovered mechanically.

Hypothesis 10: Some very general heuristics can guide
the search for new domain-dependent heuristics. Even
though two domains may appear disparate, the same
heuristics may be equally powerful in coping with them.
This one, e.g., is useful in almost all fields:

IF you're about to use or prove something about C,
THEN first make certain that C has some examples,

i.e., ensure that C is not vacuous.

Even if the heuristics for the two domains seem
disparate, the paths which were followed in getting the
powerful heuristics of the field may be similar.

Hypothesis 11: As with any field of human endeavor,
Heuretics is accumulating a corpus of informal
judgmental knowledge -- heuristics. In this case, the
heuristics are about Heuretics; they guide the
heuretician in extracting heuristics from experts, in
deciding when the existing corpus of heuristics needs to
be augmented, in representing heuristics within
knowledge bases, in evaluating the worth of a heuristic,
in troubleshootmg a program built around a large
collection of heuristic rules, etc. Some examples are:

The best way to extract a new heuristic is to have
the expert watch the existing program err, and ask
him/her to help track down the "bug".

When generalizing a heuristic, don't replace the
central "AND" connective of the If-Potentially-
Relevant slot by "OR"; the result is indeed more
general, but likely to be very over-generalized.

New heuristics shoul
new domain concepts

d emerge much less often than

If a heuristic takes up a lot of room, there's
probably a useful new slot or two that can be
defined, to shorten that (and other) heuristics.

Hypothesis 12: Domains which are unexplored,
internally formalizable, combinatorially immense, and
highly structured are ideal for studying Heuretics.
EURISKO found many new concepts and heuristics in
the TCS game and the 3D VLSI design task because
any discoveries in those domains were almost certain to
be new: the domains were practically unexplored by
human beings. Breaking new ground is often easier
than scouring old ground for neglected gems.

What other criteria make a task well-suited to
automated discovery. 3 A second one is that there must
be a way to simulate or directly carry out experiments.
Third, the “search space” should be too immense for
other methods to work. No human should be able to
manually search the same space the program is walking
around in. Fourth, the task domain must be rich in
structure, including heuristic structure. There should be
many objects and operators, many kinds of objects and
kinds of operators. Hopefully they will be related

hierarchically and in other ways. Complexity of the
domain raises the utility of plausible, inexact reasoning,
hence the need for heuristic guidance. By “heuristic
structure” we mean the presence of many heuristics,
and implicitly the absence of any known efficient
algorithms to replace them. For instance, theorem
proving in propositional calculus is a poor task domain
for Heuretics research, as it admits only a few heuristics,
and they are already well known.

Finally, one of the most crucial requirements is that of
an adequate representation. If the language or
representation employed is not well matched to the
domain objects and operators, the heuristics that do
exist will be long and awkwardly stated, and the
discovery of new ones in that representation may be
nearly impossible. An example of this was the painful
development of EURISKO, which began with a small
vocabulary of slots for describing heuristics (If, Then),
<and was forced (in order to obtain reasonable
performance) to evolve two orders of magnitude more
kinds of slots that heuristics could have, some of them
domain-dependent..

The purpose of this paper has not been to convincingly
argue each point. Rather, we hope to stimulate research
in a new area -- Heuretics -- and to that end have
indicated a spectrum of questions, apparent regularities,
and issues which are worth investigating further.

Acknowledgments

Productive discussions with John Secly Brown, Bruce Buchanan,
Bill Clancey, Ed Fcigenbaum, Johan deKlcer, George Polya, Herb
Simon, and Mike Williams have heavily influenced this work.
EURISKO is written in -- and relies upon -- RT,L. The 3D VLSI
work is in collaboration with Bert Sutherland of SSA and Jim
Gibbons of Stanford. Finally, I wish to thank XISOX PARC'S CIS
and Stanford University’s HPP for providing superb environments
(intellectual, physical, and computational) in which to work.
Financial support has been provided by ONR (N00014-80-C-
0609) and XEROX PARC.

References

Barr, Avron, and Edward A. Fcigenbaum, eds., I~mdbook of AI,
Volume II, William Kaufman, Los Altos, 1981.

Fei enbaum,
s

Edward A., “The Art of Artificial Intelligence”,
rot. Fifth ZJCAI, Cambridge, Mass., August, 1977, p. 1014.

Gaschnig, John, “Exactly How Good Are Heuristics?: Toward a
Realistic Predictive Theory of Best-First Search”, Proc. fi’ifih
IJCAZ, Cambridge, Mass., August, 1977.

Gibbons, James, and K. F. IXC, “One-Gate-Wide CMOS Invcrter
on Laser-Recrystallized Polysilicon”, I&!%’ Electron Device
Letters, EDL-1, 6, June, 1980.

Green, Cordell, Richard Waldinger, David Barstow, Robert
Elschlager, Douglas Lenat, Brian McCune, David Shaw, and
Louis Steinberg, Pro-ogress Report on Program Understandirzg
Systems, STAN-CS-74-444, A 1 Lab, Stanford, August, 1974.

Hayes-Roth, Frederick, Donald Waterman, and Douglas I.cnat
(eds.), Buildirlg Expel-1 Systems, proceedings of the 1980 San
Diego workshop in expert systems, to appear 1982.

Lenat, Douglas B., “On Automated Scientific Theory Formation:
A Case Study Using the AM Program,” in (1Jaycs et al, cds.)
Machine Intell. 9, NY: &lstead Press, 1979, pp. 251-283.

Lenat, Douglas B., “The Nature of Heuristics”, J. ArtijEaf
Intelligence, to appear Fall, 1982.

Polya, G., How lo Solve It, Princeton University Press, 1945.

