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Builders of expert rule-based systems [Barr 811 
[Feigenbaum 771 [Hayes-Roth et al. 8’21 attribute the 
impressive performance of their programs to the corpus 
of knowledge they embody: a large network of facts to 
provide breadth of scope, and a large array of informal 
judgmental rules (heuristics) which guide the system 
toward plausible paths to follow and away from 
implausible ones. 

Yet what is the nature of heuristics? What is the source 
of their power? How do thev interreIate; i.e., how 
can/should a large col-pus 6f heuristic rules be 
oq;anized? How do heuristics originate and evolve? 

“Heuretics” is the study of heuristics, with an eye 
toward answering questions such as those. Two case 
studies, the AM and E:URISKO programs, have lccl to 
some tentative Heuretics hypotheses, a dozen of which 
are presented in this paper. Our aitn is to stimulate 
lirture research in this field. 

Hypothesis 1: Heuretics is a bolta fide field of 
l~~~lcdgc, and merits investigation by AL We speak of 
Heuretics as a jZe/tl if knowfedgc because (as we 
sketchecl above) it has some more or less well agreed- 
upon objects of study, some motivation fbr studying 
such objects, and some central questions about the 
nature of such objects. 

13ut to rate as a JielLi ~;f knowledge, as a science, 
Heuretics must also possess some accepted methods for 
investigating its many questions. We hypothesize the 
adequacy of the standard empirical inquiry paradigm 
which dominates Al research; i.e,, test hypotheses about 
heurislics by constructing -- and studying -- computer 
programs which use heuristics and which try to find 
new ones. 

My pot hesis 2: Heuristic rules have three primary uses: 
to prune away implausible ” moves” (actions, 
alternatives, etc.), to propose plilusible ones, arId to serve 
as data for the induction ol nc\~ heuristic rules. The 
first of these, using a heuristic to prune a search, is the 
one rnost heavily studied by earlier workers in the field 

t 
Michie, Nilsson, Gaschnig, etc. See, for example, 
Gaschnig 771 and the references he cites.). The second 

use, plausible move generation, is the source of power 
exploited by AM [Lenat 791. Tt has the character of 
lean? irlg by disco WY)). h the third and final case, the 
entities being learned are not new domain concepts, but 
new heuristics. 

Hypothesis 3: Heuristics can act as “plausible move 
generators”, to guide an explorer -- be he human or 
m:~chir~e -- toward valuable nejv concepts worthy of 
attentilon. This is one of the t.hree roles for a heuristic 
t-~-ul;~~as nyted.in Hyp. 2. Here we illustrate how that 

. <,onslcler, as an example, the heuristic Hl: 
Hl: if function f takes a pair of A’s as arguments, 

then define and study g(x) =df f(x,x). 

That is, given a binary fLmction f, it’s often worth taking 
the time and energy to see what happens when f’s 
arguments coincide. If f is multiplication, this new 
function turns out to be squaring: if f is acldition, g is 
doubling. If f is union or intersection, g is the identity 
function; if f is subtraction or exclusive-or, g is 
iden tically zero. Thus we see how two usef~11 concepts 
(squaring, doubling) and four ftmdamental conjectures 
might be discovered by a researcher employing this 
sirn ple heuristic. 

Application of Hl is not limitecl to mathematics bf 
course; one can think of Compile(x,x) [i.e., optimizing 
compilers written inefficiently in the language they 
compile,. and then processed by themselves ; Kill(x,x) 
[i.e., sutclde 

1 
; 

Apply(x,x) 
Ponder(x,T) [i.e., self-awareness ; 1 afid even 

i.e., the activity we are now engaging in]. 
This hypothesis was su.ggested by work with AM, and 
has been confirmed In several domains by recent 
experiments with .EURISKO. 

When EURISKO was applied to the task of gcnefating 
interesting three-dimensional VLSI designs, it already 
possessed a heuristic that suggested augmentin.g any 
design, to make it more symmetric. When this was 
applied to the two-.climensional primitive device (the. 
gate: see Fig. l), it led to the very svmmetric device in 

gate oxide 

Figure 1. The standard MOS gate. Side view. The Channel tile 
.is intrinsic channel; i.e., it can serve between two positively (p-) 
doged regions or bctwecn two negatively (n-) doped regions. 
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Figure 2 below, a device which simultaneously 
computes NAND and OR, and which is the 
fLmdamenta1 building block of most of our latest 3-D 
VLSX chip designs. Symmetry is often more than 
merely aesthetic; here, it led to a device which tesselates 
(packs) three-space, and can be compactly stacked up 
into memory cells, PLAs, etc. James Gibbons, a 
pioneer in the techniques of builcling high-rise chi s by 
recrystallization of thin silicon films [Gibbons 80 , has f 
recently succeeded in fabricating these devices for us. 

** NAND(A’B) 
I Metal tile 

tile 
P-doped 

Metal tile 

N-doped 

Figure 2 A symmetrized, three-dimensional extension of the gate 
from Figure 1. The central tilt is intrinsic channel, coated with 
gate oxide on both its top and bottom surfaces. 

HypothesEs 4: The same methodology enables a body of 
heuristic rules to monitor, modify, and enlarge itself. 
Each heuristic in EURISKO is represented as a full- 
fledged concept, asrf:‘;;ye with d!,zens yft;ts, each with 
a relatively succmt - This 
“parameterization” of he space of heuristics enables a 
corpus of heuristics to apply to itself. For instance, a 
heuristic that says “If a concept is using inordinate 
resources and achieving very little, then put it out of its 
misery (drop the ExpectedWorth to zero and stop using 
it)” can apply to mathematical functions and can also 
apply to heuristics. The heuristic “If a concept is 
sometimes useful but often not, then specialize it in 
many ways” actually applied to itself successfully, in one 
of the early runs of EUKlSKO, because it was 
sometimes useful but often not. 

One of EURISKO’s tasks is the design of naval ships, 
and entire fleets, conforming to a large set of rules and 
formulae (G DW’s “Trillion Credit Squadron” game). 

A simulator was easily built, and this enabled a kind of 
heuristically-guided evolution of fleets, with the 
simulator providing the needed natural selection 
function. As each battle was fought, specific designs 
were given credit and blame, and abstractions of these 
formed simple design heuristics (e.g., “Heavy armor is 
more important than agility”). Eventually, EURISKO 
generalized these into a very abstract heursitic: For the 
values of most parameters, when designing a TCS fleet, 
the best value will usually be a nearly -- but not quite -- 
extreme value. This was noticed at the level of 
designing an individual ship (nearly heaviest armor, 
nearly as many types of weapons as leoally allowed, 
nearly as small weapons as possible, ctc.7, and turned 
out to apply to the design of the fleet as a whole (nearly 
uniform, nearly minimal speed, etc.) 

The fleet designed by this process won the national 
Origins tourmament in TCS last July 4 (seven-round, 
single elimination). Partly as a result of the countec- 
intuitive loopholes exploited by that design, there were 
numerous rules changes in effect for the local 
tournament held in February, 1982. It is significant that 
EURISKO spent much less time developing a fleet (yes, 
it won again) for that set of rules, as most of its general 
heuristics were still valid, even though the particular 
designs it came up with were quite different (e.g., a 
ship with no offensive ability was a useful acljunct to its 
JLI~~, 1981 fleet; a ship with no defense was useful for 
the February, 1982 tournament; the old fleet had 
practically no ships with large weapons, whcras the new 
fleet had practically no ships without such weapons). 
EURISKO’s design task was made much easier by the 
use of the new heuristics it synthesized last summer. 

Hypothesis 5: Heuristics are compiled hindsight, and 
draw their power from the various kinds of regularity and 
continuity in the world. If an action A was (or would 
have been) useful in situation S, then it is likely that 
actions simiiar to A will be useful in the future in 
situations similar to S. I.e., if we could somehow 
actually compute the utility of obeying a heuristic, then 
that function -- APPROI’IiIA’TENESS(Actioil,SitLlation) -- 
would be continuous in both variables. One useful 
exercise is to consider the graph of APPROPRIATENESS 
values for a fixed action, varying over the situations in 
which it might be applied. 

For example, consider graphing the utility of the 
heuristic “If it’s April already and you haven’t gotten 
your taxes done, then consider going to a commercial 
tax-preparer”. The value of this advice varies as a 
function of rnany situation-dependent variables, such as 
your income (see Fig. 3). If’ you earned below $1.2k, it 
might be better to do it your-self; if you earned above 
$28k, it might be better to get an accountant. 

The language of graphs of functions is now at our 
disposal, an attractive metaphor within which to discuss 
such processes as specializing a heuristic, using multiple 
heuristics, and measuring attributes of a heuristic’s 
performance. For instance, we were led to ponder the 
significance of the slope of the curve as it intersects the 
x-axis, This reflects how crucial it is to determine 
true -- rather than approximate -- relevance of the 
heuristic. 1f the slope is steep, the effects of obeying the 
heuristic when it isn’t quite relevant could be 
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catastropluc. ff the slope is mild, spending a great 
amount of time determining true relevance is a waste. 
We cannot automatically construct the graph of a 
heuristic’s utility, but it is easy to infer the magnitude of 
its slope near the x-intercept from several cases of its 
accidental misuse. EURISKO presently uses this 
empirical technique to estimate this quantity for each 
heuristic. That value in turn guides the rule interpreter 
in deciding how much time to spend evaluating the IF- 
part of the rule before trying to apply the THEN-part. 
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Figure 3. The utility of “...c, w to a commcricnl income-tax-preparer” 
(*) and “...go to John Smith at the Palo Alto AxaTax office” (-I-). 

As an example of specializil., 1~ a heuristic, consider what 
happens as we change the THEN-part of the above 
heuristic into I’... then go see John Smith at the Palo 
Alto AxaTax office”. His forte’ may be individuals 
whose income is around $20k, and he may be worse 
than his colleages fbr taxpayers earning about $12k, or 
about $28k. See the graph marked “-t-l’ in Fig. 3. If we 
specialize the IllEN-part of a heuristic, it typically has 
higher utility but only over a narrower clomain. Notice 
the area under the curve appears to be remain roughly 
constant; this is a geoniitric interpretation of -the 
tradeoff between generality and power of heuristic rules. 

Hypothesis 6: Generalizing and specializing a heuristic 
often leads to a p:~thologically extreme new one, but 
some of those arc useful nevertheless. By examining the 
graphs in Figure 3 above, one can generat.e a list of 
possible bugs that may occur when the actions (‘THEN- 
part) of a heuristic are specialized. First, the domain of 
relevance of the new one may be so narrow that it is 
merely a spike, a delta function. This is what happens 
when a general heuristic is replaced by a table of 
speci fit values. A more common bug occurs when one 
of the heuristics is completely dominated by the other. 
For example, “Smack a vu-graph projector if it makes 
noise” has much narrower dotnnin, but no higher utility, 
than the more general heuristic “Smack a device if it’s 
acting up”. Thus, the area under the curve is greatly 
diminished, but no benefit (narrow, high peak) accrues. 

While the last paragraph warned of some extreme bacl 
cases of specializing the THEN- part of a heuristic, 
there are some extreme good cases which frequently 

occur. The utility (y-) axis may have some absolute 
desirable point along it (e.g., some guarantee of 
correctness or efficiency), and by specializing the 
heuristic enough, its utility may exceed that threshhold 
(albeit over a narrow range of tasks). In such a case, the 
way we qualitatively value that heuristic may alter; e.$;, 
we may term it “algorithmic” or “real-time” or “O-tax . 

So some of the most useful constructs in computer 
science can be viewed as pathological cases of heuristics. 
Algorithms are seen to be heuristics which are so 
powerful that guarantees can be made about their use. 
Tables of values are seen to be heuristics whose domain 
is a set of measure zero. 

Hypothesis 7: The graph of “all the world’s heuristics” 
is surprisingly shallow. One can take a specific 
heuristic and generalize it gradually, in all posible ways, 
until all the generalizations collapse into weak methods. 
By carrying out this activity over and over again, for 
heuristics from various fields, we can imagine building 
up a graph that would approach -- in the limit -- “the 
graph of all heuristics.” This might be a useful 
technique, then, for investigating the space of heuristics, 
getting at its structure. 

A preliminary analysis (using AM’s 243 heuristics) led 
us to expect the tree to be of maximum depth about 50, 
though most of AM’s heuristics were turned into weak 
methods after only about a dozen generalization steps. 
Next, with the help of Woody Bledsoe and Herbert 
Simon, we analyzed this partial tree of AM’s heuristics, 
examining the power of the rules therein. It soon 
became apparent that most generalizations Hgenl were 
just as powerful than the heuristic rule(s) Hspec beneath 
them! In such cases, the specific rule(s) can be 
eliminated from the tree. The resulting tree had depth 
of only 4, and is thus incredibly shallow and bushy. We 
observed that all but the top couple and bottom couple 
levels of its tree could be eliminated with no ill effects. 

This elevates the top levels (the weak methods) to a 
special status, and likewise the bottom levels (the 
domain-specific rules). It may shed some light on the 
successes of two radically opposed philosophies of 
heuristic search: the cognitive science and knowledge 
engineering. It also dooms most attempts to create a 
new heuristic by specializing (moving downwards in 
that tree): the new heuristics synthesized that way are 
almost sure to be no more powerful than the ones you 
started with. This explains theoretically a finding we 
reached empirically using EURIS KO: generalization 
and analogy -- rzc)f specialization -- are the most 
powerfill ways to discover new heuristics. 

One solution to this “shallow-tree problem” is the 
realization that ihere are numerous ways in which one 
heuristic can relate to another: abstraction-of, applies- 
more-widely-than, possibly-triggers, easier-to-teach- 
than, etc. If there is avly such relation for which HN 
has some higher power than Hold, then it’s worth 
keeping Hnew around. E.g., special cases of Maxwell’s 
equations and Thorp’s Blackjack tens-count systems are 
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important, as they 
general versions. 

are easier to teach and use than the 

Hypothesis 8: Even though the world is often 
discontinuous, we usually cannot do-any better than rely 
upon heuristics that presun;ose;b;~nulty (see Hyp. 5). 
There are many ‘7 3 measures of 
APPROPRIATENESS (e.g., ef’ficiekcy, low down-side risk, 
comprehensibility), and many dimensions along which 
Situations can vary (e.g., difficulty, time, importance, 
subject matter). Compounding this is the nonlinearity 
of the Situation space along most of these dimensions. 
Thus the “zeroth order theory” espoused in Hyps. 5-7 is 
only a metaphor. 

Yet it is too attractive, too close to what human experts 
actually do, to reject out of hand. It can be extended 
into a “,first order theory“: 

It is frequently useful to behave 8s though the zero* 
order theory were true. That is, one acts as if the 
function APPROPRIATENESS(Action , Situation) existed, 
were computable, continuous, and time-invariant.. 

To give an ex‘ample: the current situation may appear 
similar to ones in which it was cost-effective to skip to 
the Conclusions section of the paper. Even though you 
can’t be sure that that’s an appropriate action to take 
now, it may be useful for you to behave as though the 
world is that continuous, to take that action anyway. If 
you do so, you’re following a heuristic. [To not tempt 
the reader to follow that heuristic, this paper has no 
Conclusions section.] That heuristic’s guidance is oniy 
as good as the generalization process you used in 
deciding the situation was similar (e.g., would you apply 
it to all articles? to all articles written by Lenat?) The 
world has of course changed in innumerable ways since 
the formation of your heuristics about paper-reading. 
You cannot monitor even a small fraction of the 
changes in the world; you cope (i.e., , solve the Frame 
l+$lci) by relying on extant heuristics Fd revising 

-- but usually only as -- they fall you. 

Hypothesis 9: The interrelations among a set of 
heuristics -- and the internal structure of a single one -- 
can and should be quite complex. Six years ago, the 
AM program was constructed as an experiment in 
learning by discovery. Its source of power was 243 
heuristics, rules which guided it toward fruitful topics of 
investigation, toward profitable experiments to perform, 
toward plausible hypotheses and definitions. Its 
ultimate limitation apparently was due to its inability to 
discover new, powerful, domain-specific heuristics for 
the various new fields it uncovered. At that time, it 
seemed straight-forward to simply add “Heuristics” as 
one more field in which to let AM explore, observe, 
define, and develop. 

That task -- learning new heuristics by discovery -- 
turned out to be much more difficult than was realized 
initially, and we have just now achieved some successes 
at it. Along the way, it became clearer why AM had 
succeeded in the first place, and why it was so difficult 
to use the same paradigm to discover new heuristics. 

In essence, AM was an automatic programming system, 
whose primitive actions were modifications to pieces of 
Lisp code, predicates which represented the 
characteristic functions of various math concepts. See 
[Green et al., 741 for background on this style of code 
synthesis and modification. It was only because of the 
deep relationship between Lisp and Mathematics that 
these operations (loop unwinding, recursion elimination, 
composition, argument elimination, function 
substitution, etc.) which were basic Lisp mutators also 
turned out to yield a high “hit rate” of viable, useful 
new math concepts when applied to previously-known, 
useful math concepts. For instance, AM took a piece of 
Lisp code which determined whether or not two list 
structures were equal, lopped off one recursive call, and 
(see Fig. 4) wound up with a new Lisp predicate that 
returned True iff its arguments had the same length. 
But no such deep relationship existed between Lisp and 
Heuristics: when the basic automatic programming 
operators were applied to viable, usef’ul heuristics, they 
almost always produced useless (often worse than 
useless) new heuristic rules. 

PREDl: i4 (x,y) 
(COND ((EQ x Y) T) 

((OR (NULL x) (NULL y ) NIL) 
(T (AND (PREDl (CAR x (CAR y)) 1 

(PREDl (CDR x) (CDR y))))) 

PRED2: ii (x.y) 
(COND ((EQ x Y) T) 

((OR (NULL x) (NULL y)) NIL) 
(T (PRED2 (CDR x) (CDR y)))) 

Figure 4. AM was given PREDl, the characteristic function for 
the math concept “list-equality”. Ry lopping off one recursive 
call. it created PRED2, which computes “lists having the same 
length”. 

Over the past six years, we have constructed a new 
language in which the statement of heuristics is more 
natural and compact. The vocabulary includes many 
types of conditions (If-there-are-enough-resources, If- 
we-recently-worked-on), actions (Then-conjecture, 
Then-add-to-Ggenda), and non-executable attributes that 
record descriptive information about the heuristic 
(Average-running-time, Origin). Instead of writing two 
large lumps of Lisp code to represent the heuristic (If 
and Then), one spreads the same information out across 
many dozens of “slots”. A heuristic in EURISKO is 
now -- like a math concept always was in AM -- a 
collection of about twenty or more slots, each filled with 
a line or two worth of code. By employing this new 
language, the old property that AM satisfied fortuitom’y 
is once again satisfied: the primitive syntactic operators 
usually now ‘produce meaningfLl1 semantic variants of 
what they operate on. The ties to the foundations of 
Heuretics have been engineered into the synt‘ax and 
vocabulary of the new language, partly by design and 
partly by evolution, much as McCarthy engineered ties 
to the foundations of Mathematics into Lisp. 

The EURISKO program employs this language to 
represent hundreds of heuristics. It explores eight task 
domains: design of naval fleets, elementary set theory 
and number theory, Lisp programming, biological 
evolution, games in general, the design of three- 
dimensional VLSI devices, the discovery of heuristics 
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which help the system discover heuristics, and the 
discovery of appropriate new types of “slots” in each 
domain. From 200 to 500 concepts from each domain 
(objects, operators, etc.) were also supplied initially. In 
each domain, many new concepts and designs, and a 
few heuristics, were indeed discovered mechanically. 

Hypothesis 10: Some very general heuristics can guide 
the search for new domain-dependent heuristics. Even 
though two domains may appear disparate, the same 
heuristics may be equally powerful in coping with them. 
This one, e.g., is useful in almost all fields: 

IF you're about to use or prove something about C, 
THEN first make certain that C has some examples, 

i.e., ensure that C is not vacuous. 

Even if the heuristics for the two domains seem 
disparate, the paths which were followed in getting the 
powerful heuristics of the field may be similar. 

Hypothesis 11: As with any field of human endeavor, 
Heuretics is accumulating a corpus of informal 
judgmental knowledge -- heuristics. In this case, the 
heuristics are about Heuretics; they guide the 
heuretician in extracting heuristics from experts, in 
deciding when the existing corpus of heuristics needs to 
be augmented, in representing heuristics within 
knowledge bases, in evaluating the worth of a heuristic, 
in troubleshootmg a program built around a large 
collection of heuristic rules, etc. Some examples are: 

The best way to extract a new heuristic is to have 
the expert watch the existing program err, and ask 
him/her to help track down the "bug". 

When generalizing a heuristic, don't replace the 
central "AND" connective of the If-Potentially- 
Relevant slot by "OR"; the result is indeed more 
general, but likely to be very over-generalized. 

New heuristics shoul 
new domain concepts 

d emerge much less often than 

If a heuristic takes up a lot of room, there's 
probably a useful new slot or two that can be 
defined, to shorten that (and other) heuristics. 

Hypothesis 12: Domains which are unexplored, 
internally formalizable, combinatorially immense, and 
highly structured are ideal for studying Heuretics. 
EURISKO found many new concepts and heuristics in 
the TCS game and the 3D VLSI design task because 
any discoveries in those domains were almost certain to 
be new: the domains were practically unexplored by 
human beings. Breaking new ground is often easier 
than scouring old ground for neglected gems. 

What other criteria make a task well-suited to 
automated discovery. 3 A second one is that there must 
be a way to simulate or directly carry out experiments. 
Third, the “search space” should be too immense for 
other methods to work. No human should be able to 
manually search the same space the program is walking 
around in. Fourth, the task domain must be rich in 
structure, including heuristic structure. There should be 
many objects and operators, many kinds of objects and 
kinds of operators. Hopefully they will be related 

hierarchically and in other ways. Complexity of the 
domain raises the utility of plausible, inexact reasoning, 
hence the need for heuristic guidance. By “heuristic 
structure” we mean the presence of many heuristics, 
and implicitly the absence of any known efficient 
algorithms to replace them. For instance, theorem 
proving in propositional calculus is a poor task domain 
for Heuretics research, as it admits only a few heuristics, 
and they are already well known. 

Finally, one of the most crucial requirements is that of 
an adequate representation. If the language or 
representation employed is not well matched to the 
domain objects and operators, the heuristics that do 
exist will be long and awkwardly stated, and the 
discovery of new ones in that representation may be 
nearly impossible. An example of this was the painful 
development of EURISKO, which began with a small 
vocabulary of slots for describing heuristics (If, Then), 
<and was forced (in order to obtain reasonable 
performance) to evolve two orders of magnitude more 
kinds of slots that heuristics could have, some of them 
domain-dependent.. 

The purpose of this paper has not been to convincingly 
argue each point. Rather, we hope to stimulate research 
in a new area -- Heuretics -- and to that end have 
indicated a spectrum of questions, apparent regularities, 
and issues which are worth investigating further. 
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