Inferring Constraints from Multiple Snapshots

DAVID KURLANDER
Microsoft Research
and

STEVEN FEINER
Columbia University

Many graphic tasks, such as the manipulation of graphical objects and the construction of
user-interface widgets, can be facilitated by geometric constraints. However, the difficulty of
specifying constraints by traditional methods forms a barrier to their widespread use. In order to
make constraints easier to declare, we have developed a method of specifying constraints
implicitly, through multiple examples. Snapshots are taken of an initial scene configuration, and
one or more additional snapshots are taken after the scene has been edited into other valid
configurations. The constraints that are satisfied in all of the snapshots are then applied to the
scene objects. We discuss an efficient algorithm for inferring constraints from multiple snap-
shots. The algorithm has been incorporated into the Chimera editor, and several examples of its
use are discussed.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques— user
interfaces; 1.2.6 [Artificial Intelligence]: Learning—concept learning; 13.6 [Computer
Graphics]: Methodology and Techniques—interaction techniques

General Terms: Algorithms, Design, Experimentation, Theory

Additional Key Words and Phrases: Constraints, empirical learning, graphical editing

1. INTRODUCTION

Geometric constraints are used extensively in computer graphics in the
specification of relationships between graphical objects [Sutherland 1963a;
Borning 1979; Myers 1988; Olsen and Allan 1990]. They are useful during
object construction for positioning components relative to one another pre-
cisely, as well as during subsequent manipulation of the components. Several
graphical techniques, such as grids, snap-dragging [Bier and Stone 1986],
and automatic beautification [Pavlidis and Van Wyk 1985), were developed to
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make the initial construction phase easier, since specifying constraints explic-
itly can be a complex task. However, when objects are to be manipulated
frequently, permanent constraints have an advantage over these other tech-
niques in that they need not be reapplied. Permanent constraints can be
particularly useful when subsequent editing of a scene is required, in con-
structing parameterized shapes that can be added to a library, in specifying
how the components of a window should change when the window is resized,
or in building user-interface widgets by demonstration.

We introduce a technique for inferring geometric constraints from multiple
examples, replacing the traditional constraint specification process with an-
other that is often simpler and more intuitive. Initially, the designer draws a
configuration in which all constraints are satisfied and presses a button to
take a snapshot. A large number of possible constraints are inferred automat-
ically. Subsequently, if the scene is modified and other snapshots are taken,
previously inferred constraints are generalized or eliminated so that each
snapshot is a valid solution of the constraint system. For example, we can
define two objects to be squares, constrained to maintain the same propor-
tional sizes, by taking a snapshot of two squares, scaling them by equal
amounts, and taking another snapshot. Then, if the length of one of the
square’s sides is changed, the lengths of its other sides and the sides of the
second square are updated automatically. The designer need not have a
mental model of all of the constraints that must hold, and can test the results
by manipulating the scene objects.

Furthermore, the designer may take snapshots at any time. If after one or
more snapshots a set of graphical objects does not transform as expected or if
the constraint solver cannot reconcile all inferred constraints simultaneously,
the graphical primitives can be manipulated into a new configuration with
constraints turned off, and a new snapshot can be taken. The incorrectly
inferred constraint set is automatically modified so that the new snapshot is
a valid constraint solution.

There are a number of problems with traditional constraint specification
that this new technique attempts to address:

—Often many constraints must be specified. Complex geometric scenes con-
tain many degrees of freedom, and often most of these need to be con-
strained. It can be tedious to express large numbers of constraints explic-
itly.

—Geometric constraints can be difficult to determine and articulate. Using
constraints requires specialized geometric skills and the ability to articu-
late about geometric relationships. For example, people who are asked to
define a square often describe it as a rectangle with four equal sides. This
definition is incomplete, since it neglects the 90-degree-angle constraint.
Yet ask them to draw a square, and they typically get it right. Traditional
constraint-based drawing systems may not use the appropriate language or
abstractions for expressing geometric relationships.

—Debugging, editing, and refining constraint networks are complex tasks.
When incorrect or contradictory constraints are specified, the designer
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needs to debug the constraint network, which can be a cumbersome
process. To support the debugging task, a visual representation is usually
provided for constraints. WYSIWYG editors need a special mode for dis-
playing constraints or need support for multiple views. When constraints
and graphical objects are presented together, the scene becomes cluttered
if more than a few constraints are displayed simultaneously.

Many approaches have been taken to solve these limitations. The first
problem was addressed by Lee, who built a system to construct a set of
constraint equations automatically for a database of geometric shapes [Lee
1983]. In doing so, he worked with a restricted class of mutually orthogonal
constraints and required that the geometric shapes be aligned with the
coordinate axes. Lee’s problem domain and assumptions restricted the set of
constraints such that there was never any ambiguity about which to select. In
our domain the initial ambiguity is unavoidable, and we rely on multiple
examples to converge to the desired constraint set.

Systems like Sketchpad [Sutherland 1963a; 1963b] and ThingLab [Borning
1979] make it easier to add large numbers of constraints to a scene, by
allowing users to define new classes of objects that include the constraints
that operate on them as part of the definition. When users create instances of
a new class, the system automatically generates the associated constraints.
However, people defining a new object class must still instantiate all of the
constraints to include in their class definition or prototype. Constraints from
multiple snapshots can help with this task.

One of the innovations of Myers’s Peridot [Myers and Buxton 1986; Myers
1988] is a component that infers constraints automatically as objects are
added to the scene. A rule base determines which relationships are sought,
and when a match is found, the user is asked to confirm or deny the
constraint explicitly. This reduces much of the difficulty inherent in choosing
constraints; the designer is prompted with likely choices. Peridot’s geometric
inferencing component is limited to objects that can be represented geometri-
cally as boxes aligned with the coordinate axes. The Chimera editor contains
a constraint-based search and replace component, that infers general geomet-
ric constraints from a static scene according to user-defined rules [Kurlander
and Feiner 1992]. However, a single example often contains insufficient
information to infer all desired constraints. This paper describes another
component of Chimera that uses multiple examples to support the constraint
inferencing process.

Maulsby’s Metamouse [Maulsby et al. 1989] induces graphical procedures
by example and infers constraints to be solved at every program step. To
make the task more tractable, he considers only touch constraints in the
vicinity of an iconic turtle that the user teaches to perform the desired task.
These constraints are treated as postconditions for learned procedural steps,
and not as permanent scene constraints. Complex relationships between
scene objects can be expressed through procedural constructions, but the
relationships between objects in these constructions tend to be unidirectional,
and procedures for every dependency need to be demonstrated.
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The difficulty inherent in understanding interactions among multiple con-
straints and debugging large constraint networks has been addressed-by the
snap-dragging interaction technique [Bier and Stone 1986; Bier 1988] and by
an automatic illustration beautifier [Pavlidis and Van Wyk 1985]. In snap-
dragging, individual constraint solutions are isolated temporally from one
another, so that their interaction cannot confuse the artist. The automatic
beautifier infers a set of constraints sufficient to neaten a drawing, but the
constraints are solved once and discarded; they are isolated temporally from
subsequent user interaction. In the approach described here, constraints can
interfere with one another when a new solution is computed. However, the
conflicting constraints can be removed by taking additional snapshots.

A number of systems provide visual representations of constraints to
facilitate debugging. Sutherland’s Sketchpad connected constrained vertices
together with lines accompanied by a symbol indicating the constraint.
Nelson’s Juno, a two-view graphical editor, provided a program view of
constraints [Nelson 1985]. Peridot communicated constraints as English lan-
guage fragments during confirmation, and Metamouse used buttons for
confirming and prioritizing constraints. The OPUS interface editor repre-
sented constraints between interface components as arrows connecting hier-
archical frames or drafting lines [Hudson and Mohamed 1990]. Our technique
never requires that its users work with individual, low-level constraints. In
both the specification and debugging stages, they can think entirely in terms
of acceptable configurations of the illustration. The inferred constraints can
be tested by manipulating scene objects, and the constraint set can be refined
through additional snapshots. For those who prefer a more direct interface
for verifying the inferred constraint set, we provide a browser that displays
constraints in a Sketchpad-like fashion. Because our technique is particularly
useful in heavily constrained systems, we allow constraints in the browser to
be filtered by type or object reference.

One of Borning’s ThingLab implementations allowed new types of con-
straints to be defined and viewed graphically [Borning 1986). Several systems
permit users to define new classes of constraints by filling in cell equations in
a spreadsheet [Lewis 1990; Hudson 1990; Myers 1991). The technique intro-
duced here infers constraints from a fixed set of classes that have proved
useful for graphical editing. The inference mechanism determines constants
in the constraint equations, but does not synthesize new classes of equations.

Our technique is an application of learning from multiple examples, also
known as empirical learning. Several empirical learning systems are dis-
cussed in [Cohen and Feigenbaum 1982]. In contrast, generalizing from a
single example is called explanation-based learning and is surveyed in
{Ellman 1989]. Explanation-based learning requires a potentially large
amount of domain knowledge to determine why one explanation is particu-
larly likely. As we illustrate in subsequent examples, there are often few or
no contextual clues in a static picture indicating that one set of constraints is
more likely than the next, so we felt the empirical approach was warranted.
Empirical learning algorithms have been extensively studied by the artificial
intelligence community, but we developed our own to take advantage of
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certain features of the problem domain and to make learning from multiple
examples a feasible approach to geometric constraint specification.

We have implemented this technique as part of Chimera, a multimodal
editor with support for editing graphics, interfaces, and text [Kurlander
1993]. Constraints can be inferred on both graphical and interface primitives.
Our initial experience suggests that the snapshot approach, like declarative
constraint specification, has its own set of strengths and weaknesses. These
will be discussed later in the paper.

In Section 2 we illustrate the user’s view of constraint specification with a
number of examples. We provide a detailed description of our algorithm in
Section 3. In Section 4 we discuss implementation details. Finally, we men-
tion limitations of the approach, present our conclusions, and discuss future
work in Section 5.

2. EXAMPLES

In this section we show three examples of how constraints are inferred from
multiple examples within the graphics and interface editing modes of
Chimera. To facilitate the initial construction of the scene, Chimera provides
both grids and snap-dragging alignment lines. Chimera has fixed square
grids that can be turned off if they interfere with the drawing process.
Alignment lines facilitate the establishment of geometric relationships that
cannot be expressed with these grids. All figures in this paper were generated
directly from Chimera’s PostScript cutput.

2.1 Rhombus and Line

Suppose that we would like to add permanent constraints to the rhombus in
Figure la, so that during subsequent graphical editing it will remain a
rhombus, its horizontally aligned vertices will be fixed in space, and the
nearby line will remain horizontal, of fixed length, to the right, and at the
same Y position as the bottom vertex of the rhombus. After the initial scene
is constructed in Figure la, the user presses the snapshot button in the
editor’s control panel. Next, the user translates the top and bottom vertices of
the rhombus to make it taller, and translates the horizontal line to the same
Y coordinate as the rhombus’s bottom vertex, but to a different X so that its
position will not be absolutely constrained in X with respect to the bottom
vertex. The user presses the snapshot button once more. Figure 1b shows the
second snapshot.

Initially, constraints were turned off. Now when the user turns them on
from the control panel and edits the scene, the constraints inferred from the
snapshot are maintained by the editor. In Figure 2a the user has selected the
horizontal line and moved it upward. The top and bottom vertices of the
rhombus automatically move so that the demonstrated constraints are main-
tained. When, in Figure 2b, the top joint of the rhombus is selected and
translated to a higher grid location, the bottom rhombus vertex and the
horizontal line both move appropriately.

ACM Transactions on Graphics, Vol. 12, No. 4, October 1993.



282 . D. Kurlander and S. Feiner

Fig. 1. Two snapshots of a rhombus and a line.

Fig. 2. Two constrained solutions to the snapshots in Figure 1.

The above-mentioned constraints are all specified implicitly, without the
user having to express intent in low-level geometric terms. Inferring this
information from a single example would be problematic, since it is not clear
how to distinguish between those parameters that should be fixed (such as
two of the rhombus’s vertices, and the length and slope of the horizontal line)
and those that should be allowed to vary (such as the length of the rhombus’s
sides and the locations of the horizontal line’s vertices).

One might expect that a sophisticated understanding of the inferencing
mechanism is needed to provide the right set of snapshots, but this is untrue.
In the second snapshot, the user foresaw the need to move the horizontal line
in X, relative to the bottom vertex of the rhombus, to allow it to move this
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way during subsequent interaction. However, if the user neglected to think of
this, the constraint solver would disallow such configurations during later
manipulations of the scene. The user could then turn off constraints and
provide as an extra example the configuration he or she tried to achieve, but
could not. This third snapshot would automatically remove constraints that
oniginally prohibited this configuration, without the user explicitly naming
them.

In part because this is a highly constrained illustration, few editor opera-
tions are necessary to establish the necessary constraints using snapshots. In
traditional constraint specification, the user starts with a clean slate and
adds all of the intended constraints to the illustration. The snapshots tech-
nique takes a very different approach. It initially assumes that all constraints
are present in the initial snapshot, and with additional snapshots the user
prunes away undesired constraints. This approach is subtractive rather than
additive and works best for heavily constrained scenes in which few con-
straints must be removed. In contrast, traditional declarative specification
typically becomes more difficult as more constraints must be added to a
scene. The two techniques complement one another. When only a few con-
straints must be instantiated, it is typically easier to use the traditional
declarative approach. Having both forms of specification available allows
each technique to be used in cases where it works best, so Chimera'’s interface
supports both.

2.2 Resizing a Window

Constraints are useful in constructing user interfaces because they allow the
attributes of one interface object to be defined in terms of the attributes of
others. For example, when a window is resized, the position and size of the
contents may change. Figure 3a shows a window that we have constructed in
Chimera’s interface editing facility, containing an application canvas (the
darkly shaded rectangle), a scrollbar, and three buttons that invoke menus.
After positioning these widgets within the parent window, the user presses
the snapshot button. The components of the window are then shifted into
another configuration, shown in Figure 3b, and a second snapshot is taken.
Precise positioning in these snapshots was achieved by using a combination
of grids and snap-dragging.

The user’s intentions are that the buttons be a fixed distance above the
bottom of the window, that the left side of the Basics button be a constant
distance from the window’s left, that the right side of the File Ops button be
a constant distance from the window’s right, and that the Transformations
button be evenly spaced between the inner sides of the two other buttons. The
scrollbar’s dimensions are intended to be fixed by the top and right sides of
the window, the top of the buttons, and by its constant width. The application
canvas should be fixed relative to the left and top of the window, the top of
the buttons, and the left side of the scrollbar. Now, when we turn on
constraints and select the upper right corner of the window (while the
lower left corner is fixed), the window and its contents reshape, as shown in
Figure 3c.
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(b)

(c)

Fig. 3. Specifying window resizing constraints: (a) and (b) are the two snapshots; (c) was
produced by dragging the upper right corner of the window.

2.3 Constraining a Luxo™ Lamp

This final example applies to both graphical editing and user-interface con-
struction. We would like to constrain a 2-D illustration of a Luxo lamp, so
that it behaves like a Luxo lamp. In particular, we want the various pieces to
remain connected, the base to be fixed at its initial location, and the arms of
the lamp to remain a constant length. Other constraints are important as
well, but instead of determining which are significant ourselves, we would
prefer to edit the lamp into a number of valid configurations and take
snapshots. To control the direction of the lamp’s beam, we have built a simple
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Beam Direction Ream Direction

(a) (b)

Beam Direction

Fig. 4. Teaching Luxo constraints: Three snapshots of valid configurations, provided as input.

dial widget out of a circle and line, and we specify the behavior of the dial
relative to the Luxo lamp by demonstration as well. Figures 4a and b show
the initial two snapshots of valid configurations of our illustration. Note that
the constraints inferred from these two snapshots are independent of the
particular editing operations chosen, as explained in Section 3.

After taking the first two snapshots, we turn on constraints and try to
manipulate the Luxo lamp, but the constraint solver indicates that it cannot
solve the system. The source of the problem is an incidental constraint, that
is, a constraint that was evident in the first two illustrations, yet was not an
intended relationship. When incidental constraints interfere with a desired
configuration, they can be removed by manipulating the scene into the new
configuration with constraints turned off and by taking an additional snap-
shot. We could determine which incidental constraint(s) occur in the scene by
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Beam [irection Beam Direction

(a) (b)

Beam Direction

©

Fig. 5. Luxo on his own: Configurations created by manipulating the uppermost joint and the
beam direction dial.

cycling through the visual representation of all constraints and explicitly
deleting the undesired ones. However, this can be time consuming when a
scene contains many constraints, and it requires that the end user under-
stand the constraint composition of the scene. Fortunately, there is never a
need to identify and cull unwanted relationships. While manipulating the
scene, if users find that unwanted constraints prohibit a desired, valid
configuration, they can turn off constraints, set up this configuration by
hand, and take another snapshot. This additional snapshot removes all
constraints prohibiting the new configuration. One need not be clever about
conveying only the desired constraints in the first two snapshots. Refining a
constraint set using snapshots, as with declarative specification, can be an
incremental process.

Without identifying the incidental constraint, we set up a configuration
that this constraint forbids. This additional snapshot appears in Figure 4c.
Now the various components of the lamp move as we had intended. In Figure
5 we manipulate the lamp inte three configurations by moving its top joint

ACM Transactions on Graphics, Vol. 12, No. 4, October 1993.



Inferring Constraints from Multiple Snapshots . 287

and adjusting the beam direction dial. Note that these two controls are not
independent: when the dial is rotated, the arms of the lamp can move during
the solution of the constraint equations, since the dial’s orientation does not
uniquely determine a lamp configuration. We can temporarily place a declar-
ative constraint on the joint if we want to change only the beam direction
while keeping the arm fixed.

3. THE ALGORITHM

In this section we discuss the set of constraints that our system infers. Then
we present an efficient algorithm for inferring these constraints and demon-
strate the algorithm on a simple example. Next we analyze the algorithm and
discuss how parameters can be inferred.

3.1 The Constraint Set

All objects in the Chimera editor are defined geometrically in terms of
vertices, and constraints fix the relationships between these vertices. Based
on a finite set of example scenes, an infinite number of arbitrary constraints
can be inferred. Hence, we have chosen to infer a fixed set of geometric
relationships that have proved particularly useful in graphical editors.

Our system infers both absolute and relative geometric constraints. Abso-
lute constraints fix geometric relations to constant values. Relative con-
straints associate geometric relations with one another. For example, an
absoluted constraint might fix a vertex to be at a particular location or a
distance to be a constant scalar. A relative constraint might fix two distances
or slopes to be the same. Figure 6 lists constraints supported by the Chimera
editor. Chimera can infer these constraints from multiple snapshots, or users
can specify them directly. Each relative constraint on the right corresponds to
an absolute constraint on the left. The dots represent vertices, and C’s in the
equations represent arbitrary constants.

The relative slope constraint fixes one slope to be a constant offset from
another (when represented in terms of degrees, not y/x ratio). Each of the
relative distance constraints fixes two distances to be proportional to one
another. Two of the above constraints subsume two others: The absolute
distance constraint between vertices subsumes the coincident vertices con-
straint, and the relative slope constraint subsumes the absolute angle con-
straint. Our constraint solver does not explicitly support the subsumed
constraints, since it handles the more general relationships. Similarly, the
inference component has no support for coincident vertex constraints, though
it does track absolute angle relationships since the algorithm uses these to
find equal angle relationships. Chimera’s declarative constraint interface
differentiates between all of the constraints in Figure 6, since specifying the
more general relationships requires additional input parameters.

Parallel and orthogonal vector relationships are largely captured by the
relative slope constraint (which e.g., in the former case would not only fix the
vectors between two pairs of two vertices as parallel, but would also constrain
their relative directions). Similarly, the relative slope relation captures
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Fig. 6. Constraints in Chimera.

collinearity, with an additional ordering on the vertices. The algorithm
digcussed in this section finds all of the constraints in Figure 6 that hold over
a sequence of snapshots. Many higher-level constraints can be formed by the
composition of these lower-level constraints and, thus, are also inferred by
the algorithm. For example, the constraint that one box be centered within
another is captured by two relative distance constraints between parallel
lines.

8. Relative distance between two pairs of parallel lines

—————— g~
I distance | I I distance, I

distance, = C * distance ,

3.2 Algorithm Description

In the rest of this section, we describe the algorithm that infers these
constraints. An overview of its steps is given in Figure 7. It may be helpful to
refer back to this figure during the subsequent discussion.

With the first snapshot, the scene is entirely constrained, and each subse-
guent snapshot acts to reduce or generalize the constraints on the system. If
we were to represent explicitly each constraint that could hold at any one
time, the space and time costs would be prohibitive. Instead, we economically
represent similar constraints over sets of vertices as groups. For example,
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IF first snapshot THEN

add vertices to initial transformational group
ELSE BEGIN

split transformational groups to form new child groups

identify intragroup constraints of child transformational groups

identify intergroup group-to-group constraints due to splitting transformational groups

identify intergroup vertex-to-vertex constraints

break previously instantiated constraints that have been violated

form delta-value groups from broken absolute constraints

make a copy of the constraints with redundancies filtered out for the solver
END;

Fig. 7. Steps of the inferencing algorithm.

after the initial snapshot, all vertices are constrained to a set location, and
the distance and slope between each pair of vertices are fixed, as is the angle
between each set of three vertices. Although we could instantiate each of
these constraints explicitly, it is far more efficient to represent the vertices as
a group with a tag indicating the relationships that hold among all of its
members. As will be discussed later, groups can also accelerate the process of
determining which constraints hold over a series of snapshots, and can
ultimately reduce the number of constraint equations that are passed to the
solver.

3.2.1 Transformational Groups. The most important type of group in our
inferencing mechanism is the transformational group. A transformational
group contains a set of vertices that have always been transformed together
since the first snapshot. At the first snapshot, the algorithm places all of the
vertices into a fixed location transformational group, since their positions are
initially constrained to be fixed. As vertices are transformed, our undo
mechanism keeps track of the sets of vertices selected and the transformation
applied, and this information is used by the inferencing mechanism to
fragment existing transformational groups into smaller ones. The transfor-
mations that can be applied in our system currently include translations,
rotations, and isotropic scales, although we plan to extend this algorithm to
work with any affine transformation.

3.2.2 Intragroup Constraints. We can efficiently determine intragroup
constraints, that is, constraints that hold within a given transformational
group. Figure 8 shows various affine transformations and the geometric
relationships that they preserve.! The transformation listed in the top half of
each box maintains the relationships listed in the lower half of the box and
those relationships in the boxes above it. For example, if a transformational
group has only been scaled and translated, the slopes, angles, ratios of
distances, and parallel relationships are all maintained. By tracking the

" Note that scale in this diagram refers to isotropic scale, and the vector relationship is the
combination of slope and distance constraints.
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Affine Transformations
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Fig. 8. Transformations and the geometric relationships that they maintain. Reprinted with
permission from Bier and Stone [1986].

transformations that have been applied to a transformational group, we
determine which constraints must hold within the group without examining
its individual vertices.

We next determine which constraints cannot hold within the transforma-
tional group. Again, this is easily done by examining the transformations that
have been applied to the group. If a group has been translated, all of its fixed
location constraints are broken. Fixed location constraints are also broken
among vertices during rotations and scales if the vertices are not at the
center of the transformation. Scales break all fixed distance relationships
within a transformational group, and rotations break all fixed slope relation-
ships within a transformational group.

After determining which relationships must hold within a group and which
cannot hold, we must consider the relationships that might hold. For each of
these constraint relationships, we must examine the vertices in the group,
looking for invariant relationships. Fortunately, this expensive task need not
be done for the most common transformations, translations, rotations, and
isotropic scales, since all relationships in our constraint set can immediately
be classified as either definitely present or definitely not present. If we were
to extend this algorithm to other less common affine transformations, then
the vertices would need to be examined explicitly.

For every snapshot after the initial one, the first step fragments existing
transformational groups into new ones, accounting for the transformations
that have occurred since the last snapshot. Each new child group has all the
constraints of its parent, except those broken by the transformations per-
formed since the last snapshot. Since we are only interested in effective
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transformations at the snapshot granularity level, we factor the composition
of transformations applied since the last snapshot into scale, rotation, and
translation components, and use these, as described above, in determining
which intragroup constraints were broken. This allows us to ignore transfor-
mations that have been undone by subsequent operations between the two
snapshots. For example, if a set of vertices is translated away from its
original location and then back again between snapshots, then those transla-
tions are effectively ignored.

To illustrate transformational groups and several other algorithmic details
discussed later, consider the two simple snapshots given in Figure 9. Two
boxes were captured in the first snapshot (Figure 9a). Initially, all vertices
were in the same transformational group and were constrained to have fixed
locations. After this, but prior te the next snapshot (Figure 9b), the boxes
were both scaled by a factor of 2, and the right box was translated to the left,
one large grid unit from the left box. Taking the second snapshot caused the
system to split the original transformational group into two children, each
containing the vertices of one of the boxes. The second snapshot broke the
fixed location constraints for all vertices except the bottom left of the left
rectangle, since this vertex’s effective transformation had no translational
component and its location was at the center of the scale. The intragroup
absolute distance constraints were broken for each group because there was a
net scale, but isotropic scales maintain proportional distances, so an implicit
relative distance constraint was added to each group. It is important to note
that transformational groups are dependent on the transformations per-
formed, but they have no impact on the constraint set that will eventually be
inferred. They accelerate the search process by pruning the search space.

3.2.3 Intergroup Constraints. The next step is to compute intergroup
constraints: constraints between different transformational groups or their
vertices. These constraints are generated in several ways. They can be formed
from a relative intragroup constraint when a transformational group is split
by a transformation that preserves the relation. Consider a transformational
group with a relative slope constraint among all of its vertices. If the group is
split in two by a translation or scale, then we must add a relative slope
constraint between the two groups, relating the slopes contained within one
group to the slopes within the other. Similarly, if a transformational group
has a relative distance constraint among all of its vertices and the group is
split by a translation or rotation, then we need to add a relative distance
constraint between the two groups, specifying that the distances within one
group will remain proportional to the distances in the other.

We have just described group-to-group intergroup constraints: constraints
that make entire groups rotate or scale with another. There are also vertex-
to-vertex intergroup constraints, which express relationships between a small
number of vertices. Finding these is the most costly step in our algorithm, but
the cost is reduced since we only need to compute intergroup constraints
between a child transformational group, its parent, and its siblings (other
child groups of the same parent spawned during the same snapshot). Inter-
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Fig. 9. Two snapshots of a simple scene.

group constraints between the child and other groups were already formed
when their ancestors were split.

For small sets of vertices containing members both from the newly created
child group and from its parent or siblings, we look for relationships that
have not changed and generate absolute constraints for these when found.
For example, we compute the slope and distance between such pairs of
vertices in the current snapshot and the previous snapshot. If either of these
values are unchanged, we create an absolute constraint between the two
vertices. Similarly, for each pair of lines constrained to have the same slope,
which were contained in a single transformational group during the last
snapshot but are now split among groups, we identify absolute parallel
distance constraints.

In our rectangle example, an intergroup vertex-to-vertex constraint in-
ferred at the second snapshot declares that the inner segments be one large
grid unit apart. This constraint was implicit after the first snapshot, when
both rectangles were members of the same transformational group, but must
be made explicit after the second snapshot since the relationship still holds
after the transformational group was split.

3.2.4 Delta-Value Groups. Existing constraints between groups or ver-
tices transformed since the last snapshot are now considered, and those that
no longer hold are broken. Broken relative constraints, constraints relating
geometric measures (such as slope) of more than one object, are split if
possible into constraints that are still satisfied among fewer objects. Absolute
constraints that have been broken during the current snapshot are matched,
as is now described, to form new relative constraints.

We have already described how absolute intergroup constraints are found
by locating relationships that do not change. One type of relative intergroup
constraint is found by locating relationships that change together. If two
pairs of vertices are constrained to have constant slopes, then there is no
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need for a relative constraint between the two, since the individual values are
fixed. However, if these slopes now change by the same amount, it becomes
necessary to create a relative constraint between them. Collections of rela-
tions that were absolutely constrained in a previous snapshot, but have
broken by equal amounts in the current snapshot, are bundled together into
delta-value groups.

Delta-value groups, like transformational groups, allow us to represent
similar constraints among many objects compactly, but otherwise, they are
unrelated. Delta-value groups are simply relative constraints between arbi-
trary numbers of relations. For example, a delta-value group might constrain
n distances to be proportional. However, when passing the delta-value group
to the solver, it need only be expanded to n — 1 binary constraints when
solving the system (relating the first element to each subsequent element)
rather than to n” constraints relating each pair of elements.

Every absolute constraint broken in the current snapshot must be consid-
ered for inclusion in a delta-value group. There are three steps in our
algorithm where broken absolute constraints are identified:

(1) during the fragmentation of transformational groups,
(2) during the identification of vertex-to-vertex intergroup constraints, and

(3) during the breaking of constraints instantiated during previous snap-
shots.

We place together in delta-value groups distance relations that change by
the same proportion, and angle and slope relations that change by the same
number of degrees. Since typically many absolute constraints break during
the same snapshot, it is important to find matches efficiently. We employ
hashing to match constraints that break by similar amounts, so this step is
performed in linear time with respect to the number of broken constraints
identified.

Returning to the example in Figure 9, the two rectangles are in separate
transformational groups after the second snapshot. This snapshot broke
absolute distance constraints for both of these groups, since they were scaled
differently than their parent, which had an implicit absolute distance con-
straint among all of its vertices. Both of these absolute distance constraints
broke by a factor of two. As a result, they were added to the same delta-value
group, maintaining that distances in the two groups be proportional.

3.2.5 Redundant Constraints. We have now computed all of the con-
straints that are invariant among snapshots. When objects are transformed
with constraints turned on, the inferred constraints are passed to our solver.
Typically, our constraint set contains a large number of redundant con-
straints, that is, constraints derivable from others through geometric tautolo-
gies. The algorithm finds all constraints from our set that occur in the
snapshots, not just the minimal set, though some of the constraints are
represented implicitly and efficiently in groups. To accelerate the process of
finding a solution to the constraint set, we try to remove redundant con-
straints. There are two ways that this can be done, both of which involve
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looking for simple geometric relationships. The first looks for these relation-
ships as a postprocess after the inferencing has been performed, and filters
out extra constraints known to hold in those circumstances. This is the only
method currently implemented in Chimera for filtering redundant con-
straints, and it works well for those relationships that generate a constant
number of redundant constraints. However, certain relationships yield a
polynomial number of such constraints, and it would be more efficient never
to generate them.

These redundancies could be avoided by building additional kinds of groups
during the inferencing process. As discussed earlier, transformational groups
and delta-value groups allow large numbers of graphical relationships to be
represented tersely. By identifying relationships that lead to redundant
constraints and classifying them as special groups, we could pass only the
essential constraints to the solver. Figure 10 illustrates two relationships
that would be particularly useful to express as groups since they are common
and yield many redundant constraints if fully expanded. In Figure 10a
vertices p and q are constrained to be coincident. If each other vertex r; were
part of a separate transformational group, our algorithm would instantiate
the constraints distance (p,r;) = distance (q,r;) and slope (p,r;) = slope
(q,r;) for all r;. These redundant constraints could be avoided by building
coincident vertex groups for sets of vertices currently constrained to be
coincident. These groups could be used in lieu of their actual vertices while
computing intergroup vertex-to-vertex constraints. If vertices in the group
are not coincident in a subsequent snapshot, the group would be broken, and
the formerly redundant constraints that still hold would then be instantiated.

Another common geometric relationship leading to redundant constraints
is shown in Figure 10b. Here, snapshots have resulted in a set of collinear
vertices, s;, such that each vertex is in a separate transformational group and
the slope between each pair of vertices is fixed. Here, only n — 1 constraints
are necessary to represent the slope constraints between the n vertices, but
the algorithm identifies constant slope constraints between each pair of
vertices, s; and s;, such that i <. By identifying this relationship as a group
during the inferencing process, we could avoid generating these redundant
constraints.

Currently, we look for only a few classes of redundant constraints, which
we filter as a postprocess, and often a large number eludes us. We are
working on improving this component of our system.

3.2.6 Solving the Constraint System. When constraints are turned on and
constrained objects transformed, we compute the effects on other objects in
the scene. The constraint system can be viewed as a graph, with the nodes
being vertices of scene objects and the arcs being constraints between the
vertices. Changes to one disconnected subgraph cannot affect another, since
there are no constraints linking them. We find the disconnected subgraphs
containing the vertices actively being transformed, by performing a simple
graph traversal beginning at these vertices. Constraints that are not a part of
any of these subgraphs cannot affect our solution and can be safely ignored.
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(a) (b)

Fig. 10. Two geometric relationships that lead to redundant constraints.

Also, since the constraints of different subgraphs are mutually independent,
they are solved independently, thereby reducing the cost of the solution.

We also reduce the solution cost by using a simple generalization of the
technique many constraint-based systems use to solve for rigid bodies effi-
ciently. All vertices that are part of the same transformational group are
constrained to transform together under a restricted class of transformations,
and often we can use this information to avoid passing certain constraints
and vertices toc the solver. A transformational group that has only been
translated has absolute slope and distance constraints between each pair of
vertices, and these same constraints ensure that all vertices in the group will
translate together. If some vertices in the transformational group participate
only in these constraints, then, instead of passing them to the solver, we can
explicitly apply to these vertices the translation that the solver finds for other
vertices in the group. Similar approaches can be taken for isotropic scales,
rotations, and compositions of these transformation classes.

As an example, consider Figure 11. The snapshots in Figures 11a and b
constrain the hand to scale so that the lower left vertex of the wrist is fixed
and the rightmost vertex of the index finger aligns with the arrow. All
vertices of the hand are part of the same scale transformational group, and
those of the arrow are part of the same translation transformational group.
Figure 11c shows all of the vertices in the system that participate in the
constraint solution. However, only a few of these 134 vertices must be passed
to the solver.

In Figure 11d, we choose to translate the lower right vertex of the arrow.
We begin traversing the constraint graph at this vertex to determine which
constraints and vertices must be passed to the solver. This vertex will be
passed to the solver, since it is being manipulated directly by the user. The
top vertex of the arrow must also be passed to the solver, since it participates
in an intergroup slope constraint. These two vertices are bound together by
absolute slope and distance constraints because the arrow is a single transla-
tion transformational group. The displacement of all of the other vertices in
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Fig. 11. Efficient constraint formulations for transformational groups: Snapshots (a) and (b)
constrain the scene. A naive approach solves constraints for all vertices marked in (c). A more
efficient method solves only constraints shown in (d).

this group will be determined by calculating the displacement vector that the
solver finds for these points.

Similarly, the vertex at the tip of the index finger is passed to the solver,
since it participates in an intergroup slope constraint with the point of the
arrow. The lower left vertex of the wrist must also be passed to the solver,
since it has a fixed location constraint. These two vertices of the hand are
connected by an absolute slope constraint, because they are part of the same
scale transformational group. The positions of all of the other vertices in the
hand are easily determined by the scale transformation that maps these two
vertices to their new positions.

3.3 Analyzing the Algorithm

This section summarizes the inferencing algorithm and presents informal
arguments for its correctness. The technique described in this paper finds all
relationships of the classes listed in Figure 6 that are present in a sequence
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of snapshots and instantiates these into constraints. A brute-force algorithm
would consider each relationship applied in turn to every collection of vertices
of the appropriated size and then determine whether the relationship in fact
changes over the course of the snapshots. This would be computationally
expensive, so our algorithm takes a different approach. However, to show
that it works, it suffices to explain how it finds the same constraint set as the
brute-force algorithm.

The snapshot process partitions all vertices in the scene into transforma-
tional groups. The set of translations, rotations, and isotropic scales applied
to a transformational group since the first snapshot automatically determines
which of the relationships in our constraint set hold ameong its vertices and
which do not. This provides the first savings over the brute-force algorithm: It
is not necessary to search through collections of vertices in the same transfor-
mational group for invariant relationships, since these relationships are
completely determined by the group’s transformations. However, our algo-
rithm, like the brute-force algorithm, must consider constraints that span
multiple transformational groups (intergroup constraints) as well as these
constraints that lie in a single group (intragroup constraints). Together,
intergroup and intragroup constraints constitute all possible constraints in a
scene.

Finding intergroup constraints is more difficult. The constraints of interest
to us include absolute constraints and relative constraints. Absolute con-
straints express a single geometric relationship to be constant, whereas
relative constraints compare multiple geometric relationships. To find abso-
lute intergroup constraints, our algorithm does the same thing as the brute-
force approach: It considers all collections of vertices of the appropriate
number, spanning multiple groups, and looks for absolute relationships
unchanged over all of the snapshots. It does this incrementally, as transfor-
mational groups are split from their parents, but the effect is the same as
seeking these relationships after all of the snapshots are given.

Performing an exhaustive search for relative intergroup constraints would
be more costly, since they typically involve larger numbers of vertices than
absolute constraints. Fortunately, they can be found without resorting to the
brute-force approach. Relative relationships are merely pairs of absolute
relationships that always change the same way, for example, two distances
that always remain proportional. There is no need to create a relative
constraint before its absolute components change for the first time, since the
absolute components already capture the relative relationships. For example,
if two distances are fixed absolutely, then their proportion is implicitly
defined. All of the absolute constraints in Figure 6 capture the relative
relationships to their right until a snapshot breaks the absolute constraints.
Then, since relative relationships are pairs of absolute relationships that
always change together and in the same way, the algorithm finds relative
intergroup constraints merely by identifying absolute constraints that always
change identically. So, instead of performing a costly exhaustive search for
relative intergroup constraints, this algorithm meonitors all absolute con-
straints, both absolute intergroup constraints and absolute constraints on
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entire groups, and matches those that always change by equal factors (in the
case of distances) or degrees (in the case of angles and slopes). In this way,
the algorithm finds all inter- and intragroup relationships in the scene, and
finds an equivalent set to the brute-force approach with less computation.

The algorithm discussed so far is rot heuristic; it finds all constraints of
the classes in Figure 6 obeyed by a sequence of snapshots. As discussed later,
considering all of these relationships often results in a number of incidental
constraints, that is, relationships in a snapshot sequence that the user did
not intend. To combat this problem, we also experimented with a simple
modification of the algorithm that instantiates relative intergroup slope and
distance constraints only between two pairs of connected vertices, and abso-
lute and relative intergroup angle constraints only on angles formed by three
connected vertices. This removes from consideration some relationships that
are usually not significant, yet often yield a large number of incidental
constraints.

The complexity of the inferencing algorithm depends on whether we re-
strict the above constraints to connected vertices. If not, the most expensive
step is finding intergroup absolute angle constraints, which is O(n?) with the
number of vertices. Since vertices in our system connect no more than two
lines, the task of searching for these constraints between connected vertices
is O(n). But then the cost of finding intergroup absolute distance and slope
constraints between arbitrary vertices is still O(n?), and this becomes the
bottleneck of the inferencing component. At this time, our system only
removes a few classes of redundant constraints, and we do not know the cost
of implementing a good, general redundancy filter.

3.4 Parameterizing an lllustration

Often it is convenient to be able to parameterize graphical illustrations. A
slight modification to the algorithm described above allows simple relation-
ships between scene objects and numeric text fields to be inferred during the
snapshot process. We provide an Arguments window in which scalar values
can be typed as the illustration is edited into new configurations. These
values are interpreted by the algorithm as though they were distances,
slopes, or angles between vertices. If one of the changing geometric relation-
ships in the scene matches a changing numeric argument, a relative con-
straint is created between the two values.

In Figure 12 we have drawn a scrollbar in the Chimera editor, and we
would like to equate the percentage typed in the Argument 1 field of the
Arguments window to the height of the scrollbar’s slider. We constrain the
scene by providing the two snapshots depicted in Figures 12a and b, but in
addition to presenting two valid versions of the scene’s geometry, we type
corresponding values in the Argument 1 text field. As shown in Figure 12c,
after turning constraints on, we can adjust the scrollbar’s slider by editing
the value in this same text field and pressing the Apply-Arguments button.
Alternatively, we can adjust the slider, and the value of Argument 1 changes
accordingly.
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Fig. 12. Dimensioning the height of a scrollbar: Initially two snapshots, (a) and (b), are
specified. A new value for Argument 1 is entered in (c), and the scrollbar adjusts automatically.

Myers presents a similar example of parameterizing scrollbar behavior
[Myers 1988]. His method linearly interpolates between two different con-
strained configurations, which is a more powerful abstraction, particularly
for defining the behavior of widgets. For example, in Peridot the slider height
can be parameterized with respect to the bottom and top of the scrollbar. This
cannot currently be done in our system. In our example, Argument 1 is

ACM Transactions on Graphics, Vol. 12, No. 4, October 1993.




300 - D. Kurlander and S. Feiner

-8
I
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Fig. 13. Specifying a subset of the parameters: Only the first two parameters are specified in
(a). The triangle resizes, and a value is computed for the third parameter in (b).

interpreted as proportional to the distance between two parallel lines, the top
of the slider box and the bottom of the box containing the upper scroll arrow.
So, if the scrollbar is resized, the percentage parameter will no longer range
from O to 100. Peridot’s constraints were chosen for the domain of widget
construction and are specialized for this type of task. Our system provides a
lower-level constraint set for the construction of general illustrations. The
type of parameterization that our system provides is useful for many basic
illustration tasks, such as the dimensioning of distances, slopes, and angles.

Since parameters of the illustration can be mutually dependent, the values
of a subset may determine the rest. Sometimes, the user may care to set only
a few of the available parameters, For these reasons, we allow parameters to
be either specified or unspecified. Specified parameters are constrained to
their current value during the constraint solution, but unspecified parame-
ters are allowed to vary. Figure 13a shows a Chimera editor scene containing
a single triangle. Two previous snapshots (which are not shown) have con-
strained it to be a right triangle, with a fixed lower left corner and horizontal
base. They also have constrained Argument 1 to be proportional to the length
of the base, Argument 2 to be proportional to the length of the vertical
segment, and Argument 3 to be proportional to the hypotenuse’s length.
In Figure 13a we type the desired lengths of each of the sides but the
hypotenuse into the Arguments window. The question mark entered for
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Argument 3 requests that it be chosen by the constraint solver. After the
Apply-Arguments button is pressed, the triangle resizes subject to its con-
straints, and Argument 3 is filled in with a suitable value.

4. IMPLEMENTATION

The Chimera editor is implemented mainly in Lucid Common LISP and
CLOS (the Common LISP Object System), with some C code as well. Our
constraint solver is implemented in C, but the inferencing mechanism is in
LISP. The code runs on Sun workstations under OpenWindows.

We use Levenberg-Marquadt iteration [Press et al. 1988] to solve the
constraint systems. This method uses gradient descent when far from a
solution, but switches to the inverse Hessian method to converge quadrati-
cally when a solution is near. Levenberg—Marquadt is a least-squares method.
Each constraint is implemented as an error function, and the algorithm finds
the best solution to a set of error functions according to a least-squares
evaluation, provided it does not fall into a local minimum. The functions are
not limited to be linear or even algebraic. If the constraint solver cannot find
an acceptable solution, the user is notified of this, and he or she then has the
option of undoing the operation or trying to coax the system out of a local
minimum by further manipulating the graphical objects. We would eventu-
ally like to add multiple constraint solvers, so that when one fails to find a
solution another can be invoked. In systems with multiple correct solutions,
which occur occasionally, the iterative solver tends to find the solution closest
to its inputs. By manipulating objects in the scene, users can cause the solver
to choose a particular solution.

Part of the Levenberg-Marquadt method requires solving a system of
equations to determine how the current solution estimate should change. If
the error functions are not mutually independent (which is the case with
redundant constraints), the system cannot be solved using Gaussian elimina-
tion. Instead, we use singular value decomposgition [Press et al. 1988] to find a
solution at this step.

In looking for absolute and relative relations in the scene, it is important to
build tolerances into the matching process. We use small, fixed, empirically
derived tolerances, just large enough to account for floating-point inaccura-
cies during the construction and editing of the scene. If the tolerances were
large, the number of incidental constraints would increase. Our small toler-
ances are on the order of fractions of degrees and millimeters. These small
tolerances require that the snapshots be drawn accurately, so Chimera
provides both grids and snap-dragging for this purpose.

Both the inferencing algorithm and constraint solver typically run at
interactive speeds, on a 1.4 MFLOP Sun SparcStation 1 +, for systems of the
size presented in this paper. The slowest snapshot (that of Figure 4b) took
about 3 seconds. Constraint solutions were obtained in under a second in all
cases but the window-resizing example. This took somewhat longer because a
large number of redundant constraints were passed to the solver by the
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inferencer. Further work on the inferencer should reduce the number of
redundant constraints and speed up constraint solutions.

5. CONCLUSIONS AND FUTURE WORK

Snapshots appear to be a very intuitive way of specifying constraints and
often allow complex constraint systems to be specified with relatively few
operations. However, we will not know until performing user trials whether,
and under what conditions, people prefer the technique to traditional declara-
tive specification. Our personal experience with snapshot constraint specifica-
tion in Chimera suggests that it is not a panacea. There are certain tasks for
which it appears to be a simpler, more natural method of constraint specifica-
tion, but for others, traditional declarative specification remains easier. The
snapshot approach works well for highly constrained scenes, particularly
those that easily can be manipulated into example configurations. Explicit
constraint declaration is an additive technique, rather than a subtractive one,
and often seems preferable for weakly constrained scenes and those for which
setting up snapshots would be difficult. There are a number of problems
using snapshots that the traditional method does not have:

—Certain pictures can be difficult to edit into new configurations. In some of
these cases, it may be easier to specify constraints explicitly.

—Incidental, unintended relationships often occur in large scenes, necessitat-
ing extra snapshots.

—Redundant constraints are commonly passed to the solver, increasing
solution costs.

When it is easier to specify constraints declaratively than by example, then
the declarative technique should be used. We have built a traditional declara-
tive constraint interface for our editor that is useful in these cases and that
will allow us to compare the two methods better.

Incidental constraints can be reduced by restricting the classes of con-
straints that can be inferred. In our initial implementation, we inferred
intergroup relative distance and slope constraints between any two pairs of
vertices. This resulted in too many incidental constraints, so we restricted
these constraints to pairs of two connected vertices (although there need not
be a connection between the pairs). We still infer absolute distance and slope
constraints between any two vertices, and intragroup relative distance and
slope constraints between any two pairs of vertices. We are looking for
additional restrictions that will not significantly impair the utility of the
system!

Another way to reduce incidental constraints is to have the user select a set
of objects prior to the beginning of a snapshot sequence and to have the
inferencer look for constraints only among these objects. Partitioning the
scene has the additional benefit of accelerating snapshots. In traditional
constraint specification, constraints are also often added in partitions, to
speed up solution. Currently, we do not allow inferencing to be restricted to a
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subset of the scene, but this option is important for large scenes, and we plan
to include it in the future.

One approach to reducing redundant constraints might involve using algo-
rithms similar to those Chyz developed for maintaining complete and consis-
tent constraint systems [Chyz 1985]. When a new constraint is added to the
network, his algorithms determine which constraint must be eliminated to
avoid overconstraining the system. These methods may allow us to reduce the
set of constraints passed to the solver. However, we would not filter out most
redundancies from our master constraint set, since after subsequent snap-
shots they may no longer be redundant.

There are a number of other interesting topics for future work. We would
like to extend our system to handle constraints between nongeometric proper-
ties such as color or font. Animating the constrained systems would provide
an intuitive display of the set of constraints inferred, in the same visual
language as the snapshot specification. We would like to provide an audit
trail of snapshots by incorporating them into our graphical edit history
representation [Kurlander and Feiner 1990]. This will allow individual snap-
shots to be eliminated and the constraint network recalculated.

It would be helpful to infer a few additional geometric relationships, such
as the distance between a vertex and a line. This constraint could be easily
added to the inferencing algorithm. Currently, we infer constraints only
among vertices in the initial drawing. There are cases when we would also
like to infer relationships among implied objects, such as the center of a
rotation or the bounding box of an object. We also plan to allow constrained
shapes inferred by our technique to be parameterized in more complex ways
and included as part of macros.
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