
A History-Based Macro By Example System

David Kurlander*

Steven Feiner

Department of Computer Science

Columbia University

New York, NY 10027

E-Mail: { djk, feirter }@cs.columbia.edu

ABSTRACT

Many tasks performed using computer interfaces are very

repetitive. While programmers can write macros or proce-

dures to automate these repetitive tasks, this requires special

skills. Demonstrational systems make macro building

accessible to all users, but most provide either no visual

representation of the macro or only a textual representation.

We have developed a history-based visual representation of

commands in a graphical user interface. This representation

supports the definition of macros by example in several

novel ways. At any time, a user can open a history window,

review the commands executed in a session, select opera-

tions to encapsulate into a macro, and choose objects and

their attributes as arguments. The system has facilities to

generalize the macro automatically, save it for future use,

and edit it.

KEYWORDS: Macros, demonstrational techniques, histo-

ries, graphical representations, programming by example.

INTRODUCTION

When applications are made extensible, the entire user

community benefits. Individuals can customize their appli-

cations to the tasks that they often encounter, and experts

can encapsulate their expertise in a form that less skilled

users can exploit. By writing a macro or program, users can

extend an application to perform tasks not included in the

original interface; however this typically requires both

programming skills and familiarity with the application’s

extension language. Systems with a macro by example or

programming by example component generate code auto-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

e 1992 ACM O-89791-550-X1921001 1/0099 . ..$1.50

matically in response to tasks demonstrated by the user

through the application’s own interface [12]. These systems

make the benefits of extensibility accessible to the entire

user community.

Many applications, such as GNU Emacs [14], have a macro

by example facility, but lack a visual representation for the

macros. Without a visual representation, it is impossible to

review the operations that compose the macro. When there

is an error in such a macro, the macro must be demonstrated

once again from scratch. If an error occurs in a macro with-

out a visual representation, the system cannot provide a

comprehensible error message explaining which step gener-

ated the error.

Though visual representations are clearly important for a

macro by example facility, many systems omit this compo-

nent since it is problematic how to statically display

commands executed through an application’s graphical user

interface. We have developed a technique for visually repre-

senting such commands. Previously we used a representa-

tion, called editable graphical histories, to provide a visual

record of commands executed in a session with a graphical

editor [6]. We have extended this technique to represent

macros by example, and support the definition and editing

of these macros. Here we introduce a macro by example

facility that uses editable graphical histories as its visual

representation, and discuss the many ways that the macro

facility takes advantage of these histories.

The macro by example system described in this paper is

implemented as part of Chimera, an editor system with

modes for editing 2D illustrations, user interfaces, and text

[8]. Macros can currently be defined in both the illustration

and user interface editing modes. All of the examples in this
paper are generated from the PostScript output of Chimera

and its macro by example facility.

*Author’s current address: Microsoft Research, One Microsoft
Way, Redmond, WA 98052-6399.

November 15-18, 1992 UIST’92 99

In the next section we discuss how other example-based

systems have dealt with the issue of representation. Then we

briefly discuss editable graphical histories, and in the rest of

the paper focus on how they support a macro by example

facility.

RELATED WORK

Since most programming by example research has dealt

with problems other than representation, many systems

ignore this issue. Peridot [11] and Metamouse [10] provide

highlighting or feedback for individual program steps,

however they depict a single step at a time with no visual

representations for the complete procedures which they

infer. A more comprehensive graphical representation

would allow the user to quickly examine and edit any step.

Representing commands in text-based systems tends to be

easier, since the textual commands themselves form a

convenient representation. Tinker, a text-based program-

ming by example facility, has a textual audit-trail of steps

used in constructing procedures [9]. To edit the demon-

strated procedure, the user can either textually edit these

steps or the resulting LISP procedure. Tweedle, a graphical

editor with both a WYSIWYG view and a textual code

view, allows procedures to be generated in both views [1].

However, to edit a procedure, the user must be able to

understand the code view. In the MIKE UIMS, graphical

macros can also be defined by demonstration [13]. In this

system macros can be defined and edited largely in demon-

stration mode, but the visual representation of graphical

commands is textual.

A programming by example component of SmallStar, a

miniature version of the Star user interface, adopts a mixed

text and iconic representation for macros [4]. The system

uses a predefine set of icons or pictographs to represent

entities on the desktop. The domains for which our system

is targeted are more graphical in nature, so prefabricated

icons will not suffice. As will be discussed in more depth in

the next section, our approach is to generate graphics auto-

matically to represent the operations in the macro.

All the programming by example systems discussed thus far

have special operations to start and stop recording events. In

our system, operations are always being recorded by an

undoJredo mechanism. When users realize that a set of oper-

ations that they had performed are generally useful, they can

always open up a history window and encapsulate the inter-

esting operations into a macro. A programming by example

system named EAGER also generates macros from a

history [3]. It constantly monitors the command stream for

repeated operation sequences. When a repetitive task is

detected, the system presents feedback that indicates the

tasks it anticipates, and when users are confident in

EAGER’s predictions, they can have it automatically gener-

ate a generalized procedure. However, this procedure has no

graphical representation.

EDITABLE GRAPHICAL HISTORIES

Command histories in our graphical user interface are repre-

sented visually using a comic strip metaphor, Actions in the

history of the interface are distributed over a sequence of

panels. We refer to this representation as an editable graphi-

cal history [6]. Figure 1 shows a graphical history represen-

tation of the commands that added text and a drop shadow

to the horizontal oval labeled GENERATOR in Figure 2.

FIGURE 2. A technical illustration created with Chimera,

Editable graphical histories use several techniques to make

a sequence of commands more comprehensible. The panels

are graphical, and use the same visual language as the inter-

face itself. Since the user of the system is already familiar

1
d“’’””””””:”’” “ ti~tetim’kti’ “ ‘-’ ‘-’.- “ “’ “ ““” ““::. .“.’”: ‘ ‘“: ““-’

6

FIGURE 1. A graphical history representation of steps that add text to an oval and create a drop shadow. These steps were
used in creating part of Figure 2. Panels whose labels are shown in reverse video have been selected by the user
to create the macro shown in Figure 3.

100 UIST’92 Monterey, California

with the interface’s conventions, it is easy for them to inter-

pret the histories.

Related commands are coalesced into single panels by

pattern matching rules. This makes the histories more

compact, but also makes them easier to interpret, since

instead of showing physical commands the system shows

logical commands. For example, the first panel of Figure 1,

represents commands that have added a text label to the

oval. The two commands move the caret (the software

cursor) to the desired position for the text, and then insert

the characters. The second panel changes the font of this

text and includes both an object selection and Set-Font

command. An interactive elaboration facility can be used to

expand higher-level panels into their lower-level compo-

nents.

If we were to shrink down the entire screen to fit in each

panel, then it would be difficult to see the changes that the

panels represent. Instead the system shows only those

objects that participate in the operation, as well as a little

scene context to indicate where on the screen the operation

was performed. Each panel of Figure 1 contains only a

subset of Figure 2 or of Chimera’s control panel. For exam-

ple the second panel includes the Text Input widget, in

which the name of the new font was typed, as well as the

selected text. The history mechanism adds other objects to

the panels, only to provide context. Objects in the panels are

rendered according to their roles in the explanation.

Currently the rendering pass subdues contextual objects by

lightening their colors. This usually makes it easy to distin-

guish these objects from those that participate in the opera-

tion.

MACRO DEFINITION

Macro definition in Chimera consists of two prima~ passes.

In the first pass the task is demonstrated using the regular

user interface. The dialogue for this pass is indistinguish-

able from regular user-interaction—there are no special

stop macro recording. Since people often do not think of

defining a macro until they have executed the steps at least

once, the commands may already have been demonstrated,

and no additional repetition is necessary.

In the second pass, the demonstrated sequence of

commands is supplemented with additional information to

convert this sequence into a macro. The commands

executed in this pass are different than those forming the

ordinary application dialogue. This pass includes selecting a

set of previously executed commands to encapsulate into

the macro, selecting arguments for the macro, generalizing

the commands to work in other contexts, and debugging and

saving the macro. Splitting macro definition into a demon-

strational step and a generalization step was first done by

Halbert in SmallStar [4]. It has the advantage that the

demonstrational pass of the macro is purely demonstra-

tional, and certain constructs, such as conditionals and

loops, which are difficult to add by demonstration, can be

introduced in a separate non-demonstrational pass.

However, unlike SmallStar which had special commands to

start and stop recording a macro, commands in Chimera are

always being recorded by an undolredo facility. At any time,

users can open up the history window, review the

commands executed in a session, or undo and redo some of

these commands. They can also select a set of commands to

be incorporated into a macro. The history of Figure 1 shows

a set of commands that add text to an oval and construct a

drop shadow for the oval. Recognizing that drop shadows

are necessary for other objects in the scene, we can now

extract the relevant panels from the history and turn them

into a macro.

First we select these panels using the mouse, and as feed-

back, the selected panel labels appear in reverse video, as

shown in Figure 1. The macroize operation, which is

executed next, takes a panel selection, and opens up a new

Macro Builder window on these panels. This window

initially contains only those panels that were selected in the

commands to execute, and no special operations to start and graphical history,

FIGURE 3. Macro Builder window containing operations to add a drop shadow to an object.

November 15-18, 1992 UIST’92 101

Argument Declaration

As the next step, we declare the arguments to the macro. We

do this by selecting the arguments where they appear in the

panels, and providing them with names. To select a compo-

nent of a panel, we first have to make the panels editable.

This is done by checking the editable box at the bottom of

the Macro Builder, which replaces the static graphical repre-

sentations of the history panels with fully editable graphical

canvases. Objects in these canvases can be selected and

manipulated in the same manner as objects in a regular

scene. The first argument to this macro will be the object for

which the shadow is generated. We examine the panels in

the macro builder window for an instance of the original

oval. This oval appears in each of the panels, so we select

any one of these instances, give it the name “object” by

typing this name in the Text Input widget of the control

panel, and execute the Make-Argument command.

A panel is added to the beginning of the history, depicting

the argument selection. Argument declarations are placed at

the beginning of our macros, just as they appear at the

beginning of traditional procedures. The resulting panel is

the first of the sequence of panels depicted in the Macro

Builder of Figure 3. The argument declaration panels show

the arguments as they appear before the operations in the

macro were invoked, plus additional scene context. They

are not just copies of the panels that were used for selecting

the arguments. Scene objects that do not exist at the begin-

ning of the macro, such as the oval produced by the copy

operation in the third panel of Figure 3, are not plausible

arguments, and Chimera will not allow them to be used for

this purpose.

In addition to choosing graphical objects to be arguments to

a macro, we can also choose graphical properties such as

color or linestyle. To select a graphical property, we can

select from the history a widget in which this property is

displayed. Widgets can be selected just like any other graph-

ical object. For this macro, we would like the color of the

drop shadow to be a second argument. First we locate the

panel in which we specified the color. This is the Text Input

field of the fourth panel of Figure 3. We select this widget,

and give the second argument the name “color”. A new

argument declaration panel is created, which is the second
panel of Figure 3.

Recall that our system chooses rendering styles for panel

objects according to the objects’ roles in the explanation.

However in Figure 3, all objects are rendered in their usual

fashion. We automatically revert to this standard rendering

when panels are made editable, since these panels become

fully editable scenes, and the user may want to query or

manipulate the colors and other graphical properties of the

objects in these panels. When the panels are restored to their

original uneditable state, the original rendering is also

restored.

Generalization

Next it is important to generalize the macro operations to

work in new contexts. This generalization can be either

specified by the user, or inferred by the system with the help

of a built-in inference engine. For each editor command,

Chimera has been supplied with a set of different interpreta-

tions, as well as heuristics for distinguishing when each

interpretation is likely. When choosing a default generaliza-

tion of a command, the system evaluates the heuristics in

the context of the graphics state to produce an ordered list of

possible intents. The user can view the system’s generaliza-

tions and override them if necessary. Once again the graphi-

cal history representation is useful as a means of selecting

panels, this time for choosing panels to be generalized,

For example, after selecting the last panel of Figure 3, we

execute the Generalize-Panel command. The window

shown in Figure 4 appears, containing the various generali-

zations that the system considered plausible in the given

context, with the most likely interpretation selected. The

generalizations of all the operations contained in a panel can

FIGURE 4. A form showing the system’s generalizations
for the last panel of Figure 3.

be viewed and modified at once. This panel contains the

selection of the drop shadow, and the subsequent translation

of the shadow to lie at the appropriate offset under the origi-

nal object. Only one of the built-in interpretations for the
selection is valid in the context of the last panel: that the

object selected at this step is the object created in the third

panel.

The Generalize-Panel command need not be executed

explicitly for every panel in the macro. Another command

can be used to set or reset all panels to their default general-

ization. When the macro is executed, all panels that have

never been generalized are automatically given a default

generalization.

102 UIST’92 Monterey, California

Generalizing a selection

The system has a number of possible interpretations of

object selections. As an example of the types of generaliza-

tions Chimera is capable of performing, we list the various

classes of selection generalizations here. An object may be

selected because of the following classes of reasons:

.

.

.

.

●

Argument. The object is an argument to the macro.

Constant. The object is a constant in the macro.

Component. The object is a particular component of an-
other object, or a parent of another object. Example: first
vertex of a polyline.

Temporal Reference. The object was referenced in a
particular macro step. Example: object created in panel
#3.

Position. The obiect shares a particular geometric rela-
tionship with ano~her object. E~ample: le~tmost segment
of a box.

Selection criteria can also be combined in two ways:

. Disjunction. Multiple objects selected for different rea-
sons. Example: an object is selected because it is either
argument 1 or argument 2.

● Composition. The composition of multiple selection cri-
teria. Example: first vertex of the second segment of ar-
gument 1.

This set of selection criteria is by no means complete. For

example, a set of objects may have been selected because

they share a particular graphical property in common (e. g.,

the same fill color), and Chimera cannot detect such an

intent. Even within the categories above, there are many

other selection criteria that we would like the system to

consider. For example, it will not propose that an object was

selected because it overlaps another interesting object.

Generalizing a move

The second checklist of Figure 4 explains the system’s

generalization of the move or drag operation. There are two

possible explanations that fit the bill: a relative translation

and an absolute move. In this case, the system chooses the

relative translation as most likely. If the dragged objects

were moved so that the caret, the software cursor, snapped

to an object or an intersection point (of either scene objects

or alignment lines), then this would be considered the most

likely interpretation. This allows us to define macros that

perform geometric constructions, using the snap-dragging
interaction technique developed by Bier [2]. For example,

we can use this technique to define macros in Chimera that

bisect angles, construct the midpoint of lines, and align

shapes.

Representing generalizations textually

Our macro facility represents generalizations as textual

supplements to the graphical display of commands. Another

approach might involve adding graphical symbols to the

panels in order to make the system’s interpretations of the

commands clear. This approach has several problems. If the

number of generalizations known by the system is large,

then the graphical vocabulary must also be large. Unless the

same graphical conventions are used by the system during

normal editing, the user would need to learn a new visual

language in order to define macros. By representing gener-

alizations textually, in English, our generalizations are

accessible to all users of the system. Our approach is similar

to that of SmallStar, in which generalizations are displayed

as textual data descriptions [4].

Macro archiving and invocation

After a macro has been generalized, it can be named, saved,

and invoked. Currently we save macros with all of the scene

state that was present at definition time. This allows an edit-

able graphical history representation of the macro to be

recreated for subsequent editing that is identical to the

panels originally displayed in the Macro Builder window

during macro construction time.

To invoke a macro, the user executes a menu command and

a macro invocation window pops up on the screen. For the

drop shadow macro that we have just defined, this window

is shown in Figure 5. The window contains an entry for each

of the arguments declared previously. The first argument,

“object” is assigned two buttons: one to set the argument

and the other to show it. The second argument, “color”, is a

property argument, and Chimera uses a different technique

to set and show property arguments. For each property argu-

ment, a copy of the widget used to specify the argument

during the original macro demonstration is included in the

A&d Uwq$ $m&$w’-d “.”.’ ,, “, .“”’:” ““ 1
.-

l,;,..-, ,.~.,.”, ,.

: ..:+j’ ‘;:’: :-,:. “:.:j
.. ”:”....

FIGURE 5. Window for setting arguments and invoking the
drop shadow macro.

invocation window. Since the Text Input field of the control
panel was originally used to specify the color of the drop

shadow, this widget is copied and added to the invocation

window. As a default, the widget contains the value speci-

fied for this parameter during macro demonstration time.

November 15-18, 1992 UIST’92 103

Original

objects

@m

First

test

Second n

test

FIGURE 6.

Effectively

Dark Grey

W...,
“.” .”.. .“”.

,., .
“.. ”.,. ..+ :.’

“..”, ““”
.. ””..” “.. .,. “...

. ..””..= ,““.
.+ ”.... .’ :

w.,.....“” 7.,,,.:. “.. .”..
. ...“ ,“ .% ,

.“.

.~,.,

...””.
“.. ,

Black

Text ~

Text m
Light Grey Light Grey

Testing the macro. The first row contains a set of test objects. The next row contains the results of invoking the
original macro on these objects, using the colors named at the bottoms of the columns. The final row shows the
results of invoking the debugged version of the macro.

this parameter is treated as an optional parame-

ter with a default. If the user does not change its value in the

macro invocation window, the macro will use the value that

was used during demonstration.

Testing and debugging

An important part of programming, demonstrational and

conventional alike, is the testing and debugging phase. In

the top row of Figure 6 we have created four different

shapes, in the second row we apply the drop shadow macro

to each, using the colors listed at the bottoms of the

columns. To create the drop shadow for the circle, we use

the dark grey default color already in the macro invocation

window. Next, we change the shadow color to black, and

apply the macro to the shape composed of splines and arcs.

Then, with the shadow color set to light grey, we apply the

macro to the text and finally the Bezier curve.

At this point we notice a bug in the macro. Though we

expect the macro to add a light grey drop shadow to the

Bezier, the drop shadow is black. To debug the macro, we

go back to the original Macro Builder window in Figure 3

and examine the commands that it contains. The bug

quickly becomes apparent. Though we changed the fill color

of the drop shadow, we never changed the line color. On

inspecting the results of this initial test again, it is clear that

the circle’s drop shadow is incorrect as well since it too has

a black line, yet we did not notice a problem at first because

the shadow is dark.

The graphical history representation supports editing opera-

tions on either macros or the history directly, in place. When

the panels are made editable, new commands can be

executed directly on the panel objects. These additional

commands can be propagated into the history at the point at

which they are inserted, by executing the Propagate-Panel-

FIGURE 7. Final version of the Macro Builder window containing operations to add a drop shadow to an object.

104 UIST’92 Monterey, California

Changes command. When this command is executed, the

system transparently undoes all of the operations after the

newly inserted operations, executes these new operations,

and redoes all of the operations that had been undone. If

commands are added to the history, rather than a macro, the

editor scene corresponding to this history is updated accord-

ing to the changes. In all cases, the subsequent panels of the

history are regenerated to take into account the changes that

had been inserted earlier.

To fix the bug in the macro shown in Figure 3, we need to

add a Set-Line-Color operation. To do this, we type Dark-

Grey in the Text Input widget of Chimera’s control panel,

and execute the Set-Line-Color command in the third panel

of the Macro Builder window where the copy is already

selected. Next we select this panel, and execute the

command that propagates the newly inserted command into

the history just after the copy command. The resulting

macro is shown in Figure 7. An additional panel was created

(panel 4) to represent the newly added operation, and subse-

quent panels all show the copy with its new line color.

After adding the new Set-Line-Color panel to the macro, we

generalize this panel, and execute the macro on our test

cases once again. The results, shown in the last row of

Figure 6, are now as we expected.

Panels can also be deleted from histories or macros. The

user can select a sequence of panels, and execute a

command that removes these commands as well as any

effect that they had. As with command insertion, Chimera

must reformulate the panels appearing after the change,

taking into account the modified scene.

CONCLUSIONS

We have developed a graphical history representation that

supports macro construction in a variety of different ways.

The graphical history representation allows people defining

new macros by example to review the commands that they

have performed. Others who were not present during macro

definition time can examine the contents of a macro. The

commands are displayed graphically, in the same visual

language as the interface itself, thus people who have used

the system for ordinary editing can understand the macro

representation.

The history representation provides a means of selecting

operations. This is useful for two different steps of macro
creation, At any time, the user can scroll through the history,

and select out useful commands for a new macro. Accord-

ingly, Chimera needs no additional commands to start and

stop macro recording. Later, a user may want to view or

change the generalizations associated with a set of panels.

Again, the graphical representation can be used to select the

appropriate panels.

The macro representation makes it very easy to select argu-

ments. After selecting the checkbox that makes the panels

of a macro editable, we can select objects directly in the

panels and turn them into arguments. Graphical properties

can also be turned into arguments by selecting the widgets

that set these properties from the macro panels.

Macros are not always defined correctly the first time, and

the histories present an interface for editing commands.

New commands can be inserted by invoking additional

commands in the editable panels, and executing a command

that propagates the changes. Unwanted commands can be

removed by selecting panels and deleting them.

The macro system itself often refers to the representation

when communicating important information to the user.

During the generalization process, the interpretation of a

command may refer back to steps made at an earlier point in

time. For example, the system often needs to refer to an

object that was created in a particular panel, or a measure-

ment that was made at a certain step. Macros can generate

run-time errors if they are invoked on objects of the incor-

rect type. Chimera also uses the macro representation to

indicate which panel of the macro generated an error.

In summary, graphical histories facilitate macro definition

in five different capacities:

1. Reviewing macro contents

2. Selecting operations
● to encapsulate in a macro
● to set and view generalizations

3. Selecting arguments

4. Editing macro contents
● inserting operations
● deleting operations

5. Referencing operations
● during generalization
● in error messages

FUTURE WORK

The graphical histories representation can support macro

definition and testing in a number of other ways. We could

use this representation to show, step by step, the effects of

applying a macro to new arguments. By placing together
multiple macro viewers vertically, aligned so that similar

panels are registered together, we could easily compare the

effects of applying a macro to different argument sets, and

quickly find the panel in which one of the macros generates

unexpected results.

November 15-18, 1992 UIST’92 105

We could also use the panels to specify additional command

generalizations when the existing ones fail. For example,

one step in a macro might involve reducing a box’s width by

half. If the system is incapable of inferring the desired intent

of this operation, the user might be able to add annotations

to the panels that make the intent explicit. Since the pane!s

are editable, the user might be able to use direct manipula-

tion technil~ues to define a temporal constraint between the

width of tlie box at two different points in time (or panels).

The interface for doing this might be similar to Chimera’s

interface for defining constraints between separate objects.

There are a number of basic ways in which our macro by

example facility can be enhanced. Currently when we save

macros, we save all of the scene state, which allows us to

restore the original graphical representation of macros for

subsequent editing. This increases the storage requirements

of the macro. We could also provide an option that automat-

ically strips superfluous scene objects from the macro. Not

only would this reduce storage, but it might also make the

graphical macro representation clearer since it would

contain no extraneous objects,

We would also like to expand the generalizations that

Chimera is capable of making, so that a greater number of

useful macros by example can be defined. Loops and condi-

tionals would also increase the power of our macro facility.

We have experimented with using graphical search [5] and

constraint-based search [7] as iteration mechanisms for

graphical macros, but others would be helpful as well.

Finally, it is important to provide a means of representing

changes to the macros within the graphical representation,

so that changes can be undone. Currently, Chimera can

generate histories for macro panels that have been edited,

but once the panel changes have been propagated into the

macro, or a panel has been deleted, the information is lost.

ACKNOWLEDGMENTS

Michael Elhadad made suggestions that led to an improved

system. Members of the Programming by Example Work-

shop at Apple Computer provided insights helpful in revis-

ing this paper. This work was partially sponsored by a grant
from IBM Watson Research Labs.

REFERENCES

1. Asente, P. Editing Graphical Objects Using Procedural

Representations. DEC WRL Research Report 87/6.

November 1987. Revised version of Stanford Ph. D.

thesis.

2. Bier, E. A., and Stone, M. C. Snap-Dragging. Proceed-

ings of SIGGRAPH ‘ 86 (Dallas, Texas, August 18-22,

3.

4.

5.

6.

7.

8.

9.

10,

1986) In Computer Graphics 20,4 (August 1986). 233-

240.

Cypher, A. EAGER: Programming Repetitive 7,isks By

Example. In CHI ’91 Conference Proceedings (New

Orleans, LA, April 27-May 2, 1991). 33-39.

Halbert, D. C. Programming by Example. Xerox Office

Systems Division Technical Report, OSD-T8402.

December 1984.

Kurlander, D., and Bier, E. A. Graphical Search and

Replace. Proceedings of SIGGRAPH ’88 (Atlanta,

Georgia, August 1-5, 1988). In Computer Graphics 22.

4 (August 1988). 113-120.

Kurlander, D., and Feiner S. A Visual Language for

Browsing, Undoing, and Redoing Graphical Interface

Commands. Visual Languages and Visual Program-

ming. S .K. Chang (cd.). Plenum Press, New York, NY.

pp. 257-275, 1990.

Kurlander, D., and Feiner, S. Interactive Constraint-

Based Search and Replace. In CHI ’92 Conference Pro-

ceedings (Monterey, CA, May 3-7, 1992). 609-618.

Kurlander, D. Graphical Editing by Example. Ph.D.

Thesis. Columbia University. Computer Science. In

preparation. 1992.

Lieberman, H. An Example Based Environment for

Beginning Programmers. In Instructional Science 14,

(1986). 277-292.

Maulsby, D. L., Witten, I. H., and Kittlitz, K. A. Meta-

mouse: Specifying Graphical Procedures by Example.

Proceedings of SIGGRAPH ‘ 89 (Boston, MA, July 31-

August 4, 1989) In Computer Graphics 23, 4 (July
1989). 127-136.

11. Myers, B. A. Creating User Interfaces by Demonstra-

12.

13.

14.

tion. Academic Press, Boston, 1988.

Myers, B. A. Demonstrational Interfaces: A Step
Beyond Direct Manipulation. Technical Report CMU-

CS-90-162. Carnegie Mellon University, School of

Computer Science. August 1990.

Olsen, D. R. Jr., and Dance, J. R. Macros by Example in

a Graphical UIMS. Computer Graphics and Applica-

tions 8, 1 (January 1988). 68-78.

Stallman, R. GNU Emacs Manual, Sixth Edition. Ver-

sion 18. Free Software Foundation, Cambridge, MA.

March 1987.

106 UIST’92 Monterey, California

