

Updates, August 3, 2013
See the video demo of Viewpoint at: http://youtu.be/9GO0r7jL3xI8
Check my web site for other updates: scottkim.com

Twenty five years after it was written, the ideas in this dissertation remain
provocative and ripe for followup. My goal was to do fundamental theoretical
research in interaction design and the nature of programming — fields that
remain bodies of practice with very little theoretical scrutiny.

| originally wanted to created a visual programming language by applying
graphic user interface design to programming. In the end | laid the foundation
for a visual programming language, but didn’t get to programming itself.
Visual programming remains an interesting unachieved goal. My dissertation
stalled for lack of an application domain; | now think game design (my
profession) would be an ideal domain.

Many people reading my dissertation think that bitmap parsing is the point.
Parsing high-level structure from low-level data is definitely on the rise in our
digitized world — consider face recognition, hashtags and QR codes. But my
main point is that we should align the visual representation that the user sees
and the data structures that the program “sees’, and that this can be accom-
plished either by bringing the mountain to Mohammed (bitmap parsing),
bringing Mohammed to the mountain (conventional programming), or
something inbetween (the interesting practical compromise).

Other projects that build on my work:

Editing scanned document images using simple interpretations, by
Steven Bagley. http://www.google.com/patents/US5734761

Editing Images of Text, by Steven Bagley and Gary E. Kopec
ftp://ftp.cfar.umd.edu/pub/documents/contrib/oldpapers/Bagley93.ps.gz

Triggers: Guiding Automation with Pixels to Achieve Data Access, by
Richard Potter. Chapter (page 361) in the book Watch what | DO: Program-
ming by Demonstration, edited by Allen Cypher and Daniel Conrad
Talbert. books.google.com/books?isbn=0262032139

Thanks to my long-time colleagues Fred Lakin and Warren Robinett, and
honorary VizDin member Henry Lieberman. Our conversations over the years

helped launch these ideas.
Suwtthim

Followup research challenges

Text editors deconstructed. Analyze the fundamental elements that make up
the model of text in modern text editors, such as the insertion cursor, word
wrap, invisible characters, and character styles. What are the strengths and
weaknesses in our commonly accepted modes, judged by interaction design
criteria? E.g. invisible structure can be confusing. What are radically different
solutions to these problems? E.g. Jef Raskin (grandfather of the Macintosh),
proposed positioning the insertion cursor by search, not by spatial position,
and showed that this is much faster and simpler than positioning the cursor by
mouse or trackpad. In other words, question the status quo in text editors.

Pixel-oriented text editor. Build a text editor / page layout program that uses
a bitmapped version of a document as its primary data structure. What can
such a program do naturally that would be difficult or impossible in Microsoft
Word or InDesign?

Computers for visual thinkers. If the first computers had been designed by
visual thinkers instead of by numerical thinkers, how would programming
look today? What if they had been designed by musicians? Writers? Architects?

Visual Lisp. Design a visual programming language with the reflexive power
of Lisp — instead of a program being able to manipulate its own list structure,
it can manipulate its own graphical structure. Fred Lakin has already done this
(pgc.com); take it further.

TPU. Design the architecture for a text-based CPU, in which the primary
interpretation of bytes is as characters, and the primary CPU operations are
text string operations.

PPU. Design the architecture for a pixel-based CPU, in which the primary
interpretation of bytes is as pixel arrays, and the primary CPU operations are
graphic operations. GPUs already do much of this; take it further to include
ultraparallel bitmap parsing operations.

Visual programming. Redesign a modern programming envircnment to be
more graphical. In particular, make all the hidden structure visible, such as the
contents of the data structures, and the syntax of the language. Scratch
already does much of this (scratch.mit.edu); it can be taken much further and
applied to conventional programming languages. See Bret Victor
(worrydream.com) for some promising starts in this direction.

Suwttlim

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

Donald Knuth, Computer Science (principal advisor)

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

William Verplank, Mechanical Engineering (lecturer)

I certify that | have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

William Paisley, Communications (formerly)

1 certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

Charles Bigelow, Art & Computer Science

Approved for the University Committee on Graduate Studies

Dean of Graduate Studies

iii

CAUTION
BASIC
RESEARCH

Preface

In the old days, computers worked with words and
numbers. Today, computers such as the Apple Macintosh
work with pictures as well as words —which makes them
easier to understand, especially for visual thinkers.

What's next? Tactile computers with look and feel? Before
we explore other sensory channels, we must realize that we
haven't yet built a truly visual computer. Despite its graphic
facade, the Macintosh is still built on a foundation of

‘numbers and abstract data structures that defy

visualization.

The goal of my research is to rethink computers from the
ground up in terms of visual thinking. My approach draws
on both computer science and graphic design, though not in
their most usual forms. Within computer science, | focus
more on user interface design than on algorithms. Within
graphic design, | focus more on general theoretical issues
than on particular images.

My research, chronicled in Chapters 1 and 2, began with
the desire to build better tools for graphic designers and
ended with the building of a pixel-based text and graphics
editor called “Viewpoint”. Chapter 3 demonstrates
Viewpoint in detail. A videotape of the demonstration is
also available.* Chapters 4 and 5 analyze design techniques
and theory, including a new user interface design principle
called “visibility". Chapters 6 and 7 summarize conclusions.

You will find that I often write in symmetrical patterns.
The idea is to take a familiar relation betweer,l two ideas and
see what happens when the relation is inverted. Either the
analogy will carry through, establishing a pattern, or it will
break down, revealing a difference. For instance, inverting
computer-aided design produces design-aided computation.
The principle of visibility emerged as 1 pondered
symmetries between the user and the processor with
respect to the screen. Finally, adopting pixels as the basic
representation of all information inverts the usual relation
between structured and unstructured graphics.

Since this book is about visual thinking, I have included
many pictures. The sketches down the side of each page
typify the diagrams [scribble in the margins of books to
help me understand ideas. Please feel free to add your own.

* For information, write me care of the Stanford Computer
Science Department, Stanford University, Stanford CA 94305.

Contents

Preface v
Acknowledgements vi
Table of Contents vii

1 Introduction 1

@ D The changing face of computers
Graphic design enters the picture
olo Rethinking computers & graphic design
Viewpoint: a thought experiment

On being interdisciplinary

2 History 11
Visual thinking / Metafont
Visual programming / The Al Factory
Graphics editing / Pixels
Viewpoint / Timeline

3 Demonstration 27
About the programming environment & illustrations
Drawing / Selecting / Copying
Puffbox / Typing / The visual boot
What happens if...? '

4 Implementation 83
Purpose / Behavior / Objects & actions / Encoding
Cursor / Key highlights and key triggers
Selection / Puffbox / Font / Text
Ink color / Interlock / Grid / Inner workings

5 Theory 89
The need for formal definitions
A model of interactive systems
Visibility / Modeling Viewpoint ~
Verifying visibility

6 Opportunities 111
9 Extending Viewpoint / Pixel algorithms and hardware
ole ¢ Editor-based systems / Computers and graphic design
Visual programming / User interface design
Visual thinking

7 Conclusions 119
Achievements
@ Techniques
Insights

Appendix 123
Bibliography 127

)

vii

1 Introduction

This chapter introduces the main themes of
Viewpoint: computers and graphic design.

— The changing face of computers

— Graphic design enters the picture

— Integrating computers & graphic design
— Viewpoint: a thought experiment

— On interdisciplinary work

Introduction 1

8 Introduction

)

/

Viewpoint: a thought experiment

To study fundamental issues in the visual representation of
information, 1 built Viewpoint, an experimental text and
graphics editor in which the primary representation of
information is pixels.

Viewpoint can be used to draw pictures, design fonts,
and edit text. Unlike other painting systems, Viewpoint
makes no distinction between text and graphics. The same
group of pixels can be treated as either text or graphics,
depending on which operation you perform.

The point of Viewpoint, however, is not to edit text and
graphics or even to demonstrate better ways to edit text
and graphics. As with a Turing machine, its purpose is to
test basic theoretical ideas in their purest form. Viewpoint
is best thought of as a formal experiment. It is not meant to
be immediately practical or efficient.

1 chose to pursue an interdisciplinary degree because
the issues 1 wish to study do not fit within a single ~
discipline. Computer science studies computers but ignores
users. Human factors includes users but fails to recognize
the screen as a primary experience. Graphic design treats
images as primary experiences but tends to avoid
philosophical issues. Linguistics is willing to discuss
philosophical issues but balks at visual language.

Viewpoint is neither conventional computer science nor
conventional graphic design, but rather a synthesis of both.
If 1 were to name my area of research, I might call it human-
computer communication, foundations of user interface
design, philosophy of graphic design, or visual linguistics.

10 Introduction

"

On interdisciplinary work

Curiously, the word interdisciplinary exists only as an
adjective. There are disciplines, but no interdisciplines. It is
as if interdisciplinary people must forever wander
homelessly. Thinking further about the nature of
interdisciplinary work, I realized that the word “interdisci-
plinary” has several shades of meanings.

Castles. Disciplines are private, walled kingdoms
sitting on neighboring hills. Occasionally, bilingual
messengers carry news from one kingdom to another. The
walls were originally built to defend territories. Nowadays
kingdoms grudgingly accept that they must coexist.

Cracks. The world of knowledge is cut up into
categories. Categories bring a sense of order and stability
to an otherwise chaotic world. Some people don't fit the
categories, but instead fall between the cracks. For them we
invent a new category: people who can't be categorized.

Bridge-builder. Disciplines are islands separated by
the sea of ignorance. Interdisciplinary people build bridges
between islands so that others may cross. Without such
bridges, passage between islands is difficult. One day,
perhaps, all islands will be connected.

Fence-sitter. The boundaries between disciplines are
marked by fences. Without such fences, we could never tell
who owned what territory. Each person must decide where
he or she belongs. Interdisciplinary people sit on the fence,
never deciding which side to commit to.

Hats. Throughout the day, we all play many different
roles: parent, child, teacher, student, worker, friend, ,
creator, performer, viewer. Each role comes with its own
hat. Interdisciplinary people wear several hats at once. Too
many hats make balancing difficult.

Viewpoint. I named my project “Viewpoint™ as a
reminder of the subjective nature of perception. There is
only one world, but many ways to view it. Different frames
lead to different interpretations. Interdisciplinary people
are able to switch points of view.

Differing viewpoints exist not only between disciplines
but within disciplines. In computer science, a digital circuit
designer views programming as a way of telling a computer
what to do, whereas a programmer views digital circuitry as
a way of implementing an algorithm. In graphic design, a
production artist views design concept as way of figuring
out what to do with tools, whereas a graphic designer views
tools and techniques as ways of implementing a design.

2 History

This chapter recounts the events that led to
Viewpoint—what I did and what I learned.

— Visual thinking

— Metafont

— Visual programming
— The Al Factory

— Graphics editing

— Pixels

— Viewpoint

— Timeline

History 11

12 History

Visual thinking

When I first came to Stanford, the Visual Thinking course
caught my eye [Stewart] [McKim]. The course was listed in
engineering, but seemed to draw equally on art. When |
stopped by to visit, the classroom was always filled with .
energetic drawings and models. Most of all, I liked that the
course was about thinking itself—not just the
understanding of thinking but the doing.

The Visual Thinking course started because students
coming to Stanford didn't know how to draw—an essential
skill for engineers. But this was no typical engineering
drawing class. Rather than teach precise drafting
techniques for recording finished ideas, Visual Thinking
taught quick sketching techniques for brainstorming new
jdeas. The course challenged students to invent, refine,
and build imaginative projects with the aid of prolific
sketching. Projects tended toward the absurd, to encourage
fresh thinking and avoid canned solutions.

A typical project was to build a drawing machine for
five people to operate at once. The first step might be to
brainstorm possibilities by sketching different types of
drawing devices, sketching different ways for five people to
interact, then combining each device with each interaction
method. The next step might be to develop a particular idea
further in tighter sketches. Students were asked to record
all their sketches in an “idea log". The point was not just to
make a machine that worked but to learn a style of
thinking.

Visual Thinking crystallized an idea I had always valued
but for which I had never had a name. In mathematics, 1
enjoyed the visual and spatial aspects of geometry. But
mathematicians tend to suppress the visual aspect of their
craft in favor of working with symbols. In psychology and
art, | enjoyed creating perceptual illusions. But most of the
time, psychologists are too caught up in analysis to create
new illusions, and artists are too caught up in creating
images to analyze the cognitive aspects of their craft.

The course encouraged me to develop my own visual
thinking skills. I studied graphic design and typography. |
learned about typeface design and calligraphy. I used more
pictures in my note-taking. I helped teach the Visual
Thinking course. Gradually, visual thinking became the
center of my work.

Visual thinking is the foundation of Viewpoint. Since the
idea of visual thinking is not widely understood, I must
explain what I mean.

Visual thinking is thinking with the aid of pictures, as
opposed to thinking with the aid of numbers, words,
sounds, or other vehicles of thought. Thinking includes
inventing, refining, and realizing ideas. Pictures include
images that are seen, drawn, or imagined. Thinking in
pictures is most appropriate when the subject matter is
pictorial, as in graphic design, spatial, as in maps, or
complex, as in statistical charts.

Since words and numbers have visual notations, visual
thinking cannot be completely separated from other types
of thinking. Furthermore, visual thinking relies closely on
muscular and spatial thinking. Visual thinking is not a
tightly defined category but a loose collection of mental
techniques drawn from the elements of visual perception:
color, shape, orientation, texture, position, etc.

Any discussion of visual thinking must take into
account the confusion around the very existence of visual
thinking. “People who think in pictures often doubt that
others do not. People who lack imagery, on the other hand,
are skeptical that anyone has it." [Sommer]

The confusion is largely due to education. Everyone
with sight thinks visually. To walk, for instance, is to make
visual judgments about the environment. But schools
systematically suppress visual thinking in favor of verbal
and numerical thinking. !

Consider mathematics. In elementary school, math
books are filled with pictures and activities. As you grow
older, pictures become smaller, fewer, and less colorful. In
scholarly journals, pictures all but disappear, the stigma
being that if you can't say it in symbols you aren't a “real”
mathematician.

Magazines and television teach us to read visual
messages. But nowhere do we learn to write visual
messages. Visual flliteracy leads to the belief that thinking
happens only in words. The belief is trapped by language:
Arguments for the existence of visual thinking must be
stated in words in order to be taken seriously. Even the
term “visual illiteracy” bows to the sovereignty of words.

In his book Visual Thinking, Rudolph Arnheim pinpoints
the problem: a belief that “...the gathering of perceptual
data is unskilled labor, indispensable but inferior. °
[Arnheim] For visual thinking to flourish, images must be
accepted as full citizens in the world of thought.

History 13

Most type designers who try Metafont find it too difficult to
use [Southall]. The difficulties arise from the conflicting
thinking styles of type designers and computer scientists.

Interdisciplinary education. Knuth knew that type
design and programming are rare skills and so expected
that the best work would come from collaborations. To
encourage such work, [wrote a Metafont workbook
specially for designers, organized around visual examples.
In contrast, Knuth's The Metafont Book is organized around
programming language syntax (Knuth]. A type design book
for programmers would be similarly valuable.

Designing for the medium. Imitating existing designs
in Metafont is useful but doesn't reveal its real strengths.
The real challenge is to develop new designs that take
specific advantage of the new medium. Metafont itself was
molded by Knuth's development of the Computer Modern
family of typefaces, with editorial assistance from major
type designers. Other original Metafont fonts include
Computer Modern Sans Serif by Richard Southall and
Donald Knuth, Pandora by Neenie Billawala, and a partial
Chinese font by John Hobby and Guoan Gu.

User interface. Letters exist to be seen and so must be
seen to be judged. The most frequent complaint by type
designers about Metafont is that they can't see graphic
results immediately. Metaface by Dave Siegel gives Metafont
a graphic user interface for capturing coordinates. Paragon
by Lynn Ruggles, also built in response to Metafont, offers a
graphic interface for editing and composing shapes. Imagen
Corporation has developed an interactive graphic type
design system with Metafont-like constraints.

Multiple representations. Letters have three types of
structure: ductal (strokes), glyptal (outlines), and pictal
(pixels) [Bigelow]. All three representations are important to
designers at various times. Metafont, which includes only
strokes and outlines, does not allow switching between
representations. The difficulty is mainly philosophical, not
technical. Stroke, outline, and pixel representations do not
contain equivalent information. Hence transformations
from one to another must lose information. Traditional
computer science springs from mathematics, which focuses
on information-preserving transformations. The question
is, Which do you prefer: design flexibility or information
preservation?

History 15

For all its promise, visual programming raises more
questions than it answers.

First, the notion of a programming language has never
been well defined. Language designers are too close to
implementation problems to propose general definitions. A
definition that begins “a sequence of symbols that..." is
useless for visual programming. I found only one taxonomy
. of programming languages that was not a territorial
.dispute. Theorists, on the other hand, are too far away

from particular implementations to pay attention to visual
representations. Formalisms filter out the features that
distinguish graphics from text.

Next, we must realize that textual programming
languages are visual programming languages. Programmers
use indentation to visually organize programs. A
programmer will fix a misindented statement even though it
does not affect execution. That almost no programming
languages use indentation to denote block structure reveals
that computer science is blind to graphic design issues. One
project that does notice the graphic nature of text is Aaron
Marcus and Ron Baecker's work on the typography of
computer programs [Marcus 1982].

Finally, we must realize that many factors must align
for a convincing visual programming language to emerge.
We can't just take Pascal and turn up the “visual® knob.

First, the visuals must be well designed. Since graphic
design is not a respectable computer science research topic,
visual programming languages remain aesthetically crude.

Next, the application must be appropriate. Visual
programming languages are often judged by their ability to
perform tasks better suited to textual programming, such
as computing factorial. The best visual programming
systems come from new application domains with strong
visual metaphors, such as spreadsheets, video games,
publishing, and user interface prototyping.

Visual programming is inconceivable without good
input/output hardware. But our displays are still tiny and
our input devices clumsy. Jaron Lanier's visual
programming environment, tentatively titled “Grasp®, is
built around a new input device that registers three-
dimensional hand and finger position [Lanier].

Finally, programming languages are sustained by
programming environments. Lisp without a text editor that
understands parentheses would be painful. We can expect
more visual programming systems to show up as visual
user environments become common.

History 17

|data] [data]

operatin dat:
perating) [sex]

data
program
‘| data|
program program
data -
program

20 History

Graphics editing

The Al factory gave me the image of a unified programming
environment built on a graphics editor, much the way
current software environments such as the Symbolics Zeta-
Lisp programming environment [Weinreb] or the Canon Cat
text environment designed by Information Appliance
[Alzofon] are built on text editors. Within this environment,
1 would be able to take a design all the way from rough
sketches to finished programs.

Older operating-system-based environments may have
many different forms of data, each with its own editor.
Even if programs are compatible, the effort of switching
from one program to another interrupts the user's work
flow. Users are forced to decide how to proceed before they
decide what they want to do. Operating systems are a
holdover from older, batch-processing systems.

The advantage of an editor-based environment over an
older operating-system based environment is integration:
All programs share a single form of data. Not only are
programs automatically compatible, they can be used in
any order at any time. Users can concentrate on what they
want to do, rather than how they have to do it. Editor-based
systems follow the noun-verb principle of interaction
design [David Smith].

Editor-based environments do more than just make
editing convenient—they change the focus of computers
from programming to editing. In fact, the most common use
of personal computers today is text editing, not
computation. The word “computer” has become obsolete.

1 now think of editing as part of a spectrum of actions.
Most direct is direct action: One action produces one result.
Less direct is editing: One action plus a previous state
produces a subsequent state. Least direct is programming:
One action plus a previous program text produces a
subsequent previous program text, which when applied to a
previous machine state produces a subsequent machine
state. From this point of view, programming is a powerful
but cumbersome kind of editing. If you can accomplish your
goals without programming, so much the better.

The idea of programming as undesirable crystallized
for me in a conversation with Larry Tesler of Apple
Computer while he was writing an article on programming
languages for Scientific American [Tesler 1984). Larry
remarked, “You're going along, getting stuff done, then
suddenly you realize, (big sigh) | have to write a program.”
Tesler's comment convinced me to build an editor before
attempting to build a programming language.

graphics

output
it HHa

output

output

input intermal

lnput internal

input internal

The advantage of a graphics over text is expressiveness.
Historically, computers have used three forms of data to
display results: numbers, text, and graphics. The earliest
computers used numbers since numbers are the most
efficient form of data for computers to process.
Programmers found programs expressed in numbers
difficult to read, so they developed textual mnemonics.

As computers offered more power, and users demanded
more clarity, text became the main form of human-
computer communication. Text editors and compilers
enabled users to use words for both input and output,
avoiding numbers entirely. Internally, computers still
translated words into numbers for efficient execution.

Nowadays, graphics is becoming the main form of
human-computer communication. Graphics is even less
efficient for computers than text but even easier for users
to understand. Current computers use graphics only for
output. Direct manipulation user interfaces are beginning to
suggest graphics as input.

Graphics is not just more expressive than text; it is
more inclusive. Text is a special kind of graphics, just as
numbers are a special kind of text. Thus we do not-give up
anything as we move from numbers to text to graphics. We
only add to our expressive range.

History 21

22 History

|| [W/
| | (W
| [

OO
MEXIT

[A1lolfol(1]

Pixels

What type of graphics editor could assist the entire design
process? There are two types of graphics editors: painting
systems and drawing systems. Both have advantages.

Painting systems, such as MacPaint on the Macintosh
[Atkinson], store pictures as arrays of pixels. The advantage
of pixels over other representations of graphics is that
pixels are what the user sees on the screen. Users can work
quickly and responsively since the image on the screen is
faithful to the representation in the computer. Painting
systems are appropriate for the early chaotic stages of the
design process or for projects that are inherently painterly.

In contrast, structured drawing systems, such as
MacDraw on the Macintosh [Cutter], store pictures as
abstract data structures. The advantage of structured
graphics over pixel representations of graphics is that
structures exist independent of screen resolution. Users can
freely rotate, scale, and combine images without worrying
about losing precision. Drawing systems are appropriate
for the later, orderly stages of the design process or for
projects which are inherently well-structured.

Many attempts have been made to combine the
advantages of both painting and drawing systems. Current
solutions allow pixel and structured graphics to coexist in
overlapping transparent planes. Structured graphics may
be converted into pixel graphics, but not vice versa.

The new idea in Viewpoint is to use pixels as the primary
carrier of information in a structured graphics
environment. In Viewpoint, structures are inferred from
pixels and exist only for the duration of an operation. The
moment an operation is completed, the structure drops
back into pixels. Every structure can always be edited as
pixels, no matter what other interpretations it may have.

Pixels are to graphics as characters are to text as bits
are to numbers—they are the smallest atoms out of which
larger structures are composed. Other decompositions are
possible. Graphics may also be expressed in vectors, text in
syntax trees, and numbers in exponential form.

Atomic decomposition has the virtue of simplicity. All
atoms are alike. In contrast, numbers expressed in
exponential form require two types of atoms: bases and
exponents. Structures are “flat’. In constrast, text expressed
in syntax trees builds hierarchies of subtrees. Composition
can be uniquely determined from final result. In contrast,
graphics expressed in vectors is ambiguous: It is impossible
to distinguish a vector from a twice-drawn vector.

Here are answers to common objections.

Pixels are crude approximations to real graphics.
To a computer scientist writing programs to display
pictures, “real” graphics lives in data structures. To a
graphic designer using computers to design publications,
“real” graphics lives on paper. In both cases, the screen is an
intermediate representation of a final product.

In other cases, however, the screen stands for itself. To
an interaction designer prototyping computer screens or an
artist sketching ideas, the screen itself is the final product
and so must be seen as “real”.

Pixels are inefficient and impractical. In some cases,
pixels already are the most efficient representation of
graphic information. For instance, window managers scroll
windows by copying blocks of pixels in the frame buffer
rather than by going back to the original data structures to
reconstruct the contents of a window.

As memory becomes cheaper and operations on blocks
of pixels migrate into hardware, pixel processing will
become more practical. The situation is similar to the early
days of text processing. A text editor is difficult to justify
on a machine with only 1,000 bytes of memory.

Pixels, like bits, are too low-level to be meaningful.
In the early stages of the design process, the lack of
structure in a low-level representation is desirable. Too
much structure forces users to make premature decisions.
Pixels allow tentative ideas to preserve their ambiguity.

Pixels do not preclude other structures. High-level
structure can be parsed from pixels just as program syntax
can be parsed from a string of characters.

Deriving structure from pixels is a hard Al
problem. Grace Hopper ran into a similar objection when
she first proposed high-level programming languages:

That December 1953 report proposed to management that
mathematical programs should be written in mathematical
notation, data processing programs should be written in
English statements, and we would be delighted to supply the
two corresponding compilers to translate to machine code. And
this time the reason was that computers couldn’t understand
English words. [Wexelblat)

Viewpoint need not solve the vision problem any more
than Fortran need solve the language problem. The
challenge is to create an artificial visual language that is
natural enough to be understood by users and precise
enough to be parsible by computers.

History 23

24

History

Viewpoint

To explore the consequences of basing a software
environment on pixels, I built Viewpoint, an integrated text
and graphics editor. I kept the behavior of Viewpoint as
simple as possible, to focus on fundamental issues, but rich
enough to include interesting issues.

The domain of Viewpoint is limited to a single screenful
of pixels. Obviously, a practical editor would handle a
larger area. Viewpoint uses four color planes to distinguish
different types of information.

The functionality of Viewpoint is limited to editing.
Viewpoint can edit three types of structures: text, fonts,
and graphics. A single type of structure would not be
enough to demonstrate the ability of pixels to handle
multiple representations.

The representative form of structured graphics in
Viewpoint is text. Originally, I planned to include many
other sorts of structured graphics, such as lines and
connected regions, but 1 found that word wrap was
sufficient to demonstrate the idea of pixel parsing. Text
uses a single, fixed width font, positioned on a fixed grid of
square “cells” to simplify character parsing. Text and
graphics editing operations both work on celis, blurring the
distinction between typing and drawing.

Viewpoint behaves as if the pixels on the screen were
the only record of the state of the system. [call this
condition *visibility”. Formally, a system is visible if the
current screen state plus the current user input uniquely
determines the next screen state, both for the computer and
for the user. For the computer, this means that there must
exist an algorithm that maps the current state of the frame
buffer (the data structure that stores the pixels on the
screen) plus the current user input into the next frame
buffer state. For the user, this means that the screen must
be easy enough to understand that for any given user input,
the next screen is easy to predict.

All current software systems, with the possible
exception of some video games, fail to be strictly visible. In
practice, strict visibility is usually neither desirable nor
practical. The purpose of Viewpoint is to demonstrate the
consequences of strict visibility.

The formal definition of visibility proved elusive. |
discovered that current formal theories of computation are
based entirely on noninteractive batch computing and are
therefore of no help for interactive systems. The theory of
interactive computational systems, which includes such
concepts as modelessness, has yet to be formalized.

1 built Viewpoint at the Xerox Palo Alto Research Center in
the Cedar programming language [Swinehart] running on a
Dorado computer [Pier]. Viewpoint evolved through
experimental programming. It would have been impossible
to have planned the entire program in advance: So much of
what | learned happened during the writing of the program.
Because the program was small, I was able to try many
revisions. Because it was simple, it worked reliably.

I tested Viewpoint on dozens of people. I wrote a short
user's manual (see Appendix) that allowed a new user to
learn the system without any prompting from me. By seeing
where users got confused, | was able to make the user
interface easier to use. I went through a half dozen versions
of the cursor until I found one that was satisfying. | was
also to discover places where | had failed to adhere to strict
visibility. Patterns of use suggested what functionality to
add next. Ultimately, the program allowed me to practice a
new way of thinking about computer displays.

The primary result of Viewpoint is that a strictly visible
text and graphics editor is possible. The program itself
provides examples of techniques for implementing strict
visibility, such as pixel parsing, the cursor plane, and the
visual boot. ’ '

In addition, Viewpoint suggests research opportunities.
Along the lines of pixel-based systems there are pixel
parsing algorithms, hardware support for pixel operations,
and artificial visual languages for human-computer
interaction. More generally, there are editor-based systems,
alternate basis representations other than pixels, theory of
interactive systems, and interdisciplinary research in
computers and graphic design.

History 25

Undergrad school

Graduate school

Metafont

Inversions

Computer languages

Visual programming

Thesis proposal

Programming

Thesis, draft

Thesis, final

26 History

1973

1979

1980

1981

1982

1983

1984

1985

1986

1987

Timeline

Computers, computer music, and computer graphics.
Visual thinking cla<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>