


Updates, August 3, 2013
See the video demo of Viewpoint at: http://youtu.be/9GO0r7jL3xI8
Check my web site for other updates: scottkim.com

Twenty five years after it was written, the ideas in this dissertation remain
provocative and ripe for followup. My goal was to do fundamental theoretical
research in interaction design and the nature of programming — fields that
remain bodies of practice with very little theoretical scrutiny.

| originally wanted to created a visual programming language by applying
graphic user interface design to programming. In the end | laid the foundation
for a visual programming language, but didn’t get to programming itself.
Visual programming remains an interesting unachieved goal. My dissertation
stalled for lack of an application domain; | now think game design (my
profession) would be an ideal domain.

Many people reading my dissertation think that bitmap parsing is the point.
Parsing high-level structure from low-level data is definitely on the rise in our
digitized world — consider face recognition, hashtags and QR codes. But my
main point is that we should align the visual representation that the user sees
and the data structures that the program “sees’, and that this can be accom-
plished either by bringing the mountain to Mohammed (bitmap parsing),
bringing Mohammed to the mountain (conventional programming), or
something inbetween (the interesting practical compromise).

Other projects that build on my work:

Editing scanned document images using simple interpretations, by
Steven Bagley. http://www.google.com/patents/US5734761

Editing Images of Text, by Steven Bagley and Gary E. Kopec
ftp://ftp.cfar.umd.edu/pub/documents/contrib/oldpapers/Bagley93.ps.gz

Triggers: Guiding Automation with Pixels to Achieve Data Access, by
Richard Potter. Chapter (page 361) in the book Watch what | DO: Program-
ming by Demonstration, edited by Allen Cypher and Daniel Conrad
Talbert. books.google.com/books?isbn=0262032139

Thanks to my long-time colleagues Fred Lakin and Warren Robinett, and
honorary VizDin member Henry Lieberman. Our conversations over the years

helped launch these ideas.
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Followup research challenges

Text editors deconstructed. Analyze the fundamental elements that make up
the model of text in modern text editors, such as the insertion cursor, word
wrap, invisible characters, and character styles. What are the strengths and
weaknesses in our commonly accepted modes, judged by interaction design
criteria? E.g. invisible structure can be confusing. What are radically different
solutions to these problems? E.g. Jef Raskin (grandfather of the Macintosh),
proposed positioning the insertion cursor by search, not by spatial position,
and showed that this is much faster and simpler than positioning the cursor by
mouse or trackpad. In other words, question the status quo in text editors.

Pixel-oriented text editor. Build a text editor / page layout program that uses
a bitmapped version of a document as its primary data structure. What can
such a program do naturally that would be difficult or impossible in Microsoft
Word or InDesign?

Computers for visual thinkers. If the first computers had been designed by
visual thinkers instead of by numerical thinkers, how would programming
look today? What if they had been designed by musicians? Writers? Architects?

Visual Lisp. Design a visual programming language with the reflexive power
of Lisp — instead of a program being able to manipulate its own list structure,
it can manipulate its own graphical structure. Fred Lakin has already done this
(pgc.com); take it further.

TPU. Design the architecture for a text-based CPU, in which the primary
interpretation of bytes is as characters, and the primary CPU operations are
text string operations.

PPU. Design the architecture for a pixel-based CPU, in which the primary
interpretation of bytes is as pixel arrays, and the primary CPU operations are
graphic operations. GPUs already do much of this; take it further to include
ultraparallel bitmap parsing operations.

Visual programming. Redesign a modern programming envircnment to be
more graphical. In particular, make all the hidden structure visible, such as the
contents of the data structures, and the syntax of the language. Scratch
already does much of this (scratch.mit.edu); it can be taken much further and
applied to conventional programming languages. See Bret Victor
(worrydream.com) for some promising starts in this direction.
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Preface

In the old days, computers worked with words and
numbers. Today, computers such as the Apple Macintosh
work with pictures as well as words —which makes them
easier to understand, especially for visual thinkers.

What's next? Tactile computers with look and feel? Before
we explore other sensory channels, we must realize that we
haven't yet built a truly visual computer. Despite its graphic
facade, the Macintosh is still built on a foundation of

‘numbers and abstract data structures that defy

visualization.

The goal of my research is to rethink computers from the
ground up in terms of visual thinking. My approach draws
on both computer science and graphic design, though not in
their most usual forms. Within computer science, | focus
more on user interface design than on algorithms. Within
graphic design, | focus more on general theoretical issues
than on particular images.

My research, chronicled in Chapters 1 and 2, began with
the desire to build better tools for graphic designers and
ended with the building of a pixel-based text and graphics
editor called “Viewpoint”. Chapter 3 demonstrates
Viewpoint in detail. A videotape of the demonstration is
also available.* Chapters 4 and 5 analyze design techniques
and theory, including a new user interface design principle
called “visibility". Chapters 6 and 7 summarize conclusions.

You will find that I often write in symmetrical patterns.
The idea is to take a familiar relation betweer,l two ideas and
see what happens when the relation is inverted. Either the
analogy will carry through, establishing a pattern, or it will
break down, revealing a difference. For instance, inverting
computer-aided design produces design-aided computation.
The principle of visibility emerged as 1 pondered
symmetries between the user and the processor with
respect to the screen. Finally, adopting pixels as the basic
representation of all information inverts the usual relation
between structured and unstructured graphics.

Since this book is about visual thinking, I have included
many pictures. The sketches down the side of each page
typify the diagrams [ scribble in the margins of books to
help me understand ideas. Please feel free to add your own.

* For information, write me care of the Stanford Computer
Science Department, Stanford University, Stanford CA 94305.
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1 Introduction

This chapter introduces the main themes of
Viewpoint: computers and graphic design.

— The changing face of computers

— Graphic design enters the picture

— Integrating computers & graphic design
— Viewpoint: a thought experiment

— On interdisciplinary work

Introduction 1
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Viewpoint: a thought experiment

To study fundamental issues in the visual representation of
information, 1 built Viewpoint, an experimental text and
graphics editor in which the primary representation of
information is pixels.

Viewpoint can be used to draw pictures, design fonts,
and edit text. Unlike other painting systems, Viewpoint
makes no distinction between text and graphics. The same
group of pixels can be treated as either text or graphics,
depending on which operation you perform.

The point of Viewpoint, however, is not to edit text and
graphics or even to demonstrate better ways to edit text
and graphics. As with a Turing machine, its purpose is to
test basic theoretical ideas in their purest form. Viewpoint
is best thought of as a formal experiment. It is not meant to
be immediately practical or efficient.

1 chose to pursue an interdisciplinary degree because
the issues 1 wish to study do not fit within a single ~
discipline. Computer science studies computers but ignores
users. Human factors includes users but fails to recognize
the screen as a primary experience. Graphic design treats
images as primary experiences but tends to avoid
philosophical issues. Linguistics is willing to discuss
philosophical issues but balks at visual language.

Viewpoint is neither conventional computer science nor
conventional graphic design, but rather a synthesis of both.
If 1 were to name my area of research, I might call it human-
computer communication, foundations of user interface
design, philosophy of graphic design, or visual linguistics.
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"

On interdisciplinary work

Curiously, the word interdisciplinary exists only as an
adjective. There are disciplines, but no interdisciplines. It is
as if interdisciplinary people must forever wander
homelessly. Thinking further about the nature of
interdisciplinary work, I realized that the word “interdisci-
plinary” has several shades of meanings.

Castles. Disciplines are private, walled kingdoms
sitting on neighboring hills. Occasionally, bilingual
messengers carry news from one kingdom to another. The
walls were originally built to defend territories. Nowadays
kingdoms grudgingly accept that they must coexist.

Cracks. The world of knowledge is cut up into
categories. Categories bring a sense of order and stability
to an otherwise chaotic world. Some people don't fit the
categories, but instead fall between the cracks. For them we
invent a new category: people who can't be categorized.

Bridge-builder. Disciplines are islands separated by
the sea of ignorance. Interdisciplinary people build bridges
between islands so that others may cross. Without such
bridges, passage between islands is difficult. One day,
perhaps, all islands will be connected.

Fence-sitter. The boundaries between disciplines are
marked by fences. Without such fences, we could never tell
who owned what territory. Each person must decide where
he or she belongs. Interdisciplinary people sit on the fence,
never deciding which side to commit to.

Hats. Throughout the day, we all play many different
roles: parent, child, teacher, student, worker, friend, ,
creator, performer, viewer. Each role comes with its own
hat. Interdisciplinary people wear several hats at once. Too
many hats make balancing difficult.

Viewpoint. I named my project “Viewpoint™ as a
reminder of the subjective nature of perception. There is
only one world, but many ways to view it. Different frames
lead to different interpretations. Interdisciplinary people
are able to switch points of view.

Differing viewpoints exist not only between disciplines
but within disciplines. In computer science, a digital circuit
designer views programming as a way of telling a computer
what to do, whereas a programmer views digital circuitry as
a way of implementing an algorithm. In graphic design, a
production artist views design concept as way of figuring
out what to do with tools, whereas a graphic designer views
tools and techniques as ways of implementing a design.



2 History

This chapter recounts the events that led to
Viewpoint—what I did and what I learned.

— Visual thinking

— Metafont

— Visual programming
— The Al Factory

— Graphics editing

— Pixels

— Viewpoint

— Timeline

History 11
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Visual thinking

When I first came to Stanford, the Visual Thinking course
caught my eye [Stewart] [McKim]. The course was listed in
engineering, but seemed to draw equally on art. When |
stopped by to visit, the classroom was always filled with .
energetic drawings and models. Most of all, I liked that the
course was about thinking itself—not just the
understanding of thinking but the doing.

The Visual Thinking course started because students
coming to Stanford didn't know how to draw—an essential
skill for engineers. But this was no typical engineering
drawing class. Rather than teach precise drafting
techniques for recording finished ideas, Visual Thinking
taught quick sketching techniques for brainstorming new
jdeas. The course challenged students to invent, refine,
and build imaginative projects with the aid of prolific
sketching. Projects tended toward the absurd, to encourage
fresh thinking and avoid canned solutions.

A typical project was to build a drawing machine for
five people to operate at once. The first step might be to
brainstorm possibilities by sketching different types of
drawing devices, sketching different ways for five people to
interact, then combining each device with each interaction
method. The next step might be to develop a particular idea
further in tighter sketches. Students were asked to record
all their sketches in an “idea log". The point was not just to
make a machine that worked but to learn a style of
thinking.

Visual Thinking crystallized an idea I had always valued
but for which I had never had a name. In mathematics, 1
enjoyed the visual and spatial aspects of geometry. But
mathematicians tend to suppress the visual aspect of their
craft in favor of working with symbols. In psychology and
art, | enjoyed creating perceptual illusions. But most of the
time, psychologists are too caught up in analysis to create
new illusions, and artists are too caught up in creating
images to analyze the cognitive aspects of their craft.

The course encouraged me to develop my own visual
thinking skills. I studied graphic design and typography. |
learned about typeface design and calligraphy. I used more
pictures in my note-taking. I helped teach the Visual
Thinking course. Gradually, visual thinking became the
center of my work.



Visual thinking is the foundation of Viewpoint. Since the
idea of visual thinking is not widely understood, I must
explain what I mean.

Visual thinking is thinking with the aid of pictures, as
opposed to thinking with the aid of numbers, words,
sounds, or other vehicles of thought. Thinking includes
inventing, refining, and realizing ideas. Pictures include
images that are seen, drawn, or imagined. Thinking in
pictures is most appropriate when the subject matter is
pictorial, as in graphic design, spatial, as in maps, or
complex, as in statistical charts.

Since words and numbers have visual notations, visual
thinking cannot be completely separated from other types
of thinking. Furthermore, visual thinking relies closely on
muscular and spatial thinking. Visual thinking is not a
tightly defined category but a loose collection of mental
techniques drawn from the elements of visual perception:
color, shape, orientation, texture, position, etc.

Any discussion of visual thinking must take into
account the confusion around the very existence of visual
thinking. “People who think in pictures often doubt that
others do not. People who lack imagery, on the other hand,
are skeptical that anyone has it." [Sommer]

The confusion is largely due to education. Everyone
with sight thinks visually. To walk, for instance, is to make
visual judgments about the environment. But schools
systematically suppress visual thinking in favor of verbal
and numerical thinking. !

Consider mathematics. In elementary school, math
books are filled with pictures and activities. As you grow
older, pictures become smaller, fewer, and less colorful. In
scholarly journals, pictures all but disappear, the stigma
being that if you can't say it in symbols you aren't a “real”
mathematician.

Magazines and television teach us to read visual
messages. But nowhere do we learn to write visual
messages. Visual flliteracy leads to the belief that thinking
happens only in words. The belief is trapped by language:
Arguments for the existence of visual thinking must be
stated in words in order to be taken seriously. Even the
term “visual illiteracy” bows to the sovereignty of words.

In his book Visual Thinking, Rudolph Arnheim pinpoints
the problem: a belief that “...the gathering of perceptual
data is unskilled labor, indispensable but inferior. °
[Arnheim] For visual thinking to flourish, images must be
accepted as full citizens in the world of thought.

History 13






Most type designers who try Metafont find it too difficult to
use [Southall]. The difficulties arise from the conflicting
thinking styles of type designers and computer scientists.

Interdisciplinary education. Knuth knew that type
design and programming are rare skills and so expected
that the best work would come from collaborations. To
encourage such work, [ wrote a Metafont workbook
specially for designers, organized around visual examples.
In contrast, Knuth's The Metafont Book is organized around
programming language syntax (Knuth]. A type design book
for programmers would be similarly valuable.

Designing for the medium. Imitating existing designs
in Metafont is useful but doesn't reveal its real strengths.
The real challenge is to develop new designs that take
specific advantage of the new medium. Metafont itself was
molded by Knuth's development of the Computer Modern
family of typefaces, with editorial assistance from major
type designers. Other original Metafont fonts include
Computer Modern Sans Serif by Richard Southall and
Donald Knuth, Pandora by Neenie Billawala, and a partial
Chinese font by John Hobby and Guoan Gu.

User interface. Letters exist to be seen and so must be
seen to be judged. The most frequent complaint by type
designers about Metafont is that they can't see graphic
results immediately. Metaface by Dave Siegel gives Metafont
a graphic user interface for capturing coordinates. Paragon
by Lynn Ruggles, also built in response to Metafont, offers a
graphic interface for editing and composing shapes. Imagen
Corporation has developed an interactive graphic type
design system with Metafont-like constraints.

Multiple representations. Letters have three types of
structure: ductal (strokes), glyptal (outlines), and pictal
(pixels) [Bigelow]. All three representations are important to
designers at various times. Metafont, which includes only
strokes and outlines, does not allow switching between
representations. The difficulty is mainly philosophical, not
technical. Stroke, outline, and pixel representations do not
contain equivalent information. Hence transformations
from one to another must lose information. Traditional
computer science springs from mathematics, which focuses
on information-preserving transformations. The question
is, Which do you prefer: design flexibility or information
preservation?

History 15






For all its promise, visual programming raises more
questions than it answers.

First, the notion of a programming language has never
been well defined. Language designers are too close to
implementation problems to propose general definitions. A
definition that begins “a sequence of symbols that..." is
useless for visual programming. I found only one taxonomy
. of programming languages that was not a territorial
.dispute. Theorists, on the other hand, are too far away

from particular implementations to pay attention to visual
representations. Formalisms filter out the features that
distinguish graphics from text.

Next, we must realize that textual programming
languages are visual programming languages. Programmers
use indentation to visually organize programs. A
programmer will fix a misindented statement even though it
does not affect execution. That almost no programming
languages use indentation to denote block structure reveals
that computer science is blind to graphic design issues. One
project that does notice the graphic nature of text is Aaron
Marcus and Ron Baecker's work on the typography of
computer programs [Marcus 1982].

Finally, we must realize that many factors must align
for a convincing visual programming language to emerge.
We can't just take Pascal and turn up the “visual® knob.

First, the visuals must be well designed. Since graphic
design is not a respectable computer science research topic,
visual programming languages remain aesthetically crude.

Next, the application must be appropriate. Visual
programming languages are often judged by their ability to
perform tasks better suited to textual programming, such
as computing factorial. The best visual programming
systems come from new application domains with strong
visual metaphors, such as spreadsheets, video games,
publishing, and user interface prototyping.

Visual programming is inconceivable without good
input/output hardware. But our displays are still tiny and
our input devices clumsy. Jaron Lanier's visual
programming environment, tentatively titled “Grasp®, is
built around a new input device that registers three-
dimensional hand and finger position [Lanier].

Finally, programming languages are sustained by
programming environments. Lisp without a text editor that
understands parentheses would be painful. We can expect
more visual programming systems to show up as visual
user environments become common.

History 17
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Graphics editing

The Al factory gave me the image of a unified programming
environment built on a graphics editor, much the way
current software environments such as the Symbolics Zeta-
Lisp programming environment [Weinreb] or the Canon Cat
text environment designed by Information Appliance
[Alzofon] are built on text editors. Within this environment,
1 would be able to take a design all the way from rough
sketches to finished programs.

Older operating-system-based environments may have
many different forms of data, each with its own editor.
Even if programs are compatible, the effort of switching
from one program to another interrupts the user's work
flow. Users are forced to decide how to proceed before they
decide what they want to do. Operating systems are a
holdover from older, batch-processing systems.

The advantage of an editor-based environment over an
older operating-system based environment is integration:
All programs share a single form of data. Not only are
programs automatically compatible, they can be used in
any order at any time. Users can concentrate on what they
want to do, rather than how they have to do it. Editor-based
systems follow the noun-verb principle of interaction
design [David Smith].

Editor-based environments do more than just make
editing convenient—they change the focus of computers
from programming to editing. In fact, the most common use
of personal computers today is text editing, not
computation. The word “computer” has become obsolete.

1 now think of editing as part of a spectrum of actions.
Most direct is direct action: One action produces one result.
Less direct is editing: One action plus a previous state
produces a subsequent state. Least direct is programming:
One action plus a previous program text produces a
subsequent previous program text, which when applied to a
previous machine state produces a subsequent machine
state. From this point of view, programming is a powerful
but cumbersome kind of editing. If you can accomplish your
goals without programming, so much the better.

The idea of programming as undesirable crystallized
for me in a conversation with Larry Tesler of Apple
Computer while he was writing an article on programming
languages for Scientific American [Tesler 1984). Larry
remarked, “You're going along, getting stuff done, then
suddenly you realize, (big sigh) | have to write a program.”
Tesler's comment convinced me to build an editor before
attempting to build a programming language.
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The advantage of a graphics over text is expressiveness.
Historically, computers have used three forms of data to
display results: numbers, text, and graphics. The earliest
computers used numbers since numbers are the most
efficient form of data for computers to process.
Programmers found programs expressed in numbers
difficult to read, so they developed textual mnemonics.

As computers offered more power, and users demanded
more clarity, text became the main form of human-
computer communication. Text editors and compilers
enabled users to use words for both input and output,
avoiding numbers entirely. Internally, computers still
translated words into numbers for efficient execution.

Nowadays, graphics is becoming the main form of
human-computer communication. Graphics is even less
efficient for computers than text but even easier for users
to understand. Current computers use graphics only for
output. Direct manipulation user interfaces are beginning to
suggest graphics as input.

Graphics is not just more expressive than text; it is
more inclusive. Text is a special kind of graphics, just as
numbers are a special kind of text. Thus we do not-give up
anything as we move from numbers to text to graphics. We
only add to our expressive range.
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Pixels

What type of graphics editor could assist the entire design
process? There are two types of graphics editors: painting
systems and drawing systems. Both have advantages.

Painting systems, such as MacPaint on the Macintosh
[Atkinson], store pictures as arrays of pixels. The advantage
of pixels over other representations of graphics is that
pixels are what the user sees on the screen. Users can work
quickly and responsively since the image on the screen is
faithful to the representation in the computer. Painting
systems are appropriate for the early chaotic stages of the
design process or for projects that are inherently painterly.

In contrast, structured drawing systems, such as
MacDraw on the Macintosh [Cutter], store pictures as
abstract data structures. The advantage of structured
graphics over pixel representations of graphics is that
structures exist independent of screen resolution. Users can
freely rotate, scale, and combine images without worrying
about losing precision. Drawing systems are appropriate
for the later, orderly stages of the design process or for
projects which are inherently well-structured.

Many attempts have been made to combine the
advantages of both painting and drawing systems. Current
solutions allow pixel and structured graphics to coexist in
overlapping transparent planes. Structured graphics may
be converted into pixel graphics, but not vice versa.

The new idea in Viewpoint is to use pixels as the primary
carrier of information in a structured graphics
environment. In Viewpoint, structures are inferred from
pixels and exist only for the duration of an operation. The
moment an operation is completed, the structure drops
back into pixels. Every structure can always be edited as
pixels, no matter what other interpretations it may have.

Pixels are to graphics as characters are to text as bits
are to numbers—they are the smallest atoms out of which
larger structures are composed. Other decompositions are
possible. Graphics may also be expressed in vectors, text in
syntax trees, and numbers in exponential form.

Atomic decomposition has the virtue of simplicity. All
atoms are alike. In contrast, numbers expressed in
exponential form require two types of atoms: bases and
exponents. Structures are “flat’. In constrast, text expressed
in syntax trees builds hierarchies of subtrees. Composition
can be uniquely determined from final result. In contrast,
graphics expressed in vectors is ambiguous: It is impossible
to distinguish a vector from a twice-drawn vector.



Here are answers to common objections.

Pixels are crude approximations to real graphics.
To a computer scientist writing programs to display
pictures, “real” graphics lives in data structures. To a
graphic designer using computers to design publications,
“real” graphics lives on paper. In both cases, the screen is an
intermediate representation of a final product.

In other cases, however, the screen stands for itself. To
an interaction designer prototyping computer screens or an
artist sketching ideas, the screen itself is the final product
and so must be seen as “real”.

Pixels are inefficient and impractical. In some cases,
pixels already are the most efficient representation of
graphic information. For instance, window managers scroll
windows by copying blocks of pixels in the frame buffer
rather than by going back to the original data structures to
reconstruct the contents of a window.

As memory becomes cheaper and operations on blocks
of pixels migrate into hardware, pixel processing will
become more practical. The situation is similar to the early
days of text processing. A text editor is difficult to justify
on a machine with only 1,000 bytes of memory.

Pixels, like bits, are too low-level to be meaningful.
In the early stages of the design process, the lack of
structure in a low-level representation is desirable. Too
much structure forces users to make premature decisions.
Pixels allow tentative ideas to preserve their ambiguity.

Pixels do not preclude other structures. High-level
structure can be parsed from pixels just as program syntax
can be parsed from a string of characters.

Deriving structure from pixels is a hard Al
problem. Grace Hopper ran into a similar objection when
she first proposed high-level programming languages:

That December 1953 report proposed to management that
mathematical programs should be written in mathematical
notation, data processing programs should be written in
English statements, and we would be delighted to supply the
two corresponding compilers to translate to machine code. And
this time the reason was that computers couldn’t understand
English words. [Wexelblat)

Viewpoint need not solve the vision problem any more
than Fortran need solve the language problem. The
challenge is to create an artificial visual language that is
natural enough to be understood by users and precise
enough to be parsible by computers.
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Viewpoint

To explore the consequences of basing a software
environment on pixels, I built Viewpoint, an integrated text
and graphics editor. I kept the behavior of Viewpoint as
simple as possible, to focus on fundamental issues, but rich
enough to include interesting issues.

The domain of Viewpoint is limited to a single screenful
of pixels. Obviously, a practical editor would handle a
larger area. Viewpoint uses four color planes to distinguish
different types of information.

The functionality of Viewpoint is limited to editing.
Viewpoint can edit three types of structures: text, fonts,
and graphics. A single type of structure would not be
enough to demonstrate the ability of pixels to handle
multiple representations.

The representative form of structured graphics in
Viewpoint is text. Originally, I planned to include many
other sorts of structured graphics, such as lines and
connected regions, but 1 found that word wrap was
sufficient to demonstrate the idea of pixel parsing. Text
uses a single, fixed width font, positioned on a fixed grid of
square “cells” to simplify character parsing. Text and
graphics editing operations both work on celis, blurring the
distinction between typing and drawing.

Viewpoint behaves as if the pixels on the screen were
the only record of the state of the system. [ call this
condition *visibility”. Formally, a system is visible if the
current screen state plus the current user input uniquely
determines the next screen state, both for the computer and
for the user. For the computer, this means that there must
exist an algorithm that maps the current state of the frame
buffer (the data structure that stores the pixels on the
screen) plus the current user input into the next frame
buffer state. For the user, this means that the screen must
be easy enough to understand that for any given user input,
the next screen is easy to predict.

All current software systems, with the possible
exception of some video games, fail to be strictly visible. In
practice, strict visibility is usually neither desirable nor
practical. The purpose of Viewpoint is to demonstrate the
consequences of strict visibility.

The formal definition of visibility proved elusive. |
discovered that current formal theories of computation are
based entirely on noninteractive batch computing and are
therefore of no help for interactive systems. The theory of
interactive computational systems, which includes such
concepts as modelessness, has yet to be formalized.



1 built Viewpoint at the Xerox Palo Alto Research Center in
the Cedar programming language [Swinehart] running on a
Dorado computer [Pier]. Viewpoint evolved through
experimental programming. It would have been impossible
to have planned the entire program in advance: So much of
what | learned happened during the writing of the program.
Because the program was small, I was able to try many
revisions. Because it was simple, it worked reliably.

I tested Viewpoint on dozens of people. I wrote a short
user's manual (see Appendix) that allowed a new user to
learn the system without any prompting from me. By seeing
where users got confused, | was able to make the user
interface easier to use. I went through a half dozen versions
of the cursor until I found one that was satisfying. | was
also to discover places where | had failed to adhere to strict
visibility. Patterns of use suggested what functionality to
add next. Ultimately, the program allowed me to practice a
new way of thinking about computer displays.

The primary result of Viewpoint is that a strictly visible
text and graphics editor is possible. The program itself
provides examples of techniques for implementing strict
visibility, such as pixel parsing, the cursor plane, and the
visual boot. ’ '

In addition, Viewpoint suggests research opportunities.
Along the lines of pixel-based systems there are pixel
parsing algorithms, hardware support for pixel operations,
and artificial visual languages for human-computer
interaction. More generally, there are editor-based systems,
alternate basis representations other than pixels, theory of
interactive systems, and interdisciplinary research in
computers and graphic design.
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Undergrad school

Graduate school

Metafont

Inversions

Computer languages

Visual programming

Thesis proposal

Programming

Thesis, draft

Thesis, final

26 History

1973

1979

1980

1981

1982

1983

1984

1985

1986

1987

Timeline

Computers, computer music, and computer graphics.
Visual thinking class with Robert McKim.

Basic graphic design class with Matt Kahn.

Met Doug Hofstadter.

BA in music, with studies in mathematics.

Wrote article on four-dimensional optical illusions.

Started as graduate student (Masters in CS) Fall 1979.

Gave Metafont demos.
Programming AMS-Euler font in Metafont.
Xerox PARC. Started as consultant.

Work with Richard Weyrauch on computational philosophy.
Wrote and produced Inversions book.

Viz Din (visual programming language discussion group
with Fred Lakin and Warren Robinett) started.

Started doing graphic design jobs.

Started interdisciplinary PhD.
Taught visual thinking.

_ Dave Siegel took over Euler.

July started work at Information Appliance.
August ATypl conference.

Wrote dissertation proposal.
Dropped idea of programming. Added idea of pixels.
Introduction of Apple Macintosh computer.

Lecture at Hewlett-Packard: the field of user interface
design and why it doesn't yet exist.

Learned to use Cedar programming environment at Xerox.
Wrote first draft of Viewpoint program.

Taught “Graphic Invention for User Interfaces” at Stanford
with William Verplank.
Wrote dissertation, draft 1.

Rewrote program to match writeup.

Revised theory.

Dissertation defense, including a videotaped demonstration
of Viewpoint.

Wrote final version of dissertation.



3 Demonstration

This chapter the Viewpoint program,
a text and graphics editor I built
as the core of my research.

— About the programming environment

— About the illustrations

— Actions: drawing, selecting, copying, typing
— The split brain

— The visual boot

— What happens if...?
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About the programming environment

Viewpoint was programmed in the Cedar programming
language, which lives in the Cedar programming .
environment built primarily for internal research at the
Xerox Palo Alto Research Center. 1 chose Cedar over the
other languages at Xerox—Interlisp-D and Smalltalk—
because only Cedar supported color graphics at the time.

Viewpoint runs on the Dorado, a powerful personal
computer also built for internal research at Xerox. The
Dorado comes equipped with a keyboard and three-button
mouse for input, a bitmapped black and white display and
optional color raster display for output.

Viewpoint uses the keyboard, mouse, and color display, but
not the black and white display. The color display is
configured to display 640 pixels across by 480 pixels down.
Each pixel may be one of 16 possible colors. The palette of
16 colors is chosen from a much larger range of displayable
colors.

Pixels are stored in a frame buffer. Viewpoint treats the 640
by 480 frame buffer as 64 across by 48 down ten-pixel by
ten-pixel “cells”. Cells are a software convention; the
physical hardware imposes no such restriction. Viewpoint
displays a light blue grid to make cell boundaries apparent
to the user. The grid includes the 36 pixels around the edge
of each cell. All grid lines except the outermost borders are
two pixels thick, one pixel for each of the neighboring celis.

Viewpoint treats the 16 colors as mixtures of four “color
planes™: black, red, green, and light blue, all against a white
background. Like cells, color planes are strictly a software
convention. Color mixtures were chosen to give the illusion
of transparency while keeping all colors distinct. For
instance, truly transparent red superimposed on black
would yield black in the subtractive model of color or red in
the additive mode; to keep the colors distinct, I've adjusted
the lightness of the composite color to pink.
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About the illustrations

To be able to follow a demonstration of Viewpoint, you
must be able to see each and every pixel. Therefore, I have
made the screen illustrations as large as possible. This
meant cutting the screen from the full 640 pixels across to
only 560 pixels across.

Color is a crucial element of Viewpoint. Unfortunately,
color is inconvenient to reproduce in publication.
Therefore, 1 have chosen the following substitutions.

Light blue is shown as very light gray. The only light blue
elements are the grid lines.

Green is shown as light gray. The only green element is a
single shaded cell called the “selection”. In the illustrations,
green obscures light blue. In the actual system, the colors
mix to produce different shades of blue-green.

Black is shown as black. Many elements are black, including
both text and graphics. In the illustrations, black obscures
green and light blue. In the actual system, the colors mix to
produce different shades of blue and green.

Red is shown as medium gray. The only red elements are the
cursor and rectangles called “key highlights® that show
which keys are down. In the illustrations, red obscures all
other colors. In the actual system, the colors mix to
produce different shades of red, purple, and orange.
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This is a typical Viewpoint screen. The pictures of the
keyboard and mouse in this illustration actually appear on
the screen, because they have been previously drawn by the
user. In fact, everything black was drawn by the user,
except for the triangle in the lower left corner. The arrow is
the cursor, which appears red on the screen. The gray
square is the selection, which appears green on the screen.
The pale gray lines show the boundaries of ten-pixel by ten-
pixel cells.
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In this illustration, the user has almost finished drawing a
diagram of a user and a processor communicating through
a bitmapped screen. During this demonstration, we will use
Viewpoint to finish the diagram. When we're done, the box
on the right will say, *is what the:computer gets™.
Throughout the demonstration, 1 will deliberately make
mistakes to bring out Viewpoint's more surprising
‘behaviors.
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Moving the mouse while holding the left mouse button
continues to draw black. Every cell can be drawn over, even
the image of the keyboard.

Notice that a circle appears inside the image of the left
mouse button when it is pressed. The circle is called the
“draw color”. A solid black circle means that we are drawing
black; a hollow circle means that we are drawing white. The
draw color is erased as soon as the left mouse button is
released.
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When the cursor points to a black cell, pressing the left
mouse button turns the cell white. Notice that a white circle
appears inside the image of the left mouse button to show
that we are drawing in white, not black. The draw color is
not just for the benefit of the user; it is also the way the
system itself remembers whether it is still drawing black or
drawing white.
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Moving the mouse while holding the left mouse button
continues to draw in the same color in which we started
drawing.

Here, we seem to have accidentally erased part of the
keyboard. Rather than repair the damage, however, we'll
leave it and see what happens.
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Selecting. Pressing the middle mouse button selects the cell
at the cursor. The currently selected cell is shaded green.
Selecting a cell causes the selected cell to be reproduced ten
times larger in a special area at the bottom left of the screen
called the “puffbox”.
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Every cell can be selected; no cell is sacred. Can you find the
cell shown magnified to the left in the image above?

Demonstration 37




3
wBe s o

7
S

ocessor

ik

5

1, )
e
IS I e
s - e -
v
- A oa 4
T -
-

38 Demonstration

Copying. Pressing the right mouse button copies the
selected cell to the cell at the cursor. For instance, we can
copy the top edge of a key to fix the break in the long

horizontal line.
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or to fix up the top edge of the monitor.
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42 Demonstration

Typing. So far, we have seen drawing, selecting, and
copying. The final action in Viewpoint is typing. Here, we
have positioned the cursor in preparation for typing the
phrase “Is what the computers gets.”
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Typing has the same effect as copying. Here, we have filled
in the missing s by copying from another sentence. We also
could have copied the s onto the keyboard, then typed the s
into place.
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Let's type the Del key to delete the extra e in seee. The Del
key, which is unmarked on the screen, is located in the
upper right corner of the keyboard.

This action messes up our drawing. Del moves all cells
to the right of the cursor left one cell and inserts a blank
cell at the end. In a real text editor, this probably would not
be a desirable effect. I've included this peculiar operation as
a reminder that there is no inherent difference between text
and graphics in Viewpoint. Everything can be treated as
text, even cells that were never typed.

-
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Since word wrap depends on the font, we can change its

behavior by editing the font. Here, we've copied a border
pattern onto the 8 key. ’
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Now, typing no longer causes word wrap at the edge of the
box but keeps laying down characters. Notice that the last
letter typed was s, which appears as a blank on the
keyboard.
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50 Demonstration

As before, we can fill in the missing s by copying a letter
from another sentence.



To make the next example more dramatic, I've copied the
two cells that make up the bridge of the processor’s nose
onto the /and O keys.

Typing works by overtyping rather than by inserting.
Let’s move the cursor to the beginning of the line and retype
computer gets as processor gets.
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52 Demonstration

We have just typed processor ge on top of computer get and
are about to type t on top of a previously copied s. So far so

good.



Typing the ¢ causes a surprising word wrap.

Since the previously copied s is not currently on the
keyboard, it is treated as a noncharacter and therefore
causes word wrap.

Since the cells that make up the bridge of the
processor’s nose are currently on the keyboard, they are
treated as characters, not as left margin. The new left
margin is at the user’s nose, which is not currently on the
keyboard.

Demonstration 53






The processor searches the screen for a key trigger and
finds a trigger on the image of the t key. The processor
assumes that the user will draw a trigger around only one
key at a time. If the processor finds no trigger, it assumes
that the last user action was a mouse move and searches
for the new cursor position.

The processor searches the red plane for a shape that
matches the cursor. From the cursor, it deduces the
location of the current cell, which it checks against the
keyboard to see whether it is a character.

If the current cell does not match any character on the
keyboard, then the processor must see if word wrap is
required. Word wrap occurs when: (1) the current cell is a
noncharacter, (2) the previous character is a character
other than a space, and (3) the string of adjacent characters
preceding the current cell includes a space character. If
condition 2 or 3 is not met, then the newly typed character
is placed at the beginning of the next line without wrapping
any characters. This is called “character wrap”.

The string of characters before the current cell and after the
previous space character is called the “wrapped word".
When word wrap occurs, the processor first erases the
wrapped word from original position.
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56 Demonstration

Then, the processor scans for the beginning of the next line.
Here is the exact procedure. First, the processor scans left
to find the first noncharacter.

Next, the processor retypes the wrapped word one
character at a time starting at the new left margin. Typing
proceeds exactly as if the user had done the typing, except
that keys are not highlighted. If the new line is not long
enough for the wrapped word, character wrap will occur.

After wrapping the wrapped word, the processor draws the
newly typed character.

Finally, the processor redraws the cursor at the new
position. Notice that both user and processor can redraw
the cursor. This strategy makes sense only for a relative
positioning device, such as a mouse, since an absolute
positioning device, such as a tablet, must maintain a fixed
relation between pen position and screen position.

irar
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The processor erases the interlock next to its name and
redraws the interlock next to the user's name, handing
control back to the user agent. Which interlock belongs to
which agent is determined solely through position. The
labels are strictly for the benefit of the (human) user.

Seeing the interlock next to its name, the user agent wakes
up and waits for the user to act.

If the user acts next by releasing the t key, then the user
agent responds by erasing the key highlight to show that
the key is now up, but leaving the the key trigger to show
that the key just went up. The key trigger allows the
processor to detect that a key just went up.

If the user acts next by moving the mouse, then the user
agent responds by erasing the key trigger to show that the ¢
no longer just went down, erasing the old cursor, and
redrawing the new cursor. The absence of a key trigger
alerts the processor that the last action was a mouse move.
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58 Demonstration

The visual boot. When I first built Viewpoint, I started with
an empty screen: only a grid, a cursor, a selection, and an
interlock. How did I build up the rest of the screen? Since the
behavior of Viewpoint depends on the content of the frame
buffer, and the content of the frame buffer depends on the
user’s actions, drawing the first screen is a tangled process
similar to bootstrapping. Here is one way to perform a
“visual boot".
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, revealing the location of the puffbox.

Select the cell
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What happens if...? Now, we will explore edges of the
system where rules threaten to break down. What happens
if we type off the edge of the screen? The cursor simply
wraps to the beginning of the next line. When typing reaches
the bottom of the screen, it wraps back to the top. If the
cursor were to fall off the edge of the screen, then the
cursor position would be undefined.



What happens if we draw on a cell that contains both black
and white pixels? One possibility would be for the cell to be
complemented: White pixels turn black and black pixels turn
white. 1 have chosen a different rule: Any cell that contains
at least one white pixel is considered a white cell and
therefore turned all black.
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What happens if we draw over the selection? The selection is
mapped back to the puffbox at the end of every action;
consequently, the puffbox always reflects the current state
of the selection. Another possibility would be for the
puffbox to be updated only when the middle mouse button
was pressed.
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What happens if we draw over a key border? Nothing special
happens— the key borders, like the interlock labels, are
strictly for the benefit of the user. The agents do not rely on
the key borders in order to locate the keys. Another
possibility would be for the agents to look for the key
borders in order to determine the locations of the keys.
Redrawing the key borders would relocate the key images.
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84 Implementation

Purpose: visibility

What is the program for?

Decisions. The purpose of the Viewpoint program is to
study visibility. My priorities for the program were, first, to
satisfy visibility, sec,ond, to satisfy the stricter condition
of input visibility, third to communicate clearly to the user
(comprehensibility), and fourth, to be able to perform
interesting tasks (functionality).

Reasons. I chose to study visibility because it is a key
requirement for a computer that supports visual thinking. I
pursued visibility in its strictest form to discover its limits.

I emphasized the theoretical goal of visibility over the
practical goals of comprehensibility and functionality to
keep the focus on principles. If my main goal had been ease
of use or speed of execution, theoretical principles would
have been swamped by practical compromises.

I used comprehensibility to balance visibility. After |
had designed an object to be logically deducible by the
computer, | tested it to make sure that it was visually
comprehensible to the user. Many objects, such as the
cursor and key highlights, went through many graphic
revisions. On the other hand, I did not try to be thorough;
graphic design is only intended to be adequate.

I adjusted the level of functionality freely to keep it
challenging, but not unmanageable. For instance, I chose a
form of word wrap that was simple to implement and rich
enough to illustrate interesting issues. In conventional
software design, functionality is usually the driving force.

1 studied visibility by building an actual program rather
than by imagining an abstract theory because user interface
ideas must be experienced to be understood. Writing a
program forced me to make my ideas precise. It also
allowed me to explore many variations on visibility and to
experience the consequences of each variation.

Alternatives. Visibility uses the frame buffer as the
primary representation of system state. Other possible
primary representations include a string of characters as in
a text editor, a tree as in Lisp, an array as in the
programming language APL, or the state of input devices.

Viewpoint encodes the entire state of the system in a
single screenful of information. Alternatively, I could allow
a frame buffer larger than the screen, only part of which
would be visible at any one time.

Other ways to study study visibility besides building a
program include analyzing existing software, exploring
many visualizations of a single object, or finding ways to
visualize difficult concepts.
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Behavior: graphics, text and font editing

What does the program do?

Decisions. Viewpoint behaves as a pixel-oriented
graphics editor, an overtyping text editor, and a fixed-width
font editor. An editor allows objects of a certain sort to be
created and modified conveniently. A graphics editor acts
on arrays of pixels. A text editor acts on strings of
characters. A font editor acts on arrays of pixels associated
with characters.

Reasons. [ originally wanted Viewpoint to behave as a
programming language. I implemented an editor instead
because ] realized that from the user's point of view, editing
is more basic than programming: To program you must
first use an editor. As it turned out, implementing an editor
presented more than enough challenges to keep me busy.

Graphics editing is the foundation of Viewpoint because
it is the most general type of editing in a frame buffer. Once
I had built a graphics editor, I was able to use Viewpoint
itself to mock up future versions of itself.

1 added text editing because integrating text and
graphics presents interesting difficulties. Most so-called
integrated systems treat text and graphics as distinct forms
of data. Viewpoint takes a different approach, treating text
as a kind of graphics.

I added font editing in response to the need for a font to
use with the text editor. At first, I considered creating the
font by writing programs. Then I realized it would be easier
and more in keeping with the spirit of the project to use the
graphics editor | had already built. After all, a font is justa
special kind of graphics.

Alternatives. The behavior of Viewpoint is neither as
simple nor as powerful as it could be.

On the one hand a simpler system would be better for
exploring definitions of fundamental user interface
concepts. Even simpler than editing is direct action. In
Viewpoint, direct action appears in the representation of
user input. It took me many years to accurately portray the
state of the input devices. Viewpoint contains many such
microexperiments. Each could be a project in itself.

On the other hand, a more powerful system would be
better for studying conventional computer science issues. I
originally wanted Viewpoint to be able to handle complex
graphic structures, such as polygons and spline curves,
which would raise parsing issues similar to those in
compiler design. | also thought about a pixel-based

programming language, which would raise issues of
machine architecture.
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Objects & actions: draw, select, copy, type

What objects exist in the system and how does the user
manipulate them?

Decisions. Objects include the cursor, key highlights,
key triggers, selection, puffbox, font, text, ink color, and
grid. Actions include drawing, selecting, copying, and
typing. Each action is associated with a different key or set
of keys: drawing with the left mouse button, selecting with
the middle mouse button, copying with the right mouse
button, and typing with the keyboard keys.

Reasons. Actions implement the desired behaviors of
graphics, text, and font editing. For ease of implementation,
as well as ease of use, all actions are essentially modeless;
any action may be performed at any time, even during the
middle of another action.

The details of each action were worked out to
demonstrate a range of problems: Drawing demonstrates
modes, selecting demonstrates parallel representations,
copying demonstrates multiplication of effort, and typing
demonstrates pixel parsing. Together, the actions
demonstrate the equivalence of drawing and typing: Typing
a character has the same effect as copying a keyboard cell.

Drawing acts on cells rather than pixels because
individual pixels are too small to see accurately. The one-
button draw command, borrowed from MacPaint, was
chosen for simplicity and because it required a mode.

Objects were designed to go with the actions. Details are
described in the rest of this chapter. I left some objects,
such as the key borders, so they could easily be accidentally
erased to make the point that everything on the screen is
just pixels. In a practical system, 1 would probably protect
such objects.

Alternatives. The three-button mouse proved
frustrating, as | expected. Users frequently hit the wrong
button, even after extended use. | tried a one-button mouse
plus held-down keyboard keys, but this proved even more
confusing. Other possibilities include adding a tool palette
and changing cursor shape to show state.

The draw command could be replaced by the copy
command plus two fixed cells, one all white and one all
black.

The copy command could cause the selection to move in
parallel with the cursor. This would allow large areas to be
copied easily, even though the selection covered only a
single cell.
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Encoding: color, position, shape, structure

How are objects encoded visually so they can be
unambiguously recognized?

Decisions. Objects are encoded first by color (look only
at certain values), second by position (look only at certain
locations), third by shape (match against a particular pixel
pattern), and fourth by structure (parse the frame buffer to
extract information). For instance, the ink color is
recognized by filtering out all but the black plane, looking
at pixels inside the image of the left mouse button, and
comparing them against a solid and a hollow circle.

Every object is one of four colors: red, green, black, or
blue. Colors are arranged in parallel planes in the frame
buffer. Overlapping colors on the screen mix to give the
illusion of transparency. Positions align with a grid of ten
by ten-pixel cells, delimited by blue lines. The contents of a
cell refers to the black pixels in the cell.

Reasons. Objects demonstrate a range of encoding
techniques from simple (color) to complex (structure).

Color planes allow objects to overlap while remaining
visibly distinct. This ability is essential for objects, such as
the cursor, that use position to convey information. Color
mixtures were chosen to give the illusion of transparency.
Simple additive or subtractive color mixing yielded colors
that were not distinct, so I adjusted intensity to increase
contrast and biased hue toward the plane with higher
priority: red first, green second, black third, and blue last.

Cells simplify the parsing problem, especially for text,
since object boundaries are never in question. Square cells
allow cell proportions in the puffbox to mimic pixel
proportions in the selection. The need for color and square
pixels helped determine my choice of the Cedar
programming environment.

Alternatives. Each object in Viewpoint can be shown
many different ways. For instance, keyboard state could be
shown as a list of key names, and the cursor could be shown
as crosshairs or numerical coordinates.

We could limit Viewpoint to black and white or a smaller
screen. Alternatively, we could add new attributes such as
animation, interactivity (wiggle the mouse to find the
cursor), and alternate input devices (different devices for
different objects). Finally, we could add graphic objects that
require complex visual parsing to be understood.

Changing the application changes which encoding
techniques are appropriate. For instance, a cursor in a color
painting system cannot be uniquely identified by color, so
must use another attribute, such as blinking.
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92 Implementation

Font

How is the current font shown?

Decisions. The font is shown as part of a picture of the
keyboard that appears on the screen. Each key image that
corresponds to a printing character is composed of exactly
two cells. Key images that do not correspond to printing
keys may be any size. The upper cell shows the image of the
appropriate uppercase character; the lower cell shows the
image of the appropriate lowercase character. Every
character image occupies exactly one cell.

The one exception is the space character. The Spacebar
appears as a rectangle many cells wide and only one cell
high, to match the the shape of the actual spacebar. The
left-most cell in the space key image defines the current
space character image. There is no separate uppercase
space character.

Reasons. Showing the font as part of the keyboard
image was a natural consequence of the decision to show
key state in terms of a picture of the keyboard. Once I had
built the graphic editing portion of Viewpoint, the easiest
way to define the font was to use Viewpoint itself to draw
the character images, rather than program the bitmaps in
the Cedar programming language. The keyboard image was
inspired by active keyboard diagrams on the Xerox Star and
Apple Macintosh.

Alternatives. The simplest alternative would be not to
show the font at all. If the font were fixed, this would not
violate visibility. Another alternative would be to separate
the font and the keyboard images. Perhaps the font would
appear twice, once in keyboard order and once in ASCII
order. Editing either representation would automatically
update the other.

Going the other direction, we could merge the keyboard
image and the actual keyboard by turning the screen into a
touch screen and throwing out the keyboard. Or we could

,add little displays to the top of each keytop and throw out
the display.

Showing the font on the keyboard revealed to me that
conventional keyboards are labeled inconsistently—letter
keys show only uppercase letters whereas number and
symbol cases show both lower and uppercase forms.

Other variations on the font include characters that do
not have to be aligned with the grid, variable pitch fonts,
multiple font styles, multiple fonts, and rotated fonts. With
each new font variation, the problem of parsing characters
becomes harder.
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Text

What forms of structured graphics require pixel parsing to
recognize their structure?

Decisions. Text is the representative form of
structured graphics in Viewpoint. The structure of text is
revealed by word wrap, which occurs when the user types a
word that will not fit on the current line. To wrap text
requires pixel parsing to recognize the beginning and end of
the current text line, the beginning of the next text line, and
breaks between words.

Reasons. All objects in Viewpoint require pixel parsing
to be recognized. Some objects, however, are easier to
recognize than others. Key highlights, key triggers, the
puffbox, font, interlock, and ink color require only table
lookup with a bit of filtering. The cursor and selection
require only simple search.

Word wrap was included in Viewpoint to demonstrate
nontrivial pixel parsing. Recognizing line endings and word
breaks requires scanning cells and comparing them against
the current font. By redefining the font, the user can vary
the interpretation of a line of text.

Since full word wrap is rather complicated, I chose the
form of word wrap that was simplest to implement. Word
wrap in Viewpoint works only in the forward direction.
Forward word wrap would not be practical in a real system,
but it is adequate to raise issues.

Alternatives. | originally wanted to show margins, tab
settings and other structural information in a separate
plane. The “structure” plane would be light blue, by analogy
with layout grids used in publication design. Only the image
plane would be directly editable. To edit the structure plane,
the user would first interchange the image and structure
planes. This interchange would show clearly that graphics
can serve either as data to be edited or as structure to alter
the interpretation of data. In the current system, the image
plane serves as data, and the cursor and selection planes
serve as structure.

An obvious next step would be to implement full word
wrap. Other text operations that require pixel parsing
include dynamic font editing (when a character is edited, all
instances change simultaneously), printing (which requires
recognizing which character is which), searching, and
compiling. Beyond text are structured graphic objects such
as lines, rectangles, connected regions, and curves.
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Ink color

How is the color currently being drawn by the Draw
command indicated?

Decisions. When the Draw button is first pressed, a
special symbol called the “ink color” is drawn inside the
Draw button image to remember which color is being
drawn. If the Draw command is drawing black, the ink color
looks like a solid circle; if the Draw command is drawing
white, the ink color looks like a hollow circle.

When the Draw button is still being held down but has

- not just been pressed, the processor agent checks a

particular pixel near the middle of the ink color to
determine which color to draw.

Reasons. The ink color is positioned inside the key
associated with drawing. The ink color represents color
information as itself.

As with the interlock, making the ink color black raises
the danger that it will be overwritten by a draw or copy
operation. The ink color solves the self-reference problem
by making sure that overwriting it never alters its meaning:
A white ink color can be overwritten only by a white cell and
a black ink color can be overwritten only by a black cell.
Since the Draw command checks only a single pixel near the
center of the ink color, overwriting the cell never changes
its meaning.

The hollow circle was chosen to be simple and distinct
from other objects. For instance, a solid black or white cell
would have been simpler, but easily confused with a cell
drawn by the Draw command. In general, 1 chose object
shapes that could be differentiated even without color,
since | found that people find it hard to associate meaning
with color alone.

Alternatives. As with key triggers, it took many
months to realize that I needed to display the ink color.

The other likely place to display the ink color is the
cursor. In general, the cursor is a good place to display
mode information since it is always at the center of the
user's visual field. I decided against this operation because
the cursor was red and I wanted to represent color literally.
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s How is the current agent controlling the screen indicated?
‘}‘% Decisions. A triangle in the lower left corner of the
screen called the “interlock” jumps back and forth between
two cells to indicate one of two states. At all times, one of
the two cells will be blank and the other will contain the
triangle. The names of the two agents—“user” and
*processor"—appear to the right of the two interlock cells.

Reasons. Making the interlock black raises the danger
that it will be overwritten by a Draw or Copy operation. If
for some reason the interlock is erased, the system will
freeze since neither the user nor processor can proceed.
Changing the interlock to another color, as I did with the
cursor and selection, would avoid the problem altogether.

I chose to make the interlock black to demonstrate a
monochromatic solution to the disambiguation problem. At
the end of every action Viewpoint rewrites the black planes
of both interlock cells. Thus if the user attempts to draw a
black square on top of one of the interlock cells, it is
immediately overwritten by either a blank cell or a triangle
before the offending black cell can cause confusion. In
effect, a region of the image plane is declared off-limits to
editing operations. So instead of a reserving a color for
special interpretation, [ have reserved a region.

The appearance of the interlock was chosen for two
reasons: The triangle occupies only a single cell and is thus
minimally distracting when it bounces back and forth, and
the presence of both names clearly shows the range of
possible states even when only one is active.

Alternatives. The interlock is similar to semaphores
used in concurrent programming to synchronize parallel
processes [Brinch Hansen]. Alternatives to the interlock
include mechanisms similar to other process
synchronization methods. In particular, reserved regions
are similar to windows. In a typical multi-tasking window
environment, collisions are avoided by allowing only one
process at a time to control a given window. Windows are
related to modes in that the interpretation of user action
varies according to which window the-cursor is in. As Larry
Tesler says, “a window is a mode in sheep's clothing.”
[Tesler 1981]
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Grid

How are cell boundaries indicated?

Decisions. Cell boundaries are shown by light blue lines
along the border of each cell. The grid never changes; it is
strictly for the benefit of the user.

Reasons. The grid is needed only by the user; the
computer locates cell boundaries by counting pixels. If
Viewpoint did not display the grid, the system would still be
technically visible. 1 added the grid to satisfy
comprehensibility.

The grid was designed to complement the cursor.
Together, the red arrow cursor and the blue grid indicate
the current cell.

I chose the light blue color because it is visually
unobtrusive. Graph paper often uses a similar color for the
same reason.

Alternatives. Since the grid is constant it could easily
be moved out of computer memory and onto a physical
overlay on the display surface.

If the grid had a moveable origin, then the computer
would need to be able to see the grid in memory. Shifting
the grid would have drastic effects on the definition of the
font. Similarly, a grid with changeable cell size would have a
drastic effect on the puffbox.

By giving the cursor, selection, image, and grid each its
own plane, | realized that the roles are potentially
interchangeable. The cursor need not be small nor must it
cohere as a single rigidly moving object. In general, a
cursor, a selection or a grid may be any image at all. .

Here's a somewhat absurd example: Imagine that the
cursor is an entire page of text and the image is a single
arrow in the middle of the screen. Moving the cursor slides
the text over the arrow. Typing a key causes the appearance
of the cursor to change at the point marked by the image.
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Inner workings

How are objects and actions represented internally?
Decisions. Externally, Viewpoint behaves as if the
frame buffer is the sole representation of the system state.
Internally, Viewpoint uses auxiliary variables to cache

many aspects of system state.

The following objects are cached: the current key action
(down or up), the key that just went up or down (if any), the
state of all keys (down or up), the current and previous
cursor positions, the ink color, and the current and
previous selection position.

Reasons. Ideally, Viewpoint would never use any
auxiliary variables. Unfortunately, current computer
architectures do not support fast operations on large
groups of pixels. Consequently, when I implemented
portions of Viewpoint without caching, the system was
prohibitively slow.

Redrawing the cursor, for instance, would ideally be
implemented by locating the cursor, erasing it, then
drawing the new cursor. Unfortunately locating the cursor
in the red plane is prohibitively slow. Caching the previous
cursor position allows Viewpoint to operate more
efficiently since the program does not have to parse the
screen to infer cursor position.

1 have allowed cached variables because they do not
compromise the external behavior of the system. Every
cached variable either can be parsed from the screen or is
logically unnecessary. The key and cursor variables repeat
information present in the red plane. The previous cursor
and selection position variables accelerate erasing old
cursor and selection before drawing the new. The ink color
variable accelerates inferring the current ink color during a
Draw operation.

The other implementation compromise has already
been mentioned in connection with the cursor. Viewpoint is
implemented as if mouse input were reported in x,y
increments rather than absolute x,y coordinates. The
illusion works as long as the user doesn't type fast.

Alternatives. Cached variables can also be used to
accelerate text operations: For every cell, Viewpoint could
cache the name of the character whose image matches its
current contents. Since the current implementation of
Viewpoint often bypasses the frame buffer as the primary
representation of state, there is always the risk I have
missed something. Now that I have found faster algorithms,
] suspect that the entire system could be implemented
purely without sacrificing performance.
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5 Theory

To verify that Viewpoint satisfies visibility,
‘I needed a formal theory of interactive systems.
Since none existed, I built my own.

— The need for formal definitions
— A model of interactive systems
— Visibility

— Modeling Viewpoint

— Verifying visibility
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The need for formal theory

Computers have been formalized; human-computer
interaction has not. Books on user interface design offer
metaphors and slogans, but few definitions [Heckel].
Metaphors are useful, but without formal definitions, the
field of user interface design lacks a foundation for
systematic research.

Consider modes. A mode is an invisible program state
that changes the interpretation of user actions. For instance
some text editors have overwrite and insert modes.
Suppose the cursor is on the /in modl. If the editor is in
overwrite mode, typing an e changes modl to mode. If the
editor is in insert mode, typing an e changes modl to model.
To predict the outcome, the user must keep track of the
current mode.

Larry Tesler compiled a definition of “mode” by
conducting an informal survey at Xerox PARC.

A mode of an interactive computer system is a state of the
user interface that lasts for a period of time, is not associated
with any particular object, and has no role other than to place
an interpretation on operator input [Tesler 1981].

Tesler's definition is often quoted as the authoritative
definition of “mode”. Even so, it fails cursory inspection,
since the terms “interactive computer system”, “state”, “user
interface”, “period of time", “associated”, “object”,
*interpretation”, and “operator input” remain undefined.

Imprecise definitions make for futile conversations. Are
modes bad? The question is meaningless until people agree
on the definitions of “mode”.

Inconsistent definitions lead to inconsistent design.
Suppose a system is required to be modeless. One way to
avoid modes is to require that the user hold down a special
key to indicate the current state. Some people would call the
hold-down key a mode. Others would disagree. Unless
everyone agrees on what a mode is, the system may be
implemented inconsistently.

Finally, imprecise definitions lead to sloppy thinking.
The opposite of modality is modelessness. Modelessness is
often characterized as “the same action always causes the
same result.” But this is not the logical opposite of modality.
Between modality and modelessness is a third possibility: In
a system that behaves randomly, the same action does not
always cause the same result, but the link between action
and result is not governed by a mode. Thus modelessness is
poorly named.



To build a formal model of human-computer interaction, it
is helpful to look at existing models of computers, humans
interacting with computers, and interactive systems.

The best known formal model of computers is the
Turing machine [Manna]. The Turing machine reduces the
computer to a tape on which are written symbols, a tape
head that can read or write from the tape, and a program
that tells the tape head which symbols to write and which
way to move. The Turing machine was developed for
verifying the computability of mathematical functions.
Turing machines are closed systems that exclude input and
output and therefore don't model interactive systems.

Models of interactive systems first arise in the
verification of concurrently executed programs [Hoare). In
such systems, interaction occurs between program
modules, not necessarily between the program and the user.
Models of interaction also arise in the use of temporal logic
to analyze reactive systems such as process controllers and
text editors. Both concurrent programming and temporal
logic models of computation are concerned with program
correctness and are therefore inappropriate for studying
- human-computer interaction issues.

Models of the psychology of humans interacting with
computers have been developed by Norman [Norman] and
by Card, Moran, and Newell [Card]. Such models do not
account for the computer's side of the interaction.

William Newman has developed a rough model of the
structure of computers interacting with humans [Newman].
Gene Ciccarelli has developed a more formal model of user
interfaces that carefully distinguishes the data base
describing the data itself and the data base describing the
visual presentation of the data [Ciccarelli). Both models are
useful but assume too many of the particulars of current
computers to serve as clean theoretical foundations.

In mechanical engineering, control theory models
formal properties of tightly coupled human-machine
systems, such as a person balancing a stick on one finger.
Control theory defines formal properties such as
controllability and observability but applies only to
continuous mechanical systems modeled by differential
equations, not discrete symbolic systems modeled by
algorithms.
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A model of interactive systems

To give Viewpoint a theoretical foundation, I built a formal
model of interactive computational systems. The model
focuses exclusively on processor state changes and does
not attempt to describe user psychology.

A location l is an undefined term. Locations model
storage cells in a computer, including both memory cells
and registers. A set of locations is notated as L.

A value v is an undefined term. Values model the
possible contents of a memory location, for instance, 0 and
1. A set of values is notated as V.

A state s: L — Vis defined to be a function that
associates a value vin V for each location /in L. State
models the instantaneous contents of all memory locations
in a computer. A set of states is notated as S.

An input i is an undefined term. Inputs model possible
user actions such as key presses or mouse moves. A set of
inputs is notated as L .

An action a: S x L — L is an ordered set that associates a
state and an input with another state, where both states are
defined over the same domain and range. A set of actions is
notated as A.

A machine m is an ordered set [L, V, S, I, A] of locations,
values, states, inputs and actions with states s in S defined
over L and V such that A forms a function with domain /S, I}
and range [S]. Notice that S does not necessarily include
every possible assignment of values in V to locations in L
States not in S are called “illegal” states.

This model makes several simplifying assumptions:

e State is consolidated. In contrast a Turing machine
distributes state among the tape, the tape head, and the
program.

o Every input is possible at every state.

s State transitions do not depend on time. Time can be
modeled by including a clock pulse in the input.



We may visualize a machine as an “interaction diagram” —a
labeled directed graph in which states are nodes and actions
are edges. Each edge is labeled with an input. Each node has
exactly one exiting edge for each input.

For example, a light switch may be visualized as an
interaction diagram with two states, on and off. Each state
has exactly one exiting edge leading to the other state.
Notice that a conventional, two-position light switch
contains redundant information—you can't turn on a light
that is already on. Since only one action is possible at each
state, a simpler trigger button would suffice. The
redundancy allows the user to always perform the same
action to get the same result, without having to first check
the current state of the light bulb.

For the purposes of an interaction diagram, the internal
structure of a state does not matter. Therefore we may
drop the concepts of location and value. We are interested
only in whether two states are the same.

Interaction diagrams are similar to the finite state
automata known as “synchronous sequential machines.”
[Kohavi] A synchronous sequential machine includes a set /
of inputs, a set O of outputs, a set S of states, a state
transition function 9: I x $ — S mapping an input and a state
to another state, and an output function A that gives the
current output. .

There are two types of synchronous sequential
machines. In a Mealy machine the output function A: I x S -
O depends on both the current input and the current state.
In a Moore machine, the output function A: § - Odepends
only on the current state.

Mealy machines and Moore machines are logically
equivalent. To convert a Mealy machine into a Moore
machine, simply fold the current input into the state,
multiplying the number of distinct states by the number of
possible inputs. This is essentially what we have done in
Viewpoint. To make Viewpoint a Moore machine, we have
included the input (keyboard or mouse input) as part of the
state (frame buffer).
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Visibility

The formal model suggests a theory of interactive systems.
We will develop only the part of the theory relevant to
Viewpoint: visibility.

A system is ‘“visible" if it behaves as if the state of the
frame buffer is the entire state of the system. In other
words, the next frame buffer state is entirely determined by.
the current frame buffer state and the current input. Notice
that information that never changes does not have to be
present in the frame buffer, since it is never necessary for
determining the next frame buffer state. Only information
that changes must be present.

Visibility is the logical extreme of direct manipulation.
Direct manipulation systems give the illusion that the
pictures on the screen are the objects being manipulated. In
a visible system the illusion is perfect—the frame buffer
always shows the complete situation. .

In practice, strict visibility is neither practical nor
desirable. Usually there is more information than will fit on
a single display. Even when all the information would fit on
the screen, it is often better to show only facts relevant to
the immediate situation. A little ambiguity may be better
than visual clutter. Finally, a single frame buffer is not the
only way to show system state to the user: Blinking cursors
use motion, pop-up menus use interactivity, and alert beeps
use sound. The only perfectly visible systems are video
games that tailor their world to fit on a single screen.

A system is “comprehensible” if the screen is at all times
understandable to the user. Comprehensibility is not a
formally provable condition but is important to mention in
connection with visibility: Visibility alone does not
guarantee comprehensibility since a memory dump to the
screen is sufficient to satisfy visibility.

We assume that values stored at each location in the
frame buffer are mapped to colors of corresponding pixels
on the screen according to a fixed color map so that there is
a close correspondence between frame buffer and screen.
We will often speak of the frame buffer and screen as if they
were the same, but it is important to realize that they are
distinct—the computer does see the screen, and the user
does not see the frame buffer.



Viewpoint is built to satisfy a stricter form of visibility
called, “input visibility”. A system is “input visible™ if it is
visible and the previous input is derivable from the current
state. I pushed Viewpoint to satisfy input visibility because
I wanted to explore visibility in its most extreme form.

Input visibility permits a program architecture called
the “split brain”. In such a system, two simultaneously
executing programs, the input program and the processor
program, communijcate with each other solely through the
frame buffer. First, the input program reads the current
frame buffer and input devices and writes a special
intermediate frame buffer. Then, the processor program
reads the intermediate frame buffer (but not the input
devices) and writes the next frame buffer.

To avoid collisions, the two programs must agree on
special ways of using the frame buffer. In Viewpoint, the
input and processor programs write prearranged symbols
to particular locations to give the other program
permission to proceed. Another solution is to divide the
frame buffer into separate regions, each of which can be
changed only by a particular program. These solutions are
similar to devices used to coordinate concurrent programs.

To verify that Viewpoint satisfies visibility, we must be
able to construct a program that reads the current frame
buffer and user input and then writes the next frame buffer.
If Viewpoint were actually implemented this way, the
program itself would constitute a proof. Since it is not, we
must take another approach.

We will verify visibility in three steps. First, we will
describe Viewpoint in terms of the formal model of
interactive computational systems. Next, we will determine
what information the program must be able to deduce from
the frame buffer. Finally, we will show that all such
information is unambiguously represented in the frame
buffer at all times. To verify input visibility, we will show
that the previous input is unambiguously represented in the
frame buffer at all times. This will suffice to prove that an
explicit frame buffer processing program could be written.
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Modeling Viewpoint

Recall that a machine is defined as a collection of locations,
values, states, inputs, and actions. In Viewpoint, these
correspond to the following elements.

Locations correspond to pixels in the frame buffer.
There are 640x480 = 307,200 different pixel locations.

Values correspond to colors a pixel may be assigned.
There are 24=16 different color values, each a mixture of 4
basic colors: black, red, green and blue.

A state assigns each pixel in the frame buffer a color.

An input includes the current state (up or down) of all
keys on the keyboard and mouse, and either the name of the
key that just changed state or the current mouse motion.
We assume that input occurs only when the last action was
either a press or release of a single key, or a mouse move. If
the user presses or releases several keys in a row, they are
registered as separate inputs.

Key states and key transitions reflect two different uses
of keys: as indicators that remain active as long as they are
held down and as triggers that fire the moment they are
pressed or released. All keys are treated the same way:
Logically, the mouse buttons are considered part of the
keyboard; any key can act as a Shift key. Since input tells us
the current state of all keys, we can deduce whether the key
that just changed state just went down or just went up.

Mouse input is given as a pair of relative coordinates
that measure the distance between the previous mouse
position and the current. To determine the next cursor
position, the coordinates are added to the current cursor
position as deduced from the frame buffer.

Actions are implemented by a program that transforms
a state and an input into another state. For the purposes of
analysis, we may consider that all actions are handled by a
single action program.

To show that Viewpoint satisfies visibility, we must find
out what information the program must deduce from the
frame buffer. The table shown opposite lists the
information the action program reads (sees) and writes
(draws) at each step. For Viewpoint to be visible, the
information read at each step must either be deduced from
the frame buffer or be unchanging.



ACTION

STEPS

SEES

DRAWS

Main program

see interlock
if interlock = user then
do User program
if interlock = pracessor then
do Processor program
erase current interlock
draw other interlock

interlock

interlock
interlock

User program

see current cursor position
erase key highlights

cursor

key highlights

erase key triggers key triggers
erase cursor cursor
draw highlights for all keys down key highlights
draw trigger for key that just changed key trigger
draw new cursor cursor
Processor do Type, Draw, Select and Copy
program map selection back to puffbox selection, cells puffbox
Type if CR key just went down then key trigger
move cursor to start of next line cells, font, cursor cursor
if BS key just went down then key trigger
move cursor to previous cell cells, font, cursor cursor
if printing key just went down then key trigger
if cursor on nonchar then cells, font
word wrap if necessary cells, font, cursor cells, cursor
type character cells, font, cursor
key highlights
move cursor to next cell cursor cursor
Draw if left mouse button just went down key trigger
see color of current cell cursor, cells
draw current cell pen color cursor cells
draw ink color ink color
else if left mouse button down then key highlight
draw current cell ink color ink color, cursor cells
if current cell is in puffbox cursor, puffbox
map puffbox to selection puffbox, selection cells
Select if middle mouse button down then key highlight
draw current cell select color current loc
Copy if right mouse button down then key highlight
copy selection to current cell selection, cursor cells
if current cell is in puffbox cursor, puffbox
map puffbox to selection puffbox, selection cells
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Verifying visibility

To verify visibility we must verify that all information read
by the action program can be deduced unambiguously from
the frame buffer. We must check three items. (1) Encoding:
All information is encoded in pixels. (2) Assumptions: Any
conditions the encoding assumes remain true at all times.
(3) Visibility: The encoding remains unambiguous at all
times.

The problem of encoding information in an array of
pixels is similar to the problem of encoding information in a
string of characters. Programming languages use
conventions of punctuation, reserved words, and word
order to achieve unambiguous syntax. Similarly, Viewpoint
uses conventions of color, position, and shape to achieve
unambiguous graphic syntax. Many graphic encoding
techniques are possible. Viewpoint uses only the simplest
techniques.

In the discussion below, the “contents” of a cell refers to
the values in the black plane of the cell. :

Grid

Encoding: blue. Used only by user. Not used by program.
Assumptions: Never changed.
Visibility: Nothing else is blue.

Selection

Encoding: green, shape. Specifies a particular cell.

Assumptions: There is exactly one selection, drawn as a solid green
cell.

Visibility: Nothing else is green.

Key highlight

Encoding: red, position. Specifies a keyboard or mouse key.
Assumptions: Each key has a fixed key highlight pattern.
Visibility: Daesn't overlap key trigger, not hidden by cursor.

Key trigger

Encoding: red, position. Specifies a keyboard or mouse key.
Assumptions: There {s at most one key trigger. Each key has a fixed
pattern for its key trigger.

Visibility: Doesn't overlap key highlights, not hidden by cursor.

Cursor

Encoding: red, shape. The arrow tip specifies a pixel.
Assumptions: There is exactly one cursor, drawn as a red arrow
clipped to the frame buffer area.

Visibility: Shape is unambiguous even when overlapping key
highlights or triggers.
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Cells* Encoding: black. Encodes “data”, including both text and graphics.
Assumptions: None.
Visibility: There is no inherent distinction between text and
graphics. The interpretation is determined by the operation being
performed.

Interlock Encoding: black, position, shape. Encodes which program is
currently running: the user or the processor.
Assumptions: There are two interlock cells, one of which contains
no black pixels and the other of which contains a black triangle of
fixed shape.
Visibility: The interlock is redrawn after each action.

Font Encoding: black, position. Encodes a ten by ten image of black and
white pixels for each printing character on the keyboard.
Assumptions: Each printing character has a fixed cell that
specifies the corresponding character image. Printing characters
include uppercase and lowercase letters, numbers, symbols, and
the space character.
Visibility: No ambiguity possible.

Puffbox Encading: black, position. A magnified view of the contents of the
selection.
Assumptions: The puffbox is ten cells by ten cells in size, and
occupies a fixed position. Each cell in the puffbox is all white or
all black in its black plane. A black cell in the puffbox
corresponds with a black pixel in the selection; a white cell
corresponds with a white pixel in the selection.
Visibility: The contents of the puffbox is made to correspond to
the contents of the selection at the end of every processor action.
User actions do not affect the contents of either the puffbox or
selection.

Ink color Encoding: black, position. Specifies the color (black or white)
currently being drawn.
Assumptions: The ink color is a fixed cell. While the left mouse
button is held down, the ink color remembers the color drawn
when the left mouse button was first pressed. Color is determined
by looking at the color of a particular pixel in the ink color cell.
Visibility: When the left mouse button is first pressed, the ink
color is drawn correctly. While the left mouse button is held down,
the only color that can be drawn on top of the ink color is the
same color it is already drawn as.

* Pieces of information encoded in the black plane occupy fixed positions that do not
overlap with one another and therefore cannot interfere with one another.
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6 Opportunities

This chapter recommends opportunities for
future research suggested by Viewpoint.

— Extending the program

— Algorithms and machine architecture
— Theory

— Editor-based systems

— Visual programming

— Interaction design

— Visual thinking
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Extending the program

The most immediate opportunity for future research is to
extend the Viewpoint program itself while maintaining
visibility. Other alternatives are discussed in Chapter 4.

Actions. Implement alternate versions of existing
actions: cursor and selection move in parallel during Copy,
Copy instead of Draw, and extended selection.

Input devices. Redesign actions to work with input
devices, such as a pen, dual mice, or touch screen.

Sizes. Allow Viewpoint to act on a space larger than a
single screen. Invent a mechanism for navigating the space.
Redefine visibility accordingly. Alternatively, keep the
screen size the same but change pixel size.

Variability. Allow features that are constant in the
current version of Viewpoint to be variable: puffbox
location, interlock location and shape, keyboard image
location, mapping between keys and key images, grid
position and spacing, cursor shape, and mapping between
pixel values and screen colors. This requires making the
variable information visible.

Fonts. Generalize text to allow variable width fonts,
multiple font styles (bold, italic, etc.), or multiple fonts.
This makes character parsing harder.

Layout. Allow complex page layouts such as multiple
columns. Dynamically reformat text to fit the layout during
editing operations. This makes text parsing harder.

Structured graphics. Generalize drawing to make use
of such geometric relations as connectedness, colinearity,
rectilinear alignment, containment, overlapping, and
proximity. This requires new parsing algorithms and
graphic representations.

Color. Allow all colors to be edited. One solution is to
allow color planes to be interchanged. Redesign Viewpoint
to work on a monochromatic display. This means color
cannot be used as a graphic encoding technique.

Graphic design. For each object, explore alternate
graphic appearances. Evaluate their effectiveness. Test
Viewpoint on users. Improve it.

Application. Enhance Viewpoint so it can be used for
real application such as user interface prototyping or
animation.

Multiple users. Generalize the interlock mechanism to
allow more than one user to act on the screen without
conflict, perhaps simultaneously.

Purity. Reimplement Viewpoint so that the frame buffer
is the only persistent data structure.

—3
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Algorithms and machine architecture

Another area for future research is pixel processing
algorithms and machine architectures that allow Viewpoint
to run more efficiently. Some work is already happening in
this area. The new push will be support for pixel parsing,
not just pixel display.

Pixel parsing algorithms. One direction is to extend
text parsing techniques used by compilers into the realm of
pixels. Another direction is to borrow digital filtering
techniques from visual pattern recognizers. For instance,
the Viewpoint cursor contains a solid 4 by 5 square of red
pixels. Hence we only need to sample one pixel in 20 to
locate the cursor approximately. Searching the local 4 by 5
vicinity would then reveal the exact location. Similar
techniques are used by programs simulating human vision,
except that they must cope with noise.

Bernard Mont-Reynard has explored the use of bitblit
(fast operations on rectangular blocks of pixels) for pattern
recognition. Here is a way to use bitblit to find an isolated
red pixel in a frame buffer: First, use bitblit to OR the top
half of the frame buffer onto the bottom half. Then, fold the
bottom half into the bottom quarter. Keep folding the
screen until it is reduced to a line. We can now locate the x
coordinate of the red pixel by searching 1,000 pixels
linearly. To find the y coordinate, fold the screen repeatedly
from left to right. {(Mont-Reynard).

Hardware. The obvious next step is to move pixel
parsing algorithms into hardware. Special purpose display
hardware is becoming common as the demand increases for
three-dimensional modeling and real-time simulation. The
challenge is to use such processors for image analysis and
to make them fast enough that an entire frame buffer can
be processed in a single cycle.

Applications. Pixel processing algorithms and
hardware are driven by applications such as window
systems, data compression, and optical character
recognition. As computers merge with high bandwidth
visual communication media, we can expect more and more
demand for pixel processing power.

Pixel calculus. There is a strong bias in computer
science that treats bitmaps as “imperfect and
mathematically uninteresting approximations to the ideal
images of plane geometry.” [Guibas] Leo Guibas and Jorge
Stolfi have proposed a calculus of bitmap operations which
leads to a programming language for bitmap computations.
Such research will be important for giving pixel algorithms
a mathematical foundation.
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Theory

The model of interactive computational systems described
in this dissertation was developed for a specific purpose: to
verify visibility. Many directions remain to be explored.

Criticism. Is it sound? Is it adequate for describing
existing interactive systems? How does it relate to other
formal models of computers? How does it relate to models
of interactive systems in fields outside computer science,
such as control theory, communications, psychology, and
biology?

Extensions. My model applies only to a single user
interacting with a single processor without dependence on
timing. Furthermore, 1 have assumed that the entire state is
visible on the screen. Extend the model to apply to
multiuser systems, multiprocessor systems, networked
systems, real-time systems, and systems that are not
strictly visible. This will mean distinguishing subclasses of
symbols, locations, and inputs. For instance, users can be
modeled by distinguishing

Principles. Use formal models to define interaction
design principles such as modes, modelessness, monotony,
transparency, etc.

Analyze existing systems to see where they do or do not
follow principles. Test systematic variations of programs
to discover the consequences of following principles.

More generally, study the structure of visual
representation [Levy}, the notion of representation itself
[Brian Smith], or the nature of computers as language
machines [Winograd).

Prototypes. Design thought experiments and software
prototypes to study interface design principles in their
purest form. Viewpoint is one such experiment; there need
to be more. To study modality rigorously, Jef Raskin
developed a minimal interface called the “buzzer”"—one bit
of input and one bit of output [Raskin]. Its properties have
yet to be explored.

Most user interface research projects are driven by
practical applications and are consequently toco complex to
let principles stand out clearly. We need to build simpler
programming environments tuned to the needs of user
interface prototyping. Trying to build a clean interface in
the type of programming environment typical of computer
research institutions is like trying to build a well-structured
program in Fortran: You can do it, but only if you have
already learned the discipline in a cleaner environment.
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Editor-based systems

Viewpoint acts on pixels. The lessons of Viewpoint apply
equally well to other representations of data.

Rits. Bits were the first flat form of data. Early
computers explored many strategies for encoding
information in bits. Tradeoffs included fixed-length bytes
versus variable length words, binary versus binary coded
decimal representations of whole numbers, and uniform
memory space versus special-purpose registers. It's worth
re-examining these decisions to see what we can learn about
encoding information in pixels.

Register switches and console lights made up the
earliest direct manipulation interface for computers.
Machine language programmers experience much of the
same satisfaction as users of WYSIWYG page layout
systems. What can we learn from the similarities?

Text. One of the biggest inspirations for Viewpoint was
text editor based systems. Such systems insist on a uniform
model of interaction—editing—and a uniform model of
data—a linear string of characters.

Now that I have built a pure pixel editor, I see that text
editors could be pushed much further. Current text editors
store many elements of system state, such as the cursor
and selection, separately from the main text. To fold these
into the text, we could use parallel text strings, much the
way Viewpoint uses parallel pixel planes.

Current text editors force users to keep track of several
kinds of white space: space, tab, return and no character.
Displaying explicit tab and return characters is no solution;
the user must then keep track of which characters will print
on the printer. The problem arises because the two-
dimensional display derives from a one-dimensional text.

In contrast, Viewpoint derives text from the screen.
Similarly, the innovative WYSIWYG editor WE (Burchfiel]
stores text as a rectangular array of character cells. Every
cell contains exactly one character. There is only one kind
of space. WE scans patterns of spaces and characters to
locate paragraph and column breaks, just as Viewpoint
parses pixels to locate margins and word breaks. WE and
Viewpoint leave many hard questions unanswered.

Structured graphics. Fred Lakin's text-graphic
manipulation environment PaM parses spatial structures
from low-level collections of line segments [Lakin]. Other
graphic primitives need to be explored. Fanya Montalvo
proposes higher-level visual pattern recognizers capable of
making analogies [Montalvo). How could such mechanisms
assist visual editors?
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Visual programming languages

] originally wanted Viewpoint to be a programming
language, not just an editor. Having built a visual editor, |
now see a clear direction for future visual programming
languages.

Closing the loop. Current visual programming
languages are blind: They cannot “see” their own visual
representations. The images on the screen are strictly for
the user. Programs themselves see only abstract data
structures.

1 advocate visual programming languages that have full
access to the same program representations the user sees.
Just as the textual programming languages Lisp, Smalltalk,
and Snobol are able to parse their own textual structure, so
a “self-seeing” visual programming language should be able
to parse its own graphic structure. This reflexive quality
makes an interpreter for the language easy to write in the
language itself. It also leads to overall simplicity and
uniformity. Without full reflexivity, the visual aspects of
visual programming languages are doomed to the same fate
as strings in Fortran: a useful but second-class data
structure.

Bringing in visual experts. Once a programming
languages can see its own visual representation,
programming language design becomes a new type of
problem. Visual representations must serve both the user's
eye and the computer's parser. Therefore, the design of
visual programming language should include cognitive
psychologists and graphic designers as well as
programmers.

Designing a visual programming language purely on
programming principles would be as naive as designing a
scientific diagram purely on visual aesthetics. In truth,
psychology and art have always been important for
software design. Visual programming only makes the issue
less avoidable.

Rethinking programming. Today's programming
languages such as C, Lisp, and Smalitalk are as much editing
environments as they are programming languages. Visual
programming languages go a step further. Visual
programming will be most at home in environments that
are built first as editors for manipulating graphic objects
and only secondarily for programming. Therefore, we need
to shift our thinking from editing in support of
programming to programming in support of editing.
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Interaction design

Working on Viewpoint made me aware of the embryonic
state of user interface design as a field of research. Most of
my own tools and theory I had to build from scratch.

What's missing. Programmers are building computer
systems. Psychologists are studying the effects of
computers on people. But no one yet is systematically
exploring of the space of possible interface designs based on
precisely defined principles. In other words, there is
practice and analysis, but no theory.

Without such exploration, programmers and
psychologists work in a vacuum. Building a window system
without visual representation theory is like building a
compiler without formal language theory—the solutions
are ad hoc. Studying the efficiency of cursor keys versus the

‘mouse is like studying the efficiency of hard calculation

versus the slide rule before the advent of the pocket
calculator—a better solution may render the issue
irrelevant.

New priorities. User interfaces can be systematically
studied. But it won't look like conventional computer
science or psychology. Most current user interface research
is added as a footnote to research with other goals. For the
field of user interface design to come into its own, the user
interface as communication medium must get top priority.

The first change is to include users as full team
members from the very beginning of the research, not just
as test subjects brought in at the end. Researchers would do
well to imitate video game manufacturers, who include user
feedback as an integral part of the design process.

The next change is to think top-down: first, about
problems, second, about human-machine partnerships for
solving problems, and third, about the particular needs of
humans and computers. Researchers would do well to study
the conceptual framework for human augmentation laid out
by Douglas Engelbart in the early 60s [Engelbart].

Setting up research. A good example of a new style of
interaction design research is the Media Lab at MIT {Brand].
Notice that the word “computer” is entirely missing. From
the point of view of the Media Lab, communication comes
before computation. This shift has several consequences:
printing presses and paint brushes become research tools,
animators and musicians become colleagues, and
videotapes and performances become the products of
research. For this style of work to thrive, researchers in
many disciplines must work cooperatively.

Opportunities 117



118 Opportunities

Visual thinking

To build better visual interfaces, we must understand visual
thinking itself apart from computers.

Definition. I have yet to see a convincing definition of
“visual thinking". Many authors offer examples (e.g. “Count
the doors in your house”), but few offer ways to distinguish
visual thinking from other sorts of thinking. Psychologist
Roger Shepard has devised pioneering experiments on
mental rotations [Shepard]. We need to probe other aspects
of visual thinking with equal precision.

On the other hand, the term “visual thinking" was never
meant to survive close scrutiny. Robert McKim once
expressed to me his own doubt: Thinking itself has no form;
only the products of thinking can be called visual. I think of
“visual thinking” as a political cartoon: a deliberate
oversimplification intended to raise an issue. Therefore,
researchers should not take the words too literally but
instead ask how the idea might be refined.

Practice. Visual thinking must be practiced to be
understood. Beginners often try to understand visual
thinking by reading essays. This won't work. Sometimes a
picture is worth a thousand words, but when the topic is
visual perception itself, no amount of words can substitute
for a picture. Even books on visual thinking often suffer for
lack of pictures. One visual thinking book that practices
what it preaches is the picture essay “How to See” by George
Nelson [Nelson).

Visual thinking researchers must be equipped to present
their ideas in the correct media. For instance, 1 devote over
S0 pages of this dissertation to snapshots of a system
demonstration. Since a black and white printed document
cannot show color and motion, I have also published a
Viewpoint videotape. (Video is now the preferred medium
for publishing user interface research.) Publishing the
program itself would be even better.

Computers. Today's computers allow us to see and
draw in ways that go beyond the limits of other visual
media.

Computers can also help visual thinking in another way.
Viewpoint sprang from the question “How can a computer
use the visual mode of thinking?” To answer this question, |
had to stretch the definition of “visual thinking" to apply to
computers as well as people. This led to the generalization
“pictures first”, which in turn led to the idea of pixels as the
primary representation of data. I find that stretching an
idea always helps me sharpen my understanding. Future
research could stretch “visual thinking” in other directions.
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7 Conclusions

This chapter summarizes
the results of my research.

— Accomplishments
— Techniques
— Insights
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Accomplishments

The main accomplishment of Viewpoint is to demonstrate
by example that a strictly visible text and graphics editor is
possible. Both the precise definition of visibility and the
possibility of attaining it are new ideas.

Theory. To give Viewpoint a theoretical foundation, |
constructed a formal model of interactive computational
systems, defined visibility in terms of the model, and
proposed a procedure for verifying visibility. Both the
model and the procedure are new.

Program. To demonstrate the consequences of
visibility, 1 built the Viewpoint system, used it, watched
other people use it, and repeatedly revised the system. The
program was invaluable for developing my ideas and for
explaining the ideas to other people.
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Techniques

The Viewpoint program illustrates many new programming
and visual presentation techniques for implementing
graphic user interfaces. Though I put much effort into
refining these techniques, I did not try to study them
thoroughly. Therefore, they should be taken as exploratory
guesses, not conclusive recommendations.

Pixels. The most important new technique in Viewpoint
is the use of pixels as the primary representation of
structured state information. Previous systems have used
pixels only for unstructured data, as in a painting system,
or as a secondary representation of hidden data structures.
The primary role of pixels in Viewpoint allows text and
graphics to be integrated in a new way—the difference
between text and graphics is determined not by the data but
by the operation.

Equally important is the use of cells as the primary
chunking of pixels. Pixels and cells are visually coarse, but
convenient for editing. There will always be a role for fixed
width fonts and low-resolution pixels, even as higher-
resolution displays become available.

Graphic encoding techniques. Viewpoint
demonstrates four ways of encoding information
unambiguously in pixels: color, position, shape, and
structure. Viewpoint uses transparent color planes to
separate different sorts of information. To keep color
mixtures distinct while giving the illusion of transparency, I
mixed hues accurately but varied intensity freely. To show
which object was in front, 1 shifted hues toward foreground
colors.

Graphic design. Interesting visual devices include the
grid, the cursor, and key highlights. The light blue grid was
effective for showing the structure of the screen without
being visually intrusive. The spare use of bright colors
proved effective in attracting attention to the cursor and
selection. A principle that seemed to be helpful was to
differentiate objects by shape even when they were already
differentiated by color.

Interactive elements. Most mouse-driven text editors
use two cursors: a pointer and an insertion point. Viewpoint
uses only a single cursor. The puffbox allows an editor that
acts on cells to edit individual pixels.

Algorithms. The implementation of Viewpoint
demonstrates techniques of pixel parsing and structure
caching. These techniques extend ideas from compiler
design and program optimization from the world of text
strings into the world of graphics.
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Insights

Working on Viewpoint required that I rethink computers
from the viewpoint of graphic design. Here are my insights:

Computers. Computer science as currently practiced is
not equipped to think about user interface design. I once
asked a computer scientist why there isn't more research in
text editor design. He admitted, after some hesitation, that
editor design was “a job for hackers”, implying that editors
are not respectable computer science. Despite advances in
user interfaces, such attitudes persist. Consequently, there
are enormous opportunities for innovative research in user
interface design but little support within conventional
computer science,

Graphics. For graphic designers and other visual
thinkers, pictures have first priority. I sum this up in the
slogan “pictures first”. Just as a programmer will feel
uncomfortable looking at a demonstration of a program
until you explain how it is implemented, a graphic designer
will feel uncomfortable listening to a description of an
image until you show what it looks like. Any computer tool
for assisting visual thinking must respect this priority.

Design. Computer concepts can be divided into two
categories according to whether they relate to early or late
stages in the design process. This scheme matches the
classification shown below, invented by the Xerox Star
design team [David Smith]. I've starred concepts
particularly relevant to Viewpoint and added five concept
pairs of my own. The insight of Viewpoint is to design
systems that start in the left column and allow movement
to the right.

STAR
Easy Hard
concrete  abstract
visible * invisible
copying and modifying  creating from scratch
choosing from a list  filling in a blank
recognizing  generating
editing * programming
interactive  batch

VIEWPOINT
early design process +» late design process
flat structure * hierarchical structure
pixels » structured graphics
graphics » text
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Appendix: Viewpoint manual

This manual describes a slightly earlier version of
Viewpoint that did not yet include key triggers. I used this
manual to test Viewpoint on users. Since | wanted the
manual to be entirely self-contained, 1 configured the
system to start up Viewpoint directly on log in.

. Getting Started

1. Viewpoint runs on the Dorado, a personal computer built by
Xerox mainly for internal research. The Dorado comes with a
1024 pixel wide by 792 pixel high black and white display, a
61-key keyboard, and a 3-button mouse.

2. Because most Dorados are at Xerox PARC, people who try
Viewpoint will usually be PARC employees or escorted visitors.
If you are a visitor, be sure you have the assistance of an
experienced Dorado user to help you log in.

3. To use Viewpoint, you will need a Dorado with a color
monitor, running the Cedar programming environment. If the
color monitor is a Conrac, make sure it is switched to 640x480
resolution.

4. Make sure both the color and the black and white monitors
are turned on. The color monitor's power switch is on the front
in the lower left corner. The black and white monitor’s power
switch is around the back of the base (up = on).

5. Find the small red button on the back of the keyboard (“the
boot button”) and click it three times in a row (“triple click"™).

6. You will see the message “Please log in". If you are a visitor
to PARC, ask someone to log in for you. To log in, type your
user name then press the RETURN key. Use the BS key to correct
mistakes. Type your password followed by RETURN. For
instance:

Please log in...
Name: kim.pa Password: °°®°**

7. If the computer asks you
Do you wish to install a personal profile?

answer Yes by typing the RETURN key twice.

8. After 30 to 90 seconds. an image will appear on the color
monitor and you will be ready to use Viewpoint.
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Using Viewpoint

1. From now on, you will be working only on the color screen.
The color frame buffer is 640 pixels wide and 480 pixels high.
The 640 by 480 pixels are your entire world; the screen cannot
be scrolled or expanded. Each pixel may be a mixture of four
colors: blue, red, black and green. Each color indicates a
different type of information.

2. The blue lines divide the screen into square cells. Each cell is
10 pixels wide and 10 pixels high. To turn the grid on or off,
type the unmarked key in the bottom right corner of the
keyboard.

3. The red arrow is called the "cursor”. Moving the mouse
moves the cursor.

4. The black areas are the text and graphics you can edit. Every
pixel on the screen can be turned black or white. To edit the
text and graphics, you use the mouse buttons and keyboard.

5. Clicking the left mouse button draws by filling in the cell at
the cursor either black or white. Move the cursor to an empty
area and experiment. Drawing on a white cell turns it black.
Drawing on a black cell turns it white. If you keep holding the
left button and move the mouse, you will keep drawing in the
same color. Everything is fair game for drawing over, even the
image of the keyboard. (Caution: there is no "undo” in
Viewpoint.)

6. Clicking the middle button selects the cell at the cursor by

. shading it green. The selected cell, also called the “selection”, is

displayed in magnified form in an area called the "puffbox™.
Each cell in the puffbox corresponds to a pixel in the selection.

7. Drawing in the puffbox redraws the pixels in the selection.
Select the "M" in mouse and change it to an "H" by drawing in
the puffbox. Watch the pixels in the selected cell change as you
draw.

8. Clicking the right button copies from the selection to the cell
at the cursor. Try changing "House™ back into "Mouse™ by
copying the "M" on the keyboard to the first cell of "House".

9. Typing a key copies the contents of the appropriate cell (the
“key image") to the current cell, then advances the cursor one
cell. Try moving the cursor to the "u” of "Mouse" and type an
“o". Typing acts as if it were in "overwrite™ mode: there is no
“insert” mode. If you type past the edge of the screen, the
cursor will wrap to the beginning of the next line.

10. To get the image on the top half of a key, hold either SHIFT
key while typing the key. To move the cursor back a cell, use
BS. The DEL key erases the current cell by shifting the line of
cells to its right to the left one cell (caution: this may disrupt
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your drawing). Other keys have no effect.

11. Notice that pressing a key highlights the corresponding key
image by drawing a one-pixel-wide border (the “key highlight™).
Releasing a key erases the key highlight. Because the font is
visible on the screen, editing key images affects subsequently

typed letters.

Exercises

1. Redraw your initials as they appear on the keyboard on the
screen. Then move the cursor to an empty area and type your
name.

2. Exchange two cells.
3. What is the quickest way to turn a cell white?

4. Erase the "8" key without disturbing the nearby keys. Hint:
don’t use Draw; use only Select and Copy. Widen the "7" key
to take its place. Draw a new symbol where the 8" used to be .
What happens if you type “8"?

5. What happens if you copy into the puffbox?

6. Select a cell of the gray cursive "L" and you will see it is
actually an alternating pattern of black and white pixels. By
continuously copying one of these cells with the Copy button,
you can paint with a gray brush. Make up another texture
patterns to paint with.

7. Erase the entire screen by typing CTRL-DEL. How would you
reconstruct the original screen?
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