
The operating system: should there be one?

Stephen Kell
Oracle Labs

srkell@acm.org

Abstract
Operating systems and programming languages are often infor-
mally evaluated on their conduciveness towards composition. We
revisit Dan Ingalls’ Smalltalk-inspired position that “an operating
system is a collection of things that don’t fit inside a language; there
shouldn’t be one”, discussing what it means, why it appears not to
have materialised, and how we might work towards the same effect
in the postmodern reality of today’s systems. We argue that the tra-
jectory of the “file” abstraction through Unix and Plan 9 culminates
in a Smalltalk-style object, with other filesystem calls as a primitive
metasystem. Meanwhile, the key features of Smalltalk have many
analogues in the fragmented world of Unix programming (includ-
ing techniques at the library, file and socket level). Based on the
themes of unifying OS- and language-level mechanisms, and in-
creasing the expressiveness of the meta-system, we identify some
evolutionary approaches to a postmodern realisation of Ingalls’ vi-
sion, arguing that an operating system is still necessary after all.

Categories and Subject Descriptors D.1.5 [Programming tech-
niques]: Object-oriented programming; D.4.m [Operating sys-
tems]: Miscellaneous

General Terms Languages, design

Keywords Unix, Smalltalk, Plan 9, metasystem, composition,
binding, integration

1. Introduction
Writing in the August 1981 “Smalltalk” issue of Byte Magazine,
Dan Ingalls set forth various design principles behind the Smalltalk
language and runtime [Goldberg and Robson 1983], and addressed
the issue of integration with the operating system as follows [In-
galls 1981].

An operating system is a collection of things that don’t
fit into a language. There shouldn’t be one.

Although not stated explicitly, we can infer that Ingalls’ vision
for there “not being” an operating system would include gradu-
ally pulling more and more system functionality (e.g. isolated pro-
cesses, filesystems, network stacks) into the Smalltalk runtime,
where it could be exposed in the form of higher-level abstractions
(e.g. as persistent and remote objects) rather than the byte-streams
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and raw memory interfaces of Unix—which seems unquestionably
to be one system to which his “very primitive” refers.

It appears that this change has not happened—at least not yet.
Was there a real benefit in whole-system design underlying Ingalls’
position? If so, is it achievable? If so, would there remain any need
for a programmer- or user-facing operating system? In this paper,
we make a case for answering all these questions in the affirmative,
consisting of the following contributions.

• We identify the potential benefits of Ingalls’ vision, and contrast
these with parallel developments in Unix relating broadly to the
concerns of composition.

• We argue that the natural trajectory of the Unix design, extrap-
olated through Plan 9 and beyond, yields an object abstraction
mostly equivalent to that of Smalltalk.

• We map a large number of composition “point fixes” in Unix
systems to features of a Smalltalk-like environment, each of
which they are replicating for some set of use cases.

• We argue that this “lurking Smalltalk” could be exploited to
bring about many aspects of Ingalls’ vision in an evolutionary
fashion, and sketch several approaches to this.

2. The Smalltalk wishlist
In saying that there “shouldn’t be” an operating system, what bene-
fits is Ingalls seeking? Clearly, the problem being addressed is that
of complexity in software (the same article emphasises “manage-
ment of of complexity”), and that Smalltalk’s approach is to pro-
vide well-designed abstractions which are compositional (which
we take to be the essence of any programming language). Although
the article does not list the intended benefits explicitly, we can infer
that the following general benefits are probably included.

Programmatic availability The Smalltalk programming abstrac-
tion is also available to system-level tasks. Programmers can to
write code “in the same way” against both user-defined and system-
defined abstractions (e.g. processes, devices), also allowing the ap-
plication of existing Smalltalk code (say, the famous Collections
library) to these new target domains. For example, maintaining a
configuration file, generating a coredump or mounting a filesys-
tem all cease to require mechanism-specific code (disk–memory
marshalling, object file manipulations, invoking the mount system
call); they are simply rendered as (respectively) accessing a (persis-
tent) configuration object, cloning a process object (likely stopping
and persisting the copy), or pushing a new object into some del-
egation chain. The late-bound semantics and interactive interface
offered by Smalltalk allow it to subsume both programming and
“scripting” (as offered by the Unix shell).

Descriptive availability The pervasive metasystem of Smalltalk
enables cheap provision of “added value” services expressible at
the meta-level, such as human-readability, visualisation, interactive
data editing, debugging, or data persistence. Extending the reach of



this meta-level to system-level state would amplify these benefits
(when inspecting device state, debugging device drivers, persisting
device configuration, and so on).

Interposable bindings The late-bound, message-based interfaces
of objects provide strong interposability properties: clients remain
oblivious of the specific implementation they are talking to. In turn,
this simplifies the customisation, extension or replacement of parts
of a system, all of which can be rendered as interposition of a dif-
ferent object on the same client.1 The concept of interposition pre-
supposes a mechanism by which references to objects are acquired
and transmitted. This process is binding. In Smalltalk there is one
general mechanism for object binding, which is the flow of object
references in messages. Binding is also prominent in Unix’s design,
as we will contrast shortly.

Although these concerns are integral to Smalltalk, they are
not foreign to operating system designers either, whose work is
often evaluated on its conduciveness towards composition. We next
consider Unix and its successor Plan 9 from the perspective of these
concerns.

3. Unix and Plan 9: the tick-list
We consider firstly the 5th edition Unix described by Ritchie and
Thompson [1974], then continue to later Unices and Plan 9.

Programmability Ritchie and Thompson wrote that “since we are
programmers, we naturally designed the system to make it easy
to write, test, and run programs”. Indeed, Unix exposes multiple
programmable interfaces: the host instruction set (a large subset
of which is exposed to the user via time-sharing processes created
from a.out images), the various system calls (which embed into the
host instruction set, extending it with operating system services),
the shell (which abstracts the same interfaces in a manner conve-
nient for interactive and scripting-style use) and the C language.
These four means cohere to some extent. The last of the four, C,
is an abstract version of the first (both concerning in-process “ap-
plication” programming). Meanwhile, the shell can be considered
an abstract version of the system call API, since it specialises in
file- and process-level operations. We call the latter kind of pro-
gramming “file-or-device” or just “device” programming. This re-
maining twofold distinction runs deep: between application mech-
anisms (which, aside from trapping into system calls, are opaque to
the operating system) and file mechanisms (which are the operating
system’s reason for being). We will call this the application–device
split.

Description Unix was original in exposing diverse objects—
program binaries, user files, and devices—in the same namespace,
in a unified way. This includes names and other metadata, along
with enumerable directory structures. Although primitive, this is
clearly a meta-system. For instance, enumeration of files in a di-
rectory corresponds closely to enumeration of slots in an object,
as expressible using the Smalltalk meta-object protocol. However,
Unix’s meta-system is selective in coverage and content—the sys-
tem predetermines what state is exposed to the filesystem, the meta-
data and operations are somewhat specialised for storage systems
(sizes, timestamps, etc.), and the facility for exposing state at this
meta-level is not extended to application code. While subsequent
developments have integrated additional operating system state
into the filesystem model, including processes [Killian 1984] and
device state (as with Linux’s sysfs [Mochel 2005]), they have not
changed this basic property.

1 Unix often talks about redirection instead of interposition; we consider
these synonymous. (“Redirection” sounds slightly stronger, but consider
that there is no obligation for an interposing object to make any use of the
implied interposed-on object.)

Interposable bindings Thompson and Ritchie stated as a goal for
Unix the property that “all programs should be usable with any
file or device as input or output”. This is a clearly an interpos-
ability property. It was successfully achieved by unifying devices
with files—the famous “everything is a file” design. Note, how-
ever, its tacit characterisation of applications as having unique in-
put and output streams. The streams stdin and stdout are easily
substitutable: they exist in every process, and the parent can bind
them (using dup()) to any file or device it can open. However, many
other cases of interposition are not supported.2

One example is how user code cannot quite “be a file”, because
only files may be opened by name. (By contrast, for programs us-
ing only parent-supplied file descriptors, pipe() serves for this pur-
pose.) The same property means that programs accessing specific
files or devices may only be redirected to user-selected files if the
developers had the foresight to accept the file name as a parame-
ter. Sometimes this foresight is lacking (as known to anyone who
has resorted to recompiling a program just to replace a string like
”/dev/dsp”). In Smalltalk this foresight is not necessary, because
this kind of definitive early binding is not possible.

Contrasts “Late binding everywhere” is one property which
helps Smalltalk ensure interposable bindings, and which on Unix
is left for the user to implement (or not). We can note several other
contrasts. While the Unix filesystem is a primitive metasystem,
it lacks any notion of user-defined “classes”, which in Smalltalk
exists to describe commonalities between between both user- and
language-defined abstractions. In Unix, explicit classes are un-
necessary, since objects in the filesystem are always of one of
three (implicit) classes (files, directories, or devices; later, sym-
bolic links, named pipes and sockets would be added to this list).
Meanwhile, user-defined classes need not be supported because
Unix remains pointedly oblivious to user code.

Another way of looking at this is that the operating system con-
cerns itself with large objects only, where we crudely characterise
files as large objects, in contrast to the units of data the size of pro-
gram variables, such as allocated on the process stack or by mal-
loc(), which are generally much smaller. The specification of the
mmap() system call in 4.2BSD3 and the advent of unified virtual
memory systems [Gingell et al. 1987] would cement a unification
of files and memory objects, but only for the case of large objects.
This was primarily since their interfaces work at page-sized granu-
larity, being neither convenient nor efficient for smaller objects. (Of
course, Unix filesystems certainly support the case of small files.
“Large objects” is therefore our shorthand for “objects selected by
the programmer to be managed as mapped files”—likely for their
large size, but perhaps also to enable their access via inter-process
communication, as with the example of small synthetic files in the
/proc filesystem.)

A consequence of offering only these large-object abstractions
is that Unix is tolerant to diversity in how smaller objects are
managed. Unix processes happily “accommodate” diverse imple-
mentations of language-level abstractions, albeit in the weakest
possible sense: by being oblivious to them. By remaining agnos-
tic to application-level mechanisms (in the form of programming
languages and user-code libraries), Unix likely boosted its own

2 We note that the difficulty sticking to parent-bound I/O streams is not
that only input and output streams are supported, since a parent process
may dup() arbitrarily many descriptors before forking a child. Rather, it
is that the set of streams must be enumerable by the parent in advance.
This precludes cases where the eventual number or selection of I/O streams
depends on program input.
3 Although specified in the 4.2BSD design, around 1982, and described in
the Programmer’s Manual of the 4.3 release in 1986, this interface would
remain unimplemented in any BSD release until 1990’s 4.3BSD-Reno.



longevity, but at a cost of fragmentation. This included not only
fragmentation of system- from user-level mechanisms, but also
fragmentation among system-level mechanisms (noting the various
binding mechanisms we have identified), and finally, fragmentation
within opaque user-level code (noting that each language imple-
mentation typically invents its own mechanisms for object binding
and identity, a.k.a. conventions for representing and storing object
addresses). The result of this fragmentation—one which has only
grown since Ingalls’ article—is an extent of noncompositionality
which is anathema to the “unified” ideal (held by both Smalltalk
and, initially, Unix). It has the effect of ensuring that different soft-
ware ecosystems are kept separate, and that logically sensible com-
positions are difficult or impossible to achieve. If diverse binding
mechanisms were not enough fragmentation, the addition of in-
dependently developed protocols and data representations “in the
small” adds even further impediment to composition.

We should counter, however, that Smalltalk itself has no solu-
tion to fragmentation. Its solution is “don’t fragment; use Smalltalk
for everything!”. This sweeping position is what Noble and Bid-
dle [2002] call a modernist “grand narrative”. By contrast, Unix
succeeds in existing in the postmodern reality of diverse, indepen-
dently developed, mutually incoherent language- and application-
level abstractions, by virtue of its obliviousness to them.

4. Post-Unix trajectories: Plan 9 and beyond
The need for greater unification in Unix is well known. Since its ini-
tial design, a trend in Unix has been to unify around the filesystem
abstraction, by opening it up to new and diverse uses. As noted pre-
viously, exposing processes as files [Killian 1984] created a cleaner
and faster alternative interface to process debugging and process
enumeration. VFS [Kleiman 1986], a kernel-side extension inter-
face for defining new filesystems, later became a central feature of
all modern Unix implementations. Plan 9, Bell Labs’ spiritual suc-
cessor to Unix, embraces the filesystem to an unprecedented extent.
Its design, pithily stated, is that “everything is a [file] server”—a
system is a (distributed) collection of processes serving and con-
suming files, or things superficially like them, using a standard
protocol (9P) that is transport-agnostic. Applications serve their
own filesystems, and essentially all inter-process functionality is
exposed in this fashion. To illustrate the design of Plan 9 and its
conducivity to composition, Pike recently recounted4 the following
impressive anecdote about the design’s properties.

A system could import. . . a TCP stack to a computer
that didn’t have TCP or even Ethernet, and over that network
connect to a machine with a different CPU architecture, im-
port its /proc tree, and run a local debugger to do breakpoint
debugging of the remote process. This sort of operation was
workaday on Plan 9, nothing special at all. The ability to do
such things fell out of the design.

The expanded use of files and servers allowed several simpli-
fications relative to the Unix syscall interface. For example, gone
are ioctl() and other device manipulations process operations such
as setuid() or nice() and the host of Berkeley sockets calls (which
added yet another naming and binding mechanism to Unix). Re-
placing them are a generalised binding mechanism—essentially
bind() by the server and open() by the client—and simple reads
and writes to files, including on a selection of control files. These
are files with arbitrary request-response semantics: a client writes
a message, and from which then reads back a response. Any oper-
ation can be expressed in this way; indeed, it is not-so-uncannily
reminiscent of message-passing in Smalltalk.

4 in his 2012 SPLASH keynote; slides retrieved from http://talks.golang.
org/2012/splash.article on 2013/7/20

As the filesystem’s use has expanded, its semantics have be-
come less clear. What do the timestamps on a process represent?
What about the size of a control file? Is a directory tree always finite
in depth (hence recursable-down) or in breadth (hence readdir()-
iterable)? Although some diversity was present even when limited
to files and devices (is a file seekable? what ioctls5 does the device
support?), semantic diversity inevitably strains a fixed abstraction.
The result is a sytem in which the likelihood of a client’s idea of
“file” being different from the file server’s idea is ever-greater. It
becomes ill-defined whether “the usual things” one can do with
files will work. Can I use cp to take a snapshot of a process tree? It
is hard to tell. The selection of what files to compose with what pro-
grams (and fixing up any differences in expected and provided be-
haviour) becomes a task for a very careful user. Unlike in Smalltalk,
semantic diversity is not accompanied with any meta-level descrip-
tive facility analogous to classes.

For the impressive compositionality of his anecdote, Pike cred-
its the filesystem abstraction of Plan 9, i.e. the property that “all sys-
tem data items implemented exactly the same interface, a file sys-
tem API defined by 14 methods”. (Given the few semantics which
are guaranteed to be ascribed to a file, 14 seems a rather large num-
ber.) Reading more closely, a different property of Plan 9—the the
network transparency of server access—is at least jointly responsi-
ble. It is no coincidence that Smalltalk objects, like Plan 9 files, are
naturally amenable to a distributed implementation [Schelvis and
Bledoeg 1988] and that Alan Kay has recollects how from a very
early stage he “thought of objects being like biological cells and/or
individual computers on a network” 67

Proposals for applying Plan 9’s file-server abstraction still fur-
ther are easy to find. One example is shared libraries: Narayanan
blogged8 a sketch of a proposal for shared file servers replacing
shared libraries, using control files to negotiate a precise interface
version. In both this case and Pike’s quotation above, what is ac-
tually being articulated is the desire for three properties which,
of course, Smalltalk already has: a network-transparent object ab-
straction (an unstated enabler of Pike’s composition scenario), a
metasystem (bundled into the unifying API Pike mentions) and
late binding (for addressing the versioning difficulties mentioned
by Narayanan).

It now seems reasonable to declare “file” (in the Plan 9 sense)
and “object” (in the Smalltalk sense) as synonymous. Both are
equally universal and more-or-less deliberately semantics-free.
However, still distinguishing Smalltalk from Plan 9 is the former’s
meta-system and inclusiveness towards objects large and small.
Whereas Plan 9 applications which must implement a 14-method
protocol to reify their state as objects, Smalltalk’s objects have this
“by default”. Moreover, the notion of classes allows, at the very
least, some semantic description of an object.

Before continuing, it is worth noting that around the same time
as Plan 9, research into microkernels and vertically-structured op-
erating systems (or “library OSes”) brought new consideration
of binding and composition in operating system designs [Ber-
shad et al. 1995; Engler and Kaashoek 1995; Leslie et al. 1996;
Rashid et al. 1989]. These systems were mostly designed with a
somewhat object-oriented flavour. Indeed, a key consideration was
how to replicate a largely Smalltalk-like object- or messaging-
based abstraction in the presence of the fine-grained protection

5 ioctl() first appeared in 7th Edition Unix, although calls including gtty and
stty are its forebears in earlier versions.
6 Various sources on the web attribute this statement to Kay.
7 Indeed, a Smalltalk-style notion of “object” corresponds closely to the
notion of “entity” in the OSI model of networking [Zimmermann 1988].
8 at http://kix.in/2008/06/19/an-alternative-to-shared-libraries/, re-
trieved on 2013/7/20



boundaries—and moreover, how do so with high performance. In
at least one case, a dynamic interpreted programming environment
was developed atop the core operating system, furthering this sim-
ilarity [Roscoe 1995]. These systems’ results are encouraging tes-
tament to the feasibility of acceptable performance in a system of
fine-grained protection domains. More recently, Singularity [Hunt
and Larus 2007] is arguably a culmination of work on this issue,
offering the radical solution of avoiding hardware fault isolation
entirely and relying instead on type-based software verification.
Like Smalltalk, however, these systems offer only a grand narrative
on how software could and should be structured. Unlike Smalltalk,
their programming abstractions were something of a secondary
concern, lacking a true aspiration to influence the fabric and con-
struction of user-level software. Accordingly, they have been the
subject of substantially less application programming experience.
For our purposes, protection and performance are both orthogonal
concerns, so further consideration of these systems would add little
content to our discussion.

We focus instead on how to approach the fragmented collection
of Unix composition mechanisms and evolutionarily recover some
of the benefits offered by the unified ideal of Smalltalk.

5. The Lurking Smalltalk
It turns out, perhaps surprisingly, that the Smalltalk-style facil-
ities we just identified in Plan 9—a generic object abstraction,
a metasystem (albeit primitive), and interposable late binding—
are present in abundance in modern Unices too. However, they
are to be found in Unix’s characteristic fragmented form. Count-
less Unix implementations of languages, libraries and tools have
grown mechanisms and/or recipes catering to each of these require-
ments. We survey them here, arguing their existence is the sign of a
“lurking Smalltalk”. Unfortunately, their fragmented nature renders
them usable only by experts solving specific particular use cases—
rather than with the naturalness and immediacy of a designed sys-
tem. We will consider how to exploit them more effectively in the
following section.

5.1 Lurking programmability
Programmability is abundant in Unix ecosystems, but often in
awkward-to-use forms. Aside from the shell, the C compiler and
whatever other language implementations are available, many ap-
plications implement their own configuration language or other
“mini-language”. Why are these mini-languages necessary? Some-
times they are a domain-specific form optimised for the domain at
hand. But in others, they are simply an expedient form of expos-
ing “good enough” configurability or customisability. Some strad-
dle the line: for example, tcpdump’s packet predicate language is
concise for experts, but complex and quirky for newcomers. There
is a case for saying it should be possible (but not mandatory) to
write tcpdump predicates in a language of the user’s choice. Simi-
larly, administrators’ jobs would often be easier if they could write
configuration logic in a language of their choosing, rather than an
idiosyncratic config file format.

(This is a strong requirement, having no particularly general
solutions as far as this author is aware. Perhaps the closest is the
facility in Smalltalk-80 permitting a class to reference a non-default
compiler object, which takes over responsibility for interpreting the
remainder of the class’s definition down to Smalltalk bytecode. One
limitation of this facility is that the choice of language remains with
the class’s author, so cannot be changed on a per-object or per-use
basis, as might be desired by a particular instantiator of a class or a
particular client of an object.)

5.2 Lurking metasystems
Some systems offer in-band meta-protocols for requesting partic-
ular interface versions (a common feature of Plan 9 control files).
HTTP extends this to details such as the requested content language
and encoding.

As mentioned previously (§3), the Unix tradition of synthetic
filesystems such as /proc or Linux’s /sys offer an ad-hoc grafting
of specific kernel subsystems’ data onto the filesystem, and in
so doing, augment them with its primitive meta-level facilities
(useful primarily for introspection and iteration using standard file
APIs, command-line tools, shell-style scripting, etc.). A missed
opportunity of some such systems is the inclusion of meta-level
structure only in documentation, not programmatically. Linux’s
procfs manual pages provide scanf() format strings for parsing
various files (such as /proc/<pid>/stat). This reflects the “large
files” prejudice of Unix, and makes it impossible to write general
code iterating over all attributes.

Modern /proc filesystems expose a per-process maps file de-
tailing the memory mappings which make up a process’s address
space. Combined with the symbol information in loaded object
files, this starts to provide a metasystem for inspecting process
internals, and indeed is used to provide symbol-level backtraces.
However, the most powerful such metasystem is that used for de-
bugging. Modern Unices typically use the DWARF format [Dwarf
Debugging Information Format Committee, 2010], which details
compiler implementation decisions in sufficient detail to recover
source-level views of programs in execution (even optimised pro-
grams, provided the compiler has generated accurate DWARF de-
scriptions of the optimisations). It is interesting to note that this
approach to debugging embodies a deeper meta-system that of
Smalltalk: it documents compiler implementation decisions, down
to machine level. This enables “cross-layer” debugging (switching
between user-level and compiler-generated code, e.g. to track down
a compiler bug). It also decouples the debugger from the debuggee,
avoiding the prescriptive command language of an in-VM debug
server and trivially enabling post-mortem debugging.

Extensions to the basic Unix file metamodel can be found in the
use of tools such as file, which classify files based on their content,
and attempts such as MIME [Borenstein and Freed 1993] at for-
malising such content. Such attempts so far are highly limited; in
particular, the compositional nature of data encodings is not cap-
tured (as revealed by MIME types such as x-gzipped-postscript,
apparently unrelated to application/gzip). Network services too
are minimally and opaquely described, such as by the /etc/ser-
vices, which defines a quasi-standard mapping from port numbers
to protocol names (with implied semantics).

5.3 Lurkingly interposable bindings
Smaragdakis [2002] identified that ELF shared libraries embody
a mixin-based composition model; mixins are a powerful prim-
itive very similar to the “wrapper” used by Cook to model both
Smalltalk- and other styles of inheritance [Cook 1989]. Its key in-
terposition mechanism, LD PRELOAD, is commonly used to boot-
strap many other feats of interposition by overriding bindings to
the C library. Applying this to the sockets API enables transparent
proxying of applications, as with tsocks9 and similar tools, while
the same approach for the filesystem underlies tools such as fake-
root10 or flcow11 which provide clients with somewhat modified
filesystem behaviour.

9 http://tsocks.sourceforge.net
10 http://fakeroot.alioth.debian.org/
11 http://xmailserver.org/flcow.html



The shell makes a valiant attempt to complete unhandled por-
tions of the Unix composition space we identified in §3. For exam-
ple, bash allows commands like diff -u <( cmd1 ) <( cmd2 )
for providing pipe-backed file descriptors where a named file is
required, or /dev/tcp/<port> for redirecting to/from sockets.
These approaches are limited: the latter because the shell can only
introduce these “magic” filenames if the filename is interpreted by
the shell (i.e. for redirection purposes), not when supplied as an
argument to a program, and generally because not all functional-
ity is invoked from a shell. Some applications reimplement shell-
like facilities in their file-handling code for the same reason, but
this reimplementation is both patchy and undesirable. User-level
file servers such as Linux’s FUSE or BSD’s PUFFS [Kantee and
Crooks 2007] provide a more available alternative for file redirec-
tion, effectively enabling a Plan 9-style server abstraction, albeit
within a host system which does not use them so heavily to such
great effect. Union mounts, a staple of Plan 9 namespace composi-
tion, are among many common use cases of these systems.

One of the most powerful late-binding devices in today’s com-
puter systems is the memory management unit. Aside from the pro-
gram relocation problem it was originally designed to solve, the late
binding it provides from virtual to physical addresses has enabled
many other operating systems innovations (including the unified
virtual memory system discussed in §3).

Bindings transmitted in message payloads are frequently rewrit-
ten with pipelined use of sed, awk [Dougherty and Robbins 1997]
or Perl [Wall and Loukides 2000] as stream rewriters.

5.4 Undoing early binding
The examples we just saw all exploit inherent late-binding in the
systems they compose. However, Unix applications can also bind
too early, creating separate class of problem—“undoing” early
binding. Again, many techniques for this have become mainstream.
In early-bound programming languages, various dynamic update
techniques have been devised [Makris 2009; Neamtiu et al. 2006].
Trap instructions and memory protection exposed by the hardware,
and re-exposed in abstract form by the operating system (includ-
ing BSD’s mprotect()), provide useful mechanisms for intercept-
ing early-bound code and data accesses (such as respectively for
breakpoints and watchpoints). Dynamic instrumentation systems
can also be used to patch bindings [Hollingsworth et al. 1997]
or completely virtualise [Bruening et al. 2012] compiled code. In-
strumentation techniques can also implement breakpoints [Kessler
1990] and watchpoints [Zhao et al. 2008] faster than trap-based ap-
proaches.

6. Harnessing the lurking Smalltalk
The various fragmentary techniques we have just seen suggest that
building a programmable, late-bound, metasystem-enabled system
can be done using rather than replacing existing Unix-based soft-
ware. We use a simple running example to sketch some evolution-
ary additions to OS services, which generalise some subset of tech-
niques surveyed in the previous section (although for brevity, we
do not enumerate these subsets).

Suppose we wish to search some object for text matching a pat-
tern. If the object is a directory tree of text files, our Unix com-
mand grep -r does exactly this. But suppose instead that our direc-
tory contains a mixture of gzipped and non-gzipped text files, or is
actually some non-directory collection of text-searchable objects,
such as a mailbox. In Smalltalk parlance, how can we make these
diverse objects “understand” (via a collection of interposed objects)
the messages of our grep -r (and vice-versa)?

We can view the grep process as an object which is sent a
single message (execve()) with one argument: a reference (a.k.a.
filename) to another object that is the root of an object graph (the

directory tree). grep responds to this message by traversing this
graph (again using message exchange), identifying leaf objects,
obtaining a list of lines of text from each leaf, and searching the
lines using a regular expression matcher. We focus on two essential
operations: traversing the leaves, and reading lines of text. How
can we retrofit a more object-oriented interpretation onto grep’s
behaviour, so that it “by default” acquires the ability to search more
diverse kinds of object?

(We note that retrofitting is key here. Unlike more modernist ap-
proaches, we actively seek to relieve the programmer of the need
to “get it right first-time”. One can easily blame composition prob-
lems on developers, perhaps for misusing Unix’s abstractions or
failing to factor their systems appropriately. However, our postmod-
ern viewpoint sees it as a common case for systems to start life in
a specialised form, and be generalised later—an ordering which is
seldom catered for in conventional programming environments.)

6.1 A metasystem spanning file and memory data
A first step in recovering an object-oriented interpretation of files
and raw memory is to understand them abstractly, as fields instead
of uninterpreted bytes. We can see this as a problem in data de-
scription. Whereas Unix files are opaque byte-streams, we wish to
overlay a meta-system that can describe the higher-level semantics
they encode. Existing work is relevant [Back 2002; Fisher et al.
2006], but we are more concerned with expressiveness (i.e. being
able to describe both textual and binary data) than with the ability to
generate correct and unambiguous parsers (indeed, some ambiguity
may be inevitable). Our tentative approach is to take our lead from
the metamodel embodied in DWARF debugging information, since
data sent over byte-streams is invariably computed from program
objects, and program objects are already described in this form.
Textual encoding idioms not easily captured by DWARF, but since
DWARF embeds a Turing-powerful stack machine, it is likely that
few extensions are needed. In our grep example, our goal is first
to capture what a “line” means (e.g. by writing DWARF describing
the buffer chunk that serves as input to grep’s line-by-line loop)
and then to generalise out a more abstract class of “line” (some-
thing like a Collection of characters) which can be marshalled into
this form for input to grep. This more abstract notion of “line”, to-
gether with the marshalling step, enables diverse input data not ini-
tially structured as lines of text to be processed by grep—provided
that it can be transformed to and from such an encoding. (We view
the problem of selecting this transformation as a dispatch problem,
which we visit shortly.)

6.2 A really unified binding system
grep binds to directories and files using opendir() and fopen();
our goal is to generalise these mechanisms so that they can bind to
non-file objects. This is a well-trodden requirement, in that Plan 9
handles it well—assuming that the target object has been exported
to the filesystem. Our goal is to minimise the effort involved in this
step, so that a “found” implementation of directories—say, objects
in an IMAP library instance (with IMAP folders serving as directo-
ries, and mails as files)—could be bound in to our grep’s filesystem
calls with little effort. We would probably not be the first to write
an IMAP-to-VFS gateway; our goal instead is to investigate what
meta-level information about the behaviour of an IMAP “object”,
say implemented in a C library, would be necessary to synthesise
such a gateway, or at least one “good enough” for our grep pur-
poses (i.e. to read mails line-by-line). Details such as the encoding
of buffers and IMAP message formats are covered by the data de-
scription metasystem described earlier; the remaining challenge is
to capture the behavioural aspects of IMAP (including IMAP proto-
col state and the flow of messages over the textual protocol stream)
and relate them semantically to those of directories understood by



grep. (We note that this kind of behavioural metadata is largely ab-
sent from a Smalltalk-style metasystem.)

6.3 Dispatch as synthesis
Returning to the simpler case of having plain grep process gzipped
text, the problem appears a lot like putting a very sophisticated
dynamic dispatch system into our operating system. We can say we
want an fopen() call which tries to “dispatch” on the kind of data
the file contains. “Dispatch” is, in fact, yet another synonym for
“binding”. What distinguishes this dispatch system is that unlike
class- or interface-based dispatch, or even Haskell-style typeclasses
[Wadler and Blott 1989], nobody should need to have told the
operating system precisely how to turn gzipped text into lines.
Rather, this should be derivable from a search over the meta-
level information on the system’s available commands, the meta-
information describing the gzipped input file and the program
wishing to reading it (as lines of plain text), and the set of primitive
behaviours (i.e. gunzip-like functions) From this initial “fact base”,
we should be able to derive the need to interpose gunzip. Indeed, a
first attempt at such a system might use a Prolog rule base.

6.4 Integration as an OS service
What we have just described encompasses the availability of meta-
level description for both provides and requires sides of an inter-
face, including both data and behaviour. Our hope is that working
specifications can be reverse engineered out of real, existing code.
For example, inference techniques for data structures [Fisher et al.
2008; Slowinska et al. 2010] could be applied to recover file for-
mats from the programs that access them. The availability of rich
metadata on both sides of an interface is game-changing, because it
allows for machine-assisted or perhaps even fully-automated syn-
thesis of composition-forming code. The foundations for the meta-
system which enables it are already present, in vestigial form, in
today’s software. What this enables is integration as an operating
system service. Instead of just forming bindings—which enable the
flow of data—we wish to form compositions which enable the flow
of meaning, even if the composed components do not share con-
crete conventions on how that meaning is encoded. Previous work
has shown that bilateral relations can often be expressed much more
simply in rule-based form than in general purpose programming
languages [Kell 2010] and that synthesis of adequate adaptation
logic appears to be a feasible approach [Yellin and Strom 1997].
Furthering these techniques, and applying them to inter-process in-
teractions, is therefore a worthwhile target.

7. Conclusions
Smalltalk’s modernist narrative holds that unification entails imple-
menting one “unified” system—a Smalltalk system. The directions
outlined in the previous section are motivated by a postmodern
goal: to accept the complex reality of existing (“found”) software,
developed in ignorance of our system, and to shift our system’s role
to constructing views, including Smalltalk-like ones, of this diverse
reality. This preference for building a Smalltalk out of the frag-
mented reality of today’s Unix systems, rather than running iso-
lated Smalltalks (i.e. Smalltalk VMs) each trapped within a Unix,
parallels a contrast made by Plan 9’s designers to Unix. Plan 9 was
an attempt, they wrote, “to build a Unix out of little systems. . . not
a system out of little Unixes” [Pike et al. 1990].

An implicit goal is also to unbundle this machinery from the
programming language. Like any language, Smalltalk is a product
of its time. Languages come and go, and appear to do so somewhat
more quickly than operating systems, although we can only spec-

ulate on the reasons for this.12 We note that meta-level facilities
appear less susceptible to this “design churn” than base-level lan-
guage features, because they are one step closer to a relatively small
set of recurring concepts (whose recurrence though Smalltalk, Unix
and Plan 9 we have been documenting). The facilites we have de-
scribed in this section therefore sit most comfortably as the “waist
in the hourglass”, supporting diverse surface forms for languages
above, and running on diverse hardware-supported “big objects”
below. As such, they give a new programmer-facing role to the
operating system. We have written previously about how meta-
information can be used to make more interoperable language im-
plementations [Kell and Irwin 2011], and what we have just de-
scribed is effectively a generalisation of this approach. Far from
being replaced by an all-conquering programming language, oper-
ating systems can and should provide the mechanisms that allow
languages to come and go which maximising the composability of
the software written using them. Put differently: a language is a
collection of concepts that can be found and recognised within a
larger system; there will be many.
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